WO2010119612A1 - 車輪及びそれを用いた摩擦式駆動装置及び全方向移動車 - Google Patents

車輪及びそれを用いた摩擦式駆動装置及び全方向移動車 Download PDF

Info

Publication number
WO2010119612A1
WO2010119612A1 PCT/JP2010/001847 JP2010001847W WO2010119612A1 WO 2010119612 A1 WO2010119612 A1 WO 2010119612A1 JP 2010001847 W JP2010001847 W JP 2010001847W WO 2010119612 A1 WO2010119612 A1 WO 2010119612A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wheel
shaft body
drive
rotation
Prior art date
Application number
PCT/JP2010/001847
Other languages
English (en)
French (fr)
Inventor
竹中透
平野允
五味洋
佐々木政雄
小山泰司
小橋慎一郎
和泉秀治
▲桑▼原和也
牧野博行
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/263,931 priority Critical patent/US8499864B2/en
Publication of WO2010119612A1 publication Critical patent/WO2010119612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K1/00Unicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/12Roller-type wheels
    • B60B19/125Roller-type wheels with helical projections on radial outer surface translating rotation of wheel into movement along the direction of the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H1/00Supports or stands forming part of or attached to cycles
    • B62H1/10Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride
    • B62H1/12Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride using additional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider

Definitions

  • the present invention relates to a wheel, a friction drive device using the same, and an omnidirectional vehicle, and more particularly to a wheel used in an omnidirectional vehicle, a friction drive device using the wheel, and an omnidirectional vehicle.
  • a wheel for an omnidirectional vehicle there is a wheel constituted by an endless annular shaft body and a plurality of free rollers attached to the shaft body so as to be rotatable around a tangential axis of the shaft body in a daisy chain. It has been proposed (for example, Patent Documents 1 and 2).
  • this mounting structure has the disadvantage that assembly bolts are required for each free roller, which increases the number of assembly steps.
  • assembly bolts are required for each free roller, which increases the number of assembly steps.
  • the problem to be solved by the present invention is to produce wheels used for omnidirectional vehicles and the like while ensuring required wheel performance and good workability.
  • the wheel according to the present invention is a wheel constituted by an endless annular shaft body and a plurality of free rollers each rotatably attached to the shaft body around a tangential axis of the shaft body.
  • a closed state in which the assembly operation gap is closed to make the shaft body endless can be taken, and the non-orthogonal surface is fixed by a fastener in the closed state.
  • the shaft body includes an arc-shaped shaft main body and a shaft complementing member that complements the shaft main body to form an endless ring, and a joint portion between the shaft main body and the shaft complementing member is the shaft body.
  • a non-orthogonal surface that is not orthogonal to the central axis of the shaft, and the shaft main body and the shaft complementing member are fixedly connected to the non-orthogonal surface by a fastener.
  • the shaft body has a polygonal cross-sectional shape orthogonal to the central axis of the shaft body, and the non-orthogonal surface is a cross section orthogonal to the central axis of the shaft body. And extends in the tangential direction of the shaft at the portion that becomes the maximum line segment.
  • a spacer is disposed between the adjacent free rollers, and the spacer disposed between the free rollers at the joint portion is fastened and fixed to the shaft main body by the fastener. ing.
  • the friction drive device includes a wheel according to the above-described invention, a drive rotation member disposed on both sides of the wheel so as to be rotatable about an axis that is concentric with a ring center of the shaft body, and each of the drive rotation members.
  • a drive rotation member disposed on both sides of the wheel so as to be rotatable about an axis that is concentric with a ring center of the shaft body, and each of the drive rotation members.
  • a driving roller in contact with the outer peripheral surface of the free roller.
  • the friction type driving device is disposed on the wheel according to the above-described invention and on one side in the axial direction of the wheel so as to be rotatable about an axis that is concentric with the ring center of the shaft, and the shaft of the wheel.
  • a wheel support rotation member that supports the wheel, a drive rotation member that is disposed on the other side of the wheel so as to be rotatable about an axis that is concentric with the ring center of the shaft body, and a rotation of the drive rotation member on the drive rotation member
  • a plurality are arranged on a circumference concentric with the center, each of which is rotatable about a rotation axis that forms a twist relationship with the rotation axis of the drive rotation member, and has an outer peripheral surface that contacts the outer peripheral surface of the free roller.
  • a driving roller that supports the wheel, a drive rotation member that is disposed on the other side of the wheel so as to be rotatable about an axis that is concentric with the ring center of the shaft body, and a rotation of the drive rotation member on the drive rotation member
  • a plurality are arranged on a circumference concentric with the center, each of which is rotatable about a rotation axis that forms a twist relationship with the rotation axis of the drive rotation
  • the omnidirectional vehicle according to the present invention includes the friction drive device according to the above-described invention and travels by the wheels.
  • the joint is provided in the shaft body, and the free roller is formed in a half structure by inserting the free roller into the shaft body through the assembly operation gap with the joint portion opened. It can be incorporated into the shaft body. Since the joint portion can be fixed in a closed state by a fastener that penetrates a non-orthogonal surface that is not orthogonal to the central axis of the shaft body in the radial direction of the shaft body, the fastener is attached from the outside of the joint portion after the assembly of the free roller. Thus, the joint portion can be fixed to make the shaft body endless.
  • FIG. 5 is an enlarged cross-sectional view of a main part (cross section VV in FIG. 4) of the wheel according to the present embodiment.
  • the enlarged front view which shows the principal part of other embodiments of the friction-type drive device using the wheel by this invention, and an omnidirectional mobile vehicle.
  • the omnidirectional vehicle 1 of the present embodiment has a portal-shaped vehicle body 7, and the vehicle body 7 has wheels 50 via drive rollers (3L, 3R) described later. Is supported rotatably.
  • the vehicle body 7 includes a left leg member 7L and a right leg member 7R hinged to the left leg member 7L by a hinge shaft 71.
  • a right step 32R is attached to the outside of the right leg member 7R
  • a left step 32L is attached to the outside of the left leg member 7L substantially horizontally.
  • the lower end of the pole 33 is fixed to the upper part of the left leg member 7L of the vehicle body 7.
  • the pole 33 stands vertically from the vehicle body 7, and a handle bar 34 is attached to the upper end portion of the pole 33 in the horizontal direction.
  • a compression coil spring 8 is provided between the right leg member 7R and the left leg member 7L of the vehicle body 7. The compression coil spring 8 urges the right leg member 7R and the left leg member 7L in a direction to bring them closer to each other.
  • the vehicle body 7, the left and right steps 32R and 32L, the pole 33, and the handle bar 34 have an integral structure.
  • the entire body 7, the left and right steps 32R and 32L, the pole 33, and the handle bar 34 are all It can be said that this is the vehicle body of the direction moving vehicle 1.
  • An auxiliary wheel 35 is attached to the vehicle body 7 by an arm 36.
  • the arm 36 is pivotally supported at the upper end by the rear part of the vehicle body 7 and can be flipped up.
  • the auxiliary wheel 35 is located behind the wheel 50 in the front-rear direction and is rotatable about a horizontal axis.
  • the handle bar 34 is provided with a grip lever 37.
  • the grip lever 37 is connected to the distal end portion of the arm 36 by a known Bowden cable (not shown), and is gripped by the hand together with the handle bar 34 to jump up the arm 36.
  • the right leg member 7R rotatably supports the right drive rotating member 4R by the support shaft 6R.
  • the left leg member 7L rotatably supports the left drive rotation member 4L by a support shaft 6L.
  • the left and right drive rotation members 4R and 4L are rotatably attached to the vehicle body 7 around the same central axis (A) with a predetermined axial direction interval (horizontal direction interval).
  • the pulleys 9R and 9L are integrally formed at the concentric positions on the drive rotating members 4R and 4L.
  • Electric motors 5R and 5L are attached to the right leg member 7R and the left leg member 7L, respectively.
  • the electric motor 5R is drivingly connected to the pulley 9R by an endless belt 10R (or a link chain), and rotationally drives the pulley 9R.
  • the electric motor 5L is drivingly connected to the pulley 9L by an endless belt 10L (or a link chain), and rotationally drives the pulley 9L.
  • the rechargeable battery power source and the control device are mounted on the vehicle body 7 and the pole 33 as power sources for the electric motors 5R and 5L.
  • the drive rotating members 4R and 4L have truncated conical tapered outer peripheral surfaces 41R and 41L on opposite sides.
  • a plurality of right drive rollers 3R are attached to the taper outer peripheral surface 41R of the drive rotating member 4R by respective brackets 42R so as to be rotatable at equal intervals in the circumferential direction of the drive rotating member 4R.
  • a plurality of left drive rollers 3L are attached to the tapered outer peripheral surface 41L of the drive rotation member 4L by brackets 42L so as to be rotatable at equal intervals in the circumferential direction of the drive rotation member 4L.
  • the wheel 50 is disposed between the left and right drive rotation members 4R, 4L and is identical to the central axis A of the left and right drive rotation members 4R, 4L so that the left and right sides are sandwiched between the right drive roller 3R and the left drive roller 3L. Is supported so as to be rotatable around a central axis B (ring center of the shaft body 51) B.
  • the wheel 50 rotates around an tangential axis of the shaft body 51, and an endless annular shaft body 51 formed of a regular octagonal column body.
  • a plurality of free rollers 52 that can be attached and a spacer 53 disposed between adjacent free rollers 52 are included.
  • the shaft body 51 has a regular octagonal cross-sectional shape perpendicular to the central axis of the shaft body 51.
  • a metal inner sleeve 54 having a mounting hole 54A with a regular octagonal hole bent with the same curvature as that of the shaft body 51 is fitted non-rotatably with a mounting hole 54A for each free roller 52. It is worn.
  • An outer peripheral surface 54B of the inner sleeve 54 is a cylindrical surface, and an inner race 56 of a needle bearing 55 is fitted to the outer peripheral surface 54B.
  • the free roller 52 is a roller that comes into contact with an object on which a driving force is applied, and is attached to the shaft body 51 in a daisy chain shape, and is joined to the outer circumference of the cylindrical metal sleeve 52A and the metal sleeve 52A. And an outer peripheral member 52B made of a cylindrical rubber-like elastic body constituting the outer peripheral surface 52C of the free roller 52, and the metal sleeve 52A can be rotated around the tangential axis of the shaft body 51 as an outer race of the needle bearing 55. Is attached.
  • each of the free rollers 52 can individually rotate around its own central axis, and the rotation of the free rollers 52 is referred to as the rotation of the free rollers 52.
  • the spacer 53 is made of metal having a mounting hole 53A having a regular octagonal hole bent with the same curvature as the curvature of the shaft body 51, and is fitted non-rotatably on the outer periphery of the shaft body 51 with the mounting hole 53A. It is a distance mechanism that prevents the free rollers 52 from contacting each other.
  • the spacer 53 is in close contact with the inner sleeve 54 and the inner race 56 at the end surfaces. This also applies to the spacer 57 described later, and the inner sleeve 54 and the inner race 56 are in close contact with each other at the end surfaces.
  • the spacers 53, 57, the inner sleeve 54, and the inner race 56 form an annular shape (closed loop) in which the shaft body 51 is rigidly connected in the circumferential direction.
  • the shaft body 51 is composed of a C-shaped arc-shaped shaft main body 61 formed of a regular octagonal columnar body made of metal, and a metal regular octagonal columnar body that is the same as the shaft main body 61, and complements the shaft main body 61. And an arc-shaped shaft complementing member 62 forming an endless annular shape.
  • the joint 63 between the shaft main body 61 and the shaft complementing member 62 formed at both ends of the shaft complementing member 62 includes a cross-sectional center line C as a non-orthogonal surface that is not orthogonal to the annular cross-sectional center line C of the shaft body 61. It has a stepped shape including joint surfaces 61A and 62A parallel to the plane.
  • the shaft main body 61 has a screw hole 61B that penetrates the joint surface 61A in the radial direction of the shaft body 51
  • the shaft complementary member 62 has a bolt through hole 62B that penetrates the joint surface 62A in the cross-sectional radial direction of the shaft body 51. Is formed.
  • the bolt through hole 62B is located on the outer side as viewed in the cross-sectional radial direction of the shaft body 51 from the screw hole 61B.
  • the joint surfaces 61 ⁇ / b> A and 62 ⁇ / b> A extend in the tangential direction of the shaft body 51 at a portion that becomes the maximum line segment when viewed in a cross section orthogonal to the cross-sectional center line of the shaft body 51.
  • the width dimension of the joint surfaces 61A, 62A (the dimension in the left-right direction as viewed in FIG. 5) can be increased, and the diameters of the bolt through hole 62B and the screw hole 61B can be increased accordingly. .
  • the shaft main body 61 and the shaft complementing member 62 are fixedly coupled so as to be disassembled by bolts 64 that are passed through the bolt through holes 62B and screwed into the screw holes 61B. By this fixed connection, the shaft body 51 is brought into an endless closed state.
  • the bolt 64 is removed and the shaft is complemented by the shaft main body 61.
  • the member 62 is removed, and the assembly operation gap such as the free roller 52 and the spacer 53 is defined in an open state in the portion from which the shaft complementing member 62 is removed.
  • the gap for assembling work is a portion provided so that the free roller 52 and the spacer 53 can be passed through the shaft main body 61 during assembling work.
  • the free roller assembly and the spacer 53 are alternately inserted into the shaft main body 61 through the assembly work gap and assembled.
  • the assembly of the inner sleeve 54 and the spacer 53 are alternately inserted into the shaft complementing member 62 and assembled. Accordingly, the free roller 52, the inner race 56, and the like can be incorporated into the shaft body 51 without forming a half structure.
  • the shaft complementary member 62 is assembled to the shaft main body 61, and the bolt 64 is inserted into the bolt through hole 61B of the coupling portion 63. Then, the bolt 64 is screwed into the screw hole 62B.
  • the shaft main body 61 and the shaft complementing member 62 are fixedly connected, and the shaft body 51 is brought into an endless closed state by the fixed connection.
  • the bolt through hole 62B is located outside of the screw hole 61B in the cross-sectional radial direction of the shaft body 51, so that the assembly of the free roller assembly and the spacer 53 is completed after the assembly of the free roller assembly and the spacer 53. It can be carried out.
  • the wheel 50 can be produced with good workability while ensuring the required wheel performance.
  • a horseshoe-shaped spacer 57 that can be retrofitted is used.
  • a bolt through hole 57A is formed in the spacer 57, and is fastened to the shaft main body 61 together with the shaft complement member 62 by a bolt 64 passed through the bolt through hole 57A.
  • the joint surfaces 61A and 62A extend in the tangential direction of the shaft body 51 at a portion that becomes the maximum line segment when viewed in a cross section orthogonal to the cross-sectional center line of the shaft body 51, and the joint surfaces 61A and 62A Since the width dimension can be increased, the diameter of the bolt through hole 62B and the screw hole 61B can be increased, and the bolt 64 having a larger diameter can be used accordingly. Thereby, high fastening strength can be obtained while maintaining the mechanical strength of the coupling portion 63.
  • the spacer 53 and the inner sleeve 54 can also be comprised as an integral structure product. In this case, the number of parts and the number of assembled parts can be reduced.
  • the relationship (number) between the free roller 52, the right drive roller 3R, and the left drive roller 3L is such that at least one right drive roller 3R is in contact with the grounded free roller 52 in order to avoid slipping of the free roller 52.
  • the left driving roller 3L comes into contact with the right driving roller 3R and the left driving roller 3L so that a propulsive force (rotational force) is always applied to the free roller 52 in a grounded state.
  • the right drive roller 3R and the left drive roller 3L are urged toward the outer peripheral surface 52C of the free roller 52 by the spring force of the compression coil spring 8, and contact the outer peripheral surface 52C of the free roller 52 with the outer peripheral surfaces 3Ra and 3La.
  • the propulsive force (rotational force) is transmitted to the free roller 52 by friction. That is, the outer peripheral surfaces 3Ra and 3La of the right drive roller 3R and the left drive roller 3L are in contact with the outer peripheral surface 52C of the free roller 52 in a power transmission relationship that transmits motion (rotation and translation) to the wheels 50 with frictional force. .
  • the right driving roller 3R and the left driving roller 3L are arranged around the central axis B of the wheel 50 (same as the central axis A of the driving rotary members 4R and 4L) (more precisely, around the central axis B at the contact point).
  • (Circumferential tangential direction) is arranged around a central axis D extending in a direction that is neither orthogonal nor parallel. That is, the right driving roller 3R and the left driving roller 3L are inclined with respect to the rotation direction around the central axis B of the wheel 50, and have a torsional relationship with respect to the rotation axis (center axis A) of the driving rotary members 4R and 4L.
  • the free roller 52 rotates around the tangential axis of the shaft body 51 due to contact with the right drive roller 3R and the left drive roller 3L that rotate together with the drive rotation members 4R and 4L, and in the left-right direction.
  • the driving force in the front-rear direction can be applied to the grounding surface by the circumferential movement caused by the rotation of the entire wheel 50 around the central axis B.
  • the rotational force of the drive rotation members 4R and 4L is different. Is applied to the contact surfaces (contact surfaces) of the right drive roller 3R and the left drive roller 3L of the wheel 50 with respect to the force in the circumferential (tangential) direction. Due to this component force, a force that twists the free roller 52 of the wheel 50 and a rotational driving force around the central axis of the free roller 52 act on the outer surface of the free roller 52, and the free roller 52 rotates around its own central axis. It will rotate.
  • the rotation of the free roller 52 is determined by the rotational speed difference between the drive rotating members 4R and 4L.
  • the wheel 50 does not rotate around the central axis B and the free roller 52 rotates.
  • the driving force in the same direction as the central axis B of the wheel 50 that is, the left-right direction is applied to the wheel 50.
  • the omnidirectional vehicle 1 moves in the left-right direction.
  • the omnidirectional vehicle 1 can move in all directions on the road surface by independently controlling the rotation speed and the rotation direction of the drive rotating members 4R, 4L by the electric motors 5R, 5L.
  • FIG. 6 shows another embodiment of the friction drive device according to the present invention and an omnidirectional vehicle using the same. 6, parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof is omitted.
  • a wheel support rotating member 142 is attached to the left leg member 7L of the vehicle body 7, and a drive rotating member 143 is attached to the right leg member 7R of the vehicle body 7 so as to be rotatable concentrically with each other on the central axis A.
  • An electric motor 124 is attached to the left side member 7L of the vehicle body 7.
  • a pulley (or sprocket) 130 is concentrically integrated with the wheel support rotating member 142.
  • the electric motor 124 is drivingly connected to the pulley 130 by an endless belt (or link chain) 132, and rotationally drives the wheel support rotating member 142.
  • Another electric motor 125 is attached to the right member 7R of the vehicle body 7.
  • a pulley (or sprocket) 131 is integrally formed concentrically with the drive rotation member 143.
  • the electric motor 125 is drivingly connected to the pulley 131 by an endless belt (or link chain) 133 and rotationally drives the drive rotating member 143.
  • the wheel support rotation member 142 has a plurality of arms 145 extending from the outer peripheral surface of the taper to the other drive rotation member 143 side (right side as viewed in FIG. 5).
  • the wheel 50 by the equivalent shaft 51, the free roller 52, and the spacer 53 is attached.
  • the spacer 53 of the wheel 50 is fixedly supported by the wheel support rotating member 142 by a plurality of arms 145.
  • the wheel 50 is supported by the wheel support rotating member 142 on one side in the axial direction so as to be rotatable about an axis that is concentric with the center of the ring of the shaft body 51.
  • a plurality of driving rollers 150 are respectively provided on the side of the wheel supporting rotating member 142 (the left side in FIG. 6) of the driving rotating member 143 so that the driving rotating member 143 is equally divided in the circumferential direction by the bracket 151. It is arranged at the position to do.
  • the drive roller 150 is in contact with the outer peripheral surface of the free roller 52 in a torque transmission relationship, and is rotatable about a central axis D that extends in a twisted direction with respect to the central axis of the counterpart free roller 52. It is attached. That is, the center axis of the free roller 52 and the center axis of the drive roller 150 are in a twisted relationship at each contact point.
  • the central axis of the driving roller 150 is inclined at a predetermined inclination angle with respect to the central axis of the free roller 52 when viewed from the projection plane in the direction of the central axis A at each roller arrangement site.
  • the central axis of the driving roller 150 is inclined at a certain angle with respect to the radial line of the shaft 51 corresponding to the central axis of the free roller 52, and at a certain angle with respect to a virtual plane with which the central line of the shaft 51 is in contact. Tilted.
  • the inclination of this three-dimensional axis line is similar to the inclination of the tooth of a “helical bevel gear” placed on a conical surface at an angle.
  • the free roller 52 rotates at the contact point of the drive roller 150 with the free roller 52.
  • the frictional force around the axis and in the circumferential tangential direction will act.
  • the relationship (number) between the free roller 52 and the drive roller 150 is that at least one drive roller 150 is always in contact with the grounded free roller 52 and is in a grounded state from the drive roller 150. The setting is such that a rotational force is always applied to 52, and the free sliding of the free roller 52 is avoided.
  • the wheel 50 of the present embodiment has the same structure as the wheel 50 of the above-described embodiment, even in this embodiment, the same operations and effects as those of the above-described embodiment can be obtained in assembling the free roller 52 and the like. Can do.
  • the shaft main body 61 and the shaft complementing member 62 may be semicircular to complement each other to form an annular shape.
  • the shaft body 51 is divided into the shaft main body 61 and the shaft complementing member 62, and the joint portions 63 are provided at two locations.
  • the shaft body 51 has one joint portion 63.
  • disconnected by may be sufficient. In this case, it is only necessary to delimit the joint end portions of the opposing shaft bodies 51 in the radial direction by elastic deformation to define an assembly operation gap between the joint end portions. Further, the non-orthogonal surface of the joint may be an inclined surface.
  • the shaft body 51 is not limited to a regular octagonal cross section, and may be another polygonal shape such as a quadrangle or a hexagon or a circle.

Abstract

【課題】全方向移動車等に用いられる車輪を、所要の車輪性能を確保して作業性よく生産すること。 【解決手段】軸体51をC字形の軸主体61と、軸主体61と補完し合って無端環状を形成する軸補完部材62とにより構成し、軸主体61と軸補完部材62との接合部は、軸体の中心軸線に対して直交しない非直交面を含み、非直交面を軸体51の径方向に貫通するボルト64によって軸主体61と軸補完部材62とを固定連結する。

Description

車輪及びそれを用いた摩擦式駆動装置及び全方向移動車
 本発明は、車輪及びそれを用いた摩擦式駆動装置及び全方向移動車に関し、特に、全方向移動車に用いられる車輪及びそれを用いた摩擦式駆動装置及び全方向移動車に関する。
 全方向移動車用の車輪として、無端環状の軸体と、前記軸体に各々当該軸体の接線方向軸線周りに回転可能に数珠繋ぎ状で取り付けられた複数のフリーローラとにより構成された車輪が提案されている(例えば、特許文献1、2)。
国際公開2008/132778号パンフレット 国際公開2008/132779号パンフレット
 特許文献1に示されているような車輪では、軸体に対するフリーローラの取り付けを如何に行うが、一つの課題になる。この取り付け構造として、軸体は完全な無端環状に形成し、フリーローラを半割構造にして軸体に取り付け、各フリーローラの半割体同士を埋め込みボルトによって締結することが考えられる。
 しかし、この取り付け構造は、各フリーローラ毎に埋め込みボルトの締結が必要で、組立工数が多くなる欠点がある。また、半割構造のフリーローラでは、各フリーローラ毎に半割体同士の組み合わせ精度を高く保つ必要があり、さもないと、フリーローラの円筒度(外径の真円度)に狂いが生じ、車輪としての所要の性能が得られなくなる。
 本発明が解決しようとする課題は、全方向移動車等に用いられる車輪を、所要の車輪性能を確保して作業性よく生産することである。
 本発明による車輪は、無端環状の軸体と、前記軸体に各々当該軸体の接線方向軸線周りに回転可能に取り付けられた複数のフリーローラとにより構成された車輪であって、前記軸体は、当該軸体の中心軸線に対して直交しない非直交面を含む接合部を有し、前記接合部は、前記軸体に前記フリーローラを挿入可能な組立作業用間隙を画定する開放状態と、前記組立作業用間隙を閉じて前記軸体を無端状態にする閉鎖状態とを取ることができ、前記閉鎖状態にて前記非直交面を締結具によって固定されている。
 前記軸体は、円弧状の軸主体と、前記軸主体と補完し合って無端環状を形成する軸補完部材とにより構成され、前記軸主体と前記軸補完部材との接合部は、前記軸体の中心軸線に対して直交しない非直交面を含み、当該非直交面を締結具によって前記軸主体と前記軸補完部材とが固定連結されている。
 本発明による車輪は、好ましくは、前記軸体は当該軸体の中心軸線に対して直交する断面形状が多角形であり、前記非直交面は、前記軸体の中心軸線に対して直交する断面で見て最大線分となる部分にて前記軸体の接線方向に延在している。
 本発明による車輪は、好ましくは、隣接する前記フリーローラ間にスペーサが配置されており、前記接合部において前記フリーローラ間に配置されるスペーサは、前記締結具によって前記軸主体に共締め固定されている。
 本発明による摩擦式駆動装置は、上述の発明による車輪と、前記車輪の両側に前記軸体の環中心と同心の軸線周りに回転自在に配置された駆動回転部材と、前記駆動回転部材の各々に、当該駆動回転部材の回転中心と同心の円周上に複数個配置され、各々、前記駆動回転部材の回転軸線に対してねじれの関係をなす回転軸線周りに回転可能で、外周面をもって前記フリーローラの外周面に接触する駆動ローラとを有する。
 本発明による摩擦式駆動装置は、上述の発明による車輪と、前記車輪の軸線方向の一方の側に前記軸体の環中心と同心の軸線周りに回転自在に配置され、前記車輪の前記軸体を支持する車輪支持回転部材と、前記車輪の他方の側に前記軸体の環中心と同心の軸線周りに回転自在に配置された駆動回転部材と、前記駆動回転部材に当該駆動回転部材の回転中心と同心の円周上に複数個配置され、各々、前記駆動回転部材の回転軸線に対してねじれの関係をなす回転軸線周りに回転可能で、外周面をもって前記フリーローラの外周面に接触する駆動ローラとを有する。
 本発明による全方向移動車は、上述の発明による摩擦式駆動装置を含み、前記車輪によって走行する。
 本発明による車輪によれば、軸体に接合部が設けられ、当該接合部を開放状態にして組立作業用間隙よりフリーローラを軸体に挿入することにより、フリーローラを半割構造にすることなく軸体に組み込みができる。接合部は、軸体の中心軸線に対して直交しない非直交面を軸体の径方向に貫通する締結具によって閉鎖状態に固定できるから、フリーローラの組み付け完了後に、接合部の外側から締結具によって接合部を固定して軸体を無端状態にすることができる。
本発明による車輪およびそれを用いた摩擦式駆動装置、全方向移動車の一つの実施形態を示す斜視図。 本実施形態による車輪およびそれを用いた摩擦式駆動装置、全方向移動車の要部を示す拡大正面図。 本実施形態による車輪を示す拡大断面図。 本実施形態による車輪の要部の拡大斜視図。 本実施形態による車輪の要部(図4のV-V断面)の拡大断面図。 本発明による車輪を用いた摩擦式駆動装置および全方向移動車の他の実施形態の要部を示す拡大正面図。
 以下に、本発明による車輪およびそれを用いた摩擦式駆動装置、全方向移動車の実施形態を、図1~図5を参照して説明する。
 本実施形態の全方向移動車1は、図1、図2に示されているように、門形の車体7を有し、車体7が後述する駆動ローラ(3L、3R)を介して車輪50を回転可能に支持している。
 車体7は、左側脚部材7Lと、左側脚部材7Lにヒンジ軸71によってヒンジ接続された右側脚部材7Rとを有する。右側脚部材7Rの外側には右側ステップ32Rが、左側脚部材7Lの外側には左側ステップ32Lが各々略水平に取り付けられている。車体7の左側脚部材7Lの上部にはポール33の下端部が固定されている。ポール33は、車体7より垂直に立てられており、ポール33の上端部には水平方向にハンドルバー34が取り付けられている。車体7の右側脚部材7Rと左側脚部材7Lとの間には圧縮コイルばね8が設けられている。圧縮コイルばね8は、右側脚部材7Rと左側脚部材7Lを互い近づける方向に付勢する。
 車体7、左右のステップ32R、32L、ポール33、ハンドルバー34は、互いに一体構造であり、本実施形態では、車体7、左右のステップ32R、32L、ポール33、ハンドルバー34の全体が、全方向移動車1の車体であると云える。
 車体7にはアーム36によって補助輪35が取り付けられている。アーム36は、上端を車体7の後部に枢支され、跳ね上げ可能になっている。補助輪35は、車輪50の前後方向後方にあり、水平軸線周りに回転可能になっている。ハンドルバー34にはグリップレバー37が設けられている。グリップレバー37は、公知のボーデンケーブル(図示せず)によってアーム36の先端部と連結され、ハンドルバー34と共に手にて握られてアーム36の跳ね上げを行う。
 右側脚部材7Rは支持軸6Rによって右側の駆動回転部材4Rを回転可能に支持している。左側脚部材7Lは支持軸6Lによって左側の駆動回転部材4Lを回転可能に支持している。これにより、左右の駆動回転部材4R、4Lは、所定の軸線方向間隔(左右方向間隔)をおいて、車体7に、互いに同一の中心軸線(A)周りに、各々回転可能に取り付けられる。
 駆動回転部材4R、4Lには、プーリ9R、9L(或いはスプロケット)が同心位置に一体的に形成されている。右側脚部材7Rと、左側脚部材7Lには、各々、電動モータ5R、5Lが取り付けられている。電動モータ5Rは、無端ベルト10R(或いはリンクチェーン)によってプーリ9Rと駆動連結され、プーリ9Rを回転駆動する。電動モータ5Lは、無端ベルト10L(或いはリンクチェーン)によってプーリ9Lと駆動連結され、プーリ9Lを回転駆動する。
 なお、車体7、ポール33には、図示していないが、電動モータ5R、5Lの電源として、リーチャージブルなバッテリ電源、制御装置が搭載される。
