WO2010113489A1 - 二酸化炭素塗装方法及びその装置 - Google Patents

二酸化炭素塗装方法及びその装置 Download PDF

Info

Publication number
WO2010113489A1
WO2010113489A1 PCT/JP2010/002336 JP2010002336W WO2010113489A1 WO 2010113489 A1 WO2010113489 A1 WO 2010113489A1 JP 2010002336 W JP2010002336 W JP 2010002336W WO 2010113489 A1 WO2010113489 A1 WO 2010113489A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
paint
pressure
coating
mixer
Prior art date
Application number
PCT/JP2010/002336
Other languages
English (en)
French (fr)
Inventor
鈴木明
川▲崎▼慎一朗
早坂宜晃
Original Assignee
独立行政法人産業技術総合研究所
加美電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009088479A external-priority patent/JP5429928B2/ja
Priority claimed from JP2009088501A external-priority patent/JP5429929B2/ja
Application filed by 独立行政法人産業技術総合研究所, 加美電子工業株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to US13/258,972 priority Critical patent/US8864044B2/en
Priority to EP10758269.4A priority patent/EP2415529B1/en
Priority to CN201080014234.1A priority patent/CN102369067B/zh
Publication of WO2010113489A1 publication Critical patent/WO2010113489A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/105Mixing heads, i.e. compact mixing units or modules, using mixing valves for feeding and mixing at least two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention relates to a carbon dioxide coating method and an apparatus therefor, and more specifically, by replacing a diluting solvent (VOC) used in a large amount in conventional spray coating with an organic solvent-based paint with a very small amount of carbon dioxide.
  • the present invention relates to a coating method and apparatus capable of greatly reducing the occurrence of VOC while ensuring coating finish quality such as coating film uniformity, smoothness, and sharpness equivalent to organic solvent-based coating.
  • INDUSTRIAL APPLICABILITY The present invention stably applies carbon dioxide to a low environmental load type coating method and apparatus capable of greatly reducing the occurrence of VOC in the atmosphere, and a one-part curable two-part curable paint.
  • the present invention provides a new painting technique relating to a low-environmental load-type painting method and apparatus capable of this.
  • VOC emissions are expected to be reduced by 30% in 2010, including voluntary regulations, as hazardous chemical substances that lead to global warming.
  • the coating industry uses a large amount of organic solvents as a viscosity reducing agent used in paints, and the coating industry has a VOC generation amount close to 60% of the VOC generation amount in Japan of about 1.5 million tons. It is the largest VOC generation industry that occupies, and VOC countermeasures are an urgent issue in the paint industry.
  • Patent Document 1 a patent filed by the United States Union Carbide Corporation proposes a technique that uses a supercritical fluid instead of an organic solvent as a viscosity reducing agent (diluent).
  • the coating dissolves the supercritical fluid, especially carbon dioxide, and reduces the viscosity to a sprayable level. It has been shown to be possible.
  • Patent Document 2 a spray width control method
  • Patent Document 3 a coating composition limitation
  • Patent Document 4 a spray state improvement method
  • Patent documents 4 5 methods of blockage avoidance method
  • Patent document 6 paint / CO 2 mixture density control method
  • the process flow shown in the above patent is shown in FIG.
  • the paint and CO 2 are pressurized by an air-operated piston pump, and the paint is heated and sent to the mixer for the purpose of viscosity reduction.
  • the CO 2 is not heated and is sent to the mixer in a liquid state.
  • the supply amount of paint and CO 2 at that time is supplied at a constant volume ratio by a mechanism that simultaneously controls the movements of the pistons of both pumps.
  • the mixer is a fluid multi-stage static mixer, and after the mixture is heated, it passes through the filter, is mixed again by the static mixer, is decompressed as necessary, and is sent to the spray gun. It is done. In the spray gun, the flow rate is determined according to the pressure and sprayed. The surplus is pressurized in the circulation line and returned to the line after the first static mixer.
  • a circulation line is provided, it is not particularly necessary for operation.
  • an electric heating method is used for heating the paint and the mixture.
  • Adoption of other heating methods is desired.
  • spraying may be stopped instantaneously or for a certain period of time when changing the painting surface or changing the painting object itself.
  • the viscosity reducing compressed fluid used is a gas or supercritical fluid when mixed with a paint and has a solubility coefficient of about 0.5 to about 4.0 cal / cc.
  • the present inventors also carried out carbon dioxide coating of a one-component curable coating (acrylic resin-based coating blended with nitrocellulose), and in many temperature and pressure conditions, It was confirmed that occlusion occurred.
  • the solid precipitation phenomenon is considered from the viewpoint of phase equilibrium, and the solubility coefficient is limited as a condition for preventing polymer precipitation.
  • the present inventors investigated and examined the polymer deposition state in detail, and as a result, prior to the deposition in the mixer, the polymer deposition occurred on the single line of carbon dioxide immediately before the mixer. It has become clear that this will happen, and that the supply pressure of the carbon dioxide supply line will rise rapidly.
  • An object of the present invention is to provide a new coating method and apparatus suitable for low environmental load type low VOC coating using carbon dioxide as a viscosity reducing agent.
  • the present inventors have solved the above-mentioned problems in carbon dioxide coating in view of the above prior art, and can be suitably applied particularly to paints having high quick drying properties such as one-component curable paints.
  • intensive research aimed at establishing a coating device using carbon dioxide and its stable operation method, we succeeded in establishing a hardware improvement and a stable operation method, and completed the present invention. It came to.
  • the present invention is a one-pack type that can be suitably used as a low-environmental load-type low VOC coating that makes it possible to significantly reduce the generation of VOCs in the atmosphere using carbon dioxide as a viscosity reducing agent.
  • -It aims at providing the coating method and apparatus of a two-component paint.
  • the present invention replaces a diluting solvent (VOC) used in a large amount with a very small amount of carbon dioxide, thereby achieving a paint finish quality equivalent to that of an organic solvent-based paint, that is,
  • VOC diluting solvent
  • the present invention is to provide a new low environmental load type coating method and apparatus capable of greatly reducing the occurrence of VOC while ensuring uniformity of coating film, smoothness, sharpness and the like.
  • the present invention provides a tank for storing paint as a paint supply line in a carbon dioxide coating in which part or all of the diluent solvent (thinner) used in organic solvent-based spray coating is replaced by carbon dioxide.
  • a high-pressure paint pump that pressurizes the paint to be applied to a predetermined pressure, a primary pressure adjustment valve for adjusting the discharge pressure of the high-pressure paint pump and returning the surplus to the paint tank, and as a carbon dioxide supply line,
  • a tank for storing liquid carbon dioxide, a cooler for cooling the liquid carbon dioxide to a predetermined temperature, a liquid carbon dioxide high-pressure pump for pressurizing liquid carbon dioxide supplied from the cooler to a predetermined pressure, and the liquid carbon dioxide high-pressure pump A liquid carbon dioxide primary pressure regulating valve for adjusting the discharge pressure of the liquid and returning the excess to the suction of the pump, and a paint / carbon dioxide mixture
  • a pressurized paint supplied from the paint supply line a mixer for mixing the pressurized carbon dioxide supplied from the carbon dioxide supply line, and
  • the present invention is a method of performing coating using carbon dioxide using the above-described coating apparatus, wherein the primary pressure regulating valve on the discharge side of the paint high-pressure pump or the CO 2 high-pressure pump that performs spray control is set to the spray pressure.
  • Set the flow rate of the fluid without spray pressure control by setting the primary pressure regulating valve on the discharge side of the paint high pressure pump or the CO 2 high pressure pump that does not perform spray pressure control to a pressure higher than the spray pressure.
  • the flow rate of the fluid for performing the spray pressure control is made variable in accordance with the flow rate characteristics of the orifice of the spray nozzle, and the surplus is returned to the pump suction.
  • the present invention is a method of performing coating using carbon dioxide using the above-described coating apparatus, wherein the primary pressure regulating valve on the discharge side of the paint high pressure pump and the carbon dioxide high pressure pump is set higher than the spray pressure.
  • This is a coating method using carbon dioxide, which comprises setting and spraying the entire amount of fluid discharged from both pumps and adjusting the spray pressure depending on the flow rate characteristics of the nozzle orifice of the spray gun.
  • a paint heater for heating the pressurized paint to a predetermined temperature
  • a cooler for cooling the surplus carbon dioxide returned to the suction of the liquid carbon dioxide high-pressure pump to a predetermined temperature
  • a carbon dioxide heater that heats the liquid carbon dioxide that has been mixed to a predetermined temperature
  • a mixture heater that heats the mixed paint / carbon dioxide pressurized mixture to a predetermined temperature
  • the mixer includes a paint and carbon dioxide It is a preferred embodiment that the micromixer can be rapidly mixed.
  • the fluid for controlling the spray pressure is paint
  • the primary pressure regulating valve on the discharge side of the paint high-pressure pump and the carbon dioxide high-pressure pump is set higher than the spray pressure and discharged from both pumps.
  • a paint that is, a polymer and a dilute solvent of 50 to 150% of a true solvent that dissolves the polymer and has fluidity, such as toluene and xylene, are added, It is necessary to reduce the viscosity to enable spraying.
  • the low-viscosity paint / dilution solvent mixture is sprayed as fine droplets by an air spray method using air as an atomizing medium or a high-pressure spray method that does not use atomized air. Applied.
  • the present invention provides a coating method in which the diluent solvent used in the organic solvent-based coating is partially or entirely replaced with carbon dioxide.
  • the paints targeted in the first aspect of the present invention are roughly classified into three types: ultraviolet curable paints, one-part curable paints, and two-part curable paints.
  • UV curable paint is a paint that cures with ultraviolet rays and forms a film, and is excellent in high hardness, abrasion resistance, scratch resistance, chemical resistance, solvent resistance, etc., for example, as a hard coat for mobile phones, etc. Used.
  • the above-mentioned paint is a paint that forms a coating film by radical polymerization of an acrylic oligomer and a monomer compounded product using ultraviolet rays (UV) as energy.
  • the one-component curable paint is a paint that is used undiluted or by blending only a diluent (viscosity modifier) such as thinner, and is mainly used for home appliances such as TV cabinets and automobile parts. Used for industrial parts.
  • the above-mentioned paint is a paint that has an acrylic resin as a main component and can form a coating film without using a curing agent. By blending nitrocellulose, it is quick-drying, high in hardness, and excellent in wear resistance.
  • the applicable material is used for a wide range of applications such as polystyrene resin, ABS resin, AS resin, Noryl resin, hard vinyl chloride resin, polycarbonate resin and the like.
  • a two-component curable paint is a paint that is mixed with a curing agent before use, cured by chemical reaction, and dried. It is excellent in alcohol resistance and abrasion resistance, mainly in automobile interiors and precision equipment. Used in optical equipment.
  • This paint is a two-component reaction-curing acrylic urethane paint containing an acrylic resin as a main component and a polyisocyanate compound as a curing agent.
  • carbon dioxide is mixed and dissolved in the paint.
  • the conditions are a temperature of 30 to 70 ° C., preferably 35 to 45 ° C., and a pressure of 5 to 20 MPa, preferably 7 to 10 MPa. Accordingly, it is necessary to pressurize the paint, but generally the viscosity is as high as 50 to 500 cp, and a piston pump, a diaphragm pump, or the like is used as the paint high-pressure pump.
  • a gear pump can be used.
  • a plunger pump can be adopted in addition to a piston pump and a diaphragm pump.
  • pressurization of carbon dioxide pressurization with liquid carbon dioxide is advantageous, and in this case, cooling at the front stage of the pump is required.
  • the type of the heater is not particularly limited.
  • the temperature is controlled to be constant as soon as possible, or the spray is temporarily changed by switching the painted surface.
  • a tank / coil type heat exchange in which a high-pressure pipe through which a fluid passes is immersed in a tank filled with a heating medium (usually water) rather than a commonly used electric heater.
  • a vessel is preferably used.
  • the type of the high-pressure micromixer is not particularly limited. However, in consideration of the high viscosity of the paint and the blocking property, an interdigital channel structure that mixes two fluids with an extremely short diffusion distance, for example, A micro mixer utilizing the turbulent mixing effect of a fluid is preferable to a laminar flow type micro Kimisa provided by IMM, Germany.
  • a T-shaped mixer having a flow path diameter of 0.5 mm or less
  • a swirl type micro mixer using a swirling flow and a center collision type micro mixer that causes a fluid to collide at the center of a minute space
  • a double-tube micromixer having an inner tube with an inner diameter of 0.5 mm or less.
  • the spray gun used in the present invention may be an airless high-pressure spray gun, but the final control of the spray flow rate, spray pressure, and spray pattern is controlled by the opening diameter of the high-pressure nozzle orifice mounted on the spray gun. Since it depends on (equivalent diameter) and its shape, it is extremely important.
  • the spray flow rate varies greatly depending on how much the coating amount per unit time is set, but the range of 50 to 500 g / min is generally selected as the flow rate of the paint.
  • the equivalent diameter of the orifice is selected to be 0.1 to 0.2 mm.
  • the shape of the orifice varies depending on the required spray pattern, but if it is a flat spray, it has an elliptical orifice shape. In addition, if the orifice shape is circular, it becomes a full cone spray, but it is also possible to change the full cone spray to a flat spray by blowing air or the like immediately after jetting and controlling the spray pattern.
  • FIG. 2 is an example of a preferred embodiment of the carbon dioxide coating apparatus according to the present invention.
  • the reference numerals in the figure indicate the following means. That is, 1: paint tank, 2: paint filter, 3: paint high pressure pump, 4: paint back pressure valve (primary pressure adjustment), 5: paint heater, 6: CO 2 cylinder, 7: CO 2 filter, 8: CO 2 cooler, 9: CO 2 high pressure pump, 10: CO 2 heater, 11: CO 2 back pressure valve (primary pressure adjustment), 12: CO 2 cooler 2, 13: paint check valve, 14: CO 2 reverse Stop valve, 15: mixer, 16: mixture heater, 17: mixture stop valve, 18: CO 2 stop valve, 19: spray gun.
  • the above apparatus and its operation will be described in detail.
  • the paint is filled in the paint tank 1 and, if necessary, pressurized (several atmospheres) with nitrogen gas or the like. Supplied to the suction.
  • the aperture of the filter 2 may be several tens of ⁇ m if it is a clear paint, but it is preferably several hundreds of ⁇ m because it contains a solid pigment in the case of a colored paint.
  • the paint high-pressure pump 3 is a positive displacement pump as long as the discharge pressure is about 20 MPa.
  • a diaphragm pump preferably a double diaphragm pump is selected as a countermeasure against pulsation.
  • a plunger pump is also possible, but it is not usually selected because there is a risk that the plunger seal portion will be stuck with the paint.
  • the plunger seal portion can be appropriately immersed in a solvent.
  • the pump drive source is appropriately selected from the air-operated type and the electric type depending on the installation location of the apparatus.
  • the paint is usually pressurized to about 10 MPa by the paint high-pressure pump 3, heated to about 40 ° C. by the paint heater 5 as necessary, and sent to the mixer 15.
  • a pump flow rate higher than the spray flow rate (determined by the pressure and the nozzle orifice) is set, and an operation of returning the surplus from the back pressure valve 4 to the paint tank 1 is performed.
  • the control pressure (system pressure) of the constant pressure operation is the primary pressure of the back pressure valve 4.
  • CO 2 sucks the liquid portion of the cylinder 6, passes through the filter 7, is cooled to a temperature equal to or lower than the saturation temperature by the cooler 8, and is supplied to the suction of the CO 2 high-pressure pump 9.
  • the liquid CO 2 is pressurized by the CO 2 high-pressure pump 9, further in CO 2 heater 10, the critical temperature (31 ° C.) or higher, usually, is heated to supercritical CO 2 of 40 ° C., the mixer 15 Sent to.
  • the CO 2 high-pressure pump a diaphragm pump, a plunger pump, or the like is usually selected.
  • a double pump it is desirable to employ a double pump to prevent pulsation.
  • the required amount of CO 2 supply is as small as 30% or less of the paint. Therefore, when the spray flow rate is small, a plunger pump is employed.
  • the pressurized and heated paint and CO 2 are instantaneously mixed in the mixer 15 to become a paint / CO 2 mixture.
  • a micro mixer in consideration of quick mixing and complete mixing.
  • a T-shaped mixer having a flow path diameter of 0.5 mm or less, a swirl type micro mixer using a swirling flow, a center collision type micro mixer that enables a fluid to collide at the center of a minute space, and A double-tube micromixer having an inner diameter of 0.5 mm or less is preferably used.
  • CO 2 is introduced from the upper inlet and flows downward through an annular portion around the needle that adjusts the mixing state.
  • the paint is introduced from the lower inlet, and is divided into a plurality of flows (usually divided into two or four), and CO 2 and the paint collide with each other in the minute space at the tip of the needle to instantaneously To be mixed.
  • the paint / CO 2 mixture is heated by the mixture heater 16 as necessary, and sprayed toward the object to be coated by the spray gun 19 via the stop valve 17.
  • Paint / CO 2 mixture CO 2 is disengaged immediately after the spraying, the coating material of the fine particles.
  • the particle diameter of the paint particles depends on temperature, pressure, and the structure of the spray gun, typically the nozzle orifice diameter, but is usually in the range of 10 to 50 ⁇ m.
  • the spray gun is mounted on the three-dimensional robot and painting is performed.
  • the stop valve 17 is closed and immediately after, The stop valve 18 is opened, and supercritical CO 2 is supplied to the nozzle of the spray gun, and cleaning is performed instantaneously.
  • the paint high-pressure pump 3 continues to operate, but in the constant pressure operation mode, the paint is circulated by the back pressure valve 4 while maintaining the operation pressure.
  • the setting of the back pressure valve 4 is set slightly higher than the operating pressure, whereby the paint is circulated with a slight pressure increase.
  • the present invention replaces a diluting solvent (VOC) used in a large amount with a very small amount of carbon dioxide, thereby achieving a paint finish quality equivalent to that of an organic solvent-based paint, that is,
  • VOC diluting solvent
  • the present invention is to provide a new low environmental load type coating method and apparatus capable of greatly reducing the occurrence of VOC while ensuring uniformity of coating film, smoothness, sharpness and the like.
  • the present invention provides a paint supply in a one-pack or two-pack paint coating apparatus using carbon dioxide in which a diluent solvent (thinner) used in organic solvent spray coating is partially or entirely replaced with carbon dioxide.
  • a paint storage tank a paint high-pressure pump that pressurizes the paint supplied from the tank to a predetermined pressure, a primary pressure of paint that adjusts the discharge pressure of the paint high-pressure pump and returns the excess to the paint tank
  • Liquid carbon dioxide high pressure pump adjusting the discharge pressure of the liquid carbon dioxide high pressure pump and adjusting the primary pressure of liquid carbon dioxide to return the excess to the suction of the pump
  • a solvent tank as a solvent supply line
  • a solvent high pressure pump for pressurizing the solvent supplied from the tank to a predetermined pressure, and supplied from the paint supply line as a paint / carbon dioxide mixture line
  • a pressurized paint a mixer for mixing with the pressurized carbon dioxide supplied from the carbon dioxide supply line, and a mixed paint / carbon dioxide pressurized mixture supplied from the mixer under atmospheric pressure.
  • the present invention is a method for applying a one-component or two-component paint using carbon dioxide using the above-mentioned device, and in the coating device, a true solvent component of the paint is previously added to carbon dioxide.
  • This is a coating method in which the precipitation of the polymer of the coating component that has entered in a reverse flow is prevented by adding at least a saturated dissolution amount and reducing the dissolving power of carbon dioxide in the true solvent component.
  • the coating material is a one-component curable coating material or a two-component curable coating material
  • the organic solvent is a one-component curable coating material or a true solvent of a two-component curable coating material
  • an organic solvent is added.
  • the organic solvent and carbon dioxide are mixed in a micro mixer, and the micro mixer for mixing the organic solvent and carbon dioxide has a T-shaped micro of 0.5 mm even if the channel diameter is large.
  • the micro-mixer that mixes paint and carbon dioxide is a double-tube micro-mixer, and the inner diameter of the inner tube into which carbon dioxide flows is 0.5 mm at most and the outer
  • the inside diameter of the tube is in the range of 2.5 mm to 5 mm, and a check valve is provided as close as possible to the connection part of the carbon dioxide supply line that connects to the micromixer that mixes the paint and carbon dioxide. Having a structure that prevents backflow to the carbon dioxide supply line is a preferred embodiment.
  • the micromixer for mixing the paint and carbon dioxide is a T-shaped micromixer having a flow path diameter of 2 mm, and the carbon dioxide flows from the bottom and the paint flows from the top. And having a structure for discharging the mixture from the side by 90 degrees, having a structure for preventing a back flow of the paint to the carbon dioxide line, and a paint ball and carbon dioxide are mixed.
  • the micro-mixer is a T-shaped micro-mixer of 2 mm even if the flow path diameter is large, and has a structure that allows carbon dioxide to flow in from the bottom, paint from the side by 90 degrees, and discharge the mixture upward. It is preferable to provide a metal ball for check and have a structure for preventing the paint from flowing backward to the carbon dioxide line, and adding a true solvent component in the range of 20 to 50% per carbon dioxide weight. And the aspect.
