WO2010110470A1 - バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 - Google Patents

バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 Download PDF

Info

Publication number
WO2010110470A1
WO2010110470A1 PCT/JP2010/055492 JP2010055492W WO2010110470A1 WO 2010110470 A1 WO2010110470 A1 WO 2010110470A1 JP 2010055492 W JP2010055492 W JP 2010055492W WO 2010110470 A1 WO2010110470 A1 WO 2010110470A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
tar
furnace
dry distillation
carbonization
Prior art date
Application number
PCT/JP2010/055492
Other languages
English (en)
French (fr)
Inventor
浅沼稔
鶴田秀和
藤林晃夫
戸村啓二
岩崎敏彦
高須展夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201080013726.9A priority Critical patent/CN102388119B/zh
Priority to KR1020117023260A priority patent/KR101319737B1/ko
Publication of WO2010110470A1 publication Critical patent/WO2010110470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • C10B49/06Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated according to the moving bed type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/005After-treatment of coke, e.g. calcination desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/12Applying additives during coking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method for producing biomass coal by carbonizing biomass and a biomass coal production apparatus used therefor.
  • Biomass is known as a carbon-free carbon source. Biomass includes timber waste generated by demolishing houses, wood-based waste generated by sawmills, pruning waste in forests, agricultural waste, and the like. As the processing and utilization methods, landfill, neglect, incineration, fuel, etc. are the main ones. Biofuel crops intended for fuel use are also known.
  • the ironmaking process is a process of reducing iron ore using coal as a reducing material.
  • heat necessary for scouring is supplied by coal or the like. Therefore, the use of carbon sources is essential in the steel industry.
  • biomass is composed of carbon, oxygen and hydrogen, but the biomass itself has a high water content and low waste heat (for example, moisture 15 mass%, calorific value 16.2 MJ / kg-dry basis) It is not advantageous in terms of efficiency. Therefore, there is a method in which biomass is subjected to dry distillation, subjected to treatment such as dehydration and decarboxylation, water is removed, and the calorific value is increased for use in the steel process.
  • Dehydration and degassing occur by dry distillation, and carbon content in biomass is generated as gas and tar content, so that the carbon content (biomass coal) remaining as a solid is small.
  • biomass coal biomass coal
  • Patent Document 1 discloses a method for producing a high calorific value carbide by circulating and absorbing volatile matter generated during heating with respect to a carbide obtained by heat-drying biomass.
  • Patent Document 2 pyrolyzes an organic substance without supplying combustion air to produce amorphous carbon.
  • An untreated gas containing a combustible gas and a gaseous tar generated from the organic substance in the course of pyrolysis Disclosed is a method for treating an organic substance that is passed through amorphous carbon at a temperature of 800 to 1000 ° C. under atmospheric pressure to obtain a treatment gas from which tar has been almost completely pyrolyzed to remove the tar.
  • Patent Document 3 discloses thermal decomposition of waste that is decomposed by contact with heated gas blown from a gas blowing nozzle and separated into carbide and pyrolysis gas in the furnace. A processing apparatus is disclosed.
  • Patent Document 4 discloses a charcoal manufacturing apparatus in which a charcoal raw material is filled in a furnace body of a box-shaped furnace, heated, dried, dry-distilled, and carbonized to produce charcoal.
  • Patent Document 5 discloses that a box-shaped furnace main body having a raw material charging port and a charcoal discharge port, a carbonization chamber having a rectangular cross section provided in the main body, and a wood material in the carbonization chamber are heated.
  • a carbonization furnace having a heat transfer wall provided is disclosed.
  • Patent Document 6 discloses a method of carbonizing wood in which wood is heated in a rotary kiln or rotary dryer at 300 to 1000 ° C. and an oxygen concentration of 10% or less, and a gas generated by heating is burned in a combustion furnace connected to the rotary kiln or rotary dryer. Is disclosed.
  • JP 2003-213273 A Japanese Patent No. 3781379 JP 2001-131557 A Japanese Patent Laid-Open No. 03-122191 JP 2007-146016 A JP 2002-241762 A
  • the oxygen content in tar exceeds 20 mass% and may be close to 40 mass%.
  • Tar with high oxygen content and high reactivity is highly ignitable and has safety problems.
  • the tar content has a higher oxygen content, lower calorific value, higher viscosity, higher reactivity and lower stability compared to carbides. Will be reduced.
  • Patent Document 2 aims to increase the yield of combustible gas by decomposing tar without steam reforming when generating amorphous carbon and combustible gas. From the viewpoint of the manufacture of carbides, the carbon content in the raw material is gasified or tarted, which reduces the yield of carbides. When tar is pyrolyzed at a temperature close to 1000 ° C. as described in Patent Document 2, most of the tar is converted to gas, and the yield of carbide obtained from tar is at most several mass%.
  • Patent Document 3 manufactures carbide by carbonizing biomass in a vertical furnace. Usually, the contents are heated by blowing an oxygen-free high-temperature gas from the lower part of the furnace, but by pyrolysis by this dry distillation, gas, tar and the like are generated simultaneously with the formation of carbides. Since these gases and tars can also be used effectively, from the viewpoint of the production of carbides, the carbon content in the raw material is converted to gas or tar, and the yield of the carbides decreases.
  • the object of the present invention is to solve such problems of the prior art and to improve the yield of biomass coal when carbonizing biomass using a vertical furnace to produce biomass coal, and
  • An object of the present invention is to provide a biomass charcoal production method and a biomass charcoal production apparatus used therefor, in which the quality of the charcoal is less deteriorated.
  • biomass charcoal is charged from the top of the vertical furnace or from the upper side, Hot air is blown from the bottom of the vertical furnace or from the lower side below the exhaust gas discharge position, In the vertical furnace, the biomass is carbonized into biomass charcoal, Exhaust gas containing tar generated during carbonization is discharged from the top or side upper part of the vertical furnace, Blowing at least a portion of the tar in the exhaust gas into the vertical furnace to contact the biomass and / or the biomass charcoal; Converting at least a portion of the tar in contact with the biomass and / or the biomass charcoal to a carbide, A method for producing biomass charcoal.
  • Carbonization of the biomass is performed by introducing biomass into the vertical furnace from the top or side upper part of the vertical furnace, and blowing hot air from the bottom or side lower part of the vertical furnace,
  • the exhaust gas is discharged by discharging an exhaust gas containing tar generated during the carbonization from the top or side upper part of the vertical furnace,
  • Contact of at least a portion of the tar is performed by blowing at least a portion of the tar in the exhaust gas generated during the carbonization into the vertical furnace.
  • the carbonization of the biomass comprises carbonizing the biomass, generating an exhaust gas containing the carbonized biomass and tar, and coking the carbonized biomass;
  • Contacting at least a part of the tar comprises contacting the dry distillation biomass with an exhaust gas containing the tar, and depositing and depositing the carbon in the gas and the tar on the dry distillation biomass.
  • Carbonization of the biomass comprises carbonizing the biomass in a first carbonization furnace, generating gas and tar, The contact of at least a part of the tar causes the gas generated in the first dry distillation furnace and the tar to come into contact with the biomass in the second dry distillation furnace, and the gas during the dry distillation of the biomass in the second dry distillation furnace And depositing the tar on the biomass in the second dry distillation furnace, The method for producing biomass charcoal according to (1).
  • a vertical furnace that carbonizes biomass to produce biomass charcoal;
  • a biomass inlet provided at the top or side upper part of the vertical furnace;
  • An exhaust gas exhaust port provided at the top or upper side of the vertical furnace,
  • a hot-air blowing port provided at the bottom of the vertical furnace, or at a lower side below the discharge port;
  • a partial combustor for combusting at least a part of the exhaust gas at an air ratio of less than 1;
  • An apparatus for producing biomass charcoal is produced.
  • biomass can be carbonized to produce biomass coal efficiently, and the yield of biomass coal can be improved.
  • the quality of the biomass charcoal produced is also improved compared to biomass charcoal with tar simply attached.
  • tar is effectively used, and the burden of tar treatment is reduced.
  • the dry distillation product can be lightened and the exhaust gas treatment process can be reduced.
  • reuse of the biomass is promoted, it can contribute to reducing CO 2 emissions.
  • FIG. 1 is a diagram illustrating an embodiment of a biomass charcoal manufacturing apparatus according to Embodiment 1.
  • FIG. FIG. 6 is an explanatory diagram of one embodiment of the second embodiment. Explanatory drawing of other one Embodiment of Embodiment 2.
  • FIG. FIG. 6 is an explanatory diagram of one embodiment of the second embodiment. Explanatory drawing of other one Embodiment of Embodiment 2.
  • FIG. FIG. 6 is an explanatory diagram of one embodiment of the second embodiment. Explanatory drawing of other one Embodiment of Embodiment 2.
  • FIG. FIG. 6 is an explan
  • FIG. 5 is a schematic diagram of a biomass coal production apparatus using a two-column packed moving bed type furnace according to the third embodiment.
  • Sectional drawing of the carbonization furnace of FIG. Explanatory drawing of one Embodiment of this invention using the apparatus of FIG.
  • FIG. 4 is a schematic diagram of a two-column packed moving bed type furnace used in the example of the third embodiment. Explanatory drawing of other one Embodiment of Embodiment 3.
  • Biomass is a general term for a certain amount of animal and plant resources accumulated and wastes originating from them. However, fossil resources are excluded from biomass.
  • any biomass that is pyrolyzed to generate carbides such as agricultural, forestry, livestock, fisheries, and waste can be used. It is preferable to use biomass having a high effective calorific value, and it is preferable to use woody biomass.
  • the woody biomass include the following. -Paper by-products such as pulp black liquor and chip dust, lumber by-products such as bark and sawdust, ⁇ Remaining forest land, such as branches, leaves, treetops, and edge materials, ⁇ Deforestation of cedar, cypress, pine, etc.
  • ⁇ Products from special forests such as waste hodwood of edible fungi, ⁇ Forestry biomass such as firewood charcoal forests such as shii, konara and pine, willow, poplar, eucalyptus, pine, etc.
  • ⁇ General waste such as pruned branches of municipal roadside trees, garden trees in private houses, ⁇ Pruned branches of national and prefectural roadside trees, corporate garden trees, etc.
  • -Industrial waste such as construction and building waste.
  • Agricultural biomass is classified as agricultural biomass such as rice husks, wheat straw, rice straw, sugarcane casks, palm palm, etc. that originate from waste and by-products, and rice biomass, rapeseed, soybean, etc. that originates from energy crops.
  • the part can also be suitably used as woody biomass.
  • biomass is carbonized by using a vertical furnace as a carbonization furnace to produce biomass charcoal that is a carbide.
  • a vertical furnace As the vertical furnace, a shaft furnace is preferably used.
  • Carbonization when biomass is carbonized refers to heating by blocking or restricting the supply of air (oxygen) to obtain products of gas (also called wood gas), liquid (tar), and solid (charcoal). .
  • gas also called wood gas
  • tar liquid
  • charcoal solid
  • the components and ratios of the obtained gas, liquid, and solid change.
  • tar in exhaust gas generated during carbonization is recovered together with gas, and at least a part of the tar is blown into a vertical furnace that carbonizes biomass together with hot air, so that tar is converted into biomass coal.
  • tar char is deposited on the biomass charcoal to improve the biomass charcoal yield.
  • the tar produced by carbonization of biomass is again carbonized in the vertical furnace and deposited on the biomass charcoal, so that the biomass charcoal has a lower oxygen content and a calorific value than the state where the tar is only attached. Higher, less reactive and less ignitable, increasing safety and improving quality.
  • “Tar carbide precipitates on biomass coal” as used herein means that tar is converted to carbide on biomass coal as the pyrolysis reaction or polymerization reaction of tar proceeds on biomass coal. . In order for such a thermal decomposition reaction or polymerization reaction to occur, it is necessary that tar first adheres on the biomass coal, and the biomass coal to which the tar adheres is heated to a higher temperature.
  • tar adheres to the biomass charcoal at the low temperature portion at the top of the furnace, and the biomass charcoal to which the tar adheres descends to the bottom of the furnace and is heated to a higher temperature. Carbide precipitates on the biomass coal.
  • the tar produced by carbonization of biomass is again carbonized in the vertical furnace and deposited on the biomass charcoal, so that the biomass charcoal has a lower oxygen content and a calorific value than the state where the tar is only attached. Higher, less reactive and less ignitable, increasing safety and improving quality.
  • the biomass charcoal of Embodiment 1 can generate a calorific value of about 30 MJ / kg, which is the same as that of biomass charcoal that does not allow conventional tar to adhere.
  • the calorific value of tar is about 10 MJ / kg. Assuming calculation, only a calorific value of about 14 to 20 MJ / kg can be obtained.
  • the adhering tar was a black brown high-viscosity liquid product obtained by separating and removing a liquid obtained by thermally decomposing biomass by standing or distillation to separate a brown transparent liquid (vinegar liquid). Even so, the maximum calorific value of tar from which the vinegar has been removed is about 20 MJ / kg, and as a result, the calorific value of biomass coal is only 23 to 27 MJ / kg.
  • biomass is introduced from the top or side upper part of the vertical furnace to form a packed bed in the vertical furnace, Biomass is carbonized by blowing hot air from the bottom or the lower side, and exhaust gas containing tar generated during carbonization is discharged from the top of the vertical furnace, and at least a part of this tar is combined with hot air in the vertical furnace.
  • the top portion or the upper side portion is collectively referred to as “upper portion”.
  • the bottom portion or the lower side portion is collectively referred to as a “lower portion”.
  • Biomass coal deposited with tar and deposited as carbide is discharged from the lower part of the vertical furnace.
  • a side upper part points out the upper half side part in the height direction of a vertical furnace here, it is still more preferable that it is 1/4 or more upper.
  • the side lower part refers to the lower half side part in the vertical direction of the vertical furnace, but it is better if it is 1/4 or less below.
  • ⁇ ⁇ ⁇ Tar is separated from the exhaust gas, and at least part of it is blown into the vertical furnace. It is preferable that 10 to 100% of tar separated from the exhaust gas is blown into a vertical furnace and brought into contact with the biomass and / or the biomass coal. When it is 10% or more, the effect of improving the carbonization yield is great. More preferably, 50-100% of the tar separated from the exhaust gas is blown into the vertical furnace.
  • the blowing method is arbitrary, it is preferable to blow into the lower half of the biomass packed bed (from the hot air blowing position to the packed bed surface). When the tar is mixed with hot air and blown together with the hot air, the efficiency of conversion of the tar into the carbide is increased, and the facility is simple and preferable.
  • hot air from any source can be used, and hot air generated in a hot air furnace or the like can also be used to circulate a part of tar or water separated from exhaust gas and partially combusted. It is also possible to circulate and use exhaust gas partially burned as it is.
  • the biomass coal in the vertical furnace is hot, it is preferable to cool the biomass coal that has been cut out and discharged. In order to facilitate this cooling, it is preferable to supply a cooling gas into the furnace from the lower part of the vertical furnace.
  • the cooling gas it is preferable to circulate and use the exhaust gas, and it is also possible to use a part of the remaining gas obtained by partial combustion of the remaining gas obtained by separating tar and water from the exhaust gas after cooling.
  • the cooling gas also needs to be blocked or restricted from supplying air (oxygen).
  • a part of tar generated during carbonization of biomass is mixed with the cooling gas, and the tar is supplied into the vertical furnace together with the cooling gas. Tar adheres to the biomass charcoal to be cooled, improving the yield of biomass charcoal. Although the ratio is small compared with the tar blown with hot air, a part of the tar supplied with the cooling gas is also carbonized in the furnace and deposited on the biomass coal. When the exhaust gas is circulated and used as the cooling gas, tar is blown in a state of being mixed with the cooling gas in advance.
  • External tar can be added to the tar blown with hot air or cooling gas.
  • the tar generated externally it is preferable to use biomass-derived tar that has room for carbonization, and it is particularly preferable to use tar generated by pyrolyzing biomass at 700 ° C. or lower.
  • the remainder of the exhaust gas can be used as fuel or separately burned by a combustor or the like, and used as high-temperature waste gas for heat recovery or biomass drying.
  • the height of the packed bed of biomass in the vertical furnace is the height from the hot air blowing position to the packed bed surface.
  • the height of the packed bed is preferably 2 m or more and less than 15 m. If the height of the portion where the biomass is heated is too low, the heat exchange is inefficient and the effect of improving the yield due to tar is small. On the other hand, if the height of the portion where the biomass is heated is too high, the pressure loss becomes too large and the equipment cost increases.
  • Embodiment 1 One embodiment of Embodiment 1 will be described with reference to FIG.
  • Raw material 1 such as woody biomass is supplied to the carbonization furnace 10 which is a vertical furnace from the upper inlet.
  • the hot air 5 is supplied from the hot air inlet 11 which is a hot-air inlet.
  • the hot air 5 is oxygen-free or low-oxygen in order to cause carbonization without causing combustion of the filler in the furnace.
  • Low oxygen is, for example, an oxygen content of less than 1 vol%.
  • the hot air 5 can be mixed with tar 4.
  • the raw material 1 forms a packed bed 12 in the carbonization furnace 10, is carbonized by being heated by the hot air 5, and is discharged as a carbide 2 from the lower cutting device 13.
  • a rotating mechanism or the like at the hot air inlet 11, it is possible to promote the cutting of the carbide.
  • the exhaust gas 3 generated from the packed bed 12 is exhausted from the exhaust port at the top of the furnace. The generated gas is almost oxygen-free and contains tar.
  • the form of the raw material 1 is preferably a form that does not hinder gas flow in the packed bed, that is, a lump with a size of about 5 mm to 200 mm (90 mass% or more) as a main component.
  • 200 mm or less means the sieving which passes a 200 mm sieve
  • 5 mm or more means the state on the sieve of a 5 mm sieve.
  • the upper surface of the packed bed 12 is in a flattened state that is leveled to some extent. This is to prevent gas drift and realize efficient carbonization.
  • the temperature of the hot air 5 is preferably 400 to 1200 ° C. This is because if the blowing temperature is too low, the carbonization of the raw material does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases. Preferably, it is 600 to 1200 ° C, more preferably 600 to 1000 ° C.
  • the temperature of carbide generated by carbonization is preferably about 300 to 700 ° C. This is because if the temperature is too low, carbonization does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases.
  • the temperature is preferably 400 to 700 ° C, more preferably 400 to 600 ° C.
  • the carbide 2 can be cut at a safe temperature by indirect cooling such as a water cooling jacket or direct cooling by water spray.
  • the temperature of the exhaust gas exhausted from the exhaust port at the top of the packed bed 12 is preferably about 50 to 300 ° C. If the temperature is too low, water will not be sufficiently discharged from the packed bed. If the temperature is too high, the tar content will be excessively discharged from the packed bed and the yield of carbide will be reduced, causing tar trouble downstream. It is because it becomes easy to get up. Preferably, it is about 70 to 200 ° C.
  • Hot tar 5 is mixed with tar 4.
  • the tar 4 is preferably separated from the exhaust gas 3.
  • a part of the tar 4 adheres to the carbide 2 and is recovered as a carbide, so that the yield of the carbide 2 can be improved.
  • a part of the exhaust gas 3 as the hot air 5 it is possible to blow hot air in a state where tar is mixed.
  • the tar 4 is mixed with the hot air 5 and supplied to the packed bed 12 in the furnace, and adsorbs to the carbide in the packed bed, thereby contributing to an improvement in the yield of the carbide 2.
  • Most of the tar 4 is pyrolyzed in the packed bed 12 to generate a char component, that is, a carbide.
  • the hot air 5 is supplied from the lower part of the furnace through the hot air inlet as shown, but may be supplied from the side of the furnace using a nozzle.
  • the raw material 1 is supplied to the carbonization furnace 10 from above.
  • the hot air 21 is supplied to the middle stage in the furnace.
  • the hot air 21 is mixed with tar 22.
  • the cold air 23 is supplied from the cold air inlet 25 into the furnace.
  • Tar 24 can be mixed into the cold air 23.
  • the hot air 21 and the cold air 23 are oxygen-free or low-oxygen in order to cause carbonization without causing combustion of the filling in the furnace.
  • the raw material 1 forms a packed bed 12 in a furnace, is carbonized by being heated by hot air 21, is cooled by cold air 23 after carbonization, and is discharged as carbide 2 from a lower cutting device 13.
  • the cold air inlet 25 can promote cutting of carbide by installing a rotation mechanism or the like.
  • the exhaust gas 3 generated from the packed bed 12 is exhausted from the upper part of the furnace.
  • the form of the raw material 1 is preferably a form that does not hinder gas flow in the packed bed, that is, a lump with a size of about 5 mm to 200 mm (90 mass% or more) as a main component.
  • 200 mm or less means the sieving which passes a 200 mm sieve
  • 5 mm or more means the state on the sieve of a 5 mm sieve.
  • the upper surface of the packed bed 12 is in a flattened state that is leveled to some extent. This is to prevent gas drift and realize efficient carbonization.
  • the temperature of the hot air 21 is 400 to 1200 ° C. This is because if the blowing temperature is too low, the carbonization of the raw material does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases. Preferably, it is 600 to 1000 ° C.
  • the carbide temperature in the vicinity of the inlet of hot air 21 in the middle of the packed bed is preferably about 300 to 700 ° C. This is because if the temperature is too low, carbonization does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases.
  • the temperature is preferably 400 to 700 ° C, more preferably 400 to 600 ° C.
  • the temperature of the cold air 23 is 200 ° C. or less. Preferably it is 100 degrees C or less. This is because cooling is not efficient when the temperature is too high.
  • the carbide 2 can be cut at a safe temperature by indirect cooling such as a water cooling jacket or direct cooling by water spray.
  • the temperature of the exhaust gas discharged from the upper part of the packed bed 12 is preferably about 50 to 300 ° C. If the temperature is too low, water will not be sufficiently discharged from the packed bed. If the temperature is too high, the tar content will be excessively discharged from the packed bed and the yield of carbide will be reduced, causing tar trouble downstream. It is because it becomes easy to get up. More preferably, it is about 70 to 200 ° C.
  • the tar 22 separated from the exhaust gas 3 is used.
  • a part of the tar 22 is included in the carbide 2, so that the yield of the carbide 2 can be improved.
  • hot air in a state where tar is mixed can be blown.
  • Tar 24 can also be mixed with the cold air 23, and it is preferable to use the tar 24 separated from the exhaust gas 3. By mixing the tar 24 with the cold air 23, a part of the tar 24 is included in the product carbide 2, so that the yield of the carbide 2 can be improved.
  • the tar 22 or the tar 24 is mixed with the hot air 21 or the cold air 23, supplied to the packed bed 12 in the furnace, and adsorbed on the carbide in the packed bed, thereby contributing to an improvement in the yield of the carbide 2.
  • the tar 22 or 24 is further thermally decomposed in the packed bed 12 to generate a char component, that is, becomes a carbide and contributes to an improvement in the yield of the carbide 2.
  • Some of the tars 24 are discharged outside the furnace while adhering to the carbide, in addition to those that are pyrolyzed in the furnace to produce a char fraction.
  • the tar 22 or the tar 24 is mixed with the hot air 21 or the cold air 23 and supplied into the furnace as shown in the figure, but may be directly supplied to the packed bed 12 in the furnace without being mixed with the hot air or the cold air.
  • the cold air 23 is supplied from the lower part of the furnace through the hot air inlet as shown, but may be supplied from the side of the furnace using a nozzle.
  • the carbonization furnace 10 is supplied with the raw material 1 from above, forms a packed bed 12 in the furnace, is heated by hot air 5, is carbonized, and is discharged as a carbide 2.
  • the exhaust gas 3 generated in the packed bed 12 is separated into a gas 32, a vinegar solution 33, and a tar 34 by a separator 311.
  • the tar obtained here refers to a black-brown, highly viscous liquid obtained by removing a liquid obtained by pyrolyzing biomass by standing or distilling and removing a brown transparent liquid (vinegar liquid).
  • the calorific value of the tar in this case is about 20 MJ / kg at maximum by removing the vinegar.
  • the vinegar and tar can be separated into a liquid phase and a gas can be separated into a gas phase at a temperature not higher than the condensation temperature of the vinegar, and the liquid phase can be separated into an aqueous phase (vinegar liquid phase) and oil. If it is a structure which can be made to isolate
  • the aqueous phase includes water-soluble organic substances. In the separator 311, separation efficiency can be increased by cooling as necessary.
  • the gas 32 separated by the separator 311 and a part of the separated tar 34 are so-called incompletely combusted by the air 35 in the partial combustor 312.
  • the amount of air 35 is less than 1 in the air ratio, and oxygen-free or extremely low-oxygen hot air 36 is generated.
  • the air ratio can be less than 1, but it is preferably 0.5 or more. In order to leave tar in the hot air, the air ratio is preferably 0.8 or less.
  • the vinegar liquid separated by the separator 311 is discarded or the water-soluble organic matter dissolved is effectively used. In some cases, it is burned in the combustor 313 and released as waste gas 38.
  • Part of the hot air 36 generated in the partial combustor 312 is sent to the carbonization furnace 10 as the hot air 5 and used as a heat source for carbonization.
  • Part of the tar 34 separated by the separator 311 is sent to the carbonization furnace 10 together with hot air 5 as tar 4.
  • Part of the hot air generated in the partial combustor 312 is mixed with the air 37 in the combustor 313 to burn the remaining combustible gas component, and the waste gas 38 is discharged.
  • the form of the raw material 1 is the same as that described in the embodiment using FIGS.
  • the temperature of the hot air 5 is preferably 400 to 1200 ° C. This is because if the temperature is too low, the carbonization of the raw material does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases. More preferably, the temperature is set to 600 to 1000 ° C.
  • the temperature of the generated carbide is preferably about 300 to 700 ° C. This is because if the temperature is too low, carbonization does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases.
  • the temperature is preferably 400 to 700 ° C, more preferably 400 to 600 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed 12 is preferably about 50 to 300 ° C. If the temperature is too low, water will not be sufficiently discharged from the packed bed. If the temperature is too high, the tar content will be excessively discharged from the packed bed and the yield of carbide will be reduced, causing tar trouble downstream. It is because it becomes easy to get up. Preferably, it is about 70 to 200 ° C.
  • the tar 4 is mixed with the hot air 5 and supplied to the packed bed 12 in the furnace, and adsorbs to the carbide in the packed bed, thereby contributing to an improvement in the yield of the carbide 2.
  • the tar 4 is further thermally decomposed in the packed bed 12 to generate a char component, that is, becomes a carbide and contributes to an improvement in the yield of the carbide 2.
  • the tar 4 is mixed with the hot air 5 and supplied into the furnace as shown in the figure, but may be directly supplied to the packed bed 12 without being mixed with the hot air 5.
  • the yield of the carbide 2 can be improved by effectively using the tar.
  • the vinegar liquid 33 supplied to the partial combustor 312 can be reduced by separating the vinegar liquid 33 with the separator 311 as compared with the case where the vinegar liquid is not separated, the following effects are obtained.
  • the temperature of the partial combustor 312 at the same air ratio can be increased, and it becomes easy to supply the heat necessary for the carbonization furnace 10.
  • the water vapor contained in the hot air 5 can be reduced, there is an effect of suppressing the carbon consumption reaction by the water vapor in the carbonization furnace, leading to an improvement in the carbide yield.
  • the heat of the waste gas 38 can be used for drying the raw material 1 and the like.
  • the raw material 1 is supplied to the carbonization furnace 10 from above. Further, hot air 21 is supplied to the middle stage of the furnace, and tar 22 can be mixed with the hot air 21. Further, cold air 23 is supplied into the furnace, and tar 24 can be mixed into the cold air 23.
  • the hot air 21 and the cold air 23 do not cause combustion of the furnace filling, and are oxygen-free or low-oxygen for dry distillation.
  • the raw material 1 forms a packed bed 12 in a furnace, is carbonized by being heated by hot air 21, is cooled by cold air 23 after carbonization, and is discharged as carbide 2.
  • the exhaust gas 3 generated from the packed bed is exhausted from the upper part of the furnace and separated into gas 32, vinegar 33, and tar 34 by a separator 311.
  • the separator 311 the vinegar and tar can be separated into a liquid phase and a gas can be separated into a gas phase at a temperature not higher than the condensation temperature of the vinegar, and the liquid phase can be separated into an aqueous phase and an oil phase (tar phase).
  • the structure is not particularly limited as long as the structure can be separated. In the separator 311, separation efficiency can be increased by cooling as necessary.
  • the gas 32 separated by the separator 311 and a part of the separated tar 34 are so-called incompletely combusted by the air 35 in the partial combustor 312.
  • the amount of air 35 is less than 1 in the air ratio, and oxygen-free or extremely low-oxygen hot air 36 is generated.
  • the air ratio can be less than 1, but it is preferably 0.5 or more. In order to leave tar in the hot air, the air ratio is preferably 0.8 or less.
  • the vinegar liquid separated by the separator 311 is discarded or the water-soluble organic matter dissolved is effectively used. In some cases, it is burned in the combustor 313 and released as waste gas 38.
  • Part of the hot air 36 generated in the partial combustor 312 is sent to the carbonization furnace 10 as the hot air 21 to be a heat source for carbonization.
  • Part of the hot air 36 generated in the partial combustor 312 is cooled by the cooler 411, sent to the carbonization furnace 10 as the cold air 23, and used for cooling the carbide.
  • Part of the hot air generated in the partial combustor 312 is mixed with the air 37 in the combustor 313 to burn the remaining combustible gas component, and the waste gas 38 is discharged.
  • the form of the raw material 1 is the same as that described in the embodiment using FIGS.
  • the temperature of the hot air 21 is preferably 400 to 1200 ° C. This is because if the temperature is too low, the carbonization of the raw material does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases. More preferably, it is 600 to 1000 ° C.
  • the carbide temperature near the inlet of the hot air 21 in the middle stage of the packed bed is preferably about 300 to 700 ° C. This is because if the temperature is too low, carbonization does not proceed sufficiently, and if it is too high, the yield of the carbide decreases and the cost of the equipment increases. More preferably, it is 400 to 700 ° C, and most preferably 400 to 600 ° C.
  • the temperature of the cold air 23 is preferably 200 ° C. or less. More preferably, it is 100 degrees C or less. This is because cooling is not efficient when the temperature is too high.
  • the temperature of the exhaust gas discharged from the upper part of the packed bed 12 is preferably about 50 to 300 ° C. If the temperature is too low, water will not be sufficiently discharged from the packed bed. If the temperature is too high, the tar content will be excessively discharged from the packed bed and the yield of carbide will be reduced, causing tar trouble downstream. It is because it becomes easy to get up. More preferably, it is about 70 to 200 ° C.
  • Tar 22 is mixed with hot air 21.
  • the tar 22 the tar 34 separated by the separator 311 is used.
  • a part of the tar 22 is included in the carbide 2, so that the yield of the carbide 2 can be improved.
  • Tar 24 can be mixed with cold air 23, and it is preferable to use tar 34 separated from tar 24 by separator 311. By mixing the tar 24 with the cold air 23, a part of the tar 24 is included in the product carbide 2, so that the yield of the carbide 2 can be improved.
  • the tar 22 or the tar 24 is mixed with the hot air 21 or the cold air 23, supplied to the packed bed 12 in the furnace, and adsorbed on the carbide in the packed bed, thereby contributing to an improvement in the yield of the carbide 2.
  • the tar 22 or 24 is further thermally decomposed in the packed bed 12 to generate a char component, that is, becomes a carbide and contributes to an improvement in the yield of the carbide 2.
  • Some of the tars 24 are discharged outside the furnace while adhering to the carbide, in addition to those that are pyrolyzed in the furnace to produce a char fraction.
  • the tar 22 or the tar 24 is mixed with the hot air 21 or the cold air 23 and supplied into the furnace as shown in the figure, but may be directly supplied to the packed bed 12 in the furnace without being mixed with the hot air 5.
  • the cold air 23 is supplied from the lower part of the furnace through the hot air inlet as shown, but may be supplied from the side of the furnace using a nozzle.
  • the yield of the carbide 2 can be improved by effectively using the tar.
  • the vinegar liquid 33 supplied to the partial combustor 312 can be reduced by separating the vinegar liquid 33 by the separator 311 as compared with the case where the vinegar liquid is not separated, the following effects are obtained.
  • the temperature of the partial combustor 312 at the same air ratio can be increased, and it becomes easy to supply the heat necessary for the carbonization furnace 10.
  • the water vapor contained in the hot air 5 can be reduced, there is an effect of suppressing the carbon consumption reaction by the water vapor in the carbonization furnace, leading to an improvement in the carbide yield.
  • the heat of the waste gas 38 can be used for drying the raw material 1 and the like.
  • FIG. 5 is a diagram in which a part of the exhaust gas 3 is used as the cold air 523 instead of the cold air 23 and the tar 24 in FIG.
  • the exhaust gas 3 contains generated tar and has a low temperature, so that it can contribute to cooling the carbide and improving the yield of the carbide 2 in the carbonization furnace 10.
  • the equipment in FIG. 5 can simplify the equipment and is lower in cost.
  • FIG. 6 is obtained by omitting the separator 311 from FIG.
  • the exhaust gas 3 contains generated tar and has a low temperature, so that it can contribute to cooling the carbide and improving the yield of the carbide 2 in the carbonization furnace 10.
  • biomass was carbonized to conduct a test for producing biomass charcoal.
  • the yield of the carbide 2 was compared in the case where the hot air 5 and the tar 4 were not mixed.
  • a biomass residue composed of empty fruit bunches (EFB) generated in the process of producing palm oil was used as the raw material 1.
  • the water content of EFB was 30 mass%.
  • the mass flow rate of the tar 4 mixed with the hot air 5 is 0.1 when the mass flow rate of the dry base material 1 is 1.
  • the blowing temperature of the hot air 5 was 930 ° C.
  • the carbonization temperature, that is, the carbide temperature just before being cut out was 500 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • the blowing temperature of the hot air 5 was 910 ° C.
  • the carbonization temperature that is, the carbide temperature just before cutting was 500 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • Example 1 Using the same equipment as shown in FIG. 4, the same biomass as in Example 1 was dry-distilled to conduct a test for producing biomass charcoal.
  • the yield of the carbide 2 was compared in the case where the hot air 21 and the cold air 23 were mixed with tar.
  • the mass flow rate of the dry base material 1 when the mass flow rate of the dry base material 1 is 1, the mass flow rate of the tar 22 mixed with the hot air 21 is 0.1.
  • the mass flow rate of the tar 24 mixed with the cold air 23 was set to 0.03.
  • the blowing temperature of the hot air 21 was 990 ° C.
  • the carbonization temperature, that is, the carbide temperature just before cutting was 500 ° C.
  • the temperature of the cold air 23 was 80 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • the blowing temperature of the hot air 21 was 910 ° C.
  • the carbonization temperature that is, the carbide temperature just before cutting was 500 ° C.
  • the temperature of the cold air 23 was 80 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • Example 1 Using the same equipment as shown in FIG. 5, the same biomass as in Example 1 was dry-distilled to conduct a test for producing biomass charcoal.
  • the yield of the carbide 2 was compared in the case where the hot air 21 and the cold air 523 were mixed with tar.
  • the mass flow rate of the tar 22 mixed with the hot air 21 is 0.1 when the mass flow rate of the dry base material 1 is 1.
  • the blowing temperature of the hot air 21 was 990 ° C.
  • the carbonization temperature, that is, the carbide temperature just before cutting was 500 ° C.
  • the mass flow rate of the tar mixed with the cold air 523 was 0.06, and the temperature was 80 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • the blowing temperature of the hot air 21 was 910 ° C.
  • the carbonization temperature that is, the carbide temperature just before cutting was 500 ° C.
  • the mass flow rate of the tar mixed with the cold air 523 was 0.06, and the temperature was 80 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • the case of the comparative example of Example 2 corresponds to this.
  • the mass flow rate of the dry-based raw material 1 was 1
  • the mass flow rate of the manufactured carbide 2 was 0.25. That is, the yield of carbide on a dry basis was 25%.
  • Example 1 Using the same equipment as shown in FIG. 6, the same biomass as in Example 1 was dry-distilled, and a test for producing biomass charcoal was conducted.
  • the tar was mixed with the hot air 21 in which the exhaust gas 3 was incompletely combusted by the partial combustor, and the mass flow rate thereof was 0.04. Further, since the cold air 523 also uses a part of the exhaust gas, tar is mixed and the mass flow rate thereof is 0.06.
  • the blowing temperature of the hot air 21 is 990 ° C.
  • the carbonization temperature that is, the carbide temperature just before being cut out is 500 ° C. It was.
  • the temperature of the cold air 523 was 80 ° C.
  • the temperature of the exhaust gas 3 discharged from the upper part of the packed bed was 100 ° C.
  • Example 2 If the case where the hot air 21 and the cold air 523 are not mixed with tar is a comparative example, the case of the comparative example of Example 2 corresponds to this.
  • carbon in the dry distillation product is precipitated on the dry distillation biomass by bringing the dry distillation product (gas, tar) generated during biomass dry distillation into contact with the dry distillation biomass obtained by biomass dry distillation at a high temperature.
  • Biomass charcoal can be obtained. Thereby, the generated tar and gas amount at the time of biomass dry distillation can be minimized, and the yield of biomass coal can be improved.
  • the biomass charcoal obtained in the second embodiment is coked and deposited as a carbon state unlike tar and the like as it is, so that the oxygen content is low, the calorific value is high, and the volatile matter
  • the reactivity is low, the ignitability is lowered, the safety is increased, the quality is high, and it can be suitably used as a carbon material in a steel process, particularly in a steelmaking, steelmaking process, and sintering furnace.
  • Biomass is a general term for a certain amount of animal and plant resources accumulated and wastes originating from them. However, fossil resources are excluded from biomass.
  • any biomass such as agricultural, forestry, livestock, fisheries, waste, etc. that can be pyrolyzed to produce carbides can be used. It is preferable to use biomass having a high effective calorific value, and it is preferable to use woody biomass.
  • Woody biomass includes papermaking by-products such as pulp black liquor and chip dust, lumber by-products such as bark and sawdust, forest land remnants such as branches, leaves, treetops, and end mills, cedar, cypress, pine, etc.
  • Forest products such as thinned timber, edible fungi from special forest products such as hodwood, firewood charcoal such as shii, konara, pine, forestry biomass such as willow, poplar, eucalyptus, pine, etc.
  • General waste such as pruned branches of garden trees in private houses, pruned branches of country and prefectures, pruned branches of garden trees of companies, industrial waste such as construction and building waste, and the like.
  • Agricultural biomass is classified as agricultural biomass such as rice husks, wheat straw, rice straw, sugarcane casks, palm palm, etc. that originate from waste and by-products, and rice biomass, rapeseed, soybean, etc. that originates from energy crops.
  • the part can also be suitably used as woody biomass.
  • Biomass dry distillation is the thermal decomposition of biomass, which is heated by shutting off or restricting the supply of air (oxygen) to produce gas (also called wood gas), liquid (tar), or solid (charcoal) products.
  • gas also called wood gas
  • tar liquid
  • solid solid
  • FIG. 110 denotes a carbonization furnace
  • 120 denotes a coking furnace
  • 130 denotes a combustion furnace for generated gas generated from the coking furnace.
  • Biomass 101 is supplied to dry distillation furnace 110 by a supply device (not shown), and dry distillation biomass (charcoal) 102 and dry distillation product (gas, tar) 103 are generated.
  • the dry distillation biomass 102 is supplied to the coking furnace 120 by a supply device (not shown), and at the same time, the dry distillation product 103 is also supplied to the coking furnace 120.
  • the dry distillation product 103 comes into contact with the dry distillation biomass 102, and carbon in the dry distillation product 103 is deposited on the dry distillation biomass 102.
  • the biomass charcoal 105 on which the carbon is deposited is discharged from the coking furnace 120 and used in a steel process or the like.
  • the dry distillation product 103 is lightened by precipitation of carbon in the coking furnace 120 and is discharged from the coking furnace 120 as a light gas 106. Since the light gas 106 is mainly composed of lower hydrocarbons and hydrogen, it is burned in the combustion device 130 and used as a heat source for the dry distillation furnace 110 and the coking furnace 120.
  • Reference numeral 108 denotes a fuel gas supplied from the outside other than the light gas, and 109 denotes combustion air.
  • Biomass is thermally decomposed by heating, moisture in the biomass is evaporated, and carbon, hydrogen and oxygen are released as volatile components. Pore develops in the biomass due to evaporation of moisture and / or volatilization of volatile matter.
  • Sites capable of physically and chemically adsorbing tars such as hydrocarbons are formed on the generated pore inner surfaces. Tar enters the pores and is physically and chemically adsorbed to the biomass. When the biomass on which the tar is adsorbed is further heated, the tar undergoes a dehydrogenation reaction, becomes heavy, and finally becomes a carbide.
  • suck tar also on the biomass surface is produced
  • the tar is first adsorbed on the carbonized biomass, and then the adsorbed tar is dehydrogenated and carbon is deposited. Therefore, the specific surface area, pore volume, and average pore diameter of dry distillation biomass are important. Even if the specific surface area and the pore volume are sufficiently large, if the average pore diameter is small, tar does not enter the pores and the amount of adsorption is small. Therefore, the average pore diameter is preferably 1 nanometer or more, and for this purpose, the specific surface area of the dry distillation biomass is preferably 10 m 2 / g or more.
  • the specific surface area is less than 10 m 2 / g, the pore volume is small, the pore diameter is less than 1 nanometer, the amount of tar adsorbed is small, and the carbon deposition is reduced.
  • the dry distillation temperature of the biomass may be in the temperature range in which the biomass dehydration and dry distillation products are generated, and may be in the range of 450 to 800 ° C. at which the specific surface area of the dry distillation biomass 102 is 10 m 2 / g or more. Taking into account the yield of biomass charcoal 105, it is more preferable to dry distillation at 450 to 700 ° C.
  • the temperature of the coking furnace 120 is a condition in which the biomass 101 does not dry distillation in the coking furnace 120, and a temperature range equivalent to that of the dry distillation furnace 110 is preferable.
  • the residence time of the dry distillation biomass 102 in the coking oven 120 is a time until the pores of the dry distillation biomass 102 are blocked by the precipitated carbon. When carbon is further deposited after the pores are completely blocked, the carbon in the dry distillation product 103 is deposited on the surface of the dry distillation biomass 102, and the deposition and agglomeration of the dry distillation biomass 102 occurs. There may be a case where the unloading failure occurs within 120.
  • the residence time is appropriately determined depending on the specific surface area of the dry distillation biomass.
  • the carbonization furnace 110 may be anything that can carbonize the biomass 101, and a normal batch type, rotary kiln type, vertical furnace, or the like can be used. It is preferable to use a rotary kiln type that can be adopted as a continuous process.
  • the caulking furnace 120 may be a packed bed or moving bed system because the dry distillation biomass 102 needs to contact the dry distillation product 103 uniformly, decompose the dry distillation product 103, and deposit carbon on the dry distillation biomass 102. preferable.
  • the heating method of the carbonization furnace 110 and the coking furnace 120 may be performed by burning the light gas 106 generated from the coking furnace 120 and heating it, or separately burning a fuel gas 8 such as heavy oil or propane and using it as a heating gas. Good. Moreover, you may heat by electric heating other than the method of burning fuel gas. In the case of electric heating, it is possible to divide the carbonization furnace 110 and the coking furnace 120 and control the temperature.
  • the dry distillation biomass 102 is pulverized when the biomass 101 is dry distilled in the dry distillation furnace 110.
  • the obtained powder in the dry distillation biomass 102 can be removed and supplied to the coking furnace 120.
  • a conventionally known method such as sieving or air classification may be used. The sieve particle size is determined by the operating conditions of the caulking furnace 120.
  • the material supplied to the caulking furnace 120 is the carbonized biomass 102 obtained by carbonizing biomass, but those having the same specific surface area as the carbonized biomass can also be used in addition to the carbonized biomass 102.
  • it is an alternative to coal in steel processes such as biomass charcoal and activated carbon that have been separately carbonized.
  • the dry distillation furnace 110 is a rotary kiln 150 and the coking furnace 120 is a vertical furnace 160.
  • 140 is a screw feeder which is a biomass constant supply device
  • 150 is an indirect heating type rotary kiln
  • 160 is a vertical furnace
  • 111 is a coking unit
  • 112 is a biomass coal cooling unit.
  • the dry distillation biomass 102 carbonized in the rotary kiln 150 is supplied to the vertical furnace 160 from above, and the biomass charcoal 105 on which the carbon content of the dry distillation product 103 has been deposited is cooled by nitrogen 113 in the cooling unit 112 and then discharged from the bottom.
  • the dry distillation biomass 102 carbonized in the rotary kiln 150 is supplied to the vertical furnace 160 from above, and the biomass charcoal 105 on which the carbon content of the dry distillation product 103 has been deposited is cooled by nitrogen 113 in the cooling unit 112 and then discharged from the bottom.
  • the cooling gas 113 may be an inert gas.
  • emitted from the cooling part 112 should just be the temperature range which does not ignite, and should just be 200 degrees C or less. More preferably, it shall be 100 degrees C or less.
  • the heating method of the rotary kiln 150 and the vertical furnace (coking furnace) 160 was three-part electric heating, and the light gas generated from the vertical furnace 160 was discharged out of the system.
  • the rotary kiln 150 had an inner diameter of 15 cm, a length of 1.0 m, and an inclination angle of 1 degree, and the carbonization time was about 50 minutes with the rotary kiln rotating speed being 1.5 rpm.
  • the vertical furnace 160 had an inner diameter of 6.6 cm and a length of 40.0 cm.
  • the dry distillation biomass 102 was supplied by a rotary valve installed in the upper part of the furnace, and the biomass charcoal 105 was discharged from the rotary valve installed in the lower part. Adjustment of the residence time of the filling in the vertical furnace 160 was performed by adjusting the initial filling amount. As the biomass, cedar ground and classified to 3 mm to 10 mm was used. Table 1 shows the composition of the biomass used.
  • the biomass supply rate to the rotary kiln was 1.0 kg / h, and the dry distillation biomass was recovered from the rotary kiln 150 and filled into the vertical furnace 160.
  • the test conditions were changed as shown in Table 2, and the tests of Examples 1 to 8 of the present invention were conducted.
  • the produced biomass charcoal, gas, tar, moisture yield, the specific surface area of the dry distillation biomass, and the produced gas composition was measured. The results are also shown in Table 2.
  • Example 8 of the present invention the yield of biomass charcoal did not increase much compared to Comparative Example 6.
  • Embodiment 3 when producing biomass charcoal by dry distillation of biomass, a two-column packed moving bed furnace is used.
  • the two-column packed moving bed type furnace is a kind of shaft furnace and is also called a Merz furnace.
  • the Merz furnace repeats combustion and heat storage alternately with two vertical shafts connected to each other, thereby reducing heat intensity and producing high-quality products stably. Compared to rotary kilns, etc. And is known to have good thermal efficiency.
  • the Merz furnace has been used as a lime firing furnace or the like, and the fuel gas blown from the burner lance inserted into the packed bed is burned by the air supplied from above in each vertical shaft, Limestone (CaCO 3 ) or the like is fired by the combustion heat.
  • limestone In the case of limestone, it is fired to become quick lime (CaO).
  • the combustion gas moves below the vertical furnace and preheats the limestone and the like in the other vertical furnace.
  • One vertical furnace is for firing and the other is for preheating.
  • the fuel is supplied alternately to one of the vertical shafts via a burner lance periodically.
  • gas and tar generated by biomass carbonization in one of the carbonization furnaces can be brought into contact with the biomass in the other carbonization furnace, and the carbon in the gas and tar can be deposited on the biomass in the other carbonization furnace during the carbonization of the biomass in the other carbonization furnace. That is, the carbonization product (gas, tar) generated during biomass carbonization can be brought into contact with the biomass in the other carbonization furnace or the carbonization biomass obtained by biomass carbonization at a high temperature, and carbon in the carbonization product is precipitated. Biomass charcoal can be obtained efficiently.
  • Biomass charcoal obtained in Embodiment 3 is attached as a state of coking carbon, unlike tar and the like as it is, and thus has low volatile content, high quality, and iron manufacturing process, particularly It can be suitably used as a carbonaceous material in ironmaking, steelmaking processes, and sintering furnaces.
  • Biomass dry distillation is the thermal decomposition of biomass, which is heated by shutting off or restricting the supply of air (oxygen) to produce gas (also called wood gas), liquid (tar), or solid (charcoal) products.
  • oxygen oxygen
  • tar liquid
  • solid solid
  • Embodiment 3 One embodiment of Embodiment 3 will be described with reference to FIG.
  • FIG. 9 shows a biomass coal production apparatus using a two-column packed moving bed type furnace.
  • Biomass 202 crushed to a size that can be charged into the dry distillation furnace main body 201 by a crushing apparatus (not shown) is supplied to the dry distillation furnace main body 201 by a supply device (not shown).
  • the carbonization furnace body 201 has a structure in which a carbonization furnace A (left side in FIG. 9) 203 and a carbonization furnace B (right side in FIG. 9) 204 are connected at the lower part.
  • the dry distillation furnace B204 is filled by the raw material switching valve 205.
  • the raw material switching valve 205 is switched to the carbonization furnace A203, and the biomass 202 is supplied to the carbonization furnace A203.
  • the level of the biomass charged in the dry distillation furnace A203 reaches a predetermined amount, the charging of the biomass 202 is temporarily stopped and the dry distillation is started.
  • the fuel 208 is supplied to the lance A206 arranged, and the air 209 is blown from the upper part of the dry distillation furnace A203, and the fuel 208 discharged from the lance A206 is burned.
  • Lance A206 is arrange
  • a lance B207 which will be described later, is also arranged in the same manner.
  • the combustion gas and the dry distillation gas tar 221 move downward in the packed bed 210 while supplying heat to the biomass, enter the dry distillation furnace B204 and move upward while preheating the biomass in the dry distillation furnace B204. 211 is moved.
  • a part of the dry distillation gas and tar generated by the dry distillation comes into contact with the biomass charcoal or biomass in the dry distillation furnace A203 and the dry distillation furnace B204, and is adsorbed and / or absorbed to deposit and deposit carbon.
  • the combustion gas that supplied heat to the biomass and the dry distillation gas 212 from which tar has been removed are discharged from the dry distillation furnace B204, and dust in the gas is removed by the primary dust collector 213.
  • the dry distillation gas 214 discharged from the primary dust collector 213 is light hydrocarbons such as CO and methane, and is supplied to the dry distillation furnace A203 as a heat source necessary for dry distillation.
  • the fuel 208 used initially is reduced by the amount of heat of the supplied dry distillation gas 214.
  • the temperature of the thermometer installed between the dry distillation furnace A203 and the dry distillation furnace B204 reaches a predetermined temperature
  • the biomass charcoal 223 in the packed bed 210 is discharged by the discharge valve A215, and is discharged to the outside by the discharge valve 216. Discharged.
  • the fuel supply and the dry distillation gas supply to the dry distillation furnace A203 are once stopped.
  • the raw material switching valve 205 is switched to the dry distillation furnace A203 side, and the biomass 202 is charged into the dry distillation furnace A203.
  • the fuel 208 is supplied to the lance B207 disposed in the dry distillation furnace B204, and the air 209 is blown to burn the fuel 208 discharged from the lance B207.
  • the combustion gas dry-distills the preheated biomass in the dry distillation furnace B204 to generate biomass coal and dry distillation gas tar.
  • Combustion gas and dry distillation gas / tar move downward in the biomass packed bed 211 while supplying heat to the biomass, enter the dry distillation furnace A203, and move upward in the dry distillation furnace A203 while preheating the biomass in the dry distillation furnace A203. Move 210.
  • tar generated by dry distillation is adsorbed and / or absorbed by biomass charcoal or biomass in the dry distillation furnace B204 and the dry distillation furnace A201.
  • the combustion gas that has supplied heat to the biomass and the dry distillation gas 212 from which tar has been removed are discharged from the dry distillation furnace A203, and the dust in the gas is removed by the primary dust collector 213.
  • the dry distillation gas 214 discharged from the primary dust collector 213 is light hydrocarbons such as CO and methane, and is supplied to the dry distillation furnace B204 as a heat source necessary for dry distillation.
  • the fuel 208 used initially is reduced by the amount of heat of the supplied dry distillation gas 214.
  • the biomass coal in the dry distillation furnace B204 is discharged by the discharge valve B217 and discharged by the discharge valve 216 to the outside of the system. Is done.
  • biomass is carbonized and biomass charcoal is produced by precipitating carbon in the carbonized product generated during the biomass carbonization to the carbonized biomass.
  • the lower limit of the dry distillation temperature of biomass in the dry distillation furnace is equal to or higher than the temperature at which dry distillation gas and tar are generated from biomass.
  • the temperature is preferably 400 ° C. or higher.
  • the biomass carbonized gas / tar contains moisture generated by decomposition in addition to biomass adhering moisture.
  • the third embodiment aims to improve the recovery rate of carbon in biomass, and the upper limit of the heating / dry distillation temperature is preferably set to a temperature at which the reaction of moisture generation does not occur remarkably.
  • 800 ° C. or less is preferable. More preferably, it is 450 to 750 ° C.
  • Biomass coal is produced as shown in (a) to (f) of FIG.
  • A) The biomass in the dry distillation furnace A203 is subjected to dry distillation.
  • B) A part of biomass coal produced in the carbonization furnace A203 is discharged.
  • C) The biomass 202a is newly charged into the carbonization furnace A203.
  • D) The biomass in the dry distillation furnace B204 is dry distilled.
  • E) A part of biomass coal produced in the carbonization furnace B204 is discharged.
  • F The biomass 202b is newly charged into the carbonization furnace B204. It is preferable that the residence time in the dry distillation furnace from biomass charging to discharging is 30 minutes or more.
  • the residence time is fixed at 30 minutes and discharged by 1/3 (33% by volume), it is 5 minutes for dry distillation 5 minutes ⁇ 5 minutes for dry distillation 5 minutes for dry distillation 5 minutes for dry distillation 5 minutes for dry distillation 1 / 4 (25% by volume) is discharged at a rate of 3.75 minutes for dry distillation ⁇ 3.75 minutes for placement ⁇ 3.75 minutes for distillation ⁇ 3.75 minutes for placement ⁇ 3.75 minutes for distillation ⁇ 3.75 minutes for placement ⁇ Dry distillation 3.75 minutes ⁇ placement time 3.75 minutes.
  • it is preferable that one dry distillation time is as short as possible in terms of equipment.
  • the number of lances installed in the carbonization furnace can be one, it is preferable to arrange a plurality of lances in consideration of heat supply into the packed bed.
  • the obtained biomass charcoal can be used as it is in the iron making process, but it is preferable to use it by molding or pulverizing it if necessary.
  • Molding is usually used such as rolling granulation using an inclined rotating dish, extrusion molding extruding from a cylindrical die, and compression molding machine of briquetting roll that supplies powder to the mold on the surface of the rotating roll. What is necessary is just to perform using the molding machine which is. Fine pulverization may be performed using a roller mill, a rod mill, or the like that is usually used.
  • the fuel supplied from the lance in the carbonization furnace used as a heat source for biomass dry distillation may be heavy oil, natural gas, liquefied petroleum gas, or the like as long as it can be supplied from the lance.
  • biomass charcoal recovered from the carbonization furnace is discharged after being treated at a high temperature, it is preferable to cool it with an inert gas or the like in consideration of safety such as ignition.
  • the cooling temperature should just be about 200 degreeC, More preferably, it shall be 100 degrees C or less.
  • FIG. 12 shows another embodiment of the present invention. This is a case where the dry distillation gas 214 is separately burned in the combustion furnace 218 and supplied to the dry distillation furnaces 203 and 204. [Example 1]
  • the carbonization furnace A203 and the carbonization furnace B204 had an inner diameter of 100 mm and a length of 400 mm, and were heated by heating and supplying nitrogen 226 to a predetermined temperature with a hot air sending device 225.
  • Table 3 shows the composition of the biomass used.
  • the biomass shown in Table 3 was pulverized in advance and charged into the dry distillation furnace A203 and the dry distillation furnace B204.
  • Nitrogen 226 heated to a predetermined temperature is blown to the carbonization furnace A203, carbonization is performed for 7.5 minutes, supply of the heated nitrogen is stopped, and the level of the upper surface of the content of the carbonization furnace A203 is lowered from the bottom of the carbonization furnace A203.
  • While measuring, 1/2 volume was discharged and biomass 202 was newly supplied to the dry distillation furnace A203.
  • heated nitrogen was supplied to the carbonization furnace B204, similarly, carbonization was performed for 7.5 minutes, and 1/2 volume was discharged from the carbonization furnace B204. This operation was repeated.
  • Biomass carbonization is carried out in two steps, and the residence time in the carbonization furnace from biomass charging to discharge is 30 minutes.
  • the supply rate of biomass was 2.0 kg / h.
  • Inventive Examples 1 to 6 were tested by changing the heating temperature (hot air temperature) of nitrogen 226 as shown in Table 4.
  • Table 4 also shows the temperature of nitrogen + carbonization gas discharged from the carbonization furnaces A203 and B204 in each test as the temperature of the carbonization gas outlet. This operation was performed for 6 hours, the property (composition) of the discharged biomass charcoal 223 was measured, and the biomass charcoal yield was calculated from the ash content concentration contained. Further, the yields of recovered gas, tar, and moisture were measured. The results are also shown in Table 4.
  • Example of the present invention was carried out under the same conditions as in the above-described Example 5 of the present invention except that 1/3 volume was discharged from the carbonization furnace and the one carbonization time in the biomass carbonization furnace was changed to 5 minutes. Seven tests were conducted. Biomass carbonization is carried out in three steps, and the residence time in the carbonization furnace from biomass charging to discharge is 30 minutes. The results are also shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 バイオマス炭の製造方法は、バイオマスを炭化し、バイオマス炭と、タールを含有する排出ガスとを生成し、前記排出されたガス中のタールの少なくとも一部を前記バイオマス及び/若しくは前記バイオマス炭に接触させ、タールが付着して炭化物として析出したバイオマス炭を製造することからなる。

Description

バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
 本発明は、バイオマスを炭化してバイオマス炭を製造する方法およびこれに用いるバイオマス炭の製造装置に関する。
 地球温暖化防止の観点から二酸化炭素の排出量削減が緊急の課題である。二酸化炭素排出量削減の方法として、以下の技術開発が行われている。
 ・インプットの炭素量を削減する。
 ・アウトプットの二酸化炭素を回収する。
 ・従来の石炭・石油等をカーボンフリーの炭素源に代替する。
 カーボンフリーの炭素源としてはバイオマスが知られている。バイオマスとしては、建築家屋の解体で発生する木材廃棄物、製材所発生の木質系廃棄物、森林等での剪定廃棄物、農業系廃棄物などがある。その処理利用方法としては、埋立て、放置、焼却、燃料等が主なものである。また、燃料利用を目的としたバイオ燃料作物も知られている。
 一方、鉄鋼業において、特に製銑工程は石炭を還元材として鉄鉱石を還元するプロセスである。また、製鋼工程では精練に必要な熱を石炭等で供給している。従って、鉄鋼業では炭素源の使用が必須である。一方、バイオマスは炭素、酸素、水素から構成されているが、バイオマス自体は高含水率、低廃熱量(例えば、水分15mass%、発熱量16.2MJ/kg−乾燥基準)であり、直接鉄鋼プロセスで使用することは効率面で有利ではない。そのため、バイオマスを乾留し、脱水、脱炭酸等の処理を施し、水分を除去、発熱量を高めて鉄鋼プロセスで使用する方法がある。乾留により脱水、脱ガス(脱炭酸、脱メタン、タール発生等)が起き、バイオマス中の炭素分が、ガスおよびタール分として発生するため、固体として残留する炭素分(バイオマス炭)は少ない。鉄鋼プロセスで石炭代替として、このような乾留後に固体として残留する炭素分をバイオマス炭として効率よく利用するためには、高収率でバイオマス炭を製造する必要がある。
 このようなバイオマスを熱分解して可燃性ガスや炭化物(バイオマス炭)を製造して再利用する技術も知られている。
 特許文献1は、バイオマスを加熱乾留することにより得られる炭化物に対し、加熱時に発生する揮発分を循環吸収させて高発熱量炭化物を製造する方法を開示している。
 特許文献2は、有機物を燃焼用空気の非供給下で熱分解して無定形炭素を生成し、熱分解途上の有機物から発生する可燃性ガスと気体状のタールとを含む未処理ガスを、大気圧下で800~1000℃の温度で無定形炭素に流通させて、タールをほぼ完全に熱分解してタールが除去された処理ガスを得る有機物の処理方法を開示している。
 特許文献3は、竪型炉に投入された廃棄物をガス吹き込みノズルより吹き込まれた加熱ガスの接触で熱分解させ、炉内で炭化物と熱分解ガスに分離させるようにした廃棄物の熱分解処理装置を開示している。
 特許文献4は、箱状炉の炉体の中に木炭の原料を充填して、加熱し乾燥、乾留、炭化し、木炭を製造する木炭製造装置を開示している。
 特許文献5は、原料の装入口と炭の排出口とを有する箱型の炉本体と、該本体内に設けられた横断面が四角形の炭化室と、該炭化室内の木質材が加熱されて発生する可燃ガスをその上部空間で燃焼させる燃焼室と、該燃焼室内に空気を吹き込む羽口と、該羽口からの空気吹込み量を調節する手段と、前記炭化室の側面又は底面とに設けられた伝熱壁とを有する炭化炉を開示している。
 特許文献6は、ロータリーキルンまたはロータリードライヤーで木材を300~1000℃、酸素濃度10%以下で加熱し、加熱で発生するガスを前記ロータリーキルンまたは前記ロータリードライヤーと連結した燃焼炉で燃焼させる木材の炭化方法を開示している。
特開2003−213273号公報 特許第3781379号公報 特開2001−131557号公報 特開平03−122191号公報 特開2007−146016号公報 特開2002−241762号公報
 特許文献1に記載の方法でバイオマス炭を製造すると、バイオマス炭の収率は付着したタール等の分だけ向上する。しかし、液状揮発分を吸収させる方法で得られる炭化物の表面は粘着性で、取り扱いが困難なものであると考えられる。一般的に、バイオマスを熱分解して得られるタールは、熱分解して得られる液体であるが、バイオマスの炭化物の発熱量が約30MJ/kgであるのに対し、タールは最大約10MJ/kgであり重油の半分以下である。また、バイオマスを熱分解して炭化物が得られる際に、バイオマス中の酸素分の多くはタール分や揮発分としてバイオマスから脱離するために、炭化物中の酸素含有率は10mass%未満であるのに対し、タール中の酸素含有率は20mass%を超え、40mass%近くなる場合もある。酸素分の高い、反応性の高いタールは発火性も高く、安全上の問題もある。
 以上のように、タール分は炭化物と比較すると、酸素含有率が高く、発熱量が低く、高粘性で、反応性が高く安定性が低いため、バイオマス炭に付着させることはバイオマス炭の品質を低下させることになる。
 特許文献2は、無定形炭素と可燃性ガスとを生成するにあたり、タールを水蒸気改質によらずに分解することで、可燃性ガスの収量を増大することを目的としている。炭化物の製造という観点では、原料中の炭素分がガスやタール化することで、炭化物の収率が低下することになる。特許文献2に記載のように1000℃近い温度でタールを熱分解すると、ほとんどがガスに転化し、タールから得られる炭化物の収率はせいぜい数mass%である。
 特許文献3は、竪型炉でバイオマス等を炭化して炭化物を製造している。通常、炉下部から無酸素の高温ガスを送風して内容物を加熱することで行なうが、この乾留による熱分解により、炭化物の生成と同時にガス、タール等も発生する。これらのガスやタールも有効利用することは可能であるので、炭化物の製造という観点では、原料中の炭素分がガスやタール化することで、炭化物の収率が低下することになる。
 特許文献4~6に記載の従来技術においては、以下の(a)~(d)の課題がある。
 (a)バッチ方式およびロータリーキルン方式とも加熱温度、雰囲気条件等を制御することでのみバイオマスを炭化する方法である。炭化されたバイオマス(バイオマス炭)の収率は、バッチ方式で約25mass%、ロータリーキルン方式で約20mass%であり、それ以上にバイオマス炭の収率を向上させることは難しい。
 (b)発生するガスおよびタールを燃焼させ、バイオマスの乾留の熱源とすると、ガスやタール分はバイオマス炭として回収できない。発生するタールは積極的にバイオマス炭に変換することが望ましい。
 (c)特許文献4、5のバッチ方式においては、連続プロセスでないため、炭化に5時間以上を要し、経済的でない。
 (d)バイオマス乾留生成物中には、軽質ガス以外に木酢および重質炭化水素(タール)成分も発生し、タール成分を完全燃焼するためには空気比、温度等の管理が必要となる。また、燃焼処理を行わず、乾留生成物を別途利用するためにはタール除去等の排ガス処理が必要となる。
 本発明の目的は、このような従来技術の課題を解決し、竪型炉を用いてバイオマスを炭化してバイオマス炭を製造する際に、バイオマス炭の収率を向上可能であって、しかもバイオマス炭の品質の低下の少ない、バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置を提供することにある。
(1)バイオマスを炭化させてバイオマス炭とし、
 前記炭化の際に発生するタールを含有する排出ガスを排出し、
 前記排出ガス中の前記タールの少なくとも一部を前記バイオマス及び/若しくは前記バイオマス炭に接触させ、
 前記バイオマス及び/若しくは前記バイオマス炭に接触した前記タールの少なくとも一部を炭化物に転化させることからなる、
 バイオマス炭の製造方法。
(2)(1)に記載のバイオマス炭の製造方法において、
 竪型炉の頂部または側方上部からバイオマスを投入し、
 前記竪型炉の底部または前記排出ガスの排出位置より下方である側方下部から熱風を吹き込み、
 前記竪型炉内で前記バイオマスを炭化させてバイオマス炭とし、
 前記炭化の際に発生するタールを含有する排出ガスを前記竪型炉の頂部または側方上部から排出し、
 前記排出ガス中の前記タールの少なくとも一部を前記竪型炉に吹き込んで前記バイオマス及び/若しくは前記バイオマス炭に接触させ、
 前記バイオマス及び/若しくは前記バイオマス炭に接触した前記タールの少なくとも一部を炭化物に転化させることからなる、
 バイオマス炭の製造方法。
(3)前記排出ガス中の前記タールの少なくとも一部を前記熱風とともに前記竪型炉に吹き込むことからなる、(2)に記載のバイオマス炭の製造方法。
(4)前記竪型炉の底部または側方下部から冷却用ガスを供給することからなる、(2)または(3)に記載のバイオマス炭の製造方法。
(5)前記冷却用ガスは前記排出ガスを循環して使用するものである、(4)に記載のバイオマス炭の製造方法。
(6)前記タールの一部を前記冷却用ガスとともに炉内に供給することからなる、(4)または(5)に記載のバイオマス炭の製造方法。
(7)前記排出ガスから前記タールを分離し、分離された前記タールを竪型炉に吹き込むことからなる、(2)ないし(6)のいずれかに記載のバイオマス炭の製造方法。
(8)前記排出ガスを空気比1未満で燃焼させて、熱風として竪型炉に吹き込むことからなる、(2)ないし(7)のいずれかに記載のバイオマス炭の製造方法。
(9)前記バイオマス炭の炭化温度は300~700℃である、(2)ないし(8)のいずれかに記載のバイオマス炭の製造方法。
(10)前記排出ガスの温度は50~300℃である、(2)ないし(9)のいずれかに記載のバイオマス炭の製造方法。
(11)前記熱風は、無酸素または低酸素であって温度が400~1200℃である、(2)ないし(10)のいずれかに記載のバイオマス炭の製造方法。
(12)
 前記バイオマスの炭化が、竪型炉の頂部または側方上部からバイオマスを前記竪型炉に投入し、竪型炉の底部または側方下部から熱風を吹き込むことにより行われ、
 前記排出ガスの排出が、竪型炉の頂部または側方上部から前記炭化の際に発生するタールを含有する排出ガスを排出することにより行なわれ、
 前記タールの少なくとも一部の接触が、前記炭化の際に発生する排出ガス中のタールの少なくとも一部を前記竪型炉に吹き込むことにより行なわれる、
 (1)に記載のバイオマス炭の製造方法。
(13)
 (1)に記載のバイオマス炭の製造方法において、
 バイオマスを乾留して乾留バイオマスとし、
 前記乾留バイオマスに、前記バイオマスの乾留により発生したガスとタールとを接触させて、前記ガスおよび前記タール中の炭素分を前記乾留バイオマスに付着析出させる、
 バイオマス炭の製造方法。
(14)前記乾留バイオマスの比表面積が10m/g以上である(13)に記載のバイオマス炭の製造方法。
(15)バイオマスの乾留温度が450℃~700℃であり、ガスとタール中の炭素分を乾留バイオマスに付着析出させる際の温度が450~700℃である(13)に記載のバイオマス炭の製造方法。
(16)前記乾留が、ロータリーキルン式乾留炉で行われる、(13)に記載のバイオマス炭の製造方法。
(17)前記タール中の炭素分の乾留バイオマスへの付着析出が、充填層あるいは移動層方式コーキング炉で行われる、(13)に記載のバイオマス炭の製造方法。
(18)
 前記バイオマスの炭化が、バイオマスを乾留し、乾留バイオマスとタールを含有する排出ガスを生成し、前記乾留バイオマスをコーキングすることからなり、
 前記タールの少なくとも一部の接触が、前記乾留バイオマスに前記タールを含有する排出ガスを接触させて、前記ガスおよび前記タール中の炭素分を前記乾留バイオマスに付着析出させることからなる、
 (1)に記載のバイオマス炭の製造方法。
(19)
 互いに接続された2基の乾留炉を有する2塔式の充填移動層方式の炉を用いてバイオマスを乾留してバイオマス炭を製造する方法であって、
 一方の乾留炉でのバイオマスの乾留により発生したガスとタールとを他方の乾留炉内のバイオマスに接触させ、
 前記他方の乾留炉内のバイオマスの乾留の際に前記ガスおよび前記タール中の炭素分を前記他方の乾留炉内のバイオマスに付着析出させる、
 (1)に記載のバイオマス炭の製造方法。
(20)乾留炉内でのバイオマスの乾留温度を400℃~800℃とする(19)に記載のバイオマス炭の製造方法。
(21)乾留炉内でのバイオマスの滞留時間を30分以上とする(19)に記載のバイオマス炭の製造方法。
(22)前記バイオマスの炭化が、第1の乾留炉でバイオマスを乾留し、ガスとタールを発生させことからなり、
 前記タールの少なくとも一部の接触が、第1の乾留炉で発生したガスとタールを第2の乾留炉内のバイオマスに接触させて、第2の乾留炉内のバイオマスの乾留の際に前記ガスおよび前記タールを第2の乾留炉内のバイオマスに付着析出させることからなる、
 (1)に記載のバイオマス炭の製造方法。
(23)
 バイオマスを炭化してバイオマス炭を製造する竪型炉と、
 前記竪型炉の頂部または側方上部に設けられたバイオマスの投入口と、
 前記竪型炉の頂部または側方上部に設けられた排出ガスの排出口と、
 前記竪型炉の底部、または前記排出口より下方である側方下部に設けられた熱風の吹き込み口と、
 前記排出ガスの少なくとも一部を空気比1未満で燃焼させる部分燃焼機と、
 を有するバイオマス炭の製造装置。
 (24) さらに、排出ガスから少なくともガス成分とタールとを分離する分離機を有する、(23)に記載のバイオマス炭の製造装置。
 本発明によれば、竪型炉を用いて、バイオマスを炭化してバイオマス炭を効率的に製造することができ、バイオマス炭の収率を向上させることが可能となる。製造されるバイオマス炭の品質も、タールが単に付着したバイオマス炭に比べて向上する。
 また、タールが有効利用され、タール処理の負担も軽減する。乾留生成物を軽質化でき、排ガス処理工程も軽減可能となる。これにより、バイオマスの再利用が促進されて、CO排出量削減に貢献できる。
実施の形態1のバイオマス炭の製造装置の一実施形態を示す図。 実施の形態1のバイオマス炭の製造装置の他の一実施形態を示す図。 実施の形態1のバイオマス炭の製造装置の他の一実施形態を示す図。 実施の形態1のバイオマス炭の製造装置の他の一実施形態を示す図。 実施の形態1のバイオマス炭の製造装置の他の一実施形態を示す図。 実施の形態1のバイオマス炭の製造装置の他の一実施形態を示す図。 実施の形態2の一実施形態の説明図。 実施の形態2の他の一実施形態の説明図。 実施の形態3に係わる2塔式の充填移動層方式の炉を用いたバイオマス炭製造装置の概略図。 図9の乾留炉の断面図。 図9の装置を用いた本発明の一実施形態の説明図。 実施の形態3の実施例で用いた2塔式の充填移動層方式の炉の概略図。 実施の形態3の他の一実施形態の説明図。
[実施の形態1]
 バイオマスとは、ある一定量集積した動植物資源とこれを起源とする廃棄物の総称である。ただし、化石資源はバイオマスから除かれる。実施の形態1で用いるバイオマスには、農業系、林業系、畜産系、水産系、廃棄物系等の、熱分解して炭化物を生成するあらゆるバイオマスを用いることができる。有効発熱量の高いバイオマスを用いることが好ましく、木質系バイオマスを用いることが好ましい。
 木質系バイオマスとして、以下のものが挙げられる。
 ・パルプ黒液、チップダスト等の製紙副産物、樹皮、のこ屑等の製材副産物、
 ・枝、葉、梢、端尺材等の林地残材、
 ・スギ、ヒノキ、マツ類等の除間伐材、
 ・食用菌類の廃ホダ木等の特用林産からのもの、
 ・シイ、コナラ、マツ等の薪炭林、ヤナギ、ポプラ、ユーカリ、マツ等の短伐期林業等の林業系バイオマスや、
 ・市町村の街路樹、個人宅の庭木等の剪定枝条等の一般廃棄物や、
 ・国や県の街路樹、企業の庭木等の剪定枝条、
 ・建設・建築廃材等の産業廃棄物。
 農業系バイオマスに分類される、廃棄物・副産物を発生源とする籾殻、麦わら、稲わら、サトウキビカス、パームヤシ等や、エネルギー作物を発生源とする米糠、菜種、大豆等の農業系バイオマスの一部も木質系バイオマスとして好適に用いることができる。
 実施の形態1では、炭化炉として竪型炉を用いてバイオマスを炭化して、炭化物であるバイオマス炭を製造する。竪型炉としては、シャフト炉を用いることが好適である。
 バイオマスを炭化する際の炭化とは、空気(酸素)の供給を遮断または制限して加熱し、気体(木ガスとも呼ばれる)、液体(タール)、固体(炭)の生成物を得ることを言う。加熱温度、加熱時間を変化させることで、得られる気体、液体、固体の成分や割合が変化する。実施の形態1では炭化の際に発生する排出ガス中のタールを気体とともに回収し、そのタールの少なくとも一部を熱風とともに、バイオマスの炭化を行なう竪型炉に吹き込むことで、タールをバイオマス炭に付着させ、さらにタールの炭化物をバイオマス炭上に析出させて、バイオマス炭の収率を向上させる。バイオマスの炭化で生成したタールが再度竪型炉内で炭化されてバイオマス炭上に析出することで、バイオマス炭はタールが付着しただけの状態に比べて、より酸素含有率が低く、発熱量が高くなり、反応性が低く発火性も低下して安全性が高まり、品質が向上する。
 ここで言う“タールの炭化物がバイオマス炭上に析出する”とは、“バイオマス炭上でタールの熱分解反応あるいは重合反応が進むことで、バイオマス炭上でタールが炭化物に転化する”ことである。このような熱分解反応あるいは重合反応が起きるには、バイオマス炭の上にタールがまず付着して、そのタールが付着したバイオマス炭が加熱されより高温になることが必要である。実施の形態1の竪型炉内では、タールは炉上部の低温部でバイオマス炭に付着し、そのタールが付着したバイオマス炭が炉下部に降りてきて加熱されてより高温となるので、タールの炭化物がバイオマス炭上に析出することが起きる。
 バイオマスの炭化で生成したタールが再度竪型炉内で炭化されてバイオマス炭上に析出することで、バイオマス炭はタールが付着しただけの状態に比べて、より酸素含有率が低く、発熱量が高くなり、反応性が低く発火性も低下して安全性が高まり、品質が向上する。実施の形態1のバイオマス炭は従来のタールを付着させないバイオマス炭と同様の30MJ/kg程度の発熱量が得られる。 例えば、特許文献1に示すような方法でタールを付着させると、タールの発熱量が10MJ/kg程度であることから、特許文献1における実施例のエネルギー収率向上の割合からタールの付着量を想定して計算すると、14~20MJ/kg程度の発熱量しか得られないことになる。仮に、特許文献1において、付着したタールがバイオマスを熱分解して得られる液体を静置あるいは蒸留によって褐色透明な液(酢液)を分離して除いた黒褐色の高粘性の液状物であったとしても、酢液が除去されたタールの発熱量は最大約20MJ/kgとなり、結果としてバイオマス炭の発熱量は23~27MJ/kgにとどまる。
 上記のようにバイオマスを炭化してバイオマス炭を製造するために、実施の形態1では竪型炉の頂部または側方上部からバイオマスを投入して炉内に充填層を形成し、竪型炉の底部または側方下部から熱風を吹き込むことによりバイオマスを炭化し、竪型炉の上部から炭化の際に発生するタールを含有する排出ガスを排出し、このタールの少なくとも一部を熱風とともに竪型炉に吹き込みながらバイオマスの炭化を行なう。以下、頂部または側方上部を総称して「上部」と記す。以下、底部または側方下部を総称して「下部」と記す。タールが付着して炭化物として析出したバイオマス炭を竪型炉の下部から排出する。尚、熱風を吹き込む位置は、排出ガスの排出位置より下方とする。バイオマスは熱風の顕熱によって炭化される。なお、ここで側方上部とは竪型炉の高さ方向で上半分の側部を指すが、上方1/4以上であると更に良い。同様に、側方下部とは竪型炉の高さ方向で下半分の側部を指すが、下方1/4以下であると更に良い。
 タールは排出ガスから分離して、少なくともその一部を竪型炉に吹き込む。排出ガスから分離されたタールの10~100%を竪型炉に吹き込み、前記バイオマス及び/若しくは前記バイオマス炭に接触させるのが好ましい。10%以上にすると、炭化収率向上の効果が大きい。排出ガスから分離されたタールの50~100%を竪型炉に吹き込むのがより好ましい。吹き込む方法は任意であるが、バイオマス充填層(熱風吹き込み位置から充填層表面まで)の下半分の位置に吹き込むことが好ましい。タールを熱風に混合することで熱風とともに吹き込むようにすると、タールが炭化物に転化する効率が高くなり、また設備的にも簡便で好ましい。前記バイオマス及び/若しくは前記バイオマス炭に接触した前記タールの10~100%を炭化物に転化させるのが好ましい。10%以上が炭化収率向上の上から望ましい。20~100%がより望ましい。または、タールを含有する排出ガスのまま部分燃焼させて、少なくともその一部を熱風として用いることで、熱風とともに吹き込むことができる。
 尚、熱風は任意の発生源のものを用いることが可能であり、熱風炉等で発生させた熱風を用いることも、排出ガスからタールや水を分離したものを部分燃焼させたものを循環して用いることも、排出ガスをそのまま部分燃焼させたものを循環して用いることもできる。
 竪型炉中のバイオマス炭は高温であるため、切り出して排出したバイオマス炭は冷却することが好ましい。この冷却を容易にするために、竪型炉の下部から炉内に冷却用ガスを供給することが好ましい。冷却用ガスとしては、排出ガスを循環して使用することが好ましく、排出ガスからタールや水を分離した残部のガスを部分燃焼させたものの一部を冷却して用いることもできる。冷却用ガスも、空気(酸素)の供給を遮断または制限したものである必要がある。
 上記の冷却用ガスには、バイオマスの炭化の際に発生したタールの一部を混合し、竪型炉内に冷却用ガスとともにタールを供給することが好ましい。冷却されるバイオマス炭にタールが付着し、バイオマス炭の収率が向上する。熱風とともに吹き込まれるタールに比較するとその割合は少ないが、冷却用ガスとともに供給されたタールの一部も、炉内で炭化されてバイオマス炭上に析出する。排出ガスを循環して冷却用ガスに使用する場合には、タールは予め冷却用ガスに混合されている状態で吹込まれることになる。
 熱風や冷却用ガスとともに吹込まれるタールには、外部発生のタールを追加することも可能である。外部発生のタールとしては、炭化する余地のある、バイオマス由来のタールを用いることが好ましく、バイオマスを700℃以下で熱分解して発生するタールを用いることが特に好ましい。
 排出ガスの残部は、燃料として用いることや、別途燃焼機等で燃焼させて、高温の廃ガスとして、熱回収やバイオマスの乾燥用などに利用することができる。
 竪型炉中のバイオマスの充填層の高さは、熱風吹き込み位置から充填層表面までの高さである。この充填層の高さは、2m以上、15m未満とすることが好ましい。バイオマスが加熱される部分の高さが低すぎると、熱交換が非効率で、タールによる収率向上の効果も少ない。一方で、バイオマスが加熱される部分の高さが高すぎると、圧力損失が大きくなりすぎ、設備コストが増大する。
 実施の形態1の一実施形態を図1を用いて説明する。
 竪型炉である炭化炉10には、木質系バイオマス等の原料1が上部の投入口から供給される。また、熱風5が熱風の吹き込み口である熱風入口11から供給される。熱風5は、炉内充填物の燃焼を招かず、炭化させるために無酸素或いは低酸素である。低酸素とは、例えば、1vol%未満の酸素含有量である。熱風5には、タール4を混合することが出来る。
 原料1は、炭化炉10内で充填層12を形成し、熱風5により加熱されることで炭化され、下部の切り出し装置13から炭化物2となって排出される。熱風入口11に回転機構等を設置することで、炭化物の切り出しを促すことが出来る。一方、充填層12から発生した排出ガス3は、炉上部の排出口より排出される。発生ガスは、ほぼ無酸素状態であり、タールが混入している。
 原料1の形態としては、充填層のガス流通に支障が生じないような形態、すなわち5mm~200mm程度が主体(90mass%以上)の大きさの塊状物とすることが好ましい。なお、ここでの粒径は、200mm以下とは目開きが200mmの篩を通過する篩下であり、5mm以上とは5mmの篩の篩上の状態を言う。
 原料1が炭化炉10に供給される際に、充填層12の上面はある程度ならされた平坦化状態とすることが好ましい。これは、ガスの偏流を防ぎ効率的な炭化を実現するためである。
 熱風5の温度は400~1200℃であるのが望ましい。吹き込み温度が低すぎると原料の炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。 好ましくは600~1200℃であり、更に好ましくは600~1000℃である。
 炭化により生成する炭化物温度は300~700℃程度が望ましい。温度が低すぎると炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。好ましくは400~700℃であり、更に好ましくは400~600℃である。切り出し装置13で切り出される際に、水冷ジャケットなどの間接冷却或いは水噴霧による直接冷却により安全な温度で炭化物2を切り出すことが出来る。
 充填層12上部の排出口から排出される排出ガスの温度は、50~300℃程度が望ましい。温度が低すぎると、水分が充填層から十分に排出されなくなるためであり、温度が高すぎるとタール分の充填層からの排出が過大になり炭化物の収率が低下し、下流でタールトラブルが起きやすくなるためである。好ましくは70~200℃程度である。
 熱風5には、タール4を混合する。タール4には排出ガス3から分離したものを使用することが好ましい。熱風5にタール4を混合することにより、タール4の一部が炭化物2に付着して、炭化物として回収されるようになるため、炭化物2の収率が向上できる。熱風5として排出ガス3の一部をそのまま用いることで、タールが混合された状態の熱風を吹き込むこともできる。
 タール4は、熱風5と混合され炉内充填層12に供給され、充填層内の炭化物に吸着することで炭化物2の収率向上に寄与する。タール4の大部分は、充填層12内で熱分解してチャー分が生成し、即ち炭化物となる。
 熱風5は、図示したように炉下部から熱風入口を通して供給されるが、炉の横からノズルを使って供給されるようにしても良い。
 本発明の他の一実施形態を図2を用いて説明する。
 炭化炉10には、原料1が上部から供給される。また、熱風21が炉内中段部に供給される。熱風21には、タール22を混合する。また、冷風23が冷風入口25から炉内に供給される。冷風23には、タール24を混合することが出来る。熱風21および冷風23は、炉内充填物の燃焼を招かず、炭化させるために無酸素或いは低酸素である。
 原料1は、炉内で充填層12を形成し、熱風21により加熱されることで炭化され、炭化後に冷風23により冷却され、下部の切り出し装置13から炭化物2となって排出される。冷風入口25は回転機構等を設置することで、炭化物の切り出しを促すことが出来る。一方、充填層12から発生した排出ガス3は、炉上部より排出される。
 原料1の形態としては、充填層のガス流通に支障が生じないような形態、すなわち5mm~200mm程度が主体(90mass%以上)の大きさの塊状物とすることが好ましい。なお、ここでの粒径は、200mm以下とは目開きが200mmの篩を通過する篩下であり、5mm以上とは5mmの篩の篩上の状態を言う。
 原料1が炭化炉10に供給される際に、充填層12の上面はある程度ならされた平坦化状態とすることが好ましい。これは、ガスの偏流を防ぎ効率的な炭化を実現するためである。
 熱風21の温度は400~1200℃として送風するものとする。送風温度が低すぎると原料の炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。好ましくは600~1000℃である。
 充填層中段の熱風21入口付近の炭化物温度は300~700℃程度が望ましい。温度が低すぎると炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。好ましくは400~700℃であり、更に好ましくは400~600℃である。
 冷風23の温度は200℃以下であるのが望ましい。好ましくは100℃以下である。温度が高すぎると冷却が効率的でないためである。
 切り出し装置13で切り出される際に、水冷ジャケットなどの間接冷却或いは水噴霧による直接冷却により安全な温度で炭化物2を切り出すことが出来る。
 充填層12上部から排出される排出ガスの温度は、50~300℃程度が好ましい。温度が低すぎると、水分が充填層から十分に排出されなくなるためであり、温度が高すぎるとタール分の充填層からの排出が過大になり炭化物の収率が低下し、下流でタールトラブルが起きやすくなるためである。より好ましくは70~200℃程度である。
 熱風21に、タール22を混合する際には、タール22には排出ガス3から分離したものを使用する。熱風21にタール22を混合することにより、タール22の一部が炭化物2に含まれるようになるため、炭化物2の収率を向上させることができる。熱風21として排出ガス3の一部をそのまま用いることでも、タールが混合された状態の熱風を吹き込むことができる。
 冷風23にも、タール24を混合することができ、タール24には排出ガス3から分離したものを使用することが好ましい。冷風23にタール24を混合することにより、タール24の一部が生成炭化物2に含まれるようになるため、炭化物2の収率を向上させることができる。
 タール22あるいはタール24は、熱風21あるいは冷風23と混合され炉内充填層12に供給され、充填層内の炭化物に吸着することで炭化物2の収率向上に寄与する。タール22あるいは24は、さらに、充填層12内で熱分解してチャー分が生成し、即ち炭化物となり炭化物2の収率向上に寄与する。タール24には、炉内で熱分解してチャー分を生成するもの以外に、炭化物に付着したまま炉外に排出されるものもある。
 タール22あるいはタール24は、図示したように熱風21や冷風23と混合され炉内に供給されるが、熱風や冷風と混合させずに炉内充填層12に直接供給しても良い。
 冷風23は、図示したように炉下部から熱風入口を通して供給されるが、炉の横からノズルを使って供給しても良い。
 本発明の他の一実施形態を図3を用いて説明する。
 炭化炉10には、原料1が上部から供給され、炉内で充填層12を形成し、熱風5により加熱されることで炭化され、炭化物2となって排出される。
 充填層12で発生した排出ガス3は、分離機311にてガス32、酢液33、タール34に分離される。ここで得られるタールは、バイオマスを熱分解して得られる液体を静置あるいは蒸留によって褐色透明な液(酢液)を分離して除いた黒褐色の高粘性の液状物を言う。この場合のタールの発熱量は、酢液を除去することにより、最大約20MJ/kgとなる。分離機311の形態としては、酢液の凝縮温度以下の温度で、酢液およびタールを液相に、ガスを気相に分離させることができ、液相を水相(酢液相)と油相(タール相)に分離させることが出来る構造であれば、特に限定しない。水相には水溶性の有機物も含まれる。分離機311では、必要に応じて冷却することで、分離効率を高めることが出来る。
 分離機311で分離されたガス32と、分離されたタール34の一部は、部分燃焼機312にて、空気35によりいわゆる不完全燃焼させる。ここで、空気35の量は空気比1未満で、無酸素或いは極めて低酸素の熱風36を発生させる。熱風を所定の温度まで昇温させるのにあたって、通常のバイオマス原料を使用すれば空気比1未満で可能であるが、0.5以上であることが好ましい。また、熱風中にタールを残すためには、空気比0.8以下であることが好ましい。
 分離機311で分離された酢液は、廃棄するか、溶け込んでいる水溶性有機物等の有効利用を図る。場合によっては、燃焼機313にて燃焼処理され廃ガス38として放出される。
 部分燃焼機312で発生した熱風36の一部は、炭化炉10に熱風5として送られ、炭化の為の熱源とする。
 分離機311で分離されたタール34の一部は、タール4として熱風5と共に炭化炉10に送られる。
 部分燃焼機312で発生した熱風の一部は、燃焼機313にて、空気37と混合して残留する可燃ガス成分を燃焼させ、廃ガス38を排出する。
 原料1の形態等は、図1、2を用いた実施形態にて説明したものと同様である。
 熱風5の温度は400~1200℃が好ましい。温度が低すぎると原料の炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。より好ましくは600~1000℃とする。
 生成する炭化物温度は300~700℃程度が望ましい。温度が低すぎると炭化が十分に進まず、高すぎると炭化物の収率が低下する上に、設備がコスト高になるためである。好ましくは400~700℃であり、更に好ましくは400~600℃である。
 充填層12上部から排出される排出ガス3の温度は、50~300℃程度が望ましい。温度が低すぎると、水分が充填層から十分に排出されなくなるためであり、温度が高すぎるとタール分の充填層からの排出が過大になり炭化物の収率が低下し、下流でタールトラブルが起きやすくなるためである。好ましくは70~200℃程度である。
 熱風5には、分離機311で分離されたタール34の一部のタール4を混合する。熱風5にタール4を混合することにより、タール4の一部が炭化物2に含まれるようになるため、炭化物2の収率が向上できる。
 タール4は、熱風5と混合され炉内充填層12に供給され、充填層内の炭化物に吸着することで炭化物2の収率向上に寄与する。タール4は、さらに、充填層12内で熱分解してチャー分が生成し、即ち炭化物となり炭化物2の収率向上に寄与する。
 タール4は、図示したように熱風5と混合され炉内に供給されるが、熱風5と混合させずに炉内充填層12に直接供給しても良い。
 分離機311で、タール34を分離することにより、タールを有効利用して炭化物2の収率を向上させることができる。
 分離機311で酢液33を分離することにより、酢液を分離しない場合に比べ、部分燃焼機312に供給される酢液分を減少させることが出来るので、以下の効用がある。
 第一に、同じ空気比における部分燃焼機312の温度を上昇させることができ、炭化炉10に必要な熱を供給し易くなる。
 第二に、熱風5に含まれる水蒸気を減少させることが出来るため、炭化炉内での水蒸気による炭素消費反応を抑制する効果があり、炭化物収率の向上につながる。
 廃ガス38の熱は、原料1の乾燥等に利用することが出来る。
 本発明の他の一実施形態を図4を用いて説明する。
 炭化炉10には、原料1が上部から供給される。また、熱風21が炉内中段部に供給され、熱風21には、タール22を混合することが出来る。また、冷風23が炉内に供給され、冷風23には、タール24を混合することが出来る。熱風21および冷風23は、炉内充填物の燃焼を招かず、乾留させるために無酸素或いは低酸素である。
 原料1は、炉内で充填層12を形成し、熱風21により加熱されることで炭化され、炭化後に冷風23により冷却され、炭化物2となって排出される。
 充填層から発生した排出ガス3は、炉上部より排出され、分離機311にてガス32、酢液33、タール34に分離される。分離機311の形態としては、酢液の凝縮温度以下の温度で、酢液およびタールを液相に、ガスを気相に分離させることができ、液相を水相と油相(タール相)に分離させることが出来る構造であれば、特に限定しない。分離機311では、必要に応じて冷却することで、分離効率を高めることが出来る。
 分離機311で分離されたガス32と、分離されたタール34の一部は、部分燃焼機312にて、空気35によりいわゆる不完全燃焼させる。ここで、空気35の量は空気比1未満で、無酸素或いは極めて低酸素の熱風36を発生させる。熱風を所定の温度まで昇温させるのにあたって、通常のバイオマス原料を使用すれば空気比1未満で可能であるが、0.5以上であることが好ましい。また、熱風中にタールを残すためには、空気比0.8以下であることが好ましい。
 分離機311で分離された酢液は、廃棄するか、溶け込んでいる水溶性有機物等の有効利用を図る。場合によっては、燃焼機313にて燃焼処理され廃ガス38として放出される。
 部分燃焼機312で発生した熱風36の一部は、炭化炉10に熱風21として送られ、炭化の為の熱源とする。
 部分燃焼機312で発生した熱風36の一部は、冷却機411にて冷却され、炭化炉10に冷風23として送られ、炭化物の冷却に利用される。
 部分燃焼機312で発生した熱風の一部は、燃焼機313にて、空気37と混合して残留する可燃ガス成分を燃焼させ、廃ガス38を排出する。
 原料1の形態等は、図1、2を用いた実施形態にて説明したものと同様である。
 熱風21の温度は400~1200℃が好ましい。温度が低すぎると原料の炭化が十分に進まず、高すぎると炭化物の収率が低下した上に、設備がコスト高になるためである。より好ましくは600~1000℃である。
 充填層中段の熱風21入口付近の炭化物温度は300~700℃程度が好ましい。温度が低すぎると炭化が十分に進まず、高すぎると炭化物の収率が低下した上に、設備がコスト高になるためである。より好ましくは400~700℃であり、最も好ましくは400~600℃である。
 冷風23の温度は200℃以下が好ましい。より好ましくは100℃以下である。温度が高すぎると冷却が効率的でないためである。
 充填層12上部から排出される排出ガスの温度は、50~300℃程度が好ましい。温度が低すぎると、水分が充填層から十分に排出されなくなるためであり、温度が高すぎるとタール分の充填層からの排出が過大になり炭化物の収率が低下し、下流でタールトラブルが起きやすくなるためである。より好ましくは70~200℃程度である。
 熱風21には、タール22を混合する。タール22には分離機311で分離されたタール34を使用する。熱風21にタール22を混合することにより、タール22の一部が炭化物2に含まれるようになるため、炭化物2の収率が向上できる。
 冷風23には、タール24を混合することができ、タール24に分離機311で分離されたタール34を使用することが好ましい。冷風23にタール24を混合することにより、タール24の一部が生成炭化物2に含まれるようになるため、炭化物2の収率が向上できる。
 タール22あるいはタール24は、熱風21あるいは冷風23と混合され炉内充填層12に供給され、充填層内の炭化物に吸着することで炭化物2の収率向上に寄与する。タール22または24は、さらに、充填層12内で熱分解してチャー分が生成し、即ち炭化物となり炭化物2の収率向上に寄与する。タール24には、炉内で熱分解してチャー分を生成するもの以外に、炭化物に付着したまま炉外に排出されるものもある。
 タール22あるいはタール24は、図示したように熱風21や冷風23と混合され炉内に供給されるが、熱風5と混合させずに炉内充填層12に直接供給しても良い。
 冷風23は、図示したように炉下部から熱風入口を通して供給されるが、炉の横からノズルを使って供給しても良い。
 分離機311で、タール34を分離することにより、タールを有効利用して炭化物2の収率を向上させることができる。
 分離機311で酢液33を分離することにより、酢液を分離しない場合に比べ、部分燃焼機312に供給される酢液分を減少させることが出来るので、次の効用がある。第一に、同じ空気比における部分燃焼機312の温度を上昇させることができ、炭化炉10に必要な熱を供給し易くなる。第二に、熱風5に含まれる水蒸気を減少させることが出来るため、炭化炉内での水蒸気による炭素消費反応を抑制する効果があり、炭化物収率の向上につながる。
 廃ガス38の熱は、原料1の乾燥等に利用することが出来る。
 本発明の他の一実施形態を図5を用いて説明する。
 図5は、図4において、冷風23およびタール24の代わりに、排出ガス3の一部を冷風523として用いるようにしたものである。
 排出ガス3には、発生タールが含まれ、なおかつ低温であるため、炭化炉10にて炭化物の冷却と炭化物2の収率向上に寄与できる。
 図4の場合に比べ、図5の方が、より設備を簡略化することができ、低コストである。
 本発明の他の一実施形態を図6を用いて説明する。
 図6は、図5において、分離機311を省略したものである。
 排出ガス3には、発生タールが含まれ、なおかつ低温であるため、炭化炉10にて炭化物の冷却と炭化物2の収率向上に寄与できる。
 図5の場合に比べ、図6の方が、より設備を簡略化でき、低コストである。
[実施例1]
 図3に示すものと同様の設備を用いて、バイオマスを乾留して、バイオマス炭を製造する試験を行った。
 熱風5に、タール4を混合する場合としない場合について、炭化物2の収率の比較を行なった。原料1として、パーム油を生成する過程で発生するアブラヤシの空果房(empty fruit bunch(EFB)からなるバイオマス系の残渣を用いた。EFBの含水率は30mass%であった。
 熱風5にタール4を混合させる場合(本発明例)は、乾燥ベースの原料1の質量流量を1としたとき、熱風5に混合させたタール4の質量流量を0.1とした。熱風5の吹込み温度は930℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風5にタール4を混合させない場合(比較例)は、熱風5の吹込み温度は910℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風5に、タール4を混合しない比較例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量は、0.25であった。すなわち、乾燥ベースでの炭化物の収率は25%であった。一方、タール4を混合した本発明例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量0.28であった。すなわち、乾燥ベースでの炭化物の収率は28%であった。本発明方法を用いることで、炭化物収率が1割以上向上した。
 [実施例2]
 図4に示すものと同様の設備を用いて、実施例1と同様のバイオマスを乾留して、バイオマス炭を製造する試験を行った。
 熱風21および冷風23に、タールを混合する場合としない場合について、炭化物2の収率の比較を行なった。
 熱風21および冷風23にタール22、24を混合させる場合(本発明例)は、乾燥ベースの原料1の質量流量を1としたとき、熱風21に混合させたタール22の質量流量を0.1とし、冷風23に混合させたタール24の質量流量を0.03とした。熱風21の吹込み温度は990℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。冷風23の温度は80℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風21および冷風23にタール22、24を混合させない場合(比較例)は、熱風21の吹込み温度は910℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。冷風23の温度は80℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風21および冷風23に、タール22、24を混合しない比較例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量は、0.25であった。すなわち、乾燥ベースでの炭化物の収率は25%であった。一方、タール22、24を混合した本発明例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量0.29であった。すなわち、乾燥ベースでの炭化物の収率は29%であった。本発明方法を用いることで、炭化物収率が1.5割以上向上した。
[実施例3]
 図5に示すものと同様の設備を用いて、実施例1と同様のバイオマスを乾留して、バイオマス炭を製造する試験を行った。
 熱風21および冷風523に、タールを混合する場合としない場合について、炭化物2の収率の比較を行なった。
 熱風21にタール22を混合させる場合(本発明例)は、乾燥ベースの原料1の質量流量を1としたとき、熱風21に混合させたタール22の質量流量を0.1とした。熱風21の吹込み温度は990℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。冷風523に混合していたタールの質量流量は0.06であり、その温度は80℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風21にタール22を混合させない場合は、熱風21の吹込み温度は910℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。冷風523に混合していたタールの質量流量は0.06であり、その温度は80℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風21および冷風523にタールを混合させない場合を比較例とすると、上記の実施例2の比較例の場合がこれに相当する。この場合、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量は、0.25であった。すなわち、乾燥ベースでの炭化物の収率は25%であった。
 タール22を混合した本発明例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量0.29であった。すなわち、乾燥ベースでの炭化物の収率は29%であった。本発明方法を用いることで、炭化物収率が1割以上向上した。また、熱風21に、タール22を混合しない場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量は、0.26であった。すなわち、乾燥ベースでの炭化物の収率は26%であった。これにより、炭化物収率が約0.4割向上した。
[実施例4]
 図6に示すものと同様の設備を用いて、実施例1と同様のバイオマスを乾留して、バイオマス炭を製造する試験を行った。
 排出ガス3を部分燃焼機で不完全燃焼させた熱風21にはタールが混合しており、その質量流量は0.04であった。また冷風523も排出ガスの一部を用いているので、タールが混合しており、その質量流量は0.06であった。
 排出ガスからタールを分離しないで熱風21および冷風523として用いる場合(本発明例)は、熱風21の吹込み温度は990℃であり、炭化温度、すなわち切り出される直前の炭化物温度は500℃であった。冷風523の温度は80℃であった。充填層上部から排出される排出ガス3の温度は100℃であった。
 熱風21および冷風523にタールを混合させない場合を比較例とすると、上記の実施例2の比較例の場合がこれに相当する。
 この場合、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量は、0.25であった。すなわち、乾燥ベースでの炭化物の収率は25%であった。一方、本発明例の場合では、乾燥ベースの原料1の質量流量を1としたとき、製造される炭化物2の質量流量0.27であった。すなわち、乾燥ベースでの炭化物の収率は27%であった。本発明方法を用いることで、炭化物収率が0.8割向上した。
[符号の説明]
 1  原料、       2  炭化物
 3  排出ガス、     4  タール
 5  熱風、      10  炭化炉
 11  熱風入口、   12  充填層
 13  切り出し装置、 21  熱風
 22  タール、    23  冷風
 24  タール、    25  冷風入口
 32  ガス、     33  酢液
 34  タール、    35  空気
 36  熱風、     37  空気
 38  廃ガス、   311  分離機
 312 部分燃焼機、 313  燃焼機
 411 冷却機、   523  冷風
[実施の形態2]
 実施の形態2では、バイオマス乾留時に発生する乾留生成物(ガス、タール)をバイオマス乾留により得られた乾留バイオマスに高温で接触させることにより、乾留生成物中の炭素を乾留バイオマス上に析出させたバイオマス炭を得ることができる。これにより、バイオマス乾留時の発生タールおよびガス量を最小とし、バイオマス炭の収率を向上させることができる。実施の形態2で得られたバイオマス炭はタール等がそのまま付着しているのとは異なりコーキング化して炭素の状態として付着しているため、酸素含有率が低く、発熱量が高くなり、揮発分が少なく、反応性が低く発火性も低下して安全性が高まり、高品質であり、鉄鋼プロセス、特に製銑、製鋼工程、焼結炉における炭材として好適に利用することができる。
 バイオマスとは、ある一定量集積した動植物資源とこれを起源とする廃棄物の総称である。ただし、化石資源はバイオマスから除かれる。実施の形態2で用いるバイオマスには、農業系、林業系、畜産系、水産系、廃棄物系等の、熱分解して炭化物を生成するあらゆるバイオマスを用いることができる。有効発熱量の高いバイオマスを用いることが好ましく、木質系バイオマスを用いることが好ましい。木質系バイオマスとしては、パルプ黒液、チップダスト等の製紙副産物、樹皮、のこ屑等の製材副産物、枝、葉、梢、端尺材等の林地残材、スギ、ヒノキ、マツ類等の除間伐材、食用菌類の廃ホダ木等の特用林産からのもの、シイ、コナラ、マツ等の薪炭林、ヤナギ、ポプラ、ユーカリ、マツ等の短伐期林業等の林業系バイオマスや、市町村の街路樹、個人宅の庭木等の剪定枝条等の一般廃棄物や、国や県の街路樹、企業の庭木等の剪定枝条、建設・建築廃材等の産業廃棄物等が挙げられる。農業系バイオマスに分類される、廃棄物・副産物を発生源とする籾殻、麦わら、稲わら、サトウキビカス、パームヤシ等や、エネルギー作物を発生源とする米糠、菜種、大豆等の農業系バイオマスの一部も木質系バイオマスとして好適に用いることができる。
 また、バイオマスの乾留とは、バイオマスの熱分解であり、空気(酸素)の供給を遮断または制限して加熱し、気体(木ガスとも呼ばれる)、液体(タール)、固体(炭)の生成物を得る技術である。バイオマスを熱分解して得られる液体を静置あるいは蒸留によって褐色透明な液(酢液)を分離して除いた黒褐色の高粘性の液状物をタールと呼ぶ場合もあるが、実施の形態2ではタールと酢酸とが混合された状態の液体をタールと呼ぶ。
 実施の形態2の一実施形態を図7を用いて説明する。110は乾留炉、120はコーキング炉、130はコーキング炉より発生する発生ガスの燃焼炉を示す。バイオマス101は図示しない供給装置により乾留炉110に供給され、乾留バイオマス(炭)102と乾留生成物(ガス、タール)103を生成する。乾留バイオマス102は図示していない供給装置によりコーキング炉120に供給され、同時に乾留生成物103もコーキング炉120に供給される。コーキング炉120内では乾留バイオマス102に乾留生成物103が接触し、乾留バイオマス102上に乾留生成物103中の炭素が析出する。炭素が析出したバイオマス炭105はコーキング炉120より排出され、鉄鋼プロセス等に利用される。一方、乾留生成物103はコーキング炉120内での炭素の析出により軽質化され、コーキング炉120より軽質ガス106として排出される。軽質ガス106は低級炭化水素および水素が主体であることから、燃焼装置130にて燃焼し、乾留炉110およびコーキング炉120の熱源として利用される。108は軽質ガス以外の外部から供給される燃料ガス、109は燃焼用空気を示す。
 バイオマスは加熱により熱分解され、バイオマス中の水分は蒸発し、炭素、水素と酸素は揮発分として放出される。水分の蒸発あるいは/および揮発分の揮発により、バイオマス中に細孔が発現する。発生した細孔内表面には炭化水素等のタールを物理的・化学的に吸着可能なサイトが生成される。タールはこの細孔に侵入し、バイオマスに物理的・化学的に吸着される。このタールが吸着したバイオマスを、さらに加熱した場合、タールは脱水素反応を起こし、重質化し、最終的には炭化物となる。また、加熱によりバイオマス表面にもタールを吸着可能なサイトが生成し、バイオマス表面においても同様の現象がおこる。
 上記で記載されているように、乾留バイオマスへの炭素析出は、まずタールが乾留バイオマスに吸着し、続いて吸着したタールが脱水素し、炭素析出する。そのため、乾留バイオマスの比表面積、細孔容積、平均細孔径が重要となる。比表面積および細孔容積が充分に大きくても、平均細孔径が小さい場合にはタールは細孔内に侵入せず、吸着量が少ない。そのため、平均細孔径は1ナノメートル以上とすることが好ましく、このためには、乾留バイオマスの比表面積は10m/g以上であることが好ましい。乾留バイオマスの比表面積が大きいほど、細孔容積が増加し、かつ平均細孔径が大きくなり、バイオマスの乾留により発生したガスとタールとの接触面積が大きくなり、効率的に多量の炭素分を乾留バイオマスに付着析出させることが可能となる。比表面積が10m/g未満であると、細孔容積が少なく、かつ細孔径が1ナノメートル未満となり、タールの吸着量が少なく、炭素析出が少なくなる。
 バイオマスの乾留温度はバイオマスの脱水および乾留生成物が生成する温度範囲であればよく、乾留バイオマス102の比表面積10m/g以上となる450~800℃の範囲であればよい。バイオマス炭105の収率を考慮すると、450~700℃で乾留することが、より好ましい。
 コーキング炉120の温度はコーキング炉120でバイオマス101が乾留しない条件であり、乾留炉110と同等の温度範囲が好ましい。また、コーキング炉120内での乾留バイオマス102の滞留時間は、析出炭素により乾留バイオマス102の細孔が閉塞するまでの時間とすることが好ましい。細孔が完全に閉塞した後に、さらに炭素を析出させると、乾留生成物103中の炭素は乾留バイオマス102の表面に析出し、乾留バイオマス102同士の由着、塊状化が発生するので、コーキング炉120内で荷下がり不良をきたす場合がある。滞留時間は乾留バイオマスの比表面積により、適宜決定される。
 乾留炉110はバイオマス101を乾留できるものであればよく、通常のバッチ式、ロータリーキルン式、竪型炉等を用いることができる。連続プロセスとして採用可能なロータリーキルン式を用いることが好ましい。
 コーキング炉120は乾留バイオマス102が乾留生成物103と均一に接触し、乾留生成物103を分解し、乾留バイオマス102上に炭素を析出させる必要があることから充填層あるいは移動層方式であることが好ましい。
 乾留炉110ならびにコーキング炉120の加熱方法はコーキング炉120より発生する軽質ガス106を燃焼し、加熱して行なってもよく、別途重油、プロパン等の燃料ガス8を燃焼させ加熱ガスとして用いてもよい。また、燃料ガスを燃焼させる方法以外に、電気加熱により加熱してもよい。電気加熱の場合であれば乾留炉110およびコーキング炉120をそれぞれ分割して温度制御することが可能である。
 乾留炉110内でバイオマス101を乾留した際に乾留バイオマス102が粉化することが考えられる。このような場合には、コーキング炉120内の圧力損失を軽減するために、得られた乾留バイオマス102中の粉を除去し、コーキング炉120に供給することもできる。粉の除去方法は従来知られている篩あるいは風力分級等の方法を用いればよい。篩粒度はコーキング炉120の操作条件により、決定される。
 コーキング炉120に供給される材料はバイオマスを乾留した乾留バイオマス102であるが、乾留バイオマスと同様の比表面積を有するものも、乾留バイオマス102に追加して使用することができる。例えば、別途乾留処理されたバイオマス炭、活性炭など鉄鋼プロセスで石炭代替となるものである。
 図8を用いて、実施の形態2の他の一実施態様を説明する。図7における乾留炉110がロータリーキルン150、コーキング炉120が竪型炉160の場合の発明例である。140はバイオマス定量供給装置であるスクリューフィーダー、150は間接加熱方式ロータリーキルン、160は竪型炉、111はコーキング部、112はバイオマス炭の冷却部である。ロータリーキルン150で乾留された乾留バイオマス102は竪型炉160に上部から供給され、乾留生成物103の炭素分が析出したバイオマス炭105は冷却部112で窒素113により冷却された後、下部から排出される。
 冷却ガス113は不活性ガスであればよい。また、冷却部112から排出されるバイオマス炭105は発火しない温度範囲であればよく、200℃以下であればよい。より好ましくは100℃以下とする。
[実施例1]
 図8に示すものと同様の設備を用いて、バイオマスの乾留ならびに発生ガスのコーキング試験を行った。但し、ロータリーキルン150および竪型炉(コーキング炉)160の加熱方法は3分割の電気加熱とし、竪型炉160から発生する軽質ガスは系外に排出した。ロータリーキルン150は内径15cm、長さ1.0m、傾斜角1度であり、乾留時間はロータリーキルン回転数を1.5rpmとし、約50分とした。竪型炉160は内径6.6cm、長さ40.0cmとし、炉上部に設置したロータリーバルブにより、乾留バイオマス102を供給し、下部に設置のロータリーバルブよりバイオマス炭105を排出した。竪型炉160の炉内充填物の滞留時間の調整は、初期充填量を調整することにより行った。バイオマスとしては3mm~10mmに粉砕分級した杉を用いた。使用したバイオマスの組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ロータリーキルンへのバイオマス供給速度は1.0kg/hとし、乾留バイオマスをロータリーキルン150より回収し、竪型炉160に充填した。試験条件を表2に示すように変化させて、本発明例1~8の試験を行い、製造されたバイオマス炭、ガス、タール、水分の収率、乾留バイオマスの比表面積、製造されたガス組成を測定した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
 次に上記に従い、竪型炉160を用いない以外は上記と同様に試験を行い、比較例1~6とした。乾留バイオマスの比表面積に加えて、細孔容積、平均細孔径も測定した。試験条件および結果を表2に併せて示す。
 表2によれば、竪型炉160を用いてロータリーキルンで発生したタールやガスを乾留バイオマスに付着させ、加熱して炭化させることで、バイオマス炭の収率が向上することが分かる。また、タール分はGC−MS(ガスクロマトグラフを直結した質量分析計)を用いた分析の結果、軽質化していることがわかった。ロータリーキルン乾留温度と竪型炉コーキング温度が400~700℃の本発明例1~5、7、8では23mass%以上の高い収率が得られたが、ロータリーキルン乾留温度と竪型炉コーキング温度が800℃の本発明例6では収率がやや低かった。
 また、ロータリーキルン乾留温度が400℃の比較例6では、乾留バイオマスの比表面積が10m/g未満で平均細孔径は1ナノメートル未満であり、ロータリーキルン乾留温度と竪型炉コーキング温度が400℃の本発明例8では比較例6に比較してバイオマス炭の収率があまり増加しなかった。
[符号の説明]
 101  バイオマス、         102  乾留バイオマス
 103  乾留生成物(ガス、タール)、 104  燃焼排ガス
 105  バイオマス炭、        106  軽質ガス
 107  燃焼排ガス、  108  軽質ガス以外の外部から供給される燃料ガス
 109  燃焼用空気、  110  乾留炉
 111  コーキング部、 112  冷却部
 113  冷却ガス、   120  コーキング炉
 130  燃焼炉、    140  バイオマス定量供給装置
 150  間接加熱ロータリーキルン、 160  竪型炉
[実施の形態3]
 実施の形態3では、バイオマスを乾留してバイオマス炭を製造する際に、2塔式の充填移動層方式の炉を用いる。2塔式の充填移動層方式の炉は、シャフト炉の一種であり、メルツ炉とも呼ばれる。メルツ炉は、互いに接続された2本の竪型シャフトで交互に燃焼と蓄熱を繰り返すことで、熱原単位を削減するとともに、安定して高品位な製品を生産することでき、ロータリーキルン等に比べて熱効率が良いことが知られている。従来、メルツ炉は石灰焼成炉等として用いられてきたものであり、各竪型シャフト内で上方から供給される空気により充填層内に挿入されたバーナランスから吹き込まれる燃料ガスが燃焼し、その燃焼熱により石灰石(CaCO)等が焼成される。石灰石の場合は焼成されて、生石灰(CaO)となる。燃焼ガスは竪型炉の下方に移動し、他方の竪型炉内の石灰石等を予熱する。一方の竪型炉が焼成用、他方が予熱用となる。燃料の供給は、周期的にバーナランスを介して竪型シャフトの1つへ交互に行われる。
 このような互いに接続された2基の乾留炉を有する2塔式の充填移動層方式の炉を用いてバイオマスを乾留することで、一方の乾留炉でのバイオマスの乾留により発生したガスとタールとを他方の乾留炉内のバイオマスに接触させて、他方の乾留炉内のバイオマスの乾留の際にガスおよびタール中の炭素分を他方の乾留炉内のバイオマスに付着析出させることができる。すなわち、バイオマス乾留時に発生する乾留生成物(ガス、タール)を他方の乾留炉内のバイオマスやバイオマス乾留により得られた乾留バイオマスに高温で接触させることができ、乾留生成物中の炭素を析出させたバイオマス炭を効率的に得ることができる。これにより、バイオマス乾留時の発生タールおよびガス量を最小とし、バイオマス炭の収率を向上させることができる。乾留生成物の炭化を促進するために、乾留炉の下部のみを別途加熱することも好ましい。実施の形態3で得られたバイオマス炭はタール等がそのまま付着しているのとは異なりコーキング化した炭素の状態として付着しているため、揮発分が少なく、高品質であり、製鉄プロセス、特に製銑、製鋼工程、焼結炉における炭材として好適に利用することができるものである。
 また、バイオマスの乾留とは、バイオマスの熱分解であり、空気(酸素)の供給を遮断または制限して加熱し、気体(木ガスとも呼ばれる)、液体(タール)、固体(炭)の生成物を得る技術である。バイオマスを熱分解して得られる液体を静置あるいは蒸留によって褐色透明な液(酢液)を分離して除いた黒褐色の高粘性の液状物をタールと呼ぶ場合もあるが、実施の形態3ではタールと酢酸とが混合された状態の液体をタールと呼ぶ。
 実施の形態3の一実施形態を図9を用いて説明する。
 図9は2塔式の充填移動層方式の炉を用いたバイオマス炭製造装置である。図示しない破砕装置にて、乾留炉本体201に装入可能なサイズに破砕されたバイオマス202は、図示しない供給装置により、乾留炉本体201に供給される。乾留炉本体201は乾留炉A(図9の左側)203と乾留炉B(図9の右側)204が下部で接続された構造であり、乾留炉本体201に装入されたバイオマス202は、まず原料切替弁205により乾留炉B204に充填される。乾留炉B204に充填されたバイオマスのレベルが所定値となった時点で、原料切替弁205が乾留炉A203に切り替わり、乾留炉A203にバイオマス202が供給される。乾留炉A203に充填されたバイオマスのレベルが所定量になった時点で、一旦バイオマス202の装入を停止し、乾留を開始する。
 まず、乾留炉A203において乾留に必要な熱を供給するために、配置されたランスA206に燃料208を供給するとともに乾留炉A203の上部から空気209を送風し、ランスA206から排出する燃料208を燃焼させる。ランスA206は図10に示す乾留炉A203のX−X’断面(図9)のように配置されている。なお、後述するランスB207も同様に配置されている。燃焼ガスと乾留ガス・タール221はバイオマスに熱を供給しながら充填層210内を下方に移動し、乾留炉B204内に入り、乾留炉B204内のバイオマスを予熱しながら上方に向かってバイオマス充填層211を移動する。その際、乾留により発生した乾留ガス・タールの一部は乾留炉A203および乾留炉B204内のバイオマス炭あるいはバイオマスに接触し、吸着および/または吸収されて炭素分が付着析出する。バイオマスに熱を供給した燃焼ガスおよびタールが除去された乾留ガス212が乾留炉B204より排出され、1次集塵機213にて、ガス中のダスト分が除去される。1次集塵機213より排出された乾留ガス214はCOおよびメタン等の軽質炭化水素であり、乾留に必要な熱源として乾留炉A203に供給される。この際、初めに使用されていた燃料208は供給された乾留ガス214の熱量分だけ削減される。乾留炉A203および乾留炉B204の間に設置されている温度計の温度が所定温度となった時点で、充填層210内のバイオマス炭223は排出弁A215により排出され、排出弁216により系外に排出される。ここで、一旦、乾留炉A203への燃料供給、乾留ガスの供給は停止される。原料切替弁205が乾留炉A203側に切り替わり、乾留炉A203内にバイオマス202が装入される。次に、乾留炉B204内に配置されたランスB207に燃料208を供給するとともに空気209を送風し、ランスB207から排出する燃料208を燃焼させる。燃焼ガスは前述したように乾留炉B204内の予熱されたバイオマスを乾留し、バイオマス炭と乾留ガス・タールを発生させる。燃焼ガスと乾留ガス・タールはバイオマスに熱を供給しながらバイオマス充填層211内を下方に移動し、乾留炉A203内に入り、乾留炉A203内のバイオマスを予熱しながら上方に向かってバイオマス充填層210を移動する。その際、乾留により発生したタールは乾留炉B204および乾留炉A201内のバイオマス炭あるいはバイオマスに吸着および/または吸収される。バイオマスに熱を供給した燃焼ガスおよびタールが除去された乾留ガス212が乾留炉A203より排出され、1次集塵機213にて、ガス中のダスト分が除去される。1次集塵機213より排出された乾留ガス214はCOおよびメタン等の軽質炭化水素であり、乾留に必要な熱源として乾留炉B204に供給される。この際、初めに使用されていた燃料208は供給された乾留ガス214の熱量分だけ削減される。乾留炉B204および乾留炉A203の間に設置されている温度計の温度が所定温度となった時点で、乾留炉B204内のバイオマス炭は排出弁B217により排出され、排出弁216により系外に排出される。
 以上の操作を繰り返すことにより、バイオマスを乾留するとともに、乾留されたバイオマスにバイオマス乾留時に発生する乾留生成物中の炭素を析出させたバイオマス炭を製造する。
 乾留炉内でのバイオマスの乾留温度の下限は、バイオマスから乾留ガス・タールが発生する温度以上とすることが好ましい。一般的なバイオマスでは400℃以上とするのが好ましい。一方で、バイオマスの乾留ガス・タール中にはバイオマス付着水分に加えて、分解により発生する水分が含まれる。実施の形態3ではバイオマス中炭素の回収率を向上させることを目的としており、加熱・乾留温度の上限は水分発生の反応が顕著に起こらない温度以下とすることが好ましい。一般的なバイオマスでは800℃以下が好ましい。より好ましくは、450~750℃である。
 バイオマスからバイオマス炭を高収率で製造するためには、前述の温度条件で行うことが好ましいが、特に低温で低昇温速度で実施するとともに、乾留炉内での滞留時間を長めに実施することが好ましい。滞留時間を長くすることにより、発生したタール成分等が乾留炉下部のバイオマス炭により付着しやすくなるからである。具体的には、図11に示すように乾留炉で1回の処理で製造したバイオマス炭を全量排出するのではなく、乾留炉内のバイオマスの50体積%を排出し、残留した50体積%のバイオマス炭の上部に新規のバイオマスを充填することによりバイオマス炭の収率を向上させることができる。図11の(a)~(f)に示すようにバイオマス炭が製造される。
 (a):乾留炉A203のバイオマスを乾留する。
 (b):乾留炉A203で製造されたバイオマス炭の一部を排出する。
 (c):乾留炉A203に新たにバイオマス202aを装入する。
 (d):乾留炉B204のバイオマスを乾留する。
 (e):乾留炉B204で製造されたバイオマス炭の一部を排出する。
 (f):乾留炉B204にバイオマス202bを新たに装入する。
 バイオマス装入から排出までの乾留炉内での滞留時間は30分以上とすることが好ましい。30分未満の場合は炭化が不十分となり、バイオマス炭の低位発熱量が低くなる恐れがある場合がある。また、60分を超える滞留時間ではバイオマス炭の収率が低くなるとともに、乾留炉の容積を大きくする必要があるので、経済的でない。例えば上記の50体積%ずつ排出するケースで乾留炉内での滞留時間を30分とする場合は1回の乾留時間は7.5分となり、乾留7.5分→炭素分の付着析出(置き時間)7.5分→乾留7.5分→炭素分の付着析出(置き時間)7.5分となる。滞留時間を30分で一定として、1/3(33体積%)ずつ排出すると、乾留5分→置き時間5分→乾留5分→置き時間5分→乾留5分→置き時間5分となり、1/4(25体積%)ずつ排出すると、乾留3.75分→置き時間3.75分→乾留3.75分→置き時間3.75分→乾留3.75分→置き時間3.75分→乾留3.75分→置き時間3.75分となる。収率向上の点では、設備的に可能な範囲で、1回の乾留時間が短いことが好ましい。
 乾留炉内に設置しているランスは1本とすることも可能であるが、充填層内への熱供給を考慮した場合複数本配置することが好ましい。
 得られたバイオマス炭はそのままでも製鉄プロセスで使用可能であるが、必要に応じて成型あるいは微粉化して使用することが好ましい。成型は、傾斜した回転皿を用いて行う転動造粒、円筒状のダイスから押し出す押し出し成型、回転ロール表面のモールドに粉体を供給するブリケッティングロールの圧縮成型機等、通常使用されている成型機を用いて行なえば良い。微粉化は通常使用されているローラーミル、ロッドミル等を用いて行なえば良い。
 バイオマスの乾留の熱源に用いる、乾留炉においてランスから供給される燃料は、重油、天然ガス、液化石油ガス等を用いればよく、ランスから供給可能なものであればよい。
 乾留炉から回収されるバイオマス炭は、高温で処理された後に排出されることから、発火等の安全性を考慮して、不活性ガス等で冷却することが好ましい。冷却温度は200℃程度であればよく、より好ましくは100℃以下とする。
 図12に、本発明の他の一実施形態を示す。乾留ガス214を別途燃焼炉218で燃焼させ、乾留炉203、204に供給する場合である。
[実施例1]
 図13に示す設備を用いて、バイオマスの乾留試験を行った。乾留炉A203、乾留炉B204は内径100mm、長さ400mmであり、熱風発送装置225で窒素226を所定温度に加熱し、供給することで加熱した。
 使用したバイオマスの組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すバイオマスを事前に粉砕し、乾留炉A203および乾留炉B204に充填した。所定温度に加熱した窒素226を乾留炉A203に送風し、7.5分間の乾留を実施し、加熱窒素の供給を停止し、乾留炉A203下部より、乾留炉A203の内容物の上面のレベルを測定しながら、1/2体積量を排出し、乾留炉A203に新規にバイオマス202を供給した。次に加熱窒素を乾留炉B204に供給し、同様に7.5分間の乾留を行い、乾留炉B204より1/2体積量を排出した。この操作を繰り返し行なった。バイオマスの乾留は2回に分けて行なうことになり、バイオマス装入から排出までの乾留炉内での滞留時間は30分である。バイオマスの供給速度は2.0kg/hとした。窒素226の加熱温度(熱風温度)を表4に示すように変化させて、本発明例1~6の試験を行った。
Figure JPOXMLDOC01-appb-T000004
 各試験において乾留炉A203、B204から排出された窒素+乾留ガスの温度を乾留ガス出口温度として表4に併せて示す。本操作を6時間行い、排出されたバイオマス炭223の性状(組成)を測定し、含有される灰分濃度よりバイオマス炭収率を算出した。また、回収されたガス、タール、水分の収率を測定した。結果を表4に併せて示す。
 次に、乾留炉より1/3体積量ずつ排出して、バイオマスの乾留炉内での1回の乾留時間を5分とした以外は上記の本発明例5と同様の条件で、本発明例7の試験を行った。バイオマスの乾留は3回に分けて行なうことになり、バイオマス装入から排出までの乾留炉内での滞留時間は30分である。結果を表4に併せて示す。
 さらに、乾留炉A203のみを用いてバイオマスの乾留を行なった場合の結果を、表4に比較例1として、併せて示す。
 表4によれば、乾留炉を2基接続した装置を用いた本発明方法によりバイオマス炭を製造することで、発生したタールやガスを乾留バイオマスに付着させ、加熱して炭化させることができ、乾留温度が低い方が、バイオマス炭の収率が向上することが分かる。また、バイオマス装入から排出までの乾留炉内での滞留時間が同じ場合、1回の乾留時間が短い方が収率が向上する。さらに、タール分はGC−MS(ガスクロマトグラフを直結した質量分析計)を用いた分析の結果、軽質化していることがわかった。
[符号の説明]
 201  乾留炉本体、 202(202a、202b)  バイオマス
 203  乾留炉A、  204  乾留炉B
 205  原料切替弁、 206  ランスA
 207  ランスB、  208  燃料
 209  空気、    210  バイオマス充填層
 211  バイオマス充填層、 212  乾留ガス
 213  1次集塵機、 214  乾留ガス
 215  排出弁A、  216  排出弁
 217  排出弁B、  218  燃焼炉
 221  乾留ガス・タール、 222  供給弁
 223  バイオマス炭、 225  熱風発生装置
 226  窒素

Claims (24)

  1.  バイオマスを炭化させてバイオマス炭とし、
     前記炭化の際に発生するタールを含有する排出ガスを排出し、
     前記排出ガス中の前記タールの少なくとも一部を前記バイオマス及び/若しくは前記バイオマス炭に接触させ、
     前記バイオマス及び/若しくは前記バイオマス炭に接触した前記タールの少なくとも一部を炭化物に転化させることからなる、
     バイオマス炭の製造方法。
  2.  請求項1に記載のバイオマス炭の製造方法において、
     竪型炉の頂部または側方上部からバイオマスを投入し、
     前記竪型炉の底部または前記排出ガスの排出位置より下方である側方下部から熱風を吹き込み、
     前記竪型炉内で前記バイオマスを炭化させてバイオマス炭とし、
     前記炭化の際に発生するタールを含有する排出ガスを前記竪型炉の頂部または側方上部から排出し、
     前記排出ガス中の前記タールの少なくとも一部を前記竪型炉に吹き込んで前記バイオマス及び/若しくは前記バイオマス炭に接触させ、
     前記バイオマス及び/若しくは前記バイオマス炭に接触した前記タールの少なくとも一部を炭化物に転化させることからなる、
     バイオマス炭の製造方法。
  3.  前記排出ガス中の前記タールの少なくとも一部を前記熱風とともに前記竪型炉に吹き込むことからなる、
     請求項2に記載のバイオマス炭の製造方法。
  4.  前記竪型炉の底部または側方下部から冷却用ガスを供給することからなる、
     請求項2または請求項3に記載のバイオマス炭の製造方法。
  5.  前記冷却用ガスは前記排出ガスを循環して使用するものである、
     請求項4に記載のバイオマス炭の製造方法。
  6.  前記タールの一部を前記冷却用ガスとともに炉内に供給することからなる、
     請求項4または請求項5に記載のバイオマス炭の製造方法。
  7.  前記排出ガスから前記タールを分離し、分離された前記タールを竪型炉に吹き込むことからなる、
     請求項2ないし請求項6のいずれかに記載のバイオマス炭の製造方法。
  8.  前記排出ガスを空気比1未満で燃焼させて、熱風として竪型炉に吹き込むことからなる、
     請求項2ないし請求項7のいずれかに記載のバイオマス炭の製造方法。
  9.  前記バイオマス炭の炭化温度は300~700℃である、
     請求項2ないし請求項8のいずれかに記載のバイオマス炭の製造方法。
  10.  前記排出ガスの温度は50~300℃である、
     請求項2ないし請求項9のいずれかに記載のバイオマス炭の製造方法。
  11.  前記熱風は、無酸素または低酸素であって温度が400~1200℃である、
     請求項2ないし請求項10のいずれかに記載のバイオマス炭の製造方法。
  12.  前記バイオマスの炭化が、竪型炉の頂部または側方上部からバイオマスを前記竪型炉に投入し、竪型炉の底部または側方下部から熱風を吹き込むことにより行われ、
     前記排出ガスの排出が、竪型炉の頂部または側方上部から前記炭化の際に発生するタールを含有する排出ガスを排出することにより行なわれ、
     前記タールの少なくとも一部の接触が、前記炭化の際に発生する排出ガス中のタールの少なくとも一部を前記竪型炉に吹き込むことにより行なわれる、
     請求項1に記載のバイオマス炭の製造方法。
  13.  請求項1に記載のバイオマス炭の製造方法において、
     バイオマスを乾留して乾留バイオマスとし、
     前記乾留バイオマスに、前記バイオマスの乾留により発生したガスとタールとを接触させて、前記ガスおよび前記タール中の炭素分を前記乾留バイオマスに付着析出させる、
     バイオマス炭の製造方法。
  14.  前記乾留バイオマスの比表面積が10m/g以上である請求項13に記載のバイオマス炭の製造方法。
  15.  バイオマスの乾留温度が450℃~700℃であり、ガスとタール中の炭素分を乾留バイオマスに付着析出させる際の温度が450~700℃である請求項13に記載のバイオマス炭の製造方法。
  16.  前記乾留が、ロータリーキルン式乾留炉で行われる、請求項13に記載のバイオマス炭の製造方法。
  17.  前記タール中の炭素分の乾留バイオマスへの付着析出が、充填層あるいは移動層方式コーキング炉で行われる、請求項13に記載のバイオマス炭の製造方法。
  18.  前記バイオマスの炭化が、バイオマスを乾留し、乾留バイオマスとタールを含有する排出ガスを生成し、前記乾留バイオマスをコーキングすることからなり、
     前記タールの少なくとも一部の接触が、前記乾留バイオマスに前記タールを含有する排出ガスを接触させて、前記ガスおよび前記タール中の炭素分を前記乾留バイオマスに付着析出させることからなる、
     請求項1に記載のバイオマス炭の製造方法。
  19.  互いに接続された2基の乾留炉を有する2塔式の充填移動層方式の炉を用いてバイオマスを乾留してバイオマス炭を製造する方法であって、
     一方の乾留炉でのバイオマスの乾留により発生したガスとタールとを他方の乾留炉内のバイオマスに接触させ、
     前記他方の乾留炉内のバイオマスの乾留の際に前記ガスおよび前記タール中の炭素分を前記他方の乾留炉内のバイオマスに付着析出させる、
     請求項1に記載のバイオマス炭の製造方法。
  20.  乾留炉内でのバイオマスの乾留温度を400℃~800℃とする請求項19に記載のバイオマス炭の製造方法。
  21.  乾留炉内でのバイオマスの滞留時間を30分以上とする請求項19に記載のバイオマス炭の製造方法。
  22.  前記バイオマスの炭化が、第1の乾留炉でバイオマスを乾留し、ガスとタールを発生させことからなり、
     前記タールの少なくとも一部の接触が、第1の乾留炉で発生したガスとタールを第2の乾留炉内のバイオマスに接触させて、第2の乾留炉内のバイオマスの乾留の際に前記ガスおよび前記タールを第2の乾留炉内のバイオマスに付着析出させることからなる、
     請求項1に記載のバイオマス炭の製造方法。
  23.  バイオマスを炭化してバイオマス炭を製造する竪型炉と、
     前記竪型炉の頂部または側方上部に設けられたバイオマスの投入口と、
     前記竪型炉の頂部または側方上部に設けられた排出ガスの排出口と、
     前記竪型炉の底部、または前記排出口より下方である側方下部に設けられた熱風の吹き込み口と、
     前記排出ガスの少なくとも一部を空気比1未満で燃焼させる部分燃焼機と、
     を有するバイオマス炭の製造装置。
  24.  さらに、排出ガスから少なくともガス成分とタールとを分離する分離機を有する、請求項23に記載のバイオマス炭の製造装置。
PCT/JP2010/055492 2009-03-24 2010-03-23 バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置 WO2010110470A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080013726.9A CN102388119B (zh) 2009-03-24 2010-03-23 生物质炭的制造方法及用于其中的生物质炭的制造装置
KR1020117023260A KR101319737B1 (ko) 2009-03-24 2010-03-23 바이오매스탄의 제조방법 및 이것에 사용되는 바이오매스탄의 제조장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009071488 2009-03-24
JP2009-071486 2009-03-24
JP2009071480 2009-03-24
JP2009-071480 2009-03-24
JP2009071486 2009-03-24
JP2009-071488 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110470A1 true WO2010110470A1 (ja) 2010-09-30

Family

ID=42781160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055492 WO2010110470A1 (ja) 2009-03-24 2010-03-23 バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置

Country Status (5)

Country Link
JP (4) JP5653640B2 (ja)
KR (1) KR101319737B1 (ja)
CN (1) CN102388119B (ja)
MY (1) MY155415A (ja)
WO (1) WO2010110470A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092706A (zh) * 2010-12-13 2011-06-15 淮北市协力重型机器有限责任公司 外加热节能环保型回转炭化炉
JP2014516377A (ja) * 2011-04-15 2014-07-10 バイオジェニック リージェンツ エルエルシー 炭素質材料のエネルギー含有量を熱分解から高めるための方法および装置
CN109864002A (zh) * 2019-04-25 2019-06-11 南京三聚生物质新材料科技有限公司 一种禽畜养殖用垫料及其制备方法与垫床
CN110387250A (zh) * 2019-08-20 2019-10-29 赫普能源环境科技有限公司 一种利用电站锅炉烟气生产生物质炭的系统及方法
WO2021102521A1 (en) * 2019-11-29 2021-06-03 Royal Melbourne Institute Of Technology A method and system for pyrolysis and carbon deposition
WO2021102519A1 (en) * 2019-11-29 2021-06-03 Royal Melbourne Institute Of Technology A system and method for pyrolysis
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
CN114231306A (zh) * 2021-12-15 2022-03-25 黄容 一种炼焦工业用可对燃烧原料进行热风干的防尘式干馏炉
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
CN114456819A (zh) * 2022-02-09 2022-05-10 安徽上元绿能科技有限公司 一种生物质正压气炭联产发生器
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
CN115735829A (zh) * 2022-11-09 2023-03-07 大连理工大学 一种基于物质循环的水生生物培养装置
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
US12103892B2 (en) 2021-11-12 2024-10-01 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189588B1 (ko) * 2011-04-20 2012-10-10 전남대학교산학협력단 바이오매스 고형체 제조시스템 및 제조방법
JP5998763B2 (ja) * 2011-09-28 2016-09-28 Jfeスチール株式会社 転炉製鋼方法
JPWO2013094749A1 (ja) * 2011-12-21 2015-04-27 Jfeエンジニアリング株式会社 バイオマス炭化方法及びバイオマス炭化装置
JP2013216780A (ja) * 2012-04-09 2013-10-24 Jfe Engineering Corp バイオマス炭化装置及びバイオマス炭化方法
JP5786795B2 (ja) * 2012-05-11 2015-09-30 新日鐵住金株式会社 アブラ椰子核殻炭による焼結鉱製造方法
JP6167777B2 (ja) * 2013-09-09 2017-07-26 新日鐵住金株式会社 バイオマス炭の製造方法
CN106085476A (zh) * 2016-06-16 2016-11-09 安徽新生力生物科技有限公司 一种生物质炭的制造方法
CN106479541A (zh) * 2016-12-06 2017-03-08 神雾环保技术股份有限公司 一种处理煤粉与生物质的系统和方法
KR102063708B1 (ko) 2017-11-29 2020-01-09 한국생산기술연구원 타르 회수를 통한 바이오촤 펠릿 생산 시스템
KR102039075B1 (ko) * 2018-04-06 2019-11-01 바이오지이티(주) 재사용 가능한 높은 거대 다공성 바이오차 벌킹 에이전트 성형물 및 이의 제조방법
KR102213062B1 (ko) * 2019-04-12 2021-02-08 한국생산기술연구원 타르 재흡착을 통한 고품위 반탄화 바이오매스 생산장치
CN110387445B (zh) * 2019-08-16 2021-08-10 东北大学 一种采用木质素为还原剂生产直接还原铁的方法
CN114517099A (zh) * 2022-02-25 2022-05-20 北京丰润铭科贸有限责任公司 一种通过炭化生物质来生产生物质煤的方法
CN115367730A (zh) * 2022-08-16 2022-11-22 武汉市人越热工技术产品有限公司 一种辐射管竖炉生物质粉末炭加工工艺
JP7456560B1 (ja) 2022-11-14 2024-03-27 Jfeスチール株式会社 焼結用炭材、焼結鉱及び焼結用炭材の製造方法
CN116462534A (zh) * 2023-05-05 2023-07-21 哈尔滨工业大学 利用秸秆压片后原位焦油吸附再炭化的高强度炭基肥高得炭率制备方法
CN117903825B (zh) * 2024-01-23 2024-07-19 中国农业科学院农业环境与可持续发展研究所 一种秸秆热解焦油原位聚合成炭方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139987A (ja) * 1986-12-02 1988-06-11 Agency Of Ind Science & Technol オイルシエ−ル乾留方法及びその装置
JP2006169309A (ja) * 2004-12-14 2006-06-29 Hatta Kankyo Gijutsu Jimusho:Kk 有機物のガス化方法及び装置
JP2007092003A (ja) * 2005-09-30 2007-04-12 Plant Kiko Kk 有機物の処理方法、熱分解炉、発電システム、及び可燃性ガスの製造方法
JP2009057497A (ja) * 2007-08-31 2009-03-19 Bio Coke Lab Co Ltd ガス化方法、ガス生成装置及びガス化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390446B (de) * 1984-06-01 1990-05-10 Waagner Biro Ag Vergaser fuer feste teerhaltige brennstoffe
JP4078771B2 (ja) * 1999-11-05 2008-04-23 株式会社Ihi 廃棄物の熱分解処理装置
JP3616762B2 (ja) * 2001-12-27 2005-02-02 株式会社御池鐵工所 廃棄物炭化炉
CN2661693Y (zh) * 2003-12-08 2004-12-08 何润良 流化床炭化装置
CN2698791Y (zh) * 2004-05-26 2005-05-11 河南省焦作市秸秆燃气有限公司 生物质干馏炭化气化装置
CN1304532C (zh) * 2005-02-28 2007-03-14 昆明理工大学 一种利用农林废弃物制造机制木炭的方法
JP4493609B2 (ja) * 2006-03-09 2010-06-30 新日本製鐵株式会社 炭素質原料の熱分解方法
CN101113340A (zh) * 2006-07-24 2008-01-30 万天骥 一种高挥发分煤的干馏工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139987A (ja) * 1986-12-02 1988-06-11 Agency Of Ind Science & Technol オイルシエ−ル乾留方法及びその装置
JP2006169309A (ja) * 2004-12-14 2006-06-29 Hatta Kankyo Gijutsu Jimusho:Kk 有機物のガス化方法及び装置
JP2007092003A (ja) * 2005-09-30 2007-04-12 Plant Kiko Kk 有機物の処理方法、熱分解炉、発電システム、及び可燃性ガスの製造方法
JP2009057497A (ja) * 2007-08-31 2009-03-19 Bio Coke Lab Co Ltd ガス化方法、ガス生成装置及びガス化装置

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092706A (zh) * 2010-12-13 2011-06-15 淮北市协力重型机器有限责任公司 外加热节能环保型回转炭化炉
CN102092706B (zh) * 2010-12-13 2013-03-20 淮北市协力重型机器有限责任公司 外加热节能环保型回转炭化炉
US12084623B2 (en) 2011-04-15 2024-09-10 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
JP2023165780A (ja) * 2011-04-15 2023-11-17 カーボン テクノロジー ホールディングス, エルエルシー 高炭素生体試薬の生成のためのシステムおよび装置
US9845440B2 (en) 2011-04-15 2017-12-19 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US10167437B2 (en) 2011-04-15 2019-01-01 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US10174267B2 (en) 2011-04-15 2019-01-08 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
JP7539540B2 (ja) 2011-04-15 2024-08-23 カーボン テクノロジー ホールディングス, エルエルシー 高炭素生体試薬の生成のためのシステムおよび装置
JP2019131831A (ja) * 2011-04-15 2019-08-08 カーボン テクノロジー ホールディングス, エルエルシー 高炭素生体試薬の生成のためのシステムおよび装置
JP2014516377A (ja) * 2011-04-15 2014-07-10 バイオジェニック リージェンツ エルエルシー 炭素質材料のエネルギー含有量を熱分解から高めるための方法および装置
US10611977B2 (en) 2011-04-15 2020-04-07 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US10889775B2 (en) 2011-04-15 2021-01-12 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US10982161B2 (en) 2011-04-15 2021-04-20 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
JP2017148798A (ja) * 2011-04-15 2017-08-31 バイオジェニック リージェンツ エルエルシー 高炭素生体試薬の生成のためのシステムおよび装置
US9388046B2 (en) 2011-04-15 2016-07-12 Biogenic Reagents Ventures, Llc Systems and apparatus for production of high-carbon biogenic reagents
US11674101B2 (en) 2011-04-15 2023-06-13 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US11891582B2 (en) 2011-04-15 2024-02-06 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11965139B2 (en) 2011-04-15 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11091716B2 (en) 2011-04-15 2021-08-17 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11286440B2 (en) 2011-04-15 2022-03-29 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11359154B2 (en) 2011-04-15 2022-06-14 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
CN109864002A (zh) * 2019-04-25 2019-06-11 南京三聚生物质新材料科技有限公司 一种禽畜养殖用垫料及其制备方法与垫床
CN110387250A (zh) * 2019-08-20 2019-10-29 赫普能源环境科技有限公司 一种利用电站锅炉烟气生产生物质炭的系统及方法
WO2021102519A1 (en) * 2019-11-29 2021-06-03 Royal Melbourne Institute Of Technology A system and method for pyrolysis
WO2021102521A1 (en) * 2019-11-29 2021-06-03 Royal Melbourne Institute Of Technology A method and system for pyrolysis and carbon deposition
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11987763B2 (en) 2021-07-09 2024-05-21 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
US12103892B2 (en) 2021-11-12 2024-10-01 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same
CN114231306A (zh) * 2021-12-15 2022-03-25 黄容 一种炼焦工业用可对燃烧原料进行热风干的防尘式干馏炉
CN114456819A (zh) * 2022-02-09 2022-05-10 安徽上元绿能科技有限公司 一种生物质正压气炭联产发生器
CN115735829A (zh) * 2022-11-09 2023-03-07 大连理工大学 一种基于物质循环的水生生物培养装置
CN115735829B (zh) * 2022-11-09 2024-06-07 大连理工大学 一种基于物质循环的水生生物培养装置

Also Published As

Publication number Publication date
JP2010248061A (ja) 2010-11-04
CN102388119A (zh) 2012-03-21
CN102388119B (zh) 2015-11-25
KR101319737B1 (ko) 2013-10-17
JP5647286B2 (ja) 2014-12-24
JP2013129849A (ja) 2013-07-04
JP2013129850A (ja) 2013-07-04
JP5810122B2 (ja) 2015-11-11
MY155415A (en) 2015-10-15
JP5529995B2 (ja) 2014-06-25
KR20120004437A (ko) 2012-01-12
JP2013177593A (ja) 2013-09-09
JP5653640B2 (ja) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5529995B2 (ja) バイオマス炭の製造方法
JP5501644B2 (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
US11959024B2 (en) Biocoal fuel product and processes and systems for the production thereof
JP4472380B2 (ja) バイオマス半炭化燃料の製造方法及び装置
Amer et al. Biomass carbonization
RU2505588C2 (ru) Топливо, способ и установка для получения тепловой энергии из биомассы
US20180273867A1 (en) Post torrefaction biomass pelletization
JP5067408B2 (ja) バイオマスの処理方法
JP2010242035A (ja) バイオマス炭の製造方法
WO2011052795A1 (ja) 高炉操業方法
AU2010295138B2 (en) External combustion and internal heating type coal retort furnace
JP5515625B2 (ja) バイオマスを用いた石炭の改質方法
JP5625320B2 (ja) 成型炭の製造方法
JP5417925B2 (ja) バイオマスの利用方法
JP5501643B2 (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
EP3176244A1 (en) Method to pelletize torrefied biomass
JP5464355B2 (ja) バイオマス炭化装置及びバイオマス炭化方法
WO2013094749A1 (ja) バイオマス炭化方法及びバイオマス炭化装置
JP2010254749A (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
JP2010222473A (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
JP5566620B2 (ja) バイオマス炭の製造方法およびこれに用いるバイオマス炭の製造装置
JP2012006993A (ja) バイオマス炭化装置及びバイオマス炭化方法
JP5761314B2 (ja) バイオマスの利用方法
Mulligan et al. Technological advances of industrial biomass pyrolysis
KR20130110769A (ko) 화력발전소 석탄연료 첨가제 및 그의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013726.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023260

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10756265

Country of ref document: EP

Kind code of ref document: A1