 駆動回転部材4R、4Lは、互い対向する側に切頭円錐状のテーパ外周面41R、41Lを有する。駆動回転部材4Rのテーパ外周面41Rには、複数個の右側駆動ローラ3Rが、各々ブラケット42Rによって、駆動回転部材4Rの円周方向に等間隔に各々回転可能に取り付けられている。駆動回転部材4Lのテーパ外周面41Lには、複数個の左側駆動ローラ3Lが、各々ブラケット42Lによって、駆動回転部材4Lの円周方向に等間隔に各々回転可能に取り付けられている
 車輪50は、左右の駆動回転部材4R、4Lの間に配置され、左右両側を右側駆動ローラ3R、左側駆動ローラ3Lによって挟まれるようにして左右の駆動回転部材4R、4Lの中心軸線Aと同一の中心軸線(軸体51の環中心)B周りに回転可能に支持されている。
 車輪50は、図3、図4に示されているように、正八角形柱体により構成された無端円環状の軸体51と、軸体51に各々当該軸体51の接線方向軸線周りに回転可能に取り付けられた複数のフリーローラ52と、隣接するフリーローラ52間に配置されたスペーサ53により構成されている。本実施例では、軸体51は、当該軸体51の中心軸線に対して直交する断面形状が正八角形になる。
 軸体51の外周には、当該軸体51の曲率と同じ曲率で曲がった正八角形孔による装着孔54Aを有する金属製のインナスリーブ54が各フリーローラ52毎に装着孔54Aをもって回転不能に嵌着されている。インナスリーブ54の外周面54Bは円筒面になっており、当該外周面54Bにはニードルベアリング55のインナレース56が嵌合している。
 フリーローラ52は、駆動力を作用させる対象物に接触するローラであって、数珠繋ぎ状に軸体51に装着され、各々、円筒状の金属製スリーブ52Aと、金属製スリーブ52Aの外周に接合されてフリーローラ52の外周面52Cを構成する円筒状のゴム状弾性体製の外周部材52Bとにより構成され、金属製スリーブ52Aをニードルベアリング55のアウタレースとして軸体51の接線方向軸線周りに回転可能に取り付けられている。ここに、フリーローラ52は、各々、自身の中心軸線周りに個々に回転可能であり、このフリーローラ52の回転をフリーローラ52の自転と云う。
 スペーサ53は、軸体51の曲率と同じ曲率で曲がった正八角形孔による装着孔53Aを有する金属製のものであり、装着孔53Aをもって軸体51の外周に回転不能に嵌着され、隣接するフリーローラ52同士が接触することを避けるデスタンス機構をなす。
 スペーサ53は、インナスリーブ54、インナレース56と端面同士で密に接触している。このことは、後述のスペーサ57も同じで、インナスリーブ54、インナレース56と端面同士で密に接触している。
 これにより、軸体51の外周において、スペーサ53、57とインナスリーブ54、インナレース56とが軸体51の円周方向に剛体接続された円環状(閉ループ)をなす。これは、軸体51の補強構造体となり、車両用の車輪50として、車輪50に積載荷重が作用した時に、軸体51が楕円に撓むことを防止する補強効果を奏する。
 軸体51は、金属製の正八角形柱体により構成されたC字形の円弧状の軸主体61と、軸主体61と同じ金属製の正八角形柱体により構成され、軸主体61と補完し合って無端円環状を形成する円弧形状の軸補完部材62とにより構成されている。
 軸補完部材62の両端にできる軸主体61と軸補完部材62との接合部63は、軸体61の円環状の断面中心線Cに対して直交しない非直交面として、断面中心線Cを含む平面と平行な接合面61A、62Aを含む段違い形状になっている。軸主体61には接合面61Aを軸体51の径方向に貫通するねじ孔61Bが、軸補完部材62には接合面62Aを軸体51の断面径方向に貫通するボルト通し孔62Bが各々貫通形成されている。本実施例では、ボルト通し孔62Bがねじ孔61Bより軸体51の断面径方向で見て外側にある。
 接合面61A、62Aは、軸体51の断面中心線に対して直交する断面で見て最大線分となる部分にて軸体51の接線方向に延在している。このことにより、接合面61A、62Aの幅寸法(図5で見て左右方向の寸法)を大きく取ることができ、これに応じてボルト通し孔62B、ねじ孔61Bの径を大きくすることができる。
 軸主体61と軸補完部材62とは、ボルト通し孔62Bに通されてねじ孔61Bにねじ係合するボルト64によって分解可能に固定連結される。この固定連結により軸体51は無端の閉鎖状態になる。
 軸体51に、フリーローラ52とニードルベアリング55とインナレース56とインナスリーブ54の組立体(フリーローラ組立体)と、スペーサ53を組み付ける際には、ボルト64を外して軸主体61より軸補完部材62を取り外し、軸補完部材62を取り外した部分に、フリーローラ52、スペーサ53等の組立作業用間隙が画定される開放状態とする。この組立作業用間隙は、組立作業時に、フリーローラ52やスペーサ53を軸主体61に通せるように設けられた部分である。
 この開放状態で、フリーローラ組立体とスペーサ53とを交互に組立作業用間隙より軸主体61に挿入して組み付ける。また、軸補完部材62にもインナスリーブ54の組立体とスペーサ53とを交互に挿入して組み付ける。これにより、フリーローラ52やインナレース56等を半割構造にすることなく、これらを軸体51に組み込みができる。
 軸主体61と軸補完部材62に対して所定個数のフリーローラ組立体とスペーサ53の組み付けが完了すれば、軸主体61に軸補完部材62を組み付け、結合部63のボルト通し孔61Bにボルト64を通し、ボルト64をねじ孔62Bにねじ係合させる。これにより、軸主体61と軸補完部材62とが固定連結され、この固定連結により軸体51は無端の閉鎖状態になる。
 ボルト64のねじ締結は、ボルト通し孔62Bがねじ孔61Bより軸体51の断面径方向で見て外側にあることにより、フリーローラ組立体とスペーサ53の組み付け完了後に、軸体51の外側より行うことができる。
 これらのことにより、車輪50を、所要の車輪性能を確保して作業性よく生産することができる。
 結合部63においては、後付け可能な馬蹄形のスペーサ57が用いられる。スペーサ57にはボルト通し孔57Aが形成されており、ボルト通し孔57Aに通されたボルト64によって軸補完部材62と共に軸主体61に共締め固定される。これにより、結合部63においても、隣接するフリーローラ52同士が接触することを避けるデスタンス機構が構成される。
 接合面61A、62Aは、軸体51の断面中心線に対して直交する断面で見て最大線分となる部分にて軸体51の接線方向に延在していて、接合面61A、62Aの幅寸法を大きく取ることができるので、ボルト通し孔62B、ねじ孔61Bの径を大きくすることができ、これに応じてボルト64も大きい径のものを用いることができる。このことにより、結合部63の機械的強度を保って高い締結強度を得ることができる。
 なお、図4に符号80により示されているように、スペーサ53とインナスリーブ54とを一体構造品として構成することもできる。この場合には、部品点数、組み付け個数の削減を図ることができる。
 フリーローラ52と右側駆動ローラ3R、左側駆動ローラ3Lとの関係(個数)は、フリーローラ52の空すべりを回避するために、接地しているフリーローラ52には必ず少なくとも一つの右側駆動ローラ3R、左側駆動ローラ3Lが接触し、右側駆動ローラ3R、左側駆動ローラ3Lより接地状態にあるフリーローラ52に常に推進力(回転力)が与えられるような設定になっている。
 右側駆動ローラ3R、左側駆動ローラ3Lは、前述の圧縮コイルばね8のばね力によってフリーローラ52の外周面52Cに向けて付勢されて外周面3Ra、3Laをもってフリーローラ52の外周面52Cに接触し、摩擦によって推進力(回転力)をフリーローラ52に伝達する。つまり、右側駆動ローラ3R、左側駆動ローラ3Lの外周面3Ra、3Laが、フリーローラ52の外周面52Cに摩擦力をもって運動(回転と並進)を車輪50に伝達する動力伝達関係で接触している。