  • a paint that is, a polymer and a dilute solvent of 50 to 150% of a true solvent that dissolves the polymer and has fluidity, such as toluene and xylene, are added, It is necessary to reduce the viscosity to enable spraying.
  • the low-viscosity paint / dilution solvent mixture is sprayed as fine droplets by an air spray method using air as an atomizing medium or a high-pressure spray method that does not use atomized air. Applied.
  • the present invention provides a coating method in which a part or all of the diluent solvent used in the organic solvent-based coating is replaced with carbon dioxide.
  • the paints targeted by the present invention are classified into two types, one-component curable paints and two-component curable paints, and in particular, one-component curable paints are mainly targeted.
  • the paint consists of a polymer that forms the coating film and a true solvent that dissolves the polymer to make it flowable.
  • a true solvent various adjustments such as evaporation after spraying and leveling in the coating process For example, unsaturated hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, alcohols, and mixtures thereof.
  • a one-component paint is a paint that is used undiluted or prepared by blending only a diluent (viscosity modifier) such as thinner, and is mainly used for home appliances such as TV cabinets, automobile parts, and industrial parts. Used for.
  • This coating material is a coating material in which a coating film is formed even if an acrylic resin is a main component and no curing agent is used. By blending nitrocellulose, it is quick-drying, high in hardness, and excellent in wear resistance.
  • the applicable material is used for a wide range of applications such as polystyrene resin, ABS resin, AS resin, Noryl resin, hard vinyl chloride resin, polycarbonate resin and the like.
  • a two-component paint is a paint that is mixed with a curing agent before use, cured by chemical reaction, and dried, and has excellent alcohol resistance and abrasion resistance. Used in optical equipment.
  • This paint is a two-component reaction-curing acrylic urethane paint mainly composed of an acrylic resin and a polyisocyanate compound as a curing agent.
  • carbon dioxide is mixed and dissolved in the paint.
  • the conditions are a temperature of 30 to 70 ° C., preferably 35 to 45 ° C., and a pressure of 5 to 20 MPa, preferably 7 to 10 MPa. Accordingly, it is necessary to pressurize the paint, but generally the viscosity is as high as 50 to 500 cp, and a piston pump, a diaphragm pump, or the like is used as the paint high-pressure pump.
  • a gear pump can be used.
  • a plunger pump can be adopted in addition to a piston pump and a diaphragm pump.
  • pressurization of carbon dioxide pressurization with liquid carbon dioxide is advantageous, and in this case, cooling at the front stage of the pump is required.
  • an organic solvent in particular, the true solvent itself constituting the used paint
  • a piston pump, a diaphragm pump, and a plunger pump are usually employed.
  • a sealed pump is required to prevent the sliding part from coming into contact with the atmosphere and the polymer from precipitating. Therefore, it is advantageous to use a plunger pump.
  • the type of the heater is not particularly limited.
  • the temperature is controlled to be constant as soon as possible, or the spray is temporarily changed by switching the painted surface.
  • a tank / coil type heat exchange in which a high-pressure pipe through which a fluid passes is immersed in a tank filled with a heating medium (usually water) rather than a commonly used electric heater.
  • a vessel is preferably used.
  • an organic solvent preferably the same true solvent as the paint
  • the organic solvent refers to a single solvent or a plurality of components in a true solvent which is added to dissolve a polymer in a paint.
  • the true solvent component of the paint is added to carbon dioxide in advance to a saturation dissolution amount (depending on the true solvent composition, usually about 10 to 50% per carbon dioxide weight) or more.
  • a micro mixer for example, a T-shaped micro mixer having a channel diameter of 0.5 mm or less is preferably used.
  • Static mixers based on the principle of fluid multi-stage division tend to temporarily stop the flow, which causes temporary pressure fluctuations, and before the carbon dioxide dissolves in the paint, the true solvent component in the paint It is considered that the state of polymer deposition ⁇ pressure increase ⁇ clogging ⁇ no spraying is caused as a result of the transition to carbon dioxide.
  • UV curing paints do not cause polymer curing unless they are irradiated with UV light, so they are hardly affected by slight pressure fluctuations. However, for one-component curable coatings, it is assumed that due to pressure fluctuations, the true solvent component is extracted into carbon dioxide and polymer deposition occurs instantaneously. Even in the above-described piping configuration, the flow should be as smooth as possible.
  • the inner diameter of the inner tube into which carbon dioxide flows is 0.5 mm or less
  • the inner diameter of the outer tube is 2.5 mm to 5 mm
  • the paint is applied to the annular portion of the outer tube inner diameter and the inner tube outer diameter.
  • the solubility of carbon dioxide in paint varies greatly depending on the type of paint, temperature and pressure, but it has become clear that a certain holding time is required before carbon dioxide completely dissolves in the paint. .
  • the time required for this dissolution is also affected by the mixing properties (pipe diameter and piping work) after the mixer, and the installation of a plurality of bent portions for the purpose of improving the mixing properties is also effective.
  • the spray gun used in the present invention may be an airless high-pressure spray gun, but the final control of the spray flow rate, spray pressure, and spray pattern is controlled by the opening diameter of the high-pressure nozzle orifice mounted on the spray gun. Since it depends on (equivalent diameter) and its shape, it is extremely important.
  • the spray flow rate varies greatly depending on how much the coating amount per unit time is set, but the range of 50 to 500 g / min is generally selected as the flow rate of the paint.
  • the equivalent diameter of the orifice is selected to be 0.1 to 0.2 mm.
  • the shape of the orifice varies depending on the required spray pattern, but if it is a flat spray, it has an elliptical orifice shape. In addition, if the orifice shape is circular, it becomes a full cone spray, but it is also possible to change the full cone spray to a flat spray by blowing air or the like immediately after jetting and controlling the spray pattern.
  • FIG. 7 is an example of a preferred embodiment of the carbon dioxide coating apparatus according to the present invention.
  • reference numerals indicate the following means. That is, 1: paint tank, 2: paint filter, 3: paint high pressure pump, 4: paint back pressure valve (primary pressure adjustment), 5: paint heater, 6: CO 2 cylinder, 7: CO 2 filter, 8: CO 2 cooler, 9: CO 2 high pressure pump, 10: CO 2 heater, 11: CO 2 back pressure valve (primary pressure adjustment), 12: CO 2 cooler 2, 13: paint check valve, 14: CO 2 reverse Stop valve, 15: mixer, 16: mixture heater, 17: mixture stop valve, 18: CO 2 stop valve, 19: spray gun, 30: solvent tank, 31: solvent high pressure pump, 31: mixer, Indicates.
  • the above apparatus and its operation will be described in detail.
  • the paint is filled in the paint tank 1 and, if necessary, pressurized (several atmospheres) with nitrogen gas or the like. Supplied to the suction.
  • the aperture of the filter 2 may be several tens of ⁇ m if it is a clear paint, but it is preferably several hundreds of ⁇ m because it contains a solid pigment in the case of a colored paint.
  • the paint high-pressure pump 3 is a positive displacement pump as long as the discharge pressure is about 20 MPa.
  • a diaphragm pump preferably a double diaphragm pump is selected as a countermeasure against pulsation.
  • a plunger pump is also possible, but it is not usually selected because there is a risk that the plunger seal portion will be stuck with the paint.
  • the plunger seal portion can be appropriately immersed in a solvent.
  • the pump drive source is appropriately selected from the air-operated type and the electric type depending on the installation location of the apparatus.
  • the paint is usually pressurized to about 10 MPa by the paint high-pressure pump 3, heated to about 40 ° C. by the paint heater 5 as necessary, and sent to the mixer 15.
  • a pump flow rate higher than the spray flow rate (determined by the pressure and the nozzle orifice) is set, and an operation of returning the surplus from the back pressure valve 4 to the paint tank 1 is performed.
  • the control pressure (system pressure) of the constant pressure operation is the primary pressure of the back pressure valve 4.
  • CO 2 sucks the liquid portion of the cylinder 6, passes through the filter 7, is cooled to a temperature equal to or lower than the saturation temperature by the cooler 8, and is supplied to the suction of the CO 2 high-pressure pump 9.
  • the liquid CO 2 is pressurized by the CO 2 high-pressure pump 9, further in CO 2 heater 10, the critical temperature (31 ° C.) or higher, usually, is heated to supercritical CO 2 of 40 ° C., the mixer 15 Sent to.
  • the CO 2 high-pressure pump a diaphragm pump, a plunger pump, or the like is usually selected.
  • a double pump it is desirable to employ a double pump to prevent pulsation.
  • the required amount of CO 2 supply is as small as 30% or less of the paint. Therefore, when the spray flow rate is small, a plunger pump is employed.
  • the solvent is pressurized from the solvent tank 30 by the solvent high-pressure pump 31, and is mixed by the mixer 32 with the pressurized and heated CO 2 .
  • This mixer is desirably a T-shaped micro mixer because of cost and installation restrictions. However, the mixer can be installed at the suction portion of the CO 2 high-pressure pump 9 or immediately after delivery.
  • the pressure-heated paint and the CO 2 / solvent mixture are instantaneously mixed by the mixer 15 to become a paint / CO 2 mixture.
  • a double tube type micro mixer having an inner diameter of 0.5 mm or less is preferably used.
  • An outline of the double-tube micromixer used in the present invention is shown in FIG. A T-shaped mixer with a check mechanism is also preferably used (see FIG. 14).
  • the paint / CO 2 mixture is heated by the mixture heater 16 as necessary, and sprayed toward the object to be coated by the spray gun 19 via the stop valve 17.
  • CO 2 is released immediately after spraying and becomes fine particles of the paint.
  • the particle size of the paint particles depends on temperature, pressure, and spray gun structure, typically the nozzle orifice diameter, and is in the range of 10-50 ⁇ m.
  • the spray gun is mounted on the three-dimensional robot to perform painting.
  • the stop valve 17 is closed and immediately after the stop valve 18 is opened, and supercritical CO 2 is supplied to the nozzle of the spray gun for instant cleaning. Without this, the possibility of blockage of the nozzle tip increases.
  • the high-pressure paint pump 3 continues to operate, but in the constant pressure operation mode, the paint is circulated by the back pressure valve 4 while maintaining the operation pressure.
  • the setting of the back pressure valve 4 is set slightly higher than the operating pressure, whereby the paint is circulated with a slight pressure increase.
  • the process flow of the coating apparatus shown by the prior patent is shown.
  • An example of the embodiment of the carbon dioxide painting device concerning the 1st mode of the present invention is shown.
  • the outline of the center collision type mixer is shown.
  • a cross-sectional view of a center impingement mixer is shown.
  • the solubility measurement system flow of CO 2 is shown.
  • the coating result of Example 9 is shown.
  • An example of embodiment of the carbon dioxide painting device concerning the 2nd mode of the present invention is shown.
  • the outline of a double tube type micro mixer is shown.
  • assembled in order to confirm precipitation of a polymer is shown.
  • the evaluation system of Example 10 which added the addition unit of a true solvent is shown. It shows the results when only CO 2 in Example 11.
  • the effect of the addition of a true solvent in the examples is shown.
  • the effect (at the time of 3 ml / min addition) of organic solvent addition in Example 11 is shown.
  • the flow rate of the paint high pressure pump is kept constant at 50 g / min, and the flow rate of the CO 2 high pressure pump is gradually increased to change from a transparent one-phase state to a gas-liquid two-phase state. It was evaluated as the limit solubility in the vessel. At this time, the temperature was constant at 40 ° C., and the pressure was 6 MPa and 10 MPa. The experimental results are shown in Table 1.
  • Coating experiment 1 A coating experiment was conducted on a commercially available UV curable clear paint (without adding thinner) as a paint.
  • a typical coating composition is a resin component 49%, a true solvent 47%, and an additive 4%.
  • the resin component contains a polyfunctional acrylate as a main component, and a thermoplastic acrylate and a urethane acrylate, respectively.
  • True solvent consists of toluene, butyl acetate, n-butyl alcohol, xylene, and ethylbenzene in descending order of content.
  • Additives include trace amounts of UV absorbers and surface conditioners in addition to photopolymerization initiators. It is.
  • the paint high pressure pump 3 is a double diaphragm pump
  • the CO 2 high pressure pump 9 is a double plunger pump
  • the heaters 5 and 10 are controlled to 40 ° C.
  • LDV-T the mixing time from LDV-T to spray gun 19 was 37 seconds, and the operation was performed in a constant pressure operation mode of 7 MPa.
  • the paint flow rate at that time is 45 g / min, CO 2 is 9 g / min (20% of the paint flow rate), and it is confirmed by a high-pressure visualization window that the paint / CO 2 mixture is in a one-phase state.
  • the paint / CO 2 mixture had a viscosity of 11 to 12 cp before the addition of CO 2 decreased to 1 to 2 cp after the addition.
  • the coated plastic plate is held for 5 minutes at room temperature, then dried in a dryer at 50 ° C. for 10 minutes, and then the coating film is cured with an ultraviolet irradiator, and then the coating surface is evaluated. went.
  • the average film thickness was 20 ⁇ m and the average roughness was 0.4 ⁇ m, which was equivalent to an organic solvent air spray performed by adding the same amount of thinner as the paint, and was evaluated as a practical level coating film.
  • the film thickness was 20 ⁇ m, the average roughness was 0.9 ⁇ m, and it was confirmed that the roughness was twice or more. This shows the result of demonstrating the superiority of carbon dioxide coating.
  • Coating experiment 2 About UV curing type clear paint, one kind of painting experiment was further carried out.
  • the composition used was a novel paint comprising about 80% resin (polyfunctional acrylate), about 20% true solvent (isopropyl alcohol) and a small amount of photopolymerization initiator.
  • the coating device and the coating method were substantially the same as those in Example 4, but the spray gun was mounted on a two-dimensional coating robot for coating.
  • the viscosity of the paint / CO 2 mixture decreased from 40 cp before CO 2 addition to several cp after addition. After coating, the same treatment as in Example 4 was performed, and as a result of observing the coating surface, it was confirmed that a coating film having no practical problem was formed. Since this paint has a high resin content of 80% and is not diluted with thinner, it is clear that the VOC reduction effect is very high.
  • Coating experiment 3 For UV curable clear paint, another type of coating experiment was conducted.
  • the composition used was a paint comprising about 75% resin (polyfunctional acrylate), about 20% true solvent (propylene glycol monomethyl ether) and about 5% photopolymerization initiator.
  • the coating apparatus and the coating method were the same as in Example 5.
  • the viscosity of the paint / CO 2 mixture was reduced from 60 cp before CO 2 addition to several cp after the addition, and as a result, it was confirmed that a coating film having no practical problem was formed.
  • the main agent composition is 42% resin (acrylic polyol) and 58% true solvent (including toluene as the main component and isobutyl acetate), and the curing agent composition is 55% resin (polyisocyanate prepolymer) and true
  • the solvent is 45% (including toluene, propylene glycol monomethyl ether acetate, and ethyl acetate).
  • the experiment was performed by previously mixing the main agent and the curing agent in a blending ratio of 5: 1 and filling the paint tank 1. Coating was performed by adding 20 to 30% CO 2 by weight to the paint (main agent + curing agent). Other conditions and methods are as in the above examples. The viscosity of the paint decreased from 50 to 60 cp before the addition of CO 2 to several cp after the addition. The coated plastic plate was held at room temperature for 5 minutes, then dried in a dryer at 50 to 60 ° C. for 30 minutes to cure the coating film, and then the coating surface was evaluated.
  • Coating experiment 5 a coating experiment was conducted on the one-component curable acrylic clear paint.
  • the coating composition is 28% resin and 72% true solvent.
  • the main component of the resin component is acrylic, and in addition, nitrocellulose is included, and the true solvent is composed of ester, alcohol, hydrocarbon, and ketone in descending order of content.
  • coating was performed by adding 20% CO 2 by weight to the paint.
  • Other conditions and methods are as in the above examples.
  • the viscosity of the paint decreased from 120 to 140 cp before the addition of CO 2 to 20 cp or less after the addition.
  • painting was possible for a short time, a large number of paint lumps adhered to the surface of the plastic plate, and a uniform coating film could not be formed.
  • Comparative Example 1 As a coating material, a coating experiment was performed using a one-component curable coating material (resin composition: acrylic, nitrocellulose, true solvent composition: butyl acetate, cyclohexanone, isobutyl alcohol, ethyl acetate, butyl cellosolve, methyl isobutyl ketone).
  • the operating conditions are 40 ° C. and 8 MPa, the paint flow rate is 40 g / min, the CO 2 flow rate is 8 g / min, and the mixer is a 1/16 inch T-shaped joint (loaded volume) with a channel diameter of 0.3 mm after mixing. T-joint, abbreviated as LDV-T).
  • LDV-T 1/16 inch T-shaped joint
  • Comparative Example 2 The same coating experiment as in Comparative Example 1 was performed. However, the back pressure valve of the paint line was set slightly higher than the operating pressure, and operation was performed so that the pressure did not increase. As a result, steady operation could be established under the conditions of 40 ° C. and 8 MPa, but if the operation was continued for more than 10 minutes, the operation pressure became unstable, and eventually the pressure on the CO 2 side suddenly increased, indicating that the operation was impossible. became.
  • Comparative Example 3 In order to reconfirm the deposition of the polymer, an evaluation system as shown in FIG. 9 was constructed, and after filling and sealing the one-component curable paint in the check valve, the stop valve A was closed, and the stop valve B was opened, and CO 2 having a predetermined temperature and pressure was circulated. After confirming the steady state, next, the stop valve A was opened, the stop valve B was closed, and CO 2 was allowed to flow through the check valve for a certain time (about 10 minutes). Thereafter, the stop valve A was closed again, the stop valve B was opened, the pressure was reduced to atmospheric pressure, and the state in the check valve was confirmed.
  • Example 10 The same examination as in Example 10 was carried out by changing various kinds of organic solvents added to CO 2 .
  • organic solvent in addition to the true solvent, ethyl acetate, butyl acetate, cyclohexanone, isobutyl alcohol, which are true solvent components, and acetone, isopropyl alcohol, and ethyl alcohol, which are not true solvent components, were used.
  • the evaluation results are summarized and shown in Tables 5 to 6 and FIGS.
  • the CO 2 conditions in this example were 40 ° C. and 8 MPa (supercritical), and the flow rates were all supplied at 10 g / min.
  • the degree of precipitation in the table is a five-step evaluation, and represents 1: no precipitation (best state) to 5: large amount precipitation.
  • the phase state shows a state by direct the CO 2 / organic solvent mixture in the visualization window provided on evaluation line. 1 is a supercritical one-phase state, and 2 is a two-phase state.
  • the most effective in preventing the precipitation of the polymer component contained in the one-component curable coating is that the true solvent itself and cyclohexanone are added in an amount of 30% or more based on the amount of CO 2. Then ethyl acetate, butyl acetate, and acetone. On the other hand, the addition of alcohols showed almost no effect regardless of the addition rate.
  • the stability when using a double tube type mixer was the best, followed by the center collision type, LDV-T, swirl, and STD-T.
  • the fluid flow state is the simplest, and the smooth flow of the mixture is thought to have led to good results.
  • the effect of installing the SM downstream was not recognized, and conversely, the stability was reduced.
  • Example 11 The same examination as in Example 11 was performed using a T-type mixer with a check mechanism (see FIG. 14).
  • the purpose of this mixer is to prevent the paint from flowing back into the CO 2 line even when there is a pressure fluctuation. As a result of the experiment, although the pressure fluctuated, the polymer deposition in the CO 2 line could be completely prevented.
  • the coating composition is 28% resin and 72% true solvent.
  • the main component of the resin component is acrylic, nitrocellulose is included, and the true solvent is composed of ester, alcohol, hydrocarbon, and ketone in descending order of content.
  • the coating operation was performed by adding a true solvent to CO 2 using LDV-T, and then mixing the one-component curable paint and the CO 2 / true solvent mixture with a double tube type mixer. It was set as the structure sprayed through the line of 1000 mm + 1/4 inch x 1250 mm (90 degree bend 3 places).
  • the coating flow rate was 40 g / min
  • the CO 2 flow rate was 8 g / min
  • the true solvent flow rate was 2.4 g / min
  • a spraying operation (by a spray robot) was performed at 40 ° C. and 8 MPa.
  • the viscosity of the paint decreased from 120 to 140 cp before the addition of CO 2 to 20 cp or less after the addition, there was almost no pressure fluctuation, and stable operability for a long time could be confirmed.
  • stable spraying was possible, a large number of paint lumps adhered to the surface of the plastic plate, and a uniform coating film could not be formed.
  • the coating film had a thickness of about 20 ⁇ m and a surface roughness of 0.5 ⁇ m.
  • the present invention relates to a carbon dioxide coating method and apparatus therefor, and according to the present invention, a new low-environment load type coating apparatus capable of greatly reducing VOC generation, and The coating method can be provided. Furthermore, the present invention relates to a coating method and a device for a one-pack type or two-pack type paint using carbon dioxide, and the present invention prevents discharge of a diluting solvent (VOC) into the atmosphere.
  • VOC diluting solvent
  • the present invention it becomes possible to replace a diluting solvent (VOC) used in a large amount with a very small amount of carbon dioxide in spray coating with a conventional organic solvent-based paint, and the present invention is an atmosphere of diluting solvent (VOC). It is possible to provide a new painting technology that prevents emissions inside. According to the present invention, it is possible to provide a particularly effective effect that it is possible to provide a practical application technique that can surely suppress the problem of the device blockage caused by the high viscosity of the paint. INDUSTRIAL APPLICABILITY The present invention is useful for providing a new low environmental load type coating method and apparatus for preventing VOC emission into the atmosphere.

