WO2010119928A1 - 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス - Google Patents

強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス Download PDF

Info

Publication number
WO2010119928A1
WO2010119928A1 PCT/JP2010/056785 JP2010056785W WO2010119928A1 WO 2010119928 A1 WO2010119928 A1 WO 2010119928A1 JP 2010056785 W JP2010056785 W JP 2010056785W WO 2010119928 A1 WO2010119928 A1 WO 2010119928A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel junction
ferromagnetic
barrier
tmr
tunnel
Prior art date
Application number
PCT/JP2010/056785
Other languages
English (en)
French (fr)
Inventor
裕章 介川
猪俣 浩一郎
ロン シャン
雅也 小塚
和博 宝野
孝夫 古林
ウェンホン ワン
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2011509351A priority Critical patent/JP5586028B2/ja
Priority to US13/264,460 priority patent/US8575674B2/en
Priority to EP10764510.3A priority patent/EP2421063B1/en
Publication of WO2010119928A1 publication Critical patent/WO2010119928A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films

Definitions

  • the present invention relates to a ferromagnetic tunnel junction having a structure in which a tunnel barrier layer is sandwiched between two ferromagnetic layers, and to a magnetoresistive effect element and a spintronic device using the same.
  • GMR giant magnetoresistive
  • MTJ ferromagnetic tunnel junction
  • MRAM non-volatile random access magnetic memory
  • GMR there are known a CIP-GMR of a type in which a current flows in the film surface and a CPP-GMR of a type in which a current flows in a direction perpendicular to the film surface.
  • the principle of GMR is mainly spin-dependent scattering at the interface between the magnetic layer and the nonmagnetic layer, but also contributes to spin-dependent scattering (bulk scattering) in the magnetic material.
  • CPP-GMR expected to contribute to bulk scattering is larger than CIP-GMR.
  • Such a GMR element employs a spin valve type in which an antiferromagnetic layer is brought close to one of the ferromagnetic layers and the spin of the ferromagnetic layer is fixed.
  • the MTJ element has a so-called tunnel magnetoresistance (TMR) effect in which the magnitudes of tunnel currents in the direction perpendicular to the film surface differ from each other by controlling the magnetizations of the two ferromagnetic layers in parallel or antiparallel to each other by an external magnetic field. Obtained at room temperature.
  • TMR ratio in this tunnel junction depends on the spin polarizability P at the interface between the ferromagnet and the insulator to be used. If the spin polarizabilities of the two ferromagnets are P 1 and P 2 , respectively, It is known to be given in
  • the spin polarizability P of the ferromagnetic material takes a value of 0 ⁇ P ⁇ 1.
  • AlOx Al oxide film
  • (001) -oriented MgO film are used as barriers.
  • Al metal is formed by sputtering or the like and then oxidized by a method such as plasma oxidation, and the structure is amorphous (Non-patent Document 1).
  • MgO barrier a MgO target is directly sputtered, or an MgO shot is deposited using an electron beam.
  • the MTJ element is currently put into practical use for a hard disk magnetic head and a nonvolatile random access magnetic memory MRAM.
  • MRAM magnetic random access magnetic memory
  • MTJ elements are arranged in a matrix, and a magnetic field is applied by applying a current to a separately provided wiring, thereby controlling the two magnetic layers constituting each MTJ element in parallel and antiparallel to each other. Record 0. Reading is performed using the TMR effect.
  • MTJ elements with low resistance are required for high-speed operation.
  • so-called spin injection magnetization reversal in which the magnetization of an MTJ element is reversed by injection of a spin-polarized current, has become important, and an MTJ element having a low resistance is required.
  • the technique of spin injection into a semiconductor through a barrier is also gaining importance in the field of spin MOSFETs and spin transistors. In these fields as well, a barrier having a low resistance is necessary to obtain a large on-current.
  • the AlOx amorphous barrier has a high junction resistance, a large interface roughness between the ferromagnetic layer and the barrier layer, a large variation in characteristics, and a generally small TMR. Barriers are not suitable for the above spintronic devices.
  • the tunneling transmittance of ⁇ 1 band electrons is larger than that of a ferromagnetic layer material having a bcc crystal structure such as Fe or FeCo because of its electronic structure. Therefore, it is known that the tunnel resistance is small and the TMR is greatly enhanced by the coherent tunnel effect (Non-patent Document 2).
  • the Co-based full Heusler alloy is an intermetallic compound having a Co 2 YZ type composition, and is generally known to be a half metal in the L2 1 structure or the B2 structure.
  • Such a compound requires heating to obtain a regular structure, and in order to obtain a B2 structure, the substrate is usually heated to 300 ° C. or higher, or heat-treated at a temperature of 400 ° C. or higher after film formation at room temperature. It is necessary to. Further, in order to obtain the L2 1 structure, a higher temperature is required.
  • an MTJ using a Co-based full Heusler alloy is manufactured on a MgO (001) single crystal substrate using Cr or MgO as a buffer layer and using MgO or amorphous AlOx as a barrier.
  • Patent Document 1 Co 2 FeAl x Si 1-x (0 ⁇ x ⁇ 1) half-metal Heusler alloy with a controlled Fermi level
  • Patent Document 3 reported a large TMR at room temperature
  • Non-Patent Document 4 When a Co-based full Heusler alloy is used as the ferromagnetic layer material, the lattice mismatch with MgO is large, and many defects such as dislocations occur in the MgO barrier, so that a high-quality tunnel junction cannot be obtained. In particular, the structure of the Co-based full Heusler alloy on the MgO barrier tends to be an irregular structure, and a giant TMR expected from a half metal has not been observed yet.
  • the momentum in the direction perpendicular to the film surface is not preserved due to the generation of an irregular structure at the interface, and the enhancement of TMR due to the coherent tunnel effect as pointed out in the theory is not necessarily observed.
  • the AlOx barrier amorphous structure, Co based full-Heusler alloy formed thereon is unlikely becomes B2 or L2 1, has a problem that usually difficult to obtain large TMR for half metal resistance becomes A2 structure is lost .
  • the Co-based Heusler alloy layer interface is oxidized during the formation of the AlOx barrier.
  • the TMR value is halved from the value of the zero bias voltage by applying a bias voltage of about 500 mV.
  • the large bias voltage dependence of the TMR value is mainly due to lattice defects and interface roughness between the ferromagnetic layer and the barrier layer, and the conventional amorphous AlOx barrier and MgO with large lattice misfit are extremely improved. Have difficulty.
  • the present invention has an object to achieve a high TMR value that has not been achieved by using a tunnel barrier layer other than an MgO barrier, and to reduce the bias voltage dependency of the TMR value. .
  • the present inventor produces an MgAl 2 O 4 spinel structure by crystallizing the oxide film when an oxide film in which Mg is alloyed with Al is produced. I found.
  • the resistance of the tunnel junction is reduced by an order of magnitude or more compared to the case of the amorphous AlOx barrier, and a larger TMR can be obtained.
  • the present inventors have found that an epitaxial tunnel junction with fewer defects than a barrier and good lattice matching can be obtained, and the present inventor has reached the present invention based on this fact.
  • the ferromagnetic tunnel junction of the invention 1 is characterized in that the tunnel barrier layer is made of a nonmagnetic material having a spinel structure.
  • Invention 2 is characterized in that, in the ferromagnetic tunnel junction of Invention 1, the non-magnetic substance is substantially MgAl 2 O 4 .
  • the term “substantially” means that a spinel structure may be used even if it includes some compositional deviation, oxygen deficiency, and oxygen excess.
  • Invention 3 is characterized in that in the ferromagnetic tunnel junction of Invention 1 or 2, at least one of the ferromagnetic layers is made of a Co-based full Heusler alloy having an L2 1 or B2 structure.
  • Invention 4 is the ferromagnetic tunnel junction of Invention 3, wherein the Co-based full Heusler alloy is made of Co 2 FeAl x Si 1-x (0 ⁇ x ⁇ 1).
  • the magnetoresistive effect element of the invention 5 is characterized in that the ferromagnetic tunnel junction is the ferromagnetic tunnel junction of any of the inventions 1 to 4.
  • the spintronic device of the invention 6 is characterized in that the ferromagnetic tunnel junction used in the device is the ferromagnetic tunnel junction of any of the inventions 1 to 4.
  • the resistance is considerably smaller than when an amorphous AlOx barrier is used, and a larger TMR is obtained. Also, higher quality tunnel barriers and tunnel junctions can be obtained by sputtering than when MgO barriers are used. Furthermore, the TMR value can be kept higher even when a bias voltage is applied.
  • this tunnel junction can be applied to HDD magnetic heads and MRAMs, spin resonance tunnel devices composed of ferromagnetic double tunnel junctions, and spin logics such as spin MOSFETs that require efficient spin injection into semiconductors. It can be used for many spintronic devices that require bias voltage application, such as devices.
  • a magnetic layer is stacked on a Si substrate via a tunnel barrier when applied to a spin MOSFET, the use of a non-magnetic substance having a spinel structure such as MgAl 2 O 4 of the present invention as a barrier causes less lattice distortion.
  • the magnetic layer can be grown, and as a result, spin injection from the magnetic layer to Si can be efficiently performed.
  • Co 2 FeAl 0.5 Si 0.5 (CFAS ) Heusler electrode analysis result by cross-sectional TEM image of a tunnel junction with having a tunnel barrier of the present invention.
  • A Cross-sectional TEM image.
  • B The nanobeam diffraction image and arrow in the barrier layer indicate that the structure is unique to spinel.
  • C Al map image by electron energy loss spectroscopy (EELS),
  • d Co map image.
  • TMR tunnel magnetoresistive
  • the bias voltage dependence of the differential conductance (dI / dV) of the tunnel junction element using the CFAS Heusler electrode which has a tunnel barrier of this invention The figure explaining the spin dependence tunnel in the negative bias area
  • A TMR curve 15 K and RT.
  • B Bias voltage dependence of the TMR ratio at room temperature. Standardized by TMR at zero bias voltage.
  • the present inventors can obtain a MgAl 2 O 4 spinel structure by laminating a thin Mg film and an Al film on the lower magnetic layer using a magnetron sputtering apparatus and performing plasma oxidation treatment under appropriate conditions. It was also found that an MgAl 2 O 4 spinel structure can be obtained by first sputtering a MgAl 2 alloy and performing plasma oxidation. Furthermore, it has been found that an MTJ in which the lower magnetic layer, the MgAl 2 O 4 spinel barrier layer and the upper magnetic layer are epitaxially grown can be produced by selecting a ferromagnetic layer material.
  • the constituent material of the barrier layer having the spinel structure may be a non-magnetic substance having a spinel structure, and besides MgAl 2 O 4 , ZnAl 2 O 4 , MgCr 2 O 4 , MgMn 2 O 4, CuCr 2 O 4 , NiCr 2 O 4, GeMg 2 O 4, SnMg 2 O 4, TiMg 2 O 4, SiMg 2 O 4, CuAl 2 O 4, Li 0.5 Al 2.5 O 4, ⁇ -Al 2 O 3 (cubic alumina) or the like can be used.
  • any substance having a good lattice matching with the barrier layer is suitable for the purpose of the present invention.
  • the lattice misfit is 10% or less, preferably 5% or less, more preferably 3% or less.
  • MgAl 2 O 4 is used as a barrier layer, a Co-based full Heusler alloy or bcc CoFe alloys and the like can be used.
  • Any substrate can be used as long as it can produce a (001) -oriented epitaxial tunnel junction.
  • MgO, spinel MgAl 2 O 4 single crystal, Si or GaAs is preferably used.
  • a buffer layer made of nonmagnetic spinel, Cr or MgO is formed as necessary.
  • thermally oxidized Si can be used as the substrate.
  • a (001) -oriented MgO film is grown by sputtering an MgO target under film-forming conditions in which the Ar gas pressure, sputtering power, etc. are controlled. Can be produced.
  • a lower magnetic layer, a barrier layer, and an upper magnetic layer are sequentially formed thereon, for example, as follows.
  • a full Heusler alloy for example, a Co 2 FeAl 0.5 Si 0.5 (hereinafter, CFAS) thin film, which becomes the lower magnetic layer, is prepared.
  • CFAS Co 2 FeAl 0.5 Si 0.5
  • an L2 1 structure can be obtained in a temperature range of 540 to 600 ° C when B2 is below 500 ° C.
  • an MgAl 2 O 4 oxide film is employed as a barrier layer on the lower magnetic layer (CFAS film)
  • CFAS film lower magnetic layer
  • a thin Mg film and an Al film are successively formed.
  • an MgAl 2 target may be prepared and formed by sputtering. Thereafter, oxygen is introduced and plasma oxidation is performed to produce an MgAl 2 O 4 oxide film having a spinel structure to form a barrier layer.
  • the amount of oxygen is not necessarily in the stoichiometric composition, oxygen deficiency or excess may be present, and Mg and Al may not necessarily have a 1: 2 relationship. That's fine.
  • a Co 75 Fe 25 alloy (hereinafter referred to as a CoFe alloy) is sputtered on the tunnel barrier layer to obtain a (001) -oriented CoFe alloy film as the upper magnetic layer.
  • a normal thin film forming method such as a vapor deposition method, a laser ablation method, or an MBE method can be used in addition to the sputtering method.
  • a Cr (40 nm) / Co 2 FeAl 0.5 Si 0.5 (80 nm) laminated film was produced using a Cr film as a buffer layer on an MgO (001) substrate.
  • heat treatment was performed at a temperature of 430 ° C. for 1 hour.
  • X-ray diffraction revealed that CFAS in this state has a B2 structure.
  • Mg and Al targets were sputtered to produce a Mg (0.7 nm) / Al (1.3 nm) laminated film, which was moved to the oxidation chamber.
  • Ar and oxygen were introduced and inductively coupled plasma oxidation (ICP) treatment was performed to produce an Mg—Al oxide film.
  • ICP inductively coupled plasma oxidation
  • the above laminated film was moved again to the film forming chamber, and subsequently a CoFe (3 nm) / IrMn (12 nm) / Ru (7 nm) laminated film was produced at room temperature to produce a spin valve type tunnel junction.
  • the numbers in parentheses are the respective film thicknesses.
  • the Mg—Al oxide film is a tunnel barrier layer, and CoFe is an upper magnetic layer.
  • IrMn is an antiferromagnetic material and plays a role of fixing the spin of CoFe.
  • Ru is a protective film and also serves as a mask in microfabrication.
  • the entire laminated film was heat-treated at a temperature of 250 ° C. while applying a magnetic field of 5 kOe to impart unidirectional anisotropy to the upper magnetic CoFe layer. Thereafter, the laminated film was finely processed to a size of 10 ⁇ m ⁇ 10 ⁇ m using photolithography and ion milling. An external magnetic field was applied to this element, and the temperature change of the magnetoresistance was measured.
  • FIG. 1 shows the result of observing the cross-sectional structure of the laminated film using a transmission electron microscope.
  • FIG. 1A shows that the tunnel barrier is a crystal layer.
  • the structure of the barrier layer was examined by electron beam diffraction, it was found that it was a spinel structure, and it was found that this barrier was substantially composed of MgAl 2 O 4 (FIG. 1B). Further, observation by electron energy loss spectroscopy (EELS) was performed for the region of FIG. From the Al map image of FIG. 1 (c) and (d) Co map image, it was found that Al was contained in the tunnel barrier and a homogeneous layer was formed. On the other hand, it was also found that the lower CFAS layer has a B2 structure in accordance with the result of X-ray diffraction.
  • EELS electron energy loss spectroscopy
  • FIG. 2 shows the measurement results of magnetoresistance at 7K, 26K and room temperature (RT).
  • RT room temperature
  • 162% TMR is calculated from the formula (1) using the well-known CoFe alloy spin polarizability of 0.5, and corresponds to 91% as the spin polarizability of CFAS.
  • CFAS is substantially half-metal. It shows that there is.
  • TMR of 102% corresponds to a spin polarizability of 75%, which is the highest spin polarizability at room temperature so far.
  • TMR value seems to be a result of obtaining an epitaxial tunnel junction having a crystalline barrier and good lattice matching.
  • the lattice constant of MgAl 2 O 4 is 0.808 nm, and epitaxial growth is performed in the film plane with the relationship CFAS [100] // MgAl 2 O 4 [110].
  • the lattice misfit between CFAS and MgAl 2 O 4 at this time is as very small as 0.7%.
  • Example 2 Using the same method as in Example 1 except that the upper magnetic layer is CFAS instead of CoFe alloy, Cr (40 nm) / CFAS (80 nm) / MgAl 2 O 4 / CFAS (5 nm) / CoFe A tunnel junction element composed of (3 nm) / IrMn (12 nm) / Ru (7 nm) was produced.
  • CFAS is epitaxially grown with a B2 structure on the MgAl 2 O 4 barrier, and CFAS in that case has a higher spin polarizability than CoFe.
  • Example 2 Using the same method as in Example 1 except that the lower magnetic layer is a CoFe alloy, Cr (40 nm) / CoFe (80 nm) / MgAl 2 O 4 / CFAS (5 nm) / CoFe (3 nm) A tunnel junction element composed of / IrMn (12 nm) / Ru (7 nm) was produced.
  • Example 2 Cr (40 nm) / Co 2 MnSi (80 nm) / MgAl 2 O was used in the same manner as in Example 1 except that the lower magnetic layer was a Co-based full-Heusler alloy Co 2 MnSi instead of the CFAS alloy. 4 / CoFe (3 nm) / IrMn (12 nm) / Ru (7 nm). Co 2 MnSi has also been shown to be a half-metal (Non-Patent Document 5, Y. Sakuraba et al., Appl. Phys. Lett. 88, 192508 (2006).) And a lattice error with MgAl 2 O 4 The fit is as small as 1.3%.
  • an MTJ element having a magnetic layer Fe layer was fabricated.
  • a Cr (40 nm) film was formed on an MgO (001) substrate as a buffer layer, and then heat treated at a temperature of 700 ° C. for 1 hour in order to achieve high flatness.
  • an Fe (30 nm) layer was produced.
  • heat treatment was performed at a temperature of 300 ° C. for 15 minutes.
  • Mg and an Al target were sputtered to produce a Mg (0.91 nm) / Al (1.16 nm) laminated film, and then a Mg—Al oxide film was produced in the same manner as in Example 1.
  • the Mg and Al film thicknesses were determined so that the stoichiometric composition of MgAl 2 O 4 was realized after oxidation. Subsequently, heat treatment was performed at a temperature of 500 ° C. for 15 minutes in order to improve the film quality and crystallinity of the Mg—Al oxide film. Subsequently, after forming an Fe (5 nm) layer, it was heat-treated at a temperature of 300 ° C. for 15 minutes. Further, an IrMn (12 nm) / Ru (7 nm) laminated film was produced at room temperature to produce a spin valve type tunnel junction. The numbers in parentheses are the respective film thicknesses. Next, the whole laminated film was heat-treated at a temperature of 200 ° C.
  • the laminated film was finely processed to a size of 10 ⁇ m ⁇ 10 ⁇ m using photolithography and ion milling. An external magnetic field was applied to this element, and the magnetoresistance was measured.
  • the epitaxial tunnel junction had a good lattice matching and had an MgAl 2 O 4 barrier having a spinel structure. Also, by using X-ray structural analysis, it is shown that the lattice misfit of Fe [110] and MgAl 2 O 4 [100] in the film surface is actually very small from 0.7% to 1.0%. It was.
  • TMR was 165% at 15K and 117% at room temperature, achieving very high values that cannot be achieved with an amorphous AlOx barrier (FIG. 5 (a)).
  • the bias voltage dependence of TMR was measured at room temperature. The result is shown in FIG.
  • the positive bias corresponds to the tunneling of electrons from the upper magnetic layer Fe to the upper magnetic layer Fe.
  • the bias voltage (V half ) at which TMR is halved was extremely large, ie, +1,000 mV in the positive bias direction and -1,300 to -1,400 mV in the negative bias direction.
  • a typical V half value of an MTJ element having an MgO barrier is about 400 mV to 750 mV (Non-Patent Document 6: S. Yuasa et al., Nature Mater. 3, 868 (2004).), And MgAl 2 O By using four barriers, the V half value can be improved by a factor of about two.
  • the bias voltage dependence of the above high TMR and good TMR is as follows: (1) the spinel structure is stabilized by adjusting the Mg: Al composition; and (2) the heat treatment process during the multilayer film fabrication This suggests that an ideal state in which the interface between the magnetic layer Fe layer and the barrier layer is extremely high in quality and has few defects is realized.
  • JP-A-2009-54724 discloses a laminate having a Heusler alloy, a spin MOS field effect transistor and a tunnel magnetoresistive effect element using this laminate as spintronic devices.
  • each of the above embodiments is replaced by substituting the tunnel magnetoresistive element formed on the semiconductor substrate / (001) oriented MgO layer with the first to fifth embodiments.
  • the characteristics shown in the examples could be expressed in the device.

Abstract

 上記課題を解決するために、本発明の強磁性トンネル接合は、トンネルバリア層がスピネル構造を有する非磁性物質からなることを特徴とする手段を採用した。 また、前記非磁性物質が実質的にMgAl2O4であることを特徴とする手段を採用し、また、強磁性層の少なくとも一つがL21またはB2構造をもつCo基フルホイスラー合金からなることを特徴とする手段を採用することとした。 そして、Co基フルホイスラー合金がCo2FeAlxSi1-x (0 ≦ x ≦1)からなることを特徴とする手段の採用した。 これらの強磁性トンネル接合を利用した磁気抵抗効果素子及びスピントロニクスデバイスを提供するものであり、MgOバリア以外のトンネルバリア層を用いて従来にはない高いTMR値を達成することを課題とした。

Description

強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
 本発明は,トンネルバリア層を二つの強磁性層で挟んだ構造からなる強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子およびスピントロニクスデバイスへの応用に関する。
 近年,強磁性層/非磁性金属層の多層膜からなる巨大磁気抵抗(GMR)効果素子,および強磁性層/絶縁体層/強磁性層からなる強磁性トンネル接合(MTJ)素子が新しい磁界センサーや不揮発性ランダムアクセス磁気メモリ(MRAM)素子として注目されている。GMRには膜面内に電流を流すタイプのCIP-GMRと,膜面垂直方向に電流を流すタイプのCPP-GMRが知られている。GMRの原理は主として磁性層と非磁性層との界面におけるスピン依存散乱にあるが,磁性体中でのスピン依存散乱(バルク散乱)の寄与もある。
 そのため一般に,バルク散乱の寄与が期待されるCPP-GMRの方がCIP-GMRより大きい。このようなGMR素子は,強磁性層の一方に反強磁性層を近接させてその強磁性層のスピンを固定させるスピンバルブ型が用いられる。
 一方,MTJ素子では外部磁場によって2つの強磁性層の磁化を互いに平行あるいは反平行に制御することにより,膜面垂直方向のトンネル電流の大きさが互いに異なる,いわゆるトンネル磁気抵抗(TMR)効果が室温で得られる。このトンネル接合におけるTMR比は用いる強磁性体と絶縁体との界面におけるスピン分極率Pに依存し,二つの強磁性体のスピン分極率をそれぞれP,Pとすると,一般に(1)式で与えられることが知られている。
 TMR = 2P/(1-P)          (1)
 ここで強磁性体のスピン分極率Pは0 < P ≦ 1の値をとる。従来,バリアとしてアモルファス構造のAl酸化膜(AlOx)および(001)面配向したMgO膜が用いられている。前者の場合,Al金属をスパッタ法などで成膜し,その後プラズマ酸化などの方法で酸化して作製され,その構造はアモルファスであることがよく知られている(非特許文献1)。一方,MgOバリアはMgOターゲットを直接スパッタするか,あるいは電子ビームを用いてMgOショットを蒸着する方法などが用いられている。
 (1)式からわかるようにスピン分極率P = 1の強磁性体を用いると無限に大きなTMRが期待される。P = 1の磁性体はハーフメタルと呼ばれ,これまでバンド計算によって,Fe,CrO,(La-Sr)MnO,ThMnO, SrFeMoOなどの酸化物,NiMnSbなどのハーフホイスラー合金,およびCoMnGe,CoMnSi,CoCrAlなどのL2構造をもつフルホイスラー合金などがハーフメタルとして知られている。
 MTJ素子は現在,ハードデイスク用磁気ヘッドや不揮発性ランダムアクセス磁気メモリMRAMに実用化されている。MRAMではMTJ素子をマトリックス状に配置し,別に設けた配線に電流を流して磁界を印加することで,各MTJ素子を構成する二つの磁性層を互いに平行,反平行に制御することにより1,0を記録させる。読み出しはTMR効果を利用して行う。このような応用分野では高速動作のため抵抗の小さいMTJ素子が要求される。また,最近,MTJ素子の磁化をスピン偏極電流の注入によって反転させる,いわゆるスピン注入磁化反転が重要になってきており,抵抗の小さいMTJ素子が必要とされている。さらには,バリアを介して半導体へスピン注入する技術もスピンMOSFETやスピントランジスタの分野で重要性を増している。これらの分野でもオン電流を大きく取るため抵抗の小さいバリアが必要である。
[規則91に基づく訂正 10.05.2010] 
 このような背景の下,従来のAlOxアモルファスバリアでは,接合抵抗が高すぎること,強磁性層とバリア層との界面ラフネスが大きく特性のバラつきが大きいこと,TMRが一般に小さいことなどから,AlOxアモルファスバリアは上記スピントロニクスデバイスには適さない。一方,結晶性のMgOバリアを用いたエピタキシャルトンネル接合の場合,その電子構造の特質から,FeやFeCoなどのbcc結晶構造をもつ強磁性層材料に対してΔバンド電子のトンネル透過率が大きく,そのためトンネル抵抗が小さく,またコヒーレントトンネル効果によってTMRが大きくエンハンスすることが知られている(非特許文献2)。
 Co基フルホイスラー合金はCoYZ型の組成を有する金属間化合物であり,一般にL2構造またはB2構造においてハーフメタルになることが知られている。このような化合物では規則構造を得るために加熱が必要であり,B2構造を得るためには通常,基板を300 °C以上に加熱するか,室温で成膜後400 °C以上の温度で熱処理することが必要である。また,L2構造を得るためにはそれよりも高い温度を必要とする。従来,Co基フルホイスラー合金を用いたMTJはMgO(001)単結晶基板の上にCrやMgOをバッファー層とし,バリアとしてMgOやアモルファスのAlOxを用いて作製されている。MgOバリアはCo基ホイスラー合金膜上にエピタキシャル成長し,その上のCo基フルホイスラー合金もエピタキシャル成長することでB2あるいはL2構造が比較的容易に得られる。
 本発明者らはフェルミ準位を制御したCoFeAlSi1-x (0 < x <1)ハーフメタルホイスラー合金を提案し(特許文献1),室温で大きなTMRを報告している(非特許文献3)。
 コヒーレントトンネル効果はCo基フルホイスラー合金に対しても有効であることが理論的に指摘されている(非特許文献4)。しかし,Co基フルホイスラー合金を強磁性層材料に用いた場合,MgOとの格子ミスマッチが大きく,MgOバリア内に多くの転位などの欠陥が生じ高品質のトンネル接合が得られない。特に,MgOバリア上のCo基フルホイスラー合金の構造が不規則構造に成りやすく,ハーフメタルから期待されるような巨大TMRはまだ観測されていない。また,界面での不規則構造の生成により膜面垂直方向の運動量が保存されず,理論で指摘されているようなコヒーレントトンネル効果によるTMRのエンハンスは必ずしも観測されていない。一方,アモルファス構造のAlOxバリアの場合,その上に形成したCo基フルホイスラー合金がB2あるいはL2になり難く,通常A2構造となりハーフメタル性が失われるため大きなTMRを得にくいという問題があった。また,電気抵抗が大きく低抵抗化が難しいという課題もあった。さらに,AlOxバリア形成時にCo基ホイスラー合金層界面が酸化されてしまうという問題もあった。
 また,MTJ素子を用いた情報の書き込み,読み出しには,数百mVから1 V程度のバイアス電圧印加が必要である。しかし,アモルファスAlOxバリアやMgOバリアを有するMTJ素子において,一般的に500mVほどのバイアス電圧印加によってTMR値がゼロバイアス電圧の値から半減してしまうという問題があった。このTMR値の大きなバイアス電圧依存性は,主として強磁性層とバリア層との間の格子欠陥や界面ラフネスに起因しており,従来のアモルファスのAlOxバリアや格子ミスフィットが大きいMgOでは改善が極めて困難である。
WO2007/126071
J. S. Moodera et al., Phys. Rev. Lett. 74, 3273 (1995). W. H. Butler et al., Phys. Rev. B 63, 054416 (2001). N. Tezuka et al., Jpn. J. Appl. Phys. 46, L454 (2007) Miura et al., J. Phys.: Condens. Matter 19, 365228 (2007).
 本発明は,このような実情に鑑み,MgOバリア以外のトンネルバリア層を用いて従来にはない高いTMR値を達成し、またTMR値のバイアス電圧依存性の低減を達成することを課題としている。
 本発明者はAlOxバリアを用いたMTJの研究を行っている過程で,AlにMgを合金化させた酸化膜を作製した場合,酸化膜が結晶化してMgAlスピネル構造が形成することを見出した。
 その結果,トンネル接合の抵抗がアモルファスAlOxバリアの場合より一桁以上低下するとともに,より大きなTMRが得られること,および,特にCo基フルホイスラー合金やCoFe合金に対して格子ミスフィットが小さく,MgOバリアに比べて欠陥が少なく格子整合性のよいエピタキシャルトンネル接合が得られることなどを見出し,本発明者は、これを踏まえて本発明に至っている。
 またMgAlバリア作製後の真空中熱処理を行なう手法によって,バリア界面の構造が改善することに伴ってTMR値のバイアス電圧依存性を大幅に改善するということも見いだした。本発明は、この知見も踏まえている。
 すなわち、発明1の強磁性トンネル接合体は,トンネルバリア層がスピネル構造を有する非磁性物質からなることを特徴とする。
 発明2は,発明1の強磁性トンネル接合体において,前記非磁性物質が実質的にMgAlであることを特徴とする。実質的にという意味は多少の組成のずれ,酸素欠損および酸素過剰を含んでいても,スピネル構造であればよいということを意味する。
 発明3は,発明1又は2の強磁性トンネル接合体において,強磁性層の少なくとも一つがL2またはB2構造をもつCo基フルホイスラー合金からなることを特徴とする。
発明4は,Co基フルホイスラー合金がCoFeAlSi1-x (0 ≦ x ≦1)からなることを特徴とする発明3の強磁性トンネル接合体である。
発明5の磁気抵抗効果素子は,その強磁性トンネル接合が発明1~4のいずれかの強磁性トンネル接合体であることを特徴とする。
発明6のスピントロニクスデバイスは,そのデバイスに用いられる強磁性トンネル接合が発明1~4のいずれかの強磁性トンネル接合体であることを特徴とする。
 本発明では,アモルファスAlOxバリアを用いた場合より抵抗がかなり小さく,かつ,より大きなTMRが得られる。また,MgOバリアを用いた場合より,スパッタ法で高品質のトンネルバリアおよびトンネル接合が得られる。さらに,バイアス電圧印加においてもTMR値をより高く保つことが可能になる。
 またMgAlバリア作製後の真空中熱処理を行なう手法によって,バリア界面の構造が改善することに伴ってTMR値のバイアス電圧依存性を大幅に改善するということも見いだした。したがって,本トンネル接合はHDD用磁気ヘッドやMRAMに応用できるほか,強磁性2重トンネル接合からなるスピン共鳴トンネル素子,および半導体への効率的なスピン注入が必要とされるスピンMOSFETなどのスピンロジックデバイスなど,バイアス電圧印加を必要とする多くのスピントロニクスデバイスに利用することができる。特にスピンMOSFETへの応用に際し,Si基板上にトンネルバリアを介して磁性層をスタックする場合,本発明のMgAlなどのスピネル構造からなる非磁性物質をバリアとして用いると,格子ひずみの少ない磁性層を成長させることが可能であり,結果として磁性層からSiへ効率よくスピン注入することが可能になる。
本発明のトンネルバリアを有するCoFeAl0.5Si0.5(CFAS)ホイスラー電極を用いたトンネル接合の断面TEM像による解析結果。(a)断面TEM像。(b)バリア層におけるナノビーム回折像,矢印がスピネルに特有な構造であることを示している。(c) 電子エネルギー損失分光(EELS)によるAlマップ像,(d)Coマップ像。 本発明のトンネルバリアを有するCFASホイスラー電極を用いたトンネル接合素子のトンネル磁気抵抗(TMR)曲線。7 K,26 K,および室温(RT)。 本発明のトンネルバリアを有するCFASホイスラー電極を用いたトンネル接合素子の微分コンダクタンス(dI/dV)のバイアス電圧依存性。 本発明のトンネルバリアを有するCFASホイスラー電極を用いたトンネル接合素子の負バイアス領域におけるスピン依存トンネルを説明する図。 本発明のトンネルバリアを有し,Fe電極を用いたトンネル接合素子の伝導特性。(a)TMR曲線15 K,およびRT。(b)TMR比の室温におけるバイアス電圧依存性。ゼロバイアス電圧時のTMRで規格化してある。
[規則91に基づく訂正 10.05.2010] 
 前記のとおり,本発明者らはマグネトロンスパッタ装置を用いて下部磁性層の上に薄いMg膜とAl膜を積層し適当な条件でプラズマ酸化処理を施すと,MgAlスピネル構造が得られることを見出し,また,最初にMgAl合金をスパッタしプラズマ酸化をすることで,MgAlスピネル構造が得られることも見出した。さらに,強磁性層材料を選定することで下部磁性層,MgAlスピネルバリア層および上部磁性層がエピタキシャル成長したMTJを作製することができることを見出した。この知見に基づく本発明においては,スピネル構造を持つバリア層の構成物質としては,スピネル構造の非磁性物質であればよく,MgAlの他,ZnAl,MgCr,MgMn,CuCr,NiCr,GeMg,SnMg,TiMg,SiMg,CuAl,Li0.5Al2.5,γ-Al(立方晶アルミナ)などを用いることができる。
 また,下部磁性層,上部磁性層としては,前記バリア層との格子整合のよい物質であれば本発明の趣旨に適合するものである。
 具体的には,格子ミスフィットが10%以下,好ましくは5%以下,より好ましくは3%以下であることが望ましく,MgAlをバリア層とした場合は,Co基フルホイスラー合金又はbcc CoFe合金などが利用可能である。
 用いる基板としては,(001)配向したエピタキシャルトンネル接合を作製できるものであれば良く,例えばMgO,スピネルMgAl単結晶,Si又はGaAsを用いるのが好適である。
 この上に必要に応じて,非磁性スピネル,CrあるいはMgOからなるバッファー層を形成する。
 また,基板として熱酸化Siを用いることもできる。この場合,その上にArガス圧やスパッタパワーなどを制御した成膜条件でMgOターゲットをスパッタすることで(001)配向したMgO膜を成長させておくことで,(001)配向したエピタキシャルトンネル接合を作製できる。
 そして,この上に,下部磁性層と,バリア層と上部磁性層を,たとえば以下のようにして順次作製する。
 下部磁性層となるフルホイスラー合金,たとえばCoFeAl0.5Si0.5(以下,CFAS)薄膜を作製する。
 その後,400~600°C程度の温度でその場熱処理することでB2あるいはL2構造のCFAS膜を得ることができる。この場合,500℃以下ではB2が,540~600°Cの温度範囲でL2構造が得られる。
 次に,この下部磁性層(CFAS膜)上に,バリア層としてMgAl酸化膜を採用した場合は,薄いMg膜とAl膜を連続して成膜する。あるいは,MgAlターゲットを用意し,それをスパッタして成膜してもよい。その後,酸素を導入してプラズマ酸化処理を施しスピネル構造のMgAl酸化膜を作製してバリア層とする。
 ここで酸素量は必ずしも化学量論組成にはなく,酸素欠損あるいは過剰になる場合もあり,また,MgとAlは必ずしも1:2の関係にならない場合があるが,実質的にスピネル構造であればよい。
 次に,このトンネルバリア層の上に,Co75Fe25合金(以下CoFe合金)をスパッタすることで,(001)配向したCoFe合金膜が上部磁性層として得られる。
 このようにすれば,全体として(001)配向したエピタキシャルトンネル接合を作製できることができた。
 CoFe合金の代わりにCo基ハーフメタルフルホイスラー合金を用いれば,より大きなTMRが得られる。
 成膜法としてはスパッタ法のほか,蒸着法,レーザアブレーション法,MBE法など通常の薄膜作製法を用いることができる。
 以下,本発明の実施例について説明する。
 直流マグネトロンスパッタ装置を用いて,MgO(001)基板上にバッファー層としてCr膜を用い,Cr(40 nm)/CoFeAl0.5Si0.5(80nm)積層膜を作製した。その後CoFeAl0.5Si0.5(CFAS)膜の結晶性をよくするため430 °Cの温度で1時間熱処理した。X線回折からこの状態のCFASはB2構造であることが判明した。引き続きMgおよびAlターゲットをスパッタしてMg(0.7 nm)/Al(1.3 nm)積層膜を作製し,これを酸化室に移動した。ここでArと酸素を導入して誘導結合プラズマ酸化(ICP)処理を行いMg-Al酸化膜を作製した。このときのArと酸素の分圧比は3対17,酸化時間は120秒であった。
 上記積層膜を再び成膜室に移動し,引き続きCoFe(3 nm) /IrMn(12 nm)/Ru(7 nm)積層膜を室温で作製し,スピンバルブ型トンネル接合を作製した。括弧内の数字はそれぞれの膜厚である。Mg-Al酸化膜はトンネルバリア層,CoFeは上部磁性層である。IrMnは反強磁性体でありCoFeのスピンを固定する役割をしている。Ruは保護膜であるとともに微細加工におけるマスクの役割もしている。
[規則91に基づく訂正 10.05.2010] 
 次に5 kOeの磁場を印加しながら250 °Cの温度で積層膜全体を熱処理し,上部磁性CoFe層に一方向性の異方性を付与した。その後上記積層膜をフォトリソグラフィとイオンミリングを用いて10 μm×10 μmのサイズに微細加工した。この素子について外部磁場を印加し,磁気抵抗の温度変化を測定した。
 図1は透過型電子顕微鏡を用いて上記積層膜の断面構造を観察した結果である。図1(a)からトンネルバリアは結晶層であることがわかる。電子線回折によりバリア層の構造を調べたところ,スピネル構造であることが判明し,このバリアは実質的にMgAlからなることがわかった(図1(b))。また,電子エネルギー損失分光(EELS)による観察を図1(a)の領域について行なった。図1(c)のAlマップ像,および(d)Coマップ像から,トンネルバリアにAlが含まれており,均質な層を形成していることがわかった。一方,下部のCFAS層はX線回折の結果と一致してB2構造であることも判明した。
 次に,7K,26 Kおよび室温(RT)における磁気抵抗測定結果を図2に示す。26 K で162%,室温で102%という非常に大きなTMRが得られた。162%のTMRは,よく知られたCoFe合金のスピン分極率0.5を用いて(1)式から計算すると,CFASのスピン分極率として91%に相当し,CFASは実質的にハーフメタルであることを示している。
 また,102%のTMRはスピン分極率として75%に相当し,これまでで最高の室温でのスピン分極率である。このように大きなTMR値が得られたのは,バリアが結晶でかつ格子整合のよいエピタキシャルトンネル接合が得られた結果であると思われる。
 接合抵抗はRA = 1.7×104 ΩμmとアモルファスAlOxバリアよりも2桁程度小さい。尚,MgAlの格子定数は0.808 nmであり,膜面内でCFAS[100]// MgAl[110]の関係をもってエピタキシャル成長している。このときのCFASとMgAlとの格子ミスフィットは0.7%と非常に小さい。
 次にこの素子について微分コンダクタンスG = dI/dVのバイアス電圧依存性を室温(RT)および7 Kで測定した。その結果を図3に示す。ここで正バイアスは上部磁性層CoFeから下部磁性層CFASに電子がトンネルすることに相当している。負バイアス側でコンダクタンスがフラットに近い領域があり,ある電圧(V)で弱い極小を示した後急増している。これはCFASがハーフメタルであることを示唆している(非特許文献5)。Vは,7 KおよびRTでそれぞれ-320 mV, -290 mVである。eVは図4に模式的に示すように,フェルミ準位と価電子帯のトップとのエネルギー差に相当する。重要なことは室温でもフラットに近い領域があり,ハーフメタルギャップが見えていることである。(図3参照。)従来,室温でこのようなハーフメタルギャップが観測されたことはなく,初めてのことである。これはCFASがギャップの大きいハーフメタルであることに加えて,結晶でかつ格子整合のよいMgAlバリアが形成されたためであると考えられる。尚,7 Kと室温でのeVの差30 mVは熱エネルギーkT= 25 mVに相当している。
 正電圧の場合には,CoFeがハーフメタルでないためトンネルの際スピンがCoFe層界面でフリップし,スピンが保存されないため,明瞭なVは観測されない。
[規則91に基づく訂正 10.05.2010] 
 次に,この素子およびCoFe/MgAl/CoFe MTJのTMRの温度変化を測定した。(1)式を用いてTMRから得られたスピン分極率Pはスピン波理論を用いてP = P(0) (1 - αT3/2)で非常によく記述することができた。P(0)は絶対零度におけるスピン分極率である。低温から室温まで一つのαパラメータを用いて完全に実験結果をフィッテイングできたことは,MgAlバリアを用いた本MTJ素子では,TMRのコヒーレントトンネルによるエンハンスが見られないことを示唆している。尚,αの値はCFASおよびCoFeに対して2×10-5および3.2×10-5である。α値が小さいほど室温でのTMRは改善される。
 上部磁性層がCoFe合金の代わりにCFASであること以外は実施例1と同様の方法を用いて,Cr(40 nm)/CFAS(80 nm)/MgAl/CFAS(5 nm)/CoFe(3 nm)/IrMn(12 nm)/Ru(7 nm)からなるトンネル接合素子を作製した。接合抵抗はRA = 2.2×104 ΩμmとアモルファスAlOxバリアを用いた場合より2桁小さく,TMRは室温で240%と上部磁性層にCoFe合金を用いた場合より大きかった。これはCFASがMgAlバリア上にB2構造をもってエピタキシャル成長しており,その場合のCFASがCoFeより大きなスピン分極率を有していることを示している。
 下部磁性層がCoFe合金であること以外は実施例1と同様の方法を用いて,Cr(40 nm)/ CoFe(80 nm)/MgAl/CFAS(5 nm)/CoFe(3 nm)/IrMn(12 nm)/Ru(7 nm)からなるトンネル接合素子を作製した。TMRは室温で68%とアモルファスAlOxバリアと同等以上であり,一方で接合抵抗はRA = 1.1×104 Ωμmと2桁低減された。これはCoFe[110]とMgAl [100]との間の格子ミスフィットが0.4%以下と非常に小さく,高品位なエピタキシャル膜が実現されたことを示している。
 下部磁性層がCFAS合金の代わりにCo基フルホイスラー合金CoMnSiであること以外は実施例1と同様の方法を用いて,Cr(40 nm)/CoMnSi(80 nm)/MgAl/CoFe(3 nm)/IrMn(12 nm)/Ru(7 nm)からなるトンネル接合素子を作製した。CoMnSiもハーフメタルであることが示されており(非特許文献5,Y. Sakuraba et al., Appl. Phys. Lett. 88, 192508 (2006). ),MgAlとの格子ミスフィットも1.3%と小さい。また,L2構造が得られている。接合抵抗はRA = 2.0×104 ΩμmとアモルファスAlOxバリアを用いた場合より2桁小さく,TMRは室温で96%と実施例1と同様にCoFe上部磁性層をもつトンネル接合素子として非常に高い。
 MgAlバリアの特長を調べるために,磁性層Fe層を有するMTJ素子を作製した。
 直流マグネトロンスパッタ装置を用いて,MgO(001)基板上にCr(40 nm)をバッファー層として成膜し,その後高い平坦性を実現するため700 °Cの温度で1時間熱処理した。次にFe(30nm)層を作製した。その後Fe膜の結晶性をよくするため300 °Cの温度で15分熱処理した。引き続きMgおよびAlターゲットをスパッタしてMg(0.91 nm)/Al(1.16 nm)積層膜を作製し,その後実施例1と同様の方法によってMg-Al酸化膜を作製した。このMgおよびAl膜厚は,酸化後にほぼMgAlの化学量論組成が実現されるように決定した。引き続きMg-Al酸化膜の膜質向上および結晶性向上のため,500 °Cの温度で15分熱処理した。引き続きFe(5 nm)層を作製した後,300 °Cの温度で15分熱処理した。さらにIrMn(12 nm)/Ru(7 nm)積層膜を室温で作製し,スピンバルブ型トンネル接合を作製した。括弧内の数字はそれぞれの膜厚である。次に5 kOeの磁場を印加しながら200 °Cの温度で積層膜全体を熱処理し,上部磁性Fe層に一方向性の異方性を付与した。上記の数回の熱処理プロセスおよび熱処理温度は,上記多層膜の結晶性向上およびMg-Al酸化膜の界面構造向上がなされるように決定されている。
[規則91に基づく訂正 10.05.2010] 
 その後上記積層膜をフォトリソグラフィとイオンミリングを用いて10 μm × 10 μmのサイズに微細加工した。この素子について外部磁場を印加し,磁気抵抗を測定した。
 透過型電子顕微鏡からスピネル構造を有するMgAlバリアを有する格子整合のよいエピタキシャルトンネル接合であることがわかった。またX線構造解析を用いることによって,膜面内のFe[110]とMgAl[100]の格子ミスフィットは実際に0.7%から1.0%と非常に小さいことが示された。
 TMRは15Kで165%,室温で117%とアモルファスAlOxバリアでは達成できない非常に高い値を達成した(図5(a))。接合抵抗はRA = 2.9×103 Ω・μmと2桁以上低減された。さらにTMRのバイアス電圧依存性を室温で測定した。その結果を図5(b)に示す。ここで正バイアスは上部磁性層Feから上部磁性層Feに電子がトンネルすることに相当している。TMRが半減するバイアス電圧(Vhalf)は正バイアス方向で+1,000 mV,負バイアス方向で-1,300~-1,400 mVと極めて大きい値が得られた。MgOバリアを有するMTJ素子の典型的なVhalf値は400 mV~750 mV程度(非特許文献6:S. Yuasa et al., Nature Mater. 3, 868 (2004).)であり,MgAlバリアを用いたことでVhalf値を約2倍に向上可能である。
 以上の高いTMRおよび良好なTMRのバイアス電圧依存性は,(1)Mg:Al組成の調整によるスピネル構造の安定化が達成されたこと,さらに,(2)多層膜作製時の熱処理プロセスによって上下磁性層Fe層とバリア層の界面が極めて高品質で,欠陥のほとんど存在しない理想的な状態が実現されたことを示唆している。
[規則91に基づく訂正 10.05.2010] 
 なお、トンネルバリアにMgを含まないスピネル類似構造γ-Alを用いたことを除いて上記と同様の方法を用いて,Cr(40 nm)/ Fe(30 nm)/Al/Fe(5 nm)/IrMn(12 nm)/Ru(7 nm)からなるトンネル接合素子を作製したところ、Al層は従来のアモルファスとは異なり単結晶γ-Alとして得られている。γ-Alの格子定数は0.791 nmであり,Feと格子整合性がよい(格子不整合2.3%)。一方で,接合抵抗はRA = 4×103 Ωμmと3桁低減された。
 特開2009-54724号公報には、スピントロニクスデバイスとして、ホイスラー合金を有する積層体、この積層体を用いたスピンMOS電界効果トランジスタ及びトンネル磁気抵抗効果素子が示されている。
 その特開2009-54724号公報請求項8~9において、半導体基板/(001)配向したMgO層上に形成するトンネル磁気抵抗効果素子を前記実施例1~5に置換することで、前記各実施例で示した特性を、当該デバイスにて発現させることができた。
Figure JPOXMLDOC01-appb-T000001
※(数値)は実施例1~4は理論値,実施例5はX線回折および断面TEM像の解析から得た値を示す。

Claims (6)

  1.  トンネルバリア層を二つの強磁性層で挟んだ構造からなる強磁性トンネル接合であって,前記トンネルバリア層がスピネル構造を有する非磁性物質からなることを特徴とする強磁性トンネル接合体。
  2.  前記非磁性物質がMgAl2O4であることを特徴とする請求項1記載の強磁性トンネル接合体。
  3.  強磁性層の少なくとも一つがL21またはB2構造をもつCo基フルホイスラー合金からなることを特徴とする請求項1又はおよび2記載の強磁性トンネル接合体。
  4.  Co基フルホイスラー合金がCo2FeAlxSi1-x (0 ≦ x ≦1)からなることを特徴とする請求項3記載の強磁性トンネル接合。
  5. [規則91に基づく訂正 10.05.2010] 
     トンネルバリア層を二つの強磁性層で挟んだ構造からなる強磁性トンネル接合を用いた磁気抵抗効果素子であって,前記強磁性トンネル接合が請求項1から4のいずれかに記載の強磁性トンネル接合体であることを特徴とする磁気抵抗効果素子。
  6.  トンネルバリア層を二つの強磁性層で挟んだ構造からなる強磁性トンネル接合を用いたスピントロニクスデバイスであって,前記強磁性トンネル接合が請求項1から5のいずれかに記載の強磁性トンネル接合体であることを特徴とするスピントロニクスデバイス。
PCT/JP2010/056785 2009-04-16 2010-04-15 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス WO2010119928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011509351A JP5586028B2 (ja) 2009-04-16 2010-04-15 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
US13/264,460 US8575674B2 (en) 2009-04-16 2010-04-15 Ferromagnetic tunnel junction structure, and magneto-resistive element and spintronics device each using same
EP10764510.3A EP2421063B1 (en) 2009-04-16 2010-04-15 Ferromagnetic tunnel junction structure, and magnetoresistive effect element and spintronics device each comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009099483 2009-04-16
JP2009-099483 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119928A1 true WO2010119928A1 (ja) 2010-10-21

Family

ID=42982585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056785 WO2010119928A1 (ja) 2009-04-16 2010-04-15 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス

Country Status (4)

Country Link
US (1) US8575674B2 (ja)
EP (1) EP2421063B1 (ja)
JP (1) JP5586028B2 (ja)
WO (1) WO2010119928A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204683A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 磁気抵抗素子および磁気メモリ
WO2013122023A1 (ja) * 2012-02-14 2013-08-22 Tdk株式会社 スピン注入電極構造、及びスピン伝導素子
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP2014154612A (ja) * 2013-02-06 2014-08-25 Tdk Corp スピン注入電極構造及びそれを用いたスピン伝導素子
JPWO2013122024A1 (ja) * 2012-02-14 2015-05-11 Tdk株式会社 スピン注入電極構造及びそれを用いたスピン伝導素子
JP2017041606A (ja) * 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
JP2017118132A (ja) * 2017-02-13 2017-06-29 Tdk株式会社 トンネル層
WO2017135251A1 (ja) * 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
JP2017191953A (ja) * 2017-07-27 2017-10-19 Tdk株式会社 積層体
JP2018056272A (ja) * 2016-09-28 2018-04-05 株式会社東芝 磁気抵抗素子及び磁気記憶装置
JP2018088551A (ja) * 2018-02-16 2018-06-07 Tdk株式会社 トンネル層
JP2018206978A (ja) * 2017-06-05 2018-12-27 大同特殊鋼株式会社 金属−絶縁体系ナノグラニュラー薄膜、及び薄膜磁気センサ
JP2019021751A (ja) * 2017-07-14 2019-02-07 Tdk株式会社 磁気抵抗効果素子及びその製造方法
WO2019049740A1 (ja) 2017-09-11 2019-03-14 国立研究開発法人物質・材料研究機構 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
JP2019135798A (ja) * 2019-05-28 2019-08-15 Tdk株式会社 トンネル層
CN110165046A (zh) * 2018-02-16 2019-08-23 Tdk株式会社 磁阻效应元件及其制造方法
JP2019145787A (ja) * 2018-02-16 2019-08-29 Tdk株式会社 磁気抵抗効果素子及びその製造方法
JP2020198449A (ja) * 2019-05-28 2020-12-10 Tdk株式会社 トンネル層

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531707A (zh) * 2012-07-03 2014-01-22 中国科学院物理研究所 磁性隧道结
US9166152B2 (en) 2012-12-22 2015-10-20 Samsung Electronics Co., Ltd. Diffusionless transformations in MTJ stacks
US8982614B2 (en) 2013-03-22 2015-03-17 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
US9070866B2 (en) * 2013-03-22 2015-06-30 Kabushiki Kaisha Toshiba Magnetoresistive effect element and manufacturing method thereof
WO2016158867A1 (ja) 2015-03-31 2016-10-06 Tdk株式会社 磁気抵抗効果素子
EP4016652A3 (en) 2015-03-31 2023-05-10 TDK Corporation Magnetoresistive effect element
JPWO2016158910A1 (ja) 2015-03-31 2018-01-25 Tdk株式会社 磁気抵抗効果素子
US11367834B2 (en) 2015-03-31 2022-06-21 Tdk Corporation Magnetoresistance effect element
WO2016158926A1 (ja) 2015-03-31 2016-10-06 Tdk株式会社 磁気抵抗効果素子
US10236441B2 (en) 2015-03-31 2019-03-19 Tdk Corporation Magnetoresistance effect element
CN111276600B (zh) 2015-03-31 2023-09-08 Tdk株式会社 磁阻效应元件
JP2017108067A (ja) 2015-12-11 2017-06-15 Tdk株式会社 磁気抵抗効果素子
US10908234B2 (en) 2016-09-02 2021-02-02 Tdk Corporation Magnetoresistance effect element, magnetic sensor and magnetic memory
JP6103123B1 (ja) 2016-09-02 2017-03-29 Tdk株式会社 磁気抵抗効果素子、磁気センサ及び磁気メモリ
JP2018056391A (ja) 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果素子
JP2018056390A (ja) 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果素子
JP2018056389A (ja) * 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果素子
JP2018056388A (ja) 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果素子
JP2018056392A (ja) 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果デバイス
JPWO2018096992A1 (ja) 2016-11-25 2019-10-17 宇部マテリアルズ株式会社 物理蒸着用ターゲット部材及びスパッタリングターゲット部材並びに物理蒸着膜及び層構造の製造方法
US10408896B2 (en) 2017-03-13 2019-09-10 University Of Utah Research Foundation Spintronic devices
JP6857421B2 (ja) 2017-06-14 2021-04-14 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、それを用いたスピントロニクスデバイス、及び強磁性トンネル接合体の製造方法
US11264290B2 (en) 2017-09-06 2022-03-01 Tdk Corporation Tunnel magnetoresistive effect element and magnetic memory
CN109937475B (zh) 2017-10-16 2023-07-18 Tdk株式会社 隧道磁阻效应元件、磁存储器及内置型存储器
WO2019077661A1 (ja) 2017-10-16 2019-04-25 Tdk株式会社 トンネル磁気抵抗効果素子、磁気メモリ、内蔵型メモリ、及びトンネル磁気抵抗効果素子を作製する方法
CN117479817A (zh) 2017-10-16 2024-01-30 Tdk株式会社 隧道磁阻效应元件、磁存储器及内置型存储器
EP3511993B1 (en) 2017-11-08 2021-01-06 TDK Corporation Tunnel magnetoresistive effect element, magnetic memory, and built-in memory
US11114609B2 (en) 2017-11-08 2021-09-07 Tdk Corporation Tunnel magnetoresistive effect element, magnetic memory, and built-in memory
US10700267B2 (en) 2017-11-13 2020-06-30 Tdk Corporation Magnetoresistive element, manufacturing method thereof and magnetic sensor
JP2019201095A (ja) * 2018-05-16 2019-11-21 Tdk株式会社 磁気抵抗効果素子
JP7035851B2 (ja) 2018-06-28 2022-03-15 Tdk株式会社 磁気抵抗効果素子
JP7081372B2 (ja) 2018-07-26 2022-06-07 Tdk株式会社 磁気抵抗効果素子
US10790635B2 (en) * 2019-01-10 2020-09-29 Magtera, Inc. Technique of high-speed magnetic recording based on manipulating pinning layer in magnetic tunnel junction-based memory by using terahertz magnon laser
US10892602B1 (en) * 2019-01-10 2021-01-12 Magtera, Inc. Tunable multilayer terahertz magnon generator
US10804671B1 (en) 2019-01-10 2020-10-13 Magtera, Inc. Terahertz magnon generator comprising plurality of single terahertz magnon lasers
US11162894B2 (en) * 2019-01-10 2021-11-02 Magtera, Inc. Coherent terahertz magnon laser and coherent terahertz communication system
US11594674B2 (en) 2019-03-22 2023-02-28 Tdk Corporation Tunnel barrier layer, magnetoresistance effect element, method for manufacturing tunnel barrier layer, and insulating layer
JP7434962B2 (ja) * 2020-02-05 2024-02-21 Tdk株式会社 磁気抵抗効果素子
JP7435057B2 (ja) 2020-03-10 2024-02-21 Tdk株式会社 磁気抵抗効果素子
WO2021199233A1 (ja) 2020-03-31 2021-10-07 Tdk株式会社 磁気抵抗効果素子
US11585873B2 (en) 2021-07-08 2023-02-21 Tdk Corporation Magnetoresistive effect element containing two non-magnetic layers with different crystal structures
WO2023073404A1 (en) 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
WO2023084275A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
WO2023084274A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11563093B1 (en) 2021-11-10 2023-01-24 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332781A (ja) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd 磁気抵抗素子およびそれを用いた磁気ヘッド、メモリー装置
JP2003229614A (ja) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP2009054724A (ja) 2007-08-24 2009-03-12 Toshiba Corp ホイスラー合金を有する積層体、この積層体を用いたスピンmos電界効果トランジスタ及びトンネル磁気抵抗効果素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672303B1 (en) * 1993-10-06 1997-12-03 Koninklijke Philips Electronics N.V. Magneto-resistance device, and magnetic head employing such a device
US5712612A (en) * 1996-01-02 1998-01-27 Hewlett-Packard Company Tunneling ferrimagnetic magnetoresistive sensor
US6574079B2 (en) * 2000-11-09 2003-06-03 Tdk Corporation Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
WO2006003639A1 (en) * 2004-07-01 2006-01-12 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Magnetoresistance device
JP4519725B2 (ja) * 2005-07-05 2010-08-04 新日鉄マテリアルズ株式会社 優れた高温耐酸化性を有する排気ガス浄化用触媒コンバータ
US8031441B2 (en) * 2007-05-11 2011-10-04 Headway Technologies, Inc. CPP device with an enhanced dR/R ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332781A (ja) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd 磁気抵抗素子およびそれを用いた磁気ヘッド、メモリー装置
JP2003229614A (ja) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp 磁性材料、この磁性材料を用いた磁気抵抗効果素子、およびこの磁気抵抗効果素子を用いた磁気デバイス
JP2009054724A (ja) 2007-08-24 2009-03-12 Toshiba Corp ホイスラー合金を有する積層体、この積層体を用いたスピンmos電界効果トランジスタ及びトンネル磁気抵抗効果素子

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
J. S. MOODERA ET AL., PHYS. REV. LETT., vol. 74, 1995, pages 3273
MIURA ET AL., J. PHYS.: CONDENS. MATTER, vol. 19, 2007, pages 365228
N. TEZUKA ET AL., JPN. J. APPL. PHYS., vol. 46, 2007, pages L454
S. YUASA ET AL., NATURE MATER., vol. 3, 2004, pages 868
See also references of EP2421063A4
W. H. BUTLER ET AL., PHYS. REV. B, vol. 63, 2001, pages 054416
Y. SAKURABA ET AL., APPL. PHYS. LETT., vol. 88, 2006, pages 192508
YUYA SAKURABA ET AL.: "Huge Spin-Pokarzation of L21-Ordered Co2MnSi Epitacial Heusler Alloy Film", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 44, no. 35, 19 August 2005 (2005-08-19), pages L1100 - L1102 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087980B2 (en) 2011-03-25 2015-07-21 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
JP2012204683A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 磁気抵抗素子および磁気メモリ
US9219227B2 (en) 2011-03-25 2015-12-22 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
JPWO2013122024A1 (ja) * 2012-02-14 2015-05-11 Tdk株式会社 スピン注入電極構造及びそれを用いたスピン伝導素子
WO2013122023A1 (ja) * 2012-02-14 2013-08-22 Tdk株式会社 スピン注入電極構造、及びスピン伝導素子
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP2014154612A (ja) * 2013-02-06 2014-08-25 Tdk Corp スピン注入電極構造及びそれを用いたスピン伝導素子
JP2017041606A (ja) * 2015-08-21 2017-02-23 国立研究開発法人物質・材料研究機構 垂直磁化膜構造およびその製造方法、それを用いた磁気抵抗素子およびその製造方法、ならびにこれらを用いたスピントロニクスデバイス
JPWO2017135251A1 (ja) * 2016-02-02 2018-11-29 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
WO2017135251A1 (ja) * 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
US11105867B2 (en) 2016-02-02 2021-08-31 National Institute For Materials Science Magnetic tunnel junction, magnetoresistive element and spintronics device in which said magnetic tunnel junction is used, and method of manufacturing magnetic tunnel junction
JP2018056272A (ja) * 2016-09-28 2018-04-05 株式会社東芝 磁気抵抗素子及び磁気記憶装置
JP2017118132A (ja) * 2017-02-13 2017-06-29 Tdk株式会社 トンネル層
JP2018206978A (ja) * 2017-06-05 2018-12-27 大同特殊鋼株式会社 金属−絶縁体系ナノグラニュラー薄膜、及び薄膜磁気センサ
JP2019021751A (ja) * 2017-07-14 2019-02-07 Tdk株式会社 磁気抵抗効果素子及びその製造方法
JP2017191953A (ja) * 2017-07-27 2017-10-19 Tdk株式会社 積層体
WO2019049740A1 (ja) 2017-09-11 2019-03-14 国立研究開発法人物質・材料研究機構 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
US11374168B2 (en) 2017-09-11 2022-06-28 National Institute For Materials Science Precursor structure of perpendicularly magnetized film, perpendicularly magnetized film structure and method for manufacturing the same, perpendicular magnetization-type magnetic tunnel junction film in which said structure is used and method for manufacturing the same, and perpendicular magnetization-type magnetic tunnel junction element in which said structure or magnetic tunnel junction film is used
JP2018088551A (ja) * 2018-02-16 2018-06-07 Tdk株式会社 トンネル層
JP2019145787A (ja) * 2018-02-16 2019-08-29 Tdk株式会社 磁気抵抗効果素子及びその製造方法
CN110165046A (zh) * 2018-02-16 2019-08-23 Tdk株式会社 磁阻效应元件及其制造方法
JP7226710B2 (ja) 2018-02-16 2023-02-21 Tdk株式会社 磁気抵抗効果素子及びその製造方法
JP2020198449A (ja) * 2019-05-28 2020-12-10 Tdk株式会社 トンネル層
JP2019135798A (ja) * 2019-05-28 2019-08-15 Tdk株式会社 トンネル層

Also Published As

Publication number Publication date
EP2421063A4 (en) 2013-03-27
EP2421063A1 (en) 2012-02-22
EP2421063B1 (en) 2015-04-08
US8575674B2 (en) 2013-11-05
US20120091548A1 (en) 2012-04-19
JPWO2010119928A1 (ja) 2012-10-22
JP5586028B2 (ja) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5586028B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP5988019B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
JP5527669B2 (ja) 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
US11133028B2 (en) Magnetoresistance effect element
WO2017090730A1 (ja) スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ
US11056642B2 (en) Magnetoresistance effect element
US11018293B2 (en) Magnetoresistance effect element
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
US10355202B2 (en) Magnetoresistance effect element
CN112349832A (zh) 磁阻效应元件以及惠斯勒合金
US10454022B2 (en) Magnetoresistance effect element
Du et al. Polycrystalline CPP-GMR Pseudospin Valves Using $\langle {001}\rangle $ Textured Co 2 Fe (Ga 0.5 Ge 0.5) Layer Grown on a Conductive (Mg 0.5 Ti 0.5) O Buffer Layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764510

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011509351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13264460

Country of ref document: US