WO2010109897A1 - 芳香族炭化水素の製造方法 - Google Patents

芳香族炭化水素の製造方法 Download PDF

Info

Publication number
WO2010109897A1
WO2010109897A1 PCT/JP2010/002160 JP2010002160W WO2010109897A1 WO 2010109897 A1 WO2010109897 A1 WO 2010109897A1 JP 2010002160 W JP2010002160 W JP 2010002160W WO 2010109897 A1 WO2010109897 A1 WO 2010109897A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
mass
naphthene
catalyst
oil
Prior art date
Application number
PCT/JP2010/002160
Other languages
English (en)
French (fr)
Inventor
柳川真一朗
青木優子
早坂和章
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to MYPI2011004081A priority Critical patent/MY183299A/en
Priority to EP10755699.5A priority patent/EP2412785B1/en
Priority to US13/138,064 priority patent/US9243192B2/en
Priority to CN201080013465.0A priority patent/CN102361959B/zh
Priority to BRPI1012237A priority patent/BRPI1012237A2/pt
Priority to KR1020117022083A priority patent/KR101704835B1/ko
Priority to JP2010513556A priority patent/JP4740396B2/ja
Publication of WO2010109897A1 publication Critical patent/WO2010109897A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/54Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G63/00Treatment of naphtha by at least one reforming process and at least one other conversion process
    • C10G63/02Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only
    • C10G63/04Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only including at least one cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a method for producing monocyclic aromatic hydrocarbons.
  • LCO light cycle oil
  • FCC fluid catalytic cracking
  • BTX fraction a technique for efficiently producing ethylbenzene and xylene
  • a method for producing a BTX fraction from a polycyclic aromatic component for example, the following methods are known.
  • (1) A method of hydrocracking a hydrocarbon containing a polycyclic aromatic component in one stage (Patent Documents 1 and 2).
  • (2) A method in which a hydrocarbon containing a polycyclic aromatic component is hydrogenated in the former stage and then hydrocracked in the latter stage (Patent Documents 3 to 5).
  • (3) A method of converting a hydrocarbon containing a polycyclic aromatic component directly into a BTX fraction using a zeolite catalyst (Patent Document 6).
  • (4) A method of converting a mixture of a hydrocarbon containing a polycyclic aromatic component and a light hydrocarbon having 2 to 8 carbon atoms into a BTX fraction using a zeolite catalyst (Patent Documents 7 and 8).
  • the methods (1) and (2) have a problem in that addition of high-pressure molecular hydrogen is essential, and hydrogen consumption is large. Also, under hydrogenation conditions, many LPG fractions and the like that are not required in the purpose of producing the BTX fraction are by-produced, and not only energy is required for the separation, but also the raw material efficiency is lowered. In the method (3), it cannot be said that the conversion of the polycyclic aromatic component is necessarily sufficient.
  • the method (4) is a combination of BTX production technology using light hydrocarbons as a raw material and BTX production technology using hydrocarbons containing polycyclic aromatics as a raw material to improve the heat balance. It does not improve the BTX yield from ring aromatics.
  • the present invention provides a method by which a BTX fraction can be produced more efficiently than a conventional method from a fraction containing cracked light oil (LCO) produced by an FCC apparatus without coexisting molecular hydrogen.
  • LCO cracked light oil
  • the present inventors use a raw material in which the naphthene content ratio of the fraction containing cracked light oil (LCO) produced by the FCC apparatus is adjusted, and the raw material is used.
  • the inventors have found that a BTX fraction can be efficiently produced by contacting and reacting with a catalyst containing crystalline aluminosilicate in the absence of low pressure and molecular hydrogen, and the present invention has been completed.
  • the aromatic hydrocarbons are brought into contact with a raw material derived from a fraction containing cracked light oil (LCO) produced by an FCC unit, with a catalyst containing crystalline aluminosilicate.
  • LCO cracked light oil
  • a catalyst containing crystalline aluminosilicate a manufacturing method, Comprising: The naphthene content ratio of the said raw material is adjusted so that it may become higher than the naphthene content ratio of the fraction containing the said LCO, Contact with the said raw material and the said catalyst is 0. The process is performed under a pressure of 1 MPaG to 1.0 MPaG.
  • the naphthene content ratio of the raw material is (i) mixing a fraction containing the LCO and hydrorefined oil (preferably a partially hydrogenated LCO), or (ii) containing the LCO. It is preferably adjusted by partial hydrogenation of the fraction.
  • the naphthene content ratio of the raw material is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the naphthene content is preferably a fraction mainly containing a naphthene content having 8 or more carbon atoms.
  • the mass ratio (naphthene content / polycyclic aromatic content) of the naphthene content to the polycyclic aromatic content in the raw material is preferably 0.3 to 3.
  • the catalyst preferably further contains gallium and / or zinc.
  • a BTX fraction can be produced more efficiently than a conventional method from a fraction containing LCO produced by an FCC apparatus without coexisting molecular hydrogen.
  • 4 is a graph showing the relationship between the content of 1,2,4-trimethylcyclohexane in the feedstock oil in Reference Example 1 and the BTX yield.
  • 4 is a graph showing the relationship between the content ratio of 1,2,4-trimethylcyclohexane in the feedstock oil in Reference Example 2 and the BTX yield.
  • 5 is a graph showing the relationship between the content of 1,2,4-trimethylcyclohexane in the raw oil in Reference Example 3 and the BTX yield. It is a graph which shows the relationship between the normal hexadecane content ratio in the raw material oil in Reference Example 4, and a BTX yield. It is a graph which shows the relationship between the naphthene regulator (cracked gas oil fraction produced
  • the method for producing aromatic hydrocarbons of the present invention is a method for producing aromatic hydrocarbons by contacting and reacting a raw material derived from a fraction containing LCO produced in an FCC unit with a catalyst containing crystalline aluminosilicate.
  • the naphthene content ratio of the raw material is adjusted to be higher than the naphthene content ratio of the fraction containing LCO that is the raw material, and the contact between the raw material and the catalyst is 0.1 MPaG. This method is carried out under a pressure of ⁇ 1.0 MPaG.
  • the raw material is derived from the fraction containing LCO produced by the FCC apparatus, and the naphthene content ratio is adjusted to be higher than the naphthene content ratio of the fraction containing LCO.
  • the reason for adjusting the naphthene content ratio of the raw material to be higher than the naphthene content ratio of the fraction containing LCO that is the raw material is that the naphthene content and the polycyclic aromatic content are This is because the present inventors have found that the polycyclic aromatic component can be efficiently converted into the BTX fraction by contacting efficiently.
  • a method in which a saturated hydrocarbon is used as a hydrogen donor source, and a polycyclic aromatic component is converted into a BTX fraction by a hydrogen transfer reaction from the saturated hydrocarbon.
  • this method has advantages such as not using molecular hydrogen, there is no known hydrogen transfer agent or hydrogen transfer condition capable of sufficiently converting a polycyclic aromatic component to a BTX fraction in this method.
  • a naphthene component (especially a multi-branched naphthene component) coexists as a saturated hydrocarbon that efficiently causes a hydrogen transfer reaction, and is reacted at a low pressure, thereby allowing molecules to react.
  • the present inventors have found that a BTX fraction can be produced from a polycyclic aromatic component with high efficiency without coexisting gaseous hydrogen, and the present invention has been completed.
  • Examples of the method for adjusting the naphthene content ratio of the raw material so as to be higher than the naphthene content ratio of the fraction containing LCO that is the source of the raw material include the following methods.
  • Any hydrorefined oil can be used as long as the fraction of naphthene fraction is higher than the naphthene fraction content of the fraction containing LCO as the raw material.
  • Draw oil LCO, heavy cycle oil (HCO), cracked residue oil (CLO), etc.
  • fractions obtained by partially hydrogenating distillate oil produced by the FCC unit fractions obtained by partially hydrogenating distillate oil produced by the FCC unit (partially hydrogenated LCO, partially hydrogenated HCO, (Partially hydrogenated LCO, etc.), distillate produced by coker, fraction obtained by partially hydrogenating distillate produced by coker, hydrocracking fraction containing a large amount of naphthene, heavy oil hydrocracking unit or heavy oil
  • a cracked oil fraction produced in a hydrodesulfurization apparatus, a fraction obtained by hydrogenating a fraction obtained from oil sand, and the like are preferable.
  • distillate oil produced in the FCC unit is partially hydrogenated, partially hydrogenated LCO, partially hydrogenated HCO, partially hydrogenated LCO, etc.
  • distillate produced in coker A fraction obtained by partially hydrogenating the oil output a hydrocracking fraction containing a large amount of naphthene, a cracked oil fraction produced by a heavy oil hydrocracking unit or a heavy oil hydrodesulfurization unit, and a fraction obtained from oil sand A hydrogenated fraction or the like is more preferable.
  • the hydrorefined oil two or more of the above-described fractions may be used in combination.
  • the fraction containing LCO and hydrorefined oil may be mixed in advance before being charged into the reactor, and the fraction containing LCO and hydrorefined oil in the reactor may be mixed. May be mixed directly.
  • the total of the naphthene content of the fraction containing LCO immediately before being charged into the reactor and the naphthene content of the hydrorefined oil raw material is preferably the ratio described later.
  • the fraction containing LCO before adjusting the naphthene content may be a fraction containing LCO produced by the FCC apparatus, and may be a mixture with other distillate oil.
  • the naphthene content ratio of the raw material is preferably 10% by mass or more, more preferably 15% by mass or more from the viewpoint of positively utilizing the hydrogen transfer reaction. Although there is no limitation on the amount of naphthene, the method (i) or (ii) is difficult to adjust the naphthene content of the raw material to more than 70% by mass.
  • the naphthene component is preferably a multi-branched naphthene component from the viewpoint of more efficiently using the hydrogen transfer reaction, preferably a fraction having 8 or more carbon atoms, which is an essential carbon number as a dialkyl naphthene, and having 9 or more carbon atoms.
  • a fraction is more preferred. Therefore, the proportion of the fraction having 8 or more carbon atoms in the total naphthene content is preferably 50% by mass or more, and more preferably 80% by mass or more. Further, the ratio of the fraction having 9 or more carbon atoms in the total naphthene content is preferably 80% by mass or more.
  • dialkylcyclohexane, trialkylcyclohexane, tetraalkylcyclohexane and the like are preferable as long as they are monocyclic naphthenes.
  • a naphthene having two or more rings such as decalin can be regarded as equivalent to the case of having two alkyl chains when attention is paid to one of the rings.
  • the naphthene having a boiling point exceeding 120 ° C. that is, the boiling point of dimethylcyclohexane having the lowest boiling point among the multi-branched naphthenes having 8 or more carbon atoms.
  • the naphthene having a boiling point exceeding 120 ° C. that is, the boiling point of dimethylcyclohexane having the lowest boiling point among the multi-branched naphthenes having 8 or more carbon atoms.
  • it has sufficient branching to efficiently cause a hydrogen transfer reaction and is suitable for use.
  • the content ratio of the polycyclic aromatic component in the raw material is preferably 5 to 90% by mass, and more preferably 10 to 60% by mass.
  • the polycyclic aromatic content ratio is less than 5% by mass, the effect of the hydrogen transfer reaction is small, and when it exceeds 90% by mass, a sufficient BTX yield cannot be obtained, which is inefficient.
  • the polycyclic aromatic component include general polycyclic aromatic hydrocarbons such as alkylated products of naphthalene, phenanthrene and anthracene.
  • the aromatic content of three or more rings in the polycyclic aromatic component causes a decrease in the catalytic activity, the content in the total polycyclic aromatic component is preferably 30% by mass or less.
  • the mass ratio (naphthene content / polycyclic aromatic content) of naphthene content and polycyclic aromatic content in the raw material is preferably 0.1 to 5.0, more preferably 0.3 to 3.0. If the naphthene content / polycyclic aromatic content is within this range, the naphthene content and the polycyclic aromatic can be efficiently contacted, and BTX production from the polycyclic aromatic by the hydrogen transfer reaction can be carried out efficiently. .
  • the content ratio of other components in the raw material is not particularly limited. Further, it may contain a heteroatom such as sulfur, oxygen, and nitrogen as long as the target reaction is not significantly inhibited.
  • the distillation property of the raw material is not particularly limited, but the 10 vol% distillation temperature of the raw material is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher.
  • the 90% by volume distillation temperature of the raw material is preferably 360 ° C. or lower, and more preferably 350 ° C. or lower.
  • the oil has a 10% by volume distillation temperature of less than 140 ° C.
  • a BTX fraction is produced from a light raw material, which is not suitable for the gist of the present invention.
  • a raw material having a 90% by volume distillation temperature of the raw material exceeding 360 ° C. is used, the amount of coke deposited on the catalyst is increased, which tends to cause a rapid decrease in catalyst activity.
  • the 10 volume% distillation temperature and 90 volume% distillation temperature mentioned here are values measured in accordance with JIS K2254 “Petroleum products—distillation test method”.
  • the catalyst contains crystalline aluminosilicate.
  • the content of the crystalline aluminosilicate is not particularly limited, but is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, and further preferably 25 to 70% by mass.
  • the crystalline aluminosilicate is not particularly limited.
  • MFI, MEL, TON, MTT, MRE, FER, AEL, and EUO type zeolites which are medium pore diameter zeolites, are preferable, and MFI type and / or MEL type crystal structures are preferred.
  • the body is more preferred.
  • Crystalline aluminosilicates such as MFI type and MEL type belong to a known zeolite structure type of the kind published by The Structure Commission of the International Zeolite Association (Atlas of ZeoliteMur. Olson (1978) .Distributed by Polycyclic Book Service, Pittsburgh, PA, USA).
  • the molar ratio of silicon to aluminum is 100 or less, and preferably 50 or less.
  • Si / Al ratio of the crystalline aluminosilicate exceeds 100, the yield of monocyclic aromatic hydrocarbons becomes low.
  • the Si / Al ratio of the crystalline aluminosilicate is preferably 10 or more from the viewpoint of improving the yield of monocyclic aromatic hydrocarbons.
  • the catalyst according to the present invention preferably further contains gallium and / or zinc.
  • gallium and / or zinc By containing gallium and / or zinc, a BTX fraction can be produced more efficiently, and at the same time, by-products of non-aromatic hydrocarbons having 3 to 6 carbon atoms can be greatly suppressed.
  • crystalline aluminosilicates containing gallium and / or zinc gallium is incorporated in the lattice skeleton of crystalline aluminosilicate (crystalline aluminogallosilicate), zinc is incorporated in the lattice skeleton of crystalline aluminosilicate.
  • the Ga-supporting crystalline aluminosilicate and / or the Zn-supporting crystalline aluminosilicate is obtained by supporting gallium and / or zinc on a crystalline aluminosilicate by a known method such as an ion exchange method or an impregnation method.
  • the gallium source and zinc source used in this case are not particularly limited, and examples thereof include gallium salts such as gallium nitrate and gallium chloride, zinc salts such as gallium oxide, zinc nitrate and zinc chloride, and zinc oxide.
  • the upper limit of the gallium and / or zinc content in the catalyst is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 2% by mass or less, when the total amount of the catalyst is 100% by mass. More preferably, it is more preferably 1% by mass or less. If the content of gallium and / or zinc exceeds 5% by mass, the yield of monocyclic aromatic hydrocarbons is lowered, which is not preferable. Further, the lower limit of the content of gallium and / or zinc is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more when the total amount of the catalyst is 100% by mass. If the gallium and / or zinc content is less than 0.01% by mass, the yield of monocyclic aromatic hydrocarbons may be lowered, which is not preferable.
  • Crystalline aluminogallosilicate and / or crystalline aluminodine silicate is a structure in which SiO 4 , AlO 4 and GaO 4 / ZnO 4 structures have tetrahedral coordination in the skeleton, and gel crystallization by hydrothermal synthesis, It can be obtained by a method of inserting gallium and / or zinc into the lattice skeleton of crystalline aluminosilicate, or a method of inserting aluminum into the lattice skeleton of crystalline gallosilicate and / or crystalline zincosilicate.
  • the catalyst according to the present invention preferably contains phosphorus.
  • the phosphorus content in the catalyst is preferably 0.1 to 10.0% by mass when the total amount of the catalyst is 100% by mass.
  • the lower limit of the phosphorus content is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more, because the lowering of the yield of monocyclic aromatic hydrocarbons over time can be prevented.
  • the upper limit of the phosphorus content is preferably 10.0% by mass or less, more preferably 5.0% by mass or less, and more preferably 2.0% by mass or less because the yield of monocyclic aromatic hydrocarbons can be increased. Further preferred.
  • the method for incorporating phosphorus into the catalyst is not particularly limited, but for example, a method of supporting phosphorus on crystalline aluminosilicate or crystalline aluminogallosilicate, crystalline aluminosilicate by ion exchange method, impregnation method, etc.
  • Examples thereof include a method in which a phosphorus compound is contained to replace part of the crystalline aluminosilicate framework with phosphorus, a method in which a crystal accelerator containing phosphorus is used during zeolite synthesis, and the like.
  • the phosphate ion-containing aqueous solution used at that time is not particularly limited, but was prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. Can be preferably used.
  • the catalyst according to the present invention is obtained by calcining crystalline aluminogallosilicate / crystalline aluminosilicate silicate carrying phosphorus or crystalline aluminosilicate carrying gallium / zinc and phosphorus as described above (calcination temperature 300 to 900 ° C. ).
  • the catalyst according to the present invention is formed into, for example, a powder, a granule, a pellet, or the like according to the reaction format.
  • a fluidized bed it is in the form of powder, and in the case of a fixed bed, it is in the form of particles or pellets.
  • the average particle size of the catalyst used in the fluidized bed is preferably 30 to 180 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the bulk density of the catalyst used in the fluidized bed is preferably 0.4 to 1.8 g / cc, more preferably 0.5 to 1.0 g / cc.
  • the average particle size represents a particle size of 50% by mass in the particle size distribution obtained by classification with a sieve, and the bulk density is a value measured by the method of JIS standard R9301-2-3.
  • an inert oxide may be blended into the catalyst as a binder and then molded using various molding machines.
  • a binder containing phosphorus may be used as long as it satisfies the above-described preferred range of the phosphorus content.
  • the binder may be used.
  • the catalyst may be prepared by adding phosphorus after mixing the gallium and / or zinc-supported crystalline aluminosilicate, or after mixing the binder with the crystalline aluminogallosilicate and / or the crystalline aluminodine silicate. .
  • reaction model Examples of the reaction mode for contacting and reacting the raw material with the catalyst include a fixed bed, a moving bed, and a fluidized bed.
  • a fluidized bed capable of continuously removing the coke adhering to the catalyst and capable of performing the reaction stably is preferable.
  • a continuous regenerative fluidized bed is particularly preferred in which the catalyst circulates there between and the reaction-regeneration can be repeated continuously.
  • the raw material in contact with the catalyst is preferably in a gas phase. Moreover, you may dilute a raw material with gas as needed. Moreover, when unreacted raw materials are generated, they may be recycled as necessary.
  • reaction temperature The reaction temperature for contacting and reacting the raw material with the catalyst is not particularly limited, but is preferably 350 to 700 ° C, more preferably 450 to 650 ° C. When the reaction temperature is less than 350 ° C., the reaction activity is not sufficient. When the reaction temperature exceeds 700 ° C., it is disadvantageous in terms of energy, and at the same time, catalyst regeneration or the like becomes difficult.
  • reaction pressure The reaction pressure when contacting and reacting the raw material with the catalyst is 0.1 MPaG to 1.0 MPaG. Since the reaction concept of the present invention is completely different from the conventional method by hydrocracking, it does not require any high-pressure conditions that are advantageous in hydrocracking. Rather, an unnecessarily high pressure is not preferable because it promotes decomposition and by-produces a light gas that is not intended. In addition, the fact that the high pressure condition is not required is advantageous in designing the reactor. On the other hand, the present invention focuses on the active use of hydrogen transfer reaction, and in this respect, it has been found that pressurization conditions are more advantageous than normal pressure or reduced pressure. That is, when the reaction pressure is 0.1 MPaG to 1.0 MPaG, the hydrogen transfer reaction can be performed efficiently.
  • the contact time between the raw material and the catalyst is not particularly limited as long as the desired reaction proceeds substantially.
  • the gas passage time on the catalyst is preferably 5 to 300 seconds, more preferably 10 to 150 seconds, 15 More preferably, it is -100 seconds. If the contact time is less than 1 second, substantial reaction is difficult. If the contact time exceeds 300 seconds, the accumulation of carbonaceous matter in the catalyst due to coking or the like will increase, or the amount of light gas generated due to decomposition will increase, and the apparatus will also become huge.
  • Catalyst Preparation Example 1 Preparation of a catalyst containing crystalline aluminogallosilicate: From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water 64.2 g of a solution (A) and Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.), Ga (NO 3 ) 3 ⁇ nH 2 O [Ga : 28.5 g of 18.51%, manufactured by Soekawa Riken Co., Ltd., 369.2 g of tetrapropylammonium bromide, 152.1 g of H 2 SO 4 (97% by mass), 326.6 g of NaCl, and 2975 of water A solution (B-1) consisting of 0.7 g was prepared.
  • the solution (B-1) was gradually added to the solution (A) while the solution (A) was stirred at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure. Further, by MASNMR analysis, SiO 2 / Al 2 O 3 ratio (molar ratio), SiO 2 / Ga 2 O 3 ratio (molar ratio), and SiO 2 / (Al 2 O 3 + Ga 2 O 3) ratio (molar ratio ) Were 64.8, 193.2, and 48.6, respectively.
  • the aluminum element contained in the lattice skeleton calculated from the results was 1.32% by mass, and the gallium element was 1.16% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, and then dried at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminogallosilicate.
  • the obtained ammonium-type crystalline aluminogallosilicate and alumina binder (Cataloid AP (trade name), manufactured by Catalytic Chemical Industry Co., Ltd.) were mixed so that the mass ratio was 70:30, and water was further added. After being sufficiently kneaded, extruded, dried at 120 ° C. for 3 hours, calcined at 780 ° C. for 3 hours in an air atmosphere, coarsely pulverized, and adjusted to a size of 16 to 28 mesh. 1 was obtained.
  • Catalyst Preparation Example 2 Preparation of catalyst containing Ga-supported crystalline aluminosilicate: From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water Solution (A), Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade, Wako Pure Chemical Industries, Ltd.) 64.2 g, tetrapropylammonium bromide 369.2 g, H 2 SO 4 (97% by mass) of 152.1 g, NaCl (326.6 g), and 2975.7 g of water (B-2) were prepared.
  • sodium oxalate J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.
  • A Al 2 (SO 4 ) 3 ⁇ 14 to 18H
  • the solution (B-2) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure.
  • the fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8.
  • the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.
  • Catalyst Preparation Example 3 Preparation of catalyst comprising Ga and phosphorus-supported crystalline aluminosilicate: From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water Solution (A), Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade, Wako Pure Chemical Industries, Ltd.) 64.2 g, tetrapropylammonium bromide 369.2 g, H 2 SO 4 (97% by mass) of 152.1 g, NaCl (326.6 g), and 2975.7 g of water (B-2) were prepared.
  • sodium oxalate J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.
  • A Al 2 (SO 4 ) 3 ⁇
  • the solution (B-2) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure.
  • the fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8.
  • the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.
  • Catalyst Preparation Example 4 Preparation of catalyst containing Zn-supported crystalline aluminosilicate: From 1706.1 g of sodium oxalate (J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.) and 2227.5 g of water Solution (A), Al 2 (SO 4 ) 3 ⁇ 14 to 18H 2 O (special grade, Wako Pure Chemical Industries, Ltd.) 64.2 g, tetrapropylammonium bromide 369.2 g, H 2 SO 4 (97% by mass) of 152.1 g, NaCl (326.6 g), and 2975.7 g of water (B-2) were prepared.
  • sodium oxalate J sodium silicate No. 3, SiO 2 : 28-30 mass%, Na: 9-10 mass%, balance water, manufactured by Nippon Chemical Industry Co., Ltd.
  • A Al 2 (SO 4 ) 3 ⁇ 14 to 18
  • the solution (B-2) was gradually added to the solution (A) while stirring the solution (A) at room temperature.
  • the resulting mixture was vigorously stirred with a mixer for 15 minutes to break up the gel into a milky homogeneous fine state.
  • this mixture was put into a stainless steel autoclave, and a crystallization operation was performed under a self-pressure under conditions of a temperature of 165 ° C., a time of 72 hours, and a stirring speed of 100 rpm.
  • the product was filtered to recover the solid product, and washing and filtration were repeated 5 times using about 5 liters of deionized water.
  • the solid substance obtained by filtration was dried at 120 ° C., and further calcined at 550 ° C. for 3 hours under air flow.
  • the obtained fired product was confirmed to have an MFI structure.
  • the fluorescent X-ray analysis (model name: Rigaku ZSX101e) by, SiO 2 / Al 2 O 3 ratio (molar ratio) was 64.8.
  • the aluminum element contained in the lattice skeleton calculated from this result was 1.32% by mass.
  • a 30% by mass ammonium nitrate aqueous solution was added at a rate of 5 mL per 1 g of the obtained fired product, heated and stirred at 100 ° C. for 2 hours, filtered, and washed with water. This operation was repeated 4 times, followed by drying at 120 ° C. for 3 hours to obtain an ammonium type crystalline aluminosilicate. Thereafter, baking was performed at 780 ° C. for 3 hours to obtain a proton-type crystalline aluminosilicate.
  • the zeolite slurry and 300 g of silica sol aqueous solution were mixed, and the prepared slurry was spray-dried at 250 ° C. to obtain a spherical catalyst. Thereafter, it was calcined at 600 ° C. for 3 hours to obtain a powdered catalyst-5 having an average particle diameter of 85 ⁇ m and a bulk density of 0.75 g / cc.
  • the SiO 2 / Al 2 O 3 ratio (molar ratio) of the crystalline aluminosilicate excluding the binder of the powdered catalyst-5 is 64.8, and the gallium content (with respect to 100% by mass of the crystalline aluminosilicate) is 0.4 mass% and phosphorus content were 0.7 mass% with respect to 100 mass% of crystalline aluminosilicate (0.28 mass% with respect to the catalyst whole quantity).
  • Example using LCO without adjusting naphthene content As a raw material oil, a cracked light oil (LCO1) produced by a fluid catalytic cracking apparatus in which the naphthene content was not adjusted was prepared.
  • the composition of the feedstock oil is paraffin (excluding naphthene): 26% by mass, naphthene: 14% by mass, monocyclic aromatics: 23% by mass, bicyclic aromatics: 32% by mass, tricyclic aromas Group: 5% by mass.
  • Example using only naphthene modifier A cracked gas oil fraction (hereinafter referred to as hydrorefined oil 1) produced simultaneously with heavy oil hydrodesulfurization, which is a naphthene modifier, was prepared as a raw material oil.
  • the composition of the feedstock is paraffin (excluding naphthene): 34% by mass, naphthene: 30% by mass, monocyclic aromatics: 32% by mass, bicyclic aromatics: 3% by mass, tricyclic aromas Group content: 1% by mass.
  • a reaction test was performed under the same conditions as in Comparative Example 1 except that the raw material was changed to hydrorefined oil 1. The results are shown in Table 3 and FIG.
  • Example 1 Example using a mixture of LCO and naphthene modifier: An equal mass of the LCO used in Comparative Example 1 and the hydrorefined oil 1 used in Comparative Example 2 were mixed to obtain a raw material oil having a naphthene content. A reaction test was performed under the same conditions as in Comparative Example 1 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 3 and FIG.
  • Example using LCO without adjusting naphthene content As a raw material oil, a real oil LCO (LCO2) having a naphthene content of 10% by mass or less was prepared.
  • the composition of the feedstock is 17% by mass of paraffin (excluding naphthene), 5% by mass of naphthene, 20% by mass of monocyclic aromatics, 55% by mass of aromatics of 2 rings, and 3% of aromatics of 3 rings. : 3% by mass.
  • Example 2 Example using partially hydrogenated LCO: As a raw material oil, a real oil LCO (LCO2) of Comparative Example 3 was partially hydrogenated to increase the naphthene content (partially hydrogenated LCO).
  • the composition of the feedstock is paraffin (excluding naphthene): 38% by mass, naphthene: 23% by mass, monocyclic aromatics: 25% by mass, bicyclic aromatics: 12% by mass, tricyclic aromatics Minute: 2% by mass.
  • Example 3 Example using a mixture of LCO and LCO partially hydrogenated: The raw material in which the naphthene content was prepared by mixing equal parts of the actual oil LCO (LCO2) used in Comparative Example 3 and the partly hydrogenated actual oil LCO (partially hydrogenated LCO) used in Example 2 Got oil. A reaction test was performed under the same conditions as in Example 2 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 4.
  • Example using LCO without adjusting naphthene content As a raw material oil, LCO1 without adjusting the naphthene content was prepared.
  • the composition of the feedstock oil is paraffin (excluding naphthene): 26% by mass, naphthene: 14% by mass, monocyclic aromatics: 23% by mass, bicyclic aromatics: 32% by mass, tricyclic aromas Group: 5% by mass.
  • Example using only naphthene modifier A cracked light oil fraction (hydrorefined oil 1) produced simultaneously with heavy oil hydrodesulfurization, which is a naphthene modifier, was prepared as a raw material oil.
  • the composition of the feedstock is paraffin (excluding naphthene): 34% by mass, naphthene: 30% by mass, monocyclic aromatics: 32% by mass, bicyclic aromatics: 3% by mass, tricyclic aromas Group content: 1% by mass.
  • a reaction test was performed under the same conditions as in Comparative Example 4 except that the raw material was changed to hydrorefined oil 1. The results are shown in Table 5.
  • Example 4 Example using a mixture of LCO and naphthene modifier: LCO 1 used in Comparative Example 4 and hydrorefined oil 1 used in Comparative Example 5 were mixed in an equal mass to obtain a raw material oil having a naphthene content. A reaction test was performed under the same conditions as in Comparative Example 4 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 5.
  • Example using LCO without adjusting naphthene content As a raw material oil, LCO1 without adjusting the naphthene content was prepared.
  • the composition of the feedstock oil is paraffin (excluding naphthene): 26% by mass, naphthene: 14% by mass, monocyclic aromatics: 23% by mass, bicyclic aromatics: 32% by mass, tricyclic aromas Group: 5% by mass.
  • Example using only naphthene modifier A cracked light oil fraction (hydrorefined oil 1) produced simultaneously with heavy oil hydrodesulfurization, which is a naphthene modifier, was prepared as a raw material oil.
  • the composition of the feedstock is paraffin (excluding naphthene): 34% by mass, naphthene: 30% by mass, monocyclic aromatics: 32% by mass, bicyclic aromatics: 3% by mass, tricyclic aromas Group content: 1% by mass.
  • a reaction test was conducted under the same conditions as in Comparative Example 6 except that the raw material was changed to hydrorefined oil 1. The results are shown in Table 6.
  • Example 5 Example using a mixture of LCO and naphthene modifier: LCO 1 used in Comparative Example 6 and hydrorefined oil 1 used in Comparative Example 7 were mixed in an equal amount to obtain a raw material oil having a naphthene content. A reaction test was performed under the same conditions as in Comparative Example 6 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 6.
  • Example using LCO without adjusting naphthene content As a raw material oil, LCO1 without adjusting the naphthene content was prepared.
  • the composition of the feedstock oil is paraffin (excluding naphthene): 26% by mass, naphthene: 14% by mass, monocyclic aromatics: 23% by mass, bicyclic aromatics: 32% by mass, tricyclic aromas Group: 5% by mass.
  • Example using only naphthene modifier A cracked light oil fraction (hydrorefined oil 1) produced simultaneously with heavy oil hydrodesulfurization, which is a naphthene modifier, was prepared as a raw material oil.
  • the composition of the feedstock is paraffin (excluding naphthene): 34% by mass, naphthene: 30% by mass, monocyclic aromatics: 32% by mass, bicyclic aromatics: 3% by mass, tricyclic aromas Group content: 1% by mass.
  • a reaction test was conducted under the same conditions as in Comparative Example 8 except that the raw material was changed to hydrorefined oil 1. The results are shown in Table 7.
  • Example 6 Example using a mixture of LCO and naphthene modifier: LCO 1 used in Comparative Example 8 and hydrorefined oil 1 used in Comparative Example 9 were mixed in an equal amount to obtain a raw material oil in which a naphthene content was prepared. A reaction test was performed under the same conditions as in Comparative Example 8 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 7.
  • Example using LCO without adjusting naphthene content As a raw material oil, LCO1 without adjusting the naphthene content was prepared.
  • the composition of the feedstock oil is paraffin (excluding naphthene): 26% by mass, naphthene: 14% by mass, monocyclic aromatics: 23% by mass, bicyclic aromatics: 32% by mass, tricyclic aromas Group: 5% by mass.
  • Example using only naphthene modifier A cracked light oil fraction (hydrorefined oil 1) produced simultaneously with heavy oil hydrodesulfurization, which is a naphthene modifier, was prepared as a raw material oil.
  • the composition of the feedstock is paraffin (excluding naphthene): 34% by mass, naphthene: 30% by mass, monocyclic aromatics: 32% by mass, bicyclic aromatics: 3% by mass, tricyclic aromas Group content: 1% by mass.
  • a reaction test was performed under the same conditions as in Comparative Example 10 except that the raw material was changed to hydrorefined oil 1. The results are shown in Table 8.
  • Example 7 Example using a mixture of LCO and naphthene modifier: LCO 1 used in Comparative Example 10 and hydrorefined oil 1 used in Comparative Example 11 were mixed in an equal amount to obtain a raw material oil having a naphthene content. A reaction test was performed under the same conditions as in Comparative Example 10 except that the raw material was changed to a raw material oil having a naphthene content. The results are shown in Table 8.
  • the method for producing aromatic hydrocarbons of the present invention is useful for producing high-value-added monocyclic aromatic hydrocarbons that can be used as high-octane gasoline base materials or petrochemical raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明の芳香族炭化水素を製造する方法は、流動接触分解装置で生成する分解軽油を含む留分に由来する原料を、結晶性アルミノシリケートを含む触媒と接触させて芳香族炭化水素を製造する方法であって、前記原料のナフテン分含有比率が、前記分解軽油を含む留分のナフテン分含有比率よりも高くなるように調整されており、前記原料と前記触媒との接触が、0.1MPaG~1.0MPaGの圧力下で行われる。

Description

芳香族炭化水素の製造方法
 本発明は、単環芳香族炭化水素の製造方法に関する。
 本願は、2009年3月27日に日本に出願された、特願2009-078596号に基づき優先権主張し、その内容をここに援用する。
 近年、これまでは主に軽油・重油留分として用いられていた、流動接触分解(以下、「FCC」と称する。)装置で生成する分解軽油であるライトサイクル油(以下、「LCO」と称する。)等の多環芳香族分を含む原料から、高オクタン価ガソリン基材や石油化学原料として利用できる、付加価値が高い炭素数6~8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、エチルベンゼン、キシレン。以下、これらをまとめて「BTX留分」と称する。)を効率よく製造する技術が求められている。
 多環芳香族分からBTX留分を製造する方法としては、例えば、下記の方法等が知られている。
 (1)多環芳香族分を含む炭化水素を1段で水素化分解する方法(特許文献1、2)。
 (2)多環芳香族分を含む炭化水素を前段で水素化した後、後段で水素化分解する方法(特許文献3~5)。
 (3)多環芳香族分を含む炭化水素を、ゼオライト触媒を用いて直接BTX留分に転換する方法(特許文献6)。
 (4)多環芳香族分を含む炭化水素と、炭素数2~8の軽質炭化水素との混合物を、ゼオライト触媒を用いてBTX留分に転換する方法(特許文献7、8)。
 しかしながら、(1)、(2)の方法では、高圧の分子状水素の添加が必須であり、水素消費も多いという問題点がある。また、水素化条件下においては、BTX留分の目的製造時には必要とされないLPG留分等が多く副生され、その分離等にエネルギーを必要とするだけでなく、原料効率も低下する。
 (3)の方法では、必ずしも多環芳香族分の転換が十分であるとはいえない。
 (4)の方法は、軽質炭化水素を原料とするBTXの製造技術と、多環芳香族分を含む炭化水素を原料とするBTXの製造技術とを組み合わせて熱バランスを向上したもので、多環芳香族分からのBTX収率を向上せしめるものではない。
特開昭61-283687号公報 特開昭56-157488号公報 特開昭61-148295号公報 英国特許第1287722号明細書 特開2007-154151号公報 特開平3-2128号公報 特開平3-52993号公報 特開平3-26791号公報
 本発明は、FCC装置で生成する分解軽油(LCO)を含む留分から、分子状水素を共存させることなく、BTX留分を従来の方法に比べ効率よく製造できる方法を提供する。
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、FCC装置で生成する分解軽油(LCO)を含む留分のナフテン分含有比率を調整した原料を用いること、かつその原料を低圧・分子状水素非共存下にて結晶性アルミノシリケートを含む触媒と接触、反応させることで、BTX留分を効率よく製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明の芳香族炭化水素の製造方法は、FCC装置で生成する分解軽油(LCO)を含む留分に由来する原料を、結晶性アルミノシリケートを含む触媒と接触させて芳香族炭化水素を製造する方法であって、前記原料のナフテン分含有比率が、前記LCOを含む留分のナフテン分含有比率よりも高くなるように調整されており、前記原料と前記触媒との接触が、0.1MPaG~1.0MPaGの圧力下で行われることを特徴とする。
 前記原料のナフテン分含有比率は、(i)前記LCOを含む留分と、水素化精製油(好ましくは前記LCOを部分水素化したもの)とを混合すること、または(ii)前記LCOを含む留分を部分水素化することによって調整されていることが好ましい。
 前記原料のナフテン分含有比率は、10質量%以上であることが好ましく、15質量%以上であることがより好ましい。
 前記ナフテン分は、炭素数が8以上のナフテン分を主として含有する留分であることが好ましい。
 前記原料中のナフテン分と多環芳香族分との質量比率(ナフテン分/多環芳香族分)は、0.3~3であることが好ましい。
 前記触媒は、更にガリウムおよび/または亜鉛を含むものであることが好ましい。
 本発明の芳香族炭化水素の製造方法によれば、FCC装置で生成するLCOを含む留分から、分子状水素を共存させることなく、BTX留分を従来の方法に比べ効率よく製造できる。
参考例1における原料油中の1,2,4-トリメチルシクロヘキサン含有比率とBTX収率との関係を示すグラフである。 参考例2における原料油中の1,2,4-トリメチルシクロヘキサン含有比率とBTX収率との関係を示すグラフである。 参考例3における原量油中の1,2,4-トリメチルシクロヘキサン含有比率とBTX収率との関係を示すグラフである。 参考例4における原料油中のノルマルヘキサデカン含有比率とBTX収率との関係を示すグラフである。 比較例1、2および実施例1における原料油中のナフテン調整剤(重油水素化脱硫と同時に生成する分解軽油留分)含有比率とBTX収率との関係を示すグラフである。
 本発明の芳香族炭化水素の製造方法は、FCC装置で生成するLCOを含む留分に由来する原料を、結晶性アルミノシリケートを含む触媒と接触、反応させて芳香族炭化水素を製造する方法であって、原料のナフテン分含有比率が、原料の元となるLCOを含む留分のナフテン分含有比率よりも高くなるように調整されており、前記原料と前記触媒との接触が、0.1MPaG~1.0MPaGの圧力下で行われる方法である。
(原料)
 原料は、FCC装置で生成するLCOを含む留分に由来するものであって、ナフテン分含有比率が、LCOを含む留分のナフテン分含有比率よりも高くなるように調整されたものである。
 本発明において、原料のナフテン分含有比率を、原料の元となるLCOを含む留分のナフテン分含有比率よりも高くなるように調整している理由は、ナフテン分と多環芳香族分とを効率的に接触させることにより、多環芳香族分をBTX留分に効率的に転換できることを本発明者らが見出したためである。
 LCOに多く含まれる多環芳香族分からBTX留分を得るためには、多環芳香族炭化水素の芳香環の少なくとも一つを分解する必要があるため、水素供与源が共存していることが望ましい。そのため、多環芳香族分からBTX留分を製造する従来の方法においては、分子状水素を共存させ、高圧下において多環芳香族分を水素化分解して、BTX留分を製造している。しかしながら、この方法では、分子状水素を導入する必要があること、高圧反応であり製造できる装置に制限があること、低級パラフィンであるLPG留分等の目的としない副生成物の量が増加すること、等から必ずしも好ましい方法とはいえない。
 一方で、水素供与源として飽和炭化水素を用い、飽和炭化水素からの水素移行反応によって多環芳香族分をBTX留分に転換する方法が知られている。この方法は、分子状水素を用いない等の利点があるものの、この方法において多環芳香族分をBTX留分に十分に転換できる水素移行剤または水素移行条件は知られていない。
 そこで本発明者らは鋭意検討を重ねた結果、水素移行反応を効率的に引き起こす飽和炭化水素としてナフテン分(特に多分岐のナフテン分)を多く共存させ、かつ低圧にて反応させることによって、分子状水素を共存させることなく、多環芳香族分から高効率でBTX留分を製造できることを見出し、本発明を完成させるに至った。水素移行剤としてのパラフィン分の原料への混合に制限はないが、パラフィン分のみでは効率的なBTX留分の製造は困難であり、ナフテン分の共存は必須である。
 原料のナフテン分含有比率を、原料の元となるLCOを含む留分のナフテン分含有比率よりも高くなるように調整する方法としては、例えば、下記の方法が挙げられる。
 (i)LCOを含む留分と、水素化精製油とを混合する方法。
 (ii)LCOを含む留分を部分水素化する方法。
 水素化精製油としては、ナフテン留分の比率が原料の元となるLCOを含む留分のナフテン分含有比率よりも高い留分であれば適用可能であるが、例えば、FCC装置で生成する留出油(LCO、重質サイクル油(HCO)、分解残渣油(CLO)等)、FCC装置で生成する留出油を部分的に水素化した留分(部分水素化LCO、部分水素化HCO、部分水素化LCO等)、コーカーで生成する留出油、コーカーで生成する留出油を部分的に水素化した留分、ナフテン分を多く含む水素化分解留分、重油水素化分解装置または重油水素化脱硫装置で生成する分解油留分、オイルサンドから得られる留分を水素化した留分等が好ましい。特に、ナフテン分含有比率が高いことから、FCC装置で生成する留出油を部分的に水素化した留分部分水素化LCO、部分水素化HCO、部分水素化LCO等)、コーカーで生成する留出油を部分的に水素化した留分、ナフテン分を多く含む水素化分解留分、重油水素化分解装置または重油水素化脱硫装置で生成する分解油留分、オイルサンドから得られる留分を水素化した留分等がより好ましい。水素化精製油は、前述した留分を2種以上併用してもよい。
 (i)の方法においては、反応器内に投入する前にLCOを含む留分と水素化精製油とをあらかじめ混合してもよく、反応器内でLCOを含む留分と水素化精製油とを直接混合してもよい。反応器内で直接混合する場合は、反応器内に投入する直前のLCOを含む留分のナフテン分と水素化精製油原料のナフテン分との合計が、後述する比率であることが好ましい。
 ナフテン分を調整する前のLCOを含む留分は、FCC装置で生成するLCOを含む留分であればよく、他の留出油との混合物であってもよい。
 原料のナフテン分含有比率は、水素移行反応を積極的に利用する点から、10質量%以上が好ましく、15質量%以上がより好ましい。ナフテン分が多い分には制限はないものの、原料のナフテン分含有比率を70質量%超に調製することは、前記(i)、(ii)の方法では困難である。
 ナフテン分としては、水素移行反応をより効率的に利用する点から、多分岐のナフテン分が好ましく、ジアルキルナフテンとして必須な炭素数となる炭素数8以上の留分が好ましく、炭素数9以上の留分がより好ましい。そのため、全ナフテン分中の炭素数8以上の留分の比率は、50質量%以上が好ましく、80質量%以上がより好ましい。また、全ナフテン分中の炭素数9以上の留分の比率は、80質量%以上が好ましい。多分岐のナフテンとしては、単環ナフテンであれば、ジアルキルシクロヘキサン、トリアルキルシクロヘキサン、テトラアルキルシクロヘキサン等が好ましく、多環ナフテンであれば、デカリンのアルキル体、ヒドリンダンのアルキル体、デカヒドロアントラセンのアルキル体、デカヒドロフェナントレンのアルキル体等が挙げられる。なお、デカリン等の2環以上のナフテンであれば、一方の環に着目すると2個のアルキル鎖を有する場合と同等と見なすことができることから、必ずしもアルキル体である必要はない。
 なお、実際の留分においてこれらの成分は混合されており、それぞれを分離して用いることは実用的ではない。また、ナフテン分の組成が明らかにならない場合においても、沸点が120℃(すなわち、炭素数が8以上の多分岐のナフテン分のうち沸点が最も低いジメチルシクロヘキサンの沸点)を超えたナフテン分であれば、水素移行反応を効率的に起こすために十分な分岐を有しており、使用に適している。
 原料の多環芳香族分含有比率は、5~90質量%が好ましく、10~60質量%がより好ましい。多環芳香族分含有比率が5質量%未満では、水素移行反応の効果が少なく、90質量%を超えると、十分なBTX収量が得られず、非効率である。
 多環芳香族分としては、一般的な多環芳香族炭化水素類、例えば、ナフタレン、フェナントレン、アントラセンのアルキル化物等が挙げられる。ただし、多環芳香族分中の3環以上の芳香族分は、触媒活性の低下を招くため、全多環芳香族分中の含有率は、30質量%以下が好ましい。
 原料中のナフテン分と多環芳香族分との質量比率(ナフテン分/多環芳香族分)は、0.1~5.0が好ましく、0.3~3.0がより好ましい。ナフテン分/多環芳香族分がこの範囲内であれば、ナフテン分と多環芳香族が効率的に接触し、水素移行反応による多環芳香族からのBTX製造が効率的に実施可能である。
 原料中の他の成分(単環芳香族分、パラフィン分(ナフテン分を除く。)、オレフィン分)の含有比率は、特に制限はされない。また、目的とする反応を著しく阻害しない範囲で、硫黄、酸素、窒素等のヘテロ原子を含んでいてもよい。
 原料の蒸留性状は特に限定されるものではないが、原料の10容量%留出温度は140℃以上であることが好ましく、150℃以上であることがより好ましい。原料の90容量%留出温度は360℃以下であることが好ましく、350℃以下であることがより好ましい。10容量%留出温度が140℃未満の油では、軽質な原料からBTX留分を製造することになり、本発明の主旨にそぐわなくなる。また、原料の90容量%留出温度が360℃を超える原料を用いた場合は、触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。
 なお、ここでいう10容量%留出温度、90容量%留出温度は、JIS K2254「石油製品-蒸留試験方法」に準拠して測定される値である。
(触媒)
 触媒は、結晶性アルミノシリケートを含むものである。
 結晶性アルミノシリケートの含有量は、特に限定されないが、10~95質量%が好ましく、20~80質量%がより好ましく、25~70質量%がさらに好ましい。
 結晶性アルミノシリケートとしては、特に限定されないが、例えば、中孔径ゼオライトであるMFI、MEL、TON、MTT、MRE、FER、AEL、EUOタイプのゼオライトが好ましく、MFIタイプおよび/またはMELタイプの結晶構造体がより好ましい。MFIタイプ、MELタイプ等の結晶性アルミノシリケートは、The Structure Commission of the International Zeolite Associationにより公表された種類の公知ゼオライト構造型に属する(Atlas of Zeolite Structure Types,W.M.Meiyer and D.H.Olson (1978).Distributed by Polycrystal Book Service,Pittsburgh,PA,USA)。
 本発明に係る結晶性アルミノシリケートは、ケイ素とアルミニウムとのモル比率(Si/Al比)が100以下であり、50以下であることが好ましい。結晶性アルミノシリケートのSi/Al比が100を超えると、単環芳香族炭化水素の収率が低くなる。
 また、結晶性アルミノシリケートのSi/Al比は、単環芳香族炭化水素の収率向上の点で、10以上であることが好ましい。
 本発明に係る触媒としては、さらにガリウムおよび/または亜鉛を含むものが好ましい。ガリウムおよび/または亜鉛を含むことにより、より効率的にBTX留分を製造できると同時に、炭素数3~6の非芳香族炭化水素の副生を大幅に抑制できる。
 ガリウムおよび/または亜鉛を含む結晶性アルミノシリケートとしては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートにガリウムを担持したもの(Ga担持結晶性アルミノシリケート)、結晶性アルミノシリケートに亜鉛を担持したもの(Zn担持結晶性アルミノシリケート)、それらを少なくとも1種以上含んだものが挙げられる。
 Ga担持結晶性アルミノシリケートおよび/またはZn担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウムおよび/または亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。この際に用いるガリウム源および亜鉛源は、特に限定されないが、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
 触媒におけるガリウムおよび/または亜鉛の含有量の上限は、触媒全量を100質量%とした場合、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることがさらに好ましい。ガリウムおよび/または亜鉛の含有量が5質量%を超えると、単環芳香族炭化水素の収率が低くなるため好ましくない。
 また、ガリウムおよび/または亜鉛の含有量の下限は、触媒全量を100質量%とした場合、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。ガリウムおよび/または亜鉛の含有量が0.01質量%未満であると、単環芳香族炭化水素の収率が低くなることがあり好ましくない。
 結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートは、SiO、AlOおよびGaO/ZnO構造が骨格中において四面体配位をとる構造のもので、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウムおよび/または亜鉛を挿入する方法、または結晶性ガロシリケートおよび/または結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法で得ることができる。
 本発明に係る触媒は、リンを含有するものが好ましい。触媒におけるリンの含有量は、触媒全量を100質量%とした場合、0.1~10.0質量%であることが好ましい。リンの含有量の下限は、経時的な単環芳香族炭化水素の収率低下を防止できるため、0.1質量%以上が好ましく、0.2質量%以上であることがより好ましい。一方、リンの含有量の上限は、単環芳香族炭化水素の収率を高くできることから、10.0質量%以下が好ましく、5.0質量%以下がより好ましく、2.0質量%以下がさらに好ましい。
 触媒にリンを含有させる方法としては特に限定されないが、例えばイオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートにリンを担持する方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンと置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液は特に限定されないが、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよびその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを好ましく使用できる。
 本発明に係る触媒は、上記のようにリンを担持した結晶性アルミノガロシリケート/結晶性アルミノジンコシリケート、または、ガリウム/亜鉛およびリンを担持した結晶性アルミノシリケートを焼成(焼成温度300~900℃)することにより得られる。
 本発明に係る触媒は、反応形式に応じて、例えば、粉末状、粒状、ペレット状等にされる。例えば、流動床の場合には粉末状にされ、固定床の場合には粒状またはペレット状にされる。流動床で用いる触媒の平均粒子径は30~180μmが好ましく、50~100μmがより好ましい。また、流動床で用いる触媒のかさ密度は0.4~1.8g/ccが好ましく、0.5~1.0g/ccがより好ましい。
 なお、平均粒子径はふるいによる分級によって得た粒径分布において50質量%となる粒径を表し、かさ密度はJIS規格R9301-2-3の方法により測定した値である。
 粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。
 本発明に係る触媒がバインダー等を含有する場合、上述のリン含有量の好ましい範囲を満たしさえすれば、バインダーとしてリンを含むものを用いても構わない
 また、触媒がバインダーを含有する場合、バインダーとガリウムおよび/または亜鉛担持結晶性アルミノシリケートとを混合した後、またはバインダーと結晶性アルミノガロシリケートおよび/または結晶性アルミノジンコシリケートとを混合した後にリンを添加して触媒を製造してもよい。
(反応型式)
 原料を触媒と接触、反応させる際の反応形式としては、固定床、移動床、流動床等が挙げられる。本発明においては、重質分を原料とするため、触媒に付着したコーク分を連続的に除去可能で、かつ安定的に反応を行うことができる流動床が好ましく、反応器と再生器との間を触媒が循環し、連続的に反応-再生を繰り返すことができる、連続再生式流動床が特に好ましい。触媒と接触する際の原料は、気相状態であることが好ましい。また、原料は、必要に応じてガスによって希釈してもよい。また、未反応原料が生じた場合は必要に応じてリサイクルしてもよい。
(反応温度)
 原料を触媒と接触、反応させる際の反応温度は、特に制限されないが、350~700℃が好ましく、450~650℃がより好ましい。反応温度が350℃未満では、反応活性が十分でない。反応温度が700℃を超えると、エネルギー的に不利になると同時に触媒再生等が困難となる。
(反応圧力)
 原料を触媒と接触、反応させる際の反応圧力は、0.1MPaG~1.0MPaGである。本発明は、水素化分解による従来の方法とは反応思想が完全に異なるため、水素化分解では優位とされる高圧条件を全く必要としない。むしろ、必要以上の高圧は、分解を促進し、目的としない軽質ガスを副生するため好ましくない。また、高圧条件を必要としないことは、反応装置設計上においても優位である。一方、本発明においては積極的な水素移行反応の利用に主眼があり、この点においては常圧または減圧下と比較して加圧条件はより優位であることを見出した。すなわち、反応圧力が0.1MPaG~1.0MPaGであれば、水素移行反応を効率的に行うことが可能である。
(接触時間)
 原料と触媒との接触時間は、実質的に所望する反応が進行すれば特に制限はされないが、例えば、触媒上のガス通過時間で5~300秒が好ましく、10~150秒がより好ましく、15~100秒がさらに好ましい。接触時間が1秒未満では、実質的な反応が困難である。接触時間が300秒を超えると、コーキング等による触媒への炭素質の蓄積が多くなる、または分解による軽質ガスの発生量が多くなり、さらには装置も巨大となる。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(原料組成)
 実施例および比較例における原料油の組成は、シリカゲルクロマト分別により得た飽和分および芳香族分について、EIイオン化法による質量分析(装置:日本電子(株)製、JMS-700)を行い、ASTM D 2425に準拠して炭化水素のタイプ分析により算出した。
〔触媒調製例1〕
 結晶性アルミノガロシリケートを含む触媒の調製:
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、Ga(NO・nHO〔Ga:18.51%、添川理化学(株)製)の32.8g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B-1)をそれぞれ調製した。
 ついで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B-1)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72hr、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析の結果、MFI構造を有するものであることが確認された。また、MASNMR分析による、SiO/Al比(モル比)、SiO/Ga比(モル比)、およびSiO/(Al+Ga)比(モル比)は、各々64.8、193.2、および48.6であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%、ガリウム元素は1.16質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥してアンモニウム型結晶性アルミノガロシリケートを得た。
 得られたアンモニウム型結晶性アルミノガロシリケートと、アルミナバインダー(カタロイドAP(商品名)、触媒化成工業(株)製)とを、質量比が70:30となるように混合し、さらに水を加えて十分に練った後、押出成形し、120℃で3時間乾燥した後、空気雰囲気下、780℃で3時間焼成し、さらにこれを粗粉砕して16~28メッシュのサイズにそろえ、触媒-1を得た。
〔触媒調製例2〕
 Ga担持結晶性アルミノシリケートを含む触媒の調製:
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B-2)をそれぞれ調製した。
 ついで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B-2)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
 ついで、得られたプロトン型結晶性アルミノシリケート120gに、0.4質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムが担持されるように硝酸ガリウム水溶液120gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、ガリウム担持結晶性アルミノシリケートを含有する触媒-2を得た。
〔触媒調製例3〕
 Gaおよびリン担持結晶性アルミノシリケートを含む触媒の調製:
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B-2)をそれぞれ調製した。
 ついで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B-2)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
 ついで、得られたプロトン型結晶性アルミノシリケート120gに、0.4質量%(結晶性アルミノシリケート総質量を100質量%とした値)のガリウムが担持されるように硝酸ガリウム水溶液120gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、ガリウム担持結晶性アルミノシリケートを得た。
 ついで、得られたガリウム担持結晶性アルミノシリケート30gに、0.7質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、結晶性アルミノシリケートとガリウムとリンとを含有する触媒-3を得た。
〔触媒調製例4〕
 Zn担持結晶性アルミノシリケートを含む触媒の調製:
 硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14~18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7gからなる溶液(B-2)をそれぞれ調製した。
 ついで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B-2)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
 ついで、この混合物をステンレス製のオートクレーブに入れ、温度:165℃、時間:72時間、撹拌速度:100rpmの条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
 得られた焼成物は、X線回析分析(機種名:Rigaku RINT-2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、64.8であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.32質量%であった。
 得られた焼成物の1g当り5mLの割合で30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型結晶性アルミノシリケートを得た。その後、780℃で3時間焼成を行い、プロトン型結晶性アルミノシリケートを得た。
 ついで、得られたプロトン型結晶性アルミノシリケート120gに、0.4質量%(結晶性アルミノシリケート総質量を100質量%とした値)の亜鉛が担持されるように硝酸亜鉛水溶液120gを含浸させ、120℃で乾燥させた。その後、空気流通下、780℃で3時間焼成して、亜鉛担持結晶性アルミノシリケートを含有する触媒-4を得た。
〔触媒調製例5〕
 流動床用の粉末状触媒の調製:
 希硫酸に硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28~30質量%、Na:9~10質量%、残部水、日本化学工業(株)製)106gと純水の混合溶液を滴下し、シリカゾル水溶液(SiO濃度10.2%)を調製した。一方、触媒調製例3で調製したガリウムとリン担持結晶性アルミノシリケート20.4gに蒸留水を加え、ゼオライトスラリーを調製した。上記のゼオライトスラリーとシリカゾル水溶液300gを混合し、調製したスラリーを250℃で噴霧乾燥し、球形触媒を得た。その後、600℃で3時間焼成し、平均粒子径が85μm、かさ密度が0.75g/ccある粉末状の触媒-5を得た。
 粉末状の触媒-5のバインダーを除いた結晶性アルミノシリケートのSiO/Al比(モル比)は、64.8、ガリウム含有量(結晶性アルミノシリケート100質量%に対して)は0.4質量%、リン含有量は結晶性アルミノシリケート100質量%に対して0.7質量%(触媒全量に対して0.28質量%)であった。
〔参考例1〕
 加圧下における多分岐ナフテン共存下での多環芳香族炭化水素への水素移行モデル反応:
 水素移行剤として多分岐のナフテンを用いて水素移行反応の検証を行った。
 多分岐のナフテンとして、1,2,4-トリメチルシクロヘキサン(以下、TMCHと称する)を用意した。
 多環芳香族炭化水素として、1-メチルナフタレンを用意した。
 TMCH単独を原料油1、1-メチルナフタレン単独を原料油2、これらを混合したものを原料油3とした。各原料油の組成を表1に示す。
 6gの触媒-1を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.5MPaG、LHSV:0.7h-1の条件で、原料油1、2、3をそれぞれ触媒と接触、反応させた。この際、希釈剤として窒素を47Ncm3導入し、原料と触媒との接触時間が4秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラフにより生成物の組成分析を行った。結果を表1および図1に示す。
Figure JPOXMLDOC01-appb-T000001
 図1に示すように、原料油中のTMCH含有比率とBTX収率との間には加成性が成立していない。すなわち、多分岐のナフテンと多環芳香族炭化水素とを混合し、かつ加圧下で反応させると水素移行反応が起こり、多環芳香族分をBTX留分へ転換可能であることを証明する結果である。
〔参考例2〕
 常圧下における多分岐ナフテン共存下での多環芳香族炭化水素への水素移行モデル反応:
 反応圧力を0.0MPaGに変更した以外は、参考例1と同様の条件で反応試験を行った。なお、窒素導入量が参考例1と同一であり、反応圧力を低くしたことから、原料油の触媒との接触時間は3秒に短縮された。結果を表1および図2に示す。
 図2に示すように、原料油中のTMCH含有比率とBTX収率との間にはほぼ加成性が成立している。すなわち、多分岐ナフテンと多環芳香族炭化水素とを混合し、加圧せずに反応させると水素移行反応が起こり難いことを示す結果である。
〔参考例3〕
 加圧下における多分岐ナフテン共存下での多環芳香族炭化水素への水素移行モデル反応:
 反応圧力を1.2MPaGに変更した以外は、参考例1と同様の条件で反応試験を行った。なお、窒素導入量が参考例1と同一であり、反応圧力を高めたことから、原料油の触媒との接触時間は7秒となった。結果を表1および図3に示す。
〔参考例4〕
 加圧下における直鎖パラフィン共存下での多環芳香族炭化水素への水素移行モデル反応:
 水素移行剤として、直鎖パラフィンを用いて水素移行反応の検証を行った。
 直鎖パラフィンとして、ノルマルヘキサデカンを用意した。
 多環芳香族炭化水素として、1-メチルナフタレンを用意した。
 ヘキサデカン単独を原料油4、1-メチルナフタレン単独を原料油5、これらを混合したものを原料油6とした。各原料油の組成を表2に示す。
 原料油を原料油4、5、6に変更した以外は、参考例1と同様の条件で反応試験を行った。結果を表2および図4に示す。
Figure JPOXMLDOC01-appb-T000002
 図4に示すように、原料油中のノルマルヘキサデカン含有比率とBTX収率との間には加成性が成立している。すなわち、直鎖パラフィンと多環芳香族炭化水素とを混合し、かつ加圧下で反応させても水素移行反応は起こり難いことを示す結果である。
〔比較例1〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分を調整していない流動接触分解装置で生成する分解軽油(LCO1)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):26質量%、ナフテン分:14質量%、単環芳香族分:23質量%、2環芳香族分:32質量%、3環芳香族分:5質量%であった。
 6gの触媒-1を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV:0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、原料と触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表3および図5に示す。
〔比較例2〕
 ナフテン調整剤のみを用いた例:
 原料油として、ナフテン調整剤である重油水素化脱硫と同時に生成する分解軽油留分(以下、水素化精製油1と称する。)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):34質量%、ナフテン分:30質量%、単環芳香族分:32質量%、2環芳香族分:3質量%、3環芳香族分:1質量%であった。
 原料を水素化精製油1に変更した以外は、比較例1と同様の条件で反応試験を行った。結果を表3および図5に示す。
〔実施例1〕
 LCOとナフテン調整剤とを混合したものを用いた例:
 比較例1で用いたLCOと比較例2で用いた水素化精製油1とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、比較例1と同様の条件で反応試験を行った。結果を表3および図5に示す。
Figure JPOXMLDOC01-appb-T000003
 図5に示すように、原料油中の水素化精製油1の含有比率とBTX収率との間には加成性が成立していない。すなわち、ナフテン分の多い留分とLCOを混合し、かつ加圧下で反応させると水素移行反応が起こることが証明された。
〔比較例3〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分が10質量%以下である実油LCO(LCO2)を用意した。原料油の組成はパラフィン分(ナフテン分を除く。)17質量%、ナフテン分:5質量%、単環芳香族分:20質量%、2環芳香族分:55質量%、3環芳香族分:3質量%であった。
 6gの触媒-1を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV=0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表4に示す。
〔実施例2〕
 LCOを部分水素化したものを用いた例:
 原料油として、比較例3の実油LCO(LCO2)を部分水素化してナフテン分含有比率を高めたもの(部分水素化LCO)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。)38質量%、ナフテン分:23質量%、単環芳香族分:25質量%、2環芳香族分:12質量%、3環芳香族分:2質量%であった。
 6gの触媒-1を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV=0.4h-1(LHSV=0.22h-1)の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm(17Ncm)導入し、触媒との接触時間が7秒(12秒)となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表4に示す。
〔実施例3〕
 LCOとLCOを部分水素化したものとを混合したものを用いた例: 
 比較例3で用いた実油LCO(LCO2)と、実施例2で用いた、実油LCOを部分水素化したもの(部分水素化LCO)とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、実施例2と同様の条件で反応試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
〔比較例4〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分を調整していないLCO1を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):26質量%、ナフテン分:14質量%、単環芳香族分:23質量%、2環芳香族分:32質量%、3環芳香族分:5質量%であった。
 6gの触媒-2を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV:0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、原料と触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表5に示す。
〔比較例5〕
 ナフテン調整剤のみを用いた例:
 原料油として、ナフテン調整剤である重油水素化脱硫と同時に生成する分解軽油留分(水素化精製油1)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):34質量%、ナフテン分:30質量%、単環芳香族分:32質量%、2環芳香族分:3質量%、3環芳香族分:1質量%であった。
 原料を水素化精製油1に変更した以外は、比較例4と同様の条件で反応試験を行った。結果を表5に示す。
〔実施例4〕
 LCOとナフテン調整剤とを混合したものを用いた例:
 比較例4で用いたLCO1と比較例5で用いた水素化精製油1とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、比較例4と同様の条件で反応試験を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
〔比較例6〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分を調整していないLCO1を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):26質量%、ナフテン分:14質量%、単環芳香族分:23質量%、2環芳香族分:32質量%、3環芳香族分:5質量%であった。
 6gの触媒-3を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV:0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、原料と触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表6に示す。
〔比較例7〕
 ナフテン調整剤のみを用いた例:
 原料油として、ナフテン調整剤である重油水素化脱硫と同時に生成する分解軽油留分(水素化精製油1)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):34質量%、ナフテン分:30質量%、単環芳香族分:32質量%、2環芳香族分:3質量%、3環芳香族分:1質量%であった。
 原料を水素化精製油1に変更した以外は、比較例6と同様の条件で反応試験を行った。結果を表6に示す。
〔実施例5〕
 LCOとナフテン調整剤とを混合したものを用いた例:
 比較例6で用いたLCO1と比較例7で用いた水素化精製油1とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、比較例6と同様の条件で反応試験を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
〔比較例8〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分を調整していないLCO1を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):26質量%、ナフテン分:14質量%、単環芳香族分:23質量%、2環芳香族分:32質量%、3環芳香族分:5質量%であった。
 6gの触媒-4を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV:0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、原料と触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表7に示す。
〔比較例9〕
 ナフテン調整剤のみを用いた例:
 原料油として、ナフテン調整剤である重油水素化脱硫と同時に生成する分解軽油留分(水素化精製油1)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):34質量%、ナフテン分:30質量%、単環芳香族分:32質量%、2環芳香族分:3質量%、3環芳香族分:1質量%であった。
 原料を水素化精製油1に変更した以外は、比較例8と同様の条件で反応試験を行った。結果を表7に示す。
〔実施例6〕
 LCOとナフテン調整剤とを混合したものを用いた例:
 比較例8で用いたLCO1と比較例9で用いた水素化精製油1とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、比較例8と同様の条件で反応試験を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
〔比較例10〕
 ナフテン分を調整していないLCOを用いた例:
 原料油として、ナフテン分を調整していないLCO1を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):26質量%、ナフテン分:14質量%、単環芳香族分:23質量%、2環芳香族分:32質量%、3環芳香族分:5質量%であった。
 6gの触媒-5を反応器に充填した流通式反応装置を用い、反応温度:540℃、反応圧力:0.3MPaG、LHSV:0.4h-1の条件で、原料である原料油を触媒と接触、反応させた。この際、希釈剤として窒素を28Ncm3導入し、原料と触媒との接触時間が7秒となるようにした。30分反応させた後、装置に直結されたガスクロマトグラムにより生成物の組成分析を行った。結果を表8に示す。
〔比較例11〕
 ナフテン調整剤のみを用いた例:
 原料油として、ナフテン調整剤である重油水素化脱硫と同時に生成する分解軽油留分(水素化精製油1)を用意した。原料油の組成は、パラフィン分(ナフテン分を除く。):34質量%、ナフテン分:30質量%、単環芳香族分:32質量%、2環芳香族分:3質量%、3環芳香族分:1質量%であった。
 原料を水素化精製油1に変更した以外は、比較例10と同様の条件で反応試験を行った。結果を表8に示す。
〔実施例7〕
 LCOとナフテン調整剤とを混合したものを用いた例:
 比較例10で用いたLCO1と比較例11で用いた水素化精製油1とを等質量混合し、ナフテン分が調製された原料油を得た。
 原料を、ナフテン分が調製された原料油に変更した以外は、比較例10と同様の条件で反応試験を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 本発明の芳香族炭化水素の製造方法は、高オクタン価ガソリン基材や石油化学原料として利用できる、付加価値が高い単環芳香族炭化水素の製造に有用である。

Claims (8)

  1.  流動接触分解装置で生成する分解軽油を含む留分に由来する原料を、結晶性アルミノシリケートを含む触媒と接触させて芳香族炭化水素を製造する方法であって、
     前記原料のナフテン分含有比率が、前記分解軽油を含む留分のナフテン分含有比率よりも高くなるように調整されており、
     前記原料と前記触媒との接触が、0.1MPaG~1.0MPaGの圧力下で行われることを特徴とする芳香族炭化水素の製造方法。
  2.  前記原料のナフテン分含有比率が、前記分解軽油を含む留分と水素化精製油とを混合することによって調整されている、請求項1に記載の芳香族炭化水素の製造方法。
  3.  前記原料のナフテン分含有比率が、前記分解軽油を含む留分を部分水素化することによって調整されている、請求項1に記載の芳香族炭化水素の製造方法。
  4.  前記原料のナフテン分含有比率が、前記分解軽油を含む留分と前記分解軽油を含む留分を部分水素化したものとを混合することによって調整されている、請求項1に記載の芳香族炭化水素の製造方法。
  5.  前記原料のナフテン分含有比率が、10質量%以上である、請求項1に記載の芳香族炭化水素の製造方法。
  6.  前記原料のナフテン分含有比率が、15質量%以上である、請求項1に記載の芳香族炭化水素の製造方法。
  7.  前記ナフテン分が、炭素数が8以上のナフテン分を主として含有している、請求項1に記載の芳香族炭化水素の製造方法。
  8.  前記触媒が、ガリウムおよび亜鉛からなる群より選ばれる少なくとも一種を含むものである、請求項1に記載の芳香族炭化水素の製造方法。
PCT/JP2010/002160 2009-03-27 2010-03-26 芳香族炭化水素の製造方法 WO2010109897A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MYPI2011004081A MY183299A (en) 2009-03-27 2010-03-26 Method for producing aromatic hydrocarbons
EP10755699.5A EP2412785B1 (en) 2009-03-27 2010-03-26 Method for producing aromatic hydrocarbons
US13/138,064 US9243192B2 (en) 2009-03-27 2010-03-26 Method for producing aromatic hydrocarbons
CN201080013465.0A CN102361959B (zh) 2009-03-27 2010-03-26 芳香族烃的制造方法
BRPI1012237A BRPI1012237A2 (pt) 2009-03-27 2010-03-26 método para produção de hidrocarbonetos aromáticos
KR1020117022083A KR101704835B1 (ko) 2009-03-27 2010-03-26 방향족 탄화수소의 제조 방법
JP2010513556A JP4740396B2 (ja) 2009-03-27 2010-03-26 芳香族炭化水素の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009078596 2009-03-27
JP2009-078596 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109897A1 true WO2010109897A1 (ja) 2010-09-30

Family

ID=42780594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002160 WO2010109897A1 (ja) 2009-03-27 2010-03-26 芳香族炭化水素の製造方法

Country Status (8)

Country Link
US (1) US9243192B2 (ja)
EP (1) EP2412785B1 (ja)
JP (1) JP4740396B2 (ja)
KR (1) KR101704835B1 (ja)
CN (1) CN102361959B (ja)
BR (1) BRPI1012237A2 (ja)
MY (1) MY183299A (ja)
WO (1) WO2010109897A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091099A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
WO2012091100A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2012091092A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2012133180A1 (ja) * 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP2012201802A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
EP2716735A1 (en) * 2011-05-24 2014-04-09 JX Nippon Oil & Energy Corporation Method for producing monocylic aromatic hydrocarbons
JP2015044199A (ja) * 2014-11-26 2015-03-12 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
KR20160124818A (ko) * 2014-02-25 2016-10-28 사우디 베이식 인더스트리즈 코포레이션 촉매적 분해를 이용하여 혼합 탄화수소 급원으로부터 btx를 생산하는 방법
US9809507B2 (en) 2009-06-30 2017-11-07 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US9815750B2 (en) 2009-07-29 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527036A4 (en) 2010-01-20 2014-03-05 Jx Nippon Oil & Energy Corp CATALYST FOR USE IN THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS AND METHOD FOR THE PRODUCTION OF MONOCYCLIC AROMATIC HYDROCARBONS
JP5535845B2 (ja) 2010-09-14 2014-07-02 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
WO2014129585A1 (ja) * 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
US9162955B2 (en) 2013-11-19 2015-10-20 Uop Llc Process for pyrolysis of a coal feed
KR102231798B1 (ko) * 2019-08-23 2021-03-23 서울대학교산학협력단 갈로알루미노실리케이트 촉매의 재생 방법 및 상기 재생된 갈로알루미노실리케이트 촉매를 이용한 btx 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1287722A (en) 1970-01-20 1972-09-06 Universal Oil Prod Co Process for hydrotreating light cycle oils
JPS56157488A (en) 1980-04-14 1981-12-04 Mobil Oil Corp Hydrocracking method for polynuclear aromatic group-containing raw material
JPS61148295A (ja) 1984-12-07 1986-07-05 アシユランド・オイル・インコーポレーテツド アロマチツク燃料製造法
JPS61283687A (ja) 1985-06-03 1986-12-13 モ−ビル オイル コ−ポレ−ション 高オクタン価ガソリンの製造方法
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2007154151A (ja) 2005-11-11 2007-06-21 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2009078596A (ja) 2007-09-25 2009-04-16 Denso Corp 妨害波エリア報知システム、及び車両用遠隔制御システム
JP2009235248A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2009235247A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3479279A (en) * 1966-08-22 1969-11-18 Universal Oil Prod Co Gasoline producing process
JPS4911603B1 (ja) * 1970-12-02 1974-03-18
CN1012169B (zh) * 1983-10-17 1991-03-27 阿莫科公司 在结晶硅铝酸盐沸石为基础的催化剂中加入钼化物改进烃类转化的过程
CN1007426B (zh) * 1983-12-24 1990-04-04 英国石油公司 芳烃的生产方法
BE1004277A4 (fr) * 1989-06-09 1992-10-27 Fina Research Procede de production d'essences a indice ron et mon ameliores.
US4985134A (en) * 1989-11-08 1991-01-15 Mobil Oil Corporation Production of gasoline and distillate fuels from light cycle oil
US5219814A (en) * 1990-12-19 1993-06-15 Mobil Oil Corporation Catalyst for light cycle oil upgrading
MY113914A (en) * 1995-06-16 2002-06-29 Inst Francais Du Petrole Process for catalytic conversion of hydrocarbons into aromatic compounds with a catalyst containing silicon
FR2735489B1 (fr) * 1995-06-16 1997-08-22 Inst Francais Du Petrole Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur contenant du titane, zirconium, hafnium, cobalt, nickel et/ou zinc
US5990032A (en) * 1997-09-30 1999-11-23 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
US6123830A (en) * 1998-12-30 2000-09-26 Exxon Research And Engineering Co. Integrated staged catalytic cracking and staged hydroprocessing process
US6569316B2 (en) * 2000-04-17 2003-05-27 Exxonmobil Research And Engineering Company Cycle oil conversion process incorporating shape-selective zeolite catalysts
CA2541051C (en) 2005-09-20 2013-04-02 Nova Chemicals Corporation Aromatic saturation and ring opening process
KR20090025254A (ko) * 2006-05-23 2009-03-10 가부시키가이샤 저펜에너지 탄화수소 증류분의 제조 방법
KR101503069B1 (ko) * 2008-10-17 2015-03-17 에스케이이노베이션 주식회사 유동층 접촉 분해 공정의 경질 사이클 오일로부터 고부가 방향족 및 올레핀을 제조하는 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1287722A (en) 1970-01-20 1972-09-06 Universal Oil Prod Co Process for hydrotreating light cycle oils
JPS56157488A (en) 1980-04-14 1981-12-04 Mobil Oil Corp Hydrocracking method for polynuclear aromatic group-containing raw material
JPS61148295A (ja) 1984-12-07 1986-07-05 アシユランド・オイル・インコーポレーテツド アロマチツク燃料製造法
JPS61283687A (ja) 1985-06-03 1986-12-13 モ−ビル オイル コ−ポレ−ション 高オクタン価ガソリンの製造方法
JPH032128A (ja) 1989-05-30 1991-01-08 Idemitsu Kosan Co Ltd 単環芳香族含有炭化水素の製造方法
JPH0326791A (ja) 1989-06-23 1991-02-05 Idemitsu Kosan Co Ltd 炭化水素の製造方法
JPH0352993A (ja) 1989-07-21 1991-03-07 Idemitsu Kosan Co Ltd Btxに富む炭化水素の製造方法
JP2007154151A (ja) 2005-11-11 2007-06-21 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2009078596A (ja) 2007-09-25 2009-04-16 Denso Corp 妨害波エリア報知システム、及び車両用遠隔制御システム
JP2009235248A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法
JP2009235247A (ja) * 2008-03-27 2009-10-15 Toray Ind Inc 炭素数6〜8の芳香族炭化水素の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412785A4
W. M. MEIYER, D. H. OLSON: "Atlas of Zeolite Structure Types", 1978, THE STRUCTURE COMMISSION OF THE INTERNATIONAL ZEOLITE ASSOCIATION

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809507B2 (en) 2009-06-30 2017-11-07 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US9815750B2 (en) 2009-07-29 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
EP2660227A1 (en) * 2010-12-28 2013-11-06 JX Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
WO2012091099A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
JP2012140371A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
JP2012139640A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2012091100A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP2012139641A (ja) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
US9815047B2 (en) 2010-12-28 2017-11-14 Jx Nippon Oil & Energy Corporation Catalyst for producing monocyclic aromatic hydrocarbon and production method of monocyclic aromatic hydrocarbon
CN103282119A (zh) * 2010-12-28 2013-09-04 吉坤日矿日石能源株式会社 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
US9382484B2 (en) 2010-12-28 2016-07-05 Jx Nippon Oil & Energy Corporation Production method of monocyclic aromatic hydrocarbons
WO2012091092A1 (ja) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
EP2660227A4 (en) * 2010-12-28 2014-08-20 Jx Nippon Oil & Energy Corp METHOD FOR PRODUCING A MONOCYCLIC AROMATIC HYDROCARBON
JP2012201633A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
KR20140022814A (ko) * 2011-03-25 2014-02-25 제이엑스 닛코닛세키에너지주식회사 단환 방향족 탄화수소의 제조 방법
CN103459560A (zh) * 2011-03-25 2013-12-18 吉坤日矿日石能源株式会社 单环芳香族烃的制造方法
KR101898305B1 (ko) * 2011-03-25 2018-09-12 제이엑스티지 에네루기 가부시키가이샤 단환 방향족 탄화수소의 제조 방법
CN103443058A (zh) * 2011-03-25 2013-12-11 吉坤日矿日石能源株式会社 单环芳香族烃的制造方法
US9776934B2 (en) 2011-03-25 2017-10-03 JX Nippon Oil Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP2012201802A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法
US9573864B2 (en) 2011-03-25 2017-02-21 Jx Nippon Oil & Energy Corporation Method of producing monocyclic aromatic hydrocarbons
WO2012133180A1 (ja) * 2011-03-25 2012-10-04 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
EP2716735A1 (en) * 2011-05-24 2014-04-09 JX Nippon Oil & Energy Corporation Method for producing monocylic aromatic hydrocarbons
US9828309B2 (en) 2011-05-24 2017-11-28 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
EP2716735A4 (en) * 2011-05-24 2014-11-12 Jx Nippon Oil & Energy Corp PROCESS FOR PREPARING MONOCYCLIC AROMATIC HYDROCARBONS
JP2017510673A (ja) * 2014-02-25 2017-04-13 サウディ ベーシック インダストリーズ コーポレイション 接触分解を利用した、混合炭化水素元からbtxを製造する方法
KR20160124818A (ko) * 2014-02-25 2016-10-28 사우디 베이식 인더스트리즈 코포레이션 촉매적 분해를 이용하여 혼합 탄화수소 급원으로부터 btx를 생산하는 방법
US10358612B2 (en) 2014-02-25 2019-07-23 Saudi Basic Industries Corporation Process for producing BTX from a mixed hydrocarbon source using catalytic cracking
KR102374847B1 (ko) * 2014-02-25 2022-03-16 사우디 베이식 인더스트리즈 코포레이션 촉매적 분해를 이용하여 혼합 탄화수소 급원으로부터 btx를 생산하는 방법
JP2015044199A (ja) * 2014-11-26 2015-03-12 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Also Published As

Publication number Publication date
BRPI1012237A2 (pt) 2016-03-29
JP4740396B2 (ja) 2011-08-03
JPWO2010109897A1 (ja) 2012-09-27
US9243192B2 (en) 2016-01-26
KR101704835B1 (ko) 2017-02-08
EP2412785B1 (en) 2019-06-05
CN102361959B (zh) 2014-07-30
KR20120001731A (ko) 2012-01-04
US20110270005A1 (en) 2011-11-03
MY183299A (en) 2021-02-18
EP2412785A4 (en) 2015-01-21
CN102361959A (zh) 2012-02-22
EP2412785A1 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4740396B2 (ja) 芳香族炭化水素の製造方法
KR101714805B1 (ko) 단환 방향족 탄화수소 제조용 촉매 및 단환 방향족 탄화수소의 제조 방법
WO2012036182A1 (ja) 芳香族炭化水素の製造方法
WO2011090121A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
US9815047B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and production method of monocyclic aromatic hydrocarbon
US9815750B2 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP5868012B2 (ja) 単環芳香族炭化水素の製造方法
JP5683344B2 (ja) 単環芳香族炭化水素の製造方法
WO2011090124A1 (ja) 炭化水素製造用触媒および炭化水素の製造方法
WO2012091100A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
JP5587761B2 (ja) 単環芳香族炭化水素の製造方法
JP5813853B2 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法
WO2012091119A1 (ja) 単環芳香族炭化水素製造用触媒および単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013465.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010513556

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138064

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010755699

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022083

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012237

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012237

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110923