Abstract

塗料タンク(1)と塗料高圧ポンプ(2)とを有する塗料供給ラインと、液体二酸化炭素ボンベ(6)と冷却器(8,12)と液体二酸化炭素高圧ポンプ(9)とを有する二酸化炭素供給ラインと、塗料供給ラインから供給される塗料と二酸化炭素供給ラインから供給される二酸化炭素とを混合する混合器(15)と、混合器(15)で得られた塗料/二酸化炭素加圧混合物を塗装対象物へ噴霧する噴霧ガン(19)とを有する塗料中の希釈溶剤の一部又は全部を二酸化炭素で代替する噴霧塗装装置において、塗料供給ラインに塗料高圧ポンプ(2)の吐出圧を調整し、余剰分を塗料タンク(1)へ返送させる塗料1次圧調整弁(4)を設け、また二酸化炭素供給ラインに液体二酸化炭素高圧ポンプ(9)の吐出圧を調整し、余剰分を液体二酸化炭素ボンベ(6)へ返送させる二酸化炭素1次圧調整弁(11)を設けるものである。 当該構成により、VOC発生を大幅に低減できる。

Description

二酸化炭素塗装方法及びその装置
 本発明は、二酸化炭素塗装方法及びその装置に関するものであり、更に詳しくは、従来の有機溶剤系塗料によるスプレー塗装において大量に使用される希釈溶剤(VOC)を極少量の二酸化炭素に替えることにより、有機溶剤系塗装と同等の、塗膜均一性、平滑性、鮮映性などの塗装仕上げ品質を確保したまま、VOC発生を大幅に低減し得る塗装方法及び装置に関するものである。本発明は、大気中へのVOC発生を大幅に低減することを可能とする低環境負荷型の塗装方法及びその装置、及び一液硬化型・二液硬化型塗料を安定して二酸化炭素塗装することが可能な低環境負荷型の塗装方法及びその装置、に関する新しい塗装技術を提供するものである。
 VOC発生は、地球温暖化に繋がる有害化学物質として、2010年には、自主規制を含め、3割の削減が求められている。塗装工業界は、塗料に用いる粘度低下剤として、大量に有機溶剤を使用しており、塗装産業は、日本におけるVOC発生量の約150万トンの中で、その60%に近いVOC発生量を占める最大のVOC発生産業となっており、VOC対策は、塗装工業における喫緊の課題となっている。
 塗装工業技術においては、この希釈溶剤を使用するスプレー塗装が主流であり、VOC削減のために、種々の対策が講じられている。具体的には、水性塗料への転換、有機溶剤を削減した塗料、すなわちハイソリッドなど、あるいは排気された有機溶媒の回収、分解処理などの技術開発があげられる。
 しかしながら、これらの対策技術のうち、特に、水性塗料への転換は、水処理装置、空調設備などの付帯設備を必要とされ、また、水性塗料は、塗装対象物が金属材料の場合には適合するが、高い塗装仕上げ品質が要求されるプラスチィック部品などへの塗装については、対応できていない、というのが現状である。
 従って、塗装工業界において、特に、中小企業にあっては、上述のVOC対策に対応することは、現状の技術では、大きな設備投資を必要とするなどの課題を抱えており、そのため、現在の有機溶剤塗装、あるいは水性塗装に代わり得る、新しい塗装技術の開発が強く求められていた。
 一方、塗装技術に関して、米国ユニオンカーバイト社から出願された特許(特許文献1)において、粘度低下剤(希釈剤)として、有機溶媒の代わりに、超臨界流体を利用する技術が提案されている。この技術では、塗料(ポリマーと、ポリマーを溶解して流動性を持たせる真溶剤)に、超臨界流体、特に、二酸化炭素を溶解させ、噴霧可能なレベルまで粘度を低下させることで、塗装が可能であることが示されている。
 それ以降、同社から、塗装技術に関して、10数件の特許が出願されており、例えば、スプレー幅の制御方法(特許文献2)、塗料組成の限定(特許文献3)、噴霧状態の改良方法(特許文献4)、閉塞の回避方法(特許文献5)、及び塗料/CO混合物の密度制御方法(特許文献6)の5件が、特許として登録されている。
 しかしながら、これらの特許においては、プロセスフローとしては、1つのフローしか示されておらず、実用化可能なプロセスフローの構築や、具体的な運転方法については、完成度が充分でないという問題点があった。すなわち、二酸化炭素を粘度低下剤としたスプレー塗装技術は、未だ、実用化可能な工業技術という観点からは、未確立といわざるを得ない状況であった。
 上記特許において示されているプロセスフローを、図1に示す。本フローでは、塗料とCOは、空気作動式のピストンポンプで加圧され、塗料は、粘度低下を目的に、加熱され、混合器へと送られる。COは、加熱されず、液体状態のまま、混合器へ送られる。そのときの塗料とCOの供給量は、両ポンプのピストンの動きを同時に制御する機構により、容積比一定で供給される。
 混合器は、流体多段分割型のスタティックミキサであり、混合物は、加熱された後、フィルターを通過し、再度、スタティックミキサにより、混合され、必要に応じて、減圧されて、噴霧ガンへと送られる。噴霧ガンでは、圧力に応じて流量が決まり、噴霧される。余剰分は、循環ラインで加圧され、1番目のスタティックミキサ後のラインに戻される。
 以上が、提案されている従来の二酸化炭素塗装の概略のプロセスフローであるが、本フローを実用化可能なものとするには、塗料/CO供給量が、噴霧量とバランスできないことが問題点として想定され、例えば、ポンプ吐出圧力が上昇する危険性を有している。この特許では、ポンプ吐出圧力が、一定圧力以上となると、ラインに設置したリリーフ弁から、塗料/COとも、大気圧下へ開放される構成をとっているが、これらの大気中への開放は、操作的に好ましいものではなく、塗料/CO、特に、COの場合、再利用ができず、経済的にも不利となる。
 また、循環ラインが設けられているが、操作上、特に、必要ではない。更に、塗料、及び混合物の加熱に、電気加熱方式が用いられているが、その方式では、装置の運転開始時や、流量を変えたときなどに、温度を一定に制御することが困難であり、他の加熱方式の採用が望まれる。また、実際の塗装作業においては、塗装面を変えるとき、あるいは塗装対象物そのもの変えるときなどに、噴霧を瞬時的に、あるいは一定時間止めることも多々あり得る。
 このような場合、提案されているプロセスフローでは、システム圧力の上昇などの問題点が想定され、現実的に操業可能なプロセスフローとするには、かなりの改良が必要とされる。更に、実際の塗装においては重要となる、塗装終了時のライン洗浄などが全く考慮されていない。このように、上述の一連の特許において示されている二酸化炭素塗装は、必ずしも実際の塗装技術として適用可能なレベルで構築された、実用化可能なプロセスフロー構成ではないことが明らかであり、当技術分野では、実用化可能なプロセスフローの構築が強く要請されていた。
 更に、上述の特許のうち、当該塗装技術の実用化上非常に重要なものは、特許文献5に示された閉塞の回避方法に関するものである。本特許によると、ニトロセルロースやセルロースアセテートブチレートのようなセルロース系ポリマーを含有するコーティング用の濃厚物は、混合器内において、固体沈殿物を生じ、運転を継続すると、圧力上昇を引き起こし、最終的には閉塞し、噴霧不可能となることが示されている。
 そして、この文献には、その問題を解決すべく、流体力学的な検討や、混合器型式の再検討を含め、ハード的な変更で、トラブル対応を試みたが、短時間の操作は行えても、長時間の安定な運転ができなかったこと、そこで、その対策として、ハード的な対応ではなく、操作温度・圧力の限定、すなわち、ソフト的な対応で、閉塞問題の解決を行ったことが示されている。
 具体的には、この特許は、使用する粘度低下用の圧縮流体が、塗料との混合時に、気体又は超臨界流体であり、かつ約0.5~約4.0 cal/ccの溶解度係数となるような温度・圧力で操作されることにより、固体ポリマーの析出を防止する、というものである。
 この特許に基づいて、本発明者らも、一液硬化型塗料(ニトロセルロースがブレンドされたアクリル樹脂系塗料)の二酸化炭素塗装を実施したところ、多くの温度・圧力条件で、混合器内の閉塞が起こることを確認した。しかも、この特許で示されている溶解度係数が、約0.5~約4.0 cal/cc内にある条件下、例えば、40℃の一定温度条件下で、8MPa以下の圧力においても、混合器内での閉塞トラブルは頻発し、噴霧不可となることが確認された。
 この特許においては、この固体析出現象を、相平衡的な観点から考察し、ポリマー析出の防止条件として、溶解度係数の限定を行っている。この固体析出現象について、本発明者らが、詳細に、ポリマーの析出状況を調査、検討した結果、混合器内での析出に先立ち、混合器直前の二酸化炭素の単独ラインで、ポリマーの析出が起こること、それにより、二酸化炭素供給ラインの供給圧力が急上昇すること、などが明らかとなった。
 これらのことは、混合器への二酸化炭素供給ラインに、塗料の一部が逆流し、その混合物中の溶剤成分(真溶剤)が、二酸化炭素、すなわち液体二酸化炭素あるいは超臨界二酸化炭素に抽出、除去される結果、塗料中のポリマー成分が析出し、閉塞を起こす現象が起こることが原因することを示唆するものと考えられた。
 本来、定常操作においては、二酸化炭素供給ラインに、塗料が逆流することはない。しかし、上記閉塞は、混合器以降の、下流の流動状態により、圧力変動(圧力増加)が起こると、塗料は、非圧縮性流体であるため、即座に昇圧できるが、二酸化炭素は、圧縮性流体であるため、昇圧に時間差が生じ、その間に、二酸化炭素ラインへ、塗料の逆流が起こることによるものと推察された。すなわち、一液硬化型塗料のような速乾性の高い塗料に対して、二酸化炭素を粘度低下剤とした塗装技術は、未だ工業化技術という観点からは、未確立といわざるを得ない状況にあり、当技術分野では、それらの問題を解決することを可能とする実用化可能な新しい技術を開発することが強く要請されていた。
特許第1927328号 特許第2061845号 特許第2670904号公報 特許第2785099号公報 特許第2739548号公報 特許第2807927号公報
 このような状況の中で、本発明者らは、上記従来技術に鑑みて、二酸化炭素塗装におけ
る上述の問題点を解決し、特に、実用化可能なプロセスフローの構築、及び安定な運転手法を確立することを目標として鋭意研究を積み重ねた結果、高圧マイクロ混合器の採用による新しいプロセスフローを構築すると共に、具体的な安定な運転方法を確立することに成功し、本発明を完成するに至った。本発明は、二酸化炭素を粘度低下剤として利用する低環境負荷型の低VOC塗装に好適な新しい塗装方法及びその装置を提供することを目的とするものである。
 更に、本発明者らは、上記従来技術に鑑みて、二酸化炭素塗装における上述の問題点を解決し、特に、一液硬化型塗料のような速乾性の高い塗料に対して好適に適用可能な二酸化炭素を用いた塗装装置と、その安定運転方法を確立することを目標として鋭意研究を積み重ねた結果、ハード的な改良と、安定な運転方法を確立することに成功し、本発明を完成するに至った。本発明は、二酸化炭素を粘度低下剤として利用して、大気中へのVOC発生を大幅に低減することを可能とする低環境負荷型の低VOC塗装として好適に使用することができる一液型・二液型塗料の塗装方法、及びその装置を提供することを目的とするものである。
 次に、本発明の第1の態様について詳細に説明する。
 本発明は、従来の有機溶剤系塗料によるスプレー塗装において、大量に使用される希釈溶剤(VOC)を、極少量の二酸化炭素に替えることにより、有機溶剤系塗装と同等の、塗装仕上げ品質、すなわち塗膜均一性、平滑性、鮮映性などを確保したまま、VOCの発生を大幅に低減し得る低環境負荷型の新しい塗装方法及びその装置を提供することを特徴とするものである。
 本発明は、有機溶剤系の噴霧塗装において用いられる希釈溶剤(シンナー)を、二酸化炭素で一部又は全部を代替する二酸化炭素塗装において、塗料供給ラインとして、塗料を貯蔵するタンク、該タンクから供給される塗料を所定の圧力まで加圧する塗料高圧ポンプ、該塗料高圧ポンプの吐出圧を調整し、余剰分を塗料タンクへ返送させる塗料1次圧調整弁、を有し、二酸化炭素供給ラインとして、液体二酸化炭素を貯蔵するタンク、該液体二酸化炭素を所定温度まで冷却する冷却器、該冷却器から供給される液体二酸化炭素を所定の圧力まで加圧する液体二酸化炭素高圧ポンプ、該液体二酸化炭素高圧ポンプの吐出圧を調整し、余剰分を同ポンプのサクションに返送させる液体二酸化炭素1次圧調整弁、を有し、塗料/二酸化炭素混合物ラインとして、上記塗料供給ラインから供給される加圧された塗料、上記二酸化炭素供給ラインから供給される加圧された二酸化炭素とを混合する混合器、及び該混合器から供給される混合後の塗料/二酸化炭素加圧混合物を大気圧下の塗装対象物へ噴霧する噴霧ガン、を有することからなる二酸化炭素を用いた塗装装置、である。
 本発明は、上記の塗装装置を使用して二酸化炭素を用いた塗装を行う方法であって、噴霧制御を行う塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧に設定し、噴霧圧制御を行わない塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧より高い圧力に設定して運転することにより、噴霧圧制御を行わない流体の流量を一定とし、噴霧圧制御を行う流体の流量を、噴霧ノズルのオリフィスの流量特性に応じて可変として、余剰分をポンプサクションに戻すことからなる方法、である。
 また、本発明は、上記の塗装装置を使用して二酸化炭素を用いた塗装を行う方法であって、塗料高圧ポンプ、及び二酸化炭素高圧ポンプの吐出側の1次圧調整弁を噴霧圧力より高く設定して、両ポンプから吐出された流体全量を噴霧させ、噴霧圧力を、噴霧ガンのノズルオリフィスの流量特性に依存して調整することからなる二酸化炭素を用いた塗装方法、である。
 本発明では、加圧された塗料を所定温度まで加熱する塗料加熱器を有すること、液体二酸化炭素高圧ポンプのサクションに返送される余剰二酸化炭素を所定温度まで冷却する冷却器を有すること、加圧された液体二酸化炭素を所定温度まで加熱する二酸化炭素加熱器を有すること、混合後の塗料/二酸化炭素加圧混合物を所定温度まで加熱する混合物加熱器を有すること、混合器が、塗料と二酸化炭素とを急速混合し得るマイクロ混合器であること、を好ましい実施の態様としている。
 また、本発明では、噴霧圧制御を行う流体が、塗料であること、塗料高圧ポンプ、及び二酸化炭素高圧ポンプの吐出側の1次圧調整弁を噴霧圧力より高く設定して、両ポンプから吐出された流体全量を噴霧させ、噴霧圧力を、噴霧ガンのノズルオリフィスの流量特性に依存して調整すること、混合器後から噴霧ガンまでの滞留時間を、少なくとも15秒とすることにより、安定した1相混合物とすること、を好ましい実施の態様としている。
 一般に、有機溶剤系塗装では、重量基準で、塗料、すなわち、ポリマーと、ポリマーを溶解して流動性を持たせる真溶剤の50から150%の希釈溶剤、例えば、トルエン、キシレンなどを加えて、噴霧が可能な粘度まで低下させることが必要とされる。そして、その低粘度化された塗料/希釈溶剤の混合物は、空気を霧化媒体としたエアースプレー方式や、霧化エアーを使用しない高圧噴霧方式により、微細液滴として噴霧され、塗装対象物に塗布される。
 本発明は、上記の有機溶剤系塗装で使用される希釈溶剤を、二酸化炭素で一部又は全部を代替する塗装方式を提供するものである。本発明の第1の態様で対象とされる塗料は、大別して、紫外線硬化型塗料、一液硬化型塗料、及び二液硬化型塗料の3種に分けられる。紫外線硬化塗料とは、紫外線で硬化し、造膜する塗料であり、高硬度、耐摩耗性、耐擦傷性、耐化学薬品性、耐溶剤性などに優れ、例えば、携帯電話などのハードコートとして用いられる。
 上記塗料は、紫外線(UV)をエネルギーとして、アクリル系オリゴマー、モノマー配合品が、ラジカル重合して、塗膜を形成する塗料である。また、一液硬化型塗料とは、無希釈で、あるいはシンナーなどの希釈剤(粘度調整剤)だけを調合して用いる塗料であり、主に、家電製品、例えば、TVキャビネットなどや、自動車部品、工業部品などに用いられる。
 上記塗料は、アクリル樹脂を主成分とし、硬化剤を使用しなくても、塗膜形成される塗料である。ニトロセルロースがブレンドされていることで、速乾性で、硬度が高く、耐摩耗性が優れている。適用素材は、ポリスチレン樹脂、ABS樹脂、AS樹脂、ノリル樹脂、硬質塩化ビニール樹脂、ポリカーボネート樹脂など、巾広い用途に使用される。
 一方、二液硬化型塗料とは、硬化剤を使用前に混合し、化学反応で硬化し、乾燥する塗料であり、耐アルコール性、耐磨耗性に優れ、主に、自動車内装、精密機器、光学機器などに用いられる。この塗料は、アクリル樹脂を主成分とし、ポリイソシアネート化合物を硬化剤とする、二液反応硬化型のアクリルウレタン塗料である。
 本発明では、塗料に、二酸化炭素を混合、溶解させるが、その条件は、温度は30~70℃、好ましくは35から45℃、圧力は5~20MPa、好ましくは7~10MPaである。従って、塗料を加圧する必要があるが、一般的に、粘度が50~500cpと高く、塗料高圧ポンプとして、ピストンポンプ、ダイヤフラムポンプなどが用いられる。
 塗料粘度が充分に高ければ、ギヤポンプの採用も可能となる。一方、二酸化炭素高圧ポンプとしては、ピストンポンプ、ダイヤフラムポンプに加え、プランジャーポンプの採用も可能である。ただし、二酸化炭素の加圧に際しては、液体二酸化炭素での加圧が有利であり、この場合、ポンプの前段での冷却が必要とされる。
 本発明では、加熱器の型式は、特に限定されないが、装置の運転開始時や、流量を変えたときなどに、温度をなるべく早く一定に制御することや、塗装面の切り替えなどで噴霧を一時的に停止し、再度噴霧を開始するときなどに、それぞれの流体の温度が大きく変化しないことが求められる。そのため、一般的に使用される電気加熱式加熱器よりは、加熱媒体(通常は、水)の満たされたタンクに、流体の通過する高圧配管をコイル状に浸漬したタンク/コイル式の熱交換器が好適に用いられる。
 本発明では、上記塗料と、二酸化炭素を効率的に混合し、塗料中に、二酸化炭素を溶解していくことが必要である。従来、この目的ためには、インラインミキサである流体多段分割原理を応用したスタティックミキサ(静的混合器)が用いられてきたが、必ずしも充分な混合、溶解が実現できていない。本発明では、マイクロ混合の原理を利用した高圧マイクロ混合器が使用される。
 高圧マイクロ混合器の型式は、特に限定されないが、塗料の粘性が高いことや、閉塞性があることなどを勘案すると、拡散距離を極めて短くして、2流体を混合するインターディジタルチャネル構造、例えば、ドイツ、IMM社が提供する層流型マイクロキミサよりは、流体の乱流混合効果を利用したマイクロ混合器の方が、望ましい。
 これらの混合器としては、例えば、流路径が0.5mm以下のT字型混合器、旋回流を利用したスワール型マイクロ混合器、流体を微小な空間の中心で衝突させる中心衝突型マイクロ混合器及び内管の内径が0.5mm以下の二重管式マイクロ混合器、などがあげられる。
 また、これらのマイクロ混合器の後段に、従来から用いられてきたスタティックミキサを連結することで、塗料への二酸化炭素の充分な溶解が実現でき、安定した一相混合物を形成することが可能となる。条件によっては、混合器以降、噴霧ガンまでの間で、塗料と二酸化炭素の二相形となることもあり、その場合、両流体の粘性が大きく異なるため、噴霧が安定せず、きれいな塗布が実現できない危険性がある。塗料への二酸化炭素の溶解度は、塗料の種類、温度・圧力により大きく変動するが、混合器の構成によっても、大きな影響を受けることになる。
 後記する実施例における実験結果によると、マイクロ混合器によって、塗料と二酸化炭素が完全に混合されても、塗料中へ、二酸化炭素が完全に溶解するまでには、一定の保持時間が必要となることが、判明し、この保持時間が、重要である。
 本発明で用いる噴霧ガンは、エアレスタイプの高圧噴霧ガンであれば良いが、噴霧流量、噴霧圧力、及び噴霧パターンの最終的な制御は、この噴霧ガンに装着されている高圧ノズルオリフィスの開口径(相当径)とその形状に依存するため、極めて重要である。噴霧流量は、単位時間当たりの塗装量をどのくらいに設定するかで、大きく異なるが、塗料の流量として、一般的に、50~500g/minの範囲が選択される。
 例えば、噴霧流量が、100g/min程度の場合、その時の圧力を5~10MPaとすると、オリフィスの相当直径は、0.1~0.2mmが選択される。オリフィスの形状については、求められる噴霧スプレーパターンにより異なるが、フラットスプレーであれば、楕円形のオリフィス形状となる。また、オリフィス形状が円形であれば、フルコーンスプレーとなるが、噴出直後に空気などを吹き付けて、スプレーパターンを制御することにより、フルコーンスプレーをフラットスプレーに変えることも可能である。
 次に、添付図面を参照し、本発明の実施の形態を具体的に説明する。図2に示す装置は、本発明に係る二酸化炭素塗装装置の好適な実施形態の一例である。図中の符号は、以下に示す手段を示す。すなわち、1:塗料タンク、2:塗料フィルター、3:塗料高圧ポンプ、4:塗料背圧弁(一次圧調整)、5:塗料加熱器、6:COボンベ、7:COフィルター、8:CO冷却器、9:CO高圧ポンプ、10:CO加熱器、11:CO背圧弁(一次圧調整)、12:CO冷却器2、13:塗料逆止弁、14:CO逆止弁、15:混合器、16:混合物加熱器、17:混合物ストップ弁、18:COストップ弁、19:噴霧ガン、を示す。
 上記装置、及びその動作について詳しく説明すると、塗料は、塗料タンク1に充填され、必要に応じて、窒素ガスなどにより加圧(数気圧)されて、フィルター2を経由して、塗料高圧ポンプ3のサクションに供給される。通常、フィルター2の目開きは、クリア塗料であれば、数十μmで良いが、有色塗料の場合には、固形物顔料を含有しているため、数百μmとすることが望ましい。
 塗料高圧ポンプ3は、容積式のポンプであり、吐出圧力が20MPa程度まであれば良く、一般的には、ダイアフラムポンプ、好ましくは脈動対策として、2連式のダイアフラムポンプが選定される。塗料によっては、プランジャーポンプでも可能であるが、プランジャーシール部が塗料で固着する危険性があるため、通常は、選択されない。対応策として、プランジャーシール部を、溶剤で浸漬することも適宜行うことができる。
 ポンプ駆動源は、装置の設置場所により、空気作動式、電動式が適宜選択される。塗料は、塗料高圧ポンプ3で、通常、10MPa前後に加圧され、必要に応じて、塗料加熱器5で、40℃前後に加熱されて、混合器15に送られる。このとき、定圧運転操作の場合には、噴霧流量(圧力とノズルオリフィスで決まる)より多いポンプ流量を設定し、余剰分を、背圧弁4から塗料タンク1に戻す操作を行う。このとき、定圧運転操作の制御圧力(システム圧力)は、この背圧弁4の一次圧力となる。
 一方、COは、ボンベ6の液体部分を吸い込み、フィルター7を通り、冷却器8で、飽和温度以下に冷却されて、CO高圧ポンプ9のサクションに供給される。この液体COは、CO高圧ポンプ9で加圧され、更に、CO加熱器10で、臨界温度(31℃)以上、通常、40℃の超臨界COに加熱されて、混合器15に送られる。
 ここで、CO高圧ポンプとしては、通常、ダイヤフラムポンプや、プランジャ-ポンプなどが選定されるが、塗料の場合と同様に、脈動防止のため、2連式ポンプの採用が望ましい。また、通常、CO供給の必要量は、塗料の30%以下と少量である。そのため、噴霧流量が少ない場合には、プランジャーポンプが採用される。
 加圧、加熱された塗料、及びCOは、混合器15で瞬時に混合され、塗料/CO混合物となる。混合器の構造としては、迅速混合性や、完全混合性を考慮して、マイクロ混合器の採用が望ましい。例えば、流路径が0.5mm以下のT字型混合器、旋回流を利用したスワール型マイクロ混合器、流体を微小な空間の中心で衝突させることを可能とする中心衝突型マイクロ混合器、及び内管の内径が0.5mm以下の二重管式マイクロ混合器などが好適に使用される。
 中心衝突型マイクロ混合器の構造を、図3~4に示す。図で、COは、上部の入口から導入され、混合状態を調整するニードル回りの環状部を下向きに流れる。一方、塗料は、下部入口から導入され、内部で複数の流れに分割(通常は、2分割あるいは4分割)されて、ニードル先端部の微小空間で、COと塗料が中心衝突して、瞬時に混合される。塗料/CO混合物は、必要に応じて、混合物加熱器16で加熱され、ストップ弁17を経由して、噴霧ガン19で、塗装対象物に向けて噴霧される。
 塗料/CO混合物は、噴霧直後にCOが離脱し、塗料の微細粒子となる。この塗料粒子の粒径は、温度、圧力、そして噴霧ガンの構造、代表的には、ノズルオリフィス口径などに依存するが、通常、10~50μmの範囲にある。塗装対象物が立体的な形状の場合には、噴霧ガンが、3次元ロボットに搭載されて、塗装が行われるが、塗装面を切り替えるときなどには、ストップ弁17が閉となり、直後に、ストップ弁18が開となって、超臨界COが噴霧ガンのノズルに供給されて、瞬時に洗浄が行われる。
 これがないと、ノズル先端部の閉塞の可能性が高まる。このとき、塗料高圧ポンプ3は、運転を継続しているが、定圧運転モードであれば、操作圧力のまま、背圧弁4により、塗料が循環される。定量運転モードで操作している場合には、背圧弁4の設定を、操作圧力よりわずかに高くしておくことにより、少しの圧力上昇で、塗料が循環される。
 塗装を再開するときは、ストップ弁18を閉とし、ストップ弁17を開とすれば、噴霧が再開される。本方式は、ストップ弁17、18が共にともが閉となっても、塗料の場合と同様、COも、背圧弁11により、余剰分をCO高圧ポンプ10のサクションにも戻すことが可能であり、特に、運転上問題はない。ただし、背圧弁11により、減圧されるため、液体状態を確保するために、冷却器12で、COは冷却されることが好ましい。
 次に、本発明の第2の態様について詳細に説明する。
 本発明は、従来の有機溶剤系塗料によるスプレー塗装において、大量に使用される希釈溶剤(VOC)を、極少量の二酸化炭素に替えることにより、有機溶剤系塗装と同等の、塗装仕上げ品質、すなわち塗膜均一性、平滑性、鮮映性などを確保したまま、VOCの発生を大幅に低減し得る低環境負荷型の新しい塗装方法及びその装置を提供することを特徴とするものである。
 本発明は、有機溶剤系の噴霧塗装において用いられる希釈溶剤(シンナー)を、二酸化炭素で一部又は全部を代替する二酸化炭素を用いた一液型又は二液型塗料の塗装装置において、塗料供給ラインとして、塗料を貯蔵するタンク、該タンクから供給される塗料を所定の圧力まで加圧する塗料高圧ポンプ、該塗料高圧ポンプの吐出圧を調整し、余剰分を塗料タンクへ返送させる塗料1次圧調整弁、を有し、二酸化炭素供給ラインとして、液体二酸化炭素を貯蔵するタンク、該液体二酸化炭素を所定温度まで冷却する冷却器、該冷却器から供給される液体二酸化炭素を所定の圧力まで加圧する液体二酸化炭素高圧ポンプ、該液体二酸化炭素高圧ポンプの吐出圧を調整し、余剰分を同ポンプのサクションに返送させる液体二酸化炭素1次圧調整弁、を有し、溶剤供給ラインとして、溶剤タンク、該タンクから供給される溶剤を所定の圧力まで加圧する溶剤高圧ポンプを有し、塗料/二酸化炭素混合物ラインとして、上記塗料供給ラインから供給される加圧された塗料、上記二酸化炭素供給ラインから供給される加圧された二酸化炭素とを混合する混合器、及び該混合器から供給される混合後の塗料/二酸化炭素加圧混合物を大気圧下の塗装対象物へ噴霧する噴霧ガン、を有する装置であって、塗料との混合を行う前に、二酸化炭素に、あらかじめ有機溶剤を添加するようにしたことを特徴とする二酸化炭素を用いた塗装装置、である。
 また、本発明は、上記装置を使用して二酸化炭素を用いた一液型又は二液型塗料の塗装を行う方法であって、当該塗装装置において、二酸化炭素に、あらかじめ塗料の真溶剤成分を少なくとも飽和溶解量添加し、二酸化炭素の真溶剤成分に対する溶解力を低下させることで、逆流して進入してきた塗料成分のポリマーの析出を防止する塗装方法、である。
 本発明では、塗料が、一液硬化型塗料、又は二液硬化型塗料であること、有機溶剤が、一液硬化型塗料、又は二液硬化型塗料の真溶剤であること、有機溶剤の添加を、液体二酸化炭素高圧ポンプのサクション部に行うこと、有機溶剤の添加を、液体二酸化炭素高圧ポンプのデリベリ部(加圧側)に行うこと、有機溶剤の添加を、液体二酸化炭素加熱器の後のラインで行うこと、を好ましい実施の態様としている。
 また、本発明では、有機溶剤と二酸化炭素との混合を、マイクロ混合器で行うこと、有機溶剤と二酸化炭素を混合するマイクロ混合器が、流路径が大きくても0.5mmのT字型マイクロ混合器であること、塗料と二酸化炭素を混合するマイクロ混合器が、二重管式マイクロ混合器であり、二酸化炭素が流入する内管の内径が、大きくても0.5mmであり、かつ外管の内径が、2.5mm~5mmの範囲にあること、塗料と二酸化炭素を混合するマイクロ混合器に接続する二酸化炭素供給ラインの接続部のなるべく近い位置に、逆止弁を備え、塗料の二酸化炭素供給ラインへの逆流を防止する構造を有すること、を好ましい実施の態様としている。
 また、本発明では、塗料と二酸化炭素を混合するマイクロ混合器が、流路径が大きくても2mmのT字型マイクロ混合器であり、二酸化炭素を下部から、塗料を上部から対向するように流入させ、混合物を90度横から排出させる構造を有し、内部に逆止のための金属球を備え、塗料の二酸化炭素ラインへの逆流を防止する構造を有すること、塗料と二酸化炭素を混合するマイクロ混合器が、流路径が大きくても2mmのT字型マイクロ混合器であり、二酸化炭素を下部から、塗料を90度横から流入させ、混合物を上方へ排出させる構造を有し、内部に逆止のための金属球を備え、塗料の二酸化炭素ラインへの逆流を防止する構造を有すること、真溶剤成分を、二酸化炭素重量当たり20~50%の範囲で添加すること、を好ましい実施の態様とている。
 一般に、有機溶剤系塗装では、重量基準で、塗料、すなわち、ポリマーと、ポリマーを溶解して流動性を持たせる真溶剤の50から150%の希釈溶剤、例えば、トルエン、キシレンなどを加えて、噴霧が可能な粘度まで低下させることが必要とされる。そして、その低粘度化された塗料/希釈溶剤の混合物は、空気を霧化媒体としたエアースプレー方式や、霧化エアーを使用しない高圧噴霧方式により、微細液滴として噴霧され、塗装対象物に塗布される。
 本発明は、上記の有機溶剤系塗装で使用される希釈溶剤を、二酸化炭素で一部又は全量を代替する塗装方式を提供するものである。本発明で対象とされる塗料は、一液硬化型塗料、及び二液硬化型塗料の2種に分けられ、特に、一液硬化型塗料を主な対象とする。
 塗料は、塗膜を形成するポリマーと、ポリマーを溶解して流動性を持たせる真溶剤からなり、真溶剤としては、噴霧後の蒸発性や、塗膜形成過程でのレベリング性などを種々調整するための有機溶剤、例えば、不飽和炭化水素、芳香族炭化水素、ケトン、エステル、エーテル、アルコール、及びこれらの混合物より構成される。
 一液型塗料とは、無希釈で、あるいはシンナーなどの希釈剤(粘度調整剤)だけを調合して用いる塗料であり、主に、家電製品、例えば、TVキャビネットなどや、自動車部品、工業部品に用いられる。この塗料は、アクリル樹脂を主成分とし、硬化剤を使用しなくても、塗膜形成される塗料である。ニトロセルロースがブレンドされていることで、速乾性で、硬度が高く、耐摩耗性が優れている。適用素材は、ポリスチレン樹脂、ABS樹脂、AS樹脂、ノリル樹脂、硬質塩化ビニール樹脂、ポリカーボネート樹脂など、巾広い用途に使用される。
 一方、二液型塗料とは、硬化剤を使用前に混合し、化学反応で硬化し、乾燥する塗料であり、耐アルコール性、耐磨耗性に優れ、主に、自動車内装、精密機器、光学機器に用いられる。この塗料は、アクリル樹脂を主成分とし、ポリイソシアネート化合物を硬化剤とする、二液反応硬化型のアクリルウレタン塗料のことである。
 本発明では、塗料に、二酸化炭素を混合、溶解させるが、その条件は、温度は30~70℃、好ましくは35から45℃、圧力は5~20MPa、好ましくは7~10MPaである。従って、塗料を加圧する必要があるが、一般的に、粘度が50~500cpと高く、塗料高圧ポンプとして、ピストンポンプ、ダイヤフラムポンプなどが用いられる。
 塗料粘度が充分に高ければ、ギヤポンプの採用も可能となる。一方、二酸化炭素高圧ポンプとしては、ピストンポンプ、ダイヤフラムポンプに加え、プランジャーポンプの採用も可能である。ただし、二酸化炭素の加圧に際しては、液体二酸化炭素での加圧が有利であり、この場合、ポンプの前段での冷却が必要とされる。
 本発明では、有機溶剤、特に、使用された塗料を構成する真溶剤そのものを、二酸化炭素ラインに供給することが必要であり、通常、ピストンポンプ、ダイヤフラムポンプ、プランジャーポンプが採用される。上述の塗料用には、摺動部が大気と触れて、ポリマーが析出することを防止するため、密閉式のポンプが必要となるが、真溶剤用には、その必要がないため、価格面から、プランジャーポンプの採用が有利である。
 本発明では、加熱器の型式は、特に限定されないが、装置の運転開始時や、流量を変えたときなどに、温度をなるべく早く一定に制御することや、塗装面の切り替えなどで噴霧を一時的に停止し、再度噴霧を開始するときなどに、それぞれの流体の温度が大きく変化しないことが求められる。そのため、一般的に使用される電気加熱式加熱器よりは、加熱媒体(通常は、水)の満たされたタンクに、流体の通過する高圧配管をコイル状に浸漬したタンク/コイル式の熱交換器が好適に用いられる。
 本発明では、塗料と二酸化炭素との混合前に、二酸化炭素に、あらかじめ有機溶剤、好ましくは塗料と同じ真溶剤を一定量添加しておくことが必要である。有機溶剤とは、塗料中にポリマー溶解のために添加されている真溶剤中の単独、あるいは複数の成分を指す。ここでは、二酸化炭素に、あらかじめ塗料の真溶剤成分を、飽和溶解量(真溶剤組成に依存するが、通常は、二酸化炭素重量当たり10~50%程度)以上に添加する。
 それにより、二酸化炭素の真溶剤成分に対する溶解力を低下させることで、逆流して進入してきた塗料成分から、真溶剤だけが二酸化炭素へ移行することを防ぎ、結果として、ポリマーの析出を防止することが可能となる。従って、二酸化炭素への真溶剤成分の迅速・完全な溶解が必要であり、マイクロ混合器の採用、例えば、流路径が0.5mm以下のT字型マイクロ混合器が好ましく用いられる。
 本発明では、上記塗料と、二酸化炭素を効率的に混合し、塗料中に、二酸化炭素を溶解していくことが必要である。従来、この目的ためには、インラインミキサである流体多段分割の原理を応用したスタティックミキサ(静的混合器)が用いられてきたが、必ずしも充分な混合溶解が実現できないことに加え、一液硬化型塗料に関しては、混合器内、あるは混合器直前の二酸化炭素ラインでの閉塞が頻発する。
 流体多段分割を原理とするスタティックミキサは、流れが一時的に止められる傾向があり、これが、一時的な圧力変動を引き起こし、二酸化炭素が塗料に溶解する前に、塗料中の真溶剤成分が、二酸化炭素に移行し、その結果として、ポリマーの析出→圧力上昇→閉塞→噴霧不可、の状況を引き起こすと考えられる。
 また、迅速な混合性が期待できる、流路径が0.5mm以下のT字型マイクロ混合器や、中心衝突型マイクロ混合器においても、流体流れが、収縮→拡大を受ける際に、圧力変動を引き起こす原因となり、長時間での安定運転ができなくなると考えられる。
 紫外線硬化型塗料は、紫外線を照射されなければポリマー硬化を起こさないため、わずかな圧力変動であれば、影響をほとんど受けない。しかし、一液硬化型塗料に関しては、圧力変動に起因して、二酸化炭素へ真溶剤成分が抽出され、瞬時に、ポリマーの析出が起こることが想定され、混合器、及び混合器以降で噴霧ガンまでの配管構成においても、できる限り流れがスムースなことが求められる。
 これに対して、二酸化炭素が流入する内管の内径が0.5mm以下であり、かつ外管の内径が2.5mm~5mmで、外管内径と内管外径との環状部に塗料が流入し、二酸化炭素導入部以降は単なる配管となる、二重管式マイクロ混合器を用いることで、安定した塗装が長時間継続できることが明らかとなった。
 当然ながら、混合器以降に、スタティックミキサを連結することは好ましくなく、噴霧ガンまで、できる限り配管径の変更を行わないことが望まれる。ただし、紫外線硬化型塗料と同様に、混合器以降、噴霧ガンまでの間で、塗料と二酸化炭素の二相形となることもあり、その場合、両流体の粘性が大きく異なるため、噴霧が安定せず、きれいな塗布が実現できない危険性もある。
 塗料への二酸化炭素の溶解度は、塗料の種類、温度・圧力により大きく変動するが、塗料中へ二酸化炭素が完全に溶解するまでには、一定の保持時間が必要となることが明らかとなった。この溶解のために、必要な時間は、混合器以降の混合性(配管径と配管ワーク)にも影響され、混合性の改良化を目的とした複数の曲げ部の設置も効果が認められる。
 本発明で用いる噴霧ガンは、エアレスタイプの高圧噴霧ガンであれば良いが、噴霧流量、噴霧圧力、及び噴霧パターンの最終的な制御は、この噴霧ガンに装着されている高圧ノズルオリフィスの開口径(相当径)とその形状に依存するため、極めて重要である。噴霧流量は、単位時間当たりの塗装量をどのくらいに設定するかで、大きく異なるが、塗料の流量として、一般的に、50~500g/minの範囲が選択される。
 例えば、噴霧流量が、100g/min程度の場合、その時の圧力を5~10MPaとすると、オリフィスの相当直径は、0.1~0.2mmが選択される。オリフィスの形状については、求められる噴霧スプレーパターンにより異なるが、フラットスプレーであれば、楕円形のオリフィス形状となる。また、オリフィス形状が円形であれば、フルコーンスプレーとなるが、噴出直後に空気などを吹き付けて、スプレーパターンを制御することにより、フルコーンスプレーをフラットスプレーに変えることも可能である。
 次に、添付図面を参照し、本発明の実施の形態を具体的に説明する。図7に示す装置は、本発明に係る二酸化炭素塗装装置の好適な実施形態の一例である。図中、符号は、以下に示す手段を示す。すなわち、1:塗料タンク、2:塗料フィルター、3:塗料高圧ポンプ、4:塗料背圧弁(一次圧調整)、5:塗料加熱器、6:COボンベ、7:COフィルター、8:CO冷却器、9:CO高圧ポンプ、10:CO加熱器、11:CO背圧弁(一次圧調整)、12:CO冷却器2、13:塗料逆止弁、14:CO逆止弁、15:混合器、16:混合物加熱器、17:混合物ストップ弁、18:COストップ弁、19:噴霧ガン、30:溶剤タンク、31:溶剤高圧ポンプ、31:混合器、
を示す。
 上記装置、及びその動作について詳しく説明すると、塗料は、塗料タンク1に充填され、必要に応じて、窒素ガスなどにより加圧(数気圧)されて、フィルター2を経由して、塗料高圧ポンプ3のサクションに供給される。通常、フィルター2の目開きは、クリア塗料であれば、数十μmで良いが、有色塗料の場合には、固形物顔料を含有しているため、数百μmとすることが望ましい。
 塗料高圧ポンプ3は、容積式のポンプであり、吐出圧力が20MPa程度まであれば良く、一般的には、ダイアフラムポンプ、好ましくは脈動対策として、2連式のダイアフラムポンプが選定される。塗料によっては、プランジャーポンプでも可能であるが、プランジャーシール部が塗料で固着する危険性があるため、通常は、選択されない。対応策として、プランジャーシール部を、溶剤で浸漬することも適宜行うことができる。
 ポンプ駆動源は、装置の設置場所により、空気作動式、電動式が適宜選択される。塗料は、塗料高圧ポンプ3で、通常、10MPa前後に加圧され、必要に応じて、塗料加熱器5で、40℃前後に加熱されて、混合器15に送られる。このとき、定圧運転操作の場合には、噴霧流量(圧力とノズルオリフィスで決まる)より多いポンプ流量を設定し、余剰分を、背圧弁4から塗料タンク1に戻す操作を行う。このとき、定圧運転操作の制御圧力(システム圧力)は、この背圧弁4の一次圧力となる。
 一方、COは、ボンベ6の液体部分を吸い込み、フィルター7を通り、冷却器8で、飽和温度以下に冷却されて、CO高圧ポンプ9のサクションに供給される。この液体COは、CO高圧ポンプ9で加圧され、更に、CO加熱器10で、臨界温度(31℃)以上、通常、40℃の超臨界COに加熱されて、混合器15に送られる。
 ここで、CO高圧ポンプとしては、通常、ダイヤフラムポンプや、プランジャ-ポンプなどが選定されるが、塗料の場合と同様に、脈動防止のため、2連式ポンプの採用が望ましい。また、通常、CO供給の必要量は、塗料の30%以下と少量である。そのため、噴霧流量が少ない場合には、プランジャーポンプが採用される。
 また、溶剤は、溶剤タンク30より、溶剤高圧ポンプ31により加圧され、混合器32で、加圧加熱されたCOと混合される。この混合器は、価格や設置の制約上から、T字マイクロ混合器の採用が望ましい。ただし、混合器の設置位置は、CO高圧ポンプ9のサクション部でも、デリベリ直後でも可能である。
 加圧加熱された塗料、及びCO・溶剤の混合物は、混合器15で瞬時に混合され、塗料/CO混合物となる。混合器構造としては、上述したとおり、内管の内径が0.5mm以下の二重管式マイクロ混合器などが好適に使用される。本発明で使用される二重管式マイクロ混合器の概要を、図8に示す。また、逆止機構付のT字混合器も、好適に用いられる(図14参照)。
 塗料/CO混合物は、必要に応じて、混合物加熱器16で加熱され、ストップ弁17を経由して、噴霧ガン19で塗装対象物に向けて噴霧される。塗料/CO混合物は、噴霧直後に、COが離脱し、塗料の微細粒子となる。この塗料粒子の粒径は、温度、圧力、そして噴霧ガン構造、代表的にはノズルオリフィス口径などに依存し、10~50μmの範囲にある。
 塗装対象物が立体的な形状の場合には、噴霧ガンが、3次元ロボットに搭載されて塗装が行われるが、塗装面を切り替えるときなどには、ストップ弁17が閉となり、直後にストップ弁18が開となって、超臨界COが、噴霧ガンのノズルに供給されて、瞬時に、洗浄が行われる。これがないと、ノズル先端部の閉塞の可能性が高まる。
 このとき、高圧塗料ポンプ3は、運転を継続しているが、定圧運転モードであれば、操作圧力のまま、背圧弁4により塗料が循環される。定量運転モードで操作している場合には、背圧弁4の設定を、操作圧力よりわずかに高くしておくことにより、少しの圧力上昇で、塗料が循環される。塗装を再開するときは、ストップ弁18を閉とし、ストップ弁17を開とすれば、噴霧が再開される。
 本方式は、ストップ弁17、18とも閉となっても、塗料と同様に、COも、背圧弁11により、余剰分をCO高圧ポンプ10のサクションにも戻すことが可能であり、特に、運転上問題はない。ただし、背圧弁11により減圧されるため、液体状態を確保するために、冷却器12でCOは冷却されることが好ましい。
 本発明により、次のような効果が奏される。
(1)VOC発生を大幅に低減することが可能な低環境負荷型の新しい塗装装置、及びその塗装方法を提供することができる。
(2)従来の有機溶剤系塗料によるスプレー塗装において、大量に使用される希釈溶剤(VOC)を極少量の二酸化炭素に代替することが可能となる。
(3)希釈溶剤(VOC)の大気中への排出を防止した塗装技術を提供することができる。
(4)塗料の粘度が高いことに起因する装置の閉塞性の問題を確実に抑制し得る実用化可能な塗装技術を提供することができる。
(5)VOC発生を大幅に低減することが可能な低環境負荷型の一液型・二液型塗料の塗装方法、及びその塗装装置を提供することができる。
(6)希釈溶剤(VOC)の大気中への排出を防止した一液型・二液型塗料の塗装技術を提供することができる。
先行特許に示された塗装装置のプロセスフローを示す。 本発明の第1の態様に係る二酸化炭素塗装装置の実施形態の一例を示す。 中心衝突型混合器の概要を示す。 中心衝突型混合器の断面図を示す。 COの溶解度測定系フローを示す。 実施例9の塗装結果を示す。 本発明の第2の態様に係る二酸化炭素塗装装置の実施形態の一例を示す。 二重管式マイクロ混合器の概要を示す。 ポリマーの析出を確認するために構築した比較例3の評価系を示す。 真溶剤の添加ユニットを増設した実施例10の評価系を示す。 実施例11におけるCOのみの場合の結果を示す。 実施例における真溶剤添加の効果を示す。 実施例11における有機溶剤添加の効果(3ml/min添加時)を示す。 逆止溝付きのT型混合器の概要を示す。
 次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
 次に、本発明の第1の態様の実施例を示す。
(混合器の性能比較)
 塗料とCOの初期混合を行う混合器として、混合後の流路径が1.3mmの1/16インチT字継手(スタンダードT字継手、STD-Tと略記とする)、混合後の流路径が0.3mmの1/16インチT字継手(ローデッドボリュームT字継手、LDV-Tと略記する)、及び混合後の流路径が1mmの中心衝突型混合器、を用いて、紫外線硬化型クリア塗料へのCOの溶解度を、高圧可視化窓で、混合物の状態を直接観察することにより、評価した。溶解度測定系のフローを図5に示す。
 具体的には、塗料高圧ポンプの流量を、50g/分で一定とし、CO高圧ポンプの流量を徐々に増加させ、透明な一相状態から気液二相状態に変化するところを、その混合器での限界溶解度として評価した。この際、温度は、40℃で一定とし、圧力を6MPaと10MPaとした。実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表より、10MPaでの条件では、限界溶解度に関して、混合器の型式で、大きな違いが見られなかったが、6MPaでは、STD-Tでは19%しか溶解しないのに対して、中心衝突型では34%、LDV-Tでは52%と、混合性に大きな違いが認められた。この結果から、初期混合性は、LDV-T>中心衝突>STD-Tの順に良好であることが分かった。
(初期混合後のスタティックミキサの効果)
 塗料とCOの初期混合を行う混合器として、LDV-Tを用いて、その後段に、従来から用いられているスタティックミキサ(エレメント外径2.4mm×エレメント数60、SMと略記する)を用いた場合と、用いない場合とを比較した。評価系・方法は、実施例1と同様とした。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表より、初期混合として、LDV-Tを用いれば、先行特許で採用されているSMの効果は、ほとんど認められないことが明確となった。
(初期混合~高圧可視化窓までの時間の効果)
 塗料とCOの初期混合を行う混合器として、LDV-Tを用いて、その直後から高圧可視化窓までの時間(混合時間)を、1/4インチ配管を用いて種々変えて、その効果を検証した。実施例1及び2での混合時間は、約37秒であった。評価系・方法は、実施例1と同様とした。
 その結果、混合時間により、限界溶解度に大きな差は認められなかったが、詳細な観察の結果、混合時間が15秒より短い場合には、溶解領域においても、一相と二相を交互に繰り返す状況が認められた。これは、塗料/COが物理的にほぼ完全に混合されたとしても、溶解までには、一定の時間が必要であることを意味しており、噴霧の安定性という観点から、非常に重要である。
(塗装実験1)
 塗料として、市販の紫外線硬化型クリア塗料(シンナー無添加)を対象に、塗装実験を行った。代表的な塗料組成は、樹脂成分49%、真溶剤47%、添加剤4%であり、樹脂成分は、多官能アクリレートを主成分に、熱可塑性アクリレート、ウレタンアクリレートを、それぞれ含んでいる。真溶剤は、含有量の多い順に、トルエン、酢酸ブチル、n-ブチルアルコール、キシレン、エチルベンゼンからなり、添加剤としては、光重合開始剤のほか、微量の紫外線吸収剤、及び表面調整剤が含まれている。
 塗料高圧ポンプ3としては、2連式ダイヤフラムポンプを、CO高圧ポンプ9としては、2連式プランジャーポンプを用いて、加熱器5,10を、40℃に制御し、混合器15としては、LDV-Tを用いて、LDV-Tから噴霧ガン19までの混合時間を、37秒として、7MPaの定圧運転モードで操作した。
 その時の塗料流量は、45g/分、COは、9g/分(塗料流量の20%)であり、高圧可視化窓により塗料/CO混合物が、一相状態であることを確認し、噴霧ガンは、ノズルオリフィス相当径0.15mmを用いて、プラスチック板に、手吹き塗装を行なった。
 このとき、塗料/CO混合物は、CO添加前11~12cpが、添加後1~2cpの粘度に低下していることを、オンライン粘度計で確認した。塗装後のプラスチック板は、5分間室温で保持した後、50℃の乾燥器内で、10分間乾燥を行い、その後、紫外線照射機で、塗膜を硬化させた後、塗膜面の評価を行った。
 その結果、平均膜厚は20μm、平均粗さは0.4μmであり、塗料と同量のシンナー加えて行う有機溶剤エアスプレーと同等で、実用レベルの塗膜であると評価された。なお、同じ紫外線硬化型クリア塗料を、シンナー無添加で、エアスプレー塗装した結果、膜厚は20μmで、平均粗さは0.9μmとなり、2倍以上の粗さとなることを確認した。これは、二酸化炭素塗装の優位性が立証された結果を示すものである。
(塗装実験2)
 紫外線硬化型クリア塗料について、更に、1種類、塗装実験を実施した。組成は、樹脂(多官能アクリレート)約80%、真溶剤(イソプロピルアルコール)約20%と、少量の光重合開始剤からなる、新規な塗料を用いた。塗装装置、及び塗装方法は、実施例4とほぼ同等のものを用いたが、噴霧ガンは、2次元塗装ロボットに搭載して、塗装を行った。
 塗料/CO混合物の粘性は、CO添加前40cpが、添加後、数cpに低下した。塗装後、実施例4と同等の処理を行ない、塗膜面を観察した結果、実用上問題のない塗膜が形成されていることを確認した。本塗料は、樹脂分が、80%と高く、シンナー無希釈であるので、VOC削減効果は、非常に高いことが明らかである。
(塗装実験3)
 紫外線硬化型クリア塗料について、更に、もう1種類、塗装実験を実施した。組成は、樹脂(多官能アクリレート)約75%、真溶剤(プロピレングリーコールモノメチルエーテル)約20%と、約5%の光重合開始剤からなる、塗料を用いた。塗装装置、及び塗装方法は、実施例5と同様とした。塗料/CO混合物の粘性は、CO添加前60cpが、添加後、数cpに低下し、その結果、実用上問題のない塗膜が形成されていることを確認した。
(塗装実験4)
 次に、2液硬化型アクリルウレタンクリア塗料について、塗装実験を行った。主剤組成は、樹脂(アクリルポリオール)が42%、真溶剤が58%(内トルエンが主成分、酢酸イソブチルを含む)であり、硬化剤組成は、樹脂が55%(ポリイソシアネートプレポリマー)、真溶剤が45%(トルエンのほかプロピレングリーコールモノメチルエーテルアセテート、酢酸エチルを含む)である。
 実験は、主剤と硬化剤を5:1の配合比で事前に混合し、塗料タンク1に充填して行った。塗料(主剤+硬化剤)に対して、重量比で20~30%のCOを添加して、塗装を行った。その他の条件、及び方法は、上記実施例の通りである。塗料粘性は、CO添加前50~60cpが、添加後、数cpに低下した。塗装後のプラスチック板は、5分間室温で保持した後、50~60℃の乾燥器内で30分間乾燥を行い、塗膜を硬化させた後、塗膜面の評価を行った。
 その結果、塗膜は、形成されているものの、平滑性に問題が残った。そのため、塗膜のレベリング性能をあげるべく、上記配合比の塗料に、専用の希釈シンナーを重量比で20%添加して、同様の塗装操作、及び後処理を行った結果、実用上問題のない塗膜が形成されていることを確認した。
(塗装実験5)
 次に、1液硬化型アクリルクリア塗料について、塗装実験を行った。塗料組成は、樹脂が28%、真溶剤が72%である。樹脂成分は、主成分がアクリルであり、他に、ニトロセルロース含み、真溶剤は、含有量の多い順に、エステル系、アルコール系、炭化水素系、そして、ケトン系からなる。実験は、塗料に対して、重量比で20%のCOを添加して、塗装を行った。その他の条件、及び方法は、上記実施例の通りである。
 塗料粘性は、CO添加前120~140cpが、添加後、20cp以下に低下した。しかしながら、短時間の塗装(噴霧)は行えたものの、プラスチック板表面に、塗料塊が多数付着した状況であり、均一な塗膜の形成には至らなかった。
 そのため、レベリング性を良くするために、上記塗料に、真溶剤成分のみを重量比で20~40%添加して、同様の塗装操作、及び後処理(実施例7と同様)を行った。その結果、均一な塗膜が形成され、実用上問題のない塗膜と評価された。
(塗装実験6)
 2液硬化型アクリルウレタン塗料、及び1液硬化型アクリル塗料に、カーボンブラック、その他の顔料を混合して、有色塗装実験を行った。実験条件、及び方法は、上記の実施例とそれぞれ同様とした。結果を図6に示す。その結果、赤、ピンク、青などの均一な有色塗膜が形成され、実用上問題のない塗膜と評価された。
 次に、本発明の第2の態様の実施例及び比較例を示す。
比較例1
 塗料として、一液硬化型塗料(樹脂組成:アクリル、ニトロセルロース、真溶剤組成:酢酸ブチル、シクロヘキサノン、イソブチルアルコール、酢酸エチル、ブチルセロソルブ、メチルイソブチルケトン)を用いて、塗装実験を行った。操作条件は、40℃・8MPaとし、塗料流量は40g/分、CO流量は8g/分とし、混合器は、混合後の流路径が0.3mmの1/16インチT字継手(ローデッドボリュームT字継手、LDV-Tと略記する)を用いて行った。ただし、この実験では、COに、真溶剤の添加は行わなかった。
 本実験開始時は、溶剤とCOで安定した混合状態を確認した後、溶剤を塗料に切り替えたが、切り替え直後から、塗料の高い粘性に起因して、圧力上昇が起こり、しばらくすると、CO側の圧力が急上昇し、運転不可となった。装置停止後に、COラインを解体し、状況を調べた結果、混合器の上流のCOライン(混合器~逆止弁までの間)に、塗料ポリマーの析出が認められた。
 この現象は、塗料は、非圧縮性流体であるため、即座に、圧力が増加するが、CO側は、圧縮性流体であるため、圧力上昇が少し遅れ、このとき、塗料が、COラインに逆流し、塗料中の真溶剤成分がCOに抽出された結果、塗料ポリマーが析出したものと推察された。
比較例2
 比較例1と同じ塗装実験を行った。ただし、塗料ラインの背圧弁を、操作圧力よりわずかに高く設定し、圧力が上昇しないように運転を行った。その結果、40℃・8MPaの条件で、定常操作が確立できたが、運転を十数分間継続すると、操作圧力が不安定となり、最終的に、CO側の圧力が急上昇し、運転不可となった。
 装置停止後に、COラインを解体し、状況を調べた結果、比較例1と同様に、混合器の上流のCOライン(混合器~逆止弁までの間)に、塗料ポリマーの析出が認められた。この現象は、定常操作中に、混合器~噴霧ガンまでのライン構成において、一時的に圧力変動があり、それに起因して、塗料が、COラインに逆流し、塗料中の真溶剤成分がCOに抽出された結果、塗料ポリマーが析出したものと推察された。
比較例3
 ポリマーの析出を再確認するために、図9に示すような評価系を構築し、逆止弁の中に、一液硬化型塗料を充填・密閉した後、ストップ弁Aを閉とし、ストップ弁Bを開として、所定の温度・圧力のCOを流通させた。定常状態を確認後、次に、ストップ弁Aを開とし、ストップ弁Bを閉として、逆止弁中にCOを一定時間(約10分)流通させた。その後、再度、ストップ弁Aを閉とし、ストップ弁Bを開として、圧力を大気圧まで減圧し、逆止弁の中の状態を確認した。
 その結果を表3に整理して示す。液体CO、超臨界CO(温度・圧力とも臨界点以上、温度は臨界点以上、かつ圧力は臨界点以下)のいずれの場合も、ポリマーは析出していた。特に、溶解度係数が4以下の場合においても、ポリマーの析出は防止できていなかった。参考実験として、紫外線硬化型塗料を、逆止弁に充填して、同様の操作を行ったが、ポリマーの析出は、認められなかった。
Figure JPOXMLDOC01-appb-T000003
 比較例3の評価系に、図10に示すような、真溶剤の添加ユニットを増設した評価系を構築して、真溶剤の添加率を種々変えて、同様の評価を行った。ここでは、COと真溶剤の混合器として、1/16インチのLDV-Tを用いた。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 塗料と、COとのコンタクト前に、COに、真溶剤を20%以上加えることにより、逆止弁に充填した塗料中の真溶剤が、COに抽出されることを防止することができ、ポリマーの析出を回避することができた。逆に、本実施例で用いた真溶剤の超臨界COへの溶解度は、20%前後であることが分かった。
 実施例10と同様の検討を、COに添加する有機溶剤の種類を種々変えて実施した。有機溶剤は、真溶剤の他に、真溶剤成分である、酢酸エチル、酢酸ブチル、シクロヘキサノン、イソブチルアルコール、そして、真溶剤成分ではない、アセトン、イソプロピルアルコール、エチルアルコールを用いた。その評価結果を、整理して、表5~6、及び図11~13に示す。
 本実施例でのCO条件は、40℃・8MPa(超臨界)とし、流量は、全て10g/minで供給した。表中の析出度合は、5段階評価で、1:析出なし(最も良い状態)~5:多量析出、を表している。また、相状態は、評価ライン上に設けた可視化窓内のCO/有機溶剤混合物の直視による状態を示している。1は、超臨界1相状態、2は、2相状態である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記の表の結果から明らかなように、一液硬化型塗料中に含まれるポリマー成分の析出防止に効果が最もあるのは、真溶剤そのものと、シクロヘキサノンをCO量に対して30%以上添加したときであり、次いで、酢酸エチル、酢酸ブチル、及びアセトンの順となった。一方、アルコール類の添加は、添加率の大小によらず、ほぼ効果が認められない結果であった。
 比較例1と同じ実験(真溶剤は未添加)を、混合器の種類を種々変えて実施した。使用した混合器は、STD-T、LDV-T、スワール型(内径0.5、0.8、10mmの3種類)、中心衝突型(2方向中心衝突、4方向中心衝突の2種類)、及び二重管型(内管1/16インチ×内径0.5mm×長さ120mm、外管1/4インチ×内径4.3mm×長さ160mm)の各種とした。
 また、各混合器の下流に、流体多段分割型スタティックミキサを設置した実験も実施した。本実験では、混合器以降を1/8インチ×1000mm+1/4インチ×1250mm(90度曲げ3箇所)のラインを通って噴霧する構成とした。
 その結果、二重管型混合器を使用したときの安定性が最も良く、次いで、中心衝突型、LDV-T、スワール、STD-Tの順であった。二重管型混合器は、流体の流動状態が最もシンプルであり、混合物の流れがスムースであることが、良い結果につながったものと考えられる。また、下流に、SMを設置した効果は、認められず、逆に、安定性が減じられる結果であった。
 実施例11と同じ検討を、逆止機構付きのT型混合器(図14参照)を用いて実施した。本混合器は、内部に金属球を内包しており、圧力変動があっても、COラインに塗料が逆流しないことを目的としたものである。実験の結果、圧力変動はあるものの、COラインでのポリマーの析出は、完全に防止することができた。
(塗装実験)
 1液硬化型アクリルクリア塗料について、塗装実験を行った。塗料組成は、樹脂が28%、真溶剤72%である。樹脂成分は、主成分がアクリルであり、他に、ニトロセルロース含み、真溶剤は、含有量の多い順に、エステル系、アルコール系、炭化水素系、そして、ケトン系から構成される。
 塗装操作は、LDV-Tを用いて、COに真溶剤を添加した後、一液硬化型塗料とCO/真溶剤混合物を、二重管型混合器で混合し、1/8インチ×1000mm+1/4インチ×1250mm(90度曲げ3箇所)のラインを通って、噴霧する構成とした。塗料流量は40g/分、CO流量は8g/分、及び真溶剤流量は2.4g/分の条件とし、40℃・8MPaで、噴霧操作(噴霧ロボットによる)を実施した。
 その結果、塗料粘性は、CO添加前120~140cpが、添加後、20cp以下に低下し、圧力変動はほとんどなく、長時間の安定操作性が確認できた。しかしながら、安定した噴霧は行えたものの、プラスチック板表面に塗料塊が多数付着した状況であり、均一な塗膜の形成には至らなかった。
 そのため、レベリング性を良くするために、上記塗料に、真溶剤成分のみを重量比で20~40%添加して、同様の塗装操作を行った。塗装後のプラスチック板を、5分間、室温で保持した後、50~60℃の乾燥器内で、30分間、乾燥を行い、塗膜を硬化させた後、塗膜面の評価を行った。その結果、均一な塗膜が形成され、塗膜は、厚さが20μm前後で、表面粗さが0.5μmと実用レベルの塗装が実現できた。
 以上、詳述したように、本発明は、二酸化炭素塗装方法及びその装置に係るものであり、本発明により、VOC発生を大幅に低減することが可能な低環境負荷型の新しい塗装装置、及びその塗装方法を提供することができる。更に、本発明は、二酸化炭素を用いた一液型・二液型塗料の塗装方法及びその装置に係るものであり、本発明により、希釈溶剤(VOC)の大気中への排出を防止した、二酸化炭素を用いた一液型・二液型塗料の新しい塗装技術を提供することができる。本発明では、従来の有機溶剤系塗料によるスプレー塗装において、大量に使用される希釈溶剤(VOC)を極少量の二酸化炭素に代替することが可能となり、本発明は、希釈溶剤(VOC)の大気中の排出を防止した新しい塗装技術を提供することを可能とする。本発明により、塗料の粘度が高いことに起因する装置閉塞性の問題を確実に抑制し得る実用化可能な塗装技術を提供することができる、という格別の作用効果が得られる。本発明は、大気中へのVOCの排出を防止する低環境負荷型の新しい塗装方法及びその装置を提供するものして有用である。

Claims (30)

  1.  有機溶剤系の噴霧塗装において用いられる希釈溶剤(シンナー)を、二酸化炭素で一部又は全部を代替する二酸化炭素塗装において、
     塗料供給ラインとして、塗料を貯蔵するタンク、該タンクから供給される塗料を所定の圧力まで加圧する塗料高圧ポンプ、該塗料高圧ポンプの吐出圧を調整し、余剰分を塗料タンクへ返送させる塗料1次圧調整弁、を有し、
     二酸化炭素供給ラインとして、液体二酸化炭素を貯蔵するタンク、該液体二酸化炭素を所定温度まで冷却する冷却器、該冷却器から供給される液体二酸化炭素を所定の圧力まで加圧する液体二酸化炭素高圧ポンプ、該液体二酸化炭素高圧ポンプの吐出圧を調整し、余剰分を同ポンプのサクションに返送させる液体二酸化炭素1次圧調整弁、を有し、
     塗料/二酸化炭素混合物ラインとして、上記塗料供給ラインから供給される加圧された塗料、上記二酸化炭素供給ラインから供給される加圧された二酸化炭素とを混合する混合器、及び該混合器から供給される混合後の塗料/二酸化炭素加圧混合物を大気圧下の塗装対象物へ噴霧する噴霧ガン、を有することを特徴とする二酸化炭素を用いた塗装装置。
  2.  加圧された塗料を所定温度まで加熱する塗料加熱器を有する、請求項1記載の二酸化炭素を用いた塗装装置。
  3.  液体二酸化炭素高圧ポンプのサクションに返送される余剰二酸化炭素を所定温度まで冷却する冷却器を有する、請求項1又は2記載の二酸化炭素を用いた塗装装置。
  4.  加圧された液体二酸化炭素を所定温度まで加熱する二酸化炭素加熱器を有する、請求項1から3のいずれかに記載の二酸化炭素を用いた塗装装置。
  5.  混合後の塗料/二酸化炭素加圧混合物を所定温度まで加熱する混合物加熱器を有する、請求項1から4のいずれかに記載の二酸化炭素を用いた塗装方法及び装置。
  6.  混合器が、塗料と二酸化炭素とを急速混合し得るマイクロ混合器である、請求項1から5のいずれかに記載の二酸化炭素を用いた塗装装置。
  7.  マイクロ混合器が、流路径が大きくても0.5mmのT字型マイクロ混合器である、請求項6記載の二酸化炭素を用いた塗装方法及び装置。
  8.  マイクロ混合器が、流体を微小な空間の中心で衝突させる中心衝突型マイクロ混合器であり、二酸化炭素を上部から流入させ、塗料を複数に分割して側面の複数方向から中心部で衝突するように流入させる混合器である、請求項6又は7記載の二酸化炭素を用いた塗装装置。
  9.  マイクロ混合器の後段に、スタティックミキサを備えた、請求項6から8のいずれかに記載の二酸化炭素を用いた塗装装置。
  10.  混合後の混合物が、塗料に二酸化炭素が溶解した1相混合物である、請求項1から9のいずれかに記載の二酸化炭素を用いた塗装装置。
  11.  塗料が、紫外線硬化型塗料、一液硬化型塗料、又は二液硬化型塗料である、請求項1から10のいずれかに記載の二酸化炭素を用いた塗装装置。
  12.  請求項1から11のいずれかに記載の塗装装置を使用して二酸化炭素を用いた塗装を行う方法であって、噴霧制御を行う塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧に設定し、噴霧圧制御を行わない塗料高圧ポンプあるいはCO高圧ポンプの吐出側の1次圧調整弁を噴霧圧より高い圧力に設定して運転することにより、噴霧圧制御を行わない流体の流量を一定とし、噴霧圧制御を行う流体の流量を、噴霧ノズルのオリフィスの流量特性に応じて可変として、余剰分をポンプサクションに戻すことを特徴とする二酸化炭素を用いた塗装方法。
  13.  噴霧圧制御を行う流体が、塗料である、請求項12に記載の塗装方法。
  14.  請求項1から11のいずれかに記載の塗装装置を使用して二酸化炭素を用いた塗装を行う方法であって、塗料高圧ポンプ、及び二酸化炭素高圧ポンプの吐出側の1次圧調整弁を噴霧圧力より高く設定して、両ポンプから吐出された流体全量を噴霧させ、噴霧圧力を、噴霧ガンのノズルオリフィスの流量特性に依存して調整することを特徴とする二酸化炭素を用いた塗装方法。
  15.  混合器後から噴霧ガンまでの滞留時間を、少なくとも15秒とすることにより、安定した1相混合物とする、請求項12から14のいずれかに記載の二酸化炭素を用いた塗装方法。
  16.  塗装の中断、あるいは終了時に、塗料/二酸化炭素混合物ラインを閉止し、その閉止弁と噴霧ガンとの間に、その直後、あるいは同時に、二酸化炭素を供給することで、噴霧ガン内の塗料を噴霧ガンの外へ排出させる、請求項12から15に記載の二酸化炭素を用いた塗装方法。
  17.  有機溶剤系の噴霧塗装において用いられる希釈溶剤(シンナー)を、二酸化炭素で一部又は全部を代替する二酸化炭素を用いた一液型又は二液型塗料の塗装装置において、
     塗料供給ラインとして、塗料を貯蔵するタンク、該タンクから供給される塗料を所定の圧力まで加圧する塗料高圧ポンプ、該塗料高圧ポンプの吐出圧を調整し、余剰分を塗料タンクへ返送させる塗料1次圧調整弁、を有し、
     二酸化炭素供給ラインとして、液体二酸化炭素を貯蔵するタンク、該液体二酸化炭素を所定温度まで冷却する冷却器、該冷却器から供給される液体二酸化炭素を所定の圧力まで加圧する液体二酸化炭素高圧ポンプ、該液体二酸化炭素高圧ポンプの吐出圧を調整し、余剰分を同ポンプのサクションに返送させる液体二酸化炭素1次圧調整弁、を有し、
     溶剤供給ラインとして、溶剤タンク、該タンクから供給される溶剤を所定の圧力まで加圧する溶剤高圧ポンプを有し、
     塗料/二酸化炭素混合物ラインとして、上記塗料供給ラインから供給される加圧された塗料、上記二酸化炭素供給ラインから供給される加圧された二酸化炭素とを混合する混合器、及び該混合器から供給される混合後の塗料/二酸化炭素加圧混合物を大気圧下の塗装対象物へ噴霧する噴霧ガン、を有する装置であって、
     塗料との混合を行う前に、二酸化炭素に、あらかじめ有機溶剤を添加するようにしたことを特徴とする二酸化炭素を用いた塗装装置。
  18.  塗料が、一液硬化型塗料、又は二液硬化型塗料である、請求項17記載の二酸化炭素を用いた塗装装置。
  19.  有機溶剤が、一液硬化型塗料、又は二液硬化型塗料の真溶剤である、請求項17又は18記載の二酸化炭素を用いた塗装装置。
  20.  有機溶剤の添加を、液体二酸化炭素高圧ポンプのサクション部に行う、請求項17から19のいずれかに記載の二酸化炭素を用いた塗装装置。
  21.  有機溶剤の添加を、液体二酸化炭素高圧ポンプのデリベリ部(加圧側)に行う、請求項17から19のいずれかに記載の二酸化炭素を用いた塗装装置。
  22.  有機溶剤の添加を、液体二酸化炭素加熱器の後のラインで行う、請求項17から19のいずれかに記載の二酸化炭素を用いた塗装装置。
  23.  有機溶剤と二酸化炭素との混合を、マイクロ混合器で行う、請求項17から22のいずれかに記載の二酸化炭素を用いた塗装装置。
  24.  塗料と二酸化炭素を混合するマイクロ混合器が、二重管式マイクロ混合器であり、二酸化炭素が流入する内管の内径が、大きくても0.5mmであり、かつ外管の内径が、2.5mm~5mmの範囲にある、請求項23記載の二酸化炭素を用いた塗装装置。
  25.  塗料と二酸化炭素を混合するマイクロ混合器に接続する二酸化炭素供給ラインの接続部のなるべく近い位置に、逆止弁を備え、塗料の二酸化炭素供給ラインへの逆流を防止する構造を有する、請求項17から24のいずれかに記載の二酸化炭素を用いた塗装装置。
  26.  塗料と二酸化炭素を混合するマイクロ混合器が、流路径が大きくても2mmのT字型マイクロ混合器であり、二酸化炭素を下部から、塗料を上部から対向するように流入させ、混合物を90度横から排出させる構造を有し、内部に逆止のための金属球を備え、塗料の二酸化炭素ラインへの逆流を防止する構造を有する、請求項17から23のいずれかに記載の二酸化炭素を用いた塗装装置。
  27.  塗料と二酸化炭素を混合するマイクロ混合器が、流路径が大きくても2mmのT字型マイクロ混合器であり、二酸化炭素を下部から、塗料を90度横から流入させ、混合物を上方へ排出させる構造を有し、内部に逆止のための金属球を備え、塗料の二酸化炭素ラインへの逆流を防止する構造を有する、請求項17から23に記載の二酸化炭素を用いた塗装装置。
  28.  請求項17から27のいずれかに記載の塗装装置を使用して二酸化炭素を用いた一液型又は二液型塗料の塗装を行う方法であって、当該塗装装置において、二酸化炭素に、あらかじめ塗料の真溶剤成分を少なくとも飽和溶解量添加し、二酸化炭素の真溶剤成分に対する溶解力を低下させることで、逆流して進入してきた塗料成分のポリマーの析出を防止することを特徴とする二酸化炭素を用いた塗装方法。
  29.  真溶剤成分を、二酸化炭素重量当たり20~50%の範囲で添加する、請求項28記載の二酸化炭素を用いた塗装方法。
  30.  塗料が、一液硬化型塗料、又は二液硬化型塗料である、請求項27又は28に記載の二酸化炭素を用いた塗装方法。
     
PCT/JP2010/002336 2009-03-31 2010-03-30 二酸化炭素塗装方法及びその装置 WO2010113489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/258,972 US8864044B2 (en) 2009-03-31 2010-03-30 Carbon dioxide coating method and device therefor
EP10758269.4A EP2415529B1 (en) 2009-03-31 2010-03-30 Carbon dioxide coating method and device therefor
CN201080014234.1A CN102369067B (zh) 2009-03-31 2010-03-30 二氧化碳涂装方法及其装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-088479 2009-03-31
JP2009-088501 2009-03-31
JP2009088479A JP5429928B2 (ja) 2009-03-31 2009-03-31 二酸化炭素塗装方法及びその装置
JP2009088501A JP5429929B2 (ja) 2009-03-31 2009-03-31 二酸化炭素を用いた一液型・二液型塗料の塗装方法及びその装置

Publications (1)

Publication Number Publication Date
WO2010113489A1 true WO2010113489A1 (ja) 2010-10-07

Family

ID=42827799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002336 WO2010113489A1 (ja) 2009-03-31 2010-03-30 二酸化炭素塗装方法及びその装置

Country Status (5)

Country Link
US (1) US8864044B2 (ja)
EP (1) EP2415529B1 (ja)
CN (1) CN102369067B (ja)
TW (1) TWI531412B (ja)
WO (1) WO2010113489A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086150A (ja) * 2010-10-19 2012-05-10 National Institute Of Advanced Industrial Science & Technology 二酸化炭素塗装方法及びその装置
JP2012086151A (ja) * 2010-10-19 2012-05-10 National Institute Of Advanced Industrial Science & Technology 二酸化炭素塗装方法及びその装置
JP2012086175A (ja) * 2010-10-20 2012-05-10 Miyagi Prefecture 被膜形成方法及び被膜
JP2014223599A (ja) * 2013-05-17 2014-12-04 Dic株式会社 低粘度塗料の塗装方法
JP5923677B1 (ja) * 2016-03-09 2016-05-24 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、コーティング液組成物の製造装置、及び、二酸化炭素含有コーティング液組成物調製用組成物
JP2016093807A (ja) * 2015-11-11 2016-05-26 昭和電工ガスプロダクツ株式会社 塗装装置
JP2016101580A (ja) * 2015-11-11 2016-06-02 昭和電工ガスプロダクツ株式会社 塗装装置
JP5972435B1 (ja) * 2015-07-29 2016-08-17 長瀬産業株式会社 コーティング液組成物、コーティング液組成物の製造方法、及び、コーティング液組成物調製用組成物
JP6130016B1 (ja) * 2016-04-20 2017-05-17 昭和電工ガスプロダクツ株式会社 塗装装置、塗装方法及び混合物の製造方法
JP6159493B1 (ja) * 2017-01-19 2017-07-05 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、及びコーティング液組成物の製造装置
JP2017144409A (ja) * 2016-02-19 2017-08-24 東洋紡株式会社 紫外線硬化型塗料の塗工方法および紫外線硬化膜の製造方法
JP6235749B1 (ja) * 2017-07-07 2017-11-22 長瀬産業株式会社 塗装ガン、塗装装置、及び塗装方法
WO2019031188A1 (ja) * 2017-08-10 2019-02-14 東洋紡株式会社 紫外線硬化型塗料の塗工方法、紫外線硬化膜の製造方法および積層フィルムの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006448B1 (ja) * 2016-03-28 2016-10-12 長瀬産業株式会社 塗装装置
JP5982074B1 (ja) * 2016-05-06 2016-08-31 長瀬産業株式会社 塗装装置
CN107983552A (zh) * 2017-12-19 2018-05-04 贵州航天乌江机电设备有限责任公司 一种采用液压二氧化碳为溶剂的喷涂设备
JP6516902B1 (ja) * 2018-06-08 2019-05-22 長瀬産業株式会社 塗装装置及び塗装方法
CN108693187B (zh) * 2018-06-21 2023-12-19 上海工程技术大学 一种用于散纤维连续取样的动态循环装置及其使用方法
CN108855663B (zh) * 2018-08-03 2020-11-13 大连理工大学 一种离子液体掺混高压二氧化碳作混合溶剂的涂料喷涂系统及方法
CN109550610A (zh) * 2018-12-03 2019-04-02 贵州航天特种车有限责任公司 一种超临界二氧化碳流体喷涂设备
CN113369061A (zh) * 2021-06-21 2021-09-10 中铁十一局集团桥梁有限公司 防水涂料自动喷涂机
CN114605088B (zh) * 2022-01-26 2024-03-15 无锡市光创光电科技有限公司 一种基于光纤保护的碳涂保护设备
CN114570582A (zh) * 2022-03-04 2022-06-03 山东中清智能科技股份有限公司 一种供漆回收清洗一体化装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107165A (ja) * 1981-12-07 1983-06-25 アダム・ミユ−ラ− 透明なタバコ芳香油をタバコ抽出物から取得する方法
JPH01258770A (ja) 1987-12-21 1989-10-16 Union Carbide Corp コーテイングの液体噴霧塗布における希釈剤としての超臨界性流体
JPH0261845A (ja) 1988-08-26 1990-03-01 Mitsubishi Electric Corp 光磁気記録媒体駆動装置
JPH06228473A (ja) * 1992-10-19 1994-08-16 Nordson Corp コーティング材料調合物内での固形沈殿物の生成防止方法及び装置
JPH0838979A (ja) * 1994-08-02 1996-02-13 Honda Motor Co Ltd 塗料循環装置
JP2670904B2 (ja) 1989-03-22 1997-10-29 ユニオン カーバイド ケミカルズ アンド プラスティックス カンパニー インコーポレイテッド 希釈剤としての超臨界流体と共に吹付けるのに適したプリカーサーコーティング組成物
JP2739548B2 (ja) 1992-12-18 1998-04-15 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション 圧縮流体と固体ポリマーを含む溶剤含有組成物とを混合する方法
JP2785099B2 (ja) 1992-12-18 1998-08-13 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション ポリマー組成物を溶媒排出を少なくしかつ噴霧を高めてスプレーする方法
JP2807927B2 (ja) 1994-11-02 1998-10-08 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション 非圧縮性及び圧縮性流体を配分及び混合する方法及び装置
JP2004000833A (ja) * 2002-05-31 2004-01-08 Kao Corp 塗布物の製造法
JP2008012453A (ja) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology 高温高圧マイクロミキサー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN158943B (ja) * 1981-12-07 1987-02-21 Mueller Adam
US5106650A (en) * 1988-07-14 1992-04-21 Union Carbide Chemicals & Plastics Technology Corporation Electrostatic liquid spray application of coating with supercritical fluids as diluents and spraying from an orifice
US5203843A (en) * 1988-07-14 1993-04-20 Union Carbide Chemicals & Plastics Technology Corporation Liquid spray application of coatings with supercritical fluids as diluents and spraying from an orifice
US5009367A (en) * 1989-03-22 1991-04-23 Union Carbide Chemicals And Plastics Technology Corporation Methods and apparatus for obtaining wider sprays when spraying liquids by airless techniques
KR940011563B1 (ko) 1989-09-27 1994-12-21 유니온 카바이드 케미칼즈 앤드 플라스틱스 캄파니 인코포레이티드 비압축성 및 압축성 유체를 계량 및 혼합하기 위한 방법 및 장치
US5171613A (en) * 1990-09-21 1992-12-15 Union Carbide Chemicals & Plastics Technology Corporation Apparatus and methods for application of coatings with supercritical fluids as diluents by spraying from an orifice
US5197800A (en) * 1991-06-28 1993-03-30 Nordson Corporation Method for forming coating material formulations substantially comprised of a saturated resin rich phase
JPH0657336A (ja) 1992-08-13 1994-03-01 Kobe Steel Ltd 高加工用高強度合金化溶融亜鉛めっき鋼板の製造方法
US5407267A (en) 1992-12-30 1995-04-18 Nordson Corporation Method and apparatus for forming and dispensing coating material containing multiple components

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107165A (ja) * 1981-12-07 1983-06-25 アダム・ミユ−ラ− 透明なタバコ芳香油をタバコ抽出物から取得する方法
JPH01258770A (ja) 1987-12-21 1989-10-16 Union Carbide Corp コーテイングの液体噴霧塗布における希釈剤としての超臨界性流体
JPH0657336B2 (ja) * 1987-12-21 1994-08-03 ユニオン・カーバイド・コーポレーシヨン コーテイングの液体噴霧塗布における希釈剤としての超臨界性流体
JPH0261845A (ja) 1988-08-26 1990-03-01 Mitsubishi Electric Corp 光磁気記録媒体駆動装置
JP2670904B2 (ja) 1989-03-22 1997-10-29 ユニオン カーバイド ケミカルズ アンド プラスティックス カンパニー インコーポレイテッド 希釈剤としての超臨界流体と共に吹付けるのに適したプリカーサーコーティング組成物
JPH06228473A (ja) * 1992-10-19 1994-08-16 Nordson Corp コーティング材料調合物内での固形沈殿物の生成防止方法及び装置
JP2739548B2 (ja) 1992-12-18 1998-04-15 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション 圧縮流体と固体ポリマーを含む溶剤含有組成物とを混合する方法
JP2785099B2 (ja) 1992-12-18 1998-08-13 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション ポリマー組成物を溶媒排出を少なくしかつ噴霧を高めてスプレーする方法
JPH0838979A (ja) * 1994-08-02 1996-02-13 Honda Motor Co Ltd 塗料循環装置
JP2807927B2 (ja) 1994-11-02 1998-10-08 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション 非圧縮性及び圧縮性流体を配分及び混合する方法及び装置
JP2004000833A (ja) * 2002-05-31 2004-01-08 Kao Corp 塗布物の製造法
JP2008012453A (ja) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology 高温高圧マイクロミキサー

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012086151A (ja) * 2010-10-19 2012-05-10 National Institute Of Advanced Industrial Science & Technology 二酸化炭素塗装方法及びその装置
JP2012086150A (ja) * 2010-10-19 2012-05-10 National Institute Of Advanced Industrial Science & Technology 二酸化炭素塗装方法及びその装置
JP2012086175A (ja) * 2010-10-20 2012-05-10 Miyagi Prefecture 被膜形成方法及び被膜
JP2014223599A (ja) * 2013-05-17 2014-12-04 Dic株式会社 低粘度塗料の塗装方法
JP5972435B1 (ja) * 2015-07-29 2016-08-17 長瀬産業株式会社 コーティング液組成物、コーティング液組成物の製造方法、及び、コーティング液組成物調製用組成物
WO2017017860A1 (ja) * 2015-07-29 2017-02-02 長瀬産業株式会社 コーティング液組成物、コーティング液組成物の製造方法、及び、コーティング液組成物調製用組成物
JP2017031251A (ja) * 2015-07-29 2017-02-09 長瀬産業株式会社 コーティング液組成物、コーティング液組成物の製造方法、及び、コーティング液組成物調製用組成物
JP2016093807A (ja) * 2015-11-11 2016-05-26 昭和電工ガスプロダクツ株式会社 塗装装置
JP2016101580A (ja) * 2015-11-11 2016-06-02 昭和電工ガスプロダクツ株式会社 塗装装置
JP2017144409A (ja) * 2016-02-19 2017-08-24 東洋紡株式会社 紫外線硬化型塗料の塗工方法および紫外線硬化膜の製造方法
US11267017B2 (en) 2016-02-19 2022-03-08 Toyobo Co., Ltd. Method for applying ultraviolet curable coating material and method for producing ultraviolet cured film
WO2017141467A1 (ja) * 2016-02-19 2017-08-24 東洋紡株式会社 紫外線硬化型塗料の塗工方法および紫外線硬化膜の製造方法
JP2017160324A (ja) * 2016-03-09 2017-09-14 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、コーティング液組成物の製造装置、及び、二酸化炭素含有コーティング液組成物調製用組成物
WO2017154222A1 (ja) * 2016-03-09 2017-09-14 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、コーティング液組成物の製造装置、及び、二酸化炭素含有コーティング液組成物調製用組成物
US10696853B2 (en) 2016-03-09 2020-06-30 Nagase & Co., Ltd. Coating fluid composition, method for forming coating film, process for producing coating fluid composition, device for producing coating fluid composition, and composition for preparing coating fluid composition containing carbon dioxide
JP5923677B1 (ja) * 2016-03-09 2016-05-24 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、コーティング液組成物の製造装置、及び、二酸化炭素含有コーティング液組成物調製用組成物
JP6130016B1 (ja) * 2016-04-20 2017-05-17 昭和電工ガスプロダクツ株式会社 塗装装置、塗装方法及び混合物の製造方法
JP2017192900A (ja) * 2016-04-20 2017-10-26 昭和電工ガスプロダクツ株式会社 塗装装置、塗装方法及び混合物の製造方法
JP6159493B1 (ja) * 2017-01-19 2017-07-05 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、及びコーティング液組成物の製造装置
JP2018115277A (ja) * 2017-01-19 2018-07-26 長瀬産業株式会社 コーティング液組成物、コーティング膜の形成方法、コーティング液組成物の製造方法、及びコーティング液組成物の製造装置
JP6235749B1 (ja) * 2017-07-07 2017-11-22 長瀬産業株式会社 塗装ガン、塗装装置、及び塗装方法
JP2019013894A (ja) * 2017-07-07 2019-01-31 長瀬産業株式会社 塗装ガン、塗装装置、及び塗装方法
WO2019031188A1 (ja) * 2017-08-10 2019-02-14 東洋紡株式会社 紫外線硬化型塗料の塗工方法、紫外線硬化膜の製造方法および積層フィルムの製造方法

Also Published As

Publication number Publication date
EP2415529A4 (en) 2014-03-19
TW201103638A (en) 2011-02-01
US20120097751A1 (en) 2012-04-26
CN102369067A (zh) 2012-03-07
US8864044B2 (en) 2014-10-21
EP2415529B1 (en) 2017-08-30
EP2415529A1 (en) 2012-02-08
CN102369067B (zh) 2015-02-18
TWI531412B (zh) 2016-05-01

Similar Documents

Publication Publication Date Title
WO2010113489A1 (ja) 二酸化炭素塗装方法及びその装置
JP5429928B2 (ja) 二酸化炭素塗装方法及びその装置
JP5608864B2 (ja) 二酸化炭素塗装方法及びその装置
JP5429929B2 (ja) 二酸化炭素を用いた一液型・二液型塗料の塗装方法及びその装置
JP5568801B2 (ja) 二酸化炭素塗装方法及びその装置
US4923720A (en) Supercritical fluids as diluents in liquid spray application of coatings
KR940011563B1 (ko) 비압축성 및 압축성 유체를 계량 및 혼합하기 위한 방법 및 장치
CA2111787C (en) Methods for admixing compressed fluids with solvent-borne compositions comprising solid polymers
AU627200B2 (en) Liquid spray application of coatings with supercritical fluids as diluents and spraying from an orifice
US6828363B2 (en) Process for the preparation of powder coating compositions
JPH06228473A (ja) コーティング材料調合物内での固形沈殿物の生成防止方法及び装置
KR20180105684A (ko) 자외선 경화형 도료의 도공방법 및 자외선 경화막의 제조방법
CN111822312A (zh) 一种双组分高固含量涂料的喷涂方法
CA2058169C (en) Subcritical compressed fluids as viscosity reducing diluents for transportable compositions
JP5660605B2 (ja) 高圧二酸化炭素と高粘度有機性流体の連続混合方法及びその装置
JP6358589B2 (ja) 低粘度塗料の塗装方法
JP6374594B1 (ja) 塗装方法及びコーティング組成物
CN102202799A (zh) 用于将催化剂引入到雾化涂料组合物中的装置
JP6251442B1 (ja) 塗装方法及び塗装装置
JP6496443B1 (ja) 二酸化炭素塗装用水性塗料、コーティング組成物、及び塗装方法
JP2012224700A (ja) 非球形樹脂微粒子の製造方法
JP6850460B2 (ja) 塗装方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014234.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010758269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010758269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258972

Country of ref document: US