WO2010114120A1 - 酵素含有食品の製造方法および酵素含有食品 - Google Patents

酵素含有食品の製造方法および酵素含有食品 Download PDF

Info

Publication number
WO2010114120A1
WO2010114120A1 PCT/JP2010/056069 JP2010056069W WO2010114120A1 WO 2010114120 A1 WO2010114120 A1 WO 2010114120A1 JP 2010056069 W JP2010056069 W JP 2010056069W WO 2010114120 A1 WO2010114120 A1 WO 2010114120A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
food
producing
minutes
containing food
Prior art date
Application number
PCT/JP2010/056069
Other languages
English (en)
French (fr)
Inventor
総一郎 桑
国治 小林
崇夫 江間
裕之 児玉
Original Assignee
株式会社エフコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフコム filed Critical 株式会社エフコム
Priority to JP2011507306A priority Critical patent/JP5881418B2/ja
Publication of WO2010114120A1 publication Critical patent/WO2010114120A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • A23L3/0155Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation using sub- or super-atmospheric pressures, or pressure variations transmitted by a liquid or gas
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula

Definitions

  • the present invention relates to a food containing an enzyme and a method for producing the same.
  • the present invention relates to an enzyme-containing food that can provide a food softened by an enzyme while maintaining its shape, and a method for producing the same.
  • the present invention changes the ingredients of the raw material ingredients by enzymes, for example, sugar conversion, proteolysis, etc. to produce or increase useful ingredients such as foods with increased sweetness or foods with increased moisture content.
  • the present invention relates to an enzyme-containing food and a method for producing the same.
  • Patent Document 1 discloses that a solution containing an enzyme such as pectinesterase or pectinase is brought into contact with a food material and pressurized, and the enzyme is permeated into the food material. It is described that an enzyme reaction is caused inside a food material.
  • Patent Document 1 there is a case where a large food material is insufficiently impregnated with the enzyme to the inside, and it may be difficult to sufficiently soften the food. There is a problem that it is limited to the processing of small-sized foods such as a die shape of about 1 cm and a stick shape for making french fries.
  • Patent Document 2 discloses a food in which a microorganism that produces a thickening agent and / or a viscous substance is uniformly contained in a food material together with a degrading enzyme, thereby providing a tromi to the inside of the food and reducing the risk of aspiration.
  • a degrading enzyme thereby providing a tromi to the inside of the food and reducing the risk of aspiration.
  • Patent Document 3 the food material frozen and thawed after freezing and the degrading enzyme are placed in a packaging material and vacuum-packed, so that the decomposing enzyme is contained inside the food to soften the food material, and then A method for producing a cooked food to be cooked is described, and it is described to produce a food that is flexible and does not easily lose its shape.
  • raw materials containing starch such as sweet potatoes
  • raw materials with high original sweetness have been widely demanded mainly for various processed foods such as sugar beet and preferred foods such as confectionery.
  • As one method there is a method of increasing the sweetness component by improving the varieties of raw materials.
  • the raw materials are not cheap or are not easily available.
  • As another method there is a method of increasing sweetness by devising a cooking method.
  • this method generally requires cooking for a long time and may be complicated.
  • a method of increasing sweetness a method of adding commercially available sugars such as sucrose is also conceivable. However, it is difficult to increase sweetness so that the natural sweetness of ingredients can be felt. there were.
  • pretreatment such as soaking in water took a long time, and the cooking also took a long time.
  • the present invention produces a food product that has the same shape as a normal food product and that is sufficiently softened or capable of achieving sufficient softening without being cooked for a long time or repeated freezing and thawing. It is an object of the present invention to provide a method for producing an enzyme-containing food, and an enzyme-containing food obtained by the production method. In addition, the present invention provides a food whose sweetness is sufficiently increased by the action of an enzyme, or whose sweetness can be sufficiently increased, or whose water content is sufficiently increased, or whose water content can be increased by subsequent processing. It is an object of the present invention to provide a method for producing an enzyme-containing food that can provide a food in which useful components are produced or increased, and an enzyme-containing food obtained by the production method.
  • the method for producing an enzyme-containing food according to the present invention includes an enzyme introduction step of introducing an enzyme into the food by subjecting the raw material to a reduced pressure, contacting the liquid component containing the enzyme while maintaining the reduced pressure, and then increasing the pressure. It is characterized by having.
  • the method for producing an enzyme-containing food of the present invention preferably includes a freezing step after the enzyme introduction step.
  • the method for producing an enzyme-containing food of the present invention preferably has a freezing step after the enzyme introduction step, and an enzyme reaction step simultaneously with or after thawing.
  • the method for producing an enzyme-containing food of the present invention preferably has a freeze-drying step after the enzyme introduction step, It is also preferable to have a freeze-drying step following the enzyme introduction step, and an enzyme reaction step simultaneously with or after the return, It is also preferable to have an enzyme reaction step after the enzyme introduction step and then a freeze-drying step.
  • an enzyme deactivation step after the enzyme reaction step.
  • the raw material is preferably a food that has not undergone a freezing step, and the raw material is more preferably a food that has not undergone any heating and freezing steps.
  • the ambient pressure of the food during the decompression treatment is 100 to 90000 Pa.
  • the enzyme-containing food production method of the present invention it is preferable to introduce 0.0005 to 2% by weight of the enzyme in a dry weight with respect to the weight of the raw material in the enzyme introduction step.
  • the liquid component containing the enzyme contains one or more enzymes selected from the group consisting of cellulase, hemicellulase, xylanase, pectinase, amylase, protease, papain, and lipase. Is preferred.
  • the liquid component containing the enzyme contains a seasoning.
  • the enzyme reaction step is preferably performed by keeping the food material into which the enzyme is introduced at ⁇ 5 to 80 ° C., and the enzyme reaction step is performed in an inert atmosphere. It is also preferable to carry out below.
  • the enzyme deactivation step is preferably performed by heating or microwave irradiation, and the enzyme deactivation step is a step involving cooking. Is also preferable.
  • the enzyme-containing food of the present invention is obtained by the above-described method for producing an enzyme-containing food of the present invention.
  • Such enzyme-containing food of the present invention is preferably an elderly food, a sick food or a baby food.
  • the enzyme-containing food of the present invention preferably has a hardness of 5 ⁇ 10 5 N / m 2 or less.
  • the present invention it is possible to produce a food that has the same appearance as a normal food and is sufficiently softened or capable of achieving sufficient softening without being cooked for a long time.
  • the method for producing an enzyme-containing food and the enzyme-containing food obtained by the production method can be provided.
  • the method for producing an enzyme-containing food and the enzyme-containing food obtained by the production method can be provided.
  • the appearance is the same as that of a normal food without being cooked for a long time, and the water content is sufficiently increased, or the subsequent processing is sufficient. It is possible to provide a method for producing an enzyme-containing food that can produce a food that can increase the water content, and an enzyme-containing food obtained by the production method. According to the present invention, there is provided a method for producing an enzyme-containing food that can perform the enzyme introduction step in a short time, can easily control the degree of enzyme introduction, can easily achieve the desired degree of softening, and is excellent in mass productivity. be able to.
  • the present invention it is possible to suppress a decrease in nutritional components accompanying heat treatment for a long time, and it is an enzyme-containing food that is sufficiently softened or can achieve sufficient softening, and the appearance of the softened food Can be provided with an enzyme-containing food that is equivalent to a normal food, suitable for sick food, elderly food, baby food, and the like, and a method for producing the same.
  • ADVANTAGE OF THE INVENTION According to this invention, sufficient softening was achieved or can be achieved, and the enzyme-containing food which is a freeze-dried food excellent in the water return characteristic, and its manufacturing method can also be provided.
  • the enzyme-containing food according to the present invention can be used as a sick food or an elderly food because sufficient softening can be achieved and an enzyme-containing food having a color and shape close to that of a normal food can be provided. In this case, it is possible to improve the willingness of the sick and elderly to eat and improve the quality of life (QOL).
  • QOL quality of life
  • the appearance is equivalent to that of a normal food, and the sweetness is sufficiently enhanced or the sweetness is sufficiently enhanced by glycanizing the components contained in the raw material food by an enzyme.
  • the processed foods can be further processed to further enhance the natural sweetness inherent in the ingredients, and the processed foods such as sugar beet, and the favorite foods such as confectionery. Can be manufactured.
  • the appearance is equivalent to that of a normal food, and the water content is sufficiently increased by decomposing, for example, proteolytically decomposing components contained in the raw material food with an enzyme. Since foods that can be sufficiently increased in moisture content can be obtained by processing, various processed foods such as sugar beet can be produced by further processing the obtained enzyme-containing foods.
  • the above-mentioned softened food and sweetened food are produced by changing the ingredients of the raw material ingredients by the action of the enzyme and generating or increasing useful ingredients. It is possible to provide a useful food having a desired effect, such as a food with an increased water content.
  • FIG. 1 is a graph showing the dependence of weight change rate and pressurization time in Examples 1 to 4 (impregnation of radish with an enzyme solution).
  • FIG. 2 is a graph showing the dependency of the ratio of the enzyme (dry weight) in the food material after impregnation and the pressing time in Examples 1 to 4 (impregnation of the radish with the enzyme solution).
  • FIG. 3 is a graph showing the dependence of the rate of change in weight and pressurization time in Examples 15 and 16 (impregnation of apple with enzyme solution).
  • FIG. 4 is a graph showing the dependence of the rate of weight change and pressurization time in Examples 27 and 28 (impregnation of celery with an enzyme solution).
  • FIG. 5 is a graph showing the dependence of weight change rate and pressurization time in Examples 39 and 40 (impregnation of mushroom with enzyme solution).
  • FIG. 6 is a graph showing the dependency of sugar content (Brix) on processing conditions in Examples 51 to 58 (impregnation with sweet potatoes) and Comparative Examples 19 to 27.
  • the method for producing an enzyme-containing food of the present invention has at least an enzyme introduction step for introducing an enzyme into a raw material.
  • the raw material ingredients are not particularly limited, and examples include fresh ingredients, frozen ingredients, dried ingredients, freeze-dried ingredients, cooked foods, and the like. It may be edible later.
  • raw materials that have not undergone a freezing step can be suitably used as raw material ingredients, and non-heated / non-frozen foods that have not undergone any heating and freezing steps can also be preferably used.
  • non-heated / non-frozen foods fresh foods such as vegetables, meat, fish and fruits, non-heat-processed foods such as pickles, etc. can be used as they are, or can be obtained by appropriately cutting them.
  • Food ingredients include, for example, root vegetables such as radish, potatoes, carrots, fruits such as apples, bananas, tangerines and persimmons, leafy vegetables such as celery, lettuce and cabbage, mushrooms such as mushrooms and shiitake mushrooms, soybeans, red beans, Beans such as green beans, livestock such as pork, beef and chicken, fresh seafood, processed delicacies such as seaweed and dried scallops, and freeze-dried ingredients.
  • Other specific foods used for the purpose of enhancing sweetness include sweet potatoes, potatoes, chestnuts, pumpkins, corns, lotus roots, rice and other vegetables with starch.
  • a frozen or frozen and thawed food can be used as a raw material.
  • a frozen or frozen and thawed food can be used as a raw material.
  • vegetables, fruits, meat, fish and the like transferred in a frozen form can be used as raw materials in a frozen state or in a thawed state.
  • the heated food material can be used as a raw material.
  • heating refers to a state exposed to a high temperature such as 70 ° C. or more at least once, but the heating time is not limited, for example, 0.5 seconds to several hours, preferably 0.5 seconds. It can be about 30 minutes.
  • the raw material ingredients after heating used in the present invention may be those in which a part of the ingredients such as only the surface is heated, or the whole ingredients may be heated.
  • the raw material used in the present invention needs to be heated for a long time for the purpose of increasing softening, even after being heated. There is no.
  • the enzyme reaction causes a change in the raw material components such as sugar conversion and decomposition of the raw material components such as proteolysis, and a specific component is generated or increased. Therefore, heating such as an increase in sugar content and an increase in water content can be achieved. There is no need for long-time heating for the desired changes involved.
  • the size and shape of the raw material used in the present invention are not particularly limited as long as the enzyme introduction step can be applied, and may have the shape of the target product. After obtaining a softened food by the method, after obtaining a food with an increased moisture content or a food with an increased moisture content by subsequent processing, or after obtaining a food with an increased sweetness, etc. It may be a desired product shape and size.
  • the enzyme introduction step is a step of introducing the enzyme into the food material by subjecting the raw material food to a reduced pressure treatment, bringing it into contact with a liquid component containing the enzyme while maintaining the reduced pressure state, and then increasing the pressure.
  • Any equipment capable of achieving such an operation can be used for this enzyme introduction step.
  • the decompression treatment is desirably a treatment under conditions that decompress the raw material and discharge at least part of the liquid or gas present in the voids inside the raw material, and is not particularly limited. It is desirable to employ a condition in which the pressure around the food material during the treatment is reduced to a level of 100 to 90000 Pa, preferably 1000 to 75000 Pa, more preferably 2000 to 65000 Pa.
  • the oxygen introduction step after the decompression treatment, the raw material food and the liquid component containing the enzyme are brought into contact while maintaining the decompressed state.
  • the contact with the liquid component containing the enzyme can be carried out, for example, by introducing the liquid component around the reduced-pressure raw material.
  • the whole of the decompressed raw material ingredients may be in contact with the liquid component, or only a desired part may be in contact with the liquid component. It is preferred that the entire food is in contact with the liquid component.
  • the pressurization can be suitably performed by introducing an inert gas such as air, nitrogen, or a gas such as carbon dioxide into the apparatus.
  • an inert gas such as air, nitrogen, or a gas such as carbon dioxide
  • a gas that has been sterilized and passed through a filter is preferably used so as not to include bacteria and contaminants, and a gas with a low oxygen content is used to prevent food oxidation and the like.
  • the degree of pressure increase is not particularly limited as long as a desired amount of the liquid component containing the enzyme is introduced into the raw material, and the ambient pressure of the food is, for example, 0.1 to 1 MPa, preferably 0.
  • the pressure can be about 1 to 0.7 MPa.
  • the pressure can be increased to 1 MPa (normal pressure) to 1 MPa, preferably 0.11 MPa to 0.7 MPa, more preferably 0.15 to 0.5 MPa.
  • Enzymes to be included in the liquid component are enzymes that promote softening of the raw material ingredients, enzymes that improve the moisture content of the raw material ingredients, or that improve the moisture content during the processing process of the raw material ingredients, or enzymes that can increase the sweetness of the raw material ingredients
  • Any enzyme that modifies the ingredients contained in the raw material ingredients into useful ingredients that can bring about the desired effect and modifies the raw material ingredients can be used, and is not particularly limited, the type of ingredients and the desired softening
  • the oxidoreductase (oxidoreductase), transferase (transferase), hydrolase (hydrolase), addition / elimination enzyme (lyase), isomerase (isomerase) can be used. ) And synthase (Licase).
  • cellulase hemicellulase, xylanase, pectinase, esterase, glucanase, glucosidase, amylase, protease, papain, peptidase, agarase, phosphatase, lipase, dextrose, chitinase, which are mainly hydrolases , Glutaminase, phytase, and the like can be preferably used.
  • amylases such as cellulase, hemicellulase, xylanase, pectinase, esterase, ⁇ -glucanase, ⁇ -glucosidase, ⁇ -amylase, ⁇ -amylase, and glucoamylase , Protease, papain, peptidase, agarase, phosphatase, lipase, dextrase are more preferable, cellulase, hemicellulase, xylanase Pectinase, amylase, protease, papain, and lipase are more preferably used.
  • sugar converting enzymes such as ⁇ -amylase, ⁇ -amylase, and amylase such as glucoamylase are preferably used. These enzymes may be used alone or in combination of two or more.
  • an enzyme can be selected and used in view of the type of raw material and the desired degree of modification by the enzyme.
  • the modification of the raw material is preferably aimed at softening, but it is also preferable to improve the flavor by promoting ripening and saccharification of the raw material. Further, in the present invention, as a modification of the raw material food, it is also preferable to increase sweetness.
  • the purpose is to soften, It is also preferable to promote ripening of the ingredients and improve the flavor. Furthermore, in the present invention, as a modification of the raw material ingredients, it is also preferable to increase the moisture content or to increase the moisture content in a subsequent processing step such as a heat processing step, an impregnation step into water, seasoning liquid, or the like. From such a viewpoint, it is preferable to decompose components contained in the raw material such as protein. In addition to this, the purpose is to soften, ripen the raw material, promote saccharification, and flavor. It is also suitable for the purpose of improving.
  • a food that has been difficult to soften by a conventional cooking method can be easily softened, and only a specific structure of the food can be softened.
  • softening of fiber parts of vegetables, softening of mushrooms, softening of meat, fish muscles and bones, etc. can also be performed while maintaining the appearance of the ingredients.
  • the natural ingredients originally have a natural ingredient without using expensive raw ingredients with an increased sweetness component, or without having to go through complicated and long cooking methods. Processed foods with increased sweetness can be manufactured.
  • a processed food having an increased moisture content for example, cooking, water, seasoning liquid or the like, is not impregnated without going through a long pretreatment and a long cooking time. By doing so, processed foods with increased moisture content can be produced.
  • the substrate of the liquid component is not particularly limited as long as it is edible and includes, for example, a substrate mainly composed of water, oil, alcohol, etc. Preferably there is.
  • Liquid ingredients may contain ingredients other than enzymes, for example, salt, soy sauce, sugar (sucrose), reduced starch syrup, spices, chemical seasonings, mirin, vinegar, alcoholic beverages, dashi, fruit juice, etc.
  • Ingredients, preservatives such as agar, gelatin, pectin, starch and the like, food additives such as fragrances, colorants, color formers and preservatives can be contained.
  • the liquid component containing the enzyme contains an appropriate amount of components other than the enzyme, in addition to the direct effects that the additive ingredients such as seasoning and food preservation provide to the food, the osmotic pressure in the raw material Substitution with moisture becomes easy, and there is a case where it has an effect that a liquid component containing an enzyme can be easily impregnated to the inside of the food material, which is preferable.
  • the concentration of the enzyme and other components in the liquid component varies depending on the subsequent enzyme reaction time and temperature depending on the purpose, but it may be a concentration that achieves a desired amount when the liquid component is introduced into the food, although not particularly limited, for example, the enzyme concentration can be about 0.05 to 5% by weight, preferably about 0.1 to 3% by weight.
  • the amount of enzyme introduced into the food can be appropriately set according to the type and characteristics of the food, the type of enzyme, the desired degree of softening of the food, etc., but the enzyme is usually 0 in dry weight relative to the weight of the raw material. It is desirable to introduce about 0.005 to 2% by weight, preferably about 0.001 to 1% by weight.
  • the enzyme mixture of cellulase A “Amano” 3 and hemicellulase “Amano” 90 is 0.002 to 0.3% by weight of the food, preferably Mushrooms such as raw mushrooms in the range of 0.01 to 0.2% by weight, and in the range of 0.0005 to 0.2% by weight for the purpose of more precisely controlling the desired degree of softening and texture.
  • the combination enzyme of cellulase A “Amano” 3 and hemicellulase “Amano” 90 is 0.005 to 2% by weight of the food, preferably 0.01 to 1% by weight, For the purpose of controlling the texture more precisely, it is desirable to introduce it in the range of 0.001 to 1% by weight.
  • the enzyme containing kristase T10S in a range of 0.0005 to 2% by weight, preferably 0.005 to 1% by weight of the food.
  • the enzyme mixture of protease A “Amano” G should be introduced in a range of 0.0005 to 2% by weight, preferably 0.005 to 1% by weight of the foodstuff. Is desirable.
  • the amount of the liquid component containing the enzyme depends on the type and characteristics of the food, the desired degree of softening of the food, etc., but in the case of fresh fruits and vegetables such as the above-mentioned raw apples, In the case of mushrooms such as mushrooms, an amount of 5 to 90% by weight is desirable.
  • the foodstuff that has undergone the enzyme introduction step may be used as it is as the enzyme-containing food of the present invention, or may be subjected to one or more of the other treatment steps to be the enzyme-containing food of the present invention. That is, the enzyme-containing food production method of the present invention may be composed only of the enzyme introduction step or may have other treatment steps.
  • Other processing steps are not particularly limited, but include enzyme reaction step, freezing step, drying step, freeze drying step, enzyme deactivation step, cooking / seasoning step (cutting, blanching, stewing, steaming, baking) , Retort treatment, stir-fry, boil, roast, fry, etc.), enzyme deactivation, freezing and thawing, hot water reconstitution after drying, water reconstitution after drying, and the like.
  • the enzyme deactivation step is usually performed after the desired enzyme reaction is completed, but the other steps can be performed any number of times at any stage, and can be performed as a pretreatment prior to the enzyme introduction step. Alternatively, it may be performed between the enzyme introduction step and the enzyme reaction step, or after completion of the enzyme reaction step. In addition, in the case of the said heat cooking, the enzyme reaction process mentioned later may be accompanied. In addition, when components contained in raw material ingredients such as proteolysis are decomposed by enzymatic reaction, subsequent processing steps such as cooking / seasoning step such as cooking, impregnation step with water, seasoning liquid, etc. In some cases, the water content is greatly improved.
  • the enzyme reaction step in the method for producing an enzyme-containing food according to the present invention it is preferable to have an enzyme reaction step in which the enzyme introduced into the raw material food material in the enzyme introduction step is reacted in the food material.
  • the enzyme-containing food obtained by the method for producing an enzyme-containing food of the present invention does not have an enzyme reaction step, before the enzyme-containing food as a product is eaten, It is preferred that a reaction occurs.
  • the enzyme reaction step in the method for producing an enzyme-containing food according to the present invention or the enzyme reaction in the enzyme-containing food according to the present invention is such that the enzyme introduced in the enzyme introduction step acts on the food.
  • Ingredients included in the raw materials change, such as accompanied by softening of the ingredients, increased moisture content of the ingredients or subsequent increase in moisture content due to processing of the ingredients, and increased sweetness of the ingredients, It is preferred that useful components be produced or increased.
  • the enzyme reaction step at least a part of the step may be performed simultaneously with the enzyme introduction step, or may be performed subsequent to the enzyme introduction step.
  • the enzyme reaction such as freezing, cooling, and drying is temporarily performed. Alternatively, it may be performed after a step of suspending. That is, in the present invention, the enzyme reaction step may be only an enzyme reaction performed simultaneously with the enzyme introduction step (an enzyme reaction that proceeds in the enzyme introduction step), or may be performed both in the enzyme introduction step and after the completion of the enzyme introduction step.
  • the enzyme introduction step may be performed under conditions that render the enzyme inactive, such as at low temperatures, and the enzyme reaction may be performed only after completion of the enzyme introduction step.
  • the enzyme reaction process may be performed in one stage or in multiple stages.
  • the enzyme reaction is paused by freezing and then thawed.
  • An embodiment in which a multi-stage reaction in which an enzyme reaction is performed again can be employed.
  • the enzyme reaction may be performed while being immersed in the enzyme solution after the enzyme introduction step, or may be performed by being lifted from the enzyme solution.
  • the enzyme reaction step may be carried out under any conditions as long as the temperature within which the enzyme reaction occurs, but can usually be carried out under a temperature condition of about ⁇ 5 to 80 ° C., preferably about 5 to 65 ° C. Can be carried out by maintaining under such temperature conditions.
  • the temperature range of the enzyme reaction step is usually 5 to 120 ° C., preferably 30 to 100 ° C.
  • the enzyme reaction step may be performed in an oxidizing atmosphere, but it is preferable to perform the enzymatic reaction step in a non-oxidizing atmosphere because the deterioration of the food material due to oxidation can be suitably suppressed.
  • non-oxidizing atmosphere examples include a gas-free condition and a gas atmosphere inert to an oxidation reaction such as carbon dioxide and nitrogen.
  • an oxidation reaction such as carbon dioxide and nitrogen.
  • the time of the enzyme reaction step may be within a range that achieves a desired degree of softening, an increase in sweetness, or an increase in water content, and is particularly limited depending on the type of food and enzyme, the amount of enzyme introduced, etc. However, it is desirable that the total time of the enzyme reaction is 1 minute to 24 hours, preferably 1 minute to 6 hours, more preferably about 1 minute to 3 hours.
  • the enzyme reaction step may be carried out at normal pressure or under reduced pressure or under pressure as long as it is within the pressure range where the enzyme reaction occurs.
  • the method for producing an oxygen-containing food of the present invention preferably has an enzyme deactivation step. That is, the enzyme-containing food according to the present invention may be contained in a state where the enzyme has activity, or may be contained in an inactivated state.
  • the enzyme deactivation step is preferably performed after the enzyme reaction step.
  • the enzyme deactivation step is a step of deactivating the enzyme introduced into the food, and may be performed by any method as long as the introduced enzyme is deactivated without impairing the safety as food.
  • heating or microwave irradiation, acid treatment, alkali treatment, alcohol immersion and the like can be mentioned, and among these, heating or microwave irradiation can be suitably performed.
  • the enzyme deactivation process by heating or microwave irradiation can be performed also as cooking of food.
