WO2010119566A1 - 電池システム、車両及び電池搭載機器 - Google Patents

電池システム、車両及び電池搭載機器 Download PDF

Info

Publication number
WO2010119566A1
WO2010119566A1 PCT/JP2009/057754 JP2009057754W WO2010119566A1 WO 2010119566 A1 WO2010119566 A1 WO 2010119566A1 JP 2009057754 W JP2009057754 W JP 2009057754W WO 2010119566 A1 WO2010119566 A1 WO 2010119566A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electrode side
negative electrode
positive electrode
battery
Prior art date
Application number
PCT/JP2009/057754
Other languages
English (en)
French (fr)
Inventor
英輝 萩原
和久 松田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/057754 priority Critical patent/WO2010119566A1/ja
Priority to US13/132,376 priority patent/US9065147B2/en
Priority to CN200980158738.8A priority patent/CN102396096B/zh
Priority to JP2010543337A priority patent/JP5035429B2/ja
Publication of WO2010119566A1 publication Critical patent/WO2010119566A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • H01M10/6235Power tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system including a lithium ion secondary battery having a power generation element, temperature detection means for detecting the temperature of the power generation element, and control means for controlling the lithium ion secondary battery.
  • the present invention relates to a vehicle equipped with such a battery system and a battery-equipped device.
  • Patent Document 1 discloses a lithium ion secondary battery in which a thermocouple is embedded in a predetermined position of a battery body (power generation element).
  • the stacked portion in which the positive electrode and the negative electrode functioning as the battery are stacked via the separator has an extension in a direction parallel to the surface of the positive electrode or the like. Therefore, in this direction in the laminated part, the concentration of the electrolyte held between the positive electrode and the negative electrode is locally uneven, the current density during driving is uneven, and the temperature due to the difference in local heat dissipation is different. It has been found that unevenness exists.
  • this lamination part In addition, in the positive and negative extension direction connecting the positive electrode extension part in which a part of the positive electrode plate extends from the lamination part and the negative electrode extension part in which a part of the negative electrode plate extends from the lamination part, this lamination part Are divided into the central central laminate, the positive electrode laminate on the positive electrode extension side, and the negative electrode laminate on the negative electrode extension side. It has also been found that they are often distributed differently. Furthermore, it is possible to detect the occurrence of various unevenness occurring in the laminated part from the temperature of the central laminated part, the positive side laminated part and the negative side laminated part and the temperature change before and after discharging or before and after charging. It has also been found that the battery can be controlled. However, since the battery described in Patent Document 1 can only measure the temperature of a predetermined portion of the stacked portion of the power generation element, various unevenness generated in the stacked portion cannot be detected appropriately.
  • the present invention has been made in view of such a problem, and in the laminated portion of the power generation element of the lithium ion secondary battery, the temperature generated in the positive and negative extending directions and the distribution of the temperature change are appropriately detected, and the battery
  • An object of the present invention is to provide a battery system that can be used for control of the battery. Moreover, it aims at providing a vehicle provided with such a battery system, and a battery mounting apparatus.
  • One embodiment of the present invention is a power generation element including a positive electrode plate, a negative electrode plate, and a separator, wherein the stacked portion is formed by interposing the separator between the positive electrode plate and the negative electrode plate, and the stacked portion.
  • a positive electrode extension part formed by extending a part of the positive electrode plate from a negative electrode extension part formed by extending a part of the negative electrode plate from the laminated part to the side opposite to the positive electrode extension part;
  • a lithium ion secondary battery having a power generation element including the control means for controlling the lithium ion secondary battery,
  • a central temperature detecting means for detecting the temperature of the central laminated portion located in the center of the positive and negative extending direction among the laminated portions, and the positive electrode extension in the positive and negative extending direction from the central laminated portion of the laminated portions.
  • the control means uses the temperature of the central laminated portion and the temperature of the positive electrode side laminated portion and the temperature of the negative electrode side laminated portion, and uses the lithium ion secondary battery. It is a battery system that controls.
  • the battery system includes a central temperature detection unit, a positive electrode side temperature detection unit and / or a negative electrode side temperature detection unit, and a control unit. For this reason, for example, the temperature difference between the parts, the difference in the temperature increase before and after the discharge between the parts can be calculated using the temperature of the central laminated part, the positive electrode side laminated part or the negative electrode side laminated part, and this can be used.
  • the battery can be controlled appropriately.
  • the temperature of each part is used in the above-described battery system, for example, it is possible to detect various unevenness generated in the stacked part more easily than directly detecting the lithium ion concentration or the like of the electrolytic solution of each part.
  • the power generation element for example, a belt-shaped positive electrode plate and a negative electrode plate are both wound through a separator, and a rectangular plate-shaped positive electrode plate and a negative electrode plate are both separators.
  • the laminated form which piles up through is mentioned.
  • a center temperature detection means a positive electrode side temperature detection means, and a negative electrode side temperature detection means, a thermocouple and a thermistor are mentioned, for example.
  • the control by the control means includes, for example, control of the current during charging / discharging of the battery, and control of the temperature of the central laminated part, positive electrode side laminated part, and negative electrode side laminated part of the battery using a heater or a cooling element. It is done.
  • control means controls using the temperature of the central laminated part, etc.
  • the temperature of each part is used.
  • the temperature rise between parts and the temperature rise of each part that occurs before and after battery discharge The difference between them is used.
  • the control means generates a temperature increase amount of the temperature increase of the central laminate portion, a temperature increase amount of a temperature increase of the positive electrode side laminate portion, and the negative electrode side laminate caused by high rate discharge. It is preferable that the battery system has a limit changing unit that changes the limit of the charging / discharging current that flows to the lithium ion secondary battery at the time of high-rate charging / discharging based on at least one of the temperature increasing amounts of the temperature increase of the part. .
  • the control means has the restriction changing means described above. Therefore, based on at least one of the difference in temperature increase between the central laminate portion and the positive electrode side laminate portion and between the central laminate portion and the negative electrode side laminate portion, the restriction changing means causes a high rate discharge. Change the discharge current limit. As a result, it is possible to perform control that appropriately copes with battery deterioration caused by high-rate discharge.
  • the restriction changing unit may be configured such that the temperature increase amount of the central stack portion is any of the temperature increase amount of the positive electrode side stack portion and the temperature increase amount of the negative electrode side stack portion. If it is smaller, the battery system may be changed to control that relatively reduces the discharge current of the subsequent high-rate discharge.
  • the central laminated part, the positive electrode side laminated part, and the negative electrode side laminated part become equal. Furthermore, conversely, it has been found that, on the contrary, the central laminated portion exhibits a behavior that is smaller than the positive electrode side laminated portion and the negative electrode side laminated portion.
  • the limit changing means of the battery system described above is such that the temperature increase amount of the central stack portion is smaller than the temperature increase amount of the positive electrode side stack portion and the temperature increase amount of the negative electrode side stack portion.
  • the control is changed to relatively reduce the discharge current of the high-rate discharge thereafter.
  • the progress of the high rate deterioration of the battery that is, the increase of the internal resistance can be suppressed.
  • the relatively small discharge current of the high-rate discharge may be a method of limiting the discharge current at the peak of the high-rate discharge generated during sudden acceleration to a smaller value, or a period of discharge current greater than a predetermined value.
  • a method for shortening the length is mentioned.
  • the restriction changing unit may be configured such that the temperature increase amount of the central stack portion is any of the temperature increase amount of the positive electrode side stack portion and the temperature increase amount of the negative electrode side stack portion. If it is smaller, the battery system may be changed to control that relatively reduces the discharge current of the subsequent high-rate discharge.
  • the inventors have found that when the battery is repeatedly subjected to high-rate discharge, the magnitude of the internal resistance once increases but then decreases and settles. Therefore, if the state of high internal resistance is passed by forcibly promoting the high-rate deterioration, it can be made a preferable state (low internal resistance).
  • the temperature increase amount of the central stacked portion is the amount of temperature increase of the positive electrode side stacked portion and the temperature increase amount of the negative electrode side stacked portion. The behavior becomes smaller than both.
  • the temperature increase amount of the positive electrode side laminated part is decreased. Accordingly, it has also been found that the temperature increase amount of the central laminate portion is smaller than the temperature increase amount of the negative electrode side laminate portion, and shows a behavior that is substantially equal to the temperature increase amount of the positive electrode side laminate portion.
  • the control change means relatively discharges the discharge current of the subsequent high-rate discharge when the temperature increase amount of the central stack portion is smaller than the temperature increase amount of the negative electrode side stack portion. Change the control to make it larger.
  • the control change means relatively discharges the discharge current of the subsequent high-rate discharge when the temperature increase amount of the central stack portion is smaller than the temperature increase amount of the negative electrode side stack portion. Change the control to make it larger.
  • relatively increasing the discharge current of the high-rate discharge includes a method of changing the magnitude of the discharge current at the peak of the high-rate discharge to a larger value and a method of extending the period of the discharge current larger than a predetermined value. It is done.
  • the central temperature change means which changes the temperature of the said center lamination
  • the positive electrode side temperature which changes the temperature of the said positive electrode side lamination
  • Change means and negative electrode side temperature change means for changing the temperature of the negative electrode side laminated portion of the power generation elements
  • the control means includes the central temperature change means, the positive electrode temperature change means, and the negative electrode.
  • a battery system including temperature control means for controlling the side temperature changing means may be used.
  • the battery system described above includes the temperature changing means described above, and the control means includes temperature control means. For this reason, using at least one of the measured temperature of the central laminated part of the power generation element, the temperature of the positive electrode side laminated part, and the temperature of the negative electrode side laminated part, the central laminated part, the positive electrode side laminated part, and the negative electrode side laminated part The temperature can be changed appropriately. This makes it possible to perform appropriate temperature control, such as controlling the temperature so as to eliminate unevenness in the concentration of lithium ions generated in the laminated portion.
  • the central temperature changing means, the positive electrode side temperature changing means, and the negative electrode side temperature changing means include, for example, a heater that generates heat when energized and a Peltier element that absorbs heat when energized.
  • another aspect of the present invention is a vehicle including any one of the battery systems described above.
  • the above-described vehicle includes the above-described battery system, for example, using the temperatures of the central laminated portion, the positive-side laminated portion, or the negative-side laminated portion, for example, the temperature difference between the parts, the temperature increase before and after the discharge of each part A difference in amount can be calculated, and the vehicle can be appropriately controlled using the difference.
  • the vehicle may be a vehicle that uses electric energy from a battery for all or part of its power source.
  • an electric vehicle a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric Wheelchairs, electric assist bicycles, and electric scooters.
  • another aspect of the present invention is a battery-equipped device including any one of the battery systems described above.
  • the above-described battery-equipped device includes the above-described battery system, for example, using the temperatures of the central laminated portion, the positive electrode side laminated portion, or the negative electrode side laminated portion, for example, the temperature difference of each part, before and after the discharge of each part A difference in temperature rise can be calculated, and a battery-equipped device that can appropriately control the battery can be obtained using this.
  • the battery-equipped device may be any device equipped with a battery and using it as at least one of the energy sources.
  • a battery such as a personal computer, a mobile phone, a battery-driven electric tool, an uninterruptible power supply, etc.
  • FIG. 1 is a perspective view of a vehicle according to Embodiment 1, Embodiment 2, and Modified Embodiment 1.
  • FIG. 1 is a perspective view of a lithium ion secondary battery according to Embodiment 1 and Modification 1.
  • FIG. 3 is a cross-sectional view of the lithium ion secondary battery of Embodiment 1 and Modification 1 (AA cross section of FIG. 2).
  • FIG. 4 is a cross-sectional view (cross-section BB in FIG. 3) of the lithium ion secondary battery of Embodiment 1 and Modification 1. It is an expanded sectional view (C section of Drawing 4A) of a lithium ion secondary battery of Embodiment 1 and modification 1. It is explanatory drawing of the thermocouple of Embodiment 1, modification 1.
  • FIG. 1 is a perspective view of a vehicle according to Embodiment 1, Embodiment 2, and Modified Embodiment 1.
  • FIG. 1 is a perspective view of a lithium ion secondary battery according to Embodi
  • FIG. 15 is a cross-sectional view of the lithium ion secondary battery according to Embodiment 2 (DD cross section in FIG. 14).
  • 6 is a flowchart of Embodiment 2. It is a perspective view of the hammer drill of Embodiment 3.
  • FIG. 1 shows a perspective view of the vehicle 100.
  • the vehicle 100 includes a plurality of lithium ion secondary batteries (hereinafter also simply referred to as batteries) 1 and 1 that form an assembled battery 120, and thermocouples 50X and 50Y that detect temperatures of the power generation elements 20 of the batteries 1 and 1, respectively. 50Z and a control device 130 are provided.
  • the hybrid electric vehicle includes an engine 150, a front motor 141, a rear motor 142, a cable 160, a first inverter 171, a second inverter 172, and a vehicle body 190.
  • thermocouples 50X, 50Y, and 50Z are connected to the battery monitoring device 122.
  • the battery system M1 according to the first embodiment includes the batteries 1 and 1, thermocouples 50X, 50Y, and 50Z (a battery monitoring device 122 connected thereto) and a control device 130.
  • the control device 130 of the vehicle 100 includes a microcomputer that has a CPU, a ROM, and a RAM (not shown) and operates according to a predetermined program.
  • the control device 130 communicates with a front motor 141, a rear motor 142, an engine 150, a first inverter 171, a second inverter 172, and a battery monitoring device 122 mounted inside the vehicle 100.
  • the control device 130 controls the front motor 141, the rear motor 142, the engine 150, the first inverter 171 and the second inverter 172.
  • the assembled battery 120 of the vehicle 100 includes a battery unit 121 in which a plurality of batteries 1 and 1 are arranged, and a battery monitoring device 122 (see FIG. 1). Among these, the battery monitoring device 122 acquires the temperature of the power generation element of each of the batteries 1 and 1 using the thermocouples 50X, 50Y, and 50Z. Further, the battery unit 121 accommodates a plurality of batteries 1 and 1 connected in series with each other by bolt fastening with a bus bar (not shown).
  • the plurality of batteries 1 and 1 are wound lithium ion secondary batteries having a power generation element 20 including a positive electrode plate 21, a negative electrode plate 22, and a separator 23 (see FIGS. 2 to 4).
  • the power generation element 20 is housed in a rectangular box-shaped battery case 10.
  • the power generating element 20 includes a laminated portion 20L formed by laminating a positive electrode plate 21, a negative electrode plate 22, and a separator 23, and a positive electrode plate 21 extending upward from the laminated portion 20L in FIG. 4A.
  • Positive electrode lead portion 21f, and negative electrode lead portion 22f of negative electrode plate 22 extending downward in FIG. 4A.
  • the positive electrode lead portion 21f is joined to a plate-shaped positive electrode current collecting member 71 bent in a crank shape (see FIG. 3).
  • a positive electrode terminal portion 71A located on the front end side (upward in FIG. 3) of the positive electrode current collecting member 71 protrudes upward from the battery case 10 in FIG.
  • the negative electrode lead portion 22f is joined to a plate-shaped negative electrode current collecting member 72 bent in a crank shape (see FIG. 3).
  • a negative electrode terminal portion 72A located on the tip end side (upward in FIG. 3) of the negative electrode current collecting member 72 protrudes upward from the battery case 10 in FIG.
  • the positive electrode plate 21 is composed of a strip-shaped aluminum foil 21A and a positive electrode active material layer 21B. This positive electrode plate 21 carries the positive electrode active material layer 21B on both surfaces of the aluminum foil 21A except for the positive electrode lead portion 21f described above (see FIGS. 4A and 4B).
  • the negative electrode plate 22 is composed of a strip-shaped copper foil 22A and a negative electrode active material layer 22B. This negative electrode plate 22 carries the negative electrode active material layer 22B on both surfaces of the copper foil 22A, leaving the negative electrode lead portion 22f described above (see FIGS. 4A and 4B).
  • the stacked unit 20L is divided into three parts perpendicular to the first direction DA. That is, the stacked portion 20L includes a central stacked portion 20LZ located in the center of the first direction DA, a positive electrode-side stacked portion 20LX on the positive electrode lead portion 21f side from the central stacked portion 20LZ, and a negative electrode lead from the central stacked portion 20LZ. It is assumed that the negative electrode side laminated portion 20LY on the portion 22f side is formed (see FIG. 3).
  • the first thermocouple 50X is disposed in the positive-side stacked portion 20LX
  • the second thermocouple 50Y is disposed in the negative-side stacked portion 20LY
  • the third thermocouple 50Z is disposed in the central stacked portion 20LZ.
  • a rectangular plate-like plate member 50B made of resin, to which the first thermocouple 50X, the second thermocouple 50Y, and the third thermocouple 50Z are arranged and fixed, is used as the axis of the wound power generation element 20. (See FIGS. 3 and 4A).
  • the plate member 50B as shown in FIG.
  • the tip of the first thermocouple 50X that is, the hot junction of the first thermocouple 50X is arranged on the right side of the plate member 50B in the drawing and is fixed with an insulating tape TP.
  • the hot junction of the second thermocouple 50Y is arranged on the left side of the plate member 50B in the drawing
  • the hot junction of the third thermocouple 50Z is arranged in the center of the plate member 50B in the first direction DA. Each of them is fixed with an insulating tape TP.
  • the first thermocouple 50X, the second thermocouple 50Y, and the third thermocouple 50Z are all K (chromel-alumel) thermocouples.
  • the first thermocouple 50X, the second thermocouple 50Y, and the third thermocouple 50Z are bundled and extended from the battery case 10 to the outside and connected to the battery monitoring device 122.
  • the inventors deteriorate the battery 1 (high-rate deterioration) by repeating high-rate discharge in which a large high-rate current such as 10 C is applied.
  • the lithium ion concentrations of the electrolytes that were uniform at the time of battery production in the positive electrode side stacked portion 20LX, the negative electrode side stacked portion 20LY, and the central stacked portion 20LZ are different from each other.
  • the battery 1 is subjected to a cycle test in which a high rate discharge, that is, a pulse charging / discharging for 100 seconds with a constant current of 10 A and then a charge for 100 seconds is repeated. The size of the internal resistance of the battery 1 was measured.
  • FIG. 7 is a graph showing the lithium ion concentration of each positive electrode side stacked portion 20LX, negative electrode side stacked portion 20LY, and central stacked portion 20LZ in the stacked portion 20L. According to this graph, it can be seen that the lithium ion concentrations of the positive electrode side stacked portion 20LX and the negative electrode side stacked portion 20LY at the time when the number of cycles is 1700 times are higher than those at the start of the test. On the other hand, it can be seen that the concentration of lithium ions in the central laminated portion 20LZ at the time when the number of cycles is 1700 is lower than that at the start of the test.
  • the temperature increase amount of the temperature increase that occurs at the time of the high rate discharge is higher in the central stacked unit 20LZ than in the positive stacked unit 20LX and the negative stacked unit 20LY. Slightly larger behavior is shown. It is considered that the temperature is higher because the center laminated portion 20LZ is less likely to dissipate heat than the positive electrode side laminated portion 20LX and the negative electrode laminated portion 20LY.
  • the temperature rise amount of the central laminated portion 20LZ gradually decreases, while the temperature rise amounts of the positive electrode side laminated portion 20LX and the negative electrode side laminated portion 20LY increase. For this reason, at the time of about 500 times before 700 times, the temperature rise amount of the center laminated part 20LZ and the positive electrode side laminated part 20LX or the negative electrode side laminated part 20LY becomes equal. Further, it was found that, at the time when the number of cycles thereafter is 700, 1700, the central laminated portion 20LZ behaves smaller than the positive laminated portion 20LX and the negative laminated portion 20LY.
  • step S1 when the operation of the vehicle 100 is started (key-on) (step S1), the control device 130 of the vehicle 100 is activated.
  • step S2 it is determined whether or not the control device 130 has memorized that the control has been changed to a control for limiting the maximum discharge current value that can be flowed from the battery 1 at the end of the previous operation of the vehicle 100.
  • limiting the maximum discharge current value to low means that the maximum value of the discharge current DC that flows when the battery 1 is discharged is limited to a value lower than before the limit.
  • NO that is, if it is not stored that the maximum discharge current value is limited, the process proceeds to step S4.
  • step S3 the maximum discharge current value of the discharge current DC of the battery 1 is limited to a low value during the current operation. Then, the process proceeds to step S4.
  • step S4 it is determined whether or not an operation stop (key-off) of the vehicle 100 has been instructed. If NO, that is, if the operation of the vehicle 100 is not stopped (key-off), the process proceeds to step S7. On the other hand, if YES, that is, if the operation of the vehicle 100 is stopped (key-off), the process proceeds to step S5, and it is determined whether or not the maximum discharge current value is limited to a low value at the end of the current operation.
  • step S7 it is determined whether or not the battery 1 is discharged at a high rate. If NO, that is, if the battery 1 is not discharged at a high rate, the process returns to step S4 and the operation of the vehicle 100 is continued. On the other hand, when YES, that is, when the battery 1 is discharged at a high rate, the process proceeds to a temperature difference calculation subroutine of step S20 described below, and the positive side stacking unit 20LX, the negative side stacking unit 20LY, and the central stacking unit 20LZ generated by the high rate discharge. The temperature rise amounts DTX, DTY, DTZ of the temperature rise are calculated.
  • step S21 the first thermocouple 50X is used to measure the positive electrode side immediately preceding temperature TX1 of the positive electrode side stacked portion 20LX immediately before the high rate discharge of step S7 is performed on the battery 1.
  • step S21 the first thermocouple 50X is used to measure the positive electrode side immediately preceding temperature TX1 of the positive electrode side stacked portion 20LX immediately before the high rate discharge of step S7 is performed on the battery 1.
  • step S21 the first thermocouple 50X is used to measure the positive electrode side immediately preceding temperature TX1 of the positive electrode side stacked portion 20LX immediately before the high rate discharge of step S7 is performed on the battery 1.
  • the negative electrode side immediately preceding temperature TY1 of the negative electrode side stacked portion 20LY immediately before being made into the battery 1 is set using the third thermocouple 50Z and the central immediately preceding temperature of the central stacked portion 20LZ.
  • Each of TZ1 is measured.
  • step S22 the post-positive-side post-discharge temperature TX2 of the positive-side stacked unit 20LX after the completion of the high-rate discharge in step S7 is measured using the first thermocouple 50X. Specifically, the temperature of the positive electrode side laminated part 20LX 10 seconds after the start of the high rate discharge is measured. Similarly, using the second thermocouple 50Y, the negative electrode side post-discharge temperature TY2 of the negative electrode side laminate portion 20LY is measured, and using the third thermocouple 50Z, the post-central discharge temperature TZ2 of the center laminate portion 20LZ is measured. To do.
  • the negative electrode side increase amount DTY of the temperature increase of the negative electrode side laminate 20LY caused by the high-rate discharge using the negative electrode side immediately preceding temperature TY1 and the negative electrode side post discharge temperature TY2 Using TZ2, the central rise amount DTZ of the temperature rise of the central laminated portion 20LZ caused by the high rate discharge is calculated.
  • the temperature difference calculation subroutine is terminated and the process returns to the main routine.
  • the process proceeds to step S9. This is because the high rate deterioration of the battery 1 has not yet progressed.
  • step S11 that is, if the first increase amount difference F1 is a negative value or the second increase amount difference F2 is a negative value, the process proceeds to step S11. This is because the high-rate deterioration of the battery 1 is considered to have progressed to some extent, and it is considered necessary to suppress further progress.
  • step S9 it is determined whether or not the maximum discharge current value is being limited.
  • NO that is, if there is no restriction to lower the maximum discharge current value
  • the process directly returns to step S4.
  • step S10 the restriction is released, and the process returns to step S4.
  • step S11 the maximum discharge current value of the discharge current DC flowing through the battery 1 is limited to be low.
  • the upper limit value of the discharge current DC is changed from a maximum of 10C to a maximum of 7C. And it returns to step S4 and the action
  • the battery system M1 includes a first thermocouple 50X, a second thermocouple 50Y, a third thermocouple 50Z, and a control device 130.