 右側駆動ローラ3R、左側駆動ローラ3Lは、車輪50の中心軸線B周り(駆動回転部材4R、4Lの中心軸線A周りと同じ)の回転方向(より正確には、接触箇所における中心軸線B周りの円周の接線方向)に対して、直交および平行の何れでもない方向に延在する中心軸線D周りに回転自在に配置されている。つまり、右側駆動ローラ3R、左側駆動ローラ3Lは、車輪50の中心軸線B周りの回転方向に対して傾斜し、駆動回転部材4R、4Lの回転軸線(中心軸線A)に対してねじれの関係をなす回転軸線(中心軸線D)を有する。
 この実施形態の車輪50では、駆動回転部材4R、4Lと共に回転移動する右側駆動ローラ3R、左側駆動ローラ3Lとの接触によってフリーローラ52が軸体51の接線方向軸線周りに回転し、左右方向への駆動力を接地面に作用させることができると共に、車輪50全体の中心軸線B周りの回転による円周方向移動により、前後方向への駆動力を接地面に作用させることができる。
 本実施形態の全方向移動車1では、左右の電動モータ5R、5Lによって左右の駆動回転部材4R、4Lの回転方向あるいは(および)回転速度を互いに違えると、駆動回転部材4R、4Lの回転力による円周(接線)方向の力に対し、この力に直交する向きの分力が車輪50における右側駆動ローラ3R、左側駆動ローラ3Lの当接面(接触面)に作用する。この分力により、車輪50のフリーローラ52の外表面には、これを捩る力、フリーローラ52の中心軸線周りの回転駆動力が作用し、フリーローラ52が自身の中心軸線周りに回転、つまり自転することになる。
 このフリーローラ52の自転は、駆動回転部材4R、4L同士の回転速度差によって定まる。例えば、駆動回転部材4R、4Lを互いに同一速度で逆向きに回転させると、車輪50は中心軸線B周りには回転せず、フリーローラ52の自転することになる。これにより、車輪50には、車輪50の中心軸線Bと同じ方向、つまり左右方向の駆動力が加わることになり、車体7は、換言すると、全方向移動車1は、左右方向移動する。
 これに対し、左右の駆動回転部材4R、4Lの回転方向および回転速度が同一である場合には、フリーローラ52が自転することがなく、車輪50が中心軸線B周りに回転し、全方向移動車1は、旋回することなく前進あるいは後進する。
 このように、電動モータ5R、5Lによって駆動回転部材4R、4Lの回転速度および回転方向を独立に制御することにより、全方向移動車1は、路面上で全方向へ移動することができる。
 図6は、本発明による摩擦式駆動装置およびそれを用いた全方向移動車の他の実施形態を示している。なお、図6において、図2に対応する部分は、図2に付した符号と同一の符号を付けて、その説明を省略する。
 本実施形態では、車体7の左側脚部材7Lに車輪支持回転部材142が、車体7の右側脚部材7Rに駆動回転部材143が各々中心軸線A上に互いに同心に回転自在に取り付けられている。
 車体7の左側部材7Lには電動モータ124が取り付けられている。車輪支持回転部材142にはプーリ(或いはスプロケット)130が同心に一体形成されている。電動モータ124は、無端ベルト(或いはリンクチェーン)132によってプーリ130と駆動連結され、車輪支持回転部材142を回転駆動する。
 車体7の右側部材7Rにはもう一つの電動モータ125が取り付けられている。駆動回転部材143にはプーリ(或いはスプロケット)131が同心に一体形成されている。電動モータ125は、無端ベルト(或いはリンクチェーン)133によってプーリ131と駆動連結され、駆動回転部材143を回転駆動する。
 車輪支持回転部材142は、テーパ外周面よりもう一方の駆動回転部材143の側(図5で見て右側)に延出した複数個のアーム145を有し、アーム145によって、前述の車輪50と同等の軸体51とフリーローラ52とスペーサ53による車輪50が取り付けられている。本実施形態では、車輪50のスペーサ53が複数個のアーム145によって車輪支持回転部材142より固定支持されている。これにより、車輪50は、軸線方向の一方の側において車輪支持回転部材142によって軸体51の環中心と同心の軸線周りに回転自在に支持されている。
 駆動回転部材143の車輪支持回転部材142の側(図6で見て左側)には、複数個の駆動ローラ150が、各々、ブラケット151によって回転自在に、駆動回転部材143を周方向の等分する位置に配設されている。駆動ローラ150は、フリーローラ52の外周面にトルク伝達関係で接触し、相手側のフリーローラ52の中心軸線に対してねじれの関係にある方向に延在する中心軸線Dの周りに回転可能に取り付けられている。すなわち、フリーローラ52の中心軸線と駆動ローラ150の中心軸線とは、互いの接触箇所においてねじれの関係にある。
 つまり、駆動ローラ150の中心軸線は、各ローラの配置部位における中心軸線A方向への投影平面で見て、フリーローラ52の中心軸線に対して所定の傾斜角をもって傾斜している。駆動ローラ150の中心軸線は、フリーローラ52の中心軸相当の軸体51の半径線に対してある角度をもって傾いていると同時に、軸体51の中心線が接する仮想平面に対してある角度をもって傾いている。この三次元的な軸線の傾きは、喩えると、ある角度の円錐面上に置かれた「はす歯傘歯車」の歯の傾きに似ている。
 このように、駆動ローラ150の支持軸152を傾けることにより、車輪支持回転部材142と143とを相対回転させた際に、フリーローラ52における駆動ローラ150の接触点には、フリーローラ52の回転軸線周りと円周接線方向の摩擦力が作用することとなる。この実施形態でのフリーローラ52と駆動ローラ150との関係(個数)は、接地しているフリーローラ52には必ず少なくとも1つの駆動ローラ150が接触し、駆動ローラ150より接地状態にあるフリーローラ52に常に回転力が与えられるような設定になっており、フリーローラ52の空すべりが回避される。
 この構成により、一方の車輪支持回転部材142の回転を停止して他方の駆動回転部材143のみを回転させると、他方の駆動回転部材143の回転による円周接線方向の力に対し、駆動ローラ150が接触するフリーローラ52の中心軸線周り方向の分力が作用する。これにより、両車輪支持回転部材142、143の回転中心軸線に平行な方向(図7で見て左右方向)への駆動力を、フリーローラ52における駆動力の作用対象との接触面に作用させることができる。
 2つの車輪支持回転部材142、143を、同一速度で同一方向に回転させた場合には、駆動ローラ150が接触する相手のフリーローラ52に中心軸線周りの回転力が作用しないので、車輪支持回転部材142、143の回転方向の駆動力がフリーローラ52における駆動力の作用対象との接触面に作用することとなる。
 このようにして、車輪支持回転部材142、143の回転速度および回転方向を独立に制御することにより、前述の実施形態と同様に、車輪支持回転部材142に設けられたフリーローラ52における駆動力の作用対象との接触面に、全方向への駆動力を作用させることができる。
 本実施例の車輪50は、前述した実施例の車輪50と同じ構造のものであるから、本実施例でも、フリーローラ52等の組み付けにおいて、前述した実施例と同様の作用、効果を得ることができる。
 なお、軸主体61と軸補完部材62とは互いに補完して円環状をなす半円形であってもよい。また、上述の実施形態では、軸体51を、軸主体61と軸補完部材62との分割構造として、接合部63が2箇所に設けられているが、軸体51が一箇所の接合部63によって切断された構成であってもよく。この場合には、対峙する軸体51の接合端部を径方向に互いに弾性変形によって偏倚させて接合端部間に、組立作業用間隙を画定すればよい。また、接合部の非直交面は傾斜面であってもよい。また、軸体51は、正八角形断面のものに限られることはなく、四角形や六角形のような他の多角形あるいは円形でもよい。
 1 全方向移動車
 2 車輪
 3R 右側駆動ローラ
 3L 左側駆動ローラ
 4R、4L 駆動回転部材
 7 車体
 50 車輪
 51 軸体
 52 フリーローラ
 53 スペーサ
 61 軸主体
 62 軸補完部材
 63 接合部
 64 ボルト
 142 車輪支持回転部材
 143 駆動回転部材
 150 駆動ローラ

Claims (7)

  1.  無端環状の軸体と、前記軸体に各々当該軸体の接線方向軸線周りに回転可能に取り付けられた複数のフリーローラとにより構成された車輪であって、
     前記軸体は、当該軸体の断面中心線に対して直交しない非直交面を含む接合部を有し、
     前記接合部は、前記軸体に前記フリーローラを挿入可能な組立作業用間隙を画定する開放状態と、前記組立作業用間隙を閉じて前記軸体を無端状態にする閉鎖状態とを取ることができ、前記閉鎖状態にて前記非直交面を締結具によって固定される車輪。
  2.  前記軸体は、円弧状の軸主体と、前記軸主体と補完し合って無端環状を形成する軸補完部材とにより構成され、
     前記軸主体と前記軸補完部材との接合部は、前記軸体の断面中心線に対して直交しない非直交面を含み、当該非直交面を締結具によって前記軸主体と前記軸補完部材とが固定連結される請求項1に記載の車輪。
  3.  前記軸体は当該軸体の中心軸線に対して直交する断面形状が多角形であり、前記非直交面は、前記軸体の断面中心線に対して直交する断面で見て最大線分となる部分にて前記軸体の接線方向に延在している請求項1に記載の車輪。
  4.  隣接する前記フリーローラ間にスペーサが配置されており、前記接合部において前記フリーローラ間に配置されるスペーサは、前記締結具によって前記軸主体に共締め固定される請求項1に記載の車輪。
  5.  請求項1から4の何れか一項に記載の車輪と、
     前記車輪の両側に前記軸体の環中心と同心の軸線周りに回転自在に配置された駆動回転部材と、
     前記駆動回転部材の各々に、当該駆動回転部材の回転中心と同心の円周上に複数個配置され、各々、前記駆動回転部材の回転軸線に対してねじれの関係をなす回転軸線周りに回転可能で、外周面をもって前記フリーローラの外周面に接触する駆動ローラと、
     を有する摩擦式駆動装置。
  6.  請求項1から4の何れか一項に記載の車輪と、
     前記車輪の軸線方向の一方の側に前記軸体の環中心と同心の軸線周りに回転自在に配置され、前記車輪の前記軸体を支持する車輪支持回転部材と、
     前記車輪の他方の側に前記軸体の環中心と同心の軸線周りに回転自在に配置された駆動回転部材と、
     前記駆動回転部材に当該駆動回転部材の回転中心と同心の円周上に複数個配置され、各々、前記駆動回転部材の回転軸線に対してねじれの関係をなす回転軸線周りに回転可能で、外周面をもって前記フリーローラの外周面に接触する駆動ローラと、
     を有する摩擦式駆動装置。
  7.  請求項5あるいは6に記載の摩擦式駆動装置を含み、前記車輪によって走行する全方向移動車。
PCT/JP2010/001847 2009-04-15 2010-03-15 車輪及びそれを用いた摩擦式駆動装置及び全方向移動車 WO2010119612A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/263,931 US8499864B2 (en) 2009-04-15 2010-03-15 Wheel, and friction drive device and omni-directional vehicle using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-098705 2009-04-15
JP2009098705A JP5506231B2 (ja) 2009-04-15 2009-04-15 車輪及びそれを用いた摩擦式駆動装置及び全方向移動車

Publications (1)

Publication Number Publication Date
WO2010119612A1 true WO2010119612A1 (ja) 2010-10-21

Family

ID=42982287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001847 WO2010119612A1 (ja) 2009-04-15 2010-03-15 車輪及びそれを用いた摩擦式駆動装置及び全方向移動車

Country Status (3)