  • any known heat cooking method such as boiling, boiling, frying, steaming and baking can be employed.
  • the enzyme is sufficiently impregnated to the inside of the food material, so that in the enzyme reaction step, an enzyme reaction involving softening, proteolysis, saccharification and the like is sufficiently achieved even inside the food material. For this reason, even when the enzyme deactivation step is performed by cooking, it is possible to achieve a desired degree of softening, saccharification, or moisture content without performing a long-time heat treatment for softening and saccharification.
  • the cooking time can be set to a short time to achieve enzyme deactivation.
  • the enzyme deactivation step can be performed under the condition that at least a part of the enzyme introduced into the food is deactivated, but it is particularly preferable that the enzyme deactivation step is performed under a condition where substantially all of the introduced enzyme is deactivated.
  • the method for producing an enzyme-containing food of the present invention has an enzyme deactivation step, the enzyme-containing food obtained is prevented from further softening over time and stably maintains the desired degree of softening. This is preferable because it is possible.
  • the above-described enzyme deactivation process is also preferred when it is desired to stably maintain desirable properties such as sweetness and moisture content of foods to a desired level.
  • the method for producing an enzyme-containing food according to the present invention preferably includes a freezing step or a freeze-drying step.
  • the freezing step or the freeze-drying step may be performed at any timing, but is preferably performed after the enzyme introduction step described above.
  • a frozen or lyophilized food after the freezing step is preferred because of its property stability and ease of transportation or quality control.
  • the freezing step or the freeze-drying step may be performed prior to the enzyme reaction step, may be performed after the enzyme reaction step, or the enzyme reaction step and the enzyme deactivation step. You may go after.
  • the enzyme reaction step may be performed together with thawing or returning, or may be performed after thawing or returning.
  • the enzyme introduction process can be performed in a short time and the degree of enzyme introduction can be easily controlled, and the effects of enzyme action such as softening, saccharification, and decomposition of raw material components such as proteolysis are possible. Can be easily controlled to a desired level and is excellent in mass productivity.
  • the enzyme-containing food according to the present invention is obtained by the above-described method for producing an enzyme-containing food of the present invention.
  • an enzyme is introduced into the inside, but the enzyme may be in a state of being introduced into the inside in an active state or may be inactivated.
  • the enzyme When the enzyme is present in the food without being inactivated, it is preferably stored in a state in which the enzyme reaction is stopped, such as a frozen state, a dried state, or a lyophilized state. In these cases, after thawing or reconstitution with moisture or seasoning liquid, an enzyme reaction is further performed, and an enzyme action such as softening can be applied to a desired degree to eat.
  • the enzyme-containing food of the present invention is preferably a product in which the enzyme introduced into the food is inactivated or the enzyme reaction is in a paused state.
  • the enzyme-containing food of the present invention is not particularly limited in the degree of enzyme action such as softening, but when used for elderly food, sick food or baby food, the degree of softening desired in each stage. It is preferable. Specifically, for example, the degree of softening that satisfies the universal design food category of the Japan Nursing Food Council, the standards of the Baby Food Council, etc., can be set according to each stage.
  • the enzyme-containing food of the present invention is not particularly limited.
  • the hardness thereof is 5 ⁇ 10 5 N / m 2 or less, preferably 5 ⁇ 10 2 to 5 ⁇ 10 5 N / m 2 . Preferably, it can be about 1 ⁇ 10 3 to 5 ⁇ 10 4 N / m 2 .
  • the enzyme-containing food according to the present invention preferably has such a hardness at the time of ingestion, and in this case, it is easy to chew and swallow and is suitable for uses such as elderly food, sick food, and baby food.
  • the hardness of food means the breaking strength.
  • the enzyme-containing food of the present invention does not particularly limit the degree of enzyme action such as an increase in sweetness, for example, an increase in sugar content.
  • various processed foods such as sugar beet, taste foods such as confectionery, etc. It is desirable to set the desired sugar content (Brix) level according to the conditions.
  • the enzyme-containing food of the present invention provides a food with an increased natural sweetness inherent to the raw material ingredients, without using expensive raw material ingredients with an increased sweetness component, or without going through a complicated and time-consuming cooking method. It is suitable for various processed foods such as sugar beet, and preferred foods such as confectionery.
  • the enzyme-containing food of the present invention does not particularly limit the degree of enzyme action such as an increase in the moisture content or an increase in the moisture content of processed foods using the food as a raw material.
  • the desired moisture content can be increased according to the use of processed foods.
  • the enzyme-containing food according to the present invention has an increased moisture content, and is felt as a result of the increased moisture content in the processing process, without being subjected to a cooking method that takes a long time. Alternatively, since it can be increased, it is suitable for various processed food applications such as sugar beet.
  • ⁇ Break strength measurement> The breaking strength (unit: ⁇ 10 4 N / m 2 ) was measured using the Yamaden desktop type physical property measuring instrument TPU, and the measurement sample with the following shape was used by the Ministry of Health, Labor and Welfare on February 23, 1994 ( (Former Ministry of Health and Welfare) entitled “Handling of labeling permission for foods for the elderly” “Newly developed food health by the Ministry of Health and Welfare, Food Sanitation Division, Department of Health and Welfare” Measurement was performed under the following conditions in accordance with “Testing method for food for elderly people” described in “Notification of Countermeasures Manager”.
  • the plunger is 20 mm in diameter as per the standards of the Ministry of Health, Labor and Welfare, and the sample (part of mushroom measurement) that has a high breaking strength and is difficult to measure under these conditions has a diameter of 3 mm. Each was used for measurement. The average value measured 3 times each was employ
  • Example 1 Raw radishes (diameter approx. 7cm) are cut into 3cm thicknesses, peeled and used as raw ingredients, arranged in a 15x15cm stainless steel basket, covered with a polyethylene net on top of the basket, This was fixed with a stainless steel wire and placed in a 16 ⁇ 16 cm stainless steel container (inner tank). This stainless steel container is placed in a vacuum pressure impregnation device (manufactured by Fcom Co., Ltd.), evacuated, evacuated to 6000 Pa, and evacuated for 3 minutes. Until then, enzyme solution a (about 2 liters) heated to 45 ° C. was introduced into the tank.
  • an enzyme solution (enzyme preparation) containing 0.25% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme and 0.25% by weight of hemicellulase “Amano 90” manufactured by Amano Enzyme A concentration of 0.5% by weight) was prepared and used by stirring and mixing the enzyme and water.
  • the cellulase A “Amano 3” manufactured by Amano Enzyme used for the preparation of the enzyme solution is an enzyme preparation having an enzyme content of 28.0% and a titer of 30,000 (u / g) in the enzyme preparation.
  • the hemicellulase “Amano 90” manufactured by Amano Enzyme is an enzyme preparation having an enzyme content of 60.0% and a titer of 90,000 (u / g) in the enzyme preparation.
  • the enzyme concentration in this example is the enzyme preparation. Concentration.
  • the inside of the vacuum pressure impregnation apparatus was purged with air to increase the pressure to atmospheric pressure (0.1 MPa). At this time, the temperature of the enzyme solution in the apparatus was about 40 ° C. Subsequently, compressed air was introduced to pressurize the inside of the tank and held at 0.3 MPa for 30 minutes (pressurization time: 30 minutes). At this time, the enzyme solution temperature in the apparatus was maintained at about 39 ° C. Next, air purge was performed to complete the impregnation treatment, and the food material impregnated with the enzyme solution was taken out from the apparatus.
  • the weight after impregnation with enzyme solution a increased by 16.2% compared to the weight before impregnation, and became 116.2% by weight of the weight before impregnation.
  • Example 1 the weight change rate when the enzyme solution was impregnated in the same manner as above except that the pressurization time was 1 minute and 3 minutes was shown in the graph of FIG.
  • the ratio of the enzyme (dry weight) in the food is shown in the graph of FIG. 2 together with the case where the pressing time is 30 minutes.
  • Example 1 is different from Example 1 except that enzyme solution b (Example 2), enzyme solution c (Example 3), or enzyme solution d (Example 4) is used instead of enzyme solution a.
  • each enzyme solution was impregnated into the cut radish, which is a raw material.
  • the enzyme solution c 0.25% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme, 0.25% by weight of hemicellulase “Amano 90” manufactured by Amano Enzyme, and concentrated seasoning (Tenyo no Datsuyu “Bimisan”)
  • Enzyme solution d includes 0.5% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme, 0.5% by weight of hemicellulase “Amano 90” manufactured by Amano En
  • Example 1 using the enzyme solution a and Example 2 using the enzyme solution b the weight change rate due to impregnation tends to increase as the pressurization time is increased.
  • Example 3 using the enzyme solution c and Example 4 using the enzyme solution d the weight change rate due to the impregnation is clearer than in Examples 1 and 2 using the enzyme solutions a and b.
  • the weight change rate turned negative in the low and pressurization time of 30 minutes.
  • Enzyme solutions c and d contain concentrated seasonings (Tenyo no Datsuyu “Bimisan”, manufactured by Tenyo Takeda Co., Ltd.), and the osmotic pressure of both c and d was 45 ° C.
  • Example 1 The same raw material (cut radish) as used in Example 1 was blanched for 13 minutes in 95 ° C. hot water, and the breaking strength and shape retention of the obtained processed food were evaluated.
  • the blanching treatment is [1] arranged in a 15 ⁇ 15 cm stainless steel basket [2] covered with a polyethylene net on the top of the basket and fixed with a stainless steel wire [3] in a 16 ⁇ 16 cm stainless steel container
  • This is a process of adding 2 L of water to 95 ° C., and the same applies to the following examples and comparative examples.
  • Table 2 The results are shown in Table 2.
  • Example 2 The same raw material (cut radish) as used in Example 1 was blanched in 95 ° C. hot water for 13 minutes, then placed in a nylon plastic bag, lightly evacuated, and -25 after sealing. It was put in a freezer at 0 ° C., kept for 24 hours or more and completely frozen to the inside, and thawed under running tap water (18 ° C.) for 60 minutes to obtain a processed food material. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 2.
  • Example 3 The same raw material (cut radish) as used in Example 1 was brunched for 13 minutes in a 95 ° C. seasoning solution (Tenyo no Datsuyu “Bimisan” (manufactured by Tenyo Takeda Co., Ltd., 20 wt% aqueous solution)). The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 2.
  • Example 4 The same raw material (cut radish) as used in Example 1 was brunched for 13 minutes in a 95 ° C. seasoning solution (Tenyo no Datsuyu “Bimisan” (manufactured by Tenyo Takeda Co., Ltd., 20 wt% aqueous solution)). Then, put it in a nylon plastic bag, evacuate it lightly, put it in a freezer at -25 ° C after sealing, hold it for more than 24 hours, and freeze it completely inside. Tap water (18 ° C) Thawing was performed for 60 minutes under running water to obtain a processed food material. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 2.
  • Example 5 The same raw material (cut radish) as used in Example 1 was blanched in 95 ° C. hot water for 13 minutes, then placed in a nylon plastic bag, lightly evacuated, and -25 after sealing. Place in a freezer at °C, hold for more than 24 hours, freeze completely to the inside, thaw in 60 minutes under running tap water (18 °C), further warm to 45 °C and hold for 60 minutes The processed food was obtained. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 2.
  • a desired enzyme is maintained in a state in which the shape retaining property equivalent to that of the radish (branch example 1) subjected to only branching is maintained by performing an enzyme reaction uniformly from the inside. It has been found that the degree of softening can be achieved, and the degree of softening can be appropriately adjusted by controlling the enzyme solution to be impregnated and the enzyme reaction during and after the impregnation.
  • Example 5 In the same manner as in Example 1, the cut radish was impregnated with the enzyme solution a, and each enzyme reaction was 0 minutes (immediately after the impregnation. While maintaining the pressurized state for 30 minutes in the impregnation step, the enzyme reaction in the foodstuff For 90 minutes, 180 minutes, and 360 minutes. Next, each of them was immersed in water at 95 ° C. or higher for 13 minutes for cooking to inactivate the enzyme, taken out and allowed to cool to room temperature to obtain a processed food material. The resulting processed food was evaluated for break strength and shape retention in the same manner as in Example 1. The results are shown in Table 3.
  • Example 6 The same procedure as in Example 5 was used except that the enzyme solution b (Example 6), the enzyme solution c (Example 7), or the enzyme solution d (Example 8) was used instead of the enzyme solution a. Then, the impregnated enzyme, enzyme reaction, enzyme deactivation, and cooling were performed to produce treated foods, and the breaking strength and shape retention were evaluated for each. The results are shown in Table 3.
  • the enzyme was impregnated, the enzyme reaction, and the enzyme inactivation by heating cooking, and the shape was kept uniform from the inside of the food while maintaining the same shape retention as that of the radish that had been blanched only. It was found that the enzymatic reaction can soften the ingredients and adjust the degree thereof, and at the same time, the enzyme deactivation process by cooking does not significantly impair the shape retention and can provide a softened food with stable properties. .
  • Example 9 In the same manner as in Example 5, the cut radish was impregnated with the enzyme solution a, and each enzyme reaction was performed for 0 minutes (immediately after the impregnation. While maintaining the pressurized state for 30 minutes in the impregnation step, the enzyme reaction in the foodstuff) After 90 minutes, 180 minutes, and 360 minutes, the enzyme was deactivated by cooking. Next, put it in a nylon plastic bag, evacuate the air lightly, put it in a freezer at -25 ° C after sealing, hold it for more than 24 hours, and freeze it completely inside, and let it run under running tap water (18 ° C) Thawing was performed for 60 minutes, and the breaking strength and shape retention were evaluated in the same manner as in Example 1. The results are shown in Table 4.
  • Example 10 The same procedure as in Example 9, except that the enzyme solution b (Example 10), the enzyme solution c (Example 11), or the enzyme solution d (Example 12) was used instead of the enzyme solution a. Enzyme impregnation, enzyme reaction, enzyme deactivation, and freezing / thawing were performed, and the breaking strength and shape retention were evaluated for each. The results are shown in Table 4.
  • Example 13 In the same manner as in Example 1, the cut radish was impregnated with the enzyme solution a (Example 13) or the enzyme solution b (Example 14). After sealing and sealing, it was placed in a freezer at -25 ° C., kept for more than 24 hours and completely frozen to the inside, and the sample with the nylon plastic bag was thawed in running water (18 ° C.) for 60 minutes. After completion of thawing, the enzymatic reaction for holding the sample in a nylon plastic bag with hot water at 45 ° C. was performed for 0 minute (immediately after thawing), 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, as in Example 1. Thus, breaking strength and shape retention were evaluated. The results are shown in Table 5.
  • Example 15 Raw apple (variety: Sanfuji) is peeled, cut into quarter length, and cut into 20 mm thick ginkgo chopped apples as raw material ingredients, using enzyme solution e (implementation) Example 15) The enzyme solution was impregnated for 30 minutes in the same manner as in Example 1 except that the enzyme solution f (Example 16) was used. It is considered that an enzyme reaction in the food material occurs while the pressurized state is maintained for 30 minutes in the impregnation step.
  • the enzyme solution e contains 0.1% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme, 0.1% by weight of hemicellulase “Amano 90” manufactured by Amano Enzyme, and 10% by weight of sucrose.
  • Enzyme solution (enzyme preparation concentration 0.2% by weight)
  • As the enzyme solution f an enzyme solution containing 0.2% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme, 0.2% by weight of hemicellulase “Amano 90” manufactured by Amano Enzyme, and 10% by weight of sucrose ( Enzyme preparation concentration 0.4% by weight was used.
  • the weight after impregnating the enzyme solution e in Example 15 increased by 40.1% by weight compared to the weight before impregnation, and the weight after impregnating the enzyme solution f in Example 16 was the weight before impregnation. And 35.8% by weight.
  • Example 7 (Production of apple food for comparison) The same raw material (cut apple) as used in Example 15 was blanched for 5 minutes in an aqueous 10 wt% sucrose solution at 95 ° C. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then 30 minutes under running tap water (18 ° C) And thawed to obtain a processed food. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 7.
  • Example 8 The same raw material (cut apple) as used in Example 15 was blanched for 5 minutes in a 10 wt% sucrose aqueous solution at 95 ° C. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then 30 minutes under running tap water (18 ° C) And thawed to obtain a processed food. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 7.
  • Example 9 A raw material similar to that used in Example 15 (cut apple) was blanched for 5 minutes in a 10 wt% sucrose aqueous solution at 95 ° C, and then placed in a nylon plastic bag and lightly vented. After sealing, it was placed in a freezer at ⁇ 25 ° C. and kept for 24 hours or more to completely freeze the inside. This was placed in a vacuum freeze-drying tray, introduced into a vacuum freeze-drying apparatus (TFD50LF4 manufactured by Toyo Giken), freeze-dried under conditions of a shelf temperature of 45 ° C. for 48 hours and a vacuum of 40 Pa or less, and freeze-dried ( FD) An apple was obtained.
  • the FD yield ratio of the weight after lyophilization to the weight before lyophilization
  • the weight change rate before and after water reconstitution was 467%.
  • hot water reconstitution was performed by pouring 300 cc of hot water into a bowl, putting an FD sample to be reconstituted there (do not squeeze it down), let it stand for 3 minutes, and then opening it on a net-like sieve.
  • the rate of weight change before and after hot water reversion was 387%.
  • Example 17 The same raw material ingredients (cut apples) as used in Example 15 were impregnated with the enzyme solution e in the same manner as in Example 15. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes.
  • the ingredients immediately after the impregnation with the enzyme solution and the ingredients after the enzyme reaction by holding at 45 ° C. for 20 minutes, 40 minutes and 60 minutes after the impregnation are immersed in a 10% sucrose solution at 95 ° C. or more for 5 minutes. Then, the enzyme was inactivated by cooking, taken out and allowed to cool to obtain a processed food material. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 8.
  • Example 18 In Example 17, a processed food was obtained in the same manner as in Example 17 except that the enzyme solution f was used instead of the enzyme solution e. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 8.
  • the enzyme solution was impregnated and subjected to enzyme reaction, followed by enzyme deactivation by heating and cooking, so that the enzyme reaction was uniformly carried out from the inside of the food, thereby being equivalent to apples that had only been blanched. It was found that the food material can be softened to a desired degree while maintaining the shape-retaining property. Those retaining shape retention at the stage after the enzyme reaction did not significantly impair shape retention due to the enzyme deactivation process by cooking.
  • Example 19 The same raw material ingredients (cut apples) as used in Example 15 were impregnated with the enzyme solution e in the same manner as in Example 15. It is considered that an enzyme reaction in the food material occurs while the pressurized state is maintained for 30 minutes in the impregnation step.
  • the ingredients immediately after the impregnation with the enzyme solution and the ingredients after the enzyme reaction by holding at 45 ° C. for 20 minutes, 40 minutes and 60 minutes after the impregnation are immersed in a 10% sucrose solution at 95 ° C. or more for 5 minutes. Then, the enzyme was inactivated by cooking, taken out and allowed to cool.
  • Example 20 In Example 19, a processed food material was obtained in the same manner as in Example 19 except that the enzyme solution f was used instead of the enzyme solution e. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 9.
  • Example 21 The same raw material ingredients (cut apples) as used in Example 15 were impregnated with the enzyme solution e in the same manner as in Example 15. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then place the sample together with the nylon plastic bag in tap water (18 ° C) Thawed in running water for 60 minutes. After the thawing was completed, the enzyme reaction for holding the sample in the nylon plastic bag by immersing it at 45 ° C. was held for 0 minutes (immediately after thawing), 20 minutes, 40 minutes, and 60 minutes to obtain processed foods. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 10.
  • Example 22 In Example 21, a processed food material was obtained in the same manner as in Example 21 except that the enzyme solution f was used instead of the enzyme solution e. The breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 10.
  • the enzyme solution is impregnated, frozen and thawed, and then the enzyme reaction is performed uniformly, so that the enzyme reaction is uniformly performed from the inside of the food, so that it is equivalent to the apple that has been blanched and frozen and thawed. It was found that the foodstuff can be softened to a desired degree while retaining its shape retention. These results indicate that the breaking strength is lower than that obtained by freezing and thawing after the enzyme reaction, and the softening is further advanced. It seems that the food tissue is destroyed by freezing and thawing before the enzyme reaction, and thus the efficiency of tissue degradation by the subsequent enzyme reaction is increased.
  • Example 23 The same raw material ingredients (cut apples) as used in Example 15 were impregnated with the enzyme solution e in the same manner as in Example 15. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes.
  • the ingredients immediately after the impregnation with the enzyme solution and the ingredients after the enzyme reaction by holding at 45 ° C. for 20 minutes, 40 minutes and 60 minutes after the impregnation are immersed in a 10% sucrose solution at 95 ° C. or more for 5 minutes. Then, the enzyme was inactivated by cooking, taken out and allowed to cool.
  • Table 11 also shows the rate of change in weight before and after water reconstitution (weight ratio of food after reversion to FD food).
  • Example 24 In Example 23, an FD apple was produced in the same manner as in Example 23 except that the enzyme solution f was used instead of the enzyme solution e. Table 11 shows the respective FD yields (ratio (%) of the weight after lyophilization to the weight before lyophilization). The obtained FD apple was rehydrated in the same manner as in Example 23, and the breaking strength and shape retention were evaluated. Moreover, the weight change rate (weight ratio of the foodstuff after returning with respect to FD foodstuff) before and after water return was calculated
  • Example 25 The FD apple obtained using the enzyme solution e was reheated in the same manner as in Example 23, and the breaking strength and shape retention were evaluated. The results are shown in Table 11. Table 11 also shows the rate of change in weight before and after hot water reversion (weight ratio of food after reversion to FD food).
  • hot water reconstitution was performed by pouring 300 cc of hot water into a bowl, putting an FD sample to be reconstituted there (do not squeeze it down), let it stand for 3 minutes, and then opening it on a net-like sieve.
  • Example 26 The FD apple obtained using the enzyme solution f in the same manner as in Example 24 was reheated in the same manner as in Example 25, and the breaking strength, shape retention, and rate of change in weight returned were evaluated. The results are shown in Table 11.
  • the FD foodstuffs obtained in Examples 23 to 26 were excellent in return characteristics, with smooth water return or hot water return, high return speed, quick and uniform return to the center.
  • the return weight change rate in Examples 23 and 25 using an enzyme solution having a low enzyme concentration, a tendency equal to or higher than that in Comparative Examples 9 and 10 was confirmed, and an enzyme solution having a high enzyme concentration was used. In Examples 24 and 25, a tendency equal to or lower than those of Comparative Examples 9 and 10 was confirmed.
  • Examples 23 and 25 in which hydrolysis accompanied by an enzymatic reaction was promoted and shape retention was maintained the change in weight of hydrolysis was increased, and the hydrolysis by the enzyme progressed excessively due to the high concentration.
  • the shape retention was impaired, so the change in return weight was considered to be low.
  • the FD apples of the examples freeze-dried after enzyme impregnation can control the degree of softening while maintaining the shape-retaining properties equivalent to those freeze-dried after blanching I understood.
  • Example 27 Raw celery cut to 3 cm in length is used as a raw material, placed in a 15 x 15 cm stainless steel basket, covered with a polyethylene net on the top of the basket, and fixed with a stainless steel wire. It was put in a stainless steel container (inner tank) of ⁇ 16 cm. This stainless steel container is placed in a vacuum pressure impregnation device (manufactured by FPCOM Co., Ltd.), evacuated, evacuated to 6000 Pa or less, and continuously evacuated for 3 minutes. Until immersion, about 2 liters of the enzyme solution b (enzyme preparation concentration 1.0%) heated to 45 ° C. was introduced into the tank.
  • a vacuum pressure impregnation device manufactured by FPCOM Co., Ltd.
  • the inside of the vacuum pressure impregnation apparatus was air purged to increase the pressure to atmospheric pressure, and then the compressed air was introduced to pressurize the inside of the tank and held at 0.3 MPa for 30 minutes (pressurization time : 30 minutes). At this time, the enzyme solution temperature in the apparatus was maintained at about 39 ° C. Next, air purge was performed to complete the impregnation treatment, and the food material impregnated with the enzyme solution was taken out from the apparatus.
  • the weight after impregnation with the enzyme solution b increased by 6.7% compared to the weight before impregnation, and became 106.7% by weight of the weight before impregnation.
  • Example 28 celery was impregnated with the enzyme solution in the same manner as in Example 27, except that enzyme solution g having an enzyme preparation concentration of 2.0% was used instead of enzyme solution b.
  • enzyme solution g an enzyme solution containing 1.0% by weight of cellulase A “Amano 3” manufactured by Amano Enzyme and 1.0% by weight of hemicellulase “Amano 90” manufactured by Amano Enzyme was used. And water were prepared by stirring and mixing.
  • the weight after impregnation with the enzyme solution g increased by 5.4% compared to the weight before impregnation, and became 105.4% by weight of the weight before impregnation.
  • Example 11 The same raw material (cut celery) as used in Example 27 was blanched in 95 ° C. hot water for 5 minutes, and the breaking strength and shape retention of the obtained processed food were evaluated. The results are shown in Table 13.
  • Example 12 The same raw material (cut celery) as used in Example 27 was blanched in 95 ° C. hot water for 5 minutes. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then 30 minutes under running tap water (18 ° C) And thawed to obtain a processed food. About the obtained processed foodstuff, the breaking strength of a shell and a cross section, and shape retention property were evaluated. The results are shown in Table 13.
  • Example 13 The same raw material (cut celery) as used in Example 27 was blanched in 95 ° C. hot water for 5 minutes. This was put in a nylon plastic bag, lightly evacuated, sealed, placed in a freezer at ⁇ 25 ° C., held for more than 24 hours, and completely frozen to the inside. This was placed in a vacuum freeze-drying tray, introduced into a vacuum freeze-drying apparatus (TFD50LF4 manufactured by Toyo Giken), freeze-dried under conditions of a shelf temperature of 45 ° C. for 48 hours and a vacuum of 40 Pa or less, and freeze-dried ( FD) Celery was obtained. The FD yield (ratio of weight after lyophilization to weight before lyophilization (%)) was 7.3%.
  • the weight change rate before and after water reconstitution was 895%.
  • Comparative Example 14 The FD celery obtained in the same manner as in Comparative Example 13 was reconstituted with hot water, and the breaking strength of the outer skin and the cross section and the shape retention were evaluated. The results are shown in Table 13.