  • the temperatures of the positive electrode side laminated portion 20LX, the negative electrode side laminated portion 20LY, and the central laminated portion 20LZ (the positive electrode side immediately preceding temperature TX1, the positive electrode side post discharge temperature TX2, the negative electrode side immediately preceding temperature TY1, the negative electrode side post discharge electric temperature) TY2, temperature just before the center TZ1, and temperature after the center discharge TZ2) can be used to calculate temperature increases DTX, DTY, DTZ increase differences F1, F2, etc. before and after the high rate discharge between the parts, and the battery 1 Can be controlled appropriately.
  • the temperatures of the respective parts are set. Therefore, for example, various unevenness (lithium ion concentration unevenness) generated in the stacked portion 20L can be detected more easily than directly detecting the lithium ion concentration of the electrolytic solution in each part.
  • control device 130 has restriction changing means S8 and S9.
  • restriction changing means S8 and S9 For this reason, the temperature increase amount (positive electrode side increase amount DTX, negative electrode side increase amount DTY, and central increase amount DTZ) between the central stacked portion 20LZ and the positive electrode side stacked portion 20LX and between the central stacked portion 20LZ and the negative electrode side stacked portion 20LY.
  • the limit is changed by the limit changing means S8, S9 so that the discharge current DC during high-rate discharge is reduced. As a result, it is possible to perform control that appropriately copes with high rate deterioration of the battery 1 caused by high rate discharge.
  • the limit changing means S8 and S9 of the battery system M1 according to the first embodiment are such that the first increase amount difference F1 or the second increase amount difference F2 is negative, that is, the central increase amount DTZ of the central stacked portion 20LZ is positive.
  • the positive side increase amount DTX of the side stack part 20LX and the negative side increase amount DTY of the negative side stack part 20LY become smaller, the discharge current DC of the high rate discharge flowing to the battery 1 thereafter is relatively small.
  • the control is changed to (the control for limiting the maximum discharge current value in step S9). Thereby, the progress of the high rate deterioration of the battery 1, that is, the increase in internal resistance can be suppressed. Furthermore, it is possible to recover the high rate deterioration that has occurred in the battery 1.
  • the temperatures of the central stacked unit 20LZ, the positive electrode side stacked unit 20LX, or the negative electrode side stacked unit 20LY (temperature immediately before the positive electrode side TX1, after positive electrode side discharge) Temperature TX2, negative electrode side immediately preceding temperature TY1, negative electrode side post discharge temperature TY2, central immediately preceding temperature TZ1 and central post discharge temperature TZ2), for example, temperature increase amounts DTX, DTY, DTZ before and after discharge of each part, (First increase amount difference F1, second increase amount difference F2) can be calculated, and the vehicle 100 that can appropriately control the battery 1 can be obtained using the difference.
  • the first modification differs from the first embodiment in that the control change means of the battery system is changed to a control that relatively increases the magnitude of the discharge current, as opposed to the first embodiment. Is the same. Therefore, differences from the first embodiment will be mainly described, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.
  • the inventors have found that when the battery 1 is repeatedly subjected to high-rate discharge many times more than in the first embodiment, the magnitude of the internal resistance of the battery 1 that has been increased once decreases and settles thereafter. (See FIG. 11). From this result, it can be seen that if the internal resistance of the battery 1 is forced to accelerate the high-rate deterioration of the battery 1 to exceed the high internal resistance state, then the internal resistance reaches a rather preferable (low internal resistance) state.
  • the measurement results are shown in FIG. According to this graph, in the state where the internal resistance is high at the time when the number of cycles is 1700 times, the temperature increase amount of the central stacked portion 20LZ is the temperature increase amount of the positive electrode side stacked portion 20LX and the negative electrode side stacked portion 20LY. The behavior becomes smaller than both of the temperature rise amounts.
  • the temperature rise amount of the positive electrode side laminate 20LX is also reduced. That is, it has been found that the temperature increase amount of the central stacked portion 20LZ is smaller than the temperature increase amount of the negative electrode side stacked portion 20LY, and exhibits a behavior that is substantially equal to the temperature increase amount of the positive electrode side stacked portion 20LX.
  • step S31 when the operation of the vehicle 200 is started (key-on) (step S31), the control device 130 of the vehicle 200 is activated (see FIG. 13).
  • step S32 it is determined whether or not the control device 130 has memorized that the control has been changed to increase the maximum discharge current value that can be supplied from the battery 1 at the end of the previous operation of the vehicle 200.
  • changing the maximum discharge current value higher means changing the maximum value of the discharge current DC flowing when the battery 1 is discharged to a higher value than before the change. If NO, that is, if it is not stored that the maximum discharge current value has been changed to a high value, the process proceeds to step S34.
  • step S33 the maximum discharge current value of the discharge current DC of the battery 1 is changed to a high value during the current operation. . Then, the process proceeds to step S34.
  • step S34 it is determined whether or not the operation stop (key-off) of the vehicle 200 has been instructed. If NO, that is, if the operation of the vehicle 200 is not stopped (key-off), the process proceeds to step S37. On the other hand, if YES, that is, if the operation of the vehicle 200 is stopped (key-off), the process proceeds to step S35, and it is determined whether or not the maximum discharge current value is changed to a high value at the end of the current operation.
  • step S37 it is determined whether or not the battery 1 is discharged at a high rate. If NO, that is, if the battery 1 is not discharged at a high rate, the process returns to step S34 and the operation of the vehicle 200 is continued. On the other hand, in the case of YES, that is, when the battery 1 is discharged at a high rate, the process proceeds to a temperature difference calculation subroutine (see FIG. 10) in step S20 similar to the first embodiment. The temperature increase amounts DTX, DTY, and DTZ of the temperature increase of the portion 20LY and the central laminated portion 20LZ are calculated. Note that the description of the temperature difference calculation subroutine is omitted here.
  • step S38 it is determined whether or not the maximum discharge current value is being changed.
  • NO that is, if no change is made to increase the maximum discharge current value
  • the process proceeds to step S39.
  • YES that is, if the maximum discharge current value is changed
  • the process proceeds to step S41.
  • the process returns to step S34.
  • step S40 the process proceeds to step S40. This is because the high-rate deterioration of the battery 1 is considered to progress, and the maximum discharge current value is changed to be high in order to promote the high-rate deterioration.
  • step S40 the maximum discharge current value of the discharge current DC flowing through the battery 1 is changed to a high value.
  • the upper limit value of the discharge current DC is changed from a maximum of 10C to a maximum of 13C. And it returns to step S34 and the operation
  • NO that is, if the first increase amount difference F1 is not 0, that is, if DTZ ⁇ DTX
  • the process directly returns to step S34.
  • the process proceeds to step S42, the change is canceled, and the process returns to step S34.
  • the first increase amount difference F1 or the second increase amount difference F2 is negative, that is, the center increase amount DTZ is on the positive electrode side.
  • Control Thereby, the state with a high internal resistance of the battery 1 can be passed quickly, and then the state with a low internal resistance can be made low so that the battery 1 can be used.
  • the second embodiment is different from the first embodiment in that the battery further includes a central temperature changing unit, a positive electrode side temperature changing unit, and a negative electrode side temperature changing unit, and these are controlled by the control unit.
  • the battery 3 of the second embodiment has the same configuration as that of the battery 1 of the first embodiment described above. Further, as shown in FIGS. There are three rectangular Peltier elements (first element 40X, second element 40Y, and third element 40Z) disposed on the front side of 20. Among these, the first element 40X is fixedly disposed in contact with the positive electrode side stacked portion 20LX of the power generation element 20, the second element 40Y is in contact with the negative electrode side stacked portion 20LY, and the third element 40Z is in contact with the central stacked portion 20LZ. ing. The first element 40X, the second element 40Y, and the third element 40Z are all connected to the control device 130 through the cable 40C and are energized and controlled.
  • first element 40X, the second element 40Y, and the third element 40Z are all connected to the control device 130 through the cable 40C and are energized and controlled.
  • the battery system M3 includes batteries 3 and 3, thermocouples 50X, 50Y, and 50Z, Peltier elements 40X, 40Y, and 40Z, and a control device 130.
  • step S51 when the operation of the vehicle 300 is started (key-on) (step S51), the control device 130 of the vehicle 300 is activated.
  • step S52 the positive side temperature TX0, the negative side temperature TY0, and the central temperature TZ0 of the stacked portion 20L of the battery 3 are measured using the first thermocouple 50X, the second thermocouple 50Y, and the third thermocouple 50Z. To do. The measurement is periodically performed using a timer (not shown) built in the control device 130.
  • a Peltier element (first element 40X, first element 40X, first element) fixedly disposed in the stacked portion 20L to cool any of the positive electrode side stacked portion 20LX, the negative electrode side stacked portion 20LY, and the central stacked portion 20LZ.
  • One of the two elements 40Y and the third element 40Z) is energized and controlled.
  • the three elements 40Z are energized and controlled.
  • step S55 it is determined whether or not the positive electrode side temperature TX0, the negative electrode side temperature TY0, and the central temperature TZ0 are uniform.
  • NO that is, when the positive electrode side temperature TX0, the negative electrode side temperature TY0, and the central temperature TZ0 are non-uniform
  • the process returns to step S54, and the Peltier element (first first) is continuously continued so that these temperatures become uniform.
  • the element 40X, the second element 40Y, and the third element 40Z) are energized and controlled.
  • YES that is, if the positive electrode side temperature TX0, the negative electrode side temperature TY0, and the central temperature TZ0 become uniform with each other, the process returns to step S52.
  • the battery system M3 of the vehicle 300 according to the second embodiment includes the above-described Peltier elements (first element 40X, second element 40Y, and third element 40Z), and the control device 130 includes temperature control means S54. .
  • the central laminated portion 20LZ uses the measured central temperature TZ0 of the central laminated portion 20LZ of the power generation element 20, positive electrode side temperature TX0 of the positive electrode side laminated portion 20LX and negative electrode side temperature TY0 of the negative electrode side laminated portion 20LY, the central laminated portion 20LZ, It is possible to appropriately change the temperatures (TZ0, TX0, TY0) of the positive electrode side stacked unit 20LX and the negative electrode side stacked unit 20LY. As a result, appropriate temperature control is possible, such as controlling the temperature so as to eliminate unevenness in the concentration or the like of lithium ions generated in the stacked portion 20L.
  • the hammer drill 400 of the third embodiment is equipped with a battery pack 410 containing any one of the battery systems M1, M2 and M3 described above.
  • a battery-equipped device having a main body 420.
  • the battery pack 410 is detachably accommodated in the pack accommodating portion 421 of the main body 420 of the hammer drill 400.
  • each temperature (positive electrode side temperature TX0, negative electrode) of the central stacked unit 20LZ, the positive electrode side stacked unit 20LX, or the negative electrode side stacked unit 20LY is the battery systems M1, M2, and M3 described above, each temperature (positive electrode side temperature TX0, negative electrode) of the central stacked unit 20LZ, the positive electrode side stacked unit 20LX, or the negative electrode side stacked unit 20LY.
  • thermocouple, the second thermocouple, and the third thermocouple are inserted into the position of the axial center of the power generation element, and the temperatures of the positive electrode side stacked portion, the negative electrode side stacked portion, and the central stacked portion are Was detected.
  • the first thermocouple, the second thermocouple, and the third thermocouple are arranged on the outer surface of the power generation element or between the layers of the power generation element, so that the positive side stack, the negative side stack, and the center are arranged. You may detect the temperature of a laminated part.
  • the central temperature TZ0, the positive electrode side temperature TX0, and the negative electrode side temperature TY0 of the power generation element 20 are made uniform so as to eliminate the uneven concentration of lithium ions.
  • the temperature difference may be controlled between the central temperature TZ0 and the positive side temperature TX0 and the negative side temperature TY0.
  • the Peltier element that absorbs heat by energization is used as the central temperature changing means, the positive electrode side temperature changing means, and the negative electrode side temperature changing means, for example, a heater that generates heat by energization may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Biophysics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 リチウムイオン二次電池の発電要素の積層部において、正負延出方向に生じる温度や温度変化の分布を、適切に検知して、電池の制御に利用し得る電池システム、及び、この電池システムを備える車両及び電池搭載機器を提供することを課題とする。電池システムM1は、積層部20Lと、正極延出部21fと、負極延出部22fと、を含む発電要素20を有するリチウムイオン二次電池1と、制御手段130と、積層部のうち中央積層部20LZの温度TZ1,TZ2を検知する中央温度検知手段50Zと、正極側積層部20LXの温度TX1,TX2を検知する正極側温度検知手段50X、及び、負極側積層部20LYの温度TY1,TY2を検知する負極側温度検知手段50Yの少なくともいずれかと、を備え、制御手段は、中央積層部の温度と、正極側積層部の温度及び負極側積層部の温度の少なくともいずれかとを用いて、リチウムイオン二次電池を制御する。

Description

電池システム、車両及び電池搭載機器
 本発明は、発電要素を有するリチウムイオン二次電池と、この発電要素の温度を検知する温度検知手段と、リチウムイオン二次電池を制御する制御手段とを備える電池システムに関する。このような電池システムを搭載した車両及び電池搭載機器に関する。
 近年、ハイブリッド車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
 このような電池として、特許文献1では、電池本体(発電要素)の所定位置に熱電対を埋設してなるリチウムイオン二次電池が挙げられている。
特平10-55825号公報
 ところで、電池の発電要素のうち、電池として機能する正極と負極とがセパレータを介して積層された積層部は、自身が正極等の面に平行な方向の拡がりを有している。そのため、積層部内のこの方向において、場所的に、正極と負極との間に保持されている電解液の濃度のムラや、駆動時の電流密度のムラ、場所的な放熱性の違いによる温度のムラなどが、存在することが判ってきた。
 また、積層部から正極板の一部が延出してなる正極延出部と、積層部から負極板の一部が延出してなる負極延出部とを結ぶ正負延出方向について、この積層部を、中央の中央積層部と、これよりも正極延出部側の正極側積層部と、負極延出部側の負極積層部とに分けた場合、これらのムラは、この三者の間で異なるように分布する場合の多いことも判ってきた。
 さらに、中央積層部、正極側積層部及び負極側積層部の温度や放電の前後或いは充電の前後の温度変化などから、積層部に生じている各種のムラの発生を検知し得、これによって、電池の制御を行い得ることも判ってきた。
 しかしながら、特許文献1記載の電池では、発電要素の積層部のうち、所定部位の温度しか測定し得ないため、積層部に生じた各種のムラを適切に検知できない。
 本発明は、かかる問題に鑑みてなされたものであって、リチウムイオン二次電池の発電要素の積層部において、正負延出方向に生じる温度や温度変化の分布を、適切に検知して、電池の制御に利用し得る電池システムを提供することを目的とする。また、このような電池システムを備える車両及び電池搭載機器を提供することを目的とする。
 そして、本発明の一態様は、正極板、負極板及びセパレータを含む発電要素であって、上記正極板と上記負極板との間に上記セパレータを介在させて積層した積層部と、上記積層部から上記正極板の一部が延出してなる正極延出部と、上記積層部から上記負極板の一部が、上記正極延出部とは逆側に延出してなる負極延出部と、を含む発電要素を有するリチウムイオン二次電池と、上記リチウムイオン二次電池を制御する制御手段と、上記正極延出部と上記負極延出部を結ぶ方向を正負延出方向としたとき、上記積層部のうち、上記正負延出方向の中央に位置する中央積層部の温度を検知する中央温度検知手段と、上記積層部のうち、上記中央積層部よりも上記正負延出方向の上記正極延出部側に位置する、正極側積層部の温度を検知する正極側温度検知手段、及び、上記積層部のうち、上記中央積層部よりも上記正負延出方向の上記負極延出部側に位置する、負極側積層部の温度を検知する負極側温度検知手段の少なくともいずれかと、を備え、上記制御手段は、上記中央積層部の温度と、上記正極側積層部の温度及び上記負極側積層部の温度の少なくともいずれかとを用いて、上記リチウムイオン二次電池を制御する電池システムである。
 上述の電池システムでは、中央温度検知手段と、正極側温度検知手段及び負極側温度検知手段と少なくともいずれかと、制御手段とを備える。このため、中央積層部、正極側積層部又は負極側積層部の温度を用いて、例えば、部位間の温度の差、部位間の放電前後の温度上昇量の差などを算出でき、これを用いて電池を適切に制御することができる。
 また、上述の電池システムでは、各部の温度を用いるので、例えば、各部の電解液のリチウムイオン濃度などを直接検知するよりも簡易に、積層部に生じた各種のムラを検知できる。
 なお、発電要素の形態としては、例えば、いずれも帯状の正極板及び負極板を、セパレータを介して捲回してなる捲回形や、いずれも矩形板状の正極板及び負極板を、セパレータを介して積み重ねてなる積層形が挙げられる。また、中央温度検知手段、正極側温度検知手段及び負極側温度検知手段としては、例えば、熱電対、サーミスタが挙げられる。
 また、制御手段による制御には、例えば、電池の充放電時の電流の制御や、ヒータや冷却素子を用いた電池の中央積層部、正極側積層部及び負極側積層部の温度の制御が挙げられる。
 また、制御手段が、中央積層部の温度等を用いて制御するにあたっては、各部の温度そのものを利用するほか、例えば、部位間の温度や、電池の放電の前後に生じる、各部の温度上昇量同士の差を用いることが挙げられる。
 さらに、上述の電池システムであって、前記制御手段は、ハイレート放電により生じる、前記中央積層部の温度上昇の温度上昇量と、前記正極側積層部の温度上昇の温度上昇量及び前記負極側積層部の温度上昇の温度上昇量の少なくともいずれかとの上昇量差に基づいて、ハイレート充放電時に上記リチウムイオン二次電池に流す充放電電流の制限を変更する制限変更手段を有する電池システムとすると良い。
 例えば、10Cの電流など、ハイレートの放電や充電を行うと、積層部中の電解液のリチウムイオン濃度分布に応じて、電流密度が分布し、これにより、各所での発熱量も分布することが判ってきた。従って、ハイレート放電時に生じる各所の温度上昇量を比較することで、各所における電流密度の違い、従って、電解液のリチウムイオン濃度の違いを知ることができる。
 上述の電池システムでは、制御手段は、上述の制限変更手段を有する。このため、中央積層部と正極側積層部との、及び、中央積層部と負極側積層部との温度上昇量の上昇量差の少なくともいずれかに基づいて、制限変更手段によって、ハイレート放電時の放電電流の制限を変更する。これにより、ハイレート放電によって生じる電池の劣化に対して、適切に対処した制御を行うことができる。
 さらに、上述の電池システムであって、前記制限変更手段は、前記中央積層部の温度上昇量が、前記正極側積層部の温度上昇量、及び、前記負極側積層部の温度上昇量のいずれかよりも小さい場合に、それ以降のハイレート放電の放電電流を相対的に小さくさせる制御に変更する電池システムとすると良い。
 ところで、例えば、10Cの電流など、電池を比較的大きな電流(ハイレート)で放電を繰り返させると、電池の内部抵抗の大きさが増大する劣化(ハイレート劣化)が生じることが判ってきた。
 しかも、ハイレート劣化の生じていない電池では、ハイレート放電時に生じる温度上昇の上昇量は、中央積層部の方が、正極側積層部の、及び、負極側積層部よりも大きくなる挙動を示す。一方、ハイレート放電によるハイレート劣化が進むと、中央積層部の上昇量が減少する一方、正極側積層部及び負極側積層部の上昇量は増加する。このため、ついには、中央積層部と正極側積層部及び負極側積層部とが等しくなる。さらに、その後は逆に、中央積層部が、正極側積層部及び負極側積層部よりも小さくなる挙動を示すことが判ってきた。
 以上の知見に基づいて、上述の電池システムの制限変更手段は、中央積層部の温度上昇量が、正極側積層部の温度上昇量、及び、負極側積層部の温度上昇量よりも小さくなった場合に、それ以降のハイレート放電の放電電流を相対的に小さくさせる制御に変更する。これにより、電池のハイレート劣化の進行、即ち内部抵抗の増加を抑えることができる。さらには、電池に生じたハイレート劣化を回復させることもできる場合がある。
 なお、ハイレート放電の放電電流を相対的に小さくするとは、急加速時などに生じるハイレート放電のピークの放電電流の大きさをより小さな値に制限する手法や、所定値よりも大きい放電電流の期間を短くする手法が挙げられる。
 或いは、前述の電池システムであって、前記制限変更手段は、前記中央積層部の温度上昇量が、前記正極側積層部の温度上昇量、及び、前記負極側積層部の温度上昇量のいずれかよりも小さい場合に、それ以降のハイレート放電の放電電流を相対的に小さくさせる制御に変更する電池システムとすると良い。
 発明者らは、電池にハイレート放電を繰り返させると、内部抵抗の大きさが、一旦は増大するが、その後に低下して落ち着くことを見出した。従って、ハイレート劣化を強制的に促進させることで内部抵抗の高い状態を過ぎると、その後、むしろ好ましい(内部抵抗の低い)状態にしうることになる。なお、ハイレート劣化が進行している間のうち、内部抵抗が大きい期間には、中央積層部の温度上昇量が、正極側積層部の温度上昇量、及び、負極側積層部の温度上昇量の両者よりも小さくなる挙動を示す。一方、この期間を越えて、電池の内部抵抗が低くなった期間には、正極側積層部の温度上昇量が低下する。
 従って、中央積層部の温度上昇量は、負極側積層部の温度上昇量よりも小さく、正極側積層部の温度上昇量とほぼ等しくなる挙動を示すことも判ってきた。
 この知見に基づいて、上述の電池システムでは、制御変更手段は、中央積層部の温度上昇量が、負極側積層部の温度上昇量よりも小さい場合に、それ以降のハイレート放電の放電電流を相対的に大きくさせる制御に変更する。このようにハイレート放電の放電電流を相対的に大きくすることで、電池のハイレート劣化を促進させる。これにより、電池の内部抵抗の高い状態を早く通過させ、その後の内部抵抗の低い状態にして、電池を使用できるようにすることができる。
 なお、ハイレート放電の放電電流を相対的に大きくするとは、ハイレート放電のピークの放電電流の大きさをより大きな値に変更する手法や、所定値よりも大きい放電電流の期間を長くする手法が挙げられる。
 或いは、前述の電池システムであって、前記発電要素のうち、前記中央積層部の温度を変化させる中央温度変化手段と、上記発電要素のうち、前記正極側積層部の温度を変化させる正極側温度変化手段と、上記発電要素のうち、前記負極側積層部の温度を変化させる負極側温度変化手段と、を備え、前記制御手段は、上記中央温度変化手段、上記正極側温度変化手段及び上記負極側温度変化手段を制御する温度制御手段を含む電池システムとすると良い。
 上述の電池システムでは、上述の温度変化手段を備えると共に、制御手段が温度制御手段を含んでいる。このため、測定した発電要素の中央積層部の温度と、正極側積層部の温度及び負極側積層部の温度の少なくともいずれかを用いて、中央積層部、正極側積層部及び負極側積層部の温度を適切に変化させることができる。これにより、積層部に生じているリチウムイオンの濃度等のムラを解消するように温度を制御するなど、適宜の温度制御が可能となる。
 なお、中央温度変化手段、正極側温度変化手段及び負極側温度変化手段としては、例えば、通電により発熱させるヒータや、通電により吸熱させるペルチェ素子が挙げられる。
 或いは、本発明の他の態様は、前述のいずれかの電池システムを備える車両である。
 上述の車両は、前述した電池システムを備えるので、中央積層部、正極側積層部又は負極側積層部の各温度を用いて、例えば、各部位の温度の差、各部位の放電前後の温度上昇量の差などを算出でき、これを用いて電池を適切に制御できる車両とすることができる。
 なお、車両としては、その動力源の全部あるいは一部に電池による電気エネルギを使用している車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。
 或いは、本発明の他の態様は、前述のいずれかの電池システムを備える電池搭載機器である。
 上述の電池搭載機器は、前述した電池システムを備えるので、中央積層部、正極側積層部又は負極側積層部の各温度を用いて、例えば、各部位の温度の差、各部位の放電前後の温度上昇量の差などを算出でき、これを用いて電池を適切に制御できる電池搭載機器とすることができる。
 なお、電池搭載機器としては、電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。
実施形態1,実施形態2,変形形態1にかかる車両の斜視図である。 実施形態1,変形形態1のリチウムイオン二次電池の斜視図である。 実施形態1,変形形態1のリチウムイオン二次電池の断面図(図2のA-A断面)である。 実施形態1,変形形態1のリチウムイオン二次電池の断面図(図3のB-B断面)である。 実施形態1,変形形態1のリチウムイオン二次電池の拡大断面図(図4AのC部)である。 実施形態1,変形形態1の熱電対の説明図である。 リチウムイオン二次電池の内部抵抗の大きさと、充放電サイクル試験のサイクル数との関係を示すグラフである。 リチウムイオン二次電池の各積層部におけるリチウムイオン濃度を示すグラフである。 リチウムイオン二次電池の各積層部における温度上昇量を示すグラフである。 実施形態1のフローチャートである。 実施形態1,変形形態1のフローチャートである。 リチウムイオン二次電池の内部抵抗の大きさと、充放電サイクル試験のサイクル数との関係を示すグラフである。 リチウムイオン二次電池の各積層部におけるリチウムイオン濃度を示すグラフである。 変形形態1のフローチャートである。 実施形態2のリチウムイオン二次電池の斜視図である。 実施形態2のリチウムイオン二次電池の断面図(図14のD-D断面)である。 実施形態2のフローチャートである。 実施形態3のハンマードリルの斜視図である。
1,3 電池(リチウムイオン二次電池)
20 発電要素
20L 積層部
20LX 正極側積層部
20LY 負極側積層部
20LZ 中央積層部
21 正極板
21f 正極リード部(正極延出部)
22 負極板
22f 負極リード部(負極延出部)
23 セパレータ
40X 第1素子(温度調節手段)
40Y 第2素子(温度調節手段)
40Z 第3素子(温度調節手段)
50X 第1熱電対(中央温度検知手段)
50Y 第2熱電対(正極側温度検知手段)
50Z 第3熱電対(負極側温度検知手段)
100,200,300 車両
130 制御装置(制御手段)
400 ハンマードリル(電池搭載機器)
410 バッテリパック
DA 第1方向(正負延出方向)
DC 放電電流(充放電電流,放電電流)
DTX 正極側上昇量((正極側積層部の)温度上昇量)
DTY 負極側上昇量((負極側積層部の)温度上昇量)
DTZ 中央上昇量((中央積層部の)温度上昇量)
F1 第1上昇量差(温度上昇量差)
F2 第2上昇量差(温度上昇量差)
M1,M2,M3 電池システム
TX0 正極側温度((正極側積層部の)温度,(積層部の)温度)
TX1 正極側直前温度((正極側積層部の)温度,(積層部の)温度)
TX2 正極側放電後温度((正極側積層部の)温度,(積層部の)温度)
TY0 負極側温度((負極側積層部の)温度,(積層部の)温度)
TY1 負極側直前温度((負極側積層部の)温度,(積層部の)温度)
TY2 負極側放電後温度((負極側積層部の)温度,(積層部の)温度)
TZ0 中央温度((中央積層部の)温度,(積層部の)温度)
TZ1 中央直前温度((中央積層部の)温度,(積層部の)温度)
TZ2 中央放電後温度((中央積層部の)温度,(積層部の)温度)
 (実施形態1)
 次に、本発明の実施形態1について、図面を参照しつつ説明する。
 まず、本実施形態1にかかる車両100について説明する。図1に車両100の斜視図を示す。
 この車両100は、組電池120をなす複数のリチウムイオン二次電池(以下、単に電池とも言う)1,1、これら電池1,1の発電要素20の温度をそれぞれ検知する熱電対50X,50Y,50Z及び制御装置130を備える。また、これらの他に、エンジン150、フロントモータ141、リアモータ142、ケーブル160、第1インバータ171、第2インバータ172及び車体190を有するハイブリッド電気自動車である。なお、熱電対50X,50Y,50Zは、電池監視装置122に接続している。また、本実施形態1にかかる電池システムM1は、電池1,1、熱電対50X,50Y,50Z(これらと接続する電池監視装置122)及び制御装置130からなる。
 車両100の制御装置130は、図示しないCPU、ROM及びRAMを有し、所定のプログラムによって作動するマイクロコンピュータを含んでいる。この制御装置130は、車両100の内部に搭載された、フロントモータ141、リアモータ142、エンジン150、第1インバータ171、第2インバータ172及び電池監視装置122とそれぞれ通信する。そして、この制御装置130は、フロントモータ141、リアモータ142、エンジン150、第1インバータ171及び第2インバータ172を制御する。
 車両100の組電池120は、内部に複数の電池1,1を配置した電池部121と、電池監視装置122とを有する(図1参照)。このうち、電池監視装置122は、熱電対50X,50Y,50Zを用いて各電池1,1の発電要素の温度を取得する。
 また、電池部121は、バスバ(図示しない)とのボルト締結にて、互いに直列に接続されている複数の電池1,1を収容している。
 複数の電池1,1は、正極板21、負極板22及びセパレータ23を含む発電要素20を有する捲回形のリチウムイオン二次電池である(図2~4参照)。なお、発電要素20は、矩形箱状の電池ケース10に収容されている。
 この発電要素20は、帯状の正極板21及び負極板22が、ポリエチレンからなる帯状のセパレータ23を介して扁平形状に捲回されている(図2参照)。この発電要素20は、図4Aに示すように、正極板21、負極板22及びセパレータ23が積層してなる積層部20Lと、この積層部20Lから図4A中、上方に延出する正極板21の正極リード部21fと、図4A中、下方に延出する負極板22の負極リード部22fとを有する。このうち、正極リード部21fは、クランク状に屈曲した板状の正極集電部材71に接合されている(図3参照)。なお、この正極集電部材71の先端側(図3中、上方)に位置する正極端子部71Aが、電池ケース10から図3中、上方に突出している。また、負極リード部22fは、クランク状に屈曲した板状の負極集電部材72に接合されている(図3参照)。なお、この負極集電部材72の先端側(図3中、上方)に位置する負極端子部72Aが、電池ケース10から図3中、上方に突出している。
 また、正極板21は、帯状のアルミ箔21Aと正極活物質層21Bとからなる。この正極板21は、アルミ箔21Aのうち、上述の正極リード部21fを残して、その両面に正極活物質層21Bを担持している(図4A,4B参照)。
 また、負極板22は、帯状の銅箔22Aと負極活物質層22Bとからなる。この負極板22は、銅箔22Aのうち、上述の負極リード部22fを残して、その両面に負極活物質層22Bを担持している(図4A,4B参照)。
 なお、本実施形態1では、図3に示すように、正極リード部21fと負極リード部22fとを結ぶ方向(捲回の軸線に沿う方向)を第1方向DAとしたとき、発電要素20の積層部20Lを、この第1方向DAに垂直に3つの部位に分ける。即ち、積層部20Lは、第1方向DAの中央に位置する中央積層部20LZ、この中央積層部20LZよりも正極リード部21f側の正極側積層部20LX、及び、中央積層部20LZよりも負極リード部22f側の負極側積層部20LYからなるとする(図3参照)。
 そして、この積層部20Lのうち、正極側積層部20LXに第1熱電対50Xを、負極側積層部20LYに第2熱電対50Yを、中央積層部20LZに第3熱電対50Zを、それぞれ配置している(図3参照)。
 具体的には、第1熱電対50X、第2熱電対50Y及び第3熱電対50Zが配置固定された、樹脂からなる矩形板状の板部材50Bを、捲回形の発電要素20の軸芯の位置に挿入している(図3,4A参照)。この板部材50Bでは、図5に示すように、第1熱電対50Xの先端、即ちこれの温接点が、板部材50Bの、図中、右方に配置され絶縁テープTPで固定されている。また、第2熱電対50Yの温接点が、板部材50Bの、図中、左方に配置され、さらに、第3熱電対50Zの温接点が、板部材50Bの、第1方向DA中央に配置され、それぞれ絶縁テープTPで固定されている。
 なお、これら第1熱電対50X、第2熱電対50Y及び第3熱電対50Zは、いずれもK(クロメル-アルメル)熱電対である。また、これら第1熱電対50X、第2熱電対50Y及び第3熱電対50Zは、束ねられて電池ケース10から外部へ延出し、電池監視装置122に繋がっている。
 ところで、発明者らは、例えば10Cなどの大きなハイレートの電流を流すハイレート放電を繰り返すことにより、電池1が劣化(ハイレート劣化)する。それと共に、この発電要素20の積層部20Lのうち、正極側積層部20LX、負極側積層部20LY及び中央積層部20LZにおける、電池製造時には均一であった電解液のリチウムイオン濃度が、互いに異なる状態になることを見出した。
 具体的には、まず、電池1について、ハイレート放電、即ち、100Aの一定電流で10秒間放電した後、10Aの一定電流で100秒間充電するパルス充放電を繰り返すサイクル試験を行い、所定のサイクル数における電池1の内部抵抗の大きさを測定した。
 この試験結果を図6に示す。電池1の内部抵抗の大きさは、サイクル数が700回にさしかかるあたりから、大きく増大していき、サイクル数が1700回付近で最大となることが判る。
 この電池1の内部抵抗の測定と共に、試験開始時及びサイクル数が1700回の時点での、積層部20Lの各所の電解液のリチウムイオン濃度をそれぞれ測定した。
 測定結果を図7に示す。図7は、積層部20Lのうち、各正極側積層部20LX,負極側積層部20LY,中央積層部20LZのリチウムイオン濃度を示すグラフである。このグラフによれば、サイクル数が1700回の時点における正極側積層部20LX及び負極側積層部20LYのリチウムイオンの濃度は、試験開始時に比して高くなっていることが判る。一方、サイクル数が1700回の時点における中央積層部20LZのリチウムイオンの濃度は、試験開始時に比して低くなったことが判る。
 さらに、この状態でハイレートの放電を行うと、各所での発熱量が分布することが判ってきた。これは、積層部20L中の電解液のリチウムイオン濃度の分布に応じて、電流密度が分布するためであると考えられる。
 そこで、電池1の内部抵抗の測定と共に、試験開始直後(サイクル数=1)及びサイクル数が700,1700回の時点における、正極側積層部20LX,負極側積層部20LY,中央積層部20LZの、ハイレート放電の前後における温度を、第1熱電対50X、第2熱電対50Y及び第3熱電対50Zを用いて測定した。具体的には、ハイレート放電前の温度を測定しておき、100Aの一定電流で放電させて、放電開始から10秒後の温度を測定した。
 そして、これらの温度を用いて、試験開始直後(サイクル数=1)及びサイクル数が700,1700回の時点における、正極側積層部20LX,負極側積層部20LY,中央積層部20LZの温度上昇量(ハイレート放電後の温度と、ハイレート放電直前の温度との差分)をそれぞれ算出した。
 算出結果を図8に示す。図8は、各正極側積層部20LX,負極側積層部20LY,中央積層部20LZの温度上昇量を示すグラフである。このグラフによれば、サイクル数が700,1700回の時点における正極側積層部20LX及び負極側積層部20LYの温度上昇量は、試験開始直後(サイクル数=1)に比して高いことが判る。一方、サイクル数が700,1700回の時点における中央積層部20LZの温度上昇量は、試験開始直後に比して低いことが判る。
 また、試験開始直後の、ハイレート劣化の生じていない電池1では、ハイレート放電時に生じる温度上昇の温度上昇量は、中央積層部20LZの方が、正極側積層部20LX及び負極側積層部20LYよりも若干大きくなる挙動を示す。これは、中央積層部20LZの方が、正極側積層部20LX及び負極積層部20LYよりも放熱し難いために、温度が高くなると考えられる。
 一方、ハイレート放電によるハイレート劣化が進むと、徐々に中央積層部20LZの温度上昇量が減少する一方、正極側積層部20LX及び負極側積層部20LYの温度上昇量は増加する。このため、700回より前の500回程度の時点で、中央積層部20LZと正極側積層部20LX或いは負極側積層部20LYとの温度上昇量が等しくなる。さらに、その後のサイクル数が700,1700回の時点では、逆に、中央積層部20LZが、正極側積層部20LX及び負極側積層部20LYよりも小さくなる挙動を示すことが判った。
 以上の実験結果を踏まえて、本実施形態1の電池システムM1における、電池1の制御について、図9,10のフローチャートを参照しつつ詳述する。
 まず、車両100の作動を開始(キーオン)する(ステップS1)と、車両100の制御装置130が起動する。続くステップS2では、前回の車両100の作動終了時に、電池1から流しうる放電最大電流値を低く制限する制御に変更していたことを制御装置130に記憶させたか否かを判別する。なお、放電最大電流値を低く制限するとは、電池1を放電させる際に流れる放電電流DCの最大値を制限以前より低い値に制限することをいう。
 ここで、NO、即ち放電最大電流値を低く制限することを記憶していない場合、ステップS4に進む。一方、YES、即ち放電最大電流値を低く制限することを記憶している場合には、ステップS3に進み、今回の作動中、電池1の放電電流DCの放電最大電流値を低く制限する。そして、ステップS4に進む。
 次に、ステップS4では、車両100の作動停止(キーオフ)を指示されたかどうかを判別する。
 ここで、NO、即ち車両100の作動停止(キーオフ)しない場合、ステップS7に進む。一方、YES、即ち車両100の作動停止(キーオフ)する場合には、ステップS5に進み、今回の作動終了時に、放電最大電流値を低く制限しているか否かを判別する。
 ここで、NO、即ち今回の作動終了時に、放電最大電流値を低く制限していない場合には、そのまま作動を終了する。一方、YES、即ち今回の作動終了時に、放電最大電流値を低く制限している場合には、ステップS6に進み、制御装置130に放電最大電流値を低く制限していることを記憶して、作動を終了する。
 一方、ステップS7では、電池1をハイレート放電するか否かを判別する。
 ここで、NO、即ち電池1をハイレート放電しない場合、ステップS4に戻り、車両100の作動を継続する。一方、YES、即ち電池1をハイレート放電する場合には、次述するステップS20の温度差算出サブルーチンに進み、ハイレート放電により生じる、正極側積層部20LX、負極側積層部20LY及び中央積層部20LZの温度上昇の温度上昇量DTX,DTY,DTZを算出する。
 ステップS20の温度差算出サブルーチンについて、図10を参照しつつ説明する。
 まず、ステップS21では、第1熱電対50Xを用いて、ステップS7のハイレート放電が電池1になされる直前の正極側積層部20LXの正極側直前温度TX1を測定する。同様にして、第2熱電対50Yを用いて、電池1になされる直前の負極側積層部20LYの負極側直前温度TY1を、第3熱電対50Zを用いて、中央積層部20LZの中央直前温度TZ1を、それぞれ測定する。
 次に、ステップS22では、ステップS7のハイレート放電が終了した後の、正極側積層部20LXの正極側放電後温度TX2を、第1熱電対50Xを用いて測定する。具体的には、ハイレート放電の開始から10秒後の正極側積層部20LXの温度を測定する。
 同様にして、第2熱電対50Yを用いて、負極側積層部20LYの負極側放電後温度TY2を、第3熱電対50Zを用いて、中央積層部20LZの中央放電後温度TZ2を、それぞれ測定する。
 次に、ステップS23では、正極側直前温度TX1及び正極側放電後温度TX2を用いて、ハイレート放電により生じる、正極側積層部20LXの温度上昇の正極側上昇量DTXを算出する(DTX=TX2-TX1)。同様にして、負極側直前温度TY1及び負極側放電後温度TY2を用いて、ハイレート放電により生じる、負極側積層部20LYの温度上昇の負極側上昇量DTYを、中央直前温度TZ1及び中央放電後温度TZ2を用いて、ハイレート放電により生じる、中央積層部20LZの温度上昇の中央上昇量DTZを、それぞれ算出する。算出した後、温度差算出サブルーチンを終了し、メインルーチンに戻る。
 メインルーチンのステップS8では、中央上昇量DTZと正極側上昇量DTXとの間の差分である第1上昇量差F1(=DTZ-DTX)が負の値になるか否か、又は、中央上昇量DTZと負極側上昇量DTYとの間の差分である第2上昇量差F2(=DTZ-DTY)が負の値になるか否かを判別する。
 ここで、NO、即ち第1上昇量差F1が0又は正の値、及び、第2上昇量差F2が0又は正の値の場合、ステップS9に進む。電池1のハイレート劣化が未だ進行していないからである。
 一方、YES、即ち第1上昇量差F1が負の値、又は、第2上昇量差F2が負の値の場合には、ステップS11に進む。電池1のハイレート劣化が、ある程度進行していると考えられ、これ以上の進行を抑える必要があると考えられるためである。
 続くステップS9では、放電最大電流値を低く制限中であるか否かを判別する。
 ここで、NO、即ち放電最大電流値を低くする制限をしていない場合、そのままステップS4に戻る。一方、YES、即ち放電最大電流値を低くする制限をしている場合には、ステップS10に進み、制限を解除して、ステップS4に戻る。
 一方、ステップS11では、電池1を流れる放電電流DCの放電最大電流値を低く制限する。例えば、放電電流DCの上限値を最大10Cから最大7Cに変更する。そしてステップS4に戻り、車両100の作動を継続する。これにより、次のハイレート放電では、放電電流DCの放電最大電流値が低く制限される。
 本実施形態1にかかる電池システムM1では、第1熱電対50Xと、第2熱電対50Yと、第3熱電対50Zと、制御装置130とを備える。このため、電池1の、正極側積層部20LX、負極側積層部20LY及び中央積層部20LZの温度(正極側直前温度TX1、正極側放電後温度TX2、負極側直前温度TY1、負極側放電後温度TY2、中央直前温度TZ1及び中央放電後温度TZ2)を用いて、部位間のハイレート放電前後の温度上昇量DTX,DTY,DTZの上昇量差F1,F2などを算出でき、これを用いて電池1を適切に制御することができる。
 また、この電池システムM1では、各部の温度(正極側直前温度TX1、正極側放電後温度TX2、負極側直前温度TY1、負極側放電後温度TY2、中央直前温度TZ1及び中央放電後温度TZ2)を用いるので、例えば、各部の電解液のリチウムイオン濃度などを直接検知するよりも簡易に、積層部20Lに生じた各種のムラ(リチウムイオン濃度のムラ)を検知できる。
 また、制御装置130は、制限変更手段S8,S9を有する。このため、中央積層部20LZと正極側積層部20LXとの、及び、中央積層部20LZと負極側積層部20LYとの温度上昇量(正極側上昇量DTX、負極側上昇量DTY及び中央上昇量DTZ)の上昇量差(第1上昇量差F1,第2上昇量差F2)に基づいて、制限変更手段S8,S9によって、ハイレート放電時の放電電流DCが小さくなるように制限を変更する。これにより、ハイレート放電によって生じる電池1のハイレート劣化に対して、適切に対処した制御を行うことができる。
 また、本実施形態1にかかる電池システムM1の制限変更手段S8,S9は、第1上昇量差F1或いは第2上昇量差F2が負、つまり、中央積層部20LZの中央上昇量DTZが、正極側積層部20LXの正極側上昇量DTX、及び、負極側積層部20LYの負極側上昇量DTYよりも小さくなった場合に、それ以降の電池1に流れるハイレート放電の放電電流DCを相対的に小さくさせる制御(ステップS9の放電最大電流値を低く制限する制御)に変更する。これにより、電池1のハイレート劣化の進行、即ち内部抵抗の増加を抑えることができる。さらには、電池1に生じたハイレート劣化を回復させることも可能である。
 また、本実施形態1の車両100は、上述の電池システムM1を備えるので、中央積層部20LZ、正極側積層部20LX又は負極側積層部20LYの各温度(正極側直前温度TX1、正極側放電後温度TX2、負極側直前温度TY1、負極側放電後温度TY2、中央直前温度TZ1及び中央放電後温度TZ2)を用いて、例えば、各部位の放電前後の温度上昇量DTX,DTY,DTZや、これらの差(第1上昇量差F1,第2上昇量差F2)を算出でき、これを用いて電池1を適切に制御できる車両100とすることができる。
 (変形形態1)
 次に、本発明の変形形態1にかかる車両200について、図1~5,10~13を参照しつつ説明する。
 本変形形態1は、電池システムの制御変更手段が、前述の実施形態1とは逆に、放電電流の大きさを相対的に大きくさせる制御に変更する点で、実施形態1と異なり、それ以外は同様である。
 そこで、実施形態1と異なる点を中心に説明し、同様の部分の説明は省略又は簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
 ところで、発明者らは、電池1に、実施形態1よりもさらに多数回ハイレート放電を繰り返させると、一旦は増大したこの電池1の内部抵抗の大きさが、その後に低下して落ち着くことを見出した(図11参照)。
 この結果から、電池1の内部抵抗は、電池1のハイレート劣化を強制的に促進させて内部抵抗の高い状態を越えさせると、その後、むしろ好ましい(内部抵抗の低い)状態に至ることが判る。
 これを確認すべく、電池1の内部抵抗を測定すると共に、試験開始時及びサイクル数が700,1700,4000回の時点における、正極側積層部20LX,負極側積層部20LY,中央積層部20LZのハイレート放電の前後における温度を測定し、これらの温度上昇量をそれぞれ算出した。
 測定結果を図12に示す。このグラフによれば、サイクル数が1700回の時点の、内部抵抗が高い状態では、中央積層部20LZの温度上昇量が、正極側積層部20LXの温度上昇量、及び、負極側積層部20LYの温度上昇量の両者よりも小さくなる挙動を示す。一方、それよりも後のサイクル数が4000回の時点の、内部抵抗が低くなった状態では、正極側積層部20LXの温度上昇量も低下している。つまり、中央積層部20LZの温度上昇量は、負極側積層部20LYの温度上昇量よりも小さく、正極側積層部20LXの温度上昇量とほぼ等しくなる挙動を示すことが判ってきた。
 以上の実験結果を踏まえて、本変形形態1の電池システムM2における、電池1の制御について、図13及び図10のフローチャートを参照しつつ詳述する。
 まず、車両200の作動を開始(キーオン)する(ステップS31)と、車両200の制御装置130が起動する(図13参照)。続くステップS32では、前回の車両200の作動終了時に、電池1から流しうる放電最大電流値を高くする制御に変更していたことを制御装置130に記憶させたか否かを判別する。なお、放電最大電流値を高く変更するとは、電池1を放電させる際に流れる放電電流DCの最大値を変更以前より高い値に変更することをいう。
 ここで、NO、即ち放電最大電流値を高く変更していたことを記憶していない場合、ステップS34に進む。一方、YES、即ち放電最大電流値を高く変更していたことを記憶している場合には、ステップS33に進み、今回の作動中、電池1の放電電流DCの放電最大電流値を高く変更する。そして、ステップS34に進む。
 次に、ステップS34では、車両200の作動停止(キーオフ)を指示されたかどうかを判別する。
 ここで、NO、即ち車両200の作動停止(キーオフ)しない場合、ステップS37に進む。一方、YES、即ち車両200の作動停止(キーオフ)する場合には、ステップS35に進み、今回の作動終了時に、放電最大電流値を高く変更しているか否かを判別する。
 ここで、NO、即ち今回の作動終了時に、放電最大電流値を高く変更していない場合には、そのまま作動を終了する。一方、YES、即ち今回の作動終了時に、放電最大電流値を高く変更している場合には、ステップS36に進み、制御装置130に放電最大電流値を高く変更していることを記憶して、作動を終了する。
 一方、ステップS37では、電池1をハイレート放電するか否かを判別する。
 ここで、NO、即ち電池1をハイレート放電しない場合、ステップS34に戻り、車両200の作動を継続する。一方、YES、即ち電池1をハイレート放電する場合には、実施形態1と同様のステップS20の温度差算出サブルーチン(図10参照)に進み、ハイレート放電により生じる、正極側積層部20LX、負極側積層部20LY及び中央積層部20LZの温度上昇の温度上昇量DTX,DTY,DTZを算出する。なお、ここでは温度差算出サブルーチンの説明を省略する。
 ステップS38では、放電最大電流値を高く変更中であるか否かを判別する。
 ここで、NO、即ち放電最大電流値を高くする変更をしていない場合、ステップS39に進む。一方、YES、即ち放電最大電流値を高くする変更をしている場合には、ステップS41に進む。
 ステップS39では、中央上昇量DTZと正極側上昇量DTXとの間の差分である第1上昇量差F1(=DTZ-DTX)が負の値になるか否か、又は、中央上昇量DTZと負極側上昇量DTYとの間の差分である第2上昇量差F2(=DTZ-DTY)が負の値になるか否かを判別する。
 ここで、NO、即ち第1上昇量差F1が0又は正の値、及び、第2上昇量差F2が0又は正の値の場合、ステップS34に戻る。
 一方、YES、即ち第1上昇量差F1が負の値、又は、第2上昇量差F2が負の値の場合には、ステップS40に進む。電池1のハイレート劣化が進行していると考えられ、このハイレート劣化を促進させるため、放電最大電流値を高く変更するためである。
 ステップS40では、電池1を流れる放電電流DCの放電最大電流値を高く変更する。例えば、放電電流DCの上限値を最大10Cから最大13Cに高く変更する。そして、ステップS34に戻り、車両200の作動を継続する。
 一方、ステップS41では、第1上昇量差F1が0である、即ちDTZ=DTXであるかどうかを判別する。
 ここで、NO、即ち第1上昇量差F1が0でない、即ちDTZ≠DTXの場合、そのままステップS34に戻る。一方、YES、即ち第1上昇量差F1が0である、即ちDTZ=DTXである場合には、ステップS42に進み、変更を解除して、ステップS34に戻る。
 以上より、本変形形態1にかかる車両200の電池システムM2の制御変更手段S39,S40は、第1上昇量差F1或いは第2上昇量差F2が負、つまり、中央上昇量DTZが、正極側上昇量DTX、及び、負極側上昇量DTYよりも小さくなった場合に、それ以降の電池1に流れるハイレート放電の放電電流DCを相対的に大きくさせる制御(ステップS40の放電最大電流値を高く制限する制御)に変更する。これにより、電池1の内部抵抗の高い状態を早く通過させ、その後の内部抵抗の低い状態にして、電池1を使用できるようにすることができる。
 (実施形態2)
 次に、本発明の実施形態2にかかる車両300について、図1,14~16を参照しつつ説明する。
 本実施形態2は、さらに電池内に中央温度変化手段、正極側温度変化手段及び負極側温度変化手段を備え、制御手段でこれらを制御する点で、実施形態1と異なる。
 即ち、本実施形態2の電池3は、前述した実施形態1の電池1と同様の構成を有するが、さらに、図14,15に示すように、電池ケース10内において、図14中、発電要素20の手前側に配置された、矩形板状の3つのペルチェ素子(第1素子40X,第2素子40Y,第3素子40Z)を備える。このうち、第1素子40Xは、発電要素20の正極側積層部20LXに、第2素子40Yは、負極側積層部20LYに、第3素子40Zは中央積層部20LZに、それぞれ接して固定配置されている。これら第1素子40X、第2素子40Y及び第3素子40Zはいずれも、ケーブル40Cを通じて制御装置130に繋がり通電,制御される。このため、制御装置130の制御により、発電要素20の各積層部20LX,20LY,20LZから吸熱して、これらを冷却することができる。
 なお、本実施形態2にかかる電池システムM3は、電池3,3、熱電対50X,50Y,50Z、ペルチェ素子40X,40Y,40Z及び制御装置130からなる。
 この電池システムM3における、電池3の制御について、図16のフローチャートを参照しつつ詳述する。
 まず、車両300の作動を開始(キーオン)する(ステップS51)と、車両300の制御装置130が起動する。次いで、ステップS52では、第1熱電対50X、第2熱電対50Y及び第3熱電対50Zを用いて、電池3の積層部20Lの、正極側温度TX0、負極側温度TY0及び中央温度TZ0を測定する。なお、制御装置130に内蔵のタイマ(図示しない)を用いて、定期的に測定を行う。
 ステップS53では、これら正極側温度TX0、負極側温度TY0及び中央温度TZ0が均一(TX0=TY0=TZ0)であるか否かを判別する。
 ここで、YESの場合、ステップS52に戻り、次回の測定時期を待つ。一方、NO、即ちこれら正極側温度TX0、負極側温度TY0及び中央温度TZ0が不均一である場合(例えば、TX0=TY0<TZ0)には、ステップS54に進む。
 次に、ステップS54では、正極側積層部20LX、負極側積層部20LY及び中央積層部20LZのいずれかを冷却するために、積層部20Lに固定配置された、ペルチェ素子(第1素子40X,第2素子40Y,第3素子40Z)のいずれかを通電して制御する。例えば、TX0=TY0<TZ0の場合には、他より高温の中央積層部20LZを冷却して、この中央温度TZ0を他の温度(正極側温度TX0及び負極側温度TY0)と等しくなるよう、第3素子40Zを通電して制御する。
 冷却した後、ステップS55では、これら正極側温度TX0、負極側温度TY0及び中央温度TZ0が均一であるか否かを判別する。
 ここで、NO、即ちこれら正極側温度TX0、負極側温度TY0及び中央温度TZ0が不均一である場合には、ステップS54に戻り、これらの温度が均一になるよう、続けてペルチェ素子(第1素子40X,第2素子40Y,第3素子40Z)を通電制御する。一方、YES、即ちこれら正極側温度TX0、負極側温度TY0及び中央温度TZ0が互いに均一となった場合には、ステップS52に戻る。
 本実施形態2にかかる車両300の電池システムM3では、上述のペルチェ素子(第1素子40X,第2素子40Y,第3素子40Z)を備えると共に、制御装置130が温度制御手段S54を含んでいる。このため、測定した発電要素20の中央積層部20LZの中央温度TZ0と、正極側積層部20LXの正極側温度TX0及び負極側積層部20LYの負極側温度TY0とを用いて、中央積層部20LZ、正極側積層部20LX及び負極側積層部20LYの温度(TZ0,TX0,TY0)を適切に変化させることができる。これにより、積層部20Lに生じているリチウムイオンの濃度等のムラを解消するように温度を制御するなど、適宜の温度制御が可能となる。
 (実施形態3)
 また、本実施形態3のハンマードリル400は、前述した電池システムM1,M2,M3のいずれか1つを内蔵するバッテリパック410を搭載したものであり、図17に示すように、バッテリパック410、本体420を有する電池搭載機器である。なお、バッテリパック410はハンマードリル400の本体420のうちパック収容部421に脱着可能に収容されている。
 本実施形態3にかかるハンマードリル400は、上述の電池システムM1,M2,M3を備えるので、中央積層部20LZ、正極側積層部20LX又は負極側積層部20LYの各温度(正極側温度TX0、負極側温度TY0、中央温度TZ0、正極側直前温度TX1、正極側放電後温度TX2、負極側直前温度TY1、負極側放電後温度TY2、中央直前温度TZ1及び中央放電後温度TZ2)を用いて、例えば、各部位の温度TX0,TY0,TZ0の差、各部位の放電前後の温度上昇量DTX,DTY,DTZや、これらの差(第1上昇量差F1,第2上昇量差F2)を算出でき、これを用いて電池1,3を適切に制御できるハンマードリル400とすることができる。
 以上において、本発明を実施形態1、実施形態2、実施形態3及び変形形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1では、第1熱電対、第2熱電対及び第3熱電対を、発電要素の軸芯の位置に挿入して、正極側積層部、負極側積層部及び中央積層部の温度を検知した。しかし、例えば、第1熱電対、第2熱電対及び第3熱電対を、発電要素の外側面や、発電要素の積層部の層間に配置して、正極側積層部、負極側積層部及び中央積層部の温度を検知しても良い。
 また、実施形態2では、発電要素20の中央温度TZ0、正極側温度TX0及び負極側温度TY0を均一にして、リチウムイオンの濃度ムラを解消するように制御した。しかし、例えば、電池にハイレート劣化を促進させる目的で、中央温度TZ0と、正極側温度TX0及び負極側温度TY0との間に、逆に温度差をつける制御をしても良い。また、中央温度変化手段、正極側温度変化手段及び負極側温度変化手段として、通電により吸熱させるペルチェ素子を用いたが、例えば、通電により発熱させるヒータを用いても良い。

Claims (7)

  1.   正極板、負極板及びセパレータを含む発電要素であって、
       上記正極板と上記負極板との間に上記セパレータを介在させて積層した積層部と、上記積層部から上記正極板の一部が延出してなる正極延出部と、上記積層部から上記負極板の一部が、上記正極延出部とは逆側に延出してなる負極延出部と、を含む発電要素を有する
     リチウムイオン二次電池と、
     上記リチウムイオン二次電池を制御する制御手段と、
     上記正極延出部と上記負極延出部を結ぶ方向を正負延出方向としたとき、
     上記積層部のうち、上記正負延出方向の中央に位置する中央積層部の温度を検知する中央温度検知手段と、
     上記積層部のうち、上記中央積層部よりも上記正負延出方向の上記正極延出部側に位置する、正極側積層部の温度を検知する正極側温度検知手段、及び、
     上記積層部のうち、上記中央積層部よりも上記正負延出方向の上記負極延出部側に位置する、負極側積層部の温度を検知する負極側温度検知手段の少なくともいずれかと、を備え、
     上記制御手段は、
      上記中央積層部の温度と、上記正極側積層部の温度及び上記負極側積層部の温度の少なくともいずれかとを用いて、上記リチウムイオン二次電池を制御する
    電池システム。
  2. 請求項1に記載の電池システムであって、
     前記制御手段は、
      ハイレート放電により生じる、前記中央積層部の温度上昇の温度上昇量と、前記正極側積層部の温度上昇の温度上昇量及び前記負極側積層部の温度上昇の温度上昇量の少なくともいずれかとの上昇量差に基づいて、ハイレート充放電時に上記リチウムイオン二次電池に流す充放電電流の制限を変更する制限変更手段を有する
    電池システム。
  3. 請求項2に記載の電池システムであって、
     前記制限変更手段は、
      前記中央積層部の温度上昇量が、前記正極側積層部の温度上昇量、及び、前記負極側積層部の温度上昇量のいずれかよりも小さい場合に、それ以降のハイレート放電の放電電流を相対的に小さくさせる制御に変更する
    電池システム。
  4. 請求項2に記載の電池システムであって、
     前記負極側温度検知手段を備え、
     前記制限変更手段は、
      前記中央積層部の温度上昇量が、上記負極側積層部の温度上昇量よりも小さい場合に、それ以降のハイレート放電の放電電流を相対的に大きくさせる制御に変更する
    電池システム。
  5. 請求項1に記載の電池システムであって、
     前記発電要素のうち、前記中央積層部の温度を変化させる中央温度変化手段と、
     上記発電要素のうち、前記正極側積層部の温度を変化させる正極側温度変化手段と、
     上記発電要素のうち、前記負極側積層部の温度を変化させる負極側温度変化手段と、
    を備え、
     前記制御手段は、
      上記中央温度変化手段、上記正極側温度変化手段及び上記負極側温度変化手段を制御する温度制御手段を含む
    電池システム。
  6. 請求項1~請求項5のいずれか1項に記載の電池システムを備える車両。
  7. 請求項1~請求項5のいずれか1項に記載の電池システムを備える電池搭載機器。
PCT/JP2009/057754 2009-04-17 2009-04-17 電池システム、車両及び電池搭載機器 WO2010119566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/057754 WO2010119566A1 (ja) 2009-04-17 2009-04-17 電池システム、車両及び電池搭載機器
US13/132,376 US9065147B2 (en) 2009-04-17 2009-04-17 Battery system, vehicle, and battery-mounting device
CN200980158738.8A CN102396096B (zh) 2009-04-17 2009-04-17 电池系统、车辆以及电池搭载设备
JP2010543337A JP5035429B2 (ja) 2009-04-17 2009-04-17 電池システム、車両及び電池搭載機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057754 WO2010119566A1 (ja) 2009-04-17 2009-04-17 電池システム、車両及び電池搭載機器

Publications (1)

Publication Number Publication Date
WO2010119566A1 true WO2010119566A1 (ja) 2010-10-21

Family

ID=42982247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057754 WO2010119566A1 (ja) 2009-04-17 2009-04-17 電池システム、車両及び電池搭載機器

Country Status (4)

Country Link
US (1) US9065147B2 (ja)
JP (1) JP5035429B2 (ja)
CN (1) CN102396096B (ja)
WO (1) WO2010119566A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137935A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 非水二次電池の制御装置および制御方法
JP2014022282A (ja) * 2012-07-20 2014-02-03 Sharp Corp 二次電池異常検出装置、二次電池、および二次電池異常検出方法
TWI469413B (zh) * 2010-11-03 2015-01-11 Formosa Plastics Transp Corp Car battery structure
US9065147B2 (en) 2009-04-17 2015-06-23 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery-mounting device
JP2015222634A (ja) * 2014-05-22 2015-12-10 株式会社Gsユアサ 蓄電素子
JP2016149917A (ja) * 2015-02-13 2016-08-18 株式会社日本自動車部品総合研究所 電池制御装置
JP2017513172A (ja) * 2014-12-30 2017-05-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 電池予熱方法、装置および機器
JP2017195142A (ja) * 2016-04-22 2017-10-26 トヨタ自動車株式会社 二次電池の塩濃度分布推定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2720362A1 (en) * 2012-10-12 2014-04-16 ST-Ericsson SA Independent output control for single-inductor, bipolar outputs, buck-boost converters
EP2720363A1 (en) * 2012-10-12 2014-04-16 ST-Ericsson SA Independent output control for single-inductor, bipolar outputs, buck-boost converters
US10352293B2 (en) * 2014-10-23 2019-07-16 Daikin Industries, Ltd. Fluid system
CN107394297B (zh) * 2017-07-12 2023-04-07 成都紫外光电技术有限公司 一种复合式电池火灾报警系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141558A (ja) * 2005-11-16 2007-06-07 Toyota Motor Corp 二次電池の充放電制御装置
JP2008059910A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp 二次電池の制御システムおよびそれを搭載したハイブリッド車両

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055825A (ja) * 1996-08-08 1998-02-24 Sony Corp 非水電解液二次電池
JPH10214613A (ja) * 1997-01-30 1998-08-11 Hitachi Ltd 非水電解液二次電池とこれを用いた組電池
JPH10247488A (ja) * 1997-02-28 1998-09-14 Nikkiso Co Ltd 非水電解質二次電池
US6835491B2 (en) * 1998-04-02 2004-12-28 The Board Of Trustees Of The University Of Illinois Battery having a built-in controller
EP1083618B1 (en) * 1998-05-20 2013-04-03 KRI Inc. Nonaqueous secondary cell
GB9900396D0 (en) * 1999-01-08 1999-02-24 Danionics As Arrangements of electrochemical cells
JP2000277176A (ja) 1999-03-24 2000-10-06 Ngk Insulators Ltd リチウム二次電池及び使用方法
JP2002313431A (ja) 2001-04-11 2002-10-25 Mitsubishi Materials Corp 非水電解質二次電池
JP4228177B2 (ja) * 2002-04-24 2009-02-25 日本電気株式会社 二次電池、および、それを用いたバッテリー
JP2005183241A (ja) * 2003-12-22 2005-07-07 Sanyo Electric Co Ltd 車両用の電源装置
JP4208865B2 (ja) * 2005-07-07 2009-01-14 株式会社東芝 非水電解質電池及び電池パック
JP2008021569A (ja) * 2006-07-14 2008-01-31 Toyota Motor Corp 二次電池システム
WO2008048995A2 (en) * 2006-10-17 2008-04-24 Valence Technology, Inc. Method and apparatus for monitoring and controlling an electrochemical cell
JP2008204800A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水系電解質二次電池の急速充電方法およびそれを用いる電子機器
US7859226B2 (en) * 2007-07-17 2010-12-28 Tdk-Lambda Corporation Method and device for safety protection of secondary battery
WO2009093664A1 (ja) 2008-01-23 2009-07-30 Taiho Kogyo Co., Ltd. 焼結銅合金摺動材の製造方法及び焼結銅合金摺動材
CN101926041B (zh) * 2008-01-24 2013-09-18 丰田自动车株式会社 锂离子二次电池、组电池、车辆、电池搭载设备、电池系统和锂离子二次电池的劣化检测方法
JP4569640B2 (ja) * 2008-01-31 2010-10-27 株式会社デンソー 電池の温度調整装置
JP5353339B2 (ja) 2009-03-17 2013-11-27 トヨタ自動車株式会社 電池システム、及び、ハイブリッド自動車
JP5035429B2 (ja) 2009-04-17 2012-09-26 トヨタ自動車株式会社 電池システム、車両及び電池搭載機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141558A (ja) * 2005-11-16 2007-06-07 Toyota Motor Corp 二次電池の充放電制御装置
JP2008059910A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp 二次電池の制御システムおよびそれを搭載したハイブリッド車両

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065147B2 (en) 2009-04-17 2015-06-23 Toyota Jidosha Kabushiki Kaisha Battery system, vehicle, and battery-mounting device
TWI469413B (zh) * 2010-11-03 2015-01-11 Formosa Plastics Transp Corp Car battery structure
JP2013137935A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 非水二次電池の制御装置および制御方法
JP2014022282A (ja) * 2012-07-20 2014-02-03 Sharp Corp 二次電池異常検出装置、二次電池、および二次電池異常検出方法
JP2015222634A (ja) * 2014-05-22 2015-12-10 株式会社Gsユアサ 蓄電素子
JP2017513172A (ja) * 2014-12-30 2017-05-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 電池予熱方法、装置および機器
US10734691B2 (en) 2014-12-30 2020-08-04 SZ DJI Technology Co., Ltd. Battery preheating methods, devices, and apparatus
JP2016149917A (ja) * 2015-02-13 2016-08-18 株式会社日本自動車部品総合研究所 電池制御装置
JP2017195142A (ja) * 2016-04-22 2017-10-26 トヨタ自動車株式会社 二次電池の塩濃度分布推定方法

Also Published As

Publication number Publication date
JPWO2010119566A1 (ja) 2012-10-22
JP5035429B2 (ja) 2012-09-26
CN102396096B (zh) 2014-01-22
US9065147B2 (en) 2015-06-23
CN102396096A (zh) 2012-03-28
US20120032644A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5035429B2 (ja) 電池システム、車両及び電池搭載機器
TWI814765B (zh) 二次電池的異常檢測裝置、異常檢測方法、充電狀態推測方法、充電狀態推測裝置以及電腦可讀取媒體
JP5997178B2 (ja) バッテリーパック管理装置及び方法
KR101653307B1 (ko) 단위모듈들을 포함하는 전지모듈 어셈블리
KR101328354B1 (ko) 리튬 이온 2차 전지, 차량 및 전지 탑재 기기
WO2010052786A1 (ja) 電池、車両及び電池搭載機器
US9947974B2 (en) Heating system and battery system
JP2013518550A (ja) 電池の内部抵抗を使用して動作性能を改善するための電池パックシステム
JP6217987B2 (ja) 組電池
JP2009026599A (ja) 正電極板、リチウムイオン二次電池、車両、および、電池搭載機器
JP6344245B2 (ja) 電池モジュール
JP5737336B2 (ja) 電池システム、車両及び電池搭載機器
JP5304626B2 (ja) リチウムイオン二次電池、車両及び電池搭載機器
WO2013161549A1 (ja) 溶融塩電池システム
US20220149490A1 (en) Secondary battery, battery pack, electronic device, electric tool, and electric vehicle
JP6954213B2 (ja) 充填部材、組電池及び熱伝達の制御方法
KR20220049142A (ko) 전기 차량용 배터리의 열폭주 감지 장치
KR102057114B1 (ko) 예비 절단선이 형성된 파우치형 이차전지
US10283980B2 (en) Electrical storage system
JP2013101788A (ja) 非水電解液二次電池システム
KR101590672B1 (ko) 초음파 용접장치 및 초음파 용접장치를 이용하여 이차전지를 제조하는 방법
KR101810286B1 (ko) 2차 전지
KR20200065882A (ko) 안전성이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2023112766A1 (ja) 電源システム及び電源システムの制御方法
JP2005063736A (ja) 薄型電池の異常検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158738.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010543337

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132376

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843346

Country of ref document: EP

Kind code of ref document: A1