Country Link
US (1) US8499864B2 (ja)
JP (1) JP5506231B2 (ja)
WO (1) WO2010119612A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174338B2 (en) * 2011-06-29 2015-11-03 Alexander G. Ouellet Robotic movement system
JP5687174B2 (ja) 2011-11-24 2015-03-18 本田技研工業株式会社 全方向移動装置用の走行車輪、摩擦式駆動装置および全方向移動装置
JP5972661B2 (ja) * 2012-05-14 2016-08-17 本田技研工業株式会社 倒立振子型車両
JP5925590B2 (ja) * 2012-05-14 2016-05-25 本田技研工業株式会社 倒立振子型車両
US9199685B2 (en) 2012-05-14 2015-12-01 Honda Motor Co., Ltd. Inverted pendulum type vehicle
US9316029B2 (en) * 2013-07-01 2016-04-19 Kiekert Ag C-shaped attachment element for vehicle lock
GB2515794B (en) * 2013-07-04 2015-06-10 Velofeet Ltd Improvements Relating to Vehicles
JP5687325B1 (ja) * 2013-11-08 2015-03-18 Whill株式会社 全方向移動車輪およびそれを備えた全方向移動車両
US9427649B2 (en) * 2013-12-26 2016-08-30 Mobile Virtual Player Llc Mobile device which simulates player motion
US10702757B2 (en) 2013-12-26 2020-07-07 Mobile Virtual Player Llc Mobile training device and control system
US9682301B2 (en) 2013-12-26 2017-06-20 Mobile Virtual Player Llc Mobile device which simulates player motion
US9180335B1 (en) * 2014-06-04 2015-11-10 Yung-Cheng Wu Exercise wheel
CN110576928A (zh) * 2014-07-28 2019-12-17 星·陈 具有低的及居中的脚踏平台的前后自平衡运输装置
JP6511324B2 (ja) * 2015-04-16 2019-05-15 本田技研工業株式会社 摩擦式走行装置および全方向移動装置
JP6417263B2 (ja) * 2015-04-16 2018-11-07 本田技研工業株式会社 摩擦式走行装置および全方向移動装置
JP6427060B2 (ja) 2015-04-16 2018-11-21 本田技研工業株式会社 車輪、摩擦式駆動装置および全方向移動装置
JP6424131B2 (ja) * 2015-04-16 2018-11-14 本田技研工業株式会社 摩擦式走行装置
JP6387326B2 (ja) * 2015-05-26 2018-09-05 本田技研工業株式会社 車輪
JP6618373B2 (ja) * 2016-01-25 2019-12-11 本田技研工業株式会社 摩擦式走行装置および乗物
JP6745138B2 (ja) * 2016-05-23 2020-08-26 本田技研工業株式会社 車輪、摩擦式駆動装置及び全方向移動装置
CN106364258A (zh) * 2016-08-31 2017-02-01 珠海格力智能装备有限公司 转轮、底盘装置和机器人
CN106314023A (zh) * 2016-08-31 2017-01-11 珠海格力智能装备有限公司 转轮、底盘装置和机器人
CN106314022A (zh) * 2016-08-31 2017-01-11 珠海格力智能装备有限公司 转轮、底盘装置和机器人
CN106335318A (zh) * 2016-08-31 2017-01-18 珠海格力智能装备有限公司 转轮、底盘装置和机器人
CN106274276A (zh) * 2016-08-31 2017-01-04 珠海格力智能装备有限公司 转轮、底盘装置和机器人
CN106335319A (zh) * 2016-08-31 2017-01-18 珠海格力智能装备有限公司 转轮、底盘装置和机器人
US11039964B2 (en) * 2017-03-06 2021-06-22 Stryker Corporation Systems and methods for facilitating movement of a patient transport apparatus
USD816778S1 (en) * 2017-03-14 2018-05-01 Zhejiang Raymond Way Electronic Technology Co., Ltd Electric balance scooter
USD833538S1 (en) * 2017-04-26 2018-11-13 Oliver Evans Self-balancing vehicle
CA3043879A1 (en) 2019-05-21 2020-11-21 Stephen Sutherland Shock-tolerant omni wheel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134107U (ja) * 1982-03-05 1983-09-09 住友ゴム工業株式会社 安全タイヤ用中子
WO1993002872A1 (fr) * 1991-08-08 1993-02-18 Homma Science Corporation Roue composite
WO2006068007A1 (ja) * 2004-12-20 2006-06-29 Shinichiro Fuji 全方向移動車輪および移動装置、搬送装置およびマッサージ装置
JP3130323U (ja) * 2007-01-09 2007-03-22 伸一郎 藤 全方向移動車輪
WO2008139740A1 (ja) * 2007-05-16 2008-11-20 Honda Motor Co., Ltd. 全方向に移動可能な乗り物
JP2008290638A (ja) * 2007-05-28 2008-12-04 Fuji Seisakusho:Kk 双方向ローラ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1305535A (en) * 1919-06-03 Vehicle-wheei
US3789947A (en) * 1972-04-17 1974-02-05 Nasa Omnidirectional wheel
US4926952A (en) * 1984-05-01 1990-05-22 Jeffrey Farnam Four-wheel drive wheelchair with compound wheels
US4715460A (en) * 1984-11-20 1987-12-29 International Texas Industries, Inc. Omnidirectional vehicle base
USD309254S (en) * 1987-06-25 1990-07-17 Oscar Investments Pty. Limited Roller wheel
US5312165A (en) * 1992-11-13 1994-05-17 Fpd Technology, Inc. Combination brake and wheel system for in-line roller skates and the like
US7566102B2 (en) * 2000-09-21 2009-07-28 Innowheel Pty Ltd. Multiple roller wheel
AUPR029600A0 (en) * 2000-09-21 2000-10-12 Guile, Graham Multiple directional wheel
US7318628B2 (en) * 2000-09-21 2008-01-15 Innowheel Pty Ltd Multiple directional wheel
JP2003063202A (ja) * 2001-08-24 2003-03-05 Kyosho Corp 走行体の車輪
JP3820239B2 (ja) * 2003-08-22 2006-09-13 英希 根本 全方向移動用車輪およびこれに使用されるフレキシブルタイヤ
US7264315B2 (en) * 2004-10-08 2007-09-04 Lonnie Jay Lamprich Wheel assembly and wheelchair
WO2008132778A1 (ja) 2007-04-20 2008-11-06 Honda Motor Co., Ltd. 全方向駆動装置及びそれを用いた全方向移動車
JP5358432B2 (ja) 2007-04-20 2013-12-04 本田技研工業株式会社 全方向駆動装置及びそれを用いた全方向移動車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134107U (ja) * 1982-03-05 1983-09-09 住友ゴム工業株式会社 安全タイヤ用中子
WO1993002872A1 (fr) * 1991-08-08 1993-02-18 Homma Science Corporation Roue composite
WO2006068007A1 (ja) * 2004-12-20 2006-06-29 Shinichiro Fuji 全方向移動車輪および移動装置、搬送装置およびマッサージ装置
JP3130323U (ja) * 2007-01-09 2007-03-22 伸一郎 藤 全方向移動車輪
WO2008139740A1 (ja) * 2007-05-16 2008-11-20 Honda Motor Co., Ltd. 全方向に移動可能な乗り物
JP2008290638A (ja) * 2007-05-28 2008-12-04 Fuji Seisakusho:Kk 双方向ローラ

Also Published As

Publication number Publication date
US8499864B2 (en) 2013-08-06
US20120032496A1 (en) 2012-02-09
JP5506231B2 (ja) 2014-05-28
JP2010247640A (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5506231B2 (ja) 車輪及びそれを用いた摩擦式駆動装置及び全方向移動車
US8827375B2 (en) Wheel, and friction drive device and omni-directional vehicle using the same
JP5687174B2 (ja) 全方向移動装置用の走行車輪、摩擦式駆動装置および全方向移動装置
EP2138379B1 (en) Omnidirectional drive device and omnidirectional vehicle with such a device
JP5292286B2 (ja) 全方向に移動可能な乗り物
JP6427060B2 (ja) 車輪、摩擦式駆動装置および全方向移動装置
JP5396398B2 (ja) 摩擦式駆動装置及びそれを用いた全方向移動体
JP6622816B2 (ja) 傾斜車両
CN107791832A (zh) 车轮单元的联接复合行星传动装置
JP5426682B2 (ja) 摩擦式駆動装置および倒立振子型移動体
WO2016052044A1 (ja) 摩擦式無段変速機
JP2011063214A (ja) 摩擦式駆動装置および倒立振子型移動体
JP4739866B2 (ja) チェーン駆動車両の駆動チェーンアジャスト機構
JP6650371B2 (ja) 倒立振子型車両
JP2011063156A (ja) 環状軸体の製造方法
JP2008279850A (ja) 車両用駆動車輪の駆動装置
JP6745138B2 (ja) 車輪、摩擦式駆動装置及び全方向移動装置
JP5163537B2 (ja) 駆動力配分装置
KR20210067377A (ko) 자체감속 기능을 갖는 메카넘 휠
JP2011084229A (ja) 全方向駆動車輪付き乗り物
JP2011063246A (ja) 摩擦式駆動装置及びそれを用いた倒立振子型移動体
JP2022186398A (ja) 摩擦式駆動装置
JP2017165328A (ja) 操舵装置
JP2017165329A (ja) 操舵装置
JP2003063427A (ja) 電動式パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764199

Country of ref document: EP

Kind code of ref document: A1