  • hot water reconstitution was performed by pouring 300 cc of hot water into a bowl, putting an FD sample to be reconstituted there (do not squeeze it down), let it stand for 3 minutes, and then opening it on a net-like sieve.
  • the rate of change in weight before and after hot water reversion was 990%.
  • Example 29 In the same manner as in Example 27, the cut celery was impregnated with the enzyme solution b, and each enzyme reaction was 0 minutes (immediately after the impregnation. While maintaining the pressurized state for 30 minutes in the impregnation step, the enzyme reaction in the foodstuff For 90 minutes, 180 minutes, and 360 minutes. Subsequently, the enzyme was deactivated by soaking in water at 95 ° C. or more for 6 minutes, taken out, and allowed to cool to room temperature to obtain a processed food material. About the obtained processed foodstuff, it carried out similarly to Example 27, and evaluated the breaking strength of a shell and a cross section, and shape retention. The results are shown in Table 14.
  • Example 30 In Example 29, enzyme impregnation, enzyme reaction, enzyme deactivation, and the like, except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. And the processed foodstuff was manufactured by standing to cool, and the breaking strength of the outer skin and the cross section and the shape retention were evaluated. The results are shown in Table 14.
  • celery (Comparative Examples 11 and 12) in which the enzyme reaction was uniformly generated to the inside by the impregnation of the enzyme solution and the subsequent enzyme reaction, and softened by freezing and thawing after branching or branching. It was found that the celery food can be softened by adjusting the degree of softening appropriately while maintaining the same shape. In addition, it was found that the softened food with stable properties can be provided without significantly deteriorating the shape retention even by the enzyme deactivation step by cooking.
  • Example 31 The same raw material (cut celery) as used in Example 27 was impregnated with the enzyme solution b (enzyme preparation concentration of 1.0%) in the same manner as in Example 27. It is considered that an enzyme reaction in the food material occurs while the pressurized state is maintained for 30 minutes in the impregnation step. Ingredients immediately after impregnation with the enzyme solution, and after the impregnation is completed at 45 ° C. for 90 minutes, 180 minutes and 360 minutes for the enzyme reaction, the food is immersed in water at 95 ° C. or higher for 6 minutes and cooked. The enzyme was inactivated, and then taken out and allowed to cool.
  • Example 32 In Example 31, a processed food material was obtained in the same manner as in Example 31 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. The breaking strength of the outer skin and the cross section of the obtained processed food and the shape retention were evaluated. The results are shown in Table 15.
  • Example 33 The same raw material (cut celery) as used in Example 27 was impregnated with the enzyme solution b (enzyme preparation concentration of 1.0%) in the same manner as in Example 27. It is considered that an enzyme reaction in the food material occurs while the pressurized state is maintained for 30 minutes in the impregnation step. Immediately after completion of impregnation, put it in a nylon plastic bag, evacuate lightly, put it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then put the sample together with the nylon plastic bag into tap water Thawed in flowing water (18 ° C.) for 60 minutes. After completion of thawing, the enzyme reaction for holding the sample in a nylon plastic bag with hot water at 45 ° C.
  • Example 34 In Example 33, a processed food material was obtained in the same manner as in Example 33 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. The breaking strength of the outer skin and the cross section of the obtained processed food and the shape retention were evaluated. The results are shown in Table 16.
  • Example 35 The same raw material (cut celery) as used in Example 27 was impregnated with the enzyme solution b (enzyme preparation concentration of 1.0%) in the same manner as in Example 27. It is considered that an enzyme reaction in the food material occurs while the pressurized state is maintained for 30 minutes in the impregnation step. Ingredients immediately after impregnation with the enzyme solution, and after the impregnation is completed at 45 ° C. for 90 minutes, 180 minutes and 360 minutes for the enzyme reaction, the food is immersed in water at 95 ° C. or higher for 6 minutes and cooked. The enzyme was inactivated, and then taken out and allowed to cool.
  • the enzyme solution b enzyme preparation concentration of 1.0%
  • the obtained FD celery was rehydrated in the same manner as in Comparative Example 13, and the breaking strength of the outer skin and the cross section, the shape retention, and the weight change rate before and after rehydration (weight ratio of the recovered food to the FD food) evaluated.
  • the results are shown in Table 17.
  • Example 36 In Example 35, FD celery was obtained in the same manner as in Example 35 except that the enzyme solution g having an enzyme preparation concentration of 2.0% was used instead of the enzyme solution b. Table 17 shows the respective FD yields (ratio of weight after lyophilization to weight before lyophilization (%)). The obtained FD celery was rehydrated in the same manner as in Comparative Example 13, and the breaking strength of the outer skin and the cross section, the shape retention, and the weight change rate before and after rehydration (weight ratio of the recovered food to the FD food) evaluated. The results are shown in Table 17.
  • Example 37 The FD celery obtained using the enzyme solution b in the same manner as in Example 35 was tempered in the same manner as in Comparative Example 14, and the rupture strength, shape retention, and weight change rate before and after the tempering ( The weight ratio of the food after returning to the FD food) was evaluated. The results are shown in Table 17.
  • Example 38 The FD celery obtained using the enzyme solution g in the same manner as in Example 36 was tempered in the same manner as in Comparative Example 14, and the breaking strength of the outer skin and the cross section, the shape retention, and the weight change rate before and after the tempering. (Weight ratio of food after returning to FD food) was evaluated. The results are shown in Table 17.
  • Example 39 Raw mushrooms (as in the hall) are used as raw ingredients, arranged in a 15 x 15 cm stainless steel basket, covered with a polyethylene net on the top of the basket, and fixed with a stainless steel wire. Placed in a stainless steel container (inner tank). This stainless steel container was placed in a vacuum pressure impregnation device (manufactured by Fcom Co., Ltd.), evacuated and evacuated to 6000 Pa or less, and evacuation continued for another 3 minutes. About 2 liters of the enzyme solution b (enzyme preparation concentration 1.0%) heated to 45 ° C. was introduced into the tank until immersed in the tank.
  • the inside of the vacuum pressure impregnation apparatus was purged with air to increase the pressure to atmospheric pressure (0.1 MPa). At this time, the temperature of the enzyme solution in the apparatus was about 40 ° C. Subsequently, compressed air was introduced to pressurize the inside of the tank and held at 0.3 MPa for 30 minutes (pressurization time: 30 minutes). At this time, the enzyme solution temperature in the apparatus was maintained at about 39 ° C. Next, air purge was performed to complete the impregnation treatment, and the food material impregnated with the enzyme solution was taken out from the apparatus.
  • the weight after impregnation with the enzyme solution b increased by 83.6% compared to the weight before impregnation, and became 183.6% by weight of the weight before impregnation.
  • Example 40 In Example 39, the mushroom was impregnated with the enzyme solution in the same manner as in Example 39 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b.
  • the weight after impregnating the enzyme solution g increased by 89.6% compared with the weight before impregnation, and became 189.6% by weight of the weight before impregnation.
  • Example 15 A mushroom similar to that used in Example 39 was used as a raw material, and this was blanched for 5 minutes in hot water at 95 ° C., and the breaking strength and shape retention of the obtained processed food were evaluated.
  • plungers having a diameter of 3 mm and 20 mm were used for the breaking strength test. The results are shown in Table 19.
  • Example 16 A mushroom similar to that used in Example 39 was used as a raw material and blanched for 5 minutes in hot water at 95 ° C. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then 30 minutes under running tap water (18 ° C) And thawed to obtain a processed food. About the obtained processed foodstuff, breaking strength and shape retention property were evaluated. For the breaking strength test, plungers having a diameter of 3 mm and 20 mm were used. The results are shown in Table 19.
  • Example 17 A mushroom similar to that used in Example 39 was used as a raw material and blanched for 5 minutes in hot water at 95 ° C. This was put in a nylon plastic bag, lightly evacuated, sealed, placed in a freezer at ⁇ 25 ° C., held for more than 24 hours, and completely frozen to the inside. This was placed in a vacuum freeze-drying tray, introduced into a vacuum freeze-drying apparatus (TFD50LF4 manufactured by Toyo Giken), freeze-dried under conditions of a shelf temperature of 45 ° C. for 48 hours and a vacuum of 40 Pa or less, and freeze-dried ( FD) A mushroom was obtained. The FD yield (ratio of weight after lyophilization to weight before lyophilization (%)) was 10.7%.
  • the obtained FD mushroom was rehydrated in the same manner as in Comparative Example 9, and the breaking strength and shape retention were evaluated.
  • the breaking strength test plungers having a diameter of 3 mm and 20 mm were used. The results are shown in Table 19.
  • the weight change rate before and after water reconstitution was 629%.
  • the rate of change in weight before and after hot water reversion was 611%.
  • Example 41 Mushrooms similar to those used in Example 39 were impregnated with the enzyme solution b (enzyme preparation concentration 1.0%) in the same manner as Example 39. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes. Ingredients immediately after impregnation with the enzyme solution, and after the impregnation is completed at 45 ° C. for 90 minutes, 180 minutes and 360 minutes for the enzyme reaction, the food is immersed in water at 95 ° C. or higher for 5 minutes and cooked. The enzyme was inactivated, taken out and allowed to cool to obtain a processed food material. The breaking strength and shape retention of the obtained processed food were evaluated. Here, the measurement of breaking strength was performed using a plunger having a diameter of 3 mm. The results are shown in Table 20.
  • Example 42 In Example 41, a processed food material was produced and obtained in the same manner as in Example 41 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. The breaking strength and shape retention of the processed food were evaluated. The results are shown in Table 20.
  • Example 43 Mushrooms similar to those used in Example 39 were impregnated with the enzyme solution b (enzyme preparation concentration 1.0%) in the same manner as Example 39. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes. Ingredients immediately after impregnation with the enzyme solution, and after the impregnation is completed at 45 ° C. for 90 minutes, 180 minutes and 360 minutes for the enzyme reaction, the food is immersed in water at 95 ° C. or higher for 5 minutes and cooked. The enzyme was inactivated, and then taken out and allowed to cool.
  • Example 44 In Example 43, a processed food material was produced and obtained in the same manner as in Example 43 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. The breaking strength and shape retention of the processed food were evaluated. The results are shown in Table 21.
  • Example 45 Mushrooms similar to those used in Example 39 were impregnated with the enzyme solution b (enzyme preparation concentration 1.0%) in the same manner as Example 39. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes. Put this in a nylon plastic bag, evacuate the air lightly, place it in a freezer at -25 ° C after sealing, hold it for more than 24 hours to completely freeze it, and then place the sample together with the nylon plastic bag in tap water (18 ° C) Thawed in running water for 60 minutes. After the completion of thawing, the enzyme reaction for holding the sample in a nylon plastic bag by soaking at 45 ° C.
  • Example 46 In Example 45, a processed food was produced and obtained in the same manner as in Example 45 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. The breaking strength and shape retention of the processed food were evaluated. The results are shown in Table 22.
  • Example 47 Mushrooms similar to those used in Example 39 were impregnated with the enzyme solution b (enzyme preparation concentration 1.0%) in the same manner as Example 39. It is considered that an enzymatic reaction in the food material occurs during the impregnation step while the pressurized state is maintained for 30 minutes. Ingredients immediately after impregnation with the enzyme solution, and after the impregnation is completed at 45 ° C. for 90 minutes, 180 minutes and 360 minutes for the enzyme reaction, the food is immersed in water at 95 ° C. or higher for 5 minutes and cooked. The enzyme was inactivated, and then taken out and allowed to cool.
  • the obtained FD mushroom was rehydrated in the same manner as in Comparative Example 9, and the breaking strength and shape retention were evaluated.
  • the breaking strength test plungers having a diameter of 3 mm and 20 mm were used.
  • the weight change rate (weight ratio of the foodstuff after returning with respect to FD foodstuff) before and after water return was calculated
  • Example 48 In Example 47, an FD mushroom as a processed food was obtained in the same manner as in Example 47 except that the enzyme solution g (enzyme preparation concentration 2.0%) was used instead of the enzyme solution b. .
  • Table 23 shows the respective FD yields (ratio (%) of weight after lyophilization to weight before lyophilization).
  • the obtained FD mushroom was rehydrated in the same manner as in Example 47, and the breaking strength, shape retention, and weight change rate before and after reconstitution (weight ratio of food after reversion to FD food) were evaluated. The results are shown in Table 22.
  • Example 49 The FD mushroom obtained using the enzyme solution b in the same manner as in Example 47 was reconstituted in the same manner as in Comparative Example 14, and the breaking strength and shape retention were evaluated in the same manner as in Example 47. The results are shown in Table 23. Table 22 also shows the rate of change in weight before and after hot water reversion (weight ratio of food after reversion to FD food).
  • Example 50 The FD mushroom obtained using the enzyme solution g in the same manner as in Example 48 was reheated in the same manner as in Comparative Example 14, and the breaking strength and shape retention were evaluated in the same manner as in Example 47. The results are shown in Table 23. Table 23 also shows the rate of change in weight before and after hot water reversion (weight ratio of food after reversion to FD food).
  • Example 51 Weighed raw sweet potatoes (variety: Kokei No. 14), diced into 20mm thickness, are used as raw material ingredients, arranged in a 15 x 15cm stainless steel basket, and covered with a polyethylene net on the top of the basket.
  • This stainless steel container is placed in a vacuum pressure impregnation apparatus (manufactured by Fcom Co., Ltd.), evacuated and depressurized to 5000 Pa.
  • Temperature-controlled enzyme solution h (about 1.5 liters) was introduced into the tank.
  • an enzyme solution (enzyme preparation concentration 0.1% by weight) containing 0.1% by weight of “Chrytase T10S” manufactured by Amano Enzyme was prepared by stirring and mixing the enzyme and water. Used.
  • the crystallase T10S manufactured by Amano Enzyme used for the preparation of the enzyme solution is an enzyme preparation having an enzyme ( ⁇ -amylase) content of 77.5% and a titer of 13,100 (LJ / g) in the enzyme preparation. is there.
  • the inside of the vacuum pressure impregnation apparatus was air purged to increase the pressure to atmospheric pressure (0.1 MPa). Subsequently, compressed air was introduced to pressurize the inside of the tank and held at 0.3 MPa for 10 minutes (pressurization time: 10 minutes). At this time, the temperature of the enzyme solution in the apparatus was kept at about 10 ° C. Next, air purge was performed to complete the impregnation treatment, and the food material impregnated with the enzyme solution was taken out from the apparatus, and the water adhering to the surface of the food material was thoroughly removed.
  • the weight of the food material after impregnating the enzyme solution h increased by 23.7% compared to the weight before impregnation, and became 123.7% by weight of the weight before impregnation.
  • the food material thus obtained was put into white squeezed oil adjusted to 150 ° C., held for 5 minutes and cooked, and then the food material was pulled up from the white squeezed oil and the oil was sufficiently cut.
  • the weight of the food material after cooking decreased by 11.6% compared with the initial weight of the food material before performing all the treatments, and became 88.4% by weight of the initial weight.
  • the enzyme reaction is occurring in the food material not only while being kept in the pressurized state in the impregnation step, but also during this cooking.
  • Example 51 S 1 ⁇ Wf / 100
  • Example 52 the heating cooking conditions were added to white squeezed oil adjusted to 100 ° C. and held for 5 minutes, and then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes
  • Example 53 put into white squeezed oil adjusted to 100 ° C. and held for 10 minutes, then added to white squeeze adjusted to 150 ° C. and held for 5 minutes
  • Example 53 100 ° C.
  • the sample was put into white squeezed oil adjusted to a temperature of 15 ° C. and held for 15 minutes, and then added to the white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Example 54).
  • the ingredients were impregnated with the enzyme solution and cooked, and the sugar content (brix) of the ingredients was measured. The results are shown in Table 24 and FIG.
  • Example 55 In Example 51, except that the enzyme solution i was used in place of the enzyme solution h, the enzyme solution was impregnated into the food material and cooked in the same manner as in Example 51, and the sugar content of the food material (Brix) was measured. The results are shown in Table 24 and FIG.
  • the enzyme solution i an enzyme solution (enzyme preparation concentration: 0.3% by weight) containing 0.3% by weight of “Christase T10S” manufactured by Amano Enzyme was used.
  • the enzyme solution was prepared by stirring and mixing the enzyme and water.
  • Example 55 the cooking conditions were set in white squeezed oil adjusted to 100 ° C. and held for 5 minutes, and then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes ( Example 56), put into white squeezed oil adjusted to 100 ° C. and held for 10 minutes, then added to white squeeze adjusted to 150 ° C. and held for 5 minutes (Example 57), 100 ° C.
  • the sample was put into white squeezed oil adjusted to a temperature of 15 ° C. and held for 15 minutes, and then added to the white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Example 58).
  • the ingredients were impregnated with the enzyme solution and cooked, and the sugar content (brix) of the ingredients was measured. The results are shown in Table 24 and FIG.
  • Example 51 In Example 51, except that the impregnation treatment with the enzyme solution h was not performed, the food material was cooked in the same manner as in Example 51, and the sugar content (Brix) of the food material was measured. The results are shown in Table 25 and FIG.
  • Comparative Examples 21 to 23 In Comparative Example 20, the cooking conditions were added to white squeezed oil adjusted to 100 ° C. and held for 5 minutes, and then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes ( Comparative Example 21), put into white squeezed oil adjusted to 100 ° C. and held for 10 minutes, then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Comparative Example 22), 100 ° C. A comparative example except that it was put into a white squeezed oil adjusted to a temperature of 15 ° C. and held for 15 minutes, and then added to a white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Comparative Example 23). In the same manner as in No. 20, the food was cooked and the sugar content (brix) of the food was measured. The results are shown in Table 25 and FIG.
  • Example 51 In Example 51, except that water was used in place of the enzyme solution h, the impregnation of the ingredients with water and cooking were performed in the same manner as in Example 51, and the sugar content (Brix) of the ingredients was measured. . The results are shown in Table 25 and FIG.
  • Comparative Examples 25 to 27 In Comparative Example 24, the cooking conditions were added to white squeezed oil adjusted to 100 ° C. and held for 5 minutes, and then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes ( Comparative Example 25), put into white squeezed oil adjusted to 100 ° C. and held for 10 minutes, then added to white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Comparative Example 26), 100 ° C. A comparative example except that it was put into a white squeezed oil adjusted to a temperature of 15 ° C. and held for 15 minutes, and then added to a white squeezed oil adjusted to 150 ° C. and held for 5 minutes (Comparative Example 27). In the same manner as in No. 24, the food was impregnated with water and cooked, and the sugar content (brix) of the food was measured. The results are shown in Table 25 and FIG.
  • Example 59 In Example 51, except that the enzyme solution j was used instead of the enzyme solution h, the enzyme solution was impregnated into the food material and cooked in the same manner as in Example 51, and the sugar content of the food material (Brix) was measured. The results are shown in Table 26.
  • an enzyme solution (enzyme preparation concentration: 1.0% by weight) containing 1.0% by weight of “Christase T10S” manufactured by Amano Enzyme was used.
  • the enzyme solution was prepared by stirring and mixing the enzyme and water.
  • Example 60 In Example 59, except that enzyme solution j2 was used instead of enzyme solution j, impregnation of the enzyme solution into the ingredients and cooking were performed in the same manner as in Example 59, and the sugar content of the ingredients (Brix) was measured. The results are shown in Table 26.
  • the enzyme solution j2 a 65 wt% sucrose solution obtained by dissolving sucrose (manufactured by Mitsui Sugar Co., Ltd., upper white sugar J) in water was added to “Chrytase T10S” 1.0 manufactured by Amano Enzyme.
  • An enzyme solution (enzyme preparation concentration: 1.0% by weight) added to contain 5% by weight was used.
  • the enzyme solution was prepared by stirring and mixing the enzyme and sucrose solution.
  • Example 59 In Example 59, except that a sucrose solution having a concentration of 65% by weight was used in place of the enzyme solution j, impregnation of the sucrose solution into the ingredients and cooking were performed in the same manner as in Example 59. The sugar content (Brix) of the food was measured. The results are shown in Table 26.
  • Example 59 using sweet potato as a raw material, it was confirmed that a food with a high sugar content (brix) was obtained even when compared with a food impregnated with 65 wt% sucrose solution.
  • This food is a food that can strongly feel the original natural sweetness of sweet potato, and has a sweetness different from that of a food whose sugar content is increased only by sucrose.
  • sweet potato has an original natural sweetness and the sweetness of sucrose, and a sweeter food can be obtained.
  • Example 61 In Example 59, except that the enzyme solution j3 was used in place of the enzyme solution j, the food material was impregnated with the enzyme solution and cooked, and the sugar content (brix) of the food material was used. Was measured. The results are shown in Table 27.
  • an enzyme solution (enzyme preparation concentration: 1.0% by weight) added to strawberry juice so as to contain 1.0% by weight of “Chrytase T10S” manufactured by Amano Enzyme was used. .
  • the enzyme solution was prepared by stirring and mixing the enzyme and strawberry juice.
  • the strawberry juice is 100% by weight of a mixed solution obtained by mixing 70% by weight of 35 ° BX transparent strawberry juice (manufactured by Nippon Fruit Processing Co., Ltd.) and 30% by weight of reduced starch syrup (See 600 made by Bussan Food Science Co., Ltd.).
  • 1% by weight of strawberry fragrance (Strawberry oil manufactured by Inner and Outer Fragrance Co.) is added and sufficiently stirred and mixed.
  • Example 29 In Example 61, except that the strawberry fruit liquid obtained in Example 61 was used in place of the enzyme liquid j3, impregnation of the strawberry juice into the ingredients and heating cooking were performed in the same manner as in Example 59. And the sugar content (Brix) of the food was measured. The results are shown in Table 27.
  • Example 62 Weighed soybeans (made by Hokuren Agricultural Cooperative Federation) are used as raw ingredients, arranged in a 15 x 15 cm stainless steel basket, covered with a polyethylene net on top of the basket, and fixed with a stainless steel wire. It was put in a 16 ⁇ 16 cm stainless steel container (inner tank). This stainless steel container was placed in a vacuum pressure impregnation apparatus (manufactured by Fcom Co., Ltd.), evacuated and decompressed to 5000 Pa, and immediately kept at 15 ° C. until the raw material was completely immersed. Temperature-controlled enzyme solution k (about 1.5 liters) was introduced into the tank.
  • Temperature-controlled enzyme solution k about 1.5 liters
  • an enzyme solution containing 0.5% by weight of protease A “Amano” G manufactured by Amano Enzyme (enzyme preparation concentration: 0.5% by weight) is mixed by stirring the enzyme and water. Prepared and used.
  • the protease A “Amano” G manufactured by Amano Enzyme used for the preparation of the enzyme solution is an enzyme preparation having an enzyme (protease) content of 30.0% and a titer of 10,000 (u / g) in the enzyme preparation. It is.
  • the inside of the vacuum pressure impregnation apparatus was air purged to increase the pressure to atmospheric pressure (0.1 MPa). Subsequently, compressed air was introduced to pressurize the inside of the tank and held at 0.3 MPa for 30 minutes (pressurization time: 30 minutes). At this time, the temperature of the enzyme solution in the apparatus was kept at about 10 ° C. Subsequently, air impregnation was completed to complete the impregnation treatment, and the food material impregnated with the enzyme solution was taken out from the apparatus, and lightly blown in a state where it was placed in a stainless steel basket, and water remaining on the surface of the food material was blown and weighed.
  • the weight of the food material after impregnating the enzyme liquid k increased by 39.2% compared to the weight before impregnation, and became 139.2% by weight of the weight before impregnation.
  • the enzyme reaction in foodstuff has arisen while hold
  • the weight of the food after cooking was 92.4% higher than the initial weight of the food before all the treatments, and was 192.4% of the initial weight.
  • Example 30 In Example 62, cooking with respect to ingredients and weight change were measured in the same manner as in Example 62 except that the impregnation treatment with the enzyme solution k was not performed. The results are shown in Table 28.
  • Example 31 In Example 62, except that the impregnation treatment with the enzyme solution k was not performed, and the food was immersed in water adjusted to a temperature near 15 ° C. under atmospheric pressure for 30 minutes, and then the heat treatment with a pressure cooker was performed. In the same manner as in Example 62, cooking to ingredients and weight change were measured. The results are shown in Table 28.
  • Example 62 in addition to performing the impregnation treatment with water instead of the enzyme solution k, the cooking with food and the change in weight were measured in the same manner as in Example 62. The results are shown in Table 28.
  • Example 62 From the results of Example 62, it was confirmed that a processed food material having a significantly increased water content was obtained by the subsequent heating and cooking while the water content of the food material was increased by the enzyme reaction.
  • the method for producing an enzyme-containing food according to the present invention can be suitably applied to the production of various foods subjected to an enzyme action such as softening, and the enzyme-containing food according to the present invention includes aged food, sick food, baby food, etc. It can be widely used in the fields of processed foods of various ingredients, such as foods with a soft new texture, food materials as primary processed products that shorten cooking time, softened cooked foods, and the like.
  • the enzyme-containing food according to the present invention is a freeze-dried product, it can be widely used as a processed food that is soft and excellent in return characteristics.
  • the method for producing an enzyme-containing food according to the present invention can be suitably applied to the production of various foods subjected to enzymatic action such as saccharification, and the food material as a primary processed product having a natural sweetness drawn from the raw material Can be widely used in the field of processed foods of various ingredients.
  • it can be suitably applied to the production of various foods that have been subjected to enzyme action such as the degradation of ingredients contained in raw materials such as proteolysis, and the water content has increased, for example, food as a primary processed product that feels soft It can be widely used in the field of processed foods of raw materials and various ingredients.
  • a component contained in a raw material can be changed by an enzyme, and a useful component that produces a desired effect can be generated and increased.
  • a food material it can be widely used in the field of processed foods of various ingredients.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Pediatric Medicine (AREA)
  • Mycology (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Seeds, Soups, And Other Foods (AREA)

Abstract

 本発明の酵素含有食品の製造方法は、原料食材を減圧処理し、減圧状態を保ちながら、酵素を含有する液体成分と接触させ、次いで昇圧することにより食材内部に酵素を導入する酵素導入工程を有することを特徴としている。 本発明によれば、長時間の加熱調理や、凍結・解凍の反復を伴うことなく、通常の食品と同等の形状を有し、かつ十分に軟化したか、または十分な軟化を達成し得る食品を製造し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することができる。 また、本発明によれば、酵素の作用により、原料食材の成分を変化して、有用な成分を生成あるいは増加させることにより、長時間の加熱調理などを伴うことなく、軟化された食品、甘みが高められた食品、含水率が高められた食品など所望の効果をもたらす有用な酵素含有食品を提供することができる。

Description

酵素含有食品の製造方法および酵素含有食品
 本発明は、酵素を含有する食品およびその製造方法に関する。詳しくは、本発明は、形状を保持しつつ酵素により軟化された食品を提供し得る、酵素含有食品およびその製造方法に関する。また、本発明は、酵素により原料食材の成分を変化、例えば糖転化、タンパク分解などして、甘みが高められた食品、あるいは含水率が高められた食品など、有用な成分を生成あるいは増加させた食品を提供し得る、酵素含有食品およびその製造方法に関する。
 近年高齢者の割合が増加するに従って、また病人用や乳幼児用の食品として、咀嚼や嚥下の容易な食品が求められており種々開発されている。特に、咀嚼や嚥下が困難な病人や高齢者向けには、とろみをつけた食品、粥状やゼリー状の食品が提供されている。しかしながらこれらの食品商品では、食品素材の種類にかかわらずカップゼリー形状や粥状などに形態が限定され、見た目の美感に欠ける場合が多く、食欲を増進するものではなかった。このため、通常の食品同様の見栄えを有しつつも咀嚼や嚥下の容易な食品が求められている。
 このような状況において、食品をペースト状とし、これを型抜きするなどして美観を向上することが試みられている。しかしながら、型抜き食品では依然として通常の食品との形状の乖離が大きく、利用者の食べる意欲を引き出すものとは言い難かった。このため、さらに通常の食品に近い見た目を有し、しかも咀嚼や嚥下の容易な柔らかさを有する食品が求められるが、加熱調理時間を延長するなどの食品の軟化処理では、熱履歴に伴う栄養成分の破壊や流出が懸念されるうえ、形状の維持が困難であるという問題があった。
 一方、長時間の加熱調理による軟化が望ましい食品については、調理時間の短縮、調理エネルギーの削減が求められており、長時間の加熱を伴わずに製造された、食品本来の形状を維持した軟化食品の出現が求められていた。
 切断、叩打、ペースト化などの形状を損なう機械的処理や、長時間の加熱調理以外で、食品の軟化を行う方法としては、酵素処理が挙げられる。酵素を用いた食品の軟化に係る技術として、特許文献1には、ペクチンエステラーゼやペクチナーゼなどの酵素を含む溶液と食品素材とを接触させて加圧処理し、食品素材内部に酵素を浸透させて、食品素材内部で酵素反応を起こさせることが記載されている。しかしながら、特許文献1に記載の方法では、大きめの食材では内部までの酵素の含浸が不十分となって、食品を十分に軟化するのが困難になる場合があり、結果的に実施例に示されるような1cm程度のダイス状、フライドポテト作成のためのスティック状など、小さな形状の食品の処理に限定されるという問題があった。
 特許文献2には、増粘剤および/または粘性物質を生産する微生物を、分解酵素とともに食材中に均一に含むことにより、食品内部にまでトロミを付与し、誤嚥の恐れを低減した食品が記載されている。さらに特許文献3には、凍結または凍結後解凍した食品素材と分解酵素とを、包装材中にいれて真空包装することで、分解酵素を食品内部に含有させて食品素材を軟化させ、その後に加熱調理する調理食品の製造方法が記載されており、柔軟であっても型崩れのしにくい食品を製造することが記載されている。これらの技術では、凍結後あるいは凍結解凍後の食材を用いることにより、凍結により食品素材中に生じた組織の緩みを生じさせて、食材中心部への酵素等の導入を促進させている。このような方法で製造された調理済み食品を保存あるいは流通させるには、冷凍することが望ましいが、調理の前後に凍結を伴うこととなり、製造工程が煩雑となって製造コストがかさむうえ、凍結・解凍を繰り返すことによる栄養価の減少や色調の悪化などが懸念される。
 また、従来から、例えば、さつまいもなどのデンプンを含有する原料食材などにおいて、原料食材の有する本来の甘みが高い材料が、惣菜などの各種加工食品、菓子等の嗜好食品など中心として広く求められてきている。ひとつの方法として、原料の品種改良により甘み成分を高める方法があるが、この方法では、その原料が安価ではなかったり、入手が容易ではなかったりする場合があった。また、別の方法として、調理方法の工夫により甘みを高める方法があるが、この方法では、一般にその調理が長時間必要であったり、また煩雑な場合があった。また、甘みを高める方法としては、ショ糖などの市販の糖類を添加する方法も考えられるが、こうした甘みの高め方では、食材が有する自然な甘みが感じられるように甘みを高めることは困難であった。
 また、大豆等の豆類をやわらかい状態となるように調理するためには、水に浸漬する等の前処理が長時間かかったり、その調理にも長時間かかったり、問題があった。
特開2004-89181号公報 特開2007-252323号公報 特開2008-11794号公報
 本発明は、長時間の加熱調理や、凍結・解凍の反復を伴うことなく、通常の食品と同等の形状を有し、かつ十分に軟化したか、または十分な軟化を達成し得る食品を製造し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することを課題としている。また、本発明は、酵素の作用により、甘みが十分高められたか、または十分甘みが高められ得る食品、あるいは、含水率が十分高められたか、またはその後の加工処理により含水率が高められ得る食品など、有用な成分が生成または増加した食品を提供し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することを課題としている。
 本発明の酵素含有食品の製造方法は、原料食材を減圧処理し、減圧状態を保ちながら、酵素を含有する液体成分と接触させ、次いで昇圧することにより食材内部に酵素を導入する酵素導入工程を有することを特徴としている。
 このような本発明の酵素含有食品の製造方法では、酵素導入工程より後に、酵素反応工程を有することが好ましく、酵素導入工程と酵素反応工程を同時に行うことも好ましい。
 本発明の酵素含有食品の製造方法は、酵素導入工程より後に、冷凍工程を有することも好ましい。本発明の酵素含有食品の製造方法は、酵素導入工程に次いで冷凍工程を有し、解凍と同時にまたは解凍後に酵素反応工程を有することが好ましい。
 酵素反応工程を有する本発明の酵素含有食品の製造方法では、酵素反応工程より後に、冷凍工程を有することも好ましい。
 本発明の酵素含有食品の製造方法は、酵素導入工程より後に、凍結乾燥工程を有することも好ましく、
 酵素導入工程に次いで凍結乾燥工程を有し、戻しと同時にまたは戻し後に酵素反応工程を有することも好ましく、
 酵素導入工程に次いで酵素反応工程を有し、その後に凍結乾燥工程を有することも好ましい。
 酵素反応工程を有する本発明の酵素含有食品の製造方法では、酵素反応工程より後に、酵素失活工程を有することも好ましい。このような酵素含有食品の製造方法では、酵素失活工程の後に、冷凍工程を有することが好ましく、また、酵素失活工程の後に、凍結乾燥工程を有することも好ましい。
 本発明の酵素含有食品の製造方法では、原料食材が、冷凍の工程を経ていない食材であることが好ましく、原料食材が、加熱および冷凍の工程をいずれも経ていない食材であることがより好ましい。
 本発明の酵素含有食品の製造方法では、減圧処理時の食材周囲圧力が100~90000Paであることが好ましい。
 本発明の酵素含有食品の製造方法では、酵素導入工程において、原料食材の重量に対して、酵素を乾燥重量で0.0005~2重量%導入することが好ましい。
 本発明の酵素含有食品の製造方法では、酵素を含有する液体成分が、セルラーゼ、ヘミセルラーゼ、キシラナーゼ、ペクチナーゼ、アミラーゼ、プロテアーゼ、パパイン、リパーゼよりなる群から選ばれる1種以上の酵素を含有することが好ましい。
 本発明の酵素含有食品の製造方法では、酵素を含有する液体成分が、調味料を含有することが好ましい。
 酵素反応工程を有する本発明の酵素含有食品の製造方法では、酵素反応工程を、酵素を導入した食材を-5~80℃に保持することにより行うことが好ましく、酵素反応工程を、不酸化雰囲気下で行うことも好ましい。
 酵素失活工程を有する本発明の酵素含有食品の製造方法では、酵素失活工程を、加熱あるいはマイクロ波照射により行うことが好ましく、また、酵素失活工程が、加熱調理をともなう工程であることも好ましい。
 本発明の酵素含有食品は、上記本発明の酵素含有食品の製造方法により得られることを特徴としている。
 このような本発明の酵素含有食品は、老人食、病人食または離乳食であることが好ましい。また、本発明の酵素含有食品は、硬さが5×105N/m2以下であることが好ましい。
 本発明の1つの態様によれば、長時間の加熱調理を伴うことなく、見た目が通常の食品と同等であって、十分に軟化したか、または十分な軟化を達成し得る食品を製造し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することができる。本発明の他の態様によれば、長時間の加熱調理を伴うことなく、見た目が通常の食品と同等であって、十分に糖化したか、または十分な糖化を達成し得る食品を製造し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することができる。また、本発明のさらに他の態様によれば、長時間の加熱調理を伴うことなく、見た目が通常の食品と同等であって、十分に含水率が高められたか、またはその後の加工処理により十分な含水率が高め得る食品を製造し得る、酵素含有食品の製造方法、および該製造方法によって得られる酵素含有食品を提供することができる。本発明によれば、酵素の導入工程を短時間で行えるとともに酵素の導入程度を容易に制御でき、所望の軟化程度を容易に達成でき、量産性にも優れる酵素含有食品の製造方法を提供することができる。
 また、本発明によれば、長時間の加熱処理に伴う栄養成分の減少が抑制され、十分に軟化したか、または十分な軟化を達成し得る酵素含有食品であって、軟化された食品の見た目が通常の食品と同等であって、病人食、老人食、離乳食などに好適な酵素含有食品およびその製造方法を提供することができる。本発明によれば、十分な軟化が達成されたかまたは達成でき、かつ、水戻り特性に優れた凍結乾燥食品である酵素含有食品およびその製造方法を提供することもできる。さらに本発明によれば、十分な軟化を達成し、かつ通常食に近い色調や形状の酵素含有食品を提供することができるため、本発明に係る酵素含有食品を、病人食や老人食として用いる場合には、病人や老人の食事の摂取意欲を向上させ、QOL(Quality of life)を向上させることができる。
 また、本発明によれば、見た目が通常の食品と同等であって、酵素により原料食品に含まれる成分を糖転化するなどして、十分に甘みが高められたか、または十分に甘みが高められ得る食品を得ることができるので、この食品をさらに加工することにより、原料食材が潜在的に有する、食材本来の自然な甘みが十分高められた、惣菜などの各種加工食品、菓子などの嗜好食品などが製造できる。
 また、本発明によれば、見た目が通常の食品と同等であって、酵素により原料食品に含まれる成分を分解、例えばタンパク分解するなどして、十分に含水率が高められたか、またはその後の加工処理により十分に含水率が高められ得る食品を得ることができるので、得られた酵素含有食品をさらに加工することにより、含水率が高められた、惣菜などの各種加工食品などが製造できる。
 このように、本発明によれば、酵素の作用により、原料食材の成分を変化して、有用な成分を生成あるいは増加させることにより、上述のような軟化された食品、甘みが高められた食品、含水率が高められた食品など所望の効果を有する有用な食品を提供することができる。
図1は、実施例1~4(大根への酵素液含浸)における、重量変化率と加圧時間との依存性を示すグラフである。 図2は、実施例1~4(大根への酵素液含浸)における、含浸後の食材中における酵素(乾燥重量)の割合と加圧時間との依存性を示すグラフである。 図3は、実施例15および16(リンゴへの酵素液含浸)における、重量変化率と加圧時間との依存性を示すグラフである。 図4は、実施例27および28(セロリへの酵素液含浸)における、重量変化率と加圧時間との依存性を示すグラフである。 図5は、実施例39および40(マッシュルームへの酵素液含浸)における、重量変化率と加圧時間との依存性を示すグラフである。 図6は、実施例51~58(さつまいもへの酵素液含浸)、および比較例19~27における、糖度(ブリックス)の処理条件依存性を示すグラフである。
 以下、本発明について具体的に説明する。
 本発明の酵素含有食品の製造方法は、原料食材に酵素を導入する酵素導入工程を少なくとも有する。
 原料食材としては、特に限定されることなく、生鮮食材、冷凍食材、乾燥食材、凍結乾燥食材、調理済み食品などの食材が挙げられ、これらはそのまま食用とできるものであってもよく、また調理後に食用とできるものであってもよい。
 本発明では、原料食材として、凍結の工程を経ていない食材であっても好適に用いることができ、加熱および凍結の工程をいずれも経ていない非加熱・非凍結の食材もまた好ましく用いることができる。非加熱・非凍結の食材としては、野菜、肉、魚、果実などの生鮮食品、漬物などの非加熱加工食品等をそのまま、あるいは適宜切断して得られるものを用いることができ、具体的な食材としては、たとえば、大根、じゃがいも、ニンジンなどの根菜類、リンゴ、バナナ、みかん、苺などの果実類、セロリ、レタス、キャベツなどの葉野菜、マッシュルーム、しいたけなどのきのこ類、大豆、小豆、インゲンなどの豆類、豚肉、牛肉、鶏肉などの畜肉類、生鮮魚介類、するめ、乾燥ホタテなどの加工珍味類、フリーズドライ加工された食材などが挙げられる。また、例えば、甘みを高めることなどを目的として用いる、他の具体的な食材としては、さつまいも、じゃがいも、くり、かぼちゃ、とうもろこし、れんこん、米などのでんぷんを有する野菜類なども挙げられる。
 また、本発明では、原料食材として、凍結後、あるいは凍結解凍後の食材を用いることもできる。たとえば、冷凍形態で移送される野菜、果実、肉、魚などを、凍結したままの状態で、あるいは解凍した状態で、原料として用いることができる。
 さらに本発明では、加熱後の食材を原料として用いることもできる。ここでいう加熱とは、少なくとも1回、70℃以上などの高温にさらされた状態をいうが、加熱時間は限定されることなく、たとえば0.5秒~数時間、好ましくは0.5秒~30分程度とすることができる。本発明で用いる加熱後の原料食材は、表面のみなど食材の一部が加熱されたものであってもよく、全体が加熱されたものであってもよい。本発明では、酵素反応により食材の軟化を行うことができるため、本発明に用いる原料食材は、加熱後のものであっても、軟化上昇を目的とした、長時間の加熱がなされている必要はない。また、本発明では、酵素反応により、糖転化、タンパク分解等の原料成分の分解など原料成分の変化が起り、特定の成分が生成あるいは増加するので、糖度の上昇、含水率の上昇等加熱に伴う所望の変化を目的とした長時間の加熱がなされている必要はない。
 本発明で用いる原料食材の大きさおよび形状は、酵素導入工程を適用できるものであれば特に限定されるものではなく、目的とする製品の形状を呈していてもよく、また、本発明の製造方法により軟化処理食品を得た後、含水率を高めた食品もしくはその後の加工により含水率を高め得る食品を得た後、または甘みを高めた食品を得た後に、適宜切断するなどして、所望の製品形状および大きさとしてもよい。
 酵素導入工程は、原料食材を減圧処理し、減圧状態を保ちながら、酵素を含有する液体成分と接触させ、次いで昇圧することによる食材内部に酵素を導入する工程である。この酵素導入工程には、このような操作を達成できる設備をいずれも用いることができるが、減圧処理、液体成分との接触および昇圧を一つの装置で行うことが好ましく、たとえば真空加圧含浸装置を好適に用いることができる。
 減圧処理は、原料食材を減圧し、原料食材内部の空隙に存在する液体あるいは気体の少なくとも一部が排出される条件の処理であることが望ましく、特に限定されるものではないが、たとえば、減圧処理時の食材周囲圧力が100~90000Pa、好ましくは1000~75000Pa、より好ましくは2000~65000Paとなる程度まで減圧する条件を採用することが望ましい。酸素導入工程においては、減圧処理に次いで、減圧状態を保ちながら、原料食材と酵素を含有する液体成分とを接触させる。酵素を含有する液体成分との接触は、たとえば、減圧処理された原料食材の周囲に液体成分を導入することにより行うことができる。原料食材と酵素を含有する液体成分との接触では、減圧処理された原料食材の全体が液体成分と接触していてもよく、所望の一部分だけが液体成分と接触していてもよいが、原料食材の全体が液体成分と接触していることが好ましい。
 次いで昇圧を行う。昇圧は、空気、窒素などの不活性ガス、炭酸ガスなどの気体を装置内に導入することにより好適に行うことができる。また、昇圧に用いる気体としては、細菌や夾雑物などを含まないよう、滅菌、フィルター通過などを行ったガスも好ましく用いられ、また食品の酸化等を防止するため、酸素含有量の低いガスも好ましく用いられる。昇圧の程度は特に限定されるものではなく、原料食材内部に酵素を含有する液体成分が所望量導入される条件であればよく、食材周囲圧力がたとえば、0.1~1MPa、好ましくは0.1~0.7MPa程度とすることができる。食材あるいは液体成分の種類などにより液体成分を導入しにくい場合や、より多くの液体成分の導入が望まれる場合などには、常圧以上となる圧力まで昇圧することも好ましく、食材周囲圧力が0.1MPa(常圧)~1MPa、好ましくは0.11MPa~0.7MPa、より好ましくは0.15~0.5MPaとなるよう昇圧することができる。
 液体成分に含有させる酵素としては、原料食材の軟化を促す酵素、原料食材の含水率の向上、もしくは原料食材の加工工程中の含水率の向上を促す酵素、または原料食材の甘みを高め得る酵素など原料食材に含まれる成分を所望の効果をもたらし得る有用な成分に変化して原料食材を改質する酵素いずれも用いることができ、特に限定されるものではなく、食材の種類及び所望の軟化程度に応じて適宜選択して用いることができるが、たとえば、酸化還元酵素(オキシドレダクターゼ)、転移酵素(トランスフェラーゼ)、加水分解酵素(ヒドロラーゼ)、付加脱離酵素(リアーゼ)、異性化酵素(イソメラーゼ)、合成酵素(リカーゼ)などが挙げられる。本発明では、これらの酵素のうち、主に加水分解酵素であるセルラーゼ、ヘミセルラーゼ、キシラナーゼ、ペクチナーゼ、エステラーゼ、グルカナーゼ、グルコシターゼ、アミラーゼ、プロテアーゼ、パパイン、ペプチダーゼ、アガラーゼ、ホスファターゼ、リパーゼ、デキストラーゼ、キチナーゼ、グルタミナーゼ、フィターゼなどを好ましく用いることができ、これらのうちでは、セルラーゼ、ヘミセルラーゼ、キシラナーゼ、ペクチナーゼ、エステラーゼ、β-グルカナーゼ、β-グルコシターゼ、α-アミラーゼ、β-アミラーゼ、およびグルコアミラーゼなどのアミラーゼ、プロテアーゼ、パパイン、ペプチダーゼ、アガラーゼ、ホスファターゼ、リパーゼ、デキストラーゼがより好ましく、セルラーゼ、ヘミセルラーゼ、キシラナーゼ、ペクチナーゼ、アミラーゼ、プロテアーゼ、パパイン、リパーゼがさらに好ましく用いられる。なお、デンプン含有食材の甘みを高める観点からは、上述の好ましい酵素の中でも、α-アミラーゼ、β-アミラーゼ、およびグルコアミラーゼなどのアミラーゼ等の糖転化酵素が好ましく用いられる。これらの酵素は単独で用いてもよく、2種以上組み合わせて用いてもよい。本発明では、原料食材の種類及び酵素による所望の改質程度を鑑みて、酵素を選択して用いることができる。本発明では、原料食材の改質としては、軟化を目的とすることが好適であるが、原料食材に追熟、糖化などを促し、風味を向上させる目的とすることも好適である。また、本発明では、原料食材の改質としては、甘みを高めることも好適であり、そうした観点からは、糖化を促すことは好適であり、これに加えて、軟化を目的とすること、原料食材に追熟を促すこと、風味を向上させる目的とすることも好適である。さらに本発明では、原料食材の改質としては、含水率を高めることまたはその後の加工工程、たとえば、加熱加工工程、水、調味液等への含浸工程などで含水率を高め得ることも好適であり、そうした観点からは、たとえばタンパクなど、原料食材に含まれる成分を分解することは好適であり、これに加えて、軟化を目的とすること、原料食材に追熟、糖化を促すこと、風味を向上させる目的とすることも好適である。本発明によれば、たとえば、従来の調理法で軟化が困難であった食材をも容易に軟化することができ、食材の特定組織のみの軟化を行うこともできる。たとえば、野菜の繊維部分の軟化、キノコ類の軟化、肉、魚の筋部や骨部の軟化などを、食材の外見を保持した状態で行うこともできる。
 また、本発明の他の態様によれば、たとえば、甘み成分が高められた高価な原料食材を用いなくとも、あるいは、煩雑で長時間かかる調理方法を経なくとも、原料食材が本来有する自然な甘みを高めた加工食品を製造できる。
 さらに、本発明の他の態様によれば、たとえば、長時間の前処理、長時間の調理時間を経ることなく、含水率を高めた加工食品、たとえば、加熱調理、水、調味液等に含浸などすることにより含水率を高めた加工食品を製造できる。
 液体成分の基材は、食用に適したものであればよく、特に限定されるものではないが、たとえば、水、油、アルコールなどを主体とした基材が挙げられ、このうち水または水溶液であることが好ましい。
 液体成分には、酵素以外の成分が含まれていてもよく、たとえば、塩、しょうゆ、砂糖(ショ糖)、還元水飴、香辛料、化学調味料、みりん、酢、酒類、だし、果汁などの調味料成分、寒天、ゼラチン、ペクチン、デンプンなどの保形成分、香料、着色料、発色剤、保存料などの食品添加成分などを含有することができる。酵素を含有する液体成分が、酵素以外の成分を適量含有している場合には、調味や食品保存性の付与などの添加成分が食材にもたらす直接の効果に加え、浸透圧により原料食材中の水分との置換が容易になり、酵素を含有する液体成分を食材内部まで容易に含浸できる効果を有する場合があり好ましい。
 液体成分中の酵素およびその他の成分の濃度は、目的に応じたその後の酵素反応時間や温度などによっても異なるが、食材内部に液体成分を導入した際に所望量となる濃度であればよく、特に限定されないが、たとえば、酵素濃度を0.05~5重量%、好ましくは0.1~3重量%程度とすることができる。
 食材内部への酵素導入量は、食材の種類や特性、酵素の種類、食材の所望軟化程度などにより適宜設定することができるが、通常、原料食材の重量に対して、酵素を乾燥重量で0.0005~2重量%、好ましくは0.001~1重量%程度導入するのが望ましい。
 具体的には、たとえば、生リンゴ等の生果物・生野菜の場合はセルラーゼA「アマノ」3とヘミセルラーゼ「アマノ」90の配合酵素が食材の0.002~0.3重量%、好ましくは0.01~0.2重量%となる範囲で、また所望の軟化度合いや食感をより精密に制御する目的として0.0005~0.2重量%となる範囲で、生マッシュルーム等のキノコ類の場合はセルラーゼA「アマノ」3とヘミセルラーゼ「アマノ」90の配合酵素が食材の0.005~2重量%、好ましくは0.01~1重量%となる範囲で、また所望の軟化度合いや食感をより精密に制御する目的として0.001~1重量%となる範囲で、導入することが望ましい。たとえば、さつまいも等の生果物・生野菜の場合は、クライスターゼT10Sの配合酵素が食材の0.0005~2重量%、好ましくは0.005~1重量%となる範囲で導入することが望ましい。たとえば、大豆等の生果物・生野菜の場合は、プロテアーゼA「アマノ」Gの配合酵素が食材の0.0005~2重量%、好ましくは0.005~1重量%となる範囲で導入することが望ましい。また、酵素を含有する液体成分の導入量は、食材の種類や特性、食材の所望軟化程度などにもよるが、上述の生リンゴ等の生果物・生野菜の場合5~50重量%、生マッシュルーム等のキノコ類の場合5~90重量%である量が望ましい。
 酵素導入工程を経た食材は、そのまま本発明の酵素含有食品としてもよく、その他の処理工程の一つ以上の工程を経て本発明の酵素含有食品としてもよい。すなわち本発明の酵素含有食品の製造方法は、酵素導入工程のみから構成されてもよく、その他の処理工程を有していてもよい。その他の処理工程としては、特に限定されるものではないが、酵素反応工程、冷凍工程、乾燥工程、凍結乾燥工程、酵素失活工程、調理・調味工程(切断、ブランチング、煮込み、蒸す、焼く、レトルト処理、炒め、茹で、焙り、揚げるなど)、の各種加熱調理及び加熱調理による酵素失活、冷凍解凍、乾燥後の湯戻し、乾燥後の水戻しなどが挙げられる。このうち酵素失活工程は、通常、所望の酵素反応を完了してから行うが、それ以外の工程は任意の段階で任意の回数行うことができ、酵素導入工程に先立って前処理として行ってもよく、酵素導入工程と酵素反応工程との間に行ってもよく、酵素反応工程完了後に行ってもよい。なお上記加熱調理の際に、後述する酵素反応工程が伴う場合もある。また、酵素反応により、タンパク分解等原料食材に含まれる成分を分解した場合には、その後行われる処理工程、たとえば加熱調理などの調理・調味工程、水、調味液等への含浸工程などの際に、大きく含水率の向上が見られる場合がある。
 本発明の酵素含有食品の製造方法では、酵素導入工程で原料食材中に導入した酵素を食材中で反応させる酵素反応工程を有することが好ましい。また、本発明の酵素含有食品の製造方法で得られた酵素含有食品は、酵素反応工程を有さない場合には、製品である酵素含有食品を食する前に、食品の少なくとも一部に酵素反応が生じることが好ましい。本発明の酵素含有食品の製造方法における酵素反応工程、あるいは、本発明に係る酵素含有食品内での酵素反応は、前述の酵素導入工程において導入した酵素が食材に対して作用するものであるが、食材の軟化を伴うこと、食材の含水率上昇またはその後の食材の加工により含水率の上昇が伴うこと、食材の甘みが高まることが伴うことなど、原料食材に含まれる成分が変化して、有用な成分が生成または増加することが好ましい。
 酵素反応工程は、工程の少なくとも一部が、酵素導入工程と同時に行われてもよく、酵素導入工程に続いて行われてもよく、酵素導入工程後に冷凍、冷却、乾燥などの酵素反応を一時的に休止する工程を経た後で行われてもよい。すなわち本発明において酵素反応工程は、酵素導入工程と同時に行う酵素反応(酵素導入工程において進行する酵素反応)のみであってもよく、酵素導入工程と酵素導入工程完了後との両方で行ってもよく、酵素導入工程を低温下などの酵素不活性となる条件下で行い、酵素反応を酵素導入工程完了後のみに行ってもよい。また、酵素反応工程は一段階で行っても多段階で行ってもよく、たとえば、酵素導入工程に続いてある程度の酵素反応を行った後、冷凍などで酵素反応を休止させ、解凍後などに再度酵素反応を行う多段階の反応を行う態様などを採用することができる。酵素反応は、酵素導入工程後に酵素液に浸漬したまま行ってもよく、酵素液から引揚げて行っても良い。
 酵素反応工程は、酵素反応が生じる温度範囲であればどのような条件で行ってもよいが、通常-5~80℃、好ましくは5~65℃程度の温度条件下で行うことができ、好ましくはこのような温度条件下に保持することにより行うことができる。また、例えば食材の甘みを高める場合などには、酵素反応工程の温度範囲としては、通常5~120℃、好ましくは30~100℃で行うこともできる。酵素反応工程は、酸化雰囲気下で行ってもよいが、不酸化雰囲気下で行うと、酸化による食材の劣化を好適に抑制することができるため好ましい。不酸化雰囲気とは、気体のない条件や、二酸化炭素や窒素などの酸化反応に不活性な気体雰囲気などが挙げられる。酵素含浸工程や酵素反応工程を不酸化雰囲気で行う場合には、食材の酸化による劣化を防止できるため好ましい。また、上記酵素反応工程は、上記加熱調理工程と同時に行うことも好ましい。
 酵素反応工程の時間は、所望の軟化程度、甘みの上昇程度、または含水率上昇程度を達成する範囲であればよく、食材および酵素の種類、酵素導入量などにもよるものであって特に限定されるものではないが、酵素反応の総時間が1分~24時間、好ましくは1分~6時間、より好ましくは1分~3時間程度であることが望ましい。
 酵素反応工程は、酵素反応が生じる圧力範囲内であれば、常圧で行ってもよく、減圧下または加圧下で行ってもよい。
 本発明の酸素含有食品の製造方法は、酵素失活工程を有していることも好ましい。すなわち本発明に係る酵素含有食品は、酵素が活性を有する状態で含有されていてもよく、失活された状態で含有されていてもよい。酵素失活工程は、酵素反応工程より後に行うことが好ましい。
 酵素失活工程は、食材内部に導入された酵素を失活させる工程であり、食品としての安全性を損ねず、導入した酵素が失活する条件であればどのような方法で行ってもよいが、たとえば、加熱あるいはマイクロ波照射、酸処理、アルカリ処理、アルコール浸漬などが挙げられ、このうち加熱あるいはマイクロ波照射により好適に行うことができる。加熱あるいはマイクロ波照射による酵素失活工程は、食材の加熱調理を兼ねて行うことができる。加熱調理としては、茹でる、煮る、揚げる、蒸す、焼くなどの公知の加熱調理法をいずれも採用することができる。本発明では酵素が食材内部まで十分に含浸されるため、酵素反応工程においては軟化、タンパク分解、糖化などを伴う酵素反応が食材内部においても十分に達成される。このため加熱調理により酵素失活工程を行う場合であっても、軟化、糖化を目的とした長時間の加熱処理などを行うことなく所望の軟化度合、糖化度合または含水率度合を達成することができ、加熱調理時間を、酵素失活を達成する程度の短時間とすることができる。
 酵素失活工程は、食材内部に導入された酵素の少なくとも一部が失活する条件で行うことができるが、導入された酵素の実質的に全部が失活する条件で行うことが特に好ましい。本発明の酵素含有食品の製造方法が、酵素失活工程を有する場合には、得られる酵素含有食品が経時的にさらに酵素反応で軟化することを防止し、所望の軟化程度を安定して保持できるため好ましい。また、食材の甘さ、含水率など望ましい特性を所望の程度に安定して保持したい場合も上述の酵素失活工程が好ましい。
 本発明に係る酵素含有食品の製造方法は、冷凍工程あるいは凍結乾燥工程を有しているのも好ましい。冷凍工程あるいは凍結乾燥工程は、どのタイミングで行ってもよいが、前述した酵素導入工程より後で行うのが好ましい。冷凍工程後の凍結した状態、あるいは凍結乾燥された状態の食材は、性状の安定性や、輸送あるいは品質管理の容易性を有するため好ましい。本発明の酵素含有食品の製造方法において、冷凍工程あるいは凍結乾燥工程は、酵素反応工程に先立って行ってもよく、酵素反応工程の後に行ってもよく、また、酵素反応工程および酵素失活工程の後に行ってもよい。冷凍工程あるいは凍結乾燥工程を、酵素導入工程後、酵素反応工程に先立って行う場合、酵素反応工程は、解凍あるいは戻しと共に行ってもよく、解凍あるいは戻しの後に行ってもよい。
 本発明の酵素含有食品の製造方法では、酵素の導入工程を短時間で行えるとともに酵素の導入程度を容易に制御でき、軟化、糖化、およびタンパク分解等の原料成分の分解などの酵素作用の効果を所望程度に容易に制御でき、量産性にも優れる。
 本発明に係る酵素含有食品は、上述した本発明の酵素含有食品の製造方法により得られる。
 本発明の酵素含有食品は、内部に酵素が導入されているが、酵素は活性を有する状態で内部に導入されたままの状態であってもよく、失活されていてもよい。
 酵素が失活せずに食品内部に存在する場合には、冷凍状態、乾燥状態、凍結乾燥状態などの、酵素反応が休止した状態で保管されるのが好ましい。これらの場合には、解凍後や水分あるいは調味液での戻しの後に、さらに酵素反応を行って、軟化などの酵素作用を所望の程度施して食することもできる。本発明の酵素含有食品は、製品としては、食材内部に導入された酵素が失活された状態であるか、または酵素反応が休止した状態であることが好ましい。
 本発明の酵素含有食品は、その軟化などの酵素作用の程度を特に限定するものではないが、老人食、病人食あるいは離乳食の用途に用いる場合には、各段階で所望される軟化程度とすることが好ましい。具体的にはたとえば、各段階に応じての、日本介護食品協議会のユニバーサルデザインフード区分、ベビーフード協議会による規格などを満たす軟化程度とすることができる。本発明の酵素含有食品は、特に限定されるものではないが、たとえばその硬さを、5×105N/m2以下、好ましくは5×102~5×105N/m2、より好ましくは1×103~5×104N/m2程度とすることができる。本発明に係る酵素含有食品は、摂取時における硬さがこのような範囲であることが好ましく、この場合には、咀嚼、嚥下が容易で老人食、病人食、離乳食などの用途にも好適であるとともに、食品本来の形状を保持することもできるため、見た目を向上させて食欲を増進するなど、QOLに寄与できるため好ましい。なお、本発明において、食品の硬さとは破断強度を意味する。
 また、本発明の酵素含有食品は、その甘みの上昇、例えば糖度の上昇などの酵素作用の程度を特に限定するものではなく、例えば、惣菜などの各種加工食品、菓子などの嗜好食品などの用途に応じた所望の糖度(ブリックス)程度とすることが望ましい。本発明の酵素含有食品は、甘み成分が高められた高価な原料食材を用いなくとも、あるいは煩雑で長時間かかる調理方法を経なくとも、原料食材が本来有する自然な甘みを高めた食品を提供でき、惣菜などの各種加工食品、また菓子などの嗜好食品用途などに好適である。
 また、本発明の酵素含有食品は、その含水率の上昇、またはその食品を原料とした加工食品の含水率の上昇などの酵素作用の程度を特に限定するものではなく、例えば、惣菜などの各種加工食品などの用途に応じた、所望の含水率上昇とすることができる。本発明に係る酵素含有食品は、長時間かかる調理方法を経なくとも、含水率が高められた、特に加工過程で含水率が高められた結果感じられる、柔らかさ、しっとり感などが高められる、あるいは高められ得るので、惣菜などの各種加工食品用途に好適である。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例および比較例において、破断強度および保形性は、次のようにして測定あるいは評価した。
 <破断強度測定>
 破断強度(単位:×104N/m2)の測定は、山電製卓上型物性測定器TPUを用い、以下の形状とした測定試料について、平成6年2月23日付けの厚生労働省(旧厚生省)の「高齢者用食品の表示許可の取扱いについて」と題された「各都道府県・各政令市・各特別衛生主管部(局)長あて厚生省生活衛生局食品保健課新開発食品保健対策室長通知」に記載の「高齢者用食品の試験方法」に準拠して下記条件にて測定した。なお、プランジャーとしては、特に記載のない限りは厚労省基準通り直径20mmのものを、破断強度が高くこの条件の測定が困難なサンプル(マッシュルームの測定の一部)については直径3mmのものをそれぞれ用いて測定を行った。測定値は各3回測定した平均値を採用した。
1)試料サイズ
・大根:厚さ15mm
・りんご:厚さ15mm
・セロリ:
  A) 断面から縦方向に測定
  B) 表面から測定
・マッシュルーム:縦方向に2分割し、表面から中心部の軸部分を外して測定
2)測定ポイント:なるべく中心部
3)プランジャーサイズ:直径20mmまたは3mm
4)破断スピード:10mm/sec
5)クリアランス:凝集率70%
 <保形性>
 保形性は、目視により次の基準で評価した。
 5:生と同等 離水殆ど無し
 4:少し角が取れて、変形が生じ始めている程度。ほぼ生と同等。離水殆ど無し
 3:角が取れるなどして変形が生じ、素材が柔らかく自重でへたってみえるものの、全体としての形状は維持している。一般的な煮物やブランチした状態と同等。離水が若干生じ始めている状態。
 2:明らかな変形が生じ、自重に耐えられず元の体積の半分以上へたっている。明らかに離水が発生している状態。
 1:原型を留めていないほど自重で潰れたりしている。著しい離水が生じている状態。
 [実施例1]
 生の大根(直径約7cm)を、3cm厚さに輪切りし、皮をむいたものを原料食材として用い、これを15×15cmのステンレス製バスケットに並べ、バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定して、これを16×16cmのステンレス製容器(内タンク)内にいれた。このステンレス製容器を真空加圧含浸装置((株)エフコム製)内に設置し、真空排気を行い、装置内を6000Paまで減圧し、そのまま3分間排気を継続した後、原料食材が完全に浸漬されるまで、45℃に加温した酵素液a(約2リットル)をタンク内に導入した。ここで、酵素液aとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.25重量%と、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.25重量%とを含有する酵素液(酵素製剤濃度0.5重量%)を、酵素および水を攪拌混合することにより調製して用いた。
 なお、酵素液の調製に用いたアマノエンザイム製のセルラーゼA「アマノ3」は、酵素製剤中の酵素含有率が28.0%、力価30,000(u/g)の酵素製剤であり、アマノエンザイム製のヘミセルラーゼ「アマノ90」は酵素製剤中の酵素含有率が60.0%、力価90,000(u/g)の酵素製剤であって、本実施例における酵素濃度は酵素製剤濃度である。
 酵素液aの導入後、真空加圧含浸装置内をエアパージして大気圧(0.1MPa)まで昇圧した。このとき装置内の酵素液温度は約40℃であった。続いて圧搾空気を導入してタンク内を加圧して、0.3MPaで30分間保持した(加圧時間:30分間)。このとき装置内の酵素液温度は約39℃に保たれていた。次いでエアパージして含浸処理を完了し、装置より酵素液が含浸された食材を取り出した。
 酵素液aを含浸した後の重量は、含浸前重量と比較して16.2%増加し、含浸前重量の116.2重量%となった。
 このようにして酵素液が含浸された食材について、含浸直後、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後に、破断強度および保形性を評価した。結果を表1に示す。なお、含浸直後の食材では、含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。
 また、実施例1において、加圧時間を1分、3分とした以外は上記と同様にして酵素液を含浸した場合の重量変化率を図1のグラフに、酵素の含有率(含浸後の食材中における酵素(乾燥重量)の割合)を図2のグラフに、それぞれ加圧時間30分の場合とともに示す。
 [実施例2~4]
 実施例1において、酵素液aに代えて、酵素液b(実施例2)、酵素液c(実施例3)または酵素液d(実施例4)を用いたことの他は、実施例1と同様にして原料食材であるカット済み大根に各酵素液を含浸した。
 ここで、酵素液bとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.5重量%と、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.5重量%とを含有する酵素液(酵素製剤濃度1.0重量%)を、
 酵素液cとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.25重量%、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.25重量%、および濃縮調味料(テンヨのだしつゆ「ビミサン」、(株)テンヨ武田製)20重量%を含有する酵素液(酵素製剤濃度0.5重量%)を、
 酵素液dとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.5重量%、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.5重量%、および濃縮調味料(テンヨのだしつゆ「ビミサン」、(株)テンヨ武田製)20重量%を含有する酵素液(酵素製剤濃度1.0重量%)をそれぞれ用いた。これらの酵素液の調製は、酵素、水および必要に応じて調味成分を攪拌混合することにより行った。
 このようにして酵素液が含浸された各食材について、含浸直後、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後に、破断強度および保形性を評価した。結果を表1に示す。
 また、実施例2~4において、加圧時間を1分、3分とした以外は上記と同様にして酵素液を含浸した場合の重量変化率を図1のグラフに、酵素の含有率(含浸後の食材中における酵素(乾燥重量)の割合)を図2のグラフに、それぞれ加圧時間30分の場合とともに示す。
 これらの結果より、酵素液aを用いた実施例1と、酵素液bを用いた実施例2では、加圧時間を長くすると、含浸による重量変化率が高くなる傾向が確認された。一方、酵素液cを用いた実施例3と、酵素液dを用いた実施例4とでは、含浸による重量変化率は酵素液a、bを用いた実施例1、2の場合よりも明らかに低く、また加圧時間30分間では重量変化率がマイナスに転じた。これは、酵素液c、dには濃縮調味料(テンヨのだしつゆ「ビミサン」、(株)テンヨ武田製)が含まれ、その浸透圧が、実験を行った45℃にてc、d共に約2,000Pa程度あるものと推量され、よって含浸処理により満遍なく食品に染み渡った調味成分を含む酵素液の浸透圧の作用で食材中の水分が食材外部へ置換流出し、酵素液が導入された量以上に流出した水分量が多かったことが原因と考えられる。
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 実施例1で用いたのと同様の原料食材(カット済み大根)について、95℃の湯中で13分間ブランチング処理し、得られた処理食材の破断強度および保形性を評価した。ここで、ブランチング処理とは〔1〕15×15cmのステンレス製バスケットに並べる 〔2〕バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定する 〔3〕16×16cmのステンレス製容器に2Lの水を入れて95℃にしたところに投入する処理であり、以下の実施例および比較例においても同様である。結果を表2に示す。
 [比較例2]
 実施例1で用いたのと同様の原料食材(カット済み大根)について、95℃の湯中で13分間ブランチング処理し、次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、これを水道水(18℃)流水下にて60分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表2に示す。
 [比較例3]
 実施例1で用いたのと同様の原料食材(カット済み大根)について、95℃の調味液(テンヨのだしつゆ「ビミサン」((株)テンヨ武田製)20重量%水溶液)中で13分間ブランチング処理し、得られた処理食材の破断強度および保形性を評価した。結果を表2に示す。
 [比較例4]
 実施例1で用いたのと同様の原料食材(カット済み大根)について、95℃の調味液(テンヨのだしつゆ「ビミサン」((株)テンヨ武田製)20重量%水溶液)中で13分間ブランチング処理し、次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、これを水道水(18℃)流水下にて60分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表2に示す。
 [比較例5]
 実施例1で用いたのと同様の原料食材(カット済み大根)について、95℃の湯中で13分間ブランチング処理し、次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、これを水道水(18℃)流水下にて60分間で解凍し、さらに45℃に加温して60分間保持し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 大根を原料とした実施例1~4の結果より、これらの実施例すべてにおいて、酵素反応時間を延ばすほど破断強度が低下し、食材が軟化されたことが確認された。また、酵素濃度が高い方が、破断強度が低く、より軟化された食材が得られることが確認された。
 酵素濃度および含浸操作が同じ場合には、調味成分(塩分、糖分等)を含む酵素液を用いたほうが、含浸後の重量が減少し、破断強度が低く、より軟化された食材が得られることが確認された。これは浸透圧により含浸が行われると同時に食材自体の水分が外に出て、内部の酵素濃度が高めになったためではないかと考えられる。
 実施例1~4で得られた軟化大根は、実施例1で含浸直後のもの(酵素濃度が低く、調味成分を含まない酵素液を用いて得られ、酵素反応時間が短かったもの)以外のいずれもが、酵素含浸処理を行わずにブランチを行ったもの(比較例1)および、ブランチング処理後冷凍解凍したもの(比較例2)よりも破断強度が低く、高度に軟化されていた。保形性は酵素濃度が高いほど、また調味液未添加よりも添加したほうが、また酵素反応時間が長くなるほど損なわれることが判ったが、酵素濃度が高く調味成分を含む酵素液dを用いた実施例4中の酵素反応時間が180分以上と長いもの以外は、外観として損傷のない「評価3」以上だった。
 以上より、本発明(実施例1~4)では、内側から均一に酵素反応させることにより、ブランチングのみを行った大根(比較例1)と同等の保形性を維持した状態で、所望の軟化度合を達成でき、含浸する酵素液と、含浸時およびその後の酵素反応の制御によって、軟化度合を適宜調節できることがわかった。
 [実施例5]
 実施例1と同様にして、カット済み大根に前記酵素液aを含浸し、酵素反応をそれぞれ0分(含浸直後。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。)、90分、180分、360分行った。次いでそれぞれ95℃以上の水に13分間浸漬することにより加熱調理して酵素失活を行い、取り出して常温まで放冷して処理食材を得た。得られた処理食材について実施例1と同様にして破断強度および保形性を評価した。結果を表3に示す。
 [実施例6~8]
 酵素液aに代えて、前記酵素液b(実施例6)、前記酵素液c(実施例7)または前記酵素液d(実施例8)を用いたことの他は、実施例5と同様にして酵素含浸、酵素反応、酵素失活、および放冷を行って処理食材を製造し、それぞれについて破断強度および保形性を評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例5~8の結果より、酵素液含浸、酵素反応、および加熱調理による酵素失活によって、ブランチングのみを行った大根と同等の保形性を保持した状態で、食材の内側から均一に酵素反応させることで食材を軟化並びにその度合いを調節できることがわかると同時に、加熱調理による酵素失活工程によっても著しく保形性を損なうことがなく、安定した性状の軟化食品を提供できることがわかった。
 [実施例9]
 実施例5と同様にして、カット済み大根に前記酵素液aを含浸し、酵素反応をそれぞれ0分(含浸直後。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。)、90分、180分、360分行った後、それぞれ加熱調理による酵素失活を行った。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、これを水道水(18℃)流水下にて60分間で解凍し、それぞれ実施例1と同様にして破断強度および保形性を評価した。結果を表4に示す。
 [実施例10~12]
 酵素液aに代えて、前記酵素液b(実施例10)、前記酵素液c(実施例11)または前記酵素液d(実施例12)を用いたことの他は、実施例9と同様にして酵素含浸、酵素反応、酵素失活、および凍結・解凍を行い、それぞれについて破断強度および保形性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例9~12の結果より、酵素液含浸、酵素反応、加熱調理による酵素失活、および冷凍・解凍によって、食材内部で均一に酵素反応軟化した食材を冷凍解凍工程で更に軟化させつつ、形状保持並びにその度合いを調節できることがわかった。
 [実施例13、14]
 実施例1と同様にして、カット済み大根に前記酵素液a(実施例13)または前記酵素液b(実施例14)を含浸し、含浸完了直後にこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、ナイロンポリ袋ごと試料を水道水(18℃)流水下にて60分間で解凍した。解凍完了後、ナイロンポリ袋ごと試料を45℃湯浸加温して保持する酵素反応を、それぞれ0分(解凍直後)、30分、60分、90分および120分行い、実施例1と同様にして破断強度および保形性を評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 酵素液含浸、冷凍・解凍、およびその後の酵素反応を行った実施例13および14の結果より、冷凍状態で酵素活性を一旦休止した食材について、解凍後に酵素反応を行うことで食材を軟化させつつ、形状保持並びにその度合いを調節できることがわかった。酵素反応の前に冷凍解凍を行うことで食材組織が破壊される。よってその後の酵素反応による組織分解の効率が高まったものと思われる。
 [実施例15、16]
 生のリンゴ(品種:サンフジ)を、皮むきし、縦1/4に切断し、20mm厚さの銀杏切りにしたカット済みリンゴを原料食材として用い、酵素液aに代えて酵素液e(実施例15)またや酵素液f(実施例16)を用いたことの他は実施例1と同様にして加圧時間30分で酵素液を含浸した。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。
 ここで、酵素液eとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.1重量%、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.1重量%、およびショ糖10重量%を含有する酵素液(酵素製剤濃度0.2重量%)を、
 酵素液fとしては、アマノエンザイム製のセルラーゼA「アマノ3」0.2重量%、アマノエンザイム製のヘミセルラーゼ「アマノ90」0.2重量%、およびショ糖10重量%を含有する酵素液(酵素製剤濃度0.4重量%)をそれぞれ用いた。
 実施例15において酵素液eを含浸した後の重量は、含浸前重量と比較して40.1重量%増加し、また、実施例16において酵素液fを含浸した後の重量は、含浸前重量と比較して35.8重量%増加していた。
 このようにして酵素液が含浸された各食材について、含浸直後、および、含浸終了後に45℃にて20分、40分および60分保持して酵素反応させた後に、破断強度および保形性を評価した。結果を表6に示す。
 また、実施例15および16において、加圧時間を1分、3分とした以外は上記と同様にして酵素液を含浸した場合の重量変化率を図3のグラフに、加圧時間30分の場合とともに示す。
Figure JPOXMLDOC01-appb-T000006
 [比較例6](比較用リンゴ食品の製造)
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)95℃の10重量%ショ糖水溶液中で5分間ブランチング処理し、得られた処理食材の破断強度および保形性を評価した。結果を表7に示す。
 [比較例7](比較用リンゴ食品の製造)
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)95℃の10重量%ショ糖水溶液中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表7に示す。
 [比較例8]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、95℃の10重量%ショ糖水溶液中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表7に示す。
 [比較例9]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、95℃の10重量%ショ糖水溶液中で5分間ブランチング処理し、次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)リンゴを得た。ここで、FD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合)は16.7%であった。
 得られたFDリンゴを水戻しし、破断強度および保形性を評価した。結果を表7に示す。
 ここで水戻しは、ボールに300ccの水道水(18℃)をそそぎ、そこに水戻しするFD試料を入れ(押し沈めたりはしない)、3分間静置した後、ネット状の篩にあけることにより行った。
 水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、467%であった。
 [比較例10]
 比較例9と同様にして得たFDリンゴを湯戻しし、破断強度および保形性を評価した。結果を表7に示す。
 ここで湯戻しは、ボールに300ccの熱湯をそそぎ、そこに湯戻しするFD試料を入れ(押し沈めたりはしない)、3分間静置した後、ネット状の篩にあけることにより行った。
 湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、387%であった。
Figure JPOXMLDOC01-appb-T000007
 実施例15および16の結果より、酵素液含浸後の酵素反応時間を延ばすにつれて、軟化が進み破断強度が小さくなることがわかり、酵素濃度の高い実施例16では、保形性の評価が2以下と形状が保持されないほどに軟化が進んだことがわかった。これより、酵素濃度および酵素反応時間を制御することによって、軟化程度および形状維持程度を制御でき、所望の軟化程度および形状を達成できることがわかった。
 また、実施例15および16と、比較例6~10の結果より、酵素液を含浸し、酵素反応を行う本発明では、食材の内側から均一に酵素反応させることにより、ブランチングしたリンゴまたはブランチング後に冷凍解凍したリンゴと同等の形状を保持した状態で、食材を所望の程度軟化することができることがわかった。
 [実施例17]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、実施例15と同様に前記酵素液eを含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて20分、40分および60分保持して酵素反応させた後の食材を、95℃以上の10%ショ糖液に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷して処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表8に示す。
 [実施例18]
 実施例17において、酵素液eを用いる代わりに、前記酵素液fを用いたことの他は、実施例17と同様にして処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例17および18より、酵素液を含浸し、酵素反応した後、加熱調理による酵素失活を行うことによって、食材の内側から均一に酵素反応させることにより、ブランチングのみを行ったリンゴと同等の保形性を保持した状態で、食材を所望の程度軟化することができることがわかった。酵素反応後の段階で保形性を保っているものは、加熱調理による酵素失活工程によって著しく保形性を損なうことはなかった。
 [実施例19]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、実施例15と同様に前記酵素液eを含浸した。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて20分、40分および60分保持して酵素反応させた後の食材を、95℃以上の10%ショ糖液に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表9に示す。
 [実施例20]
 実施例19において、酵素液eを用いる代わりに、前記酵素液fを用いたことの他は、実施例19と同様にして処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例19および20より、酵素液を含浸し、食材の内側から均一に酵素反応した後、加熱調理による酵素失活を行い、さらに冷凍・解凍することによって、ブランチングのみを行ったリンゴと同等の保形性を保持した状態で、食材を所望の程度軟化することができることがわかった。酵素反応後の段階で保形性を保っているものは加熱調理による酵素失活工程および冷凍・解凍工程によっては、著しく保形性を損なうことはなかった。
 [実施例21]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、実施例15と同様に前記酵素液eを含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いでナイロンポリ袋ごと試料を水道水(18℃)流水下にて60分間で解凍した。解凍完了後、ナイロンポリ袋ごと試料を45℃湯浸加温して保持する酵素反応を、それぞれ0分(解凍直後)、20分、40分および60分間行い処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表10に示す。
 [実施例22]
 実施例21において、酵素液eを用いる代わりに、前記酵素液fを用いたことの他は、実施例21と同様にして処理食材を得た。得られた処理食材の破断強度および保形性を評価した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 実施例21および22より、酵素液を含浸し、冷凍・解凍した後に酵素反応を行うことによって、食材の内側から均一に酵素反応させることにより、ブランチングおよび冷凍・解凍を行ったリンゴと同等の保形性を保持した状態で、食材を所望の程度軟化することができることがわかった。これらの結果は、酵素反応後に冷凍・解凍したものよりも破断強度が低いものであって、より軟化が進んでいることが分かった。酵素反応の前に冷凍解凍を行うことで食材組織が破壊される、よってその後の酵素反応による組織分解の効率が高まったものと思われる。
 [実施例23]
 実施例15で用いたのと同様の原料食材(カット済みリンゴ)について、実施例15と同様に前記酵素液eを含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて20分、40分および60分保持して酵素反応させた後の食材を、95℃以上の10%ショ糖液に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)リンゴを得た。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表11に示す。
 得られたFDリンゴを水戻しし、破断強度および保形性を評価した。結果を表11に示す。また、水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を表11にあわせて示す。
 ここで水戻しは、ボールに300ccの水道水(18℃)をそそぎ、そこに水戻しするFD試料を入れ(押し沈めたりはしない)、3分間静置した後、ネット状の篩にあけることにより行った。
 [実施例24]
 実施例23において、酵素液eを用いる代わりに、前記酵素液fを用いたことの他は、実施例23と同様にしてFDリンゴを製造した。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表11に示す。得られたFDリンゴを実施例23と同様に水戻しし、破断強度および保形性を評価した。また、水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を求めた。結果を表11に示す。
 [実施例25]
 実施例23と同様にして酵素液eを用いて得たFDリンゴを湯戻しし、破断強度および保形性を評価した。結果を表11に示す。また、湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を表11にあわせて示す。
 ここで湯戻しは、ボールに300ccの熱湯をそそぎ、そこに湯戻しするFD試料を入れ(押し沈めたりはしない)、3分間静置した後、ネット状の篩にあけることにより行った。
 [実施例26]
 実施例24と同様に酵素液fを用いて得たFDリンゴを、実施例25と同様に湯戻しし、破断強度、保形性および戻し重量変化率を評価した。結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 実施例23~26より、酵素液を含浸し、酵素反応、酵素失活した後に凍結乾燥して得た処理食材は、酵素含浸を行わずにブランチング後に凍結乾燥したもの(比較例9、10)と比較して、形状を保持した状態で同等もしくはそれ以下の破断強度まで軟化できることがわかった。また、酵素含浸のない比較例9と比較して、同条件での凍結乾燥によるFD歩留りが低かった。このことは、酵素液を含浸し、食材の内側から均一に酵素反応したことで食材中の繊維などが加水分解された分、より高度に乾燥されたFD食材が得られたことが分かった。さらに実施例23~26で得られたFD食材は、水戻りあるいは湯戻りがスムーズで戻り速度が速く、中心部まで素早く均一な戻りが見られ、戻り特性に優れていた。尚、戻り重量変化率については酵素濃度の低い酵素液を用いた実施例23、25ではそれぞれ比較例9、10よりも同等若しくはそれ以上の傾向が確認され、酵素濃度の高い酵素液を用いた実施例24、25ではそれぞれ比較例9、10よりも同等若しくはそれ以下の傾向が確認された。酵素反応を伴う加水分解が促進され、かつ保形性が維持された実施例23、25では加水分解の分戻り重量変化が高くなり、高濃度のため酵素による加水分解が進みすぎた24、26では保形性が損なわれたため、その分戻り重量変化が低かったと思われる。戻り後の破断強度および保形性の結果より、酵素含浸後に凍結乾燥した実施例のFDリンゴでは、ブランチング後に凍結乾燥したものと同等の保形性を維持した状態で、軟化程度を制御できることがわかった。
 [実施例27]
 生のセロリを長さ3cmに切断したものを原料食材として用い、これを15×15cmのステンレス製バスケットに並べ、バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定して、これを16×16cmのステンレス製容器(内タンク)内にいれた。このステンレス製容器を真空加圧含浸装置((株)エフコム製)内に設置し、真空排気を行い、装置内を6000Pa以下まで減圧し、そのまま3分間排気を継続した後、原料食材が完全に浸漬されるまで、45℃に加温した前記酵素液b(酵素製剤濃度1.0%)約2リットルをタンク内に導入した。
 酵素液bの導入後、真空加圧含浸装置内をエアパージして大気圧まで昇圧し、続いて圧搾空気を導入してタンク内を加圧して、0.3MPaで30分間保持した(加圧時間:30分)。このとき装置内の酵素液温度は約39℃に保たれていた。次いでエアパージして含浸処理を完了し、装置より酵素液が含浸された食材を取り出した。
 酵素液bを含浸した後の重量は、含浸前重量と比較して6.7%増加し、含浸前重量の106.7重量%となった。
 このようにして酵素液が含浸された食材について、含浸直後、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後に、外皮および断面の破断強度と、保形性とを評価した。結果を表12に示す。なお、含浸直後の食材では、含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。
 [実施例28]
 実施例27において、酵素液bに代えて、酵素製剤濃度が2.0%の酵素液gを用いたことの他は、実施例27と同様にしてセロリに酵素液を含浸した。ここで、酵素液gとしては、アマノエンザイム製のセルラーゼA「アマノ3」1.0重量%と、アマノエンザイム製のヘミセルラーゼ「アマノ90」1.0重量%とを含有する酵素液を、酵素および水を攪拌混合することにより調製して用いた。
 酵素液gを含浸した後の重量は、含浸前重量と比較して5.4%増加し、含浸前重量の105.4重量%となった。
 このようにして酵素液が含浸された食材について、実施例27と同様に評価した。結果を表12に示す。
 また、実施例27および28において、加圧時間を1分、3分とした以外は上記と同様にして酵素液を含浸した場合の重量変化率を図4のグラフに、加圧時間30分の場合とともに示す。
Figure JPOXMLDOC01-appb-T000012
 [比較例11]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)を、95℃の湯中で5分間ブランチング処理し、得られた処理食材の破断強度および保形性を評価した。結果を表13に示す。
 [比較例12]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)を、95℃の湯中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材について、外皮および断面の破断強度と、保形性とを評価した。結果を表13に示す。
 [比較例13]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)を、95℃の湯中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)セロリを得た。FD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))は7.3%であった。
 得られたFDセロリを水戻しし、外皮および断面の破断強度と、保形性とを評価した。結果を表13に示す。
 ここで水戻しは、ボールに300ccの水道水(18℃)をそそぎ、そこに水戻しするFD試料を入れ(押し沈めたりはしない)、10分間静置した後、ネット状の篩にあけることにより行った。
 水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、895%であった。
 [比較例14]
 比較例13と同様にして得たFDセロリを湯戻しし、外皮および断面の破断強度と、保形性とを評価した。結果を表13に示す。
 ここで湯戻しは、ボールに300ccの熱湯をそそぎ、そこに湯戻しするFD試料を入れ(押し沈めたりはしない)、3分間静置した後、ネット状の篩にあけることにより行った。
 湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、990%であった。
Figure JPOXMLDOC01-appb-T000013
 実施例27,28および比較例11~14より、実施例ではいずれも保形性が良好で、酵素反応時間を延ばすほど破断強度が低下して軟化が進行し、酵素濃度の高い方がより軟化の程度が高いことが確認された。以上より、実施例27,28では、酵素液の含浸およびその後の酵素反応によって、内側まで均一に酵素反応が生じ、ブランチングまたはブランチング後に冷凍解凍して軟化したセロリ(比較例11,12)と同等の形状を保持した状態で、適宜軟化の度合いを調節してセロリ食材を軟化できることが分かった。
 [実施例29]
 実施例27と同様にして、カット済みセロリに前記酵素液bを含浸し、酵素反応をそれぞれ0分(含浸直後。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。)、90分、180分、360分行った。次いでそれぞれ95℃以上の水に6分間浸漬することにより加熱調理して酵素失活を行い、取り出して常温まで放冷して処理食材を得た。得られた処理食材について実施例27と同様にして、外皮および断面の破断強度と、保形性とを評価した。結果を表14に示す。
 [実施例30]
 実施例29において、酵素液bに代えて、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例29と同様にして酵素含浸、酵素反応、酵素失活、および放冷を行って処理食材を製造し、外皮および断面の破断強度と、保形性とを評価した。結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 実施例29および30の結果より、酵素液の含浸およびその後の酵素反応によって、内側まで均一に酵素反応が生じ、ブランチングまたはブランチング後に冷凍解凍して軟化したセロリ(比較例11,12)と同等の形状を保持した状態で、適宜軟化の度合いを調節してセロリ食材を軟化できることが分かった。また、加熱調理による酵素失活工程によっても著しく保形性を損なうことがなく、安定した性状の軟化食品を提供できることが分かった。
 [実施例31]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)について、実施例27と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後の食材を、95℃以上の水に6分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材の外皮および断面の破断強度と、保形性とを評価した。結果を表15に示す。
 [実施例32]
 実施例31において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例31と同様にして処理食材を得た。得られた処理食材の外皮および断面の破断強度と、保形性とを評価した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例31および32より、酵素液を含浸し、食材の内側から均一に酵素反応した後、加熱調理による酵素失活を行い、さらに冷凍・解凍することによって、ブランチングのみを行ったセロリと同等の保形性を保持した状態で、食材を所望の程度軟化することができることがわかった。加熱調理による酵素失活工程および冷凍・解凍工程によっては、著しく保形性を損なうことはなかった。
 [実施例33]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)について、実施例27と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。含浸完了直後にこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いでナイロンポリ袋ごと試料を水道水(18℃)流水下にて60分間で解凍した。解凍完了後、ナイロンポリ袋ごと試料を45℃湯浸加温して保持する酵素反応を、それぞれ0分(解凍直後)、30分、60分、90分および120分行い、処理食材を得た。得られた処理食材の外皮および断面の破断強度と、保形性とを評価した。結果を表16に示す。
 [実施例34]
 実施例33において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例33と同様にして処理食材を得た。得られた処理食材の外皮および断面の破断強度と、保形性とを評価した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 [実施例35]
 実施例27で用いたのと同様の原料食材(カット済みセロリ)について、実施例27と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後の食材を、95℃以上の水に6分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。
 これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)セロリを得た。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表17に示す。
 得られたFDセロリを比較例13と同様に水戻しし、外皮および断面の破断強度、保形性、および水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を評価した。結果を表17に示す。
 [実施例36]
 実施例35において、酵素液bに代えて、酵素製剤濃度が2.0%の前記酵素液gを用いたことの他は、実施例35と同様にしてFDセロリを得た。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表17に示す。得られたFDセロリを比較例13と同様に水戻しし、外皮および断面の破断強度、保形性、および水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を評価した。結果を表17に示す。
 [実施例37]
 実施例35と同様にして酵素液bを用いて得たFDセロリを、比較例14と同様に湯戻しし、外皮および断面の破断強度、保形性、および湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を評価した。結果を表17に示す。
 [実施例38]
 実施例36と同様にして前記酵素液gを用いて得たFDセロリを、比較例14と同様に湯戻しし、外皮および断面の破断強度、保形性、および湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を評価した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
 酵素を導入し、酵素反応後にフリーズドライを行った実施例35~38では、水戻しまたは湯戻し後にいずれも十分な軟化が確認され、比較例13,14の結果と比較して戻し重量変化率が高く、水または湯による戻り特性が良好であることがわかった。重量変化率が比較例13、14と比較して明らかに高かった実施例35~37では、酵素液を含浸し、食材の内側から均一に酵素反応したことで食材中の繊維などが加水分解され、かつその時良好な保形性を維持していた分重量変化率が高くなったと思われ、高濃度の酵素液及び高温の湯を戻しに用いた実施例38では保形性が低下した分重量変化率が低くなる傾向が確認されたものと思われる。
 [実施例39]
 生のマッシュルーム(ホールのまま)を原料食材として用い、これを15×15cmのステンレス製バスケットに並べ、バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定して、これを16×16cmのステンレス製容器(内タンク)内にいれた。このステンレス製容器を真空加圧含浸装置((株)エフコム製)内に設置し、真空排気を行い、装置内を6000Pa以下まで減圧し、そのままさらに3分間排気を継続した後、原料食材が完全に浸漬されるまで、45℃に加温した前記酵素液b(酵素製剤濃度1.0%)約2リットルをタンク内に導入した。
 酵素液bの導入後、真空加圧含浸装置内をエアパージして大気圧(0.1MPa)まで昇圧した。このとき装置内の酵素液温度は約40℃であった。続いて圧搾空気を導入してタンク内を加圧して、0.3MPaで30分間保持した(加圧時間:30分)。このとき装置内の酵素液温度は約39℃に保たれていた。次いでエアパージして含浸処理を完了し、装置より酵素液が含浸された食材を取り出した。
 酵素液bを含浸した後の重量は、含浸前重量と比較して83.6%増加し、含浸前重量の183.6重量%となった。
 このようにして酵素液が含浸された食材について、含浸直後、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後に、破断強度および保形性を評価した。ここで、破断強度の測定は、直径3mmのプランジャーを用いて行った。結果を表18に示す。なお、含浸直後の食材では、含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。
 [実施例40]
 実施例39において、酵素液bに代えて、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例39と同様にしてマッシュルームに酵素液を含浸した。酵素液gを含浸した後の重量は、含浸前重量と比較して89.6%増加し、含浸前重量の189.6重量%となった。
 このようにして酵素液が含浸された食材について、実施例39と同様に評価した。結果を表18に示す。
 また、実施例39および40において、加圧時間を1分、3分とした以外は上記と同様にして酵素液を含浸した場合の重量変化率を図5のグラフに、加圧時間30分の場合とともに示す。
Figure JPOXMLDOC01-appb-T000018
 [比較例15]
 実施例39で用いたのと同様のマッシュルームを原料食材とし、これを95℃の湯中で5分間ブランチング処理し、得られた処理食材の破断強度および保形性を評価した。破断強度試験には、直径3mmおよび20mmのプランジャーを用いた。結果を表19に示す。
 [比較例16]
 実施例39で用いたのと同様のマッシュルームを原料食材とし、95℃の湯中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて30分間で解凍し、処理食材を得た。得られた処理食材について、破断強度および保形性を評価した。破断強度試験には、直径3mmおよび20mmのプランジャーを用いた。結果を表19に示す。
 [比較例17]
 実施例39で用いたのと同様のマッシュルームを原料食材とし、95℃の湯中で5分間ブランチング処理した。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)マッシュルームを得た。FD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))は10.7%であった。
 得られたFDマッシュルームを比較例9と同様にして水戻しし、破断強度および保形性を評価した。破断強度試験には、直径3mmおよび20mmのプランジャーを用いた。結果を表19に示す。
 水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、629%であった。
 [比較例18]
 比較例17と同様にして得られたFDマッシュルームを、比較例10と同様に湯戻しし、破断強度および保形性を評価した。破断強度試験には、直径3mmおよび20mmのプランジャーを用いた。結果を表19に示す。
 湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)は、611%であった。
Figure JPOXMLDOC01-appb-T000019
 [実施例41]
 実施例39で用いたのと同様のマッシュルームについて、実施例39と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後の食材を、95℃以上の水に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷して処理食材を得た。得られた処理食材の破断強度および保形性を評価した。ここで、破断強度の測定は、直径3mmのプランジャーを用いて行った。結果を表20に示す。
 [実施例42]
 実施例41において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例41と同様にして処理食材を製造し、得られた処理食材の破断強度および保形性を評価した。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 [実施例43]
 実施例39で用いたのと同様のマッシュルームについて、実施例39と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後の食材を、95℃以上の水に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いで水道水(18℃)流水下にて60分間で解凍し、処理食材を得た。得られた処理食材の破断強度および保形性を評価した。ここで、破断強度の測定は、直径3mmおよび20mmのプランジャーを用いて行った。結果を表21に示す。
 [実施例44]
 実施例43において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例43と同様にして処理食材を製造し、得られた処理食材の破断強度および保形性を評価した。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 [実施例45]
 実施例39で用いたのと同様のマッシュルームについて、実施例39と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。これをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させ、次いでナイロンポリ袋ごと試料を水道水(18℃)流水下にて60分間で解凍した。解凍完了後、ナイロンポリ袋ごと試料を45℃湯浸加温して保持する酵素反応を、それぞれ0分(解凍直後)、30分、60分、90分および120分行い処理食材を得た。得られた処理食材の破断強度および保形性を評価した。ここで、破断強度の測定は、直径3mmおよび20mmのプランジャーを用いて行った。結果を表22に示す。
 [実施例46]
 実施例45において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例45と同様にして処理食材を製造し、得られた処理食材の破断強度および保形性を評価した。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000022
 [実施例47]
 実施例39で用いたのと同様のマッシュルームについて、実施例39と同様に前記酵素液b(酵素製剤濃度1.0%)を含浸した。含浸工程において加圧状態を30分間保持する間には、食材中での酵素反応が生じているものと考えられる。酵素液含浸直後の食材、および、含浸終了後に45℃にて90分、180分および360分保持して酵素反応させた後の食材を、95℃以上の水に5分間浸漬して加熱調理することにより酵素失活を行い、取り出して放冷した。次いでこれをナイロンポリ袋に入れて軽く空気を抜き、シール後に-25℃のフリーザー内に入れ、24時間以上保持して内部まで完全に凍結させた。これを真空凍結乾燥用トレーに並べ、真空凍結乾燥装置(東洋技研製 TFD50LF4)中に導入し、棚温度45℃×48時間、真空度:40Pa以下の条件で、真空凍結乾燥し、フリーズドライ(FD)マッシュルームを得た。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表23に示す。
 得られたFDマッシュルームを比較例9と同様にして水戻しし、破断強度および保形性を評価した。破断強度試験には、直径3mmおよび20mmのプランジャーを用いた。また、水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を求めた。結果を表23に示す。
 [実施例48]
 実施例47において、酵素液bを用いる代わりに、前記酵素液g(酵素製剤濃度2.0%)を用いたことの他は、実施例47と同様にして処理食材であるFDマッシュルームを得た。それぞれのFD歩留(凍結乾燥前重量に対する凍結乾燥後重量の割合(%))を表23に示す。得られたFDマッシュルームを実施例47と同様に水戻しし、破断強度、保形性、および水戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を評価した。結果を表22に示す。
 [実施例49]
 実施例47と同様にして酵素液bを用いて得たFDマッシュルームを、比較例14と同様に湯戻しし、実施例47と同様に破断強度および保形性を評価した。結果を表23に示す。また、湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を表22にあわせて示す。
 [実施例50]
 実施例48と同様にして前記酵素液gを用いて得たFDマッシュルームを、比較例14と同様に湯戻しし、実施例47と同様に破断強度および保形性を評価した。結果を表23に示す。また、湯戻しの前後における重量変化率(FD食材に対する、戻し後の食材の重量割合)を表23にあわせて示す。
Figure JPOXMLDOC01-appb-T000023
 [実施例51]
 計量した生のさつまいも(品種:高系14号)を、20mm厚さにダイスカットしたものを原料食材として用い、これを15×15cmのステンレス製バスケットに並べ、バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定して、これを16×16cmのステンレス製容器(内タンク)内にいれた。このステンレス製容器を真空加圧含浸装置((株)エフコム製)内に設置し、真空排気を行い、装置内を5000Paまで減圧した後、直ちに原料食材が完全に浸漬されるまで、10℃に調温した酵素液h(約1.5リットル)をタンク内に導入した。ここで、酵素液hとしては、アマノエンザイム製の「クライスターゼT10S」0.1重量%を含有する酵素液(酵素製剤濃度0.1重量%)を、酵素および水を攪拌混合することにより調製して用いた。なお、酵素液の調製に用いたアマノエンザイム製のクライスターゼT10Sは、酵素製剤中の酵素(α-アミラーゼ)含有率が77.5%、力価13,100(LJ/g)の酵素製剤である。
 酵素液hの導入後、真空加圧含浸装置内をエアパージして大気圧(0.1MPa)まで昇圧した。続いて圧搾空気を導入してタンク内を加圧して、0.3MPaで10分間保持した(加圧時間:10分間)。このとき装置内の酵素液温度は約10℃に保たれていた。次いでエアパージして含浸処理を完了し、装置より酵素液が含浸された食材を取り出し、その食材の表面に付着した水分を良くきった。
 酵素液hを含浸した後の食材の重量は、含浸前重量と比較して23.7%増加し、含浸前重量の123.7重量%となった。
 このようにして得られた食材を、150℃に調温された白絞油に投入し5分間保持して加熱調理し、その後食材を白絞油から引き上げ、十分その油を切った。加熱調理後の食材の重量は、すべての処理を行う前の食材の初期重量と比較して11.6%減少し、初期重量の88.4重量%となった。なお、酵素反応は、含浸工程で加圧状態に保持されている間だけでなく、この加熱調理の間にも、食材中で生じているものと考えられる。
 この加熱調理後の食材を室温(約20℃)になるまで降温させて、以下記載の方法により糖度(ブリックス)の測定を行った。結果を表24および図6に示す。
 <糖度(ブリックス)測定>
 1)測定試料液の調製
 測定する処理食材を包丁でみじん切りして乳鉢に投入し、乳棒でペースト状になるまですり潰した。ついで、このすり潰した食材を計量(Ag)した後、その食材に計量した水を(Bg)添加し、ペースト状になるまで十分に混合し、懸濁液を作製した。この懸濁液をキッチンペーパーにとり、これを搾汁して測定試料液を作製した。
 2)測定方法
 測定試料液の糖度(ブリックス)を、以下の手持屈折計により測定した。
手持屈折計:アタゴ社製:MASTER-M
 上記屈折計で測定された実測値S0(%)から、以下の換算方法により、加熱調理後の食材のブリックスS1(%)を求めた。
 S1=S0×(A+B)/A
 また、すべての処理を行う前の食材の初期重量に対する、加熱調理後の食材の重量百分率Wf(%)と加熱調理後の食材のブリックスS1(%)から、以下の換算方法により、原料食材換算のブリックスS2(%)を求めた。
 S2=S1×Wf/100
 [実施例52~54]
 実施例51において、その加熱調理の条件を、100℃に調温された白絞油に投入して5分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例52)、100℃に調温された白絞油に投入して10分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例53)、100℃に調温された白絞油に投入して15分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例54)に変更することの他は、実施例51と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表24および図6に示す。
 [実施例55]
 実施例51において、酵素液hに代えて、酵素液iを用いたことの他は、実施例51と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表24および図6に示す。
 ここで、酵素液iとしては、アマノエンザイム製の「クライスターゼT10S」0.3重量%を含有する酵素液(酵素製剤濃度0.3重量%)を用いた。この酵素液の調製は、酵素および水を攪拌混合することにより行った。
 [実施例56~58]
 実施例55において、その加熱調理の条件を、100℃に調温された白絞油に投入して5分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例56)、100℃に調温された白絞油に投入して10分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例57)、100℃に調温された白絞油に投入して15分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(実施例58)に変更することの他は、実施例51と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表24および図6に示す。
Figure JPOXMLDOC01-appb-T000024
 [比較例19]
 生のさつまいも(品種:高系14号)をおろし器ですり下ろしたものをキッチンペーパーにとり、これを搾汁して測定試料液を作製し、実施例51と同様の方法により、糖度(ブリックス)の測定を行った。結果を表25および図6に示す。
 [比較例20]
 実施例51において、酵素液hによる含浸処理を行わなかったことの他は、実施例51と同様にして、食材への加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表25および図6に示す。
 [比較例21~23]
 比較例20において、その加熱調理の条件を、100℃に調温された白絞油に投入して5分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例21)、100℃に調温された白絞油に投入して10分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例22)、100℃に調温された白絞油に投入して15分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例23)に変更することの他は、比較例20と同様にして、食材への加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表25および図6に示す。
 [比較例24]
 実施例51において、酵素液hに代えて、水を用いたことの他は、実施例51と同様にして、食材への水の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表25および図6に示す。
 [比較例25~27]
 比較例24において、その加熱調理の条件を、100℃に調温された白絞油に投入して5分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例25)、100℃に調温された白絞油に投入して10分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例26)、100℃に調温された白絞油に投入して15分間保持した後、さらに150℃に調温された白絞油に投入し5分間保持(比較例27)に変更することの他は、比較例24と同様にして、食材への水の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表25および図6に示す。
Figure JPOXMLDOC01-appb-T000025
 さつまいもを原料とした実施例51~58の結果より、これらすべての実施例において、同等の加熱調理条件で、単に加熱調理する場合、水を含浸させてから加熱調理する場合と比較して、糖度(ブリックス)が上昇することが確認された。また、酵素濃度が高い方が、糖度(ブリックス)の高い食材が得られることが確認された。さらに、これら実施例で得られる糖度(ブリックス)の高い食材は、糖漬け、糖煮などのような糖の甘さではなく、さつまいもが本来持っている甘さを強く感じ取ることができる。
 [実施例59]
 実施例51において、酵素液hに代えて、酵素液jを用いたことの他は、実施例51と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表26に示す。
 ここで、酵素液jとしては、アマノエンザイム製の「クライスターゼT10S」1.0重量%を含有する酵素液(酵素製剤濃度1.0重量%)を用いた。この酵素液の調製は、酵素および水を攪拌混合することにより行った。
 [実施例60]
 実施例59において、酵素液jに代えて、酵素液j2を用いたことの他は、実施例59と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表26に示す。
 ここで、酵素液j2としては、ショ糖(三井製糖社製 上白糖J)を水に溶解して得た65重量%濃度のショ糖液に、アマノエンザイム製の「クライスターゼT10S」1.0重量%を含有するように添加した酵素液(酵素製剤濃度1.0重量%)を用いた。この酵素液の調製は、酵素およびショ糖液を攪拌混合することにより行った。
 [比較例28]
 実施例59において、酵素液jに代えて、65重量%濃度のショ糖液を用いたことの他は、実施例59と同様にして、食材へのショ糖液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表26に示す。
Figure JPOXMLDOC01-appb-T000026
 さつまいもを原料とした実施例59の結果より、65重量%ショ糖液を含浸した食材と比較しても高い糖度(ブリックス)の食材が得られることが確認された。この食材は、さつまいも本来の自然な甘みを強く感じることができる食材で、ショ糖のみにより糖度を高めた食材とは異なる甘みを有する。また、実施例60の結果より、さつまいも本来の自然な甘みと、ショ糖の有する甘みがあいまって、より一層甘みの強い食材が得られることが確認された。
 [実施例61]
 実施例59において、酵素液jに代えて、酵素液j3を用いたことの他は、実施例59と同様にして、食材への酵素液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表27に示す。
 ここで、酵素液j3としては、いちご果汁液に、アマノエンザイム製の「クライスターゼT10S」1.0重量%を含有するように添加した酵素液(酵素製剤濃度1.0重量%)を用いた。この酵素液の調製は、酵素およびいちご果汁液を攪拌混合することにより行った。なお、いちご果汁液は、35°BXいちご透明果汁(日本果実加工社製)70重量%と還元水飴(物産フードサイエンス社製 エスイー600)30重量%とを混合して得られる混合液100重量%に対して、1重量%のいちご香料(内外香料社製 ストロベリーオイル)を添加し、十分に攪拌混合して得られる。
 [比較例29]
 実施例61において、酵素液j3に代えて、実施例61で得られたいちご果実液を用いたことの他は、実施例59と同様にして、食材へのいちご果汁液の含浸、加熱調理を行い、食材の糖度(ブリックス)を測定した。結果を表27に示す。
Figure JPOXMLDOC01-appb-T000027
 [実施例62]
 計量した大豆(ホクレン農業協同組合連合会製)を原料食材として用い、これを15×15cmのステンレス製バスケットに並べ、バスケット上部にポリエチレンネットをかぶせ、ネットをステンレス製針金で固定して、これを16×16cmのステンレス製容器(内タンク)内にいれた。このステンレス製容器を真空加圧含浸装置((株)エフコム製)内に設置し、真空排気を行い、装置内を5000Paまで減圧した後、直ちに原料食材が完全に浸漬されるまで、15℃に調温した酵素液k(約1.5リットル)をタンク内に導入した。ここで、酵素液kとしては、アマノエンザイム製のプロテアーゼA「アマノ」G 0.5重量%を含有する酵素液(酵素製剤濃度0.5重量%)を、酵素および水を攪拌混合することにより調製して用いた。なお、酵素液の調製に用いたアマノエンザイム製のプロテアーゼA「アマノ」Gは、酵素製剤中の酵素(プロテアーゼ)含有率が30.0%、力価10,000(u/g)の酵素製剤である。
 酵素液kの導入後、真空加圧含浸装置内をエアパージして大気圧(0.1MPa)まで昇圧した。続いて圧搾空気を導入してタンク内を加圧して、0.3MPaで30分間保持した(加圧時間:30分間)。このとき装置内の酵素液温度は約10℃に保たれていた。次いでエアパージして含浸処理を完了し、装置より酵素液が含浸された食材を取り出し、ステンレスバスケットに入った状態で軽くエアーブローして、食材表面に残存する水分を飛ばし、計量した。
 酵素液kを含浸した後の食材の重量は、含浸前重量と比較して39.2%増加し、含浸前重量の139.2重量%となった。なお、含浸直後の食材では、含浸工程において加圧状態を30分間保持する間に、食材中での酵素反応が生じているものと考えられる。
 このようにして得られた食材を圧力鍋に入れ、食材が完全に水に浸るまで水を入れた後蓋を閉め、圧力鍋の調圧弁から蒸気が勢い良く噴出すまで強火で加熱をし、さらに弱火にして5分間保持して加熱調理した。その後、火を止めて圧力鍋から食材を取り出し、ステンレスバスケットに移し、軽くエアーブローして、食材表面に残存する水分を飛ばし、計量した。
 加熱調理した後の食材の重量は、すべての処理を行う前の食材の初期重量と比較して92.4%上昇し、初期重量の192.4%となった。
 [比較例30]
 実施例62において、酵素液kによる含浸処理を行わなかったことの他は、実施例62と同様にして、食材への加熱調理、重量変化を測定した。結果を表28に示す。
 [比較例31]
 実施例62において、酵素液kによる含浸処理を行わず、大気圧下で15℃近辺に調温した水に食材を30分間浸漬させた後に圧力鍋による加熱処理を行ったことの他は、実施例62と同様にして、食材への加熱調理、重量変化を測定した。結果を表28に示す。
 [比較例32]
 実施例62において、酵素液kに代えて、水による含浸処理を行ったことの他は、実施例62と同様にして、食材への加熱調理、重量変化を測定した。結果を表28に示す。
Figure JPOXMLDOC01-appb-T000028
 実施例62の結果より、酵素反応により、食材の含水量が上昇するとともに、さらにその後の加熱調理によって、大きく含水率が高められた加工食材が得られていることが確認された。
 本発明に係る酵素含有食品の製造方法は、軟化などの酵素作用を施した各種食品の製造に好適に適用でき、本発明に係る酵素含有食品は、老人食、病人食、離乳食などの他、柔らかさのある新食感の食品、調理時間を短縮する一次加工品としての食品素材、軟化調理食品などと、各種食材の加工食品の分野で広く利用することができる。また、本発明に係る酵素含有食品が凍結乾燥品である場合には、柔らかく、かつ戻り特性に優れた加工食品として広く利用することができる。また、本発明に係る酵素含有食品の製造方法は、糖化などの酵素作用を施した各種食品の製造に好適に適用でき、原料食材から引き出された自然な甘みを有する一次加工品としての食品素材、各種食材の加工食品の分野で広く利用することができる。さらには、タンパク分解等原料に含まれる成分の分解などの酵素作用を施した各種食品の製造に好適に適用でき、より含水率が高まった、例えば、柔らかさが感じられる一次加工品としての食品素材、各種食材の加工食品の分野で広く利用することができる。
 このように、本発明に係る酵素含有食品の製造方法では、酵素により、原料に含まれる成分を変化させ、所望の効果をもたらす、有用な成分を生成、増加させることができるので、一次加工品としての食品素材、各種食材の加工食品の分野で広く利用できる。

Claims (25)

  1.  原料食材を減圧処理し、減圧状態を保ちながら、酵素を含有する液体成分と接触させ、次いで昇圧することにより食材内部に酵素を導入する酵素導入工程を有することを特徴とする酵素含有食品の製造方法。
  2.  酵素導入工程より後に、酵素反応工程を有することを特徴とする請求項1に記載の酵素含有食品の製造方法。
  3.  酵素導入工程と酵素反応工程を同時に行うことを特徴とする請求項1に記載の酵素含有食品の製造方法。
  4.  酵素導入工程より後に、冷凍工程を有することを特徴とする請求項1~3のいずれかに記載の酵素含有食品の製造方法。
  5.  酵素導入工程に次いで冷凍工程を有し、解凍と同時にまたは解凍後に酵素反応工程を有することを特徴とする請求項4に記載の酵素含有食品の製造方法。
  6.  酵素反応工程より後に、冷凍工程を有することを特徴とする請求項2または3に記載の酵素含有食品の製造方法。
  7.  酵素導入工程より後に、凍結乾燥工程を有することを特徴とする請求項1~3のいずれかに記載の酵素含有食品の製造方法。
  8.  酵素導入工程に次いで凍結乾燥工程を有し、戻しと同時にまたは戻し後に酵素反応工程を有することを特徴とする請求項7に記載の酵素含有食品の製造方法。
  9.  酵素導入工程に次いで酵素反応工程を有し、その後に凍結乾燥工程を有することを特徴とする請求項7に記載の酵素含有食品の製造方法。
  10.  酵素反応工程より後に、酵素失活工程を有することを特徴とする請求項2~9のいずれかに記載の酵素含有食品の製造方法。
  11.  酵素失活工程の後に、冷凍工程を有することを特徴とする請求項10に記載の酵素含有食品の製造方法。
  12.  酵素失活工程の後に、凍結乾燥工程を有することを特徴とする請求項10に記載の酵素含有食品の製造方法。
  13.  原料食材が、冷凍の工程を経ていない食材であることを特徴とする請求項1~12のいずれかに記載の酵素含有食品の製造方法。
  14.  原料食材が、加熱および冷凍の工程をいずれも経ていない食材であることを特徴とする請求項1~12のいずれかに記載の酵素含有食品の製造方法。
  15.  減圧処理時の食材周囲圧力が100~90000Paであることを特徴とする請求項1~14のいずれかに記載の酵素含有食品の製造方法。
  16.  酵素導入工程において、原料食材の重量に対して、酵素を乾燥重量で0.0005~2重量%導入することを特徴とする請求項1~15のいずれかに記載の酵素含有食品の製造方法。
  17.  酵素を含有する液体成分が、セルラーゼ、ヘミセルラーゼ、キシラナーゼ、ペクチナーゼ、アミラーゼ、プロテアーゼ、パパイン、リパーゼよりなる群から選ばれる1種以上の酵素を含有することを特徴とする請求項1~16のいずれかに記載の酵素含有食品の製造方法。
  18.  酵素を含有する液体成分が、調味料を含有することを特徴とする請求項1~17のいずれかに記載の酵素含有食品の製造方法。
  19.  酵素反応工程を、酵素を導入した食材を-5~80℃に保持することにより行うことを特徴とする請求項2~18のいずれかに記載の酵素含有食品の製造方法。
  20.  酵素反応工程を、不酸化雰囲気下で行うことを特徴とする請求項2~19のいずれかに記載の酵素含有食品の製造方法。
  21.  酵素失活工程を、加熱あるいはマイクロ波照射により行うことを特徴とする請求項10~20のいずれかに記載の酵素含有食品の製造方法。
  22.  酵素失活工程が、加熱調理をともなう工程であることを特徴とする請求項10~21のいずれかに記載の酵素含有食品の製造方法。
  23.  請求項1~22のいずれかに記載の製造方法により得られることを特徴とする酵素含有食品。
  24.  老人食、病人食または離乳食であることを特徴とする請求項23に記載の酵素含有食品。
  25.  硬さが5×105N/m2以下であることを特徴とする請求項23または24に記載の酵素含有食品。
PCT/JP2010/056069 2009-04-02 2010-04-02 酵素含有食品の製造方法および酵素含有食品 WO2010114120A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011507306A JP5881418B2 (ja) 2009-04-02 2010-04-02 酵素含有食品の製造方法および酵素含有食品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-089828 2009-04-02
JP2009089828 2009-04-02

Publications (1)

Publication Number Publication Date
WO2010114120A1 true WO2010114120A1 (ja) 2010-10-07

Family

ID=42828404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056069 WO2010114120A1 (ja) 2009-04-02 2010-04-02 酵素含有食品の製造方法および酵素含有食品

Country Status (2)

Country Link
JP (1) JP5881418B2 (ja)
WO (1) WO2010114120A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092216A (ja) * 2011-02-14 2011-05-12 Maruha Nichiro Foods Inc 軟化魚肉・畜肉の製造方法
WO2011099354A1 (ja) * 2010-02-12 2011-08-18 イーエヌ大塚製薬株式会社 酵素処理液、軟質化方法および軟質化動物性食材
WO2012132590A1 (ja) * 2011-03-25 2012-10-04 イーエヌ大塚製薬株式会社 復元可能な乾燥植物性素材の製造方法
JP2013226118A (ja) * 2012-03-30 2013-11-07 Riken Vitamin Co Ltd サツマイモ加工品の製造方法
JP5564626B1 (ja) * 2014-01-20 2014-07-30 株式会社キンキ地質センター 浸透方法、成分含有浸透液の製造方法、浸透抽出装置
JP2015228836A (ja) * 2014-06-05 2015-12-21 アスザックフーズ株式会社 真空凍結乾燥食品およびその製造方法
KR101782127B1 (ko) * 2015-10-15 2017-09-27 건국대학교 산학협력단 연화된 해산물의 제조방법 및 이의 방법에 따라 제조된 연화된 해산물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174850A (ja) * 2002-11-22 2003-06-24 Puraseramu:Kk 食品の含浸処理方法
JP2003339328A (ja) * 2002-05-29 2003-12-02 Puraseramu:Kk 食品含浸処理装置
JP2006223122A (ja) * 2005-02-15 2006-08-31 Mishima Shokuhin Kk 軟質植物質食品の製造方法
JP2007252323A (ja) * 2006-03-24 2007-10-04 Hiroshima Pref Gov 食品およびその製造方法
WO2009047925A1 (ja) * 2007-10-10 2009-04-16 Hiroshima Prefecture 熟成食品の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089181A (ja) * 2002-07-08 2004-03-25 Ajinomoto Co Inc 食品素材の改質方法
JP2010051209A (ja) * 2008-08-27 2010-03-11 Mishima Shokuhin Kk 冷凍された軟質植物質食材の製造方法
JP2010130984A (ja) * 2008-12-08 2010-06-17 Kaneka Corp 単細胞化植物食品素材の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339328A (ja) * 2002-05-29 2003-12-02 Puraseramu:Kk 食品含浸処理装置
JP2003174850A (ja) * 2002-11-22 2003-06-24 Puraseramu:Kk 食品の含浸処理方法
JP2006223122A (ja) * 2005-02-15 2006-08-31 Mishima Shokuhin Kk 軟質植物質食品の製造方法
JP2007252323A (ja) * 2006-03-24 2007-10-04 Hiroshima Pref Gov 食品およびその製造方法
WO2009047925A1 (ja) * 2007-10-10 2009-04-16 Hiroshima Prefecture 熟成食品の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099354A1 (ja) * 2010-02-12 2011-08-18 イーエヌ大塚製薬株式会社 酵素処理液、軟質化方法および軟質化動物性食材
JP2011092216A (ja) * 2011-02-14 2011-05-12 Maruha Nichiro Foods Inc 軟化魚肉・畜肉の製造方法
CN102630953A (zh) * 2011-02-14 2012-08-15 株式会社玛鲁哈日鲁食品 软化鱼肉、软化畜肉的制作方法
CN102630953B (zh) * 2011-02-14 2016-05-04 玛鲁哈日鲁株式会社 软化鱼肉、软化畜肉的制作方法
WO2012132590A1 (ja) * 2011-03-25 2012-10-04 イーエヌ大塚製薬株式会社 復元可能な乾燥植物性素材の製造方法
JP2013226118A (ja) * 2012-03-30 2013-11-07 Riken Vitamin Co Ltd サツマイモ加工品の製造方法
JP5564626B1 (ja) * 2014-01-20 2014-07-30 株式会社キンキ地質センター 浸透方法、成分含有浸透液の製造方法、浸透抽出装置
JP2015228836A (ja) * 2014-06-05 2015-12-21 アスザックフーズ株式会社 真空凍結乾燥食品およびその製造方法
KR101782127B1 (ko) * 2015-10-15 2017-09-27 건국대학교 산학협력단 연화된 해산물의 제조방법 및 이의 방법에 따라 제조된 연화된 해산물

Also Published As

Publication number Publication date
JP5881418B2 (ja) 2016-03-09
JPWO2010114120A1 (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5881418B2 (ja) 酵素含有食品の製造方法および酵素含有食品
JP5801544B2 (ja) 軟質化された植物性素材の製造方法
JP5424181B2 (ja) 咀嚼・嚥下困難者用食品及び咀嚼・嚥下困難者用食品の製造方法
US20110300260A1 (en) Method for preparation of frozen microwave instant food
JP6052654B2 (ja) やわらか食材の製造方法及びその食品
JPWO2008029783A1 (ja) 軟質植物質素材の製造方法
JP2006223122A (ja) 軟質植物質食品の製造方法
JP2008237196A (ja) 緑黄色野菜食品及びその製造方法
JP4753206B2 (ja) 機能性食品の製造方法及び機能性食品
EP1610617B1 (en) Method of treating avocados and method of preparing guacamole therefrom
JP5435384B2 (ja) 介護食調理用補助剤、これを用いた介護食、及び介護食調理用器具
JP2010130945A (ja) 野菜発酵物の製造方法
CN106942688A (zh) 颗粒状食物产品
CN1701721A (zh) 即食海参及其制作方法
KR101425386B1 (ko) 효소처리를 이용한 고구마 마요네즈 및 고구마 마요네즈 제조방법
JP2018121630A (ja) 形状保持型軟化食品の製造方法
JP2008245546A (ja) やわらか漬物及びその製造方法
JP6999156B2 (ja) γ-アミノ酪酸高富化乾燥パパイヤの調製方法、およびγ-アミノ酪酸高富化パパイヤ粉末の調製方法
KR102577633B1 (ko) 소고기 숙성 방법
TWI712363B (zh) 軟化食品之方法
KR102577642B1 (ko) 돼지고기 숙성 방법
KR102612395B1 (ko) 즉석조리용 토란대 통조림의 제조방법 및 이에 의해 제조된 즉석조리용 토란대 통조림
KR102612391B1 (ko) 즉석조리용 시래기 통조림의 제조방법 및 이에 의해 제조된 즉석조리용 시래기 통조림
KR102612394B1 (ko) 즉석조리용 곤드레 통조림의 제조방법 및 이에 의해 제조된 즉석조리용 곤드레 통조림
KR102189933B1 (ko) 연화된 채소류 절임 식품 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507306

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758887

Country of ref document: EP

Kind code of ref document: A1