WO2010104027A1 - チアゾール誘導体およびその製造方法 - Google Patents

チアゾール誘導体およびその製造方法 Download PDF

Info

Publication number
WO2010104027A1
WO2010104027A1 PCT/JP2010/053765 JP2010053765W WO2010104027A1 WO 2010104027 A1 WO2010104027 A1 WO 2010104027A1 JP 2010053765 W JP2010053765 W JP 2010053765W WO 2010104027 A1 WO2010104027 A1 WO 2010104027A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lower alkyl
hydroxy
halogen
halo
Prior art date
Application number
PCT/JP2010/053765
Other languages
English (en)
French (fr)
Inventor
村井 利昭
Original Assignee
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学 filed Critical 国立大学法人岐阜大学
Priority to US13/255,202 priority Critical patent/US8871944B2/en
Priority to EP10750780.8A priority patent/EP2388253B1/en
Priority to JP2011503804A priority patent/JP5610351B2/ja
Publication of WO2010104027A1 publication Critical patent/WO2010104027A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/08Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D277/12Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/18Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/42Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to a thiazole derivative and a method for producing the same. More specifically, the present invention relates to a method for producing a pyridylthiazole compound or a dihydrothiazole compound in a high yield, at a low cost, simply and selectively.
  • Thiazole derivatives are useful compounds as functional compounds (or synthetic intermediates) such as agricultural chemicals (insecticides, etc.), pharmaceuticals, fungicides, dyes, electronic materials, and the like.
  • functional compounds or synthetic intermediates
  • such as agricultural chemicals (insecticides, etc.), pharmaceuticals, fungicides, dyes, electronic materials, and the like For example, compounds using thiazole skeleton as interleukin 6 production inhibitors, bone resorption inhibitors, anti-osteoporosis agents (Patent Document 1), compounds used as osteogenesis promoters (Patent Document 2), protein kinase C Those used as inhibitors (Patent Document 3), those used as agricultural chemical intermediates (Patent Document 4), and those used as neuropeptide Y antagonists (Patent Document 5).
  • Patent Document 3 A method in which a poor solvent is added after the reaction, followed by cooling precipitation (Patent Document 3), a method in which difluorophenacyl bromide and cyanothioacetamide are mixed and heated in water (Patent Document 4), ⁇ -acetonaphthone and thiourea, For example, tetrabutylammonium bromide is mixed in ethyl acetate, and bromine is added dropwise to react therewith (Patent Document 6). These methods leave room for improvement, such as the use of bromine with an irritating odor and the need to procure special reagents.
  • a pyridylthiazole compound which is one of thiazole derivatives, is useful as a fungicide composition, and there is the following document (Patent Document 7) for its production method.
  • Patent Document 7 2,6-dibromopyridine is treated with alkyllithium and N, N-dimethylacetamide is added. This is brominated with a brominating agent in the presence of an acid, and then reacted with thioacetamide, and finally, a target pyridylthiazole compound is obtained by a coupling reaction with an alkyl halogen.
  • This process has multi-steps, and there is a problem in that the operation method is somewhat complicated.
  • dihydrothiazole As a preparation method of dihydrothiazole (referred to as thiazoline in IUPAC.
  • dihydrothiazole is used in order to clarify the difference from thiazole) as one of thiazole derivatives, for example, methyl 2- (difluoromethyl) -5 -(((2-chloroethyl) amino) carbonyl) -4- (2-methylpropyl) -6-trifluoromethyl) -3-pyridinecarboxylate and phosphorous pentasulfide are mixed and heated to degas.
  • Patent Document 8 A method (Patent Document 8) has been proposed. This method requires a special starting material in order to obtain a 4,5 dihydrothiazole compound having a pyridyl group at the 2-position.
  • thiazole derivatives are very useful as intermediates for functional materials such as pharmaceutical compositions, dyes, and electronic materials.
  • functional materials such as pharmaceutical compositions, dyes, and electronic materials.
  • an object of the present invention is to propose a simplified manufacturing method using readily available raw materials.
  • thioformamide was allowed to act via thioamide dianion. It has been found that thiazole or dihydrothiazole can be selectively synthesized.
  • the present invention is represented by the general formula (I), which comprises adding a strong base to the thioamide represented by the following general formula (II) and then reacting the thioformamide represented by the general formula (III).
  • the present invention relates to a method for producing a thiazole derivative.
  • R 1 represents a group selected from a branched or cyclic alkyl group having 3 to 12 carbon atoms, an aryl group, and a heteroaromatic group.
  • Hydroxy, lower alkyl, lower alkoxy, halo or lower alkyl may be substituted with one or more substituents.
  • R 2 represents an aryl group which may be substituted with one or more substituents selected from halogen, hydroxy, lower alkyl, lower alkoxy and halo-lower alkyl, or halogen, hydroxy, lower alkyl, lower alkoxy, halo
  • a pyridyl group optionally substituted with one or more substituents selected from lower alkyl is shown.
  • R 3 and R 4 are the same or different and each is a group selected from a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aryl group, and a heