WO2010119643A1 - 液封入式防振装置 - Google Patents

液封入式防振装置 Download PDF

Info

Publication number
WO2010119643A1
WO2010119643A1 PCT/JP2010/002548 JP2010002548W WO2010119643A1 WO 2010119643 A1 WO2010119643 A1 WO 2010119643A1 JP 2010002548 W JP2010002548 W JP 2010002548W WO 2010119643 A1 WO2010119643 A1 WO 2010119643A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wall
liquid
partition plates
hole
wall
Prior art date
Application number
PCT/JP2010/002548
Other languages
English (en)
French (fr)
Inventor
小笠原大
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to EP10764230.8A priority Critical patent/EP2420698B1/en
Priority to US13/257,744 priority patent/US8590868B2/en
Priority to JP2011509198A priority patent/JP5202729B2/ja
Priority to CN2010800164247A priority patent/CN102395810B/zh
Publication of WO2010119643A1 publication Critical patent/WO2010119643A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages

Definitions

  • the present invention relates to a liquid-filled vibration isolator.
  • the liquid-filled vibration isolator generally includes a first mounting tool, a cylindrical second mounting tool, a vibration-proof base made of a rubber-like elastic material that connects the first mounting tool and the second mounting tool, and the first mounting tool.
  • a diaphragm made of a rubber film which is attached to a fixture and forms a liquid sealing chamber between the vibration isolating substrate and the liquid sealing chamber as a first liquid chamber on the vibration isolating substrate side and a second liquid chamber on the diaphragm side.
  • a partition body for partitioning and an orifice channel for communicating the first liquid chamber and the second liquid chamber are provided.
  • Patent Document 1 proposes that a partition body that partitions the first liquid chamber and the second liquid chamber is configured as follows. That is, the partition body is connected to each other via an annular orifice forming member, an elastic wall made of a rubber-like elastic material that closes between the inner peripheral surfaces thereof, and a connecting portion that penetrates the elastic wall, and the elastic wall serves as an axial core. A pair of partition plates sandwiched in the direction, and the displacement amount of the pair of partition plates in the axial direction is restricted by the elastic wall.
  • the present invention has been made in view of the above points, and it is possible to achieve a low dynamic spring at the time of fine amplitude vibration while ensuring high damping performance at the time of large amplitude vibration, thereby further improving noise performance.
  • An object of the present invention is to provide a liquid-sealed vibration isolator that can be used.
  • the liquid-filled vibration isolator includes a first mounting tool, a cylindrical second mounting tool, and a vibration-proof base made of a rubber-like elastic material that connects the first mounting tool and the second mounting tool.
  • a diaphragm made of a rubber-like elastic film that is attached to the second fixture and forms a liquid sealing chamber between the vibration isolating substrate and the first liquid chamber on the side of the vibration isolating substrate.
  • a partition body for partitioning into a second liquid chamber on the diaphragm side, and an orifice channel for communicating the first liquid chamber and the second liquid chamber are provided.
  • the partition body is formed of an annular orifice forming member that is provided inside the peripheral wall portion of the second fixture and forms the orifice flow path, and a rubber-like elastic material that blocks between the inner peripheral surface of the orifice forming member. And a pair of partition plates that are connected to each other via a connecting portion that penetrates the radial center of the elastic wall and sandwiches the elastic wall in the axial direction of the elastic wall.
  • the elastic wall includes a through hole penetrating in an axial direction in an elastic wall portion sandwiched between the pair of partition plates, and a wall surface of the elastic wall and a plate surface of the pair of partition plates facing the wall surface
  • a gap is provided between the first liquid chamber and the second liquid chamber through the through hole and the gap at a neutral position of the pair of partition plates so that liquid flow is possible.
  • the through hole is closed by the partition plate due to the displacement of the pair of partition plates in the axial direction.
  • the displacement amount of the pair of partition plates is regulated by the elastic wall against large amplitude vibration in the low frequency range, and the through hole provided in the elastic wall Since it is blocked by the partition plate and cannot flow, the liquid flow effect by the original orifice channel ensures high damping performance and excellent ride comfort performance.
  • the vibration can be reduced by reducing the dynamic spring constant due to the reciprocating motion of the partition plate.
  • this portion can act as a high frequency orifice and flow. The effect of reducing the dynamic spring based on the resonance action of the liquid can be exhibited.
  • FIG. 1 is a longitudinal sectional view of a liquid-filled vibration isolator according to an embodiment of the present invention.
  • Longitudinal sectional view of the partition of the vibration isolator (cross section corresponding to line II-II in FIG. 7) Exploded longitudinal sectional view of the partition Longitudinal sectional view of a pair of partition plates constituting the partition body in a connected state
  • the principal part longitudinal cross-sectional view which expands and shows the structure around the through-hole of the partition.
  • the principal part longitudinal cross-sectional view which expands and shows the structure around the pinching part of the partition.
  • high compression clamping part 74 ... through hole, 76 ... clamping part, 78 ... gap C ... circumferential direction, K ... radial direction, Ko ... radial direction Outside, Ki ... Inward in the radial direction, X ... Axial direction
  • FIG. 1 is a longitudinal sectional view of a liquid-filled vibration isolator 10 according to an embodiment.
  • the vibration isolator 10 includes an upper first attachment 12 attached to an automobile engine, a lower cylindrical second attachment 14 attached to a vehicle body frame, and a rubber-like elastic material for connecting them.
  • An engine mount including a vibration-proof substrate 16.
  • the first fixture 12 is a boss fitting arranged above the shaft core portion of the second fixture 14 and is outward Ko in the radial direction (that is, the direction perpendicular to the axis perpendicular to the axis direction X) K.
  • the stopper part 18 which protrudes in the shape of a flange toward is provided.
  • a mounting bolt 20 protrudes upward at the upper end and is configured to be attached to the engine side via the bolt 20.
  • the second fixture 14 includes a cylindrical tubular fitting 22 and a cup-shaped bottom fitting 24 on which the vibration-proof base 16 is vulcanized, and a downward mounting bolt 26 projects from the center of the bottom fitting 24. It is configured to be attached to the vehicle body side via the bolt 26.
  • the lower end of the cylindrical fitting 22 is fixed by caulking to the upper end opening of the bottom fitting 24 by a caulking portion 28.
  • Reference numeral 30 denotes a stopper fitting fixed by caulking to the upper end portion of the cylindrical fitting 22, and exerts a stopper action with the stopper portion 18 of the first fixture 12.
  • Reference numeral 32 denotes a stopper rubber that covers the upper surface of the stopper fitting 30.
  • the antivibration base 16 is formed in a truncated cone shape, and its upper end is vulcanized and bonded to the first fixture 12 and its lower end is vulcanized and bonded to the upper end opening of the cylindrical fitting 22.
  • a rubber film-like seal wall portion 34 covering the inner peripheral surface of the cylindrical metal fitting 22 is connected to the lower end portion of the vibration isolation base 16.
  • a diaphragm 38 made of a flexible rubber film is attached to the second fixture 14 so as to face the lower surface of the vibration-isolating base 16 in the axial direction X and form a liquid sealing chamber 36 between the lower surface.
  • the liquid is enclosed in the liquid enclosure chamber 36.
  • the liquid enclosure chamber 36 is partitioned by a partition 40 into a first liquid chamber 36A on the vibration isolation base 16 side and a second liquid chamber 36B on the diaphragm 38 side.
  • the first liquid chamber 36A and the second liquid chamber 36B. Are communicated with each other via an orifice channel 42 as a throttle channel.
  • the first liquid chamber 36A is a main liquid chamber in which the vibration isolation base 16 forms part of the chamber wall
  • the second liquid chamber 36B is a sub-liquid chamber in which the diaphragm 38 forms part of the chamber wall.
  • the partition 40 includes an annular orifice forming member 44 provided inside a cylindrical peripheral wall portion 14 ⁇ / b> A of the second fixture 14, and an inner peripheral surface of the orifice forming member 44.
  • 44A includes an elastic wall 46 made of a rubber elastic body in which the outer peripheral portion 46A is vulcanized and bonded to the inner peripheral surface 44A, and a pair of upper and lower partition plates 48 and 50 that sandwich the elastic wall 46 in the axial direction X thereof.
  • the orifice forming member 44 is a member made of a rigid body that forms an orifice passage 42 extending in the circumferential direction between the orifice mounting member 44 and the peripheral wall portion 14A of the second fixture 14, and the seal wall portion 34 on the inner periphery of the peripheral wall portion 14A. Is fitted. More specifically, the orifice forming member 44 includes a cylindrical portion 44B disposed coaxially with the peripheral wall portion 14A of the second fixture 14, and outwardly in a U-shaped cross section on the outer peripheral side of the cylindrical portion 44B. An open groove 44C is provided. The inner peripheral surface of the cylindrical portion 44B is the inner peripheral surface 44A. In addition, the orifice channel 42 is formed between the groove portion 44 ⁇ / b> C and the peripheral wall portion 14 ⁇ / b> A of the second fixture 14.
  • the orifice forming member 44 is sandwiched and fixed by a reinforcing metal fitting 38A embedded in the outer peripheral edge of the diaphragm 38 and a receiving step 16A formed on the outer periphery of the lower end of the vibration isolating base 16.
  • a reinforcing metal fitting 38A provided on the outer peripheral edge portion of the diaphragm 38 is fixed by caulking portions 28 of the second mounting tool 14, and via a rubber portion of the diaphragm 38 covering the inner peripheral edge portion of the reinforcing metal fitting 38A.
  • the lower end portion of the orifice forming member 44 is supported by the reinforcing metal fitting 38A.
  • the elastic wall 46 has a circular shape in plan view, and its outer peripheral portion 46A is vulcanized and bonded to the inner peripheral surface 44A of the cylindrical portion 44B of the orifice forming member 44 as shown in FIG.
  • the elastic wall 46 includes a circular connecting hole 52 penetrating in the axial direction X at the radial center, and annular ridges 54 protruding in the axial direction X on both front and back sides around the connecting hole 52. Is provided.
  • the pair of partition plates 48 and 50 are connected to each other via a cylindrical connecting portion 56 that penetrates the connecting hole 52, and are integrally formed of a thermoplastic resin.
  • One (upper) partition plate 48 of them constitutes a part of the chamber wall of the first liquid chamber 36A, that is, is arranged facing the first liquid chamber 36A (see FIG. 1).
  • the other (lower) partition plate 50 constitutes a part of the chamber wall of the second liquid chamber 36B, that is, is arranged facing the second liquid chamber 36B.
  • the displacement amount in the axial direction X of the pair of partition plates 48 and 50 is restricted by the elastic wall 46.
  • the pair of partition plates 48 and 50 are formed to have an outer shape smaller than that of the elastic wall 46 in plan view. That is, the outer peripheral edges 48A and 50A of the partition plates 48 and 50 are terminated on the radially inner side Ki from the inner peripheral surface 44A of the orifice forming member 44 where the outer peripheral edge of the elastic wall 46 is located (see FIG. 2). ).
  • the connecting portion 56 includes a ring-shaped first flat surface portion 56 ⁇ / b> A that is provided in the lower partition plate 50 and perpendicular to the axial direction X, and the first flat surface portion 56 ⁇ / b> A extends in the axial direction X.
  • a vertical ring-shaped second flat surface portion 56D As shown in FIG. 4, the fitting projection 56B and the fitting recess 56C are ultrasonically welded in a state where the first plane portion 56A and the second plane portion 56D are positioned in the axial direction X by contact with each other. Is fixed by fitting.
  • the pair of partition plates 48 and 50 are each provided with an annular groove 58 around which the upper and lower ridges 54 of the elastic wall 46 are fitted around the central connecting portion 56 (see FIGS. 3 and 8).
  • a sandwiching portion 60 that sandwiches the elastic wall 46 in the axial direction X is annularly provided over the entire circumference.
  • a clearance formation that forms a clearance 61 (see FIG. 6) that gradually increases toward the radially outward Ko side between the outer peripheral surface of the sandwiching portion 60, that is, the radially outward Ko side, with the opposing wall surface of the elastic wall 46.
  • a portion 62 is provided, and the clearance forming portion 62 constitutes the outer peripheral edge of the partition plates 48 and 50.
  • the sandwiching portion 60 has a radially intermediate Ko side, that is, an outer peripheral side as a first sandwiching portion 64 with a radial intermediate position as a boundary, and a radially inward Ki side, That is, when the inner peripheral side is the second clamping portion 66, the first clamping portion 64 is provided with a high compression clamping portion 68 that clamps the elastic wall 46 at a higher compression rate in the axial direction X than the second clamping portion 66. It has been. That is, the sandwiching portion 60 includes a high compression sandwiching portion 68 in which the compression rate in the axial direction X of the elastic wall 46 is set to be the highest in the first sandwiching portion 64 on the outer peripheral side. Is set to be higher than the compression rate on the radially inner Ki side and the compression rate on the radially outer Ko side.
  • the compressibility in the axial direction X of the elastic wall 46 is obtained by dividing the amount of compression in the axial direction X of the elastic wall 46 by the pair of partition plates 48 and 50 by the original thickness of the elastic wall 46.
  • the distance between the pair of partition plates 48 and 50 at the target portion is U (see FIG. 4), and the original thickness of the elastic wall 46 at that portion is T (see FIG. 3). -U) / T.
  • the compression rate in the high compression sandwiching portion 68 is such that the high compression sandwiching portion 68 does not separate from the wall surface of the elastic wall 46 even at the maximum expected displacement of the partition plates 48 and 50 in the axial direction X. That is, it is set high so that compression remains.
  • the compression ratio in the axial direction X of the elastic wall 46 is set to be substantially constant in the second holding portion 66 on the inner peripheral side, and the second In one clamping portion 64, the compression rate gradually increases toward the radially outward Ko side, the compression rate becomes maximum at the high compression clamping portion 68, and from there, the compression rate gradually decreases toward the radially outward Ko side.
  • it is set so as to reach the clearance forming portion 62 that forms the clearance 61.
  • the pair of partition plates 48 and 50 and the elastic wall 46 have cross-sectional shapes formed as follows.
  • the partition plates 48 and 50 have a planar shape perpendicular to the axial direction X so that the interval U is constant in the radial direction K from the second clamping part 66 to the high compression clamping part 68 of the first clamping part 64.
  • the outer side of the radial direction Ko is formed in an inclined surface shape that is gradually located on the outer side Xo in the axial direction (see FIGS. 4 and 6).
  • the elastic wall 46 has a wall surface 70 facing the second sandwiching portion 66 formed in a planar shape perpendicular to the axial direction X, and the outer peripheral side portion thereof, that is, the first sandwiching portion 64 and the first sandwiching portion 64.
  • the wall surface 72 that faces the partition plate portion (that is, the clearance forming portion 62) on the radially outer side Ko is formed in an inclined surface shape that is located on the axially outer side Xo toward the radially outer side Ko. (See FIGS. 3 and 6). As a result, the outer peripheral portion 46A of the elastic wall 46 is formed thick.
  • the inclined surface on the outer peripheral side of the partition plates 48 and 50 with respect to the high compression sandwiching portion 68 and the inclined surface of the wall surface 72 of the elastic wall 46 are both formed in a curved surface shape, and the former is inclined. Is set larger. As a result, the clearance 61 is gradually formed wider toward the radially outer side Ko.
  • the elastic wall 46 is provided with a through hole 74 penetrating in the axial direction X in an elastic wall portion sandwiched between the pair of partition plates 48 and 50.
  • the through hole 74 is provided in an elastic wall portion sandwiched by the high compression sandwiching portion 68. Therefore, as shown in FIGS. 7 and 9, the through holes 74 alternate with the pinching portions 76 that are held in a state compressed in the axial direction X by the high compression holding portion 68 in the circumferential direction C of the elastic wall 46. A plurality are provided.
  • the through holes 74 are substantially square-shaped openings having a predetermined width and extending in the circumferential direction C, and six holes are provided at equal intervals in the circumferential direction C.
  • Inclined surface-shaped pinching portions 76 that are gradually thicker toward the radially outward Ko side are radially formed so as to gently connect the elastic wall portion on the peripheral side and the elastic wall portion on the outer peripheral side.
  • the gap 78 is for connecting the through hole 74 to the first liquid chamber 36A or the second liquid chamber 36B.
  • the elastic wall 46 and the partition plates 48 and 50 are The partition plates 48 and 50 are formed by ensuring a predetermined interval without contact at the neutral position.
  • the neutral position means a state in which there is no difference in hydraulic pressure between the first liquid chamber 36A and the second liquid chamber 36B, that is, a state in which the pair of partition plates 48 and 50 are not displaced in the axial direction X. Position.
  • the first liquid chamber 36A and the second liquid chamber 36B are liquidated via the through hole 74 and the gap 78 at the neutral position of the pair of partition plates 48 and 50. It is connected to flow.
  • the through-hole 74 eliminates the gap 78 by the partition plates 48 and 50 being pressed against the wall surface of the elastic wall 46 when the pair of partition plates 48 and 50 are displaced in the axial direction X during large amplitude vibration. It is configured to be blocked by this.
  • Reference numeral 80 denotes a raised portion provided on the outer peripheral portion 46A of the elastic wall 46 (see FIG. 6), and on the first liquid chamber 36A side of the elastic wall 46, the inclined surface of the wall surface 72 is referred to. It is formed to protrude from the axial direction outward Xo side, that is, the first liquid chamber 36A side.
  • the raised portion 80 protrudes from the upper surface of the partition plate 48 on the first liquid chamber 36A side so as to protrude outward in the axial direction Xo.
  • Reference numeral 82 denotes a convex portion provided on the inner peripheral surface 44A of the orifice forming member 44, and is formed to project radially inward Ki at the base portion of the elastic wall 46 on the second liquid chamber 36B side.
  • the convex portion 82 has a side surface 82A on the second liquid chamber 36B side that is formed in a planar shape perpendicular to the axial direction X of the elastic wall 46, and the side surface 82A is a pressing surface of the mold when the elastic wall 46 is molded. (Seal surface for deburring).
  • the rigidity of the base portion of the elastic wall 46 with respect to the orifice forming member 44 is increased, and the displacement regulating effect of the pair of partition plates 48 and 50 at the time of low frequency and large amplitude is achieved. Has been enhanced.
  • the pair of partition plates 48 and 50 are reciprocated together to form the first.
  • the vibration can be reduced by absorbing the liquid pressure in the liquid chamber 36A. Therefore, it is possible to effectively reduce the dynamic spring constant with respect to the high frequency fine amplitude vibration.
  • the displacement amount of the pair of partition plates 48 and 50 is regulated by the elastic wall 46, so that the first liquid chamber 36A and the second liquid are passed through the orifice channel 42.
  • the liquid can be circulated between the chambers 36B, and the vibration can be attenuated by the liquid flow effect.
  • the first liquid chamber 36 ⁇ / b> A and the second liquid chamber 36 ⁇ / b> B are connected through the through hole 74 and the gap 78 so as to allow liquid flow during the minute amplitude vibration in the high frequency range. Therefore, this portion can be used as a high-frequency orifice that operates in a higher frequency range than the orifice channel 42. Therefore, the effect of reducing the dynamic spring can be exhibited based on the resonance action of the liquid flowing through the through hole 74 and the gap 78.
  • the characteristics of the high-frequency orifice formed by the through holes 74 and the gaps 78 can be tuned by changing the number and opening area of the through holes 74 and the shape and size of the gaps 78.
  • the through-hole 74 is blocked by the partition plates 48 and 50 due to the displacement of the partition plates 48 and 50 in the axial direction X during large amplitude vibrations, so that liquid flow cannot be achieved.
  • High attenuation performance by the flow path 42 can be ensured. Therefore, it is possible to improve the noise performance by reducing the dynamic spring at the time of fine amplitude vibration while ensuring the high damping performance at the time of large amplitude vibration and maintaining the riding comfort performance.
  • the gap 78 is provided between the wall surface of the elastic wall 46 and the peripheral surface of the partition plates 48 and 50 on the radially outer side Ko of the through hole 74. It is easy to set the through hole 74 to be closed during large amplitude vibration while connecting the through hole 74 and the liquid chambers 36A and 36B.
  • the elastic wall 46 is provided with a pressing portion 76 that is held in a state compressed by the pair of partition plates 48 and 50 in the axial direction X, and the through hole 74 is held in the circumferential direction C. Since it is provided alternately with the pressure part 76, while maintaining the function of the through hole 74 as a high frequency orifice, the contact state of the partition plates 48 and 50 with respect to the elastic wall 46 is maintained at the pressure part 76 therebetween. Abnormal noise caused by the hitting sound between the elastic wall 46 and the partition plates 48 and 50 can be reduced.
  • the pair of partition plates 48 and 50 include a clamping portion 60 that sandwiches the elastic wall 46 on the radially outer side Ko of the connecting portion 56, and the radially outer Ko of the clamping portion 60 is provided.
  • the first clamping portion 64 on the side is provided with a high compression clamping portion 68 that sandwiches the elastic wall 46 at a higher compression rate in the axial direction X than the second clamping portion 66 on the radially inner side Ki side. Therefore, the displacement amount in the axial direction X of the partition plates 48 and 50 until the partition plates 48 and 50 start to be separated from the elastic wall 46 can be set large, and the partition plates 48 and 50 are separated from the elastic wall 46. The resulting abnormal noise can be reduced.
  • a pair of partition plates connected to each other via a central connecting portion moves away from the elastic wall from the outer peripheral side with respect to displacement in the axial direction.
  • the partition plates 48 and 50 are excessively displaced upward, the upper partition plate 48 tends to move away from the elastic wall 46 from its outer peripheral edge side,
  • the contact state with the elastic wall 46 can be maintained in the high compression clamping portion 68, and the partition plates 48 and 50 are separated until the partition plates 48 and 50 begin to separate from the elastic wall 46.
  • the displacement amount in the axial direction X of the plates 48 and 50 can be set large.
  • the compression ratio of this portion is set high so that the high compression clamping portion 68 does not separate from the wall surface of the elastic wall 46. Therefore, it is possible to reliably prevent the sandwiching portion 60 from separating from the elastic wall 46, and to more effectively prevent the generation of abnormal noise.
  • the high compression clamping portion 68 is provided on the radially outer side Ko in the clamping portion 60 of the partition plates 48 and 50 as described above, and the compression rate is not increased in the entire radial direction K, the elastic wall The increase in rigidity of the entire 46 can be suppressed, and the ease of reciprocation of the partition plates 48 and 50 against high frequency vibration can be ensured. Further, when the partition body 40 is assembled, it is possible to avoid poor welding at the connecting portion 56 due to the reaction force of the rubber of the elastic wall 46 compressed in the axial direction X, and the assembly of the partition body 40 is excellent.
  • the elastic wall 46 is formed in the through hole 74 in the elastic wall portion sandwiched by the high compression sandwiching portion 68.
  • the high compression clamping portion 68 is a portion that increases the compression rate in the axial direction X in order to prevent the partition plates 48 and 50 from being separated from the elastic wall 46 even when the displacement in the axial direction X is large.
  • the elastic wall 46 is hardened accordingly. Therefore, by providing the low compression portion by the through hole 74 in the high compression holding portion 68 in an intermittent manner, the elastic wall portion held by the first holding portion 64 on the radially outer side Ko can be hardened. Rather, the compressibility in the axial direction X can be increased so that the partition plates 48 and 50 are not separated from the elastic wall 46 while keeping the portion soft.
  • the low-rigidity portion is provided in the first pinching portion 64 on the outer peripheral side, the pair of partition plates 48 and 50 are displaced in a twisting direction such that the shaft core is inclined during vibration input in a high frequency range. While suppressing, it can be smoothly reciprocated in the axial direction X, and the effect of reducing the dynamic spring constant in the high frequency range can be further enhanced.
  • the outer peripheral portion 46A of the elastic wall 46 is formed in a thick shape, the reciprocating displacement of the partition plates 48 and 50 is effectively restricted at the time of large amplitude vibration in the low frequency range. be able to.
  • the arrangement, number, and shape of the through holes 74 provided in the elastic wall 46 are not limited to the above embodiment, and various changes can be made. Further, the shape and arrangement of the gap 78 are not limited to the above embodiment. Further, the configuration of the partition plates 48 and 50 provided with the high compression clamping portion 68 is not limited to the above embodiment, and various modifications can be made. Although not enumerated one by one, various modifications can be made without departing from the spirit of the present invention.
  • the present invention can be used as various anti-vibration devices for automobiles, such as engine mounts for automobiles, in which vibration bodies and supports are coupled in an anti-vibration manner, and can also be used for various vehicles other than automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

 第1液室36Aと第2液室36Bを仕切る仕切り体40は、環状のオリフィス形成部材44と、その内周面44Aの間を塞ぐ弾性壁46と、弾性壁を挟み込む一対の仕切り板48,50とからなる。弾性壁46には、仕切り板48,50によって挟み込まれる弾性壁部分に貫通穴74を設けられる。弾性壁46の壁面と仕切り板48,50の板面との間に貫通穴74に繋がる隙間78を設けて、仕切り板48,50の中立位置では第1液室36Aと第2液室36Bが貫通穴74と隙間78を介して液体流動可能に繋げられ、かつ仕切り板48,50の変位によって貫通穴74が塞がれるよう構成する。

Description

液封入式防振装置
 本発明は、液封入式防振装置に関するものである。
 液封入式防振装置は一般に、第1取付け具と、筒状の第2取付け具と、前記第1取付け具と第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて防振基体との間に液体封入室を形成するゴム膜からなるダイヤフラムと、前記液体封入室を防振基体側の第1液室とダイヤフラム側の第2液室に仕切る仕切り体と、これら第1液室と第2液室を連通させるオリフィス流路とを備えて構成されている。
 このような液封入式防振装置として、下記特許文献1には、第1液室と第2液室を仕切る仕切り体を次のように構成することが提案されている。すなわち、仕切り体は、環状のオリフィス形成部材と、その内周面間を塞ぐゴム状弾性材からなる弾性壁と、該弾性壁を貫通する連結部を介して互いに連結され前記弾性壁を軸芯方向で挟み込む一対の仕切り板、とからなり、該一対の仕切り板の軸芯方向における変位量が弾性壁によって規制されるように構成されている。
 この液封入式防振装置であると、一対の仕切り板の変位量が弾性壁によって規制されるので、低周波数域での大振幅振動に対してオリフィス流路による液体流動効果によって振動を減衰しながら、高周波数域での微振幅振動に対して仕切り板の往復動による動ばね定数の低減によって振動を低減することができる。
特開2009-002433号公報
 上記のように、特許文献1に開示の構成であると、低周波数域での大振幅振動に対して減衰を十分確保しつつ、高周波数域での微振幅振動に対して低動ばね化を実現することができる。しかしながら、騒音性能の改善のため、微振幅振動時における更なる低動ばね化の要請があり、特許文献1に開示の構成では、大振幅振動時の高減衰性能を確保したまま、上記要請に十分に応えることは困難であった。
 本発明は、以上の点に鑑みてなされたものであり、大振幅振動時の高減衰性能を確保したまま、微振幅振動時の低動ばね化を図ることができ、騒音性能を更に改善することができる液封入式防振装置を提供することを目的とする。
 本発明に係る液封入式防振装置は、第1取付け具と、筒状の第2取付け具と、前記第1取付け具と前記第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性膜からなるダイヤフラムと、前記液体封入室を前記防振基体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と第2液室を連通させるオリフィス流路とを備えたものである。前記仕切り体は、前記第2取付け具の周壁部の内側に設けられて前記オリフィス流路を形成する環状のオリフィス形成部材と、前記オリフィス形成部材の内周面の間を塞ぐゴム状弾性材からなる弾性壁と、前記弾性壁の径方向中央部を貫通する連結部を介して互いに連結され、前記弾性壁を該弾性壁の軸芯方向で挟み込む一対の仕切り板と、からなる。そして、前記弾性壁は、前記一対の仕切り板によって挟み込まれる弾性壁部分に軸芯方向に貫通する貫通穴を備え、前記弾性壁の壁面と当該壁面に対向する前記一対の仕切り板の板面との間に前記貫通穴に繋がる隙間が設けられ、前記一対の仕切り板の中立位置において前記貫通穴と前記隙間を介して前記第1液室と前記第2液室が液体流動可能に繋げられるとともに、前記一対の仕切り板の軸芯方向における変位により当該仕切り板によって前記貫通穴が塞がれるよう構成されている。
 本発明の液封入式防振装置であると、低周波数域での大振幅振動に対しては、一対の仕切り板の変位量が弾性壁によって規制されるとともに、弾性壁に設けられた貫通穴が仕切り板によって塞がれて液体流動ができなくなるので、本来のオリフィス流路による液体流動効果によって高減衰性能を確保し、乗り心地性能に優れる。高周波数域での微振幅振動に対しては、仕切り板の往復動による動ばね定数の低減によって振動を低減することができる。また、このとき、第1液室と第2液室が上記貫通穴と隙間を介して液体流動可能に繋がった状態となっているので、この部分を高周波オリフィスとして作用させることができ、流動する液体の共振作用に基づく低動ばね化効果を発揮することができる。
 よって、大振幅振動時の高減衰性能を確保して乗り心地性能を保ったまま、微振幅振動時の低動ばね化を図って騒音性能を改善することができる。
本発明の実施形態に係る液封入式防振装置の縦断面図 同防振装置の仕切り体の縦断面図(図7のII-II線に相当する断面) 同仕切り体の分解縦断面図 同仕切り体を構成する一対の仕切り板の連結状態での縦断面図 同仕切り体の貫通穴周りの構造を拡大して示す要部縦断面図。 同仕切り体の挟圧部周りの構造を拡大して示す要部縦断面図。 同仕切り体の底面図 同仕切り体を構成する仕切り板の平面図 同仕切り体を構成するオリフィス形成部材及び弾性壁の底面図
10…液封入式防振装置、12…第1取付け具、14…第2取付け具、14A…周壁部
16…防振基体、36…液体封入室、36A…第1液室、36B…第2液室
38…ダイヤフラム、40…仕切り体、42…オリフィス流路
44…オリフィス形成部材、44A…オリフィス形成部材の内周面、46…弾性壁
48,50…仕切り板、56…連結部
60…挟持部分、64…第1挟持部分、66…第2挟持部分、68…高圧縮挟持部
74…貫通穴、76…挟圧部、78…隙間
C…周方向、K…径方向、Ko…径方向外方、Ki…径方向内方、X…軸芯方向
 以下、本発明の1実施形態に係る液封入式防振装置を図面に基づいて説明する。
 図1は、実施形態に係る液封入式防振装置10の縦断面図である。この防振装置10は、自動車のエンジンに取付けられる上側の第1取付け具12と、車体フレームに取付けられる下側の筒状の第2取付け具14と、これらを連結するゴム状弾性材からなる防振基体16とを備えてなるエンジンマウントである。
 第1取付け具12は、第2取付け具14の軸芯部上方に配されたボス金具であり、径方向(即ち、軸芯方向Xに垂直な方向である軸直角方向)Kの外方Koに向けてフランジ状に突出するストッパ部18を備える。また、上端部には取付ボルト20が上向きに突設されて、このボルト20を介してエンジン側に取り付けられるよう構成されている。
 第2取付け具14は、防振基体16が加硫成形される円筒状の筒状金具22とカップ状の底金具24とからなり、底金具24の中央部に下向きの取付ボルト26が突設され、このボルト26を介して車体側に取り付けられるように構成されている。筒状金具22は、その下端部が底金具24の上端開口部に対し、かしめ部28によりかしめ固定されている。符号30は、筒状金具22の上端部にかしめ固定されたストッパ金具であり、第1取付具12のストッパ部18との間でストッパ作用を発揮する。また、符号32は、ストッパ金具30の上面を覆うストッパゴムである。
 防振基体16は円錐台形状に形成され、その上端部が第1取付け具12に、下端部が筒状金具22の上端開口部にそれぞれ加硫接着されている。この防振基体16の下端部に、筒状金具22の内周面を覆うゴム膜状のシール壁部34が連なっている。
 第2取付け具14には、防振基体16の下面に対して軸芯方向Xに対向配置されて当該下面との間に液体封入室36を形成する可撓性ゴム膜からなるダイヤフラム38が取り付けられ、液体封入室36に液体が封入されている。液体封入室36は、仕切り体40により、防振基体16側の第1液室36Aとダイヤフラム38側の第2液室36Bに仕切られており、これら第1液室36Aと第2液室36Bは、絞り流路としてのオリフィス流路42を介して互いに連通されている。第1液室36Aは、防振基体16が室壁の一部をなす主液室であり、第2液室36Bは、ダイヤフラム38が室壁の一部をなす副液室である。
 仕切り体40は、図1,2に示されるように、第2取付け具14の円筒状の周壁部14Aの内側に設けられた円環状のオリフィス形成部材44と、オリフィス形成部材44の内周面44Aに外周部46Aが加硫接着されて内周面44Aの間を塞ぐゴム弾性体からなる弾性壁46と、弾性壁46をその軸芯方向Xで挟み込む上下一対の仕切り板48,50とからなる。
 オリフィス形成部材44は、第2取付け具14の周壁部14Aとの間に、周方向に延びるオリフィス流路42を形成する剛体からなる部材であり、該周壁部14Aの内周のシール壁部34に嵌着されている。より詳細には、オリフィス形成部材44は、第2取付け具14の周壁部14Aに同軸に配された円筒状部44Bと、該円筒状部44Bの外周側において断面コの字状に外向きに開かれた凹溝部44Cとを備えてなる。円筒状部44Bの内周面が上記内周面44Aになっている。また、凹溝部44Cにより第2取付け具14の周壁部14Aとの間で上記オリフィス流路42が形成されている。
 オリフィス形成部材44は、ダイヤフラム38の外周縁部に埋設された補強金具38Aと、防振基体16の下端外周部に形成された受止め段部16Aとで挟持固定されている。詳細には、ダイヤフラム38の外周縁部に設けた補強金具38Aが第2取付け具14のかしめ部28でかしめ固定されており、補強金具38Aの内周縁部を覆うダイヤフラム38のゴム部分を介して、オリフィス形成部材44の下端部が補強金具38Aにより支持されている。
 上記弾性壁46は、平面視円形状をなしており、図3に示すように、その外周部46Aが、オリフィス形成部材44の円筒状部44Bの内周面44Aに加硫接着されている。弾性壁46は、径方向中央部に軸芯方向Xに貫通する円形の連結用孔52を備え、連結用孔52の周りの表裏両側には、軸芯方向Xに突出する環状の凸条54が設けられている。
 一対の仕切り板48,50は、図2,4に示すように連結用孔52を貫通する円柱状の連結部56を介して互いに連結されており、熱可塑性樹脂により一体に成形されている。そのうちの一方(上側)の仕切り板48が第1液室36Aの室壁の一部を構成しており、即ち、第1液室36Aに面して配されている(図1参照)。また、他方(下側)の仕切り板50が第2液室36Bの室壁の一部を構成しており、即ち、第2液室36Bに面して配されている。そして、これら一対の仕切り板48,50の軸芯方向Xにおける変位量が弾性壁46によって規制されている。
 一対の仕切り板48,50は、平面視において弾性壁46よりも外形が小さく形成されている。すなわち、仕切り板48,50の外周縁48A,50Aは、弾性壁46の外周縁が位置するオリフィス形成部材44の内周面44Aよりも径方向内方Ki側で終端している(図2参照)。
 連結部56は、図3に示すように、下側の仕切り板50に設けられた軸芯方向Xに垂直なリング状の第1平面部56Aと、第1平面部56Aから軸芯方向Xに突出する嵌合凸部56Bと、上側の仕切り板48に設けられて嵌合凸部56Bが嵌合する嵌合凹部56Cと、嵌合凹部56Cの開口縁部に設けられて軸芯方向Xに垂直なリング状の第2平面部56Dとを備えてなる。そして、図4に示すように、第1平面部56Aと第2平面部56Dが対接することで軸芯方向Xに位置決めされた状態で、嵌合凸部56Bと嵌合凹部56Cが超音波溶着により嵌合固定されている。
 一対の仕切り板48,50は、中央部の連結部56の周りに、それぞれ、弾性壁46の上下の凸条54が嵌合する環状溝58が設けられている(図3,8参照)。環状溝58の外周、即ち径方向外方Ko側には、弾性壁46を軸芯方向Xで挟み込む挟持部分60が全周にわたって環状に設けられている。更に、挟持部分60の外周、即ち径方向外方Ko側に、弾性壁46の対向する壁面との間で径方向外方Ko側ほど漸次広くなるクリアランス61(図6参照)を形成するクリアランス形成部62が設けられており、該クリアランス形成部62が仕切り板48,50の外周縁部を構成している。
 図6に示すように、上記挟持部分60は、その径方向中間位置を境として、それよりも径方向外方Ko側、即ち外周側を第1挟持部分64とし、径方向内方Ki側、即ち内周側を第2挟持部分66としたとき、第1挟持部分64に、第2挟持部分66よりも、弾性壁46を軸芯方向Xにおいて高い圧縮率で挟み込む高圧縮挟持部68が設けられている。すなわち、挟持部分60は、その外周側の第1挟持部分64において、弾性壁46の軸芯方向Xでの圧縮率が最も高く設定された高圧縮挟持部68を備え、この高圧縮挟持部68での圧縮率が、その径方向内方Ki側での圧縮率、及び径方向外方Ko側での圧縮率よりも高く設定されている。
 ここで、弾性壁46の軸芯方向Xでの圧縮率とは、一対の仕切り板48,50による弾性壁46の軸芯方向Xでの圧縮量を、弾性壁46の元の厚みで割った値であり、対象となる部位での一対の仕切り板48,50の間隔をU(図4参照)とし、その部位での弾性壁46の元の厚みをT(図3参照)として、(T-U)/Tで定義される。そして、高圧縮挟持部68での圧縮率は、軸芯方向Xでの仕切り板48,50の想定される最大変位時でも、高圧縮挟持部68が弾性壁46の壁面から離れないように、即ち圧縮が残るように、高く設定されている。
 より詳細には、この例では、図6に示すように、内周側の第2挟持部分66では、弾性壁46の軸芯方向Xでの圧縮率が略一定に設定され、外周側の第1挟持部分64において、径方向外方Ko側ほど徐々に圧縮率が高くなり、上記高圧縮挟持部68で圧縮率が最大となり、そこから径方向外方Ko側ほど徐々に圧縮率が低くなって、上記クリアランス61を形成するクリアランス形成部62に至るように設定されている。
 このような圧縮率の設定にするため、一対の仕切り板48,50と弾性壁46は、断面形状が、それぞれ次のように形成されている。仕切り板48,50は、第2挟持部分66から第1挟持部分64の高圧縮挟持部68に至るまで、径方向Kで間隔Uが一定となるように、軸芯方向Xに垂直な平面状に形成され、高圧縮挟持部68より外周側において、径方向外方Ko側ほど漸次軸芯方向外方Xoに位置する傾斜面状に形成されている(図4,6参照)。一方、弾性壁46は、第2挟持部分66に対向する壁面70が軸芯方向Xに垂直な平面状に形成され、その外周側部分、即ち、第1挟持部分64及び該第1挟持部分64よりも径方向外方Ko側の仕切り板部分(即ち、クリアランス形成部62)に対向する壁面72が、径方向外方Ko側ほど軸芯方向外方Xoに位置する傾斜面状に形成されている(図3,6参照)。これにより、弾性壁46は、外周部46Aが厚肉状に形成されている。仕切り板48,50の高圧縮挟持部68よりも外周側の上記傾斜面と、弾性壁46の上記壁面72の傾斜面は、ともに湾曲面状に形成されており、かつ、前者の方が勾配が大きく設定されている。これにより、上記クリアランス61は径方向外方Ko側ほど漸次広く形成されている。
 図3,5に示すように、弾性壁46には、一対の仕切り板48,50によって挟み込まれる弾性壁部分に軸芯方向Xに貫通する貫通穴74が設けられている。貫通穴74は、この例では、上記高圧縮挟持部68によって挟み込まれる弾性壁部分に設けられている。そのため、図7,9に示すように、貫通穴74は、弾性壁46の周方向Cにおいて、高圧縮挟持部68によって軸芯方向Xに圧縮された状態に挟持される挟圧部76と交互に複数個設けられている。詳細には、貫通穴74は、所定幅で周方向Cに延びる略四角形状の開口であり、周方向Cに等間隔で6個設けられており、各貫通穴74の間には、その内周側の弾性壁部分と外周側の弾性壁部分をなだらかに繋ぐように、径方向外方Ko側ほど漸次厚肉となる傾斜面状の挟圧部76が放射状に形成されている。
 図5に示すように、貫通穴74の径方向外方Ko側において、弾性壁46の壁面と当該壁面に対向する一対の仕切り板48,50の周縁部の各板面との間には、貫通穴74に繋がる隙間78,78がそれぞれ設けられている。隙間78は、各貫通穴74に対して上下にそれぞれ設けられている。
 隙間78は、貫通穴74を第1液室36A又は第2液室36Bに繋げるためのものであり、貫通穴74の径方向外方Ko側で、弾性壁46と仕切り板48,50が、仕切り板48,50の中立位置において接触せずに所定の間隔が確保されることで形成されている。ここで、中立位置とは、第1液室36Aと第2液室36Bとの間に液圧差がない状態、即ち一対の仕切り板48,50が軸芯方向Xに変位していない状態での位置である。
 このように貫通穴74と隙間78を設けたことにより、一対の仕切り板48,50の中立位置において、第1液室36Aと第2液室36Bは、貫通穴74と隙間78を介して液体流動可能に繋げられている。また、上記貫通穴74は、大振幅振動時における一対の仕切り板48,50の軸芯方向Xにおける変位時には、仕切り板48,50が弾性壁46の壁面に押し当てられることによって隙間78がなくなり、これによって塞がれるように構成されている。
 なお、符号80は、弾性壁46の外周部46Aに設けられた隆起部であり(図6参照)、弾性壁46の第1液室36A側において、その傾斜面状の上記壁面72に対して軸芯方向外方Xo側、即ち第1液室36A側に隆起して形成されている。隆起部80は、第1液室36A側の仕切り板48の上面よりも軸芯方向外方Xo側にはみ出すように突出形成されている。
 また、符号82は、オリフィス形成部材44の内周面44Aに設けられた凸部であり、弾性壁46の第2液室36B側の付け根部分において、径方向内方Kiに突出形成されている。凸部82は、第2液室36B側の側面82Aが弾性壁46の軸芯方向Xに垂直な平面状に形成されて、この側面82Aが弾性壁46の成型時における成形型の押し当て面(バリ止めのためのシール面)とされている。
 これらの隆起部80及び凸部82を設けたことにより、オリフィス形成部材44に対する弾性壁46の付け根部の剛性を上げて、低周波大振幅時における一対の仕切り板48,50の変位規制効果が高められている。
 以上よりなる本実施形態の液封入式防振装置10であると、高周波数域の微振幅振動が生じたとき、一対の仕切り板48,50が一体となって往復動することで、第1液室36Aの液圧を吸収して振動を低減することができる。そのため、高周波微振幅振動に対し、動ばね定数を効果的に低減することができる。一方、低周波数域の大振幅振動が生じたときには、一対の仕切り板48,50の変位量が弾性壁46によって規制されるので、オリフィス流路42を通って第1液室36Aと第2液室36B間で液体を流通させることができ、その液体流動効果によって振動を減衰することができる。
 しかも、本実施形態であると、高周波数域での微振幅振動時に、第1液室36Aと第2液室36Bが貫通穴74と隙間78を介して液体流動可能に繋がった状態となっているので、この部分を、上記オリフィス流路42よりも高周波数域にて作用する高周波オリフィスとして用いることができる。そのため、これら貫通穴74及び隙間78を流動する液体の共振作用に基づき、低動ばね化効果を発揮することができる。なお、貫通穴74及び隙間78によって形成される高周波オリフィスは、貫通穴74の数や開口面積、隙間78の形状や大きさなどを変えることで、特性をチューニングすることができる。
 一方で、この貫通穴74は、大振幅振動時には、仕切り板48,50が軸芯方向Xに変位することで当該仕切り板48,50によって塞がれ、液体流動ができなくなるので、本来のオリフィス流路42による高減衰性能は確保することができる。よって、大振幅振動時の高減衰性能を確保して乗り心地性能を保ったまま、微振幅振動時の低動ばね化を図って騒音性能を改善することができる。
 本実施形態であると、また、隙間78が、貫通穴74の径方向外方Ko側において弾性壁46の壁面と仕切り板48,50の周縁部の板面との間に設けられているので、貫通穴74と液室36A,36Bとの間を繋げるようにしつつ、大振幅振動時には貫通穴74が閉塞されるように設定することが容易である。
 本実施形態であると、また、弾性壁46が一対の仕切り板48,50によって軸芯方向Xに圧縮された状態に挟持される挟圧部76を備え、貫通穴74が周方向Cにおいて挟圧部76と交互に設けられているので、貫通穴74において高周波オリフィスとしての機能を持たせながら、その間の挟圧部76において弾性壁46に対する仕切り板48,50の接触状態を維持して、弾性壁46と仕切り板48,50との打音に起因する異音を低減することができる。
 本実施形態であると、また、一対の仕切り板48,50が連結部56の径方向外方Ko側に弾性壁46を挟み込む挟持部分60を備え、該挟持部分60のうち径方向外方Ko側の第1挟持部分64に、径方向内方Ki側の第2挟持部分66よりも、弾性壁46を軸芯方向Xにおいて高い圧縮率で挟み込む高圧縮挟持部68が設けられている。そのため、仕切り板48,50が弾性壁46から離れ始めるまでの仕切り板48,50の軸芯方向Xにおける変位量を大きく設定することができ、仕切り板48,50が弾性壁46から離れることに起因する異音を低減することができる。
 この点について詳述すると、一般に中央の連結部を介して互い連結された一対の仕切り板は、軸芯方向の変位に対し、その外周縁側より弾性壁から離れていく。これに対し、本実施形態のものでは、例えば、仕切り板48,50が上方に過大変位したとき、上側の仕切り板48がその外周縁側より弾性壁46から離れようとするが、離れる起点となる外周側に高圧縮挟持部68を設けたことにより、該高圧縮挟持部68において弾性壁46に対する接触状態を維持することができ、仕切り板48,50が弾性壁46から離れ始めるまでの仕切り板48,50の軸芯方向Xにおける変位量を大きく設定することができる。特にこの例では、想定される最大の軸芯方向Xでの変位が生じたときでも、高圧縮挟持部68が弾性壁46の壁面から離れないようにこの部分の圧縮率が高く設定されているので、挟持部分60が弾性壁46から離れてしまうのを確実に防止して、異音の発生をより効果的に防止することができる。
 また、このように仕切り板48,50の挟持部分60における径方向外方Ko側に高圧縮挟持部68を設けており、径方向Kの全体で圧縮率を高くしたものではないので、弾性壁46全体の剛性アップを抑えて、高周波数振動に対する仕切り板48,50の往復動しやすさを確保することができる。また、仕切り体40の組み立て時において、軸芯方向Xに圧縮される弾性壁46のゴムの反力による連結部56での溶着不良を回避することができ、仕切り体40の組み立て性に優れる。
 また、本実施形態であると、この高圧縮挟持部68によって挟み込まれる弾性壁部分に貫通穴74を設けたので、弾性壁46は、高圧縮挟持部68によって挟み込まれる弾性壁部分に貫通穴74による低剛性部が周方向Cに断続的に形成されている。そのため、高周波数域での微振幅振動に対し、仕切り板48,50を軸芯方向Xに往復動させやすくして、動ばね定数を低減することができる。高圧縮挟持部68は、軸芯方向Xでの大変位時にも仕切り板48,50が弾性壁46から離れないようにするために軸芯方向Xでの圧縮率を高める部位である一方、軸芯方向Xでの圧縮率を高めるとその分弾性壁46は硬くなってしまう。そこで、該高圧縮挟持部68に貫通穴74による低剛性部を断続状に設けたことで、径方向外方Ko側の第1挟持部分64によって挟持される弾性壁部分を硬くすることなく、むしろその部分を柔らかく維持しながら、仕切り板48,50が弾性壁46から離れないように軸芯方向Xでの圧縮率を高めることができる。また、該低剛性部が外周側の第1挟持部分64に設けられたので、高周波数域の振動入力時に、一対の仕切り板48,50を、軸芯が傾くようなこじり方向での変位を抑えながら、軸芯方向Xにスムーズに往復動させることができ、高周波数域での動ばね定数の低減効果を更に高めることができる。
 また、本実施形態であると、弾性壁46の外周部46Aが厚肉状に形成されたので、低周波数域の大振幅振動時に、仕切り板48,50の往復動変位を効果的に規制することができる。
 なお、弾性壁46に設けた貫通穴74の配置や数、形状は、上記実施形態に限定されるものではなく、種々の変更が可能である。また、隙間78の形状や配設構成についても、上記実施形態に限定されるものではない。また、高圧縮挟持部68を設けた仕切り板48,50の構成についても上記実施形態に限定されるものではなく、種々の変更が可能である。その他、一々列挙しないが、本発明の趣旨を逸脱しない限り、種々の変更が可能である。
 本発明は、自動車のエンジンマウントを始め、振動体と支持体とを防振的に結合する自動車の各種防振装置として用いることができ、また、自動車以外の各種車両に用いることもできる。

Claims (5)

  1.  第1取付け具と、筒状の第2取付け具と、前記第1取付け具と前記第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性膜からなるダイヤフラムと、前記液体封入室を前記防振基体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と第2液室を連通させるオリフィス流路と、を備えた液封入式防振装置であって、
     前記仕切り体は、
     前記第2取付け具の周壁部の内側に設けられて前記オリフィス流路を形成する環状のオリフィス形成部材と、
     前記オリフィス形成部材の内周面の間を塞ぐゴム状弾性材からなる弾性壁と、
     前記弾性壁の径方向中央部を貫通する連結部を介して互いに連結され、前記弾性壁を該弾性壁の軸芯方向で挟み込む一対の仕切り板と、からなり、
     前記弾性壁は、前記一対の仕切り板によって挟み込まれる弾性壁部分に軸芯方向に貫通する貫通穴を備え、前記弾性壁の壁面と当該壁面に対向する前記一対の仕切り板の板面との間に前記貫通穴に繋がる隙間が設けられ、前記一対の仕切り板の中立位置において前記貫通穴と前記隙間を介して前記第1液室と前記第2液室が液体流動可能に繋げられるとともに、前記一対の仕切り板の軸芯方向における変位により当該仕切り板によって前記貫通穴が塞がれるよう構成された
     ことを特徴とする液封入式防振装置。
  2.  前記隙間が、前記貫通穴の径方向外方側において前記弾性壁の壁面と前記仕切り板の周縁部の板面との間に形成された、ことを特徴とする請求項1記載の液封入式防振装置。
  3.  前記弾性壁は、前記一対の仕切り板によって軸芯方向に圧縮された状態に挟持される挟圧部を備え、前記貫通穴が前記弾性壁の周方向において前記挟圧部と交互に複数個設けられた、ことを特徴とする請求項1又は2記載の液封入式防振装置。
  4.  前記一対の仕切り板は、前記連結部の径方向外方側に前記弾性壁を挟み込む挟持部分を備え、前記挟持部分は、径方向外方側の第1挟持部分と径方向内方側の第2挟持部分とからなり、前記第1挟持部分に前記第2挟持部分よりも前記弾性壁を軸芯方向において高い圧縮率で挟み込む高圧縮挟持部が設けられた、ことを特徴とする請求項3記載の液封入式防振装置。
  5.  前記貫通穴が前記高圧縮挟持部によって挟み込まれる弾性壁部分に設けられ、前記貫通穴と前記高圧縮挟持部によって挟み込まれる前記挟圧部とが前記弾性壁の周方向に交互に設けられた、ことを特徴とする請求項4記載の液封入式防振装置。
PCT/JP2010/002548 2009-04-13 2010-04-07 液封入式防振装置 WO2010119643A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10764230.8A EP2420698B1 (en) 2009-04-13 2010-04-07 Liquid-sealed vibration-isolating device
US13/257,744 US8590868B2 (en) 2009-04-13 2010-04-07 Liquid-sealed antivibration device
JP2011509198A JP5202729B2 (ja) 2009-04-13 2010-04-07 液封入式防振装置
CN2010800164247A CN102395810B (zh) 2009-04-13 2010-04-07 液封式防振装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-097282 2009-04-13
JP2009097282 2009-04-13

Publications (1)

Publication Number Publication Date
WO2010119643A1 true WO2010119643A1 (ja) 2010-10-21

Family

ID=42982319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002548 WO2010119643A1 (ja) 2009-04-13 2010-04-07 液封入式防振装置

Country Status (5)

Country Link
US (1) US8590868B2 (ja)
EP (1) EP2420698B1 (ja)
JP (1) JP5202729B2 (ja)
CN (1) CN102395810B (ja)
WO (1) WO2010119643A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194848A (ja) * 2012-03-21 2013-09-30 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2016121696A (ja) * 2014-12-24 2016-07-07 東洋ゴム工業株式会社 能動型防振装置
JP2016169781A (ja) * 2015-03-12 2016-09-23 東洋ゴム工業株式会社 液封入式防振装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073462A1 (ja) * 2008-12-25 2010-07-01 東海ゴム工業株式会社 流体封入式防振装置
DE102016101203A1 (de) * 2016-01-25 2017-07-27 Vibracoustic Gmbh Hydrolager mit Unterdruckventil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199745U (ja) * 1984-12-06 1986-06-26
JPS63166738U (ja) * 1987-04-17 1988-10-31
JP2003074617A (ja) * 2001-08-31 2003-03-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2006144806A (ja) * 2003-04-04 2006-06-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2009002433A (ja) 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2009002434A (ja) * 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157625A (en) * 1980-05-02 1981-12-04 Nissan Motor Co Ltd Mounting device for engine
IT1159378B (it) * 1983-03-15 1987-02-25 Siette Spa Sopporto elastico ammortizzante particolarmente per motori di autoveicoli cabine di autocarri e simili applicazioni
JPS6330623A (ja) * 1986-07-21 1988-02-09 Toyo Tire & Rubber Co Ltd 液体減衰式防振マウント
US4997169A (en) * 1988-08-03 1991-03-05 Honda Giken Kogyo Kabushiki Kaisha Hydraulically damped mount
JPH0454344U (ja) * 1990-09-17 1992-05-11
DE602005000091T2 (de) 2004-03-12 2007-02-22 Toyo Tire & Rubber Co., Ltd. Hydraulische schwingungsdämpfende Vorrichtung
JP4330011B2 (ja) 2004-03-12 2009-09-09 東洋ゴム工業株式会社 液封入式防振装置
JP4120828B2 (ja) 2004-06-30 2008-07-16 東海ゴム工業株式会社 流体封入式能動型防振装置
JP2006207672A (ja) * 2005-01-27 2006-08-10 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP4113194B2 (ja) 2005-03-16 2008-07-09 東洋ゴム工業株式会社 液封入式防振装置
JP2006342834A (ja) 2005-06-07 2006-12-21 Toyo Tire & Rubber Co Ltd 流体封入式防振装置
WO2007080705A1 (ja) * 2006-01-16 2007-07-19 Toyo Tire & Rubber Co., Ltd. 液封入式防振装置
JP3909422B1 (ja) 2006-01-16 2007-04-25 東洋ゴム工業株式会社 液封入式防振装置
JP2007211972A (ja) 2006-01-16 2007-08-23 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007218416A (ja) 2006-01-20 2007-08-30 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007271004A (ja) 2006-03-31 2007-10-18 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2008164102A (ja) 2006-12-28 2008-07-17 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP4327859B2 (ja) * 2007-02-01 2009-09-09 東洋ゴム工業株式会社 液封入式防振装置
JP2008196705A (ja) 2008-04-01 2008-08-28 Toyo Tire & Rubber Co Ltd 流体封入式防振装置
JP4358891B1 (ja) 2008-09-29 2009-11-04 東洋ゴム工業株式会社 液封入式防振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199745U (ja) * 1984-12-06 1986-06-26
JPS63166738U (ja) * 1987-04-17 1988-10-31
JP2003074617A (ja) * 2001-08-31 2003-03-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2006144806A (ja) * 2003-04-04 2006-06-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2009002433A (ja) 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2009002434A (ja) * 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194848A (ja) * 2012-03-21 2013-09-30 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2016121696A (ja) * 2014-12-24 2016-07-07 東洋ゴム工業株式会社 能動型防振装置
JP2016169781A (ja) * 2015-03-12 2016-09-23 東洋ゴム工業株式会社 液封入式防振装置

Also Published As

Publication number Publication date
EP2420698B1 (en) 2019-08-21
EP2420698A4 (en) 2017-10-25
EP2420698A1 (en) 2012-02-22
JP5202729B2 (ja) 2013-06-05
US20120018935A1 (en) 2012-01-26
JPWO2010119643A1 (ja) 2012-10-22
CN102395810A (zh) 2012-03-28
US8590868B2 (en) 2013-11-26
CN102395810B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
CN102678811B (zh) 液封式防振装置
JP5095763B2 (ja) 液封入式防振装置
CN101981342B (zh) 防振装置
JP5801134B2 (ja) 液封入式防振装置
JP5202729B2 (ja) 液封入式防振装置
JP5431982B2 (ja) 液封入式防振装置
JP5284463B2 (ja) 液封入式防振装置
JP3666484B2 (ja) 液封入式防振装置
JP5184276B2 (ja) 液封入式防振装置
JP2010071365A (ja) 液封入式防振装置
JP2007218416A (ja) 液封入式防振装置
JP4158108B2 (ja) 空気圧切換型の流体封入式エンジンマウント
JP4891295B2 (ja) 液封入式防振装置
JP4603014B2 (ja) 液封入式防振装置
JP4158111B2 (ja) 空気圧切換型の流体封入式エンジンマウント
JP2014031844A (ja) 防振装置
JP4603015B2 (ja) 液封入式防振装置
JP6572104B2 (ja) 液封入式防振装置
JP4555364B2 (ja) 液封入式防振装置
JP2017096480A (ja) 流体封入式防振装置
JP6604825B2 (ja) 液封入式防振装置
JP5690988B2 (ja) 液封入式防振装置
WO2009147748A1 (ja) 液封入式防振装置
JP5619653B2 (ja) 液封入式防振装置
JP5809879B2 (ja) 防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016424.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509198

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010764230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE