WO2010113269A1 - 触媒劣化判定装置及び触媒劣化判定方法 - Google Patents

触媒劣化判定装置及び触媒劣化判定方法 Download PDF

Info

Publication number
WO2010113269A1
WO2010113269A1 PCT/JP2009/056678 JP2009056678W WO2010113269A1 WO 2010113269 A1 WO2010113269 A1 WO 2010113269A1 JP 2009056678 W JP2009056678 W JP 2009056678W WO 2010113269 A1 WO2010113269 A1 WO 2010113269A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nox
deterioration
ratio
temperature
Prior art date
Application number
PCT/JP2009/056678
Other languages
English (en)
French (fr)
Inventor
大河 萩本
柴田 大介
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010510602A priority Critical patent/JP4985849B2/ja
Priority to US12/677,267 priority patent/US8347604B2/en
Priority to PCT/JP2009/056678 priority patent/WO2010113269A1/ja
Priority to CN2009801003108A priority patent/CN101918686B/zh
Priority to EP09815424.8A priority patent/EP2415983B1/en
Publication of WO2010113269A1 publication Critical patent/WO2010113269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a catalyst deterioration determination device and a catalyst deterioration determination method.
  • the determination with higher accuracy is made in consideration of the deterioration degree of the oxidation catalyst.
  • the NOx in accordance with a ratio between NO and NO 2 flowing into the selective reduction type NOx catalyst
  • the purification rate changes. Since the ratio of NO to NO 2 varies depending on the degree of deterioration of the oxidation catalyst, even if the NOx purification rate in the selective reduction type NOx catalyst is reduced, the oxidation catalyst may be deteriorated. . In other words, it is important to determine which catalyst has deteriorated.
  • JP 2001-263048 A JP 2005-23921 A JP 2004-100700 A Special table 2008-523305 gazette
  • the present invention has been made in view of the above-described problems, and provides a technique capable of accurately determining the degree of catalyst deterioration when a plurality of catalysts are provided in an exhaust passage of an internal combustion engine. With the goal.
  • the catalyst deterioration determination apparatus employs the following means. That is, the catalyst deterioration determination apparatus according to the present invention is A selective reduction type NOx catalyst that is provided in an exhaust passage of the internal combustion engine and selectively reduces NOx by a reducing agent; A catalyst provided upstream of the selective reduction type NOx catalyst and having an oxidation ability; Reducing agent supply means for supplying a reducing agent into the exhaust gas upstream of the selective reduction type NOx catalyst; Upstream detection means for detecting the NOx concentration in the exhaust gas downstream of the catalyst having oxidation capability and upstream of the selective reduction type NOx catalyst; Downstream detection means for detecting the NOx concentration in the exhaust downstream of the selective reduction type NOx catalyst; With Estimating means for estimating a ratio of NO 2 in NOx flowing into the selective reduction type NOx catalyst when it is assumed that the degree of deterioration of the catalyst having oxidation ability is a specified value; Based on the NOx concentration detected by the upstream side detection unit and the downstream
  • the selective reduction type NOx catalyst selectively reduces NOx using, for example, ammonia as a reducing agent.
  • the reducing agent supply means may include an injection device that injects ammonia or urea water, for example.
  • the upstream detection means may estimate the NOx concentration based on the operating state of the internal combustion engine, for example, or may measure it with a sensor. Even if the exhaust gas passes through a catalyst having oxidation ability, the NOx concentration in the exhaust gas does not change. Therefore, the NOx concentration upstream of the catalyst having oxidation ability and the downstream NOx concentration may be equal.
  • the downstream side detection means measures the NOx concentration after the NOx is purified by the selective reduction type NOx catalyst, for example, with a sensor. Note that the NOx includes NO and NO 2. A reducing agent may be supplied based on this NOx concentration.
  • the ratio of NO 2 in the NOx flowing out of the catalyst changes according to the degree of deterioration of the catalyst having oxidation ability. That is, NO is oxidized to NO 2 when passing through a catalyst having oxidation ability, but the rate at which NO is oxidized to NO 2 varies depending on the degree of deterioration of the catalyst. For this reason, the ratio of NO 2 in NOx flowing into the selective reduction type NOx catalyst varies depending on the degree of deterioration of the catalyst having oxidation ability.
  • the estimation means estimates the ratio of NO 2 in NOx on the assumption that the degree of deterioration of the catalyst having oxidation ability is a specified value. This specified value is a value assumed to obtain the relationship between the NOx purification rate in the selective reduction type NOx catalyst and the ratio of NO 2 in NOx flowing into the selective reduction type NOx catalyst, and is an arbitrary value. Can be used.
  • the NOx concentration is detected by the upstream detection means, and the ratio of NO 2 in the NOx is provisionally determined by the estimation means. That is, since the degree of deterioration of the catalyst having oxidation ability is not known, the ratio of NO 2 in NOx flowing into the selective reduction NOx catalyst is provisionally determined. Then, the relationship between the NOx purification rate in the selective reduction type NOx catalyst and the ratio of NO 2 in NOx flowing into the selective reduction type NOx catalyst is obtained.
  • the purification rate of NOx in the selective reduction type NOx catalyst varies depending on the temperature of the selective reduction type NOx catalyst and the ratio of NO 2 in NOx.
  • NO and NO 2 are purified by substantially the same amount, so that the ratio of NO 2 is a specific value (for example, around 50%).
  • the NOx purification rate is maximized.
  • the reference value in the present invention is the actual ratio of NO 2 at which the NOx purification rate in the selective reduction type NOx catalyst becomes a maximum value. This reference value is, for example, 50% or the vicinity thereof, but may vary depending on the state and type of the catalyst, and may be obtained by experiments or the like.
  • the actual NO 2 ratio at which the NOx purification rate reaches a maximum value does not change even if the degree of deterioration of the selective reduction NOx catalyst increases. That is, when the selective reduction type NOx catalyst deteriorates, the NOx purification rate decreases, but the NOx purification rate becomes maximum when the NO 2 ratio is the reference value.
  • the calculating means obtains the maximum value of the purification rate by calculating the NOx purification rate a plurality of times when the NO 2 ratio is different. That is, since the purification rate of NOx is changed by the ratio of NO 2, to obtain the maximum value by calculating a plurality of times the relationship between the ratio of the purification rate and NO 2 of NOx.
  • This maximum value is a value when the deterioration degree of the catalyst having oxidation ability is assumed to be a specified value.
  • the NOx purification rate in the selective reduction type NOx catalyst becomes a maximum value when the ratio of NO 2 is the reference value, but this is not the case when the assumed ratio of NO 2 is different from the actual value. .
  • the ratio of NO 2 at which the NOx purification rate becomes the maximum value deviates from the reference value.
  • This shift is the actual ratio of NO 2
  • the ratio of NO 2 which is estimated by the estimating means increases in accordance with the difference. That is, as the difference between the actual deterioration degree of the catalyst having oxidation ability and the specified value increases, the ratio of NO 2 at which the NOx purification rate becomes the maximum value deviates from the reference value.
  • the oxidation ability is based on this deviation.
  • the degree of deterioration of the catalyst having it may be determined that the degree of deterioration is larger as the ratio of NO 2 at which the NOx purification rate becomes the maximum value becomes larger than the reference value.
  • the maximum value of the NOx purification rate in the selective reduction type NOx catalyst it is possible to determine the degree of deterioration of the catalyst having oxidation ability regardless of the degree of deterioration of the selective reduction type NOx catalyst. That is, it is possible to determine the deterioration of the catalyst having oxidation ability without being affected by the degree of deterioration of the selective reduction type NOx catalyst.
  • the degree of deterioration of the catalyst having oxidation ability is determined by comparing the ratio of NO 2 estimated by the estimation means when the NOx purification rate in the selective reduction type NOx catalyst reaches a maximum value and the reference value of the ratio. In this case, it may be determined from these differences, or may be determined from these ratios.
  • the degree of deterioration of the catalyst having oxidation ability is determined using the ratio of NO 2 in NOx. Instead, the degree of deterioration is determined using the ratio of NO in NOx. You can also. That is, if NOx is made of NO and NO 2 Prefecture, the larger the proportion of NO 2 in NOx, the ratio of the amount NO is reduced. Using this relationship, the degree of deterioration can be determined using the ratio of NO in NOx.
  • the calculating means can calculate the NOx purification rate when the temperature detected by the temperature detecting means is within a predetermined range.
  • the temperature detecting means may estimate the temperature from the operating state of the internal combustion engine, or may measure the temperature with a sensor.
  • the predetermined range refers to a range where NO and NO 2 react by the same amount.
  • the amount of each of NO or NO 2 being reduced varies depending on the temperature of the selective reduction type NOx catalyst.
  • the temperature range where NO and NO 2 react by the same amount is the predetermined range. With such that the NO and NO 2 determined the relationship between the ratio of NOx purification rate and NO 2 in the range of temperature at which the reaction by the same amount, it is possible to obtain the maximum value of the NOx purification rate. If the temperature of the selective reduction type NOx catalyst is within this predetermined range, the ratio of NO 2 at which the NOx purification rate reaches the maximum value is the same regardless of the degree of deterioration of the catalyst having oxidation ability. That is, since the maximum value of the NOx purification rate can be obtained by calculating the NOx purification rate at a temperature within a predetermined range, the degree of deterioration of the oxidation catalyst can be easily determined.
  • temperature detection means for detecting the temperature of the selective reduction type NOx catalyst
  • a ratio calculating means for calculating a ratio of NO 2 in NOx flowing into the selective reduction type NOx catalyst based on the degree of deterioration determined by the determining means
  • Activity determination means for determining that the temperature of the selective reduction type NOx catalyst has reached a complete activation temperature based on the temperature detected by the temperature detection means
  • Degree of deterioration of the selective reduction type NOx catalyst by comparing the complete activation temperature when the ratio of NO 2 calculated by the ratio calculation means is within a specified range and a reference value of the complete activation temperature NOx catalyst deterioration determining means for determining Can be provided.
  • the ratio calculation means can accurately calculate the actual ratio of NO 2 in NOx flowing into the selective reduction NOx catalyst.
  • the NOx purification rate increases as the temperature rises until the full activation temperature is reached, but after reaching the full activation temperature, the NOx purification rate almost increases even if the temperature rises. do not do. That is, the complete activation temperature can be a temperature at which the NOx purification rate does not change even if the temperature is further increased. This may be the lower limit value of the temperature at which the increase value of the NOx purification rate with respect to the temperature increase value is equal to or less than a predetermined value. Alternatively, the lower limit value of the temperature at which the NOx purification rate is saturated may be used. That is, for example, when the NOx purification rate hardly increases even if the temperature of the selective reduction NOx catalyst rises, the activity determination means determines that the temperature of the selective reduction NOx catalyst has reached the complete activation temperature.
  • the complete activation temperature increases and the NOx purification rate when the complete activation temperature is reached decreases. That is, the temperature at which the NOx purification rate becomes the highest becomes higher according to the degree of deterioration.
  • a reference value for the complete activation temperature is determined in advance, the complete activation temperature determined by the activity determination means is compared with the reference value. By doing so, the degree of deterioration of the selective reduction type NOx catalyst can be determined.
  • This reference value can be an arbitrary value.
  • it may be a complete activation temperature at the time of a new article, or may be a complete activation temperature at a specified degree of deterioration, and a complete activation when the degree of deterioration is an acceptable limit. It may be the activation temperature. Then, it may be determined that the degree of deterioration is greater as the complete activation temperature is higher than the reference value.
  • the degree of deterioration of the selective catalytic reduction NOx catalyst is determined by comparing the complete activation temperature with the reference value of the complete activation temperature. In this case, it may be determined from these differences. You may judge from.
  • the NOx catalyst deterioration determining means determines the degree of deterioration based on the complete activation temperature when the NO 2 ratio calculated by the ratio calculating means is within a specified range. That is, by specifying the range of the NO 2 ratio, the degree of deterioration can be determined more accurately.
  • the specified range refers to a range of the ratio of NO 2 in which the complete activation temperature can be obtained from the relationship between the temperature of the selective reduction type NOx catalyst and the NOx purification rate.
  • the NO 2 ratio may be 50% or the vicinity thereof.
  • the degree of deterioration of the selective reduction type NOx catalyst is determined using the ratio of NO 2 in NOx. Instead, the degree of deterioration is determined using the ratio of NO in NOx. You can also.
  • the estimating means estimates the NO 2 ratio using the specified value of the degree of deterioration of the catalyst having the oxidation ability as an allowable limit value
  • the determination means determines the catalyst having the oxidation ability when the ratio of NO 2 estimated by the estimation means when the NOx purification rate in the selective reduction NOx catalyst reaches a maximum value is larger than a reference value. It can be determined that the degree of deterioration exceeds an acceptable limit.
  • the degree of deterioration of the oxidation catalyst is determined by determining whether or not the ratio of NO 2 estimated by the estimating means when the NOx purification rate in the selective reduction type NOx catalyst reaches the maximum value is larger than the reference value. It can be determined whether an acceptable limit is exceeded. It can be determined that the degree of deterioration of the catalyst having oxidation ability increases as the ratio of NO 2 estimated by the estimating means when the NOx purification rate reaches the maximum value increases from the reference value.
  • the NO 2 ratio estimated by the estimating means when the NOx purification rate is the maximum value is smaller than the reference value, it can be determined that the degree of deterioration of the catalyst having oxidation ability is acceptable. Then, it can be determined that the degree of deterioration of the catalyst having oxidation ability is smaller as the NO 2 ratio is smaller than the reference value.
  • the NOx catalyst deterioration determining means sets the reference value of the complete activation temperature as a complete activation temperature when the degree of deterioration of the selective reduction type NOx catalyst is an allowable limit, When the complete activation temperature is higher than the reference value, it can be determined that the degree of deterioration of the selective reduction type NOx catalyst exceeds an allowable limit.
  • the degree of deterioration of the selective reduction type NOx catalyst exceeds an allowable limit by determining whether or not the complete activation temperature is higher than the reference value. Then, it can be determined that the degree of deterioration of the selective reduction type NOx catalyst increases as the complete activation temperature becomes higher than the reference value.
  • the complete activation temperature is lower than the reference value, it can be determined that the degree of deterioration of the selective reduction NOx catalyst is acceptable. Then, it can be determined that the degree of deterioration of the selective reduction NOx catalyst is smaller as the complete activation temperature is smaller than the reference value.
  • the catalyst degradation determination method employs the following means. That is, the NOx catalyst deterioration determining method according to the present invention is: The ratio of NO 2 in NOx flowing into the selective reduction NOx catalyst when it is assumed that the degree of deterioration of the catalyst having oxidation ability provided upstream from the selective reduction type NOx catalyst is a specified value A first step of estimating A second step of calculating a NOx purification rate in the selective reduction type NOx catalyst a plurality of times until at least a maximum value is obtained; The catalyst having the oxidation ability by comparing the ratio of NO 2 obtained in the first step when the NOx purification rate in the selective reduction type NOx catalyst reaches a maximum value and the reference value of the ratio A third step of determining the degree of deterioration of It is characterized by including.
  • a sixth step of determining the degree of deterioration of the reduced NOx catalyst It may be comprised including.
  • the degree of catalyst deterioration can be accurately obtained.
  • FIG. 3 is a diagram showing the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst when the NOx catalyst is normal and the NOx purification rate in the NOx catalyst for each temperature of the NOx catalyst.
  • FIG. 5 is a diagram showing the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst when the NOx catalyst is deteriorated and the NOx purification rate in the NOx catalyst for each temperature of the NOx catalyst.
  • 6 is a map for obtaining the ratio of NO 2 using the temperature of the oxidation catalyst and the intake air amount of the internal combustion engine as parameters.
  • 6 is a map showing an example of the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst and the NOx purification rate in the NOx catalyst.
  • FIG. 7 is a map when points are entered before the maximum value of the NOx purification rate can be determined with respect to the map of FIG. 6.
  • a temperature of the oxidation catalyst (bed temperature) is a diagram showing the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst. It is a diagram showing the relationship between the ratio of NO 2 in NOx flowing into the degree of deterioration and the NOx catalyst of the oxidation catalyst.
  • FIG. 8 is a map after correcting the relationship shown in FIG. 7 based on the degree of deterioration of the oxidation catalyst. It is the figure which showed the relationship between the temperature (bed temperature) of a NOx catalyst, and the purification rate of NOx in a NOx catalyst. It is the flowchart which showed the flow of deterioration determination of the oxidation catalyst which concerns on an Example. It is the flowchart which showed the flow of deterioration determination of the NOx catalyst which concerns on an Example.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its exhaust system according to the present embodiment.
  • the internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders.
  • a urea SCR system is employed.
  • the exhaust passage 2 is connected to the internal combustion engine 1.
  • an oxidation catalyst 3 and a selective reduction type NOx catalyst 4 (hereinafter referred to as NOx catalyst 4) are provided in order from the upstream side.
  • the oxidation catalyst 3 may be another catalyst having oxidation ability (for example, a three-way catalyst). In this embodiment, the oxidation catalyst 3 corresponds to a catalyst having oxidation ability in the present invention.
  • an injection valve 5 for injecting urea water into the exhaust gas is attached to the exhaust passage 2 downstream of the oxidation catalyst 3 and upstream of the NOx catalyst 4.
  • the injection valve 5 is opened by a signal from the ECU 10 described later and injects urea water into the exhaust gas.
  • the injection valve 5 corresponds to the reducing agent supply means in the present invention.
  • the urea water injected from the injection valve 5 is hydrolyzed by the heat of the exhaust to become ammonia (NH 3 ) and is adsorbed on the NOx catalyst 4. This NH 3 reduces NOx.
  • a first NOx sensor 7 for measuring the NOx concentration in the exhaust is attached to the exhaust passage 2 downstream of the oxidation catalyst 3 and upstream of the injection valve 5.
  • a second NOx sensor 8 that measures the NOx concentration in the exhaust and a temperature sensor 9 that measures the temperature of the exhaust are attached to the exhaust passage 2 downstream of the NOx catalyst 4.
  • the first NOx sensor 7 corresponds to the upstream side detection means in the present invention.
  • the second NOx sensor 8 corresponds to the downstream side detection means in the present invention.
  • the temperature sensor 9 corresponds to the temperature detecting means in the present invention.
  • the NOx concentration may be estimated based on the operating state of the internal combustion engine 1.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.
  • the ECU 10 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 11 by the driver to detect the engine load, and an accelerator position sensor 12 for detecting the engine speed. 13 are connected via electric wiring, and the output signals of these various sensors are input to the ECU 10.
  • the injection valve 5 is connected to the ECU 10 via electric wiring, and the ECU 10 controls the opening and closing timing of the injection valve 5.
  • the NOx purification rate in the NOx catalyst 4 changes according to the ratio of NO 2 in NOx and the temperature of the NOx catalyst 4.
  • the following reaction is considered to occur depending on the temperature. 6NO 2 + 8NH 3 ⁇ 7N 2 + 12H 2 O Formula (1) 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O Formula (2) NO + NO 2 + 2NH 3 ⁇ 2N 2 + 3H 2 O Formula (3)
  • the formula (1) is a purification reaction of NO 2 mainly occurring at a high temperature because the reaction rate is slow.
  • Equation (2) is a purification reaction of NO that occurs at a lower temperature than Equation (1) because the reaction rate is slower than that of Equation (1).
  • Formula (3) is a purification reaction of NO and NO 2 that occurs from a lower temperature than Formula (2) because the reaction rate is fast.
  • NO and NO 2 are purified by an equal amount. That is, in the temperature range where the reaction represented by the equation (3) mainly occurs, the NOx purification rate becomes maximum when the ratio of NO to NO 2 is 1: 1.
  • the oxidation catalyst 3 NO is oxidized so that the ratio of NO to NO 2 is 1: 1, that is, the ratio of NO 2 in NOx is 50%. Further, the oxidation ability of the oxidation catalyst 3 is determined so as to obtain such a ratio.
  • the ratio of NO 2 in NOx changes. How much the ratio of NO 2 in NOx changes depends on how much NO 2 is produced in the oxidation catalyst 3. And, as the deterioration of the oxidation catalyst 3 progresses, it becomes difficult for NO 2 to be generated. Further, when the temperature of the oxidation catalyst 3 increases, the oxidation reaction is promoted, so that NO 2 is more easily generated. Further, the higher the exhaust gas flow rate, the more NOx that passes through the oxidation catalyst 3 before reacting with the oxidation catalyst 3, so that NO 2 is less likely to be produced. Note that NO is oxidized to NO 2 when the exhaust gas passes through the oxidation catalyst 3, but the NOx concentration does not change at this time.
  • the ratio of NO 2 in NOx flowing out of the oxidation catalyst 3 i.e., the ratio of NO 2 in NOx flowing into the NOx catalyst 4
  • NO 2 in NOx discharged from the internal combustion engine 1 The temperature of the oxidation catalyst 3, the amount of intake air (which may be the amount of exhaust), and the degree of deterioration of the oxidation catalyst 3 can be estimated.
  • the temperature of the oxidation catalyst 3 may be measured by a sensor, or may be estimated from the operating state of the internal combustion engine 1.
  • the amount of intake air can be measured by attaching an air flow meter. The degree of deterioration of the oxidation catalyst 3 will be described later.
  • the ratio of NO 2 in NOx discharged from the internal combustion engine 1 can be estimated based on the engine speed, the fuel amount (may be engine load), the combustion temperature, and the like. Since a well-known technique can be used for this estimation, description is abbreviate
  • the degree of deterioration of the oxidation catalyst 3 is determined.
  • FIG. 2 is a graph showing the relationship between the temperature (bed temperature) of the NOx catalyst 4 and the NOx purification rate in the NOx catalyst 4.
  • the solid line is the purification rate based only on the reaction of equation (3) and the purification rate when the NOx catalyst 4 is normal.
  • the alternate long and short dash line is the purification rate based only on the reaction of the formula (3) and the purification rate when the NOx catalyst 4 is deteriorated.
  • the alternate long and two short dashes line is the purification rate based only on the reaction of equation (2) and the purification rate when the NOx catalyst 4 is normal.
  • a broken line is a purification rate only by the reaction of the formula (1) and a purification rate when the NOx catalyst 4 is normal.
  • normal means that the degree of deterioration does not exceed an allowable limit.
  • Deteriorating means that the degree of deterioration exceeds an allowable limit.
  • the NOx catalyst 4 has the highest purification rate when the NO 2 ratio is 50%.
  • FIG. 3 shows the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst 4 when the NOx catalyst 4 is normal and the NOx purification rate in the NOx catalyst 4 for each temperature of the NOx catalyst 4.
  • FIG. This relationship is a relationship within the range from T1 to T2 shown in FIG.
  • a solid line indicates a case of 220 degrees Celsius
  • a one-dot chain line indicates a case of 200 degrees Celsius
  • a two-dot chain line indicates a case of 180 degrees Celsius, for example.
  • the NOx purification rate in the NOx catalyst 4 increases as the temperature of the NOx catalyst 4 increases.
  • the NOx purification rate is the highest when the NO 2 ratio is 50%.
  • the purification rate becomes the highest when the temperature of the NOx catalyst 4 is, for example, 220 degrees Celsius, and the NOx purification rate hardly changes even when the temperature is higher than that. That is, when the NOx catalyst 4 is normal, for example, 220 degrees Celsius is the complete activation temperature.
  • FIG. 4 shows the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst 4 and the NOx purification rate in the NOx catalyst 4 when the NOx catalyst 4 is deteriorated. It is the figure shown for every. Similar to FIG. 3, this relationship is a relationship within the range from T1 to T2 shown in FIG. A broken line in addition to FIG. 3 indicates a case of 240 degrees Celsius, for example.
  • the NOx purification rate in the NOx catalyst 4 increases as the temperature of the NOx catalyst 4 increases.
  • the NOx purification rate is the highest when the NO 2 ratio is 50%.
  • the purification rate becomes the highest when the temperature of the NOx catalyst 4 is 240 degrees Celsius, for example, and the purification rate hardly changes even when the temperature is higher than that. That is, when the NOx catalyst 4 is deteriorated, for example, 240 degrees Celsius is the complete activation temperature.
  • the degree of deterioration of the oxidation catalyst 3 is obtained using this relationship.
  • the ratio of NO 2 in NOx flowing into the NOx catalyst 4 when the deterioration degree of the oxidation catalyst 3 is assumed to be a specified value is estimated.
  • the ratio of NO 2 in NO x flowing into the NO x catalyst 4 varies depending on how much NO is oxidized to NO 2 in the oxidation catalyst 3.
  • how much NO is oxidized to NO 2 depends on the degree of deterioration of the oxidation catalyst 3.
  • the degree of deterioration of the oxidation catalyst 3 is unknown.
  • the degree of deterioration of the oxidation catalyst 3 is a specified value, and the ratio of NO 2 in NOx flowing out of the oxidation catalyst 3 at this degree of deterioration is estimated.
  • the ratio of NO 2 in NOx flowing out of the oxidation catalyst 3 to be equal to the ratio of NO 2 in NOx flowing into the NOx catalyst 4.
  • the NO 2 ratio is estimated based on the temperature of the oxidation catalyst 3 and the intake air amount of the internal combustion engine 1.
  • the ratio of NO 2 can be determined. Note that the ratio of NO 2 may be estimated using other parameters.
  • the ratio of NO 2 in NOx flowing into the oxidation catalyst 3 (that is, NO ratio of 2 in the NOx discharged from the internal combustion engine 1) by the ratio of NO 2 in NOx flowing out from the oxidation catalyst 3 change. Therefore, first, the ratio of NO 2 in NOx discharged from the internal combustion engine 1 may be obtained, and this ratio may be changed according to the temperature of the oxidation catalyst 3 and the intake air amount. Since the ratio of NO 2 in NOx discharged from the internal combustion engine 1 changes according to the operating state of the internal combustion engine 1, these relationships are obtained in advance through experiments or the like and mapped.
  • FIG. 5 is a map for determining the ratio of NO 2 using the temperature of the oxidation catalyst 3 and the intake air amount of the internal combustion engine 1 as parameters. This may be a map for correcting by multiplying the ratio of NO 2 in NOx discharged from the internal combustion engine 1. Further, a map including the ratio of NO 2 in NOx discharged from the internal combustion engine 1 may be created. That is, that affect the ratio of NO 2 in NOx flowing into the NOx catalyst 4, for example because the temperature and the intake air amount of the internal combustion engine 1 of the oxidation catalyst 3, the ratio of NO 2 on the basis of these values Is estimated. This relationship is obtained in advance by experiments or the like.
  • the ratio of NO 2 in NOx flowing into the NOx catalyst 4 referred to herein is the ratio of NO 2 obtained on the basis of FIG.
  • a map is created in which the horizontal axis represents the ratio of NO 2 in NOx flowing into the NOx catalyst 4 and the vertical axis represents the NOx purification rate in the NOx catalyst 4. Since the purification rate varies depending on the temperature of the NOx catalyst 4, a map is created for each temperature of the NOx catalyst 4. In this case, the map may be created separately for every 10 degrees Celsius, for example, within a temperature range in which the reaction of Formula (3) is dominant.
  • FIG. 6 is a map showing an example of the relationship between the ratio of NO 2 in NOx flowing into the NOx catalyst 4 and the NOx purification rate in the NOx catalyst 4.
  • the relationship between the NO 2 ratio and the NOx purification rate is obtained a plurality of times, and the respective points are entered in FIG.
  • a plurality of points are entered in the map of FIG. The creation of this map is continued until the maximum value of the NOx purification rate can be determined.
  • FIG. 7 is a map when points are entered before the maximum value of the NOx purification rate can be determined with respect to the map of FIG. As can be seen from FIG. 7, there is a maximum value in the NOx purification rate. As described above, even if the oxidation catalyst 3 deteriorates, the actual NO 2 ratio when the NOx purification rate in the NOx catalyst 4 becomes the highest does not change. That is, if the NO 2 ratio when the NOx purification rate shown in FIG. 7 is the maximum value is deviated from 50%, the actual deterioration degree of the oxidation catalyst 3 is the degree of deterioration used in FIG. It is deviating from the specified value. The larger this deviation is, the larger the difference between the actual degree of deterioration and the specified value.
  • the ratio of NO 2 at the maximum value shown in FIG. 7 is smaller than 50%, the deterioration degree of the oxidation catalyst 3 is smaller than the specified value.
  • the ratio of the maximum NO 2 shown in FIG. 7 is larger than 50%, the degree of deterioration of the oxidation catalyst 3 is larger than the specified value.
  • the oxidation catalyst 3 is normal when the ratio of NO 2 when the maximum value is reached is less than 50%. Further, when the ratio of NO 2 at the maximum value is larger than 50%, it can be determined that the oxidation catalyst 3 has deteriorated.
  • FIG. 8 is a graph showing the relationship between the temperature (bed temperature) of the oxidation catalyst 3 and the ratio of NO 2 in NOx flowing into the NOx catalyst 4.
  • the solid line shows the case of a new article, and the alternate long and short dash line shows the case of deterioration.
  • There exists a temperature range in which the ratio of is low.
  • the boundary is when the temperature of the oxidation catalyst 3 is T3.
  • the ratio of NO 2 is higher in the new oxidation catalyst 3 than in the deteriorated oxidation catalyst 3
  • the NO 2 in the NOx flowing into the NOx catalyst 4 increases.
  • the ratio becomes smaller. That is, if the temperature is lower than the temperature indicated by T3 in FIG. 8, the ratio of NO 2 in NOx flowing into the NOx catalyst 4 decreases as the degree of deterioration of the oxidation catalyst 3 increases as shown in FIG. Become.
  • FIG. 9 is a diagram showing the relationship between the degree of deterioration of the oxidation catalyst 3 and the ratio of NO 2 in NOx flowing into the NOx catalyst 4.
  • the deterioration determination of the oxidation catalyst 3 is performed when the temperature of the oxidation catalyst 3 is lower than the temperature indicated by T3 in FIG. Thereby, the relationship between the degree of deterioration of the oxidation catalyst 3 and the ratio of NO 2 in NOx flowing into the NOx catalyst 4 can be easily obtained.
  • the degree of deterioration of the oxidation catalyst 3 can be obtained. Since the degree of deterioration of the oxidation catalyst 3 can be obtained in this way, the ratio of NO 2 in NOx flowing into the NOx catalyst 4 can be obtained accurately.
  • the ratio of NO 2 in NOx flowing into the NOx catalyst 4 it is necessary to accurately determine the ratio of NO 2 in the NOx flowing into the NOx catalyst 4.
  • the deterioration determination of the NOx catalyst 4 can be performed more accurately. Next, deterioration determination of the NOx catalyst 4 will be described.
  • FIG. 10 is a diagram after correcting the relationship shown in FIG. 7 based on the degree of deterioration of the oxidation catalyst 3.
  • the map of FIG. 5 is corrected according to the degree of deterioration of the oxidation catalyst 3, and the relationship between the NO 2 ratio and the NOx purification rate is recalculated.
  • the relationship between the deviation from 50% of the ratio of NO 2 that is the maximum value shown in FIG. 7 and the correction value is obtained in advance by experiments or the like.
  • a value obtained by dividing 50% by the ratio of NO 2 that becomes the maximum value may be used as a correction value, and the ratio of each NO 2 may be multiplied by this correction value.
  • a difference between 50% and the ratio of NO 2 that is the maximum value may be used as a correction value, and this correction value may be added to each NO 2 ratio.
  • the ratio of NO 2 in NOx it can be determined purification rate of NOx in the NOx catalyst 4. Then, the degree of deterioration of the NOx catalyst 4 is determined from the relationship between the temperature of the NOx catalyst 4 and the purification rate of the NOx catalyst 4.
  • FIG. 11 is a graph showing the relationship between the temperature (bed temperature) of the NOx catalyst 4 and the NOx purification rate in the NOx catalyst 4.
  • the solid line shows the case of a new article, and the alternate long and short dash line shows the case of deterioration.
  • the temperature indicated by T4 indicates the lower limit value of the temperature at which the NOx purification rate in the NOx catalyst 4 hardly increases even when the temperature of the NOx catalyst 4 rises when the NOx catalyst 4 is new. That is, the complete activation temperature in the case of a new article is shown.
  • the temperature indicated by T5 indicates the complete activation temperature when the NOx catalyst 4 is deteriorated.
  • the NOx purification rate increases as the temperature increases. After reaching the complete activation temperature, the NOx purification rate hardly changes even when the temperature is increased. Further, the higher the degree of deterioration of the NOx catalyst 4, the higher the complete activation temperature. That is, as the degree of deterioration of the NOx catalyst 4 increases, NOx cannot be purified unless the temperature is increased. The higher the degree of deterioration of the NOx catalyst 4, the lower the NOx purification rate when the complete activation temperature is reached.
  • the degree of deterioration of the NOx catalyst 4 is obtained by comparing the complete activation temperature at the time of a new article with the actual complete activation temperature. Can do.
  • the complete activation temperature when the degree of deterioration of the NOx catalyst 4 is within an allowable limit is used as a reference value. If the actual complete activation temperature is higher than the reference value, it is determined that the NOx catalyst 4 has deteriorated. May be. It can be determined that the degree of deterioration of the NOx catalyst 4 is higher as the complete activation temperature is higher than the reference value.
  • a complete activation temperature at a NO 2 ratio within a certain range may be used. For example, when the ratio of NO 2 in NOx is 50% or in the vicinity thereof, the complete activation temperature is lowered, so that the chance of reaching the complete activation temperature increases. That is, by determining the complete activation temperature when the ratio of NO 2 is 50% or in the vicinity thereof, the determination frequency of the degree of deterioration of the NOx catalyst 4 can be increased.
  • FIG. 12 is a flowchart showing a flow for determining deterioration of the oxidation catalyst 3 according to the present embodiment.
  • This routine is repeatedly executed by the ECU 10 every predetermined time. Further, this routine is performed prior to determining the deterioration of the NOx catalyst 4. Further, this routine is executed when an appropriate amount of reducing agent is supplied from the injection valve 5 to the NOx catalyst 4 based on the NOx concentration measured by the first NOx sensor 7 or the second NOx sensor 8.
  • step S101 it is determined whether a condition for measuring the NOx purification rate in the NOx catalyst 4 is satisfied.
  • This condition is a condition necessary for accurately determining the deterioration of the oxidation catalyst 3 and the NOx catalyst 4. For example, it is determined whether or not the temperature of the oxidation catalyst 3 is lower than T3 shown in FIG. 8 and the temperature of the NOx catalyst 4 is within a predetermined range (T1 to T2 shown in FIG. 2). If an affirmative determination is made in step S101, the process proceeds to step S102. If a negative determination is made, the routine is terminated because the deterioration determination of the oxidation catalyst 3 and the NOx catalyst 4 cannot be performed.
  • step S102 the ratio of NO 2 in NOx flowing into the NOx catalyst 4 when the deterioration degree of the oxidation catalyst 3 is assumed to be a specified value is estimated. That is, the ratio of NO 2 is obtained based on the map shown in FIG.
  • the ECU 10 that processes step S102 corresponds to the estimation means in the present invention.
  • step S102 corresponds to the first step in the present invention.
  • the NOx amount that passes through each sensor per unit time may be calculated from the NOx concentration obtained by each sensor, and the NOx purification rate may be calculated using the NOx amount.
  • step S104 points determined by the NO 2 ratio obtained in step S102 and the NOx purification rate obtained in step S103 are entered on the map shown in FIG.
  • step S105 it is determined whether or not the maximum value of the NOx purification rate is obtained.
  • the number of points necessary for obtaining the maximum value is obtained in advance, and it is determined whether or not this number of points is entered on the map.
  • an equation for calculating the maximum value may be stored in the ECU 10 in advance, and it may be determined whether or not the number of points required at this time is entered on the map.
  • step S105 If an affirmative determination is made in step S105, the process proceeds to step S106, and if a negative determination is made, this routine is terminated.
  • the ECU 10 that processes steps S103 to S105 corresponds to the calculating means in the present invention. In this embodiment, steps S103 to S105 correspond to the second step in the present invention.
  • step S106 the ratio of NO 2 at which the NOx purification rate becomes a maximum value is obtained. That is, the local maximum value of the NOx purification rate is read from the map shown in FIG. 7, and the ratio of NO 2 corresponding to this local maximum value is further read.
  • step S107 the NO 2 ratio at which the NOx purification rate becomes a maximum value is compared with a reference value (for example, 50%). For example, how much the ratio of NO 2 at which the NOx purification rate reaches a maximum value deviates from the reference value is determined. That is, the difference or ratio between the reference value and the ratio of NO 2 that is the maximum value is calculated.
  • a reference value for example, 50%
  • step S108 the deterioration degree of the oxidation catalyst 3 is calculated.
  • This degree of deterioration is a value that indicates how much deterioration has occurred compared to when new.
  • the relationship between the difference or ratio between the NO 2 ratio that is the maximum value obtained in step S107 and the reference value and the degree of deterioration of the oxidation catalyst 3 is obtained in advance.
  • a correction value for correcting the NO 2 ratio estimated in step S102 may be obtained. Further, the map shown in FIG. 5 may be corrected.
  • the difference or ratio between the NO 2 ratio that is the maximum value obtained in step S107 and the reference value may be used as the degree of deterioration of the oxidation catalyst 3.
  • the specified value used in step S102 is a value that is an allowable limit, it may be determined whether the ratio of NO 2 at the maximum value is larger or smaller than 50%.
  • step S109 it is determined whether the degree of deterioration of the oxidation catalyst 3 is equal to or less than a specified value.
  • the specified value here is a value at which the degree of deterioration of the oxidation catalyst 3 is acceptable. This specified value is obtained in advance by experiments or the like.
  • the specified value of the degree of deterioration used in step S102 is a value that is an allowable limit
  • the oxidation is performed when the ratio of NO 2 when the NOx purification rate reaches the maximum value is smaller than 50%. It can be determined that the catalyst 3 is normal. Further, when the ratio of NO 2 at the maximum value is larger than 50%, it can be determined that the oxidation catalyst 3 has deteriorated.
  • step S109 If an affirmative determination is made in step S109, the process proceeds to step S110, and if a negative determination is made, the process proceeds to step S111.
  • the ECU 10 that processes step S109 corresponds to the determination means in the present invention.
  • step S109 corresponds to the third step in the present invention.
  • step S110 it is determined that the oxidation catalyst 3 is normal.
  • step S111 it is determined that the oxidation catalyst 3 has deteriorated. In this case, the driver or the like may be warned that the oxidation catalyst 3 is abnormal.
  • FIG. 13 is a flowchart showing a flow of determining deterioration of the NOx catalyst 4 according to this embodiment. This routine is executed after the deterioration determination of the oxidation catalyst 3 shown in FIG.
  • step S112 the ratio of NO 2 in NOx flowing into the NOx catalyst 4 is calculated from the degree of deterioration of the oxidation catalyst 3. That is, the map shown in FIG. 5 is corrected, and the corrected NO 2 ratio is obtained. This may be the actual NO 2 ratio.
  • the ECU 10 that processes step S112 corresponds to the ratio calculation means in the present invention.
  • step S112 corresponds to the fourth step in the present invention.
  • step S113 it is determined whether or not the complete activation temperature of the NOx catalyst 4 can be detected.
  • this step it is determined whether or not the NOx purification rate hardly changes even if the temperature of the NOx catalyst 4 changes. For example, when the change rate of the NOx purification rate in the NOx catalyst 4 when the temperature of the NOx catalyst 4 rises is below a predetermined value, it is determined that the complete activation temperature can be detected. This determination is made when the ratio of NO 2 is within a specified range.
  • step S113 If an affirmative determination is made in step S113, the process proceeds to step S114, and if a negative determination is made, this routine is terminated to continuously acquire temperature data.
  • the ECU 10 that processes step S113 corresponds to the activity determination means in the present invention.
  • step S113 corresponds to the fifth step of the present invention.
  • step S114 it is determined whether the complete activation temperature is equal to or lower than a reference value.
  • This reference value is a value at which the degree of deterioration of the NOx catalyst 4 becomes an acceptable limit. This specified value is obtained in advance by experiments or the like.
  • step S114 If an affirmative determination is made in step S114, the process proceeds to step S115, and if a negative determination is made, the process proceeds to step S116.
  • the ECU 10 that processes step S114 corresponds to the NOx catalyst deterioration determining means in the present invention. In this embodiment, step S114 corresponds to the sixth step of the present invention.
  • step S115 it is determined that the NOx catalyst 4 is normal.
  • step S116 it is determined that the NOx catalyst 4 has deteriorated. In this case, the driver or the like may be warned that the NOx catalyst 4 is abnormal.
  • the reference value may be the complete activation temperature at the time of a new article, and the degree of deterioration of the NOx catalyst 4 may be obtained from the difference between the detected complete activation temperature and the reference value. In this case, the degree of deterioration increases as the difference increases.
  • the degree of deterioration of the oxidation catalyst 3 is determined. Therefore, the ratio of NO 2 in NOx flowing into the NOx catalyst 4 can be determined more accurately. For this reason, since the purification rate of the NOx catalyst 4 can be obtained more accurately, the degree of deterioration of the NOx catalyst 4 can be obtained more accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 内燃機関の排気通路に複数の触媒を備えている場合において、触媒の劣化の度合いを正確に求める。選択還元型NOx触媒よりも上流に設けられている酸化能力を有する触媒の劣化の度合いが規定値となっていると仮定したときの該選択還元型NOx触媒に流入するNOx中のNO2の比率を推定し、選択還元型NOx触媒におけるNOxの浄化率を少なくとも極大値が得られるまで複数回算出し、選択還元型NOx触媒におけるNOxの浄化率が極大値となるときのNO2の比率と、該比率の基準値と、を比較することにより酸化能力を有する触媒の劣化の度合いを判定する。

Description

触媒劣化判定装置及び触媒劣化判定方法
 本発明は、触媒劣化判定装置及び触媒劣化判定方法に関する。
 内燃機関の排気通路に設けられる酸化触媒へ燃料を添加したときの該酸化触媒の温度に基づいて該酸化触媒の劣化を判定する技術が知られている。(例えば、特許文献1参照。)。しかし、燃料の添加を行なうことにより、燃料が大気中に放出されたり、燃費が悪化したりする虞がある。
 また、酸化触媒よりも下流に選択還元型NOx触媒が設けられている場合であって該選択還元型NOx触媒の劣化判定を行う場合に、酸化触媒の劣化度合を考慮すると、より精度の高い判定が可能となる。例えば選択還元型NOx触媒におけるNOxの浄化率に基づいて該選択還元型NOx触媒の劣化判定を行う場合には、該選択還元型NOx触媒に流入するNOとNO2との比率に応じてNOxの浄化率が変化する。このNOとNO2との比率は、酸化触媒の劣化度合いにより変化するため、選択還元型NOx触媒におけるNOxの浄化率が低下したとしても、酸化触媒の劣化が原因となっていることもあり得る。つまり、何れの触媒が劣化しているのか判定することが重要となる。
特開2001-263048号公報 特開2005-23921号公報 特開2004-100700号公報 特表2008-523305号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気通路に複数の触媒を備えている場合において、触媒の劣化の度合いを正確に求めることができる技術の提供を目的とする。
 上記課題を達成するために本発明による触媒劣化判定装置は、以下の手段を採用した。すなわち、本発明による触媒劣化判定装置は、
 内燃機関の排気通路に設けられ還元剤により選択的にNOxを還元する選択還元型NOx触媒と、
 前記選択還元型NOx触媒よりも上流に設けられ酸化能力を有する触媒と、
 前記選択還元型NOx触媒よりも上流の排気中へ還元剤を供給する還元剤供給手段と、
 前記酸化能力を有する触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気中のNOx濃度を検知する上流側検知手段と、
 前記選択還元型NOx触媒よりも下流の排気中のNOx濃度を検知する下流側検知手段と、
 を備え、
 前記酸化能力を有する触媒の劣化の度合いが規定値となっていると仮定したときの前記選択還元型NOx触媒に流入するNOx中のNO2の比率を推定する推定手段と、
 前記還元剤供給手段により還元剤が供給されたときの前記上流側検知手段及び前記下流側検知手段により検知されるNOx濃度に基づいて前記選択還元型NOx触媒におけるNOxの浄化率を少なくとも極大値が得られるまで複数回算出する算出手段と、
 前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記推定手段により推定されるNO2の比率と、該比率の基準値と、を比較することにより前記酸化能力を有する触媒の劣化の度合いを判定する判定手段と、
 を備えることを特徴とする。
 選択還元型NOx触媒は、例えばアンモニアを還元剤として、NOxを選択的に還元する。還元剤供給手段は、例えばアンモニアまたは尿素水を噴射する噴射装置を備えて構成されていても良い。上流側検知手段はNOx濃度を、例えば内燃機関の運転状態に基づいて推定しても良く、センサにより測定しても良い。酸化能力を有する触媒を排気が通過しても排気中のNOx濃度は変化しないため、該酸化能力を有する触媒よりも上流のNOx濃度と下流のNOx濃度とが等しいとしても良い。下流側検知手段は、選択還元型NOx触媒によりNOxが浄化された後のNOx濃度を例えばセンサにより測定する。なお、NOxにはNO及びNO2が含まれる。このNOx濃度に基づいて、還元剤を供給しても良い。
 ここで、酸化能力を有する触媒の劣化度合いに応じて該触媒から流出するNOx中のNO2の比率が変わる。つまり、酸化能力を有する触媒を通過するときにNOがNO2に酸化されるが、NOがNO2に酸化される割合は該触媒の劣化度合いに応じて変わる。このため、選択還元型NOx触媒に流入するNOx中のNO2の比率は、酸化能力を有する触媒の劣化度合いに応じて変わる。推定手段は、酸化能力を有する触媒の劣化度合いが規定値となっていると仮定してNOx中のNO2の比率を推定する。この規定値は、選択還元型NOx触媒におけるNOx浄化率と、該選択還元型NOx触媒へ流入するNOx中のNO2の比率と、の関係を求めるために仮定される値であり、任意の値を用いることができる。
 そして、上流側検知手段によりNOx濃度が検知され、そのNOx中のNO2の比率を推定手段により仮に求められる。つまり、酸化能力を有する触媒の劣化度合いが分からないため、選択還元型NOx触媒に流入するNOx中のNO2の比率を仮に定めている。そして、選択還元型NOx触媒におけるNOx浄化率と、該選択還元型NOx触媒へ流入するNOx中のNO2の比率と、の関係を求めている。
 選択還元型NOx触媒におけるNOxの浄化率は、該選択還元型NOx触媒の温度及びNOx中のNO2の比率によって変わる。そして、選択還元型NOx触媒の温度を規定の範囲とした場合には、NOとNO2とが略同じ量ずつ浄化されるため、NO2の比率が特定の値(例えば50%近傍)のときにNOxの浄化率が最大となる。なお、本発明における基準値は、選択還元型NOx触媒におけるNOx浄化率が極大値となる実際のNO2の比率である。この基準値は例えば50%またはこの近傍であるが、触媒の状態や種類によって異なることがあるため、実験等により求めても良い。
 NOxの浄化率が極大値となる実際のNO2の比率は、選択還元型NOx触媒の劣化の度合いが大きくなっても変わらない。つまり、選択還元型NOx触媒の劣化が進行すると、NOxの浄化率は低下するものの、NO2の比率が基準値のときにNOx浄化率は最大となる。
 算出手段は、NOxの浄化率をNO2の比率が異なるときに複数回算出することにより、該浄化率の極大値を求めている。つまり、NO2の比率によってNOxの浄化率が変わるため、NOxの浄化率とNO2の比率との関係を複数回算出することで極大値を得ている。この極大値は、酸化能力を有する触媒の劣化度合いを規定値と仮定したときの値である。ここで、選択還元型NOx触媒におけるNOxの浄化率は、NO2の比率が基準値のときに極大値となるが、仮定したNO2の比率が実際の値と異なる場合には、そうはならない。つまり、NOx浄化率が極大値となるNO2の比率が基準値からずれる。このずれは、実際のNO2の比率と、推定手段により推定されるNO2の比率と、の差に応じて大きくなる。つまり、酸化能力を有する触媒の実際の劣化度合いと規定値との差が大きくなるほど、NOx浄化率が極大値となるNO2の比率が基準値からずれる。
 このように、NOx浄化率が極大値となるNO2の比率の基準値からのずれと、酸化能力を有する触媒の劣化の度合いと、には相関があるため、このずれに基づいて該酸化能力を有する触媒の劣化の度合いを判定することができる。この場合、NOx浄化率が極大値となるNO2の比率が基準値より大きくなるほど、劣化度合いが大きいと判定しても良い。このように、選択還元型NOx触媒におけるNOx浄化率の極大値を用いることにより、該選択還元型NOx触媒の劣化度合いによらず、酸化能力を有する触媒の劣化度合いの判定を行うことができる。つまり、選択還元型NOx触媒の劣化度合いに影響を受けることなく、酸化能力を有する触媒の劣化判定を行うことができる。
 酸化能力を有する触媒の劣化度合いは、選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの推定手段により推定されるNO2の比率と、該比率の基準値と、を比較することにより判定されるが、この場合、これらの差から判定しても良く、これらの比から判定しても良い。
 なお、本発明ではNOx中のNO2の比率を用いて酸化能力を有する触媒の劣化度合いの判定を行っているが、これに代えてNOx中のNOの比率を用いて劣化度合いの判定を行うこともできる。つまり、NOxがNOとNO2とからなるとすれば、NOx中のNO2の比率が大きくなるほど、その分NOの比率は小さくなる。この関係を用いれば、NOx中のNOの比率を用いて劣化度合いの判定を行うことができる。
 本発明においては、前記選択還元型NOx触媒の温度を検知する温度検知手段を備え、
 前記算出手段は、前記温度検知手段により検知される温度が所定の範囲内のときのNOxの浄化率を算出することができる。
 なお、温度検知手段は、内燃機関の運転状態から温度を推定しても良く、センサにより温度を測定しても良い。また、所定の範囲とは、NOとNO2とが同じ量だけ反応する範囲のことをいう。
 ここで、選択還元型NOx触媒でNOまたはNO2が還元されるときに、NOまたはNO2の夫々が還元される量は、選択還元型NOx触媒の温度に応じて変わる。そして、NOとNO2とが同じ量だけ反応する温度の範囲が、所定の範囲となる。このようにNOとNO2とが同じ量だけ反応する温度の範囲内においてNOx浄化率とNO2の比率との関係を求めると、NOx浄化率の極大値を得ることができる。選択還元型NOx触媒の温度がこの所定の範囲内であれば、NOx浄化率が極大値となるNO2の比率は酸化能力を有する触媒の劣化度合いによらず同じとなる。すなわち、所定の範囲内の温度のときにNOxの浄化率を算出することにより、該NOx浄化率の極大値を求めることができるため、酸化触媒の劣化度合いを容易に判定することができる。
 本発明においては、前記選択還元型NOx触媒の温度を検知する温度検知手段と、
 前記判定手段により判定される劣化の度合いに基づいて前記選択還元型NOx触媒に流入するNOx中のNO2の比率を算出する比率算出手段と、
 前記温度検知手段により検知される温度に基づいて前記選択還元型NOx触媒の温度が完全活性温度に達したことを判定する活性判定手段と、
 前記比率算出手段により算出されるNO2の比率が規定の範囲内のときの前記完全活性温度と、該完全活性温度の基準値と、を比較することにより前記選択還元型NOx触媒の劣化の度合いを判定するNOx触媒劣化判定手段と、
を備えることができる。
 酸化能力を有する触媒の劣化度合いを求めることができれば、該酸化能力を有する触媒にてNOがNO2に酸化される割合を求めることができるため、選択還元型NOx触媒に流入するNOx中のNO2の比率を正確に求めることができる。つまり、比率算出手段は、選択還元型NOx触媒に流入するNOx中の実際のNO2の比率を正確に算出することができる。
 また、選択還元型NOx触媒では、完全活性温度に達するまでは温度の上昇と共にNOxの浄化率が上昇するが、完全活性温度に達した後は温度が上昇してもNOxの浄化率は殆ど上昇しない。つまり、完全活性温度とは、それ以上温度が高くなってもNOxの浄化率は変化しない温度とすることができる。これは、温度の上昇値に対するNOx浄化率の上昇値が所定値以下となる温度の下限値としても良い。また、NOx浄化率が飽和する温度の下限値としても良い。すなわち、活性判定手段は、例えば選択還元型NOx触媒の温度が上昇してもNOxの浄化率が殆ど上昇しないときに、該選択還元型NOx触媒の温度が完全活性温度に達したと判定する。
 そして、選択還元型NOx触媒の劣化度合いが大きくなるほど、完全活性温度は高くなり、且つ完全活性温度に到達したときのNOxの浄化率が低くなる。つまり、NOxの浄化率が最も高くなる温度が、劣化度合いに応じて高くなる。このように、完全活性温度と劣化度合いとには相関があるため、完全活性温度の基準値を予め定めておけば、活性判定手段により判定される完全活性温度と、該基準値と、を比較することにより選択還元型NOx触媒の劣化度合いを判定することができる。この基準値は、任意の値とすることができ、例えば、新品時の完全活性温度としても良く、規定の劣化度合いのときの完全活性温度としても良く、劣化度合いが許容できる限度のときの完全活性温度としても良い。そして、完全活性温度が基準値より高くなるほど、劣化度合いが大きいと判定しても良い。
 選択還元型NOx触媒の劣化度合いは、完全活性温度と、該完全活性温度の基準値と、を比較することにより判定されるが、この場合、これらの差から判定しても良く、これらの比から判定しても良い。
 なお、選択還元型NOx触媒の温度に対するNOxの浄化率は、該選択還元型NOx触媒に流入するNOx中のNO2の比率によって変わる。このため、NOx触媒劣化判定手段は、比率算出手段により算出されるNO2の比率が規定の範囲内のときの完全活性温度に基づいて劣化度合いを判定している。つまり、NO2の比率の範囲を特定することで、劣化度合いの判定をより正確に行うことができる。規定の範囲とは、選択還元型NOx触媒の温度とNOx浄化率との関係から完全活性温度を求めることができるNO2の比率の範囲をいう。例えばNO2の比率が50%またはその近傍としても良い。
 また、本発明ではNOx中のNO2の比率を用いて選択還元型NOx触媒の劣化度合いの判定を行っているが、これに代えてNOx中のNOの比率を用いて劣化度合いの判定を行うこともできる。
 本発明においては、前記推定手段は、前記酸化能力を有する触媒の劣化の度合いの規定値を、許容できる限度の値としてNO2の比率を推定し、
 前記判定手段は、前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記推定手段により推定されるNO2の比率が基準値よりも大きいときに、前記酸化能力を有する触媒の劣化の度合いが許容できる限度を超えていると判定することができる。
 そうすると、選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの推定手段により推定されるNO2の比率が、基準値よりも大きいか否かを判定することにより酸化触媒の劣化度合いが許容できる限度を超えているか否か判定することができる。そして、NOxの浄化率が極大値となるときの推定手段により推定されるNO2の比率が基準値から大きくなるほど、酸化能力を有する触媒の劣化の度合いは大きいと判定することができる。
 また、NOxの浄化率が極大値のときの推定手段により推定されるNO2の比率が基準値よりも小さいときには、酸化能力を有する触媒の劣化度合いは許容できると判定することができる。そして、NO2の比率が基準値から小さくなるほど、酸化能力を有する触媒の劣化の度合いは小さいと判定することができる。
 また、本発明においては、前記NOx触媒劣化判定手段は、前記完全活性温度の基準値を、前記選択還元型NOx触媒の劣化度合いが許容できる限度となっているときの完全活性温度とし、
 前記完全活性温度が基準値よりも高いときに、前記選択還元型NOx触媒の劣化の度合いが許容できる限度を超えていると判定することができる。
 そうすると、完全活性温度が基準値よりも高いか否かを判定することにより選択還元型NOx触媒の劣化度合いが許容できる限度を超えているか否か判定することができる。そして、完全活性温度が基準値よりも高くなるほど、選択還元型NOx触媒の劣化の度合いは大きいと判定することができる。
 また、完全活性温度が基準値よりも低いときには、選択還元型NOx触媒の劣化度合いは許容できると判定することができる。そして、完全活性温度が基準値から小さくなるほど、選択還元型NOx触媒の劣化の度合いは小さいと判定することができる。
 また、上記課題を達成するために本発明による触媒劣化判定方法は、以下の手段を採用した。すなわち、本発明によるNOx触媒劣化判定方法は、
 選択還元型NOx触媒よりも上流に設けられている酸化能力を有する触媒の劣化の度合いが規定値となっていると仮定したときの該選択還元型NOx触媒に流入するNOx中のNO2の比率を推定する第1の工程と、
 前記選択還元型NOx触媒におけるNOxの浄化率を少なくとも極大値が得られるまで複数回算出する第2の工程と、
 前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記第1の工程で得られるNO2の比率と、該比率の基準値と、を比較することにより前記酸化能力を有する触媒の劣化の度合いを判定する第3の工程と、
 を含んで構成されることを特徴とする。
 この場合、前記第3の工程で判定される酸化能力を有する触媒の劣化の度合いに基づいて、前記選択還元型NOx触媒に流入するNOx中のNO2の比率を算出する第4の工程と、
 前記第4の工程で算出されるNO2の比率に基づいて前記選択還元型NOx触媒の浄化率を少なくとも完全活性温度が得られるまで複数回検知する第5の工程と、
 前記第4の工程で算出されるNO2の比率が規定の範囲内のときの前記第5の工程で得られる完全活性温度と、該完全活性温度の基準値と、を比較することにより前記選択還元型NOx触媒の劣化の度合いを判定する第6の工程と、
 を含んで構成されていても良い。
 本発明によれば、内燃機関の排気通路に複数の触媒を備えている場合において、触媒の劣化の度合いを正確に求めることができる。
実施例に係る内燃機関とその排気系の概略構成を示す図である。 NOx触媒の温度(床温)と、NOx触媒におけるNOxの浄化率と、の関係を示した図である。 NOx触媒が正常の場合の該NOx触媒に流入するNOx中のNO2の比率と、NOx触媒におけるNOxの浄化率と、の関係をNOx触媒の温度毎に示した図である。 NOx触媒が劣化している場合の該NOx触媒に流入するNOx中のNO2の比率と、NOx触媒におけるNOxの浄化率と、の関係をNOx触媒の温度毎に示した図である。 酸化触媒の温度と、内燃機関の吸入空気量とをパラメータとしてNO2の比率を求めるためのマップである。 NOx触媒に流入するNOx中のNO2の比率と、NOx触媒におけるNOxの浄化率と、の関係の一例を示したマップである。 図6のマップに対し、NOx浄化率の極大値が判定可能なまでに点が記入されたときのマップである。 酸化触媒の温度(床温)と、NOx触媒に流入するNOx中のNO2の比率との関係を示した図である。 酸化触媒の劣化度合いとNOx触媒に流入するNOx中のNO2の比率との関係を示した図である。 図7に示した関係を酸化触媒の劣化度合いに基づいて補正した後のマップである。 NOx触媒の温度(床温)とNOx触媒におけるNOxの浄化率との関係を示した図である。 実施例に係る酸化触媒の劣化判定のフローを示したフローチャートである。 実施例に係るNOx触媒の劣化判定のフローを示したフローチャートである。
符号の説明
1     内燃機関
2     排気通路
3     酸化触媒
4     選択還元型NOx触媒
5     噴射弁
7     第1NOxセンサ
8     第2NOxセンサ
9     温度センサ
10   ECU
11   アクセルペダル
12   アクセル開度センサ
13   クランクポジションセンサ
 以下、本発明に係る触媒劣化判定装置及び触媒劣化判定方法の具体的な実施態様について図面に基づいて説明する。
 図1は、本実施例に係る内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒を有する水冷式の4サイクル・ディーゼルエンジンである。そして本実施例では、尿素SCRシステムを採用している。
 内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、上流側から順に、酸化触媒3と、選択還元型NOx触媒4(以下、NOx触媒4という。)とが備えられている。酸化触媒3は酸化能力を有する他の触媒(例えば三元触媒)であっても良い。なお、本実施例においては酸化触媒3が、本発明における酸化能力を有する触媒に相当する。
 また、酸化触媒3よりも下流で且つNOx触媒4よりも上流の排気通路2には、排気中に尿素水を噴射する噴射弁5が取り付けられている。噴射弁5は、後述するECU10からの信号により開弁して排気中へ尿素水を噴射する。なお、本実施例においては噴射弁5が、本発明における還元剤供給手段に相当する。
 噴射弁5から噴射された尿素水は、排気の熱で加水分解されアンモニア(NH3)となり、NOx触媒4に吸着する。このNH3がNOxを還元させる。
 酸化触媒3よりも下流で且つ噴射弁5よりも上流の排気通路2には、排気中のNOx濃度を測定する第1NOxセンサ7が取り付けられている。また、NOx触媒4よりも下流の排気通路2には、排気中のNOx濃度を測定する第2NOxセンサ8及び排気の温度を測定する温度センサ9が取り付けられている。なお、本実施例においては第1NOxセンサ7が、本発明における上流側検知手段に相当する。また、本実施例においては第2NOxセンサ8が、本発明における下流側検知手段に相当する。さらに、本実施例においては温度センサ9が、本発明における温度検知手段に相当する。また、第1NOxセンサ7によりNOx濃度を測定することに代えて、内燃機関1の運転状態に基づいてNOx濃度を推定しても良い。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
 また、ECU10には、上記センサの他、運転者がアクセルペダル11を踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ12、および機関回転数を検知するクランクポジションセンサ13が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力されるようになっている。
 一方、ECU10には、噴射弁5が電気配線を介して接続されており、該ECU10により噴射弁5の開閉時期が制御される。
 ここで、NOx触媒4におけるNOxの浄化率は、NOx中のNO2の比率とNOx触媒4の温度とに応じて変化する。なお、NOx触媒4では温度に応じて以下の反応が起こると考えられる。
 6NO2+8NH3→7N2+12H2O・・・式(1)
 4NO+4NH3+O2→4N2+6H2O・・・式(2)
 NO+NO2+2NH3→2N2+3H2O・・・式(3)
 ここで、式(1)は、反応速度が遅いため、主に高温で起こるNO2の浄化反応である。式(2)は、式(1)よりも反応速度が遅いため、式(1)よりも低い温度から起こるNOの浄化反応である。式(3)は、反応速度が速いため、式(2)よりも低い温度から起こるNOとNO2との浄化反応である。なお、式(3)で示される反応によればNOとNO2とが等しい量だけ浄化される。つまり、式(3)で示す反応が主に起こる温度の範囲では、NOとNO2との比が1対1のときにNOxの浄化率が最大となる。このため、酸化触媒3において、NOとNO2との比が1対1となるように、すなわちNOx中のNO2の比率が50%となるようにNOが酸化される。また、このような比率となるように、酸化触媒3の酸化能力が決定される。
 つまり、排気が酸化触媒3を通過する際に、NOx中のNO2の比率が変化する。NOx中のNO2の比率がどれだけ変化するのかは、酸化触媒3においてNO2がどれだけ生成されるのかにより決まる。そして、酸化触媒3の劣化が進行するほど、NO2が生成され難くなる。さらに、酸化触媒3の温度が高くなると、酸化反応が促進されるためNO2がより生成され易くなる。また、排気の流速が高くなるほど酸化触媒3にて反応する前に該酸化触媒3を通過するNOxが多くなるため、NO2が生成され難くなる。なお、排気が酸化触媒3を通過するときにNOがNO2に酸化されるが、このときにNOx濃度は変化しない。
 このようなことから、酸化触媒3から流出するNOx中のNO2の比率(すなわち、NOx触媒4に流入するNOx中のNO2の比率)は、内燃機関1から排出されるNOx中のNO2の比率、酸化触媒3の温度、吸入空気量(排気の量としても良い)、酸化触媒3の劣化度合いに基づいて推定することができる。酸化触媒3の温度は、センサにより測定しても良く、内燃機関1の運転状態から推定しても良い。吸入空気量は、エアフローメータを取り付けることにより測定できる。酸化触媒3の劣化度合いについては後述する。
 また、内燃機関1から排出されるNOx中のNO2の比率は、機関回転数、燃料量(機関負荷としても良い)、燃焼温度等に基づいて推定することができる。この推定には周知の技術を用いることができるため、説明を省略する。また、これらの関係を予め実験等により求めてマップ化し、ECU10に記憶させておいても良い。
 このように、酸化触媒3の劣化度合いによりNOx中のNO2の比率が変化するため、NOx触媒4におけるNOx浄化率も変化する。つまり、NOx浄化率だけを検知しても、NOx浄化率の低下の原因が酸化触媒3の劣化にあるのか、またはNOx触媒4の劣化にあるのかを特定する必要がある。このため本実施例では、まず酸化触媒3の劣化度合いを判定する。
 図2は、NOx触媒4の温度(床温)と、NOx触媒4におけるNOxの浄化率と、の関係を示した図である。実線は、式(3)の反応のみによる浄化率であり且つNOx触媒4が正常の場合の浄化率である。一点鎖線は、式(3)の反応のみによる浄化率であり且つNOx触媒4が劣化している場合の浄化率である。二点鎖線は、式(2)の反応のみによる浄化率であり且つNOx触媒4が正常の場合の浄化率である。破線は、式(1)の反応のみによる浄化率であり且つNOx触媒4が正常の場合の浄化率である。ここで、正常とは、劣化の度合いが許容できる限度を超えていないことを意味する。また、劣化しているとは、劣化の度合いが許容できる限度を超えていることを意味する。
 図2に示すように、式(3)の反応が支配的な温度範囲がある。つまり、NOx触媒4の温度が図2に示すT1からT2までの範囲では、式(1)及び式(2)の反応によるNOxの浄化は殆ど行なわれず、主に式(3)の反応によりNOxが浄化される。
 ここで、式(3)による反応では、NOとNO2とが同じ量だけ浄化される。このため、NO2の比率が50%のときにNOx触媒4の浄化率が最高になる。
 また、図3は、NOx触媒4が正常の場合の該NOx触媒4に流入するNOx中のNO2の比率と、NOx触媒4におけるNOxの浄化率と、の関係をNOx触媒4の温度毎に示した図である。この関係は、図2に示すT1からT2までの範囲内における関係である。実線は例えば摂氏220度の場合、一点鎖線は例えば摂氏200度の場合、二点鎖線は例えば摂氏180度の場合を示している。
 このように、NOx触媒4の温度が高くなるほどNOx触媒4におけるNOxの浄化率が高くなる。また、何れの温度であっても、NO2の比率が50%のときにNOxの浄化率が最も高くっている。そして、NOx触媒4の温度が例えば摂氏220度のときに浄化率が最も高くなり、それ以上の温度になってもNOxの浄化率は殆ど変化しない。つまり、NOx触媒4が正常の場合には、例えば摂氏220度が完全活性温度となる。
 一方、図4は、NOx触媒4が劣化している場合の該NOx触媒4に流入するNOx中のNO2の比率と、NOx触媒4におけるNOxの浄化率と、の関係をNOx触媒4の温度毎に示した図である。この関係は、図3と同様に、図2に示すT1からT2までの範囲内における関係である。図3に加えて破線は、例えば摂氏240度の場合を示している。
 この場合であっても、NOx触媒4の温度が高くなるほどNOx触媒4におけるNOxの浄化率が高くなる。また、何れの温度であっても、NO2の比率が50%のときにNOxの浄化率が最も高くなっている。そして、NOx触媒4の温度が例えば摂氏240度のときに浄化率が最も高くなり、それ以上の温度になっても浄化率は殆ど変化しない。つまり、NOx触媒4が劣化している場合には、例えば摂氏240度が完全活性温度となる。
 すなわち、NOx触媒4の温度が図2に示すT1からT2までの範囲内であれば、該NOx触媒4の劣化の度合いによらず、NOx触媒4に流入するNOx中のNO2の比率が50%のときにNOxの浄化率が最も高くなる。本実施例では、この関係を利用して酸化触媒3の劣化度合いを求める。
 まず、酸化触媒3の劣化度合いが規定値となっていると仮定したときにNOx触媒4に流入するNOx中のNO2の比率を推定する。ここで、NOx触媒4に流入するNOx中のNO2の比率は、酸化触媒3にてNOがNO2にどれだけ酸化されるのかにより変わる。そして、NOがNO2にどれだけ酸化されるのかは、酸化触媒3の劣化度合いにより変わる。しかし、現時点では酸化触媒3の劣化度合いは不明である。
 これに対し本実施例では、酸化触媒3の劣化度合いが規定値となっていると仮定し、この劣化度合いのときに酸化触媒3から流出するNOx中のNO2の比率を推定する。なお、酸化触媒3から流出するNOx中のNO2の比率と、NOx触媒4に流入するNOx中のNO2の比率とは等しいものとする。そして本実施例では、酸化触媒3の温度と、内燃機関1の吸入空気量とに基づいてNO2の比率を推定する。
 つまり、酸化触媒3でどれだけのNOがNO2に酸化されるかは、酸化触媒3の温度及び吸入空気量(排気の量としても良い)によって変わるため、これらの値に基づいてNOx中のNO2の比率を求めることができる。なお、他のパラメータによってNO2の比率を推定しても良い。
 また、酸化触媒3に流入するNOx中のNO2の比率(すなわち、内燃機関1から排出されるNOx中のNO2の比率)によっても、酸化触媒3から流出するNOx中のNO2の比率は変わる。そこで、まず内燃機関1から排出されるNOx中のNO2の比率を求め、この比率を酸化触媒3の温度及び吸入空気量によって変更しても良い。なお、内燃機関1から排出されるNOx中のNO2の比率は、内燃機関1の運転状態に応じて変化するため、これらの関係を予め実験等により求めてマップ化しておく。
 図5は、酸化触媒3の温度と、内燃機関1の吸入空気量とをパラメータとしてNO2の比率を求めるためのマップである。これは、内燃機関1から排出されるNOx中のNO2の比率に乗じて補正するためのマップとしても良い。また、内燃機関1から排出されるNOx中のNO2の比率を含めてマップを作成しておいても良い。つまり、NOx触媒4に流入するNOx中のNO2の比率に影響を与えるのが、例えば酸化触媒3の温度及び内燃機関1の吸入空気量であるため、これらの値に基づいてNO2の比率を推定する。この関係は、予め実験等により求めておく。
 次に、NOx触媒4の温度が、式(3)の反応が支配的な温度範囲内のときの、NOx触媒4へ流入するNOx中のNO2の比率と、NOx触媒4におけるNOxの浄化率との関係を求める。ここでいうNOx触媒4へ流入するNOx中のNO2の比率とは、図5に基づいて得られるNO2の比率である。
 この関係を求めるために、横軸にNOx触媒4に流入するNOx中のNO2の比率をとり、縦軸にNOx触媒4におけるNOxの浄化率をとったマップを作成する。なお、NOx触媒4の温度によって浄化率は変化するため、NOx触媒4の温度毎にマップを作成する。この場合、式(3)の反応が支配的な温度範囲内で例えば摂氏10度毎に分けてマップを作成しても良い。
 そして図6は、NOx触媒4に流入するNOx中のNO2の比率と、NOx触媒4におけるNOxの浄化率と、の関係の一例を示したマップである。NO2の比率と、NOxの浄化率と、の関係を複数回求め、夫々の点を図6に記入している。内燃機関1の運転状態や酸化触媒3の温度が変化することにより、図6のマップには複数の点が記入されていく。このマップの作成は、NOxの浄化率の極大値が判定できるまで続ける。
 図7は、図6のマップに対し、NOx浄化率の極大値が判定可能なまでに点が記入されたときのマップである。図7を見れば分かるように、NOxの浄化率には極大値が存在する。前述のように、酸化触媒3が劣化したとしても、NOx触媒4におけるNOxの浄化率が最も高くなるときの実際のNO2の比率は変化しない。つまり、図7に示されるNOxの浄化率が極大値のときのNO2の比率が50%からずれている場合には、酸化触媒3の実際の劣化度合いが、図5で用いた劣化度合いの規定値からずれていることになる。そして、このずれが大きいほど、実際の劣化度合いと規定値との差が大きいことになる。また、図7に示される極大値となるときのNO2の比率が50%よりも小さい場合には、酸化触媒3の劣化度合いが規定値よりも小さいことになる。一方、図7に示される極大値のNO2の比率が50%よりも大きい場合には、酸化触媒3の劣化度合いが規定値よりも大きいことになる。
 なお、劣化度合いの規定値を、許容できる限度の値とした場合には、極大値となるときのNO2の比率が50%よりも小さいときに、酸化触媒3は正常であると判定できる。また、極大値となるときのNO2の比率が50%よりも大きいときに、酸化触媒3は劣化していると判定できる。
 なお、酸化触媒3の劣化判定は、酸化触媒3の温度が以下に説明する範囲内のときに行う。図8は、酸化触媒3の温度(床温)と、NOx触媒4に流入するNOx中のNO2の比率との関係を示した図である。実線は新品の場合を示しており、一点鎖線は劣化している場合を示している。図8において、新品の酸化触媒3のほうが劣化している酸化触媒3よりもNO2の比率が高くなる温度の範囲と、新品の酸化触媒3のほうが劣化している酸化触媒3よりもNO2の比率が低くなる温度の範囲と、が存在する。そして、酸化触媒3の温度がT3のときがその境界となる。新品の酸化触媒3のほうが劣化している酸化触媒3よりもNO2の比率が高くなる温度の範囲では、酸化触媒3の劣化度合いが大きくなるほど、NOx触媒4に流入するNOx中のNO2の比率が小さくなる。すなわち、図8においてT3で示される温度よりも低い範囲であれば、図9に示すように、酸化触媒3の劣化度合いが大きくなるほど、NOx触媒4に流入するNOx中のNO2の比率は小さくなる。ここで、図9は、酸化触媒3の劣化度合いとNOx触媒4に流入するNOx中のNO2の比率との関係を示した図である。本実施例では、酸化触媒3の温度が図8のT3で示す温度よりも低いときに該酸化触媒3の劣化判定を行う。これにより、酸化触媒3の劣化度合いと、NOx触媒4に流入するNOx中のNO2の比率との関係を容易に求めることができる。
 以上説明したように、本実施例によれば、酸化触媒3の劣化度合いを求めることができる。このように酸化触媒3の劣化度合いを求めることができるため、NOx触媒4に流入するNOx中のNO2の比率を正確に求めることができる。ここで、NOxの浄化率に基づいてNOx触媒4の劣化判定を行う場合には、該NOx触媒4に流入するNOx中のNO2の比率を正確に求めることが必要となる。これに対し本実施例では、NOx触媒4に流入するNOx中のNO2の比率を正確に求めることができるため、NOx触媒4の劣化判定をより正確に行うことができる。次にNOx触媒4の劣化判定について説明する。
 ここで、図10は、図7に示した関係を酸化触媒3の劣化度合いに基づいて補正した後の図である。これは、例えば図5のマップを酸化触媒3の劣化度合いに応じて補正し、NO2の比率とNOxの浄化率との関係を再度算出しなおす。図7に示される極大値となるNO2の比率の50%からのずれと、補正値との関係は予め実験等により求めておく。なお、図7において、50%を前記極大値となるNO2の比率で除した値を補正値とし、各NO2の比率にこの補正値を乗じても良い。さらに、50%と前記極大値となるNO2の比率との差を補正値とし、各NO2の比率にこの補正値を加えても良い。
 このようにしてNOx中のNO2の比率を求めることにより、NOx触媒4におけるNOxの浄化率を求めることができる。そして、NOx触媒4の温度と、NOx触媒4における浄化率との関係から、該NOx触媒4の劣化度合いを判定する。
 図11は、NOx触媒4の温度(床温)とNOx触媒4におけるNOxの浄化率との関係を示した図である。実線は新品の場合を示しており、一点鎖線は劣化している場合を示している。T4で示される温度は、NOx触媒4が新品の場合において、NOx触媒4の温度が上昇してもNOx触媒4におけるNOxの浄化率が殆ど上昇しない温度の下限値を示している。つまり、新品の場合の完全活性温度を示している。T5で示される温度は、NOx触媒4が劣化している場合の完全活性温度を示している。
 NOx触媒4の温度が完全活性温度に達する前は、温度が高くなるほどNOxの浄化率が高くなる。そして、完全活性温度に達した後は、温度が高くなってもNOxの浄化率は殆ど変化しない。また、NOx触媒4の劣化度合いが高くなるほど、完全活性温度は高くなる。つまり、NOx触媒4の劣化度合いが高くなるほど、より高温にしなければNOxを浄化することができなくなる。そして、NOx触媒4の劣化度合いが高くなるほど、完全活性温度に達したときのNOx浄化率は低い。
 このように、NOx触媒4の劣化度合いが高くなるほど、完全活性温度が高くなるため、例えば新品時の完全活性温度と実際の完全活性温度とを比較することでNOx触媒4の劣化度合いを求めることができる。また、たとえばNOx触媒4の劣化度合いが許容できる限度となっているときの完全活性温度を基準値とし、実際の完全活性温度が基準値よりも高ければNOx触媒4が劣化していると判定しても良い。そして、基準値よりも完全活性温度が高いほど、NOx触媒4の劣化の度合いが高いと判定することができる。
 なお、NOx触媒4に流入するNOx中のNO2の比率によりNOxの浄化率が変化するため、NO2の比率毎に完全活性温度を求めると良い。また、一定範囲内のNO2の比率のときの完全活性温度を用いても良い。例えばNOx中のNO2の比率が50%またはその近傍のときには、完全活性温度が低くなるため、完全活性温度に達する機会が増える。つまり、NO2の比率が50%またはその近傍のときの完全活性温度を求めることにより、NOx触媒4の劣化度合いの判定頻度を高くすることができる。
 図12は、本実施例に係る酸化触媒3の劣化判定のフローを示したフローチャートである。本ルーチンはECU10により所定の時間毎に繰り返し実行される。また、本ルーチンはNOx触媒4の劣化判定に先立って行われる。さらに、本ルーチンは、第1NOxセンサ7又は第2NOxセンサ8により測定されるNOx濃度に基づいて噴射弁5から適量の還元剤がNOx触媒4へ供給されているときに実行される。
 ステップS101では、NOx触媒4におけるNOxの浄化率を測定する条件が成立しているか否か判定される。この条件は、酸化触媒3及びNOx触媒4の劣化判定を正確に行うために必要となる条件である。例えば、酸化触媒3の温度が図8に示すT3よりも低く且つNOx触媒4の温度が所定の範囲(図2に示すT1からT2まで範囲)内となっているか否か判定される。ステップS101で肯定判定がなされた場合にはステップS102へ進み、否定判定がなされた場合には酸化触媒3及びNOx触媒4の劣化判定を行うことができない状態であるため本ルーチンを終了させる。
 ステップS102では、酸化触媒3の劣化度合いが規定値となっていると仮定したときのNOx触媒4に流入するNOx中のNO2の比率を推定する。つまり、図5に示したマップに基づいてNO2の比率を求める。なお、本実施例においてはステップS102を処理するECU10が、本発明における推定手段に相当する。また、本実施例においてはステップS102が、本発明における第1の工程に相当する。
 ステップS103では、NOx触媒4におけるNOxの浄化率が検知される。つまり、第1NOxセンサ7及び第2NOxセンサ8により得られるNOx濃度からNOxの浄化率が算出される。第1NOxセンサ7により得られるNOx濃度を上流NOx濃度とし、第2NOxセンサ8により得られるNOx濃度を下流NOx濃度とすると、NOx浄化率は以下の式により算出できる。
 NOx浄化率=(上流NOx濃度-下流NOx濃度)/(上流NOx濃度)
 なお、夫々のセンサにより得られるNOx濃度から単位時間当たりに夫々のセンサを通過するNOx量を算出し、該NOx量を用いてNOx浄化率を算出しても良い。
 ステップS104では、図6に示したマップ上にステップS102で得られるNO2の比率及びステップS103で得られるNOxの浄化率によって定まる点を記入する。
 ステップS105では、NOxの浄化率の極大値が得られるか否か判定される。例えば極大値を得るために必要となる点の数を予め求めておき、この点の数がマップ上に記入されているか否か判定する。また例えば、極大値を算出するための式を予めECU10に記憶させておき、このときに必要となる点の数がマップ上に記入されているか否か判定しても良い。
 ステップS105で肯定判定がなされた場合にはステップS106へ進み、否定判定がなされた場合には本ルーチンを終了させる。なお、本実施例においてはステップS103から105を処理するECU10が、本発明における算出手段に相当する。また、本実施例においてはステップS103から105が、本発明における第2の工程に相当する。
 ステップS106では、NOxの浄化率が極大値となるNO2の比率を求める。つまり、図7に示したマップからNOxの浄化率の極大値を読み取り、さらに、この極大値に対応するNO2の比率を読み取る。
 ステップS107では、NOxの浄化率が極大値となるNO2の比率と、基準値(例えば50%)とを比較する。例えばNOxの浄化率が極大値となるNO2の比率が基準値からどれだけずれているのかを求める。つまり、極大値となるNO2の比率と基準値との差または比を算出する。
 ステップS108では、酸化触媒3の劣化度合いを算出する。この劣化度合いは、新品時と比較してどれだけ劣化しているのかを表す値である。ステップS107で求めた極大値となるNO2の比率と基準値との差または比と、酸化触媒3の劣化度合いとの関係は予め求めておく。なお、ステップS102で推定したNO2の比率を補正するための補正値を求めても良い。また、図5に示したマップを補正しても良い。ステップS107で求めた極大値となるNO2の比率と基準値との差または比を酸化触媒3の劣化度合いとしても良い。なお、ステップS102で用いる規定値を、許容できる限度となる値とした場合には、極大値となるときのNO2の比率が50%よりも大きいか又は小さいか求めても良い。
 ステップS109では、酸化触媒3の劣化度合いが規定値以下であるか否か判定される。ここでいう規定値は、酸化触媒3の劣化度合いが許容できる限度となる値である。この規定値は予め実験等により求めておく。なお、ステップS102で用いる劣化度合いの規定値を、許容できる限度となる値とした場合には、NOxの浄化率が極大値となるときのNO2の比率が50%よりも小さいときに、酸化触媒3は正常であると判定できる。また、極大値となるときのNO2の比率が50%よりも大きいときに、酸化触媒3は劣化していると判定できる。
 ステップS109で肯定判定がなされた場合にはステップS110へ進み、否定判定がなされた場合にはステップS111へ進む。なお、本実施例においてはステップS109を処理するECU10が、本発明における判定手段に相当する。また、本実施例においてはステップS109が、本発明における第3の工程に相当する。
 ステップS110では、酸化触媒3が正常であると判定される。
 ステップS111では、酸化触媒3が劣化していると判定される。この場合、酸化触媒3に異常があると運転者等に警告しても良い。
 次に図13は、本実施例に係るNOx触媒4の劣化判定のフローを示したフローチャートである。本ルーチンは図12に示す酸化触媒3の劣化判定が行われた後に実行される。
 ステップS112では、酸化触媒3の劣化度合いから、NOx触媒4へ流入するNOx中のNO2の比率を算出する。つまり、図5に示したマップを補正し、補正後のNO2の比率を求める。これは、実際のNO2の比率としても良い。なお、本実施例においてはステップS112を処理するECU10が、本発明における比率算出手段に相当する。また、本実施例においてはステップS112が、本発明における第4の工程に相当する。
 ステップS113では、NOx触媒4の完全活性温度を検知可能か否か判定される。本ステップでは、NOx触媒4の温度が変化してもNOxの浄化率が殆ど変化していないか否か判定される。例えばNOx触媒4の温度が上昇したときの、NOx触媒4におけるNOxの浄化率の変化率が所定値以下の場合に、完全活性温度を検知可能であると判定される。なお、この判定は、NO2の比率が規定の範囲内のときに行う。
 ステップS113で肯定判定がなされた場合にはステップS114へ進み、否定判定がなされた場合には引き続き温度データを取得するために本ルーチンを終了させる。なお、本実施例においてはステップS113を処理するECU10が、本発明における活性判定手段に相当する。また、本実施例においてはステップS113が、本発明における第5の工程に相当する。
 ステップS114では、完全活性温度が基準値以下であるか否か判定される。この基準値は、NOx触媒4の劣化度合いが許容できる限度となる値である。この規定値は予め実験等により求めておく。
 ステップS114で肯定判定がなされた場合にはステップS115へ進み、否定判定がなされた場合にはステップS116へ進む。なお、本実施例においてはステップS114を処理するECU10が、本発明におけるNOx触媒劣化判定手段に相当する。また、本実施例においてはステップS114が、本発明における第6の工程に相当する。
 ステップS115では、NOx触媒4が正常であると判定される。
 ステップS116では、NOx触媒4が劣化していると判定される。この場合、NOx触媒4に異常があると運転者等に警告しても良い。
 なお、基準値を新品時の完全活性温度とし、検知される完全活性温度と基準値との差からNOx触媒4の劣化度合いを求めても良い。この場合、差が大きいほど劣化度合いが大きくなる。
 以上説明したように本実施例によれば、まず酸化触媒3の劣化度合いを判定するため、NOx触媒4に流入するNOx中のNO2の比率をより正確に求めることができる。このため、NOx触媒4の浄化率をより正確に求めることができるので、該NOx触媒4の劣化度合いをより正確に求めることができる。

Claims (7)

  1.  内燃機関の排気通路に設けられ還元剤により選択的にNOxを還元する選択還元型NOx触媒と、
     前記選択還元型NOx触媒よりも上流に設けられ酸化能力を有する触媒と、
     前記選択還元型NOx触媒よりも上流の排気中へ還元剤を供給する還元剤供給手段と、
     前記酸化能力を有する触媒よりも下流で且つ前記選択還元型NOx触媒よりも上流の排気中のNOx濃度を検知する上流側検知手段と、
     前記選択還元型NOx触媒よりも下流の排気中のNOx濃度を検知する下流側検知手段と、
     を備え、
     前記酸化能力を有する触媒の劣化の度合いが規定値となっていると仮定したときの前記選択還元型NOx触媒に流入するNOx中のNO2の比率を推定する推定手段と、
     前記還元剤供給手段により還元剤が供給されたときの前記上流側検知手段及び前記下流側検知手段により検知されるNOx濃度に基づいて前記選択還元型NOx触媒におけるNOxの浄化率を少なくとも極大値が得られるまで複数回算出する算出手段と、
     前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記推定手段により推定されるNO2の比率と、該比率の基準値と、を比較することにより前記酸化能力を有する触媒の劣化の度合いを判定する判定手段と、
     を備えることを特徴とする触媒劣化判定装置。
  2.  前記選択還元型NOx触媒の温度を検知する温度検知手段を備え、
     前記算出手段は、前記温度検知手段により検知される温度が所定の範囲内のときのNOxの浄化率を算出することを特徴とする請求項1に記載の触媒劣化判定装置。
  3.  前記選択還元型NOx触媒の温度を検知する温度検知手段と、
     前記判定手段により判定される劣化の度合いに基づいて前記選択還元型NOx触媒に流入するNOx中のNO2の比率を算出する比率算出手段と、
     前記温度検知手段により検知される温度に基づいて前記選択還元型NOx触媒の温度が完全活性温度に達したことを判定する活性判定手段と、
     前記比率算出手段により算出されるNO2の比率が規定の範囲内のときの前記完全活性温度と、該完全活性温度の基準値と、を比較することにより前記選択還元型NOx触媒の劣化の度合いを判定するNOx触媒劣化判定手段と、
    を備えることを特徴とする請求項1に記載の触媒劣化判定装置。
  4.  前記推定手段は、前記酸化能力を有する触媒の劣化の度合いの規定値を、許容できる限度の値としてNO2の比率を推定し、
     前記判定手段は、前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記推定手段により推定されるNO2の比率が基準値よりも大きいときに、前記酸化能力を有する触媒の劣化の度合いが許容できる限度を超えていると判定することを特徴とする請求項1または2に記載の触媒劣化判定装置。
  5.  前記NOx触媒劣化判定手段は、前記完全活性温度の基準値を、前記選択還元型NOx触媒の劣化度合いが許容できる限度となっているときの完全活性温度とし、
     前記完全活性温度が基準値よりも高いときに、前記選択還元型NOx触媒の劣化の度合いが許容できる限度を超えていると判定することを特徴とする請求項3に記載の触媒劣化判定装置。
  6.  選択還元型NOx触媒よりも上流に設けられている酸化能力を有する触媒の劣化の度合いが規定値となっていると仮定したときの該選択還元型NOx触媒に流入するNOx中のNO2の比率を推定する第1の工程と、
     前記選択還元型NOx触媒におけるNOxの浄化率を少なくとも極大値が得られるまで複数回算出する第2の工程と、
     前記選択還元型NOx触媒におけるNOxの浄化率が極大値となるときの前記第1の工程で得られるNO2の比率と、該比率の基準値と、を比較することにより前記酸化能力を有する触媒の劣化の度合いを判定する第3の工程と、
     を含んで構成されることを特徴とする触媒劣化判定方法。
  7.  前記第3の工程で判定される酸化能力を有する触媒の劣化の度合いに基づいて、前記選択還元型NOx触媒に流入するNOx中のNO2の比率を算出する第4の工程と、
     前記第4の工程で算出されるNO2の比率に基づいて前記選択還元型NOx触媒の浄化率を少なくとも完全活性温度が得られるまで複数回検知する第5の工程と、
     前記第4の工程で算出されるNO2の比率が規定の範囲内のときの前記第5の工程で得られる完全活性温度と、該完全活性温度の基準値と、を比較することにより前記選択還元型NOx触媒の劣化の度合いを判定する第6の工程と、
     を含んで構成されることを特徴とする請求項6に記載の触媒劣化判定方法。
PCT/JP2009/056678 2009-03-31 2009-03-31 触媒劣化判定装置及び触媒劣化判定方法 WO2010113269A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010510602A JP4985849B2 (ja) 2009-03-31 2009-03-31 触媒劣化判定装置及び触媒劣化判定方法
US12/677,267 US8347604B2 (en) 2009-03-31 2009-03-31 Device for determining deterioration of catalyst and method for determining deterioration of catalyst
PCT/JP2009/056678 WO2010113269A1 (ja) 2009-03-31 2009-03-31 触媒劣化判定装置及び触媒劣化判定方法
CN2009801003108A CN101918686B (zh) 2009-03-31 2009-03-31 催化剂劣化判定装置及催化剂劣化判定方法
EP09815424.8A EP2415983B1 (en) 2009-03-31 2009-03-31 Device for determining deterioration of catalyst and method for determining deterioration of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056678 WO2010113269A1 (ja) 2009-03-31 2009-03-31 触媒劣化判定装置及び触媒劣化判定方法

Publications (1)

Publication Number Publication Date
WO2010113269A1 true WO2010113269A1 (ja) 2010-10-07

Family

ID=42827602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056678 WO2010113269A1 (ja) 2009-03-31 2009-03-31 触媒劣化判定装置及び触媒劣化判定方法

Country Status (5)

Country Link
US (1) US8347604B2 (ja)
EP (1) EP2415983B1 (ja)
JP (1) JP4985849B2 (ja)
CN (1) CN101918686B (ja)
WO (1) WO2010113269A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242728A (ja) * 2009-04-10 2010-10-28 Toyota Motor Corp 触媒劣化判定装置及び触媒劣化判定方法
JP2012503734A (ja) * 2008-09-26 2012-02-09 ダイムラー・アクチェンゲゼルシャフト Scr触媒コンバータとその上流側に取付けられた酸化触媒作用のある排ガス浄化コンポーネントを備えた排ガス浄化装置を作動させるための方法
JP2012167549A (ja) * 2011-02-09 2012-09-06 Honda Motor Co Ltd 内燃機関の排気浄化システム
FR2972221A1 (fr) * 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'une ligne d'echappement par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective et vehicule correspondant
FR2972222A1 (fr) * 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'un catalyseur d'oxydation par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective et vehicule correspondant
WO2012117183A1 (fr) 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'un catalyseur d'oxydation par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective
WO2013068143A1 (de) * 2011-11-09 2013-05-16 Fev Gmbh Verfahren zur ermittlung des in einer katalytischen abgasnachbehandlungseinrichtung erzeugten no2-anteils
JP2013199913A (ja) * 2012-03-26 2013-10-03 Toyota Motor Corp 内燃機関の排気浄化装置
WO2015041291A1 (ja) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 診断装置
WO2015041290A1 (ja) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 診断装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952674B1 (fr) * 2009-11-17 2012-11-16 Peugeot Citroen Automobiles Sa Procede de controle d'un systeme de traitement des gaz d'echappement d'un moteur a combustion interne
DE102009055082A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zur Überwachung einer Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102011004557A1 (de) * 2011-02-23 2012-08-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Abgasanlage einer Brennkraftmaschine
JP5673803B2 (ja) 2011-04-12 2015-02-18 トヨタ自動車株式会社 選択還元型NOx触媒の劣化検出装置
JP5864901B2 (ja) * 2011-05-19 2016-02-17 日野自動車株式会社 パティキュレートフィルタの手動再生方法
CN108519921B (zh) * 2011-12-23 2022-07-12 英特尔公司 用于从通用寄存器向向量寄存器进行广播的装置和方法
FR2987397B1 (fr) 2012-02-29 2014-04-04 Continental Automotive France Calcul du taux de no2 a l'entree d'un dispositif de reduction catalytique selective et dispositif pour la mise en œuvre de ce procede
JP5790545B2 (ja) * 2012-03-05 2015-10-07 三菱自動車工業株式会社 触媒診断装置及び触媒診断方法
US9162183B2 (en) * 2012-03-06 2015-10-20 Cummins Inc. System and method to manage SCR catalyst NO2/NOX ratio
US8635862B2 (en) * 2012-03-13 2014-01-28 GM Global Technology Operations LLC Control system for reducing nitrous oxide (“N2O”) after selective catalytic reduction (“SCR”) device light-off
US8984867B2 (en) * 2012-04-10 2015-03-24 GM Global Technology Operations LLC Nitrogen dioxide generation diagnostic for a diesel after-treatment system
EP2857648B8 (en) * 2012-05-29 2019-02-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
SE536951C2 (sv) * 2013-02-13 2014-11-11 Scania Cv Ab Anordning och förfarande för felsökning vid ett SCR-system
DE102013012575A1 (de) * 2013-07-30 2015-02-05 Man Truck & Bus Ag Verfahren und Vorrichtung zur Ermittlung des Wirkungsgrades einer Abgasreinigungsvorrichtung
FR3014950B1 (fr) * 2013-12-18 2016-01-22 Peugeot Citroen Automobiles Sa Procede d'evaluation d'un catalyseur d'oxydation utilisant un modele de fonctionnement du moteur et de son catalyseur
WO2017007380A1 (en) * 2015-07-03 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Method performed by a cache server for managing content requests
JP7211388B2 (ja) * 2020-03-25 2023-01-24 トヨタ自動車株式会社 触媒の再利用評価システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100699A (ja) * 2002-09-04 2004-04-02 Ford Global Technologies Llc 排気エミッション診断システム
JP2006291742A (ja) * 2005-04-06 2006-10-26 Toyota Motor Corp 内燃機関の触媒劣化検出装置
JP2007315233A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 内燃機関の排気浄化システム
JP2008038737A (ja) * 2006-08-04 2008-02-21 Toyota Motor Corp 触媒劣化検出装置
JP2008523305A (ja) * 2004-12-14 2008-07-03 ボルボ ラストバグナー アーベー 酸化触媒を診断する方法、装置およびコンピュータプログラム製品
JP2008240577A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 酸化触媒の劣化診断装置及び劣化診断方法
JP2008274835A (ja) * 2007-04-27 2008-11-13 Mitsubishi Fuso Truck & Bus Corp 酸化触媒の劣化診断装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631123B2 (ja) 2000-03-16 2011-02-16 マツダ株式会社 エンジンの排気浄化装置
US7134273B2 (en) 2002-09-04 2006-11-14 Ford Global Technologies, Llc Exhaust emission control and diagnostics
DE10254843A1 (de) * 2002-11-25 2004-06-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
JP4224383B2 (ja) 2003-06-12 2009-02-12 日野自動車株式会社 排気浄化装置
JP5182200B2 (ja) * 2009-04-10 2013-04-10 トヨタ自動車株式会社 触媒劣化判定装置及び触媒劣化判定方法
JP2011196309A (ja) * 2010-03-23 2011-10-06 Mazda Motor Corp 排気浄化方法及び排気浄化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100699A (ja) * 2002-09-04 2004-04-02 Ford Global Technologies Llc 排気エミッション診断システム
JP2008523305A (ja) * 2004-12-14 2008-07-03 ボルボ ラストバグナー アーベー 酸化触媒を診断する方法、装置およびコンピュータプログラム製品
JP2006291742A (ja) * 2005-04-06 2006-10-26 Toyota Motor Corp 内燃機関の触媒劣化検出装置
JP2007315233A (ja) * 2006-05-24 2007-12-06 Toyota Motor Corp 内燃機関の排気浄化システム
JP2008038737A (ja) * 2006-08-04 2008-02-21 Toyota Motor Corp 触媒劣化検出装置
JP2008240577A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 酸化触媒の劣化診断装置及び劣化診断方法
JP2008274835A (ja) * 2007-04-27 2008-11-13 Mitsubishi Fuso Truck & Bus Corp 酸化触媒の劣化診断装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038370B2 (en) 2008-09-26 2015-05-26 Daimler Ag Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component
JP2012503734A (ja) * 2008-09-26 2012-02-09 ダイムラー・アクチェンゲゼルシャフト Scr触媒コンバータとその上流側に取付けられた酸化触媒作用のある排ガス浄化コンポーネントを備えた排ガス浄化装置を作動させるための方法
JP2010242728A (ja) * 2009-04-10 2010-10-28 Toyota Motor Corp 触媒劣化判定装置及び触媒劣化判定方法
JP2012167549A (ja) * 2011-02-09 2012-09-06 Honda Motor Co Ltd 内燃機関の排気浄化システム
FR2972221A1 (fr) * 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'une ligne d'echappement par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective et vehicule correspondant
FR2972222A1 (fr) * 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'un catalyseur d'oxydation par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective et vehicule correspondant
WO2012117183A1 (fr) 2011-03-02 2012-09-07 Peugeot Citroen Automobiles Sa Procede de diagnostic d'un catalyseur d'oxydation par mesure du taux d'oxydes d'azote en aval d'un organe de reduction catalytique selective
RU2585155C2 (ru) * 2011-03-02 2016-05-27 Пежо Ситроен Отомобиль Са Способ диагностики катализатора окисления по измерению уровня оксидов азота за устройством селективного каталитического восстановления
CN103502595A (zh) * 2011-03-02 2014-01-08 标致·雪铁龙汽车公司 通过测量位于选择性催化还原机构下游的氮氧化物含量诊断氧化催化转换器的方法
WO2013068143A1 (de) * 2011-11-09 2013-05-16 Fev Gmbh Verfahren zur ermittlung des in einer katalytischen abgasnachbehandlungseinrichtung erzeugten no2-anteils
JP2013199913A (ja) * 2012-03-26 2013-10-03 Toyota Motor Corp 内燃機関の排気浄化装置
WO2015041290A1 (ja) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 診断装置
JP2015059474A (ja) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 診断装置
JP2015059473A (ja) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 診断装置
WO2015041291A1 (ja) * 2013-09-18 2015-03-26 いすゞ自動車株式会社 診断装置

Also Published As

Publication number Publication date
EP2415983A4 (en) 2013-04-24
JPWO2010113269A1 (ja) 2012-10-04
JP4985849B2 (ja) 2012-07-25
US20120006002A1 (en) 2012-01-12
EP2415983A1 (en) 2012-02-08
CN101918686B (zh) 2012-12-26
CN101918686A (zh) 2010-12-15
EP2415983B1 (en) 2018-07-25
US8347604B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
JP4985849B2 (ja) 触媒劣化判定装置及び触媒劣化判定方法
EP1811144B1 (en) Exhaust gas purification apparatus
US7736595B2 (en) Dosing agent injection control for selective catalytic reduction catalysts
WO2018097246A1 (ja) 排気浄化装置の異常診断システム
JP5170689B2 (ja) 内燃機関の排気浄化装置
JP5382129B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
JPWO2010082354A1 (ja) 排気浄化装置の異常検出装置及び排気浄化装置の異常検出方法
WO2010147107A1 (ja) エンジンの排気浄化装置及び排気浄化方法
WO2012176280A1 (ja) 排気浄化装置の異常検出装置
JP5182200B2 (ja) 触媒劣化判定装置及び触媒劣化判定方法
JP5839118B2 (ja) 内燃機関の排気浄化装置の異常判定システム
JP2011226293A (ja) 排気浄化装置の故障検出装置
JP5240065B2 (ja) 排気浄化装置の故障検出装置
EP2896801B1 (en) Apparatus for detecting deterioration of a NOx selective reduction catalyst
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
US10632422B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2014206150A (ja) 排ガス浄化制御装置及びプログラム
JP2012082703A (ja) 選択還元型NOx触媒の劣化検出装置及び方法
JP5895882B2 (ja) 内燃機関の排気浄化システム
JP2010133375A (ja) センサの出力補正装置及びセンサの出力補正方法
JP5262640B2 (ja) 内燃機関の排気浄化装置
JP2009102995A (ja) 排気ガス浄化システムの故障診断装置
JP2020118080A (ja) 推定装置、及び車両
JP2012233463A (ja) 排気浄化システムの故障検出装置
JP2018031356A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100310.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009815424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12677267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010510602

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE