WO2010117056A1 - 光硬化性樹脂及び光硬化性樹脂組成物 - Google Patents

光硬化性樹脂及び光硬化性樹脂組成物 Download PDF

Info

Publication number
WO2010117056A1
WO2010117056A1 PCT/JP2010/056444 JP2010056444W WO2010117056A1 WO 2010117056 A1 WO2010117056 A1 WO 2010117056A1 JP 2010056444 W JP2010056444 W JP 2010056444W WO 2010117056 A1 WO2010117056 A1 WO 2010117056A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
photocurable resin
meth
epoxy
Prior art date
Application number
PCT/JP2010/056444
Other languages
English (en)
French (fr)
Inventor
貴幸 中条
大地 岡本
信人 伊藤
聖夫 有馬
義章 村田
Original Assignee
太陽インキ製造株式会社
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社, Dic株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020117023559A priority Critical patent/KR101296452B1/ko
Priority to CN2010800161658A priority patent/CN102388077B/zh
Publication of WO2010117056A1 publication Critical patent/WO2010117056A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/026Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight
    • C08F299/028Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from the reaction products of polyepoxides and unsaturated monocarboxylic acids, their anhydrides, halogenides or esters with low molecular weight photopolymerisable compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6407Reaction products of epoxy resins with at least equivalent amounts of compounds containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer

Definitions

  • the present invention relates to a photocurable resin capable of forming a cured product excellent in photocurability, heat resistance, adhesion and flexibility, and a composition containing the same.
  • Photocurable resins are used in large quantities in adhesives, printing inks, various coating agents, etc., from the viewpoint of rapid curing and energy saving. Further, as a photoresist mixed with a carboxyl group-containing resin to impart alkali developability, it is used as a circuit forming resist, a plating resist, a solder resist, etc. in printed circuit board applications. In addition, it is used as a color filter, black matrix, and overcoat agent in flat panel display applications.
  • UV curable resins are generally polyester acrylate, epoxy acrylate, urethane acrylate, etc. (see, for example, Patent Documents 1 to 3), and most of them are liquid compounds from the viewpoint of fast curing.
  • a form of resin is surely imparted with fast curability, but has a problem in heat resistance such as reflow resistance and solder heat resistance, which are characteristics required for many electronic materials.
  • the fast-curing resin generally has significant curing shrinkage, and the resulting cured product is brittle and has poor adhesion.
  • adhesion is a property that is strongly required for adhesives, printing inks, various coating agents, etc., and development of (meth) acrylate resins that combine these heat resistance and adhesion It has been demanded.
  • Lactic acid is not a compound derived from petroleum resources, but fermented lactic acid obtained by fermentation of natural products can be used.
  • the molecule has a functional group that can be easily chemically modified, such as a carboxyl group and a hydroxyl group, various molecular designs are possible. Furthermore, depending on the molecular design, it becomes possible to increase the proportion of the carbon derived from natural products, so that a very environmentally friendly material can be provided.
  • the present invention is an environment-friendly light by using lactic acid as one of the starting materials, and is capable of forming a cured product having excellent UV curability and excellent heat resistance, adhesion, and flexibility. It aims at providing the curable resin and the photocurable resin composition containing the same.
  • an epoxy compound (a), lactic acid or polylactic acid (b), and a (meth) acrylic monomer (c) having an acid group or an isocyanate group are provided.
  • (meth) acrylic is a term that collectively refers to acrylic, methacrylic, and mixtures thereof, such as (meth) acryloyloxy group, (meth) acrylic acid, (meth) acrylate, and others. The same applies to the similar expressions.
  • the photocurable resin has a structural portion represented by the following general formula (II) as an essential repeating unit.
  • Ac represents a (meth) acryloyloxy group
  • R 2 represents a carbonyloxy group or a nodule containing a urethane bond
  • fc represents a hydroxyl group or a (meth) acryloyloxy group
  • R 3 has 1 carbon atom.
  • the nodule site having a carbonyloxy group represented by R 2 or a urethane bond is represented by the following general formula a1, a2, or a3.
  • R 4 is an alkylene group having 1 to 10 carbon atoms
  • R 5 is a hydrocarbon group having 1 to 20 carbon atoms
  • R 6 is an alkylene group having 1 to 30 carbon atoms
  • R 7 is carbon. Represents an alkylene group having 1 to 10 atoms.
  • the photocurable resin has an average of 0.1 to 2.0 (meth) acryloyloxy groups per molecule of the epoxy compound.
  • the epoxy compound (a) is an epoxy resin (a ′) having two or more epoxy groups in one molecule, and a (meth) acrylic monomer having an acid group or an isocyanate group.
  • (C) is (meth) acrylic acid and has a molecular structure obtained by reacting (meth) acrylic acid with a hydroxyl group-containing resin that is a reaction product of the epoxy resin (a ′) and lactic acid. Have.
  • the epoxy compound (a) is an epoxy resin (a ′) having two or more epoxy groups in one molecule, and a (meth) acrylic monomer having an acid group or an isocyanate group.
  • the body (c) is (meth) acryloylalkyl isocyanate, and the (meth) acryloylalkylisocyanate is added to a hydroxyl group-containing resin which is a reaction product of the epoxy resin (a ′) and lactic acid or polylactic acid (b). Has a structure obtained by reacting.
  • the epoxy compound (a) is an epoxy resin (a ′) having two or more epoxy groups in one molecule, and the epoxy resin (a ′) and lactic acid or It has a molecular structure obtained by reacting a hydroxyl group-containing resin, which is a reaction product with polylactic acid (b), with a reaction product of an acid anhydride or a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate monomer.
  • the carboxyl group containing photocurable resin formed by making an acid anhydride (d) react with an above described photocurable resin is also provided.
  • a photocurable resin composition is provided.
  • other carboxyl group-containing resin (C) other than the said carboxyl group-containing photocurable resin (A ') is further contained, or also a thermosetting component (D). Containing.
  • the photocurable resin of the present invention is an essential monomer comprising an epoxy compound (a), lactic acid or polylactic acid (b), and a (meth) acrylic monomer (c) having an acid group or an isocyanate group. It is obtained by reacting as a component, and is environmentally friendly by using lactic acid as one of the starting materials, and has a structural site represented by the general formula (I) as an essential repeating unit. A cured product having excellent curability and excellent heat resistance, adhesion and flexibility can be formed.
  • the photocurable resin of the present invention is a (meth) acrylic monomer (c) having an acid group or an isocyanate group at the terminal hydroxyl group generated by the reaction between the epoxy compound (a) and lactic acid or polylactic acid (b). It can be easily obtained by reacting these functional groups. In this manner, the unsaturated double bond of the (meth) acrylic monomer (c) is introduced into the site away from the main chain of the resin via the lactic acid skeleton, thereby exhibiting excellent photoreactivity. Along with the introduction of the lactic acid skeleton, hydrophilicity is improved, and a cured product having adhesion and flexibility is obtained.
  • the lactic acid content can be greatly increased, and an environment-friendly photocurable resin can be obtained.
  • heat resistance can be imparted by selectively reacting an epoxy compound capable of reacting with lactic acid.
  • an epoxy resin can be easily used as a material capable of selectively reacting with lactic acid and imparting heat resistance.
  • a polyfunctional cresol-novolak type epoxy resin is used as the component (a)
  • lactic acid is used as the component (b)
  • 2-acryloyloxyethyl isocyanate is used as the component (c)
  • a light represented by the following formula: A curable resin is obtained.
  • a polyfunctional cresol-novolak type epoxy resin is used as the component (a)
  • lactic acid is used as the component (b)
  • a reaction product of a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate monomer as the component e.g., isophorone diisocyanate and
  • a reaction product with hydroxyethyl (meth) acrylate is used, it is considered that a photocurable resin as shown in the following formula is obtained.
  • the total number of repeating units a and b shown in each structural formula, the total number of c, d and e, the total number of f and g, and the total number of h and i are the components (a) used. Although it is below the number of epoxy groups of the epoxy resin as, it can adjust arbitrarily according to the reaction ratio of the (b) component and the (c) component with respect to (a) component.
  • lactic acid or polylactic acid (b) and (meth) acrylic monomer (c) having an acid group or an isocyanate group are simultaneously reacted with the epoxy compound (a).
  • Either the method of reacting, or the method of reacting lactic acid or polylactic acid (b) first, and then reacting the (meth) acrylic monomer (c) having an acid group or an isocyanate group can be employed.
  • Such a reaction is usually carried out at about 50 to 150 ° C. in the presence or absence of an organic solvent as described later and in the presence of a polymerization inhibitor such as hydroquinone or oxygen.
  • a tertiary amine such as triethylamine, a quaternary ammonium salt such as triethylbenzylammonium chloride, an imidazole compound such as 2-ethyl-4-methylimidazole, a phosphorus compound such as triphenylphosphine is added as a catalyst as necessary. May be.
  • the proportion of each component in the reaction is 0.2 to 1.1 for the carboxyl group of the lactic acid or polylactic acid (b) with respect to 1 equivalent of the epoxy group of the epoxy compound (a).
  • the total of the hydroxyl group produced by the reaction of the epoxy group of component (a) and the carboxyl group of component (b) and the residual hydroxyl group of lactic acid or polylactic acid (b) is 1 equivalent, and the acid group or isocyanate group is
  • the proportion of the acid group or isocyanate group of the (meth) acrylic monomer (c) is preferably 0.05 to 1.0 equivalent.
  • the photocurable resin (A) thus obtained preferably has 0.1 to 2.0 equivalents of (meth) acryloyloxy groups with respect to 1 equivalent of epoxy groups finally.
  • the weight average molecular weight of the photocurable resin (A) obtained by the above reaction varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, more preferably 5,000 to 100,000. Those are preferred. When the weight average molecular weight is less than 2,000, the tack-free performance of the coating film may be inferior, the moisture resistance of the coating film after exposure may be poor, the film may be reduced during development, and the resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, the handling property may be deteriorated or the storage stability may be deteriorated.
  • the weight average molecular weight can be measured, for example, by GPC under the following conditions.
  • Measuring device “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “H XL -L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G3000HXL” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Measurement condition: Column temperature: 40 ° C Developing solvent: Tetrahydrofuran Flow rate: 1.0 ml / min
  • the double bond equivalent of the said photocurable resin (A) is 100 g / equivalent or more and 1000 g / equivalent or less. 100 g / equivalent or more and 600 g / equivalent or less are preferable from the point of making photocurability favorable. From the viewpoint of improving flexibility, the double bond equivalent is preferably 500 g / equivalent or more.
  • Examples of the epoxy compound (a) used for the synthesis of the photocurable resin (A) include 2-hydroxyethyl (meth) acrylate glycidyl ether, 2-hydroxypropyl (meth) acrylate glycidyl ether, 3-hydroxypropyl ( (Meth) acrylate glycidyl ether, 2-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, 2-hydroxypentyl (meth) acrylate glycidyl ether, 6-hydroxyhexyl (meth) acrylate glycidyl ether or Epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth) acrylate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol Type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, biphenol type epoxy resin, bix
  • Copolymer-type epoxies such as glycidylamine compounds, alicyclic epoxy resins such as 3,4-epoxycyclohexanecarboxylate, copolymers of glycidyl methacrylate and styrene and methyl methacrylate, and copolymers of glycidyl methacrylate and cyclohexylmaleimide
  • alicyclic epoxy resins such as 3,4-epoxycyclohexanecarboxylate
  • copolymers of glycidyl methacrylate and styrene and methyl methacrylate and copolymers of glycidyl methacrylate and cyclohexylmaleimide
  • resins and epoxy resins can be mentioned.
  • lactic acid or polylactic acid (b) for example, Musashino lactic acid (registered trademark) F manufactured by Musashino Chemical Laboratory, Inc. can be preferably used. Also, a lactic acid oligomer having an appropriate repeating structure by dehydrating and condensing lactic acid between molecules may be used.
  • the (meth) acrylic monomer (c) having an acid group or an isocyanate group used for the synthesis of the photocurable resin (A) a (meth) acrylic monomer having an acid group (organic acid group) is used.
  • the body (c-1) and the (meth) acrylic monomer (c-2) having an isocyanate group can be used alone or in combination of two or more.
  • Examples of the (meth) acrylic monomer (c-1) having an acid group include acrylic acid, methacrylic acid, acrylic anhydride, methacrylic anhydride, crotonic acid, cinnamic acid, vinyl acetic acid, sorbic acid, (meth ) Polylactone (meth) acrylate obtained by reacting acrylic acid with ⁇ -caprolactone and molecular extension, and (meth) acrylic acid dimer can be used, and these can be used alone or in combination of two or more.
  • the (meth) acrylic monomer (c-2) having an isocyanate group may be an isocyanate compound having one isocyanate group and one or more ethylenically unsaturated groups in one molecule. It is not limited. Specific examples include (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, bis (acryloxymethyl) ethyl isocyanate, and modified products thereof.
  • Karenz MOI methacryloyloxyethyl isocyanate
  • Karenz AOI acryloyloxyethoxyethyl isocyanate
  • Karenz MOI-EG methacryloyloxyethoxyethyl isocyanate
  • Karenz MOI BM Karenz MOI isocyanate block
  • Karenz MOI-BP Karenz MOI isocyanate block
  • Karenz BEI (1,1-bis (acryloxymethyl) ethyl isocyanate
  • a half urethane compound of a compound having one hydroxyl group and one or more ethylenically unsaturated groups in one molecule and a diisocyanate such as isophorone diisocyanate, toluylene diisocyanate, tetramethylxylene diisocyanate, hexamethylene diisocyanate, etc.
  • a diisocyanate such as isophorone diisocyanate, toluylene diisocyanate, tetramethylxylene diisocyanate, hexamethylene diisocyanate, etc.
  • These (meth) acrylic monomers (c-2) having an isocyanate group can be used alone or in combination of two or more.
  • the hydroxyl group of the photocurable resin (A) obtained as described above is further reacted with an acid anhydride (d) to introduce a carboxyl group, thereby containing a carboxyl group that is soluble in an alkaline aqueous solution. It can also be set as a photocurable resin (A ′).
  • the amount of the acid anhydride (d) used is generally 0.1 to 1.0 mol, preferably containing the carboxyl group to be formed, with respect to 1 mol of the hydroxyl group of the photocurable resin (A).
  • the addition amount is such that the acid value of the photocurable resin (A ′) is about 20 to 200 mgKOH / g, more preferably 50 to 120 mgKOH / g.
  • the addition reaction of the acid anhydride (d) to the photocurable resin (A) is a polymerization of hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, etc. in the presence or absence of an organic solvent as described later.
  • the reaction is usually carried out at about 50 to 150 ° C. in the presence of an inhibitor.
  • a tertiary amine such as triethylamine, a quaternary ammonium salt such as triethylbenzylammonium chloride, an imidazole compound such as 2-ethyl-4-methylimidazole, a phosphorus compound such as triphenylphosphine, naphthenic acid, laurin Metal salts of organic acids such as lithium, chromium, zirconium, potassium, and sodium such as acid, stearic acid, oleic acid, and octoenoic acid may be added as a catalyst. These catalysts can be used alone or in admixture of two or more.
  • Examples of the acid anhydride (d) include methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, nadic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, methylendo Alicyclic dibasic acid anhydrides such as methylenetetrahydrophthalic anhydride and tetrabromophthalic anhydride; succinic anhydride, maleic anhydride, itaconic anhydride, octenyl succinic anhydride, pentadodecenyl succinic anhydride, phthalic anhydride, trimellitic anhydride Aliphatic or aromatic dibasic acid anhydrides such as acid, or biphenyltetracarboxylic dianhydride, diphenyl ether tetracarboxylic dianhydride, butanetetracarboxylic
  • a curable resin composition can be obtained.
  • the photopolymerization initiator, photoinitiator assistant and sensitizer that can be suitably used in the photocurable resin composition of the present invention include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, A xanthone compound etc. can be mentioned.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • acetophenone compound examples include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, and 1,1-dichloroacetophenone.
  • anthraquinone compound examples include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, and 1-chloroanthraquinone.
  • thioxanthone compound examples include, for example, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone.
  • ketal compound examples include acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • benzophenone compound include, for example, benzophenone, 4-benzoyldiphenyl sulfide, 4-benzoyl-4′-methyldiphenyl sulfide, 4-benzoyl-4′-ethyldiphenyl sulfide, 4-benzoyl-4′-propyldiphenyl. Sulfide.
  • ⁇ -aminoacetophenone series acylphosphine oxide series, and oxime ester series.
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2- Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) ) Phenyl] -1-butanone, N, N-dimethylaminoacetophenone and the like.
  • Examples of commercially available products include Irgacure 907, Irgacure 369, and Irgacure 379 manufactured by Ciba Japan.
  • Examples of commercially available oxime ester initiators include CGI-325 manufactured by Ciba Japan, Irgacure OXE01, Irgacure OXE02, and N-1919 manufactured by Adeka.
  • Examples of the acylphosphine oxide initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2, Examples include 4,4-trimethyl-pentylphosphine oxide.
  • Commercially available products include Lucilin TPO manufactured by BASF, Irgacure 819 manufactured by Ciba Japan.
  • photopolymerization initiators are not limited to these as long as they generate radically active species upon irradiation with light and assist the growth species.
  • a conventionally known sensitizer can be used as the sensitizer which does not cause radical generation itself but has a sensitizing effect on the photopolymerization initiator.
  • the said photoinitiator and sensitizers can be used individually or in combination of 2 or more types.
  • a known and commonly used carboxyl group-containing resin (C) other than the carboxyl group-containing photocurable resin (A ′) is used for imparting alkali developability.
  • carboxyl group-containing resin (C) compounds listed below (any of oligomers and polymers) may be suitably used.
  • a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers
  • carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • bisphenol A type epoxy resin hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • a compound having one hydroxyl group and one or more (meth) acryl groups in the molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing photosensitive urethane resin.
  • one isocyanate group and one or more (meth) acryl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • a carboxyl group-containing photosensitive urethane resin obtained by adding a compound having a terminal (meth) acrylate.
  • a carboxyl group-containing photosensitive resin obtained by reacting a bifunctional or higher polyfunctional (solid) epoxy resin with (meth) acrylic acid and adding a dibasic acid anhydride to a hydroxyl group present in the side chain.
  • a carboxyl group-containing polyester resin obtained by reacting a difunctional oxetane resin with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acrylic groups in one molecule to the resins (1) to (8).
  • thermosetting component (D) can be added to the photocurable resin composition of the present invention in order to impart heat resistance.
  • thermosetting components used in the present invention include amine resins such as melamine resins and benzoguanamine resins, block isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfide resins, melamine derivatives, and the like.
  • a curable resin can be used.
  • Particularly preferred is a thermosetting component (D) having two or more cyclic ether groups and / or cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in the molecule.
  • thermosetting component (D) having two or more cyclic (thio) ether groups in such a molecule is either a three-, four- or five-membered cyclic ether group or a cyclic thioether group in the molecule.
  • a compound having two or more two types of groups for example, a compound having at least two epoxy groups in the molecule, that is, a polyfunctional epoxy compound (D-1), at least two oxetanyl in the molecule
  • polyfunctional epoxy compound (D-1) for example, jER828, jER834, jER1001, jER1004 manufactured by Japan Epoxy Resin, Epicron 840, Epicron 850, Epicron 1050, Epicron 2055, manufactured by Tohto Kasei Co., Ltd. Epototo YD-011, YD-013, YD-127, YD-128, D.C. E. R. 317, D.E. E. R. 331, D.D. E. R. 661, D.D. E. R. 664, Ciba Japan's Araldide 6071, Araldide 6084, Araldide GY250, Araldide GY260, Sumitomo Chemical Co., Ltd.
  • A. E. R. Novolak type epoxy resins such as ECN-235, ECN-299, etc. (both trade names); Epicron 830 manufactured by DIC, jER807 manufactured by Japan Epoxy Resin, Epotote YDF-170, YDF-175, YDF-175 manufactured by Toto Kasei 2004, Bisphenol F type epoxy resin such as Araldide XPY306 manufactured by Ciba Japan Co., Ltd.
  • Hydrogenated bisphenol such as Epototo ST-2004, ST-2007, ST-3000 (trade names) manufactured by Tohto Kasei Co., Ltd.
  • Type A epoxy resin jER604 manufactured by Japan Epoxy Resin, Epototo YH-434 manufactured by Tohto Kasei Co., Ltd., Araldide MY720 manufactured by Ciba Japan, Sumi-epoxy ELM-120 manufactured by Sumitomo Chemical Co., Ltd.
  • Glycidylamine type epoxy resin Glycidylamine type epoxy resin
  • Hydantoin type epoxy resin such as Araldide CY-350 (trade name) manufactured by Bread
  • Celoxide 2021 manufactured by Daicel Chemical Industries and alicyclic epoxy such as Araldide CY175 and CY179 manufactured by Ciba Japan Resin
  • Japan Epoxy Resin YL-6056, YX-4000, YL-6121 all trade names
  • Bisphenol S type epoxy resins such as xylenol type or biphenol type epoxy resins or mixtures thereof; EBPS-200 manufactured by Nippon Kayaku Co., Ltd., EPX-30 manufactured by Asahi Denka Kogyo Co., Ltd., EXA-1514 (trade name) manufactured by DIC Co., Ltd .; Bisphenol A novolac type epoxy resin such as Epoxy Resin's jER157S (trade name); Tetraphenylolethane type such as Japan Epoxy Resin's jERYL-931, Ciba Japan's Araldide 163, etc.
  • Epoxy resin Aral made by Ciba Japan Heterocyclic epoxy resins such as id PT810, TEPIC manufactured by Nissan Chemical Industries, Ltd. (all trade names); diglycidyl phthalate resins such as Bremer DGT manufactured by NOF Corporation; tetraglycidyl xyleno such as ZX-1063 manufactured by Tohto Kasei Irethane resin; naphthalene group-containing epoxy resins such as Nippon Steel Chemical Co., Ltd. ESN-190, ESN-360, DIC Corporation HP-4032, EXA-4750, EXA-4700; DIC Corporation HP-7200, HP-7200H, etc.
  • Epoxy resin having a dicyclopentadiene skeleton Epoxy resin copolymerized with glycidyl methacrylate such as CP-50S, CP-50M manufactured by NOF Corporation; Copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate; Epoxy-modified polybutadiene rubber derivative (For example, Iseru Chemical Co. PB-3600, etc.), CTBN modified epoxy resin (e.g., Tohto Kasei Co. YR-102, YR-450, etc.) and others as mentioned, is not limited thereto.
  • These epoxy resins can be used alone or in combination of two or more. Among these, a novolac type epoxy resin, a heterocyclic epoxy resin, a bisphenol A type epoxy resin or a mixture thereof is particularly preferable.
  • Examples of the polyfunctional oxetane compound (D-2) include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3- In addition to polyfunctional oxetanes such as ethyl-3-oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane Alcohol and novolak resin, poly (p-
  • Examples of the compound (D-3) having two or more cyclic thioether groups in the molecule include bisphenol A type episulfide resin YL7000 manufactured by Japan Epoxy Resins. Moreover, episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
  • the compounding amount of the thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule is the photocurable resin (A) and / or the carboxyl group-containing photocurable resin (A ′).
  • a range of 5 to 70 parts by mass, and more preferably 10 to 50 parts by mass is appropriate for 100 parts by mass (the total amount when two or more are used).
  • carboxyl groups remain in the cured coating film, resulting in heat resistance, alkali resistance, and electrical insulation. This is not preferable because the properties are reduced.
  • the above range is exceeded, the low molecular weight cyclic (thio) ether group remains in the dry coating film, which is not preferable because the strength of the coating film decreases.
  • thermosetting component (D) having two or more cyclic (thio) ether groups it is preferable to contain a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., and U-CAT (registered by San Apro). Trademarks) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), and the like.
  • thermosetting catalyst for epoxy resins or oxetane compounds or a catalyst that promotes the reaction of epoxy groups and / or oxetanyl groups with carboxyl groups, either alone or in combination of two or more. Can be used.
  • thermosetting catalysts is sufficient in a normal quantitative ratio, and for example, at least one selected from the group consisting of the photocurable resin (A) and the carboxyl group-containing photocurable resin (A ′).
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 100 parts by mass of the photocurable resin or thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule. To 15.0 parts by mass.
  • thermosetting component isocyanate compounds and blocked products thereof, bismaleimide compounds, oxazine compounds, carbodiimide resins, and the like, particularly those that selectively react with a hydroxyl group or a carboxyl group are preferable. Can be used without any particular restrictions.
  • the curable resin composition of the present invention can be blended with a compound having one or more ethylenically unsaturated groups in the molecule.
  • a compound having one or more ethylenically unsaturated groups in the molecule various compounds can be used in order to optimize the hardness, flexibility and the like of the obtained cured product, and in particular, two or more ethylenic groups in one molecule from the viewpoint of photocurability. Those having an unsaturated group are preferred.
  • glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate, and the like.
  • Polyhydric acrylates such as polyhydric alcohols or their ethylene oxide adducts or propylene oxide adducts; Phenoxy acrylate, bisphenol A diacrylate, and polyhydric acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols Glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycy Ethers, polyvalent acrylates of glycidyl ethers such as triglycidyl isocyanurate; and melamine acrylate, and / or the like each methacrylates corresponding to the acrylates.
  • an epoxy acrylate resin obtained by reacting acrylic acid with a polyfunctional epoxy resin such as a cresol novolac type epoxy resin, and further, a hydroxy acrylate such as pentaerythritol triacrylate and a diisocyanate such as isophorone diisocyanate on the hydroxyl group of the epoxy acrylate resin.
  • An epoxy urethane acrylate compound obtained by reacting a half urethane compound can also be used.
  • the photocurable resin composition of the present invention can contain a colorant.
  • a colorant conventionally known colorants such as black, white, red, blue, green and yellow can be used, and any of pigments, dyes and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
  • a filler can be blended as necessary in order to increase the physical strength of the coating film.
  • known and commonly used inorganic or organic fillers can be used.
  • barium sulfate, spherical silica and talc are preferably used.
  • metal hydroxides such as titanium oxide, metal oxide, and aluminum hydroxide can be used as extender pigment fillers.
  • the photo-curable resin composition of the present invention further contains, as necessary, known and commonly used thermal polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, and phenothiazine, finely divided silica, organic bentonite, and montmorillonite.
  • thermal polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, and phenothiazine, finely divided silica, organic bentonite, and montmorillonite.
  • Known and commonly used thickeners silicone-based, fluorine-based and polymer-based antifoaming agents and / or leveling agents, imidazole-based, thiazole-based, triazole-based silane coupling agents, antioxidants, rust inhibitors, etc.
  • the known and conventional additives such as can be blended.
  • the photocurable resin composition of the present invention dissolves the photocurable resin (A), the carboxyl group-containing photocurable resin (A ′), and the photosensitive (meth) acrylate compound.
  • an organic solvent can be blended.
  • organic solvent examples include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol Glycol ethers such as monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol Acetic acid ester such as monomethyl ether acetate and dipropylene glycol monomethyl ether acetate Le acids; ethanol, propanol, ethylene glycol,
  • the photocurable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using, for example, the organic solvent, and on a substrate, a dip coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method. It can be applied by a method such as curtain coating. Thereafter, a tack-free coating film can be formed by volatile drying (temporary drying) of the organic solvent contained in the composition at a temperature of about 60 to 100 ° C. Moreover, it can also be set as the dry film form which apply
  • the active energy rays are irradiated.
  • a cured product can be easily obtained.
  • the exposed portion is cured.
  • it is selectively exposed with active energy rays through a photomask on which a pattern is formed by a contact type or non-contact method, or by a laser direct exposure machine.
  • Direct pattern exposure is performed, and an unexposed portion is developed with a dilute alkaline aqueous solution (for example, 0.3 to 3% sodium carbonate aqueous solution) to form a resist pattern.
  • a dilute alkaline aqueous solution for example, 0.3 to 3% sodium carbonate aqueous solution
  • thermosetting component (D) for example, by heating to a temperature of about 140 to 200 ° C. and thermosetting, the hydroxyl group or carboxyl group of the photocurable resin (A) is obtained.
  • the photocurable resin (A ′) carboxyl group reacts with the thermosetting component (D) having two or more cyclic ether groups and / or cyclic thioether groups in the molecule, and heat resistance, chemical resistance, A cured coating film excellent in various properties such as moisture absorption resistance, adhesion, and electrical characteristics can be formed.
  • thermosetting component (D) even when the thermosetting component (D) is not contained, by performing heat treatment, the ethylenically unsaturated bond remaining in an unreacted state at the time of exposure undergoes thermal radical polymerization, and the coating film characteristics are improved.
  • heat treatment thermosetting
  • the base material examples include printed circuit boards and flexible printed circuit boards that are pre-formed with a circuit, paper-phenol resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, glass cloth / non-woven cloth-epoxy resin. , Glass cloth / paper-epoxy resin, synthetic fiber-epoxy resin, copper-clad laminates of all grades (FR-4 etc.) using polyimide, polyethylene, PPO, cyanate ester, etc., polyimide film, PET A film, a glass substrate, a ceramic substrate, a silicon wafer plate, or the like can be used.
  • the volatile drying performed after applying the photocurable resin composition of the present invention can be performed using a hot-air circulating drying furnace, an IR furnace, a hot plate, a convection oven, or the like.
  • an exposure machine used for the active energy ray irradiation a conveyor type exposure machine capable of irradiating an active energy ray, or an ultraviolet exposure device or a direct drawing device (in which a high-pressure mercury lamp or a metal halide lamp is mounted when pattern formation is performed)
  • a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer can be used.
  • the active energy ray may be any one of a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gas laser, a solid state laser, and a semiconductor laser as long as light having a maximum wavelength in the range of 350 to 410 nm is used.
  • the exposure amount varies depending on the film thickness and the like, but can be generally in the range of 5 to 800 mJ / cm 2 , preferably 10 to 500 mJ / cm 2 , more preferably 10 to 300 mJ / cm 2 .
  • an appropriate method such as a dipping method, a shower method, a spray method, or a brush method can be employed as the development method.
  • an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines and the like can be used.
  • Resin synthesis example 1 In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 100 g of diethylene glycol monoethyl ether acetate and cresol novolac type epoxy resin (manufactured by DIC Corporation, EPICLON N-680, softening point 82 ° C., epoxy equivalent 211) 211 g (1.0 mol), 90% lactic acid (manufactured by Musashino Chemical Laboratory, Musashino lactic acid 90F, purity 90%) 100 g (1.0 mol as lactic acid), 1.51 g of di-t-butylhydroxytoluene and hydroquinone 0.15 g was charged and heated to 100 ° C. to dissolve uniformly.
  • diethylene glycol monoethyl ether acetate and cresol novolac type epoxy resin manufactured by DIC Corporation, EPICLON N-680, softening point 82 ° C., epoxy equivalent 2111
  • 90% lactic acid manufactured by Musashin
  • Resin synthesis example 2 In a flask equipped with a thermometer, a stirrer and a reflux condenser, 147 g of diethylene glycol monoethyl ether acetate and cresol novolac type epoxy resin (manufactured by DIC Corporation, EPICLON N-680, softening point 82 ° C., epoxy equivalent 211) 211 g (1.0 mol), lactic acid oligomer intermediate (X-1) 216 g (0.8 mol), acrylic acid 14.4 g (0.2 mol), di-t-butylhydroxytoluene 2.21 g and hydroquinone 0. 22 g was charged and heated to 100 ° C. to dissolve uniformly.
  • the double bond equivalent of the solid content was 576, and the lactic acid content was 40%.
  • This is called resin varnish 2.
  • the infrared absorption spectrum (measured using a Fourier transform infrared spectrophotometer FT-IR) of the obtained photocurable resin is shown in FIG. 3, the nuclear magnetic resonance spectrum (solvent CDCl 3 , reference material TMS (tetramethylsilane) )) Is shown in FIG.
  • Resin synthesis example 3 In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 100 g of diethylene glycol monoethyl ether acetate and cresol novolac type epoxy resin (manufactured by DIC Corporation, EPICLON N-680, softening point 82 ° C., epoxy equivalent 211) 211 g (1.0 mol), 90% lactic acid (manufactured by Musashino Chemical Laboratory, Musashino lactic acid 90F, purity 90%) 100 g (1.0 mol as lactic acid), 1.51 g of di-t-butylhydroxytoluene and hydroquinone 0.15 g was charged and heated to 100 ° C. to dissolve uniformly.
  • diethylene glycol monoethyl ether acetate and cresol novolac type epoxy resin manufactured by DIC Corporation, EPICLON N-680, softening point 82 ° C., epoxy equivalent 2111
  • 90% lactic acid manufactured by Musashin
  • Resin synthesis example 4 In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 187 g (1.0 mol) of diethylene glycol monoethyl ether acetate 30.8 g, bisphenol A type epoxy resin (DIC Corporation, EPICLON 850, epoxy equivalent 187) ), 90 g lactic acid (manufactured by Musashino Chemical Laboratory, Musashino lactic acid 90F, purity 90%) 100 g (1.0 mol as lactic acid), 1.39 g di-t-butylhydroxytoluene and 0.14 g hydroquinone And heated to 90 ° C. to dissolve uniformly.
  • Resin synthesis example 5 In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 187 g (1.0 mol) of diethylene glycol monoethyl ether acetate 30.8 g, bisphenol A type epoxy resin (DIC Corporation, EPICLON 850, epoxy equivalent 187) ), 90 g lactic acid (manufactured by Musashino Chemical Laboratory, Musashino lactic acid 90F, purity 90%) 100 g (1.0 mol as lactic acid), 1.39 g di-t-butylhydroxytoluene and 0.14 g hydroquinone And heated to 90 ° C. to dissolve uniformly.
  • Resin varnish 6 A carboxyl group-containing modified cresol novolac epoxy acrylate (DICLITE UE-9210, solid content acid value 82.9 mgKOH / g, solid content 62%, solid content double bond equivalent 361) manufactured by DIC Corporation was used.
  • Examples 1 to 5 and Comparative Examples 1 to 3 Each component shown in Table 1 was blended, stirred and dissolved at the ratio shown in Table 1 to obtain a photocurable resin composition.
  • a photocurable resin composition was applied onto a PET film using an applicator.
  • Examples 1 to 5 and Comparative Example 1 were dried at 80 ° C. for 20 minutes after coating. After coating, the PET film is closely adhered to the photocurable resin composition, and the composition is cured by irradiating with a metal halide lamp with an integrated light amount of 1000 mJ / cm 2 to cure to a target film thickness of about 15 to 20 ⁇ m. A coating film was obtained.
  • Rubbing test For the purpose of testing the curability of the cured product, a rubbing test for rubbing the cured product with a waste cloth containing acetone was performed 50 times. A case where the surface was not dissolved was judged to be sufficiently cured, and a case where slight dissolution was observed in the table was evaluated as x.
  • the cured product obtained by curing the photocurable resin composition of the present invention is a polyester acrylate based on the state of the cured coating film, the rubbing test, and the heat resistance test. It can be seen that they have the same curability and heat resistance as epoxy acrylates. Furthermore, since lactic acid is used as a raw material, an environment-friendly photocurable resin composition can be provided by increasing the ratio of the naturally derived carbon.
  • Characteristic test The photosensitive resin compositions of Examples and Comparative Examples were applied on a glass substrate by a screen printing method so as to have a film thickness of about 20 ⁇ m, and dried for 60 minutes in a hot air circulation drying oven at 80 ° C. After drying, exposure was carried out at an optimum exposure amount, and development was carried out for 60 seconds under a spray pressure of 0.2 MPa with a 1 wt% sodium carbonate aqueous solution at 30 ° C. to obtain a photosensitive pattern. Thereafter, it was cured by heating at 150 ° C. for 60 minutes. The following characteristics evaluation was performed with respect to the obtained cured coating film.
  • ⁇ Adhesion> The cured coating film produced on the glass substrate by the above method was cross-cut in a grid pattern according to a conventional method, and then the remaining number of grids after the peeling test using a cellophane adhesive tape was evaluated according to the following criteria.
  • the cured product obtained by curing the photocurable resin composition of the present invention has superior characteristics compared to conventional polyester acrylates and epoxy acrylates. It became clear. Surprisingly, it was found that the resin having a lactic acid skeleton introduced does not greatly deteriorate developability as compared with Comparative Example 4 and Comparative Example 5. This is presumably because the hydrophilicity was improved by introducing the lactic acid skeleton. Furthermore, it became clear that the cured coating film which has the outstanding photoreactivity, and has adhesiveness and a softness
  • the photocurable resin and the photocurable resin composition containing the same according to the present invention can be used for various adhesives, printing inks, coating agents, and in particular, photoresists and resists for circuit formation for printed boards. It can be advantageously used as a plating resist or a solder resist. In addition, it can be used for color filters, black matrices, overcoat agents, etc. for flat panel displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

 光硬化性樹脂(A)は、下記一般式(I)で表される分子構造を有する。また、カルボキシル基含有光硬化性樹脂(A')は、光硬化性樹脂(A)に酸無水物(d)を反応させてなるものである。光硬化性樹脂組成物は、該光硬化性樹脂(A)及び/又はカルボキシル基含有光硬化性樹脂(A')、及び光重合開始剤(B)を必須成分として含有する。 (式中、Acは(メタ)アクリロイルオキシ基、Rはエポキシ化合物(a)のエポキシ基が開環して形成されるエチレン基を含む該化合物(a)の残基、Rはカルボニルオキシ基又はウレタン結合を含有する結節部位を表し、nは1~99の整数、mは0又は1を示す。)

Description

光硬化性樹脂及び光硬化性樹脂組成物
 本発明は、光硬化性、耐熱性、密着性及び柔軟性に優れた硬化物を形成できる光硬化性樹脂及びそれを含有する組成物に関する。
 光硬化性樹脂、中でもUV硬化性樹脂は、速硬化、省エネルギーの観点から、接着剤、印刷インキ、各種コーティング剤などに大量に使用されている。また、カルボキシル基含有樹脂と混合してアルカリ現像性を付与したフォトレジストとして、プリント基板用途では回路形成用レジストや、めっきレジスト、ソルダーレジストなどとして利用されている。その他、フラットパネルディスプレイ用途ではカラーフィルターやブラックマトリックス、オーバーコート剤として利用されている。
 これらUV硬化性樹脂としてはポリエステルアクリレート、エポキシアクリレート、ウレタンアクリレート等が一般的であり(例えば、特許文献1~3参照)、そのほとんどが速硬化性の観点から液状の化合物である。しかしながら、このような形態の樹脂は、確かに速硬化性が付与される反面、多くの電子材料に求められる特性であるリフロー耐性や、はんだ耐熱性といった耐熱特性に問題を残すケースが多い。また、速硬化性樹脂は、一般的に硬化収縮が著しく、得られる硬化物が脆く、密着性が劣る。速硬化性、耐熱性に加えて、密着性は、接着剤、印刷インキ、各種コーティング剤などに強く求められる特性であり、これらの耐熱性と密着性を兼ね備えた(メタ)アクリレート樹脂の開発が求められている。
 一方、近年、環境をテーマとした問題が多く取り上げられている。最近では石油資源由来の化合物ではなく、新しい天然物由来の材料が注目されている。その中でも本発明者らは乳酸に注目した。乳酸は石油資源由来の化合物ではなく、天然物の発酵により得られる発酵乳酸を使用することができる。また、分子中にカルボキシル基、ヒドロキシル基といった容易に化学修飾可能な官能基を有していることから、様々な分子設計が可能である。さらには、分子設計次第では天然物由来炭素の割合を多くすることが可能となる為、非常に環境に優しい材料を提供することができる。
特許第3446840号公報 特許第3543409号公報 特開2004-123780号公報
 本発明は、前記したような背景から、乳酸を出発原料の一つとして用いることにより環境に優しいと共に、UV硬化性に優れ、また耐熱性、密着性及び柔軟性に優れる硬化物を形成できる光硬化性樹脂及びそれを含有する光硬化性樹脂組成物を提供することを目的としている。
 前記目的を達成するために、本発明によれば、エポキシ化合物(a)と、乳酸又はポリ乳酸(b)と、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)とを必須の単量体成分として反応させて得られる、下記一般式(I)で表される、分子構造を有することを特徴とする光硬化性樹脂が提供される。
Figure JPOXMLDOC01-appb-C000004
(式中、Acは(メタ)アクリロイルオキシ基、Rはエポキシ化合物(a)のエポキシ基が開環して形成されるエチレン基を含む該化合物(a)の残基、Rはカルボニルオキシ基又はウレタン結合を含有する結節部位を表し、nは1~99の整数、mは0又は1を示す。)
 なお、本明細書において、(メタ)アクリル系とは、アクリル系、メタクリル系及びそれらの混合物を総称する用語であり、(メタ)アクリロイルオキシ基、(メタ)アクリル酸、(メタ)アクリレートや他の類似の表現についても同様である。
 好適な態様においては、前記光硬化性樹脂は、下記一般式(II)で表される構造部位を必須の繰り返し単位とする。
Figure JPOXMLDOC01-appb-C000005
(式中、Acは(メタ)アクリロイルオキシ基、Rはカルボニルオキシ基又はウレタン結合を含有する結節部位を表し、fcは水酸基又は(メタ)アクリロイルオキシ基を表し、Rは炭素原子数1~10の炭化水素基、nは1~99の整数、mは0又は1であり、破線部は他の構造単位との結合を示す。)
 より好適な態様においては、前記一般式(I)又は(II)中、Rで表されるカルボニルオキシ基又はウレタン結合を有する結節部位は、下記一般式a1、a2、又はa3で表されるものである。
Figure JPOXMLDOC01-appb-C000006
(上記各式中、Rは炭素原子数1~10のアルキレン基、Rは炭素原子数1~20の炭化水素基、Rは炭素原子数1~30のアルキレン基、Rは炭素原子数1~10のアルキレン基を表す。)
 別の好適な態様においては、前記光硬化性樹脂は、エポキシ化合物1分子あたり(メタ)アクリロイルオキシ基を平均0.1~2.0個有するものである。
 特に好適な態様においては、前記エポキシ化合物(a)は1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であり、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)は(メタ)アクリル酸であって、かつ、上記エポキシ樹脂(a’)と乳酸との反応生成物である水酸基含有樹脂に、(メタ)アクリル酸を反応させて得られる分子構造を有する。
 他の好適な態様においては、前記エポキシ化合物(a)は1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であり、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)は(メタ)アクリロイルアルキルイソシアネートであって、かつ、上記エポキシ樹脂(a’)と乳酸又はポリ乳酸(b)との反応生成物である水酸基含有樹脂に、(メタ)アクリロイルアルキルイソシアネートを反応させて得られる構造を有する。
 さらに他の好適な態様においては、前記エポキシ化合物(a)は1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であって、かつ、該エポキシ樹脂(a’)と乳酸又はポリ乳酸(b)との反応生成物である水酸基含有樹脂に、酸無水物又はポリイソシアネート化合物と水酸基含有(メタ)アクリレートモノマーの反応物を反応させて得られる分子構造を有する。
 また、本発明によれば、前記した光硬化性樹脂に、酸無水物(d)を反応させてなるカルボキシル基含有光硬化性樹脂も提供される。
 さらに本発明によれば、前記した光硬化性樹脂(A)及びカルボキシル基含有光硬化性樹脂(A’)よりなる群から選ばれた少なくとも1つの光硬化性樹脂、及び光重合開始剤(B)を必須成分として含有することを特徴とする光硬化性樹脂組成物が提供される。
 光硬化性樹脂組成物の好適な態様においては、前記カルボキシル基含有光硬化性樹脂(A’)以外の他のカルボキシル基含有樹脂(C)をさらに含有し、あるいはさらに熱硬化性成分(D)を含有する。
 本発明の光硬化性樹脂は、エポキシ化合物(a)と、乳酸又はポリ乳酸(b)と、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)とを必須の単量体成分として反応させて得られるものであり、乳酸を出発原料の一つとして用いたことにより環境に優しいと共に、前記一般式(I)で表される構造部位を必須の繰り返し単位としているため、UV硬化性に優れ、また耐熱性、密着性及び柔軟性に優れる硬化物を形成できる。
樹脂合成例1で製造された光硬化性樹脂のIRスペクトルを示すグラフである。 樹脂合成例1で製造された光硬化性樹脂の核磁気共鳴スペクトルを示すグラフである。 樹脂合成例2で製造された光硬化性樹脂のIRスペクトルを示すグラフである。 樹脂合成例2で製造された光硬化性樹脂の核磁気共鳴スペクトルを示すグラフである。 樹脂合成例3で製造された光硬化性樹脂のIRスペクトルを示すグラフである。 樹脂合成例3で製造された光硬化性樹脂の核磁気共鳴スペクトルを示すグラフである。 樹脂合成例4で製造された光硬化性樹脂のIRスペクトルを示すグラフである。 樹脂合成例4で製造された光硬化性樹脂の核磁気共鳴スペクトルを示すグラフである。 樹脂合成例5で製造された光硬化性樹脂のIRスペクトルを示すグラフである。 樹脂合成例5で製造された光硬化性樹脂の核磁気共鳴スペクトルを示すグラフである。
 本発明の光硬化性樹脂は、エポキシ化合物(a)と乳酸又はポリ乳酸(b)との反応により生じた末端水酸基に、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)のこれらの官能基を反応させることで容易に得ることができる。このようにして、乳酸骨格を介して(メタ)アクリル系単量体(c)の不飽和二重結合が樹脂の主鎖から離れた部位に導入されたことにより、優れた光反応性を示すと共に、乳酸骨格が導入されたことにより、親水性が向上し、密着性及び柔軟性を有する硬化物が得られる。また、分子設計次第では乳酸含有量を大幅に増大させることが可能であり、環境にやさしい光硬化性樹脂を得ることが可能となる。さらには、乳酸に反応可能なエポキシ化合物を選択的に反応させることで耐熱性を付与することができる。また、この際、乳酸に選択的に反応させ、耐熱性を付与することが可能なものとしてはエポキシ樹脂が容易である。
 以下、本発明の光硬化性樹脂についてより具体的に詳しく説明する。
 まず、(a)成分として多官能クレゾール-ノボラック型エポキシ樹脂を用い、(b)成分として乳酸、(c)成分として(メタ)アクリル酸を用いた場合には、下記式に示すような光硬化性樹脂が得られる。
Figure JPOXMLDOC01-appb-C000007
 また、(a)成分として多官能クレゾール-ノボラック型エポキシ樹脂を用い、(b)成分として乳酸、(c)成分として無水(メタ)アクリル酸を用いた場合には、下記式に示すような光硬化性樹脂が得られる。
Figure JPOXMLDOC01-appb-C000008
 さらに、(a)成分として多官能クレゾール-ノボラック型エポキシ樹脂を用い、(b)成分として乳酸、(c)成分として2-アクリロイルオキシエチルイソシアネートを用いた場合には、下記式に示すような光硬化性樹脂が得られる。
Figure JPOXMLDOC01-appb-C000009
 さらに、(a)成分として多官能クレゾール-ノボラック型エポキシ樹脂を用い、(b)成分として乳酸、(c)成分としてポリイソシアネート化合物と水酸基含有(メタ)アクリレートモノマーの反応物(例:イソホロンジイソシアネートとヒドロキシエチル(メタ)アクリレートとの反応物)を用いた場合には、下記式に示すような光硬化性樹脂が得られると考えられる。
Figure JPOXMLDOC01-appb-C000010
 なお、前記各々の構造式に示した繰り返し単位のaとbの合計数、c、d、eの合計数、fとgの合計数、hとiの合計数は、用いた(a)成分としてのエポキシ樹脂のエポキシ基の数以下であるが、(a)成分に対する(b)成分と(c)成分の反応比率に応じて任意に調整することができる。
 前記(a)成分乃至(c)成分の反応は、エポキシ化合物(a)に、乳酸又はポリ乳酸(b)と酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)を同時に反応させる方法、あるいはまず乳酸又はポリ乳酸(b)を反応させ、次いで酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)を反応させる方法のいずれも採用することができる。このような反応は、後述するような有機溶剤の存在下又は非存在下で、ハイドロキノンや酸素等の重合禁止剤の存在下、通常、約50~150℃で行う。このとき必要に応じて、トリエチルアミン等の三級アミン、トリエチルベンジルアンモニウムクロライド等の4級アンモニウム塩、2-エチル-4-メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン等のリン化合物等を触媒として添加してもよい。
 また、前記反応における各成分の割合(原料の仕込み割合)は、エポキシ化合物(a)のエポキシ基1当量に対して、前記乳酸又はポリ乳酸(b)のカルボキシル基が0.2~1.1当量となり、かつ、(a)成分のエポキシ基と(b)成分のカルボキシル基の反応により生じた水酸基と乳酸又はポリ乳酸(b)の残存水酸基の合計を1当量として、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)の酸基又はイソシアネート基が0.05~1.0当量となる割合が好ましい。乳酸又はポリ乳酸(b)のカルボキシル基がエポキシ化合物(a)のエポキシ1当量に対して0.2当量未満の割合では、前記した本発明の目的とする耐熱性と密着性、柔軟性向上の効果が充分に得られず、逆に1.1当量を超えて多量に用いても、理論的には1当量しか反応しないため、未反応で残存するこれらの化合物が多くなり、硬化物の物性を低下させる要因となるため好ましくない。
 このようにして得られた光硬化性樹脂(A)は、最終的にエポキシ基1当量に対して、0.1~2.0当量の(メタ)アクリロイルオキシ基を有することが好ましい。
 また、上記反応で得られる光硬化性樹脂(A)の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、さらには5,000~100,000の範囲にあるものが好ましい。重量平均分子量が2,000未満の場合、塗膜のタックフリー性能が劣ることがあり、露光後の塗膜の耐湿性が悪く、現像時に膜減りが生じ、解像度が大きく劣ることがある。一方、重量平均分子量が150,000を超えると、ハンドリング性が悪くなったり、貯蔵安定性が劣ることがある。尚、重量平均分子量は、例えば下記条件のGPC等で測定することが可能である。
 測定装置:東ソー(株)製「HLC-8220 GPC」、
 カラム:東ソー(株)製ガードカラム「HXL-L」
    +東ソー(株)製「TSK-GEL G2000HXL」
    +東ソー(株)製「TSK-GEL G2000HXL」
    +東ソー(株)製「TSK-GEL G3000HXL」
    +東ソー(株)製「TSK-GEL G4000HXL」
 検出器:RI(示差屈折計)
 測定条件:
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:1.0ml/分
 また、前記光硬化性樹脂(A)の二重結合当量は、100g/当量以上1000g/当量以下であることが好ましい。光硬化性を良好にする点からは100g/当量以上600g/当量以下が好ましい。また可撓性を良好にする点からは、二重結合当量を500g/当量以上にすることが好ましい。
 前記光硬化性樹脂(A)の合成に用いられるエポキシ化合物(a)としては、例えば、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、3-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、2-ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、6-ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテルもしくはグリシジル(メタ)アクリレート等のエポキシ基含有エチレン性不飽和モノマー類、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂などのグリシジルエーテル化合物;テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルなどのグリシジルエステル化合物;トリグリシジルイソシアヌレート、N,N,N’,N’-テトラグリシジルメタキシレンジアミン、N,N,N’,N’-テトラグリシジルビスアミノメチルシクロヘキサン、N,N-ジグリシジルアニリンなどのグリシジルアミン化合物、3,4-エポキシシクロへキサンカルボキシレート等の脂環型エポキシ樹脂、グリシジルメタクリレートとスチレンとメチルメタクリレートの共重合体、グリシジルメタクリレートとシクロヘキシルマレイミドとの共重合体等の共重合型エポキシ樹脂等の公知慣用のエポキシ化合物及びエポキシ樹脂が挙げられる。
 前記乳酸又はポリ乳酸(b)としては、例えば(株)武蔵野化学研究所製のムサシノ乳酸(登録商標)Fなどを好適に使用することができる。また、乳酸を分子間で脱水縮合させて適度な繰り返し構造を持った乳酸オリゴマーを使用してもよい。
 前記光硬化性樹脂(A)の合成に用いられる酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)としては、酸基(有機酸基)を有する(メタ)アクリル系単量体(c-1)及びイソシアネート基を有する(メタ)アクリル系単量体(c-2)を、単独で又は2種類以上を組み合わせて用いることができる。
 酸基を有する(メタ)アクリル系単量体(c-1)としては、アクリル酸、メタクリル酸、アクリル酸無水物、メタクリル酸無水物、クロトン酸、桂皮酸、ビニル酢酸、ソルビン酸、(メタ)アクリル酸にε-カプロラクトンを反応させ分子伸長したポリラクトン(メタ)アクリレートや、(メタ)アクリル酸ダイマーが挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 前記イソシアネート基を有する(メタ)アクリル系単量体(c-2)としては、1分子中に1個のイソシアネート基と1個以上のエチレン性不飽和基を有するイソシアネート化合物であればよく、特に限定されない。具体的な例としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルオキシエトキシエチルイソシアネート、ビス(アクリロキシメチル)エチルイソシアネートあるいはこれらの変性体等が挙げられる。市販品としては、「カレンズMOI」(メタクリロイルオキシエチルイソシアネート)、「カレンズAOI」(アクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI-EG」(メタクリロイルオキシエトキシエチルイソシアネート)、「カレンズMOI一BM」(カレンズMOIのイソシアネートブロック体)、「カレンズMOI-BP」(カレンズMOIのイソシアネートブロック体)、「カレンズBEI」(1,1-ビス(アクリロキシメチル)エチルイソシアネート)が、昭和電工(株)から市販されている。なお、これらの商品名は、いずれも登録商標である。さらには、1分子中に1個の水酸基と1個以上のエチレン性不飽和基を有する化合物と、イソホロンジイソシアネート、トルイレンジイソシアネート、テトラメチルキシレンジイソシアネート、ヘキサメチレンジイソシアネートなどのジイソシアネートとのハーフウレタン化合物も使用することができる。これらのイソシアネート基を有する(メタ)アクリル系単量体(c-2)は、単独で又は2種類以上を組み合わせて使用することができる。
 また、前記したようにして得られた光硬化性樹脂(A)の水酸基に対し、さらに酸無水物(d)を反応させてカルボキシル基を導入することにより、アルカリ水溶液に可溶のカルボキシル基含有光硬化性樹脂(A’)とすることもできる。この反応において、酸無水物(d)の使用量は、一般に、上記光硬化性樹脂(A)の水酸基1モルに対して0.1~1.0モルの割合、好ましくは生成するカルボキシル基含有光硬化性樹脂(A’)の酸価が約20~200mgKOH/g、より好ましくは50~120mgKOH/gとなるような付加量である。
 前記光硬化性樹脂(A)に対する酸無水物(d)の付加反応は、後述するような有機溶剤の存在下又は非存在下で、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤の存在下、通常、約50~150℃で行う。このとき必要に応じて、トリエチルアミン等の三級アミン、トリエチルベンジルアンモニウムクロライド等の4級アンモニウム塩、2-エチル-4-メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン等のリン化合物、ナフテン酸、ラウリン酸、ステアリン酸、オレイン酸やオクトエン酸のリチウム、クロム、ジルコニウム、カリウム、ナトリウム等の有機酸の金属塩などを触媒として添加してもよい。これらの触媒は、単独で又は2種類以上を混合して用いることができる。
 上記酸無水物(d)としては、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ナジック酸、3,6-エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸等の脂環式二塩基酸無水物;無水コハク酸、無水マレイン酸、無水イタコン酸、オクテニル無水コハク酸、ペンタドデセニル無水コハク酸、無水フタル酸、無水トリメリット酸等の脂肪族又は芳香族二塩基酸無水物、あるいはビフェニルテトラカルボン酸二無水物、ジフェニルエーテルテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物等の脂肪族又は芳香族四塩基酸二無水物が挙げられ、これらのうち1種又は2種以上を使用することができる。
 前記したようにして得られた本発明の光硬化性樹脂(A)及び/又はカルボキシル基含有光硬化性樹脂(A’)にさらに光重合開始剤(B)を加えることによって、本発明の光硬化性樹脂組成物を得ることができる。本発明の光硬化性樹脂組成物に好適に用いることができる光重合開始剤、光開始助剤及び増感剤としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、キサントン化合物等を挙げることができる。
 ベンゾイン化合物の具体例を挙げると、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルである。
 アセトフェノン化合物の具体例を挙げると、例えば、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノンである。
 アントラキノン化合物の具体例を挙げると、例えば、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノンである。
 チオキサントン化合物の具体例を挙げると、例えば、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントンである。
 ケタール化合物の具体例を挙げると、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタールである。
 ベンゾフェノン化合物の具体例を挙げると、例えば、ベンゾフェノン、4-ベンゾイルジフェニルスルフィド、4-ベンゾイル-4’-メチルジフェニルスルフィド、4-ベンゾイル-4’-エチルジフェニルスルフィド、4-ベンゾイル-4’-プロピルジフェニルスルフィドである。
 他にもα-アミノアセトフェノン系、アシルホスフィンオキサイド系、オキシムエステル系があり、具体的には2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノンなどが挙げられる。市販品ではチバ・ジャパン社製のイルガキュアー907、イルガキュアー369、イルガキュアー379などが挙げられる。オキシムエステル系開始剤の市販品としては、チバ・ジャパン社製のCGI-325、イルガキュアー OXE01、イルガキュアー OXE02、アデカ社製N-1919等が挙げられる。アシルホスフィンオキサイド系開始剤としては、例えば2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイドなどが挙げられる。市販品としては、BASF社製のルシリンTPO、チバ・ジャパン社製のイルガキュアー819などが挙げられる。
 上記に代表的な光重合開始剤類を示したが、光照射によりラジカル活性種を発生するもの、またその成長種の働きを助けるものであればこれらに限定されない。また、それ自身はラジカル発生を起こさないが上記光重合開始剤に対して増感効果のある増感剤も慣用公知のものを使用することができる。上記光重合開始剤及び増感剤類は、単独で又は2種類以上を組み合わせて使用することができる。
 また、本発明の光硬化性樹脂組成物には、アルカリ現像性付与のため、前記カルボキシル基含有光硬化性樹脂(A’)以外の他の公知慣用のカルボキシル基含有樹脂(C)を用いることができる。
 カルボキシル基含有樹脂(C)の具体例としては、以下に列挙するような化合物(オリゴマー及びポリマーのいずれでもよい)を好適に用いることができる。
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物及びポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
 (3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物及びジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。
 (4)前記(2)又は(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (5)前記(2)又は(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (6)2官能又はそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (8)2官能オキセタン樹脂にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
 (9)上記(1)~(8)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 本発明の光硬化性樹脂組成物には、耐熱性を付与するために、熱硬化性成分(D)を加えることができる。本発明に用いられる熱硬化成分としては、メラミン樹脂、ベンゾグアナミン樹脂などのアミン樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、多官能エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂、メラミン誘導体などの公知慣用の熱硬化性樹脂が使用できる。特に好ましいのは分子中に2個以上の環状エーテル基及び/又は環状チオエーテル基(以下、環状(チオ)エーテル基と略称する)を有する熱硬化性成分(D)である。
 このような分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)は、分子中に3、4又は5員環の環状エーテル基、又は環状チオエーテル基のいずれか一方又は2種類の基を2個以上有する化合物であり、例えば、分子中に少なくとも2つ以上のエポキシ基を有する化合物、すなわち多官能エポキシ化合物(D-1)、分子中に少なくとも2つ以上のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物(D-2)、分子中に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂(D-3)などが挙げられる。
 前記多官能エポキシ化合物(D-1)としては、例えば、ジャパンエポキシレジン社製のjER828、jER834、jER1001、jER1004、DIC社製のエピクロン840、エピクロン850、エピクロン1050、エピクロン2055、東都化成社製のエポトートYD-011、YD-013、YD-127、YD-128、ダウケミカル社製のD.E.R.317、D.E.R.331、D.E.R.661、D.E.R.664、チバ・ジャパン社のアラルダイド6071、アラルダイド6084、アラルダイドGY250、アラルダイドGY260、住友化学工業社製のスミ-エポキシESA-011、ESA-014、ELA-115、ELA-128、旭化成工業社製のA.E.R.330、A.E.R.331、A.E.R.661、A.E.R.664等(何れも商品名)のビスフェノールA型エポキシ樹脂;ジャパンエポキシレジン社製のjERYL903、DIC社製のエピクロン152、エピクロン165、東都化成社製のエポトートYDB-400、YDB-500、ダウケミカル社製のD.E.R.542、チバ・ジャパン社製のアラルダイド8011、住友化学工業社製のスミ-エポキシESB-400、ESB-700、旭化成工業社製のA.E.R.711、A.E.R.714等(何れも商品名)のブロム化エポキシ樹脂;ジャパンエポキシレジン社製のjER152、jER154、ダウケミカル社製のD.E.N.431、D.E.N.438、DIC社製のエピクロンN-730、エピクロンN-770、エピクロンN-865、東都化成社製のエポトートYDCN-701、YDCN-704、チバ・ジャパン社製のアラルダイドECN1235、アラルダイドECN1273、アラルダイドECN1299、アラルダイドXPY307、日本化薬社製のEPPN-201、EOCN-1025、EOCN-1020、EOCN-104S、RE-306、住友化学工業社製のスミ-エポキシESCN-195X、ESCN-220、旭化成工業社製のA.E.R.ECN-235、ECN-299等(何れも商品名)のノボラック型エポキシ樹脂;DIC社製のエピクロン830、ジャパンエポキシレジン社製jER807、東都化成社製のエポトートYDF-170、YDF-175、YDF-2004、チバ・ジャパン社製のアラルダイドXPY306等(何れも商品名)のビスフェノールF型エポキシ樹脂;東都化成社製のエポトートST-2004、ST-2007、ST-3000(商品名)等の水添ビスフェノールA型エポキシ樹脂;ジャパンエポキシレジン社製のjER604、東都化成社製のエポトートYH-434、チバ・ジャパン社製のアラルダイドMY720、住友化学工業社製のスミ-エポキシELM-120等(何れも商品名)のグリシジルアミン型エポキシ樹脂;チバ・ジャパン社製のアラルダイドCY-350(商品名)等のヒダントイン型エポキシ樹脂;ダイセル化学工業社製のセロキサイド2021、チバ・ジャパン社製のアラルダイドCY175、CY179等(何れも商品名)の脂環式エポキシ樹脂;ジャパンエポキシレジン社製のYL-933、ダウケミカル社製のT.E.N.、EPPN-501、EPPN-502等(何れも商品名)のトリヒドロキシフェニルメタン型エポキシ樹脂;ジャパンエポキシレジン社製のYL-6056、YX-4000、YL-6121(何れも商品名)等のビキシレノール型もしくはビフェノール型エポキシ樹脂又はそれらの混合物;日本化薬社製EBPS-200、旭電化工業社製EPX-30、DIC社製のEXA-1514(商品名)等のビスフェノールS型エポキシ樹脂;ジャパンエポキシレジン社製のjER157S(商品名)等のビスフェノールAノボラック型エポキシ樹脂;ジャパンエポキシレジン社製のjERYL-931、チバ・ジャパン社製のアラルダイド163等(何れも商品名)のテトラフェニロールエタン型エポキシ樹脂;チバ・ジャパン社製のアラルダイドPT810、日産化学工業社製のTEPIC等(何れも商品名)の複素環式エポキシ樹脂;日本油脂社製ブレンマーDGT等のジグリシジルフタレート樹脂;東都化成社製ZX-1063等のテトラグリシジルキシレノイルエタン樹脂;新日鉄化学社製ESN-190、ESN-360、DIC社製HP-4032、EXA-4750、EXA-4700等のナフタレン基含有エポキシ樹脂;DIC社製HP-7200、HP-7200H等のジシクロペンタジエン骨格を有するエポキシ樹脂;日本油脂社製CP-50S、CP-50M等のグリシジルメタアクリレート共重合系エポキシ樹脂;さらにシクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体(例えばダイセル化学工業製PB-3600等)、CTBN変性エポキシ樹脂(例えば東都化成社製のYR-102、YR-450等)等が挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、複素環式エポキシ樹脂、ビスフェノールA型エポキシ樹脂又はそれらの混合物が好ましい。
 前記多官能オキセタン化合物(D-2)としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマー又は共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、又はシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
 前記分子中に2個以上の環状チオエーテル基を有する化合物(D-3)としては、例えば、ジャパンエポキシレジン社製のビスフェノールA型エピスルフィド樹脂 YL7000などが挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。
 前記分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)の配合量は、前記光硬化性樹脂(A)及び/又はカルボキシル基含有光硬化性樹脂(A’)100質量部(2種以上を使用する場合にはそれらの合計量)に対して、5~70質量部、より好ましくは10~50質量部となる範囲が適当である。分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)の配合量が上記範囲未満である場合、硬化塗膜にカルボキシル基が残り、耐熱性、耐アルカリ性、電気絶縁性などが低下するので、好ましくない。一方、上記範囲を超える場合、低分子量の環状(チオ)エーテル基が乾燥塗膜に残存することにより、塗膜の強度などが低下するので、好ましくない。
 上記分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)を使用する場合、熱硬化触媒を含有することが好ましい。そのような熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、市販されているものとしては、例えば四国化成工業社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ社製のU-CAT(登録商標)3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物及びその塩)などが挙げられる。特に、これらに限られるものではなく、エポキシ樹脂やオキセタン化合物の熱硬化触媒、もしくはエポキシ基及び/又はオキセタニル基とカルボキシル基の反応を促進するものであればよく、単独で又は2種以上を混合して使用してもかまわない。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を前記熱硬化触媒と併用する。
 これら熱硬化触媒の配合量は、通常の量的割合で充分であり、例えば前記光硬化性樹脂(A)及びカルボキシル基含有光硬化性樹脂(A’)よりなる群から選ばれた少なくとも1つの光硬化性樹脂又は分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15.0質量部である。
 前記した熱硬化性化合物の他にも、熱硬化性成分として、イソシアネート化合物及びそのブロック化物、ビスマレイミド化合物、オキサジン化合物、カルボジイミド樹脂など、特に水酸基やカルボキシル基と選択的に反応するものが好ましいが、特に制限無く使用できる。
 さらに本発明の硬化性樹脂組成物には、分子中に1個以上のエチレン性不飽和基を有する化合物を配合することができる。このような化合物としては、得られる硬化物の硬度、柔軟性などを最適化するために種々のもの用いることができるが、中でも光硬化性の観点から、1分子中に2個以上のエチレン性不飽和基を有するものが好ましい。このような化合物としては、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコール又はこれらのエチレオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、及びこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;及びメラミンアクリレート、及び/又は上記アクリレートに対応する各メタクリレート類などが挙げられる。
 さらに、クレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に、アクリル酸を反応させたエポキシアクリレート樹脂や、さらにそのエポキシアクリレート樹脂の水酸基に、ペンタエリスリトールトリアクリレートなどのヒドロキシアクリレートとイソホロンジイソシアネートなどのジイソシアネートのハーフウレタン化合物を反応させたエポキシウレタンアクリレート化合物なども用いることができる。
 本発明の光硬化性樹脂組成物は、着色剤を配合することができる。着色剤としては、黒、白、赤、青、緑、黄などの慣用公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。
 本発明の光硬化性樹脂組成物は、その塗膜の物理的強度等を上げるために、必要に応じて、フィラーを配合することができる。このようなフィラーとしては、公知慣用の無機又は有機フィラーが使用できるが、特に硫酸バリウム、球状シリカ及びタルクが好ましく用いられる。さらに、白色の外観や難燃性を得るために酸化チタンや金属酸化物、水酸化アルミなどの金属水酸化物を体質顔料フィラーとしても使用することができる。
 本発明の光硬化性樹脂組成物は、さらに必要に応じて、ハイドロキノン、ハイドロキノンモノメチルエーテル、t-ブチルカテコール、ピロガロール、フェノチアジンなどの公知慣用の熱重合禁止剤、微粉シリカ、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、酸化防止剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
 また、本発明の光硬化性樹脂組成物は、前記光硬化性樹脂(A)やカルボキシル基含有光硬化性樹脂(A’)、及び感光性(メタ)アクリレート化合物を溶解させ、また組成物を塗布方法に適した粘度に調整するために、有機溶剤を配合することができる。
 有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の酢酸エステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが挙げられる。これらの有機溶剤は、単独で又は2種類以上の混合物として使用することができる。なお、有機溶剤の配合量は、塗布方法に応じた任意の量とすることができる。
 本発明の光硬化性樹脂組成物は、例えば前記有機溶剤で塗布方法に適した粘度に調整し、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布することができる。その後、約60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることにより、タックフリーの塗膜を形成できる。また、上記組成物をキャリアフィルム上に塗布し、乾燥させてフィルムとして巻き取ったドライフィルム形態とすることもできる。このようなドライフィルムは、基材上に張り合わせることにより、樹脂絶縁層を形成することができる。
 その後、得られた光硬化性樹脂組成物の塗膜に対して、高圧水銀灯やメタルハライドランプを搭載し、活性エネルギー線を照射可能なコンベア式露光機を用い、活性エネルギー線の照射を行うことで容易に硬化物を得ることができる。塗膜は、露光部(活性エネルギー線により照射された部分)が硬化する。また、得られた光硬化性樹脂組成物のパターン形成を行う場合には接触式又は非接触方式により、パターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、あるいはレーザーダイレクト露光機により直接パターン露光し、未露光部を希アルカリ水溶液(例えば0.3~3%炭酸ソーダ水溶液)により現像してレジストパターンが形成される。さらに、熱硬化性成分(D)を含有している組成物の場合、例えば約140~200℃の温度に加熱して熱硬化させることにより、光硬化性樹脂(A)の水酸基、あるいはカルボキシル基含有光硬化性樹脂(A’)のカルボキシル基と、分子中に2個以上の環状エーテル基及び/又は環状チオエーテル基を有する熱硬化性成分(D)が反応し、耐熱性、耐薬品性、耐吸湿性、密着性、電気特性などの諸特性に優れた硬化塗膜を形成することができる。尚、熱硬化性成分(D)を含有していない場合でも、熱処理することにより、露光時に未反応の状態で残ったエチレン性不飽和結合が熱ラジカル重合し、塗膜特性が向上するため、目的・用途により、熱処理(熱硬化)してもよい。
 上記基材としては、予め回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不繊布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・PPO・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリイミドフィルム、PETフィルム、ガラス基板、セラミック基板、シリコンウエハ板等を用いることができる。
 本発明の光硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブンなどを用いて行うことができる。
 上記活性エネルギー線照射に用いられる露光機としては、活性エネルギー線の照射可能なコンベア式露光機、また、パターン形成を行う場合には高圧水銀灯若しくはメタルハライドランプを搭載した紫外線露光装置若しくは直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)を用いることができる。活性エネルギー線としては、最大波長が350~410nmの範囲にある光を用いていれば高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ガスレーザー、固体レーザー、半導体レーザーのいずれでもよい。また、その露光量は膜厚等によって異なるが、一般には5~800mJ/cm、好ましくは10~500mJ/cm、さらに好ましくは10~300mJ/cmの範囲内とすることができる。
 前記現像を行う場合、現像方法としてはディッピング法、シャワー法、スプレー法、ブラシ法等、適宜の方法を採用することができる。また、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液が使用できる。
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではないことはもとよりである。尚、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。
 樹脂合成例1
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート100gとクレゾールノボラック型エポキシ樹脂(DIC(株)製、EPICLON N-680、軟化点82℃、エポキシ当量211)211g(1.0モル)、90%乳酸((株)武蔵野化学研究所製、ムサシノ乳酸90F、純度90%)100g(乳酸として1.0モル)、ジ-t-ブチルヒドロキシトルエン1.51g及びハイドロキノン0.15gを仕込み、100℃に加熱して均一溶解した。次いで、トリフェニルホスフィン1.14gを仕込み、窒素を吹き込みつつ110℃に昇温し、含有水を随時系外に除去しながら10時間反応を行った。続いて系内を空気雰囲気に置換した後、得られた反応液にジエチレングリコールモノエチルエーテルアセテート152g、2-アクリロイルオキシエチルイソシアネート(昭和電工(株)製、カレンズAOI、分子量141)148g(1.05モル)を仕込み、85℃で3時間反応を行い、赤外分光光度計により溶液中のイソシアネート基のピーク(2270cm-1)が消失したことを確認し、固形分酸価12.7mgKOH/g、固形分64.0%の樹脂溶液を得た。固形分の二重結合当量は429、乳酸含有量は20%であった。これを樹脂ワニス1とする。尚、得られた光硬化性樹脂の赤外線吸収スペクトル(フーリエ変換赤外分光光度計FT-IRを用いて測定)を図1に、核磁気共鳴スペクトル(溶媒CDCl、基準物質TMS(テトラメチルシラン))を図2に示す。
 中間体合成例1(乳酸オリゴマーの合成)
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、90%乳酸((株)武蔵野化学研究所製、ムサシノ乳酸90F、純度90%)1000g(乳酸として10モル)を仕込み、窒素を吹き込みつつ120℃に昇温し、含有水及び乳酸の分子間脱水エステル化による脱離水を随時系外に除去しながら11時間反応を行い、酸価207mgKOH/gの樹脂溶液を得た。これを乳酸オリゴマー中間体X-1とする。
 樹脂合成例2
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート147gとクレゾールノボラック型エポキシ樹脂(DIC(株)製、EPICLON N-680、軟化点82℃、エポキシ当量211)211g(1.0モル)、乳酸オリゴマー中間体(X-1)216g(0.8モル)、アクリル酸14.4g(0.2モル)、ジ-t-ブチルヒドロキシトルエン2.21g及びハイドロキノン0.22gを仕込み、100℃に加熱して均一溶解した。次いで、トリフェニルホスフィン1.68gを仕込み、空気雰囲気下で110℃に昇温し、8時間反応を行った。続いて、得られた反応液にジエチレングリコールモノエチルエーテルアセテート188g、2-アクリロイルオキシエチルイソシアネート(昭和電工(株)製、カレンズAOI、分子量141)106g(0.75モル)を仕込み、85℃で3時間反応を行い、赤外分光光度計により溶液中のイソシアネート基のピーク(2270cm-1)が消失したことを確認し、固形分酸価7.0mgKOH/g、固形分62.0%の樹脂溶液を得た。固形分の二重結合当量は576、乳酸含有量は40%であった。これを樹脂ワニス2とする。尚、得られた光硬化性樹脂の赤外線吸収スペクトル(フーリエ変換赤外分光光度計FT-IRを用いて測定)を図3に、核磁気共鳴スペクトル(溶媒CDCl、基準物質TMS(テトラメチルシラン))を図4に示す。
 樹脂合成例3
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート100gとクレゾールノボラック型エポキシ樹脂(DIC(株)製、EPICLON N-680、軟化点82℃、エポキシ当量211)211g(1.0モル)、90%乳酸((株)武蔵野化学研究所製、ムサシノ乳酸90F、純度90%)100g(乳酸として1.0モル)、ジ-t-ブチルヒドロキシトルエン1.51g及びハイドロキノン0.15gを仕込み、100℃に加熱して均一溶解した。次いで、トリフェニルホスフィン1.14gを仕込み、窒素を吹き込みつつ110℃に昇温し、含有水を随時系外に除去しながら10時間反応を行った。続いて系内を空気雰囲気に置換した後、得られた反応液にジエチレングリコールモノエチルエーテルアセテート181g、2-アクリロイルオキシエチルイソシアネート(昭和電工(株)製、カレンズAOI、分子量141)148g(1.05モル)を仕込み、85℃で3時間反応を行い、赤外分光光度計により溶液中のイソシアネート基のピーク(2270cm-1)が消失したことを確認した。さらに、テトラヒドロ無水フタル酸51.7g(0.34モル)を仕込み、110℃で3時間反応を行い、固形分酸価49.0mgKOH/g、固形分64%の樹脂溶液を得た。固形分の二重結合当量は477、乳酸含有量は18%であった。これを樹脂ワニス3とする。尚、得られた光硬化性樹脂の赤外線吸収スペクトル(フーリエ変換赤外分光光度計FT-IRを用いて測定)を図5に、核磁気共鳴スペクトル(溶媒CDCl、基準物質TMS(テトラメチルシラン))を図6に示す。
 樹脂合成例4
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート30.8g、ビスフェノールA型エポキシ樹脂(DIC(株)製、EPICLON 850、エポキシ当量187)187g(1.0モル)、90%乳酸((株)武蔵野化学研究所製、ムサシノ乳酸90F、純度90%)100g(乳酸として1.0モル)、ジ-t-ブチルヒドロキシトルエン1.39g及びハイドロキノン0.14gを仕込み、90℃に加熱して均一溶解した。次いで、トリフェニルホスフィン0.97gを仕込み、窒素を吹き込みつつ110℃に昇温し、含有水を随時系外に除去しながら11時間反応を行った。続いて系内を空気雰囲気に置換した後、得られた反応液にジエチレングリコールモノエチルエーテルアセテート91.2g、2-アクリロイルオキシエチルイソシアネート(昭和電工(株)製、カレンズAOI、分子量141)141g(1.0モル)を仕込み、85℃で3時間反応を行い、赤外分光光度計により溶液中のイソシアネート基のピーク(2270cm-1)が消失したことを確認し、固形分酸価3.5mgKOH/g、固形分76.0%の樹脂溶液を得た。固形分の二重結合当量は418、乳酸含有量は22%であった。これを樹脂ワニス4とする。尚、得られた光硬化性樹脂の赤外線吸収スペクトル(フーリエ変換赤外分光光度計FT-IRを用いて測定)を図7に、核磁気共鳴スペクトル(溶媒CDCl、基準物質TMS(テトラメチルシラン))を図8に示す。
 樹脂合成例5
 温度計、撹拌器、及び還流冷却管を備えたフラスコに、ジエチレングリコールモノエチルエーテルアセテート30.8g、ビスフェノールA型エポキシ樹脂(DIC(株)製、EPICLON 850、エポキシ当量187)187g(1.0モル)、90%乳酸((株)武蔵野化学研究所製、ムサシノ乳酸90F、純度90%)100g(乳酸として1.0モル)、ジ-t-ブチルヒドロキシトルエン1.39g及びハイドロキノン0.14gを仕込み、90℃に加熱して均一溶解した。次いで、トリフェニルホスフィン0.97gを仕込み、窒素を吹き込みつつ110℃に昇温し、含有水を随時系外に除去しながら11時間反応を行った。続いて系内を空気雰囲気に置換した後、得られた反応液にジエチレングリコールモノエチルエーテルアセテート91.2g、2-アクリロイルオキシエチルイソシアネート(昭和電工(株)製、カレンズAOI、分子量141)141g(1.0モル)を仕込み、85℃で3時間反応を行い、赤外分光光度計により溶液中のイソシアネート基のピーク(2270cm-1)が消失したことを確認した。さらに、テトラヒドロ無水フタル酸69.9g(0.46モル)を仕込み、115℃で4時間反応を行い、固形分酸価57.2mgKOH/g、固形分80.0%の樹脂溶液を得た。固形分の二重結合当量は488、乳酸含有量は18%であった。これを樹脂ワニス5とする。尚、得られた光硬化性樹脂の赤外線吸収スペクトル(フーリエ変換赤外分光光度計FT-IRを用いて測定)を図9に、核磁気共鳴スペクトル(溶媒CDCl、基準物質TMS(テトラメチルシラン))を図10に示す。
 樹脂ワニス6
 DIC(株)製カルボキシル基含有変性クレゾールノボラック型エポキシアクリレート(DICLITE UE-9210、固形分酸価82.9mgKOH/g、固形分62%、固形分の二重結合当量361)を使用した。
 実施例1~5及び比較例1~3
 表1に示す各成分を表1に示す割合で配合・攪拌して溶解させ、光硬化性樹脂組成物を得た。簡略試験として、PETフィルム上に光硬化性樹脂組成物をアプリケーターを用いて塗布した。実施例1~5及び比較例1については、塗布後、80℃、20分にて乾燥を行った。塗布後、PETフィルムを光硬化性樹脂組成物に密着させ、メタルハライドランプで1000mJ/cmの積算光量でUV照射を行うことにより組成物を硬化させ、目的とする膜厚約15~20μmの硬化塗膜を得た。
 硬化塗膜の状態:
 得られた硬化物の状態を確認する目的で、UV照射後の硬化塗膜をPETフィルムより引き剥がし、柔らかさ及び割れ易さについて評価した。UV照射後、割れずに柔軟なフィルムが得られたものについては○、著しく割れてしまっているものについては×とした。
 ラビングテスト:
 硬化物の硬化性を試験する目的で、アセトンを含ませたウエスにて50回、硬化物をこするラビングテストを行った。表面の溶解が無いものを十分に硬化していると判断して○、表に僅かな溶解が見られたものを×と評価した。
 耐熱性試験:
 各硬化塗膜を、200℃の熱風循環式乾燥炉に投入して、3分間加熱した。加熱後取り出して、目視にて溶融の形跡を観察して耐熱性試験を行った。全く溶融、変化が見られないものを○、部分的に溶融、変化が確認されるものを×と評価した。
 上記各試験の結果を表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000012
 上記表2に示される結果から明らかなように、本発明の光硬化性樹脂組成物を硬化させて得られる硬化物は、硬化塗膜の状態、ラビングテスト、耐熱性試験の結果より、ポリエステルアクリレート、エポキシアクリレート類と同等の硬化性、耐熱性を有していることが分かる。さらには、原料に乳酸を使用していることから、その天然由来炭素の割合を多くすることにより、環境にやさしい光硬化性樹脂組成物を提供することができる。
 実施例6~12及び比較例4、5
 前記樹脂ワニス1~6を用い、表3に示す割合にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、アルカリ現像型感光性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000013
 性能評価:
 <最適露光量>
 前記実施例6~12及び比較例4、5の感光性樹脂組成物を、ガラス基板上にスクリーン印刷法により塗布し、80℃の熱風循環式乾燥炉で30分間乾燥させた。乾燥後、高圧水銀灯搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、現像(30℃、0.2MPa、1wt%炭酸ナトリウム水溶液)を60秒で行った際残存するステップタブレットのパターンが7段の時を最適露光量とした。
 <現像性>
 前記実施例6~12及び比較例4、5の感光性樹脂組成物を、ガラス基板上にスクリーン印刷法により、膜厚が約25μmになるように塗布し、80℃の熱風循環式乾燥炉で30分間乾燥させた。乾燥後、1wt%炭酸ナトリウム水溶液によって現像を行い、乾燥塗膜が除去されるまでの時間をストップウォッチにより計測した。
 特性試験:
 前記実施例及び比較例の感光性樹脂組成物を、ガラス基板上にスクリーン印刷法により膜厚が約20μmになるように塗布し、80℃の熱風循環式乾燥炉で60分間乾燥させた。乾燥後、最適露光量にて露光を行い、30℃の1wt%炭酸ナトリウム水溶液をスプレー圧0.2MPaの条件で60秒間現像を行い、感光パターンを得た。その後、150℃で60分加熱して硬化した。得られた硬化塗膜に対して以下の特性評価を行った。
 <密着性>
 上記手法によりガラス基板上に作製した硬化塗膜を、常法に従い碁盤目状にクロスカットを入れ、次いでセロハン粘着テープによるピーリングテスト後の碁盤目の残り数を以下の基準で評価した。
 ○:碁盤目の残り数が70以上100以下
 △:碁盤目の残り数が30以上70未満
 ×:碁盤目の残り数が0以上30未満
 <折り曲げ性>
 上記手法によりガラスに変えてPET上に形成した約40μmの硬化塗膜を引き剥がし、柔らかさ、脆さについて評価した。得られた硬化フィルムが柔軟性のあるものを○、硬く脆さがあり、柔軟性のないものを×とした。
 前記各試験の結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000014
 上記表4に示される結果から明らかなように、本発明の光硬化性樹脂組成物を硬化させて得られる硬化物は、従来のポリエステルアクリレート、エポキシアクリレート類と比べ、優れた特徴を有することが明らかとなった。また、驚くべきことに、乳酸骨格を導入した樹脂は、比較例4及び比較例5と比較して大きく現像性を悪くしないことが明らかとなった。これは、乳酸骨格が導入されたことにより、親水性が向上したためであると考えられる。さらには優れた光反応性を有し、密着性及び柔軟性を有する硬化塗膜が得られることが明らかとなった。さらに分子設計次第では乳酸含有量を大幅に増大させることが可能であり、環境にやさしい光硬化性樹脂を得ることが可能となる。
 本発明に係る光硬化性樹脂及びそれを含有する光硬化性樹脂組成物は、各種の接着剤、印刷インキ、コーティング剤に用いることができ、特にフォトレジストや、プリント基板用の回路形成用レジスト、めっきレジスト、ソルダーレジストとして有利に用いることができる。その他、フラットパネルディスプレイ用のカラーフィルターやブラックマトリックス、オーバーコート剤などに利用できる。

Claims (11)

  1.  エポキシ化合物(a)と、乳酸又はポリ乳酸(b)と、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)とを必須の単量体成分として反応させて得られる、下記一般式(I)で表される分子構造を有することを特徴とする光硬化性樹脂。
    (式中、Acは(メタ)アクリロイルオキシ基、Rはエポキシ化合物(a)のエポキシ基が開環して形成されるエチレン基を含む該化合物(a)の残基、Rはカルボニルオキシ基又はウレタン結合を含有する結節部位を表し、nは1~99の整数、mは0又は1を示す。)
  2.  前記光硬化性樹脂が、下記一般式(II)で表される構造部位を必須の繰り返し単位とすることを特徴とする請求項1に記載の光硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Acは(メタ)アクリロイルオキシ基、Rはカルボニルオキシ基又はウレタン結合を含有する結節部位を表し、fcは水酸基又は(メタ)アクリロイルオキシ基を表し、Rは炭素原子数1~10の炭化水素基、nは1~99の整数、mは0又は1であり、破線部は他の構造単位との結合を示す。)
  3.  前記Rで表されるカルボニルオキシ基又はウレタン結合を有する結節部位が、下記一般式a1、a2、又はa3で表されるものであることを特徴とする請求項1に記載の光硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (上記各式中、Rは炭素原子数1~10のアルキレン基、Rは炭素原子数1~20の炭化水素基、Rは炭素原子数1~30のアルキレン基、Rは炭素原子数1~10のアルキレン基を表す。)
  4.  前記光硬化性樹脂が、エポキシ化合物1分子あたり(メタ)アクリロイルオキシ基を平均0.1~2.0個有するものであることを特徴とする請求項1に記載の光硬化性樹脂。
  5.  前記エポキシ化合物(a)が1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であり、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)が(メタ)アクリル酸であって、かつ、上記エポキシ樹脂(a’)と乳酸との反応生成物である水酸基含有樹脂に、(メタ)アクリル酸を反応させて得られる分子構造を有することを特徴とする請求項1に記載の光硬化性樹脂。
  6.  前記エポキシ化合物(a)が1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であり、酸基又はイソシアネート基を有する(メタ)アクリル系単量体(c)が(メタ)アクリロイルアルキルイソシアネートであって、かつ、上記エポキシ樹脂(a’)と乳酸又はポリ乳酸(b)との反応生成物である水酸基含有樹脂に、(メタ)アクリロイルアルキルイソシアネートを反応させて得られる構造を有するものであることを特徴とする請求項1に記載の光硬化性樹脂。
  7.  前記エポキシ化合物(a)が1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a’)であって、かつ、該エポキシ樹脂(a’)と乳酸又はポリ乳酸(b)との反応生成物である水酸基含有樹脂に、酸無水物又はポリイソシアネート化合物と水酸基含有(メタ)アクリレートモノマーの反応物を反応させて得られる分子構造を有することを特徴とする請求項1に記載の光硬化性樹脂。
  8.  請求項1に記載の光硬化性樹脂に、酸無水物(d)を反応させてなるカルボキシル基含有光硬化性樹脂。
  9.  請求項1乃至7のいずれか一項に記載の光硬化性樹脂(A)及び請求項8に記載のカルボキシル基含有光硬化性樹脂(A’)よりなる群から選ばれた少なくとも1つの光硬化性樹脂、及び光重合開始剤(B)を必須成分として含有することを特徴とする光硬化性樹脂組成物。
  10.  前記カルボキシル基含有光硬化性樹脂(A’)以外の他のカルボキシル基含有樹脂(C)をさらに含有することを特徴とする請求項9に記載の光硬化性樹脂組成物。
  11.  さらに熱硬化性成分(D)を含有することを特徴とする請求項9又は10に記載の光硬化性樹脂組成物。
PCT/JP2010/056444 2009-04-10 2010-04-09 光硬化性樹脂及び光硬化性樹脂組成物 WO2010117056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117023559A KR101296452B1 (ko) 2009-04-10 2010-04-09 광경화성 수지 및 광경화성 수지 조성물
CN2010800161658A CN102388077B (zh) 2009-04-10 2010-04-09 光固化性树脂及光固化性树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-096519 2009-04-10
JP2009096519A JP2010248297A (ja) 2009-04-10 2009-04-10 光硬化性樹脂及び光硬化性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2010117056A1 true WO2010117056A1 (ja) 2010-10-14

Family

ID=42936337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056444 WO2010117056A1 (ja) 2009-04-10 2010-04-09 光硬化性樹脂及び光硬化性樹脂組成物

Country Status (5)

Country Link
JP (1) JP2010248297A (ja)
KR (1) KR101296452B1 (ja)
CN (1) CN102388077B (ja)
TW (1) TWI480293B (ja)
WO (1) WO2010117056A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067157A (ja) * 2010-09-22 2012-04-05 Nidek Co Ltd 樹脂組成物
CN109593165A (zh) * 2018-10-30 2019-04-09 中科三维成型技术(深圳)有限公司 Pla生物基光敏树脂及其用途和使用方法
CN110320749A (zh) * 2018-03-28 2019-10-11 太阳油墨制造株式会社 感光性树脂组合物、干膜和印刷电路板的制造方法
WO2020044723A1 (ja) * 2018-08-30 2020-03-05 昭和電工株式会社 ビニルエステル樹脂組成物、該組成物を含む複合材料、及び当該組成物又は複合材料の硬化物
CN111499856A (zh) * 2020-04-08 2020-08-07 上海抚佳精细化工有限公司 一种可降解的光固化树脂及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150050509A1 (en) * 2012-03-22 2015-02-19 Hitachi Chemical Company, Ltd. Photocurable resin composition, image display device, and method for producing same
TWI503625B (zh) * 2013-08-23 2015-10-11 Ind Tech Res Inst 感光性組成物與光阻
JP2015048459A (ja) * 2013-09-04 2015-03-16 Dic株式会社 ラジカル重合性樹脂組成物及び土木建築材料
TWI559082B (zh) 2014-07-07 2016-11-21 財團法人工業技術研究院 生質材料與其形成方法與印刷電路板
CN107205884B (zh) * 2015-02-03 2020-09-01 三井化学株式会社 光固化性组合物、义齿基托及带托义齿
KR20180135886A (ko) * 2016-04-18 2018-12-21 제이엔씨 주식회사 열경화성 수지 조성물, 경화막, 경화막 부착 기판 및 전자 부품
JP6601634B2 (ja) * 2017-03-31 2019-11-06 協立化学産業株式会社 変性樹脂及びそれを含む硬化性樹脂組成物
JP6958313B2 (ja) * 2017-12-13 2021-11-02 信越化学工業株式会社 オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物
CN109400844A (zh) * 2018-09-19 2019-03-01 江苏三木化工股份有限公司 一种生物基可光固化预聚物及其制备方法
JPWO2022075322A1 (ja) * 2020-10-07 2022-04-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194877A (ja) * 1991-05-24 1993-08-03 Ruetgerswerke Ag 放射線により網状化可能な被覆剤及びその用途
JP2002194050A (ja) * 2000-12-27 2002-07-10 Nippon Shokubai Co Ltd 硬化性樹脂および硬化性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243869A (ja) * 1985-04-19 1986-10-30 Taiyo Ink Seizo Kk レジストインキ組成物
JPH05194788A (ja) * 1991-06-27 1993-08-03 Fuji Photo Film Co Ltd セルロースエステルフィルム、ハロゲン化銀感光材料及び処理方法
JP2004194050A (ja) 2002-12-12 2004-07-08 Fuji Xerox Co Ltd 画像処理装置
CN1309754C (zh) * 2005-09-10 2007-04-11 江南大学 一种水性光敏树脂乳剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194877A (ja) * 1991-05-24 1993-08-03 Ruetgerswerke Ag 放射線により網状化可能な被覆剤及びその用途
JP2002194050A (ja) * 2000-12-27 2002-07-10 Nippon Shokubai Co Ltd 硬化性樹脂および硬化性樹脂組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067157A (ja) * 2010-09-22 2012-04-05 Nidek Co Ltd 樹脂組成物
CN110320749A (zh) * 2018-03-28 2019-10-11 太阳油墨制造株式会社 感光性树脂组合物、干膜和印刷电路板的制造方法
WO2020044723A1 (ja) * 2018-08-30 2020-03-05 昭和電工株式会社 ビニルエステル樹脂組成物、該組成物を含む複合材料、及び当該組成物又は複合材料の硬化物
CN112638969A (zh) * 2018-08-30 2021-04-09 昭和电工株式会社 乙烯基酯树脂组合物、包含该组合物的复合材料、和该组合物或复合材料的固化物
CN109593165A (zh) * 2018-10-30 2019-04-09 中科三维成型技术(深圳)有限公司 Pla生物基光敏树脂及其用途和使用方法
CN109593165B (zh) * 2018-10-30 2021-07-02 中科三维成型技术(深圳)有限公司 Pla生物基光敏树脂及其用途和使用方法
CN111499856A (zh) * 2020-04-08 2020-08-07 上海抚佳精细化工有限公司 一种可降解的光固化树脂及其制备方法和应用

Also Published As

Publication number Publication date
JP2010248297A (ja) 2010-11-04
CN102388077B (zh) 2013-11-06
CN102388077A (zh) 2012-03-21
TW201107356A (en) 2011-03-01
TWI480293B (zh) 2015-04-11
KR101296452B1 (ko) 2013-08-13
KR20110131270A (ko) 2011-12-06

Similar Documents

Publication Publication Date Title
WO2010117056A1 (ja) 光硬化性樹脂及び光硬化性樹脂組成物
JP5043516B2 (ja) 光硬化性・熱硬化性樹脂組成物及びそれを用いて得られるプリント配線
JP5377020B2 (ja) 光硬化性熱硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
KR101604557B1 (ko) 광경화성 열경화성 수지 조성물
JP5798218B1 (ja) 硬化性樹脂組成物、永久被膜形成用組成物、ドライフィルムおよびプリント配線板
JP5183425B2 (ja) 難燃性光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP6877202B2 (ja) ネガ型光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
WO2010016258A1 (ja) 難燃性光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JPWO2012173241A1 (ja) 難燃性硬化性樹脂組成物、それを用いたドライフィルム及びプリント配線板
KR101828198B1 (ko) 경화성 수지 조성물, 영구 피막 형성용 경화성 수지 조성물, 드라이 필름 및 프린트 배선판
JP2010113241A (ja) 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
WO2011010459A1 (ja) 光硬化性樹脂組成物
JP5107960B2 (ja) ソルダーレジスト組成物、それを用いたドライフィルム及びプリント配線板
JP2013174920A (ja) 光硬化性熱硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP2015227441A (ja) 硬化性樹脂組成物、ドライフィルムおよびプリント配線板
JP5043775B2 (ja) 難燃性光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
WO2017138379A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP5338009B2 (ja) 光硬化性熱硬化性樹脂組成物及びその硬化物並びにそれらを用いたプリント配線板
JP5113298B2 (ja) 光硬化性・熱硬化性樹脂組成物及びそれを用いて得られるプリント配線板
JP2015196764A (ja) 硬化性樹脂組成物、永久被膜形成用組成物、ドライフィルムおよびプリント配線板
JP6087896B2 (ja) 硬化性樹脂組成物、永久被膜形成用硬化性樹脂組成物、ドライフィルムおよびプリント配線板
JP5575858B2 (ja) 難燃性光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
JP5433209B2 (ja) 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板
WO2018123826A1 (ja) ネガ型光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2011053419A (ja) アルカリ現像性の光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016165.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117023559

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761755

Country of ref document: EP

Kind code of ref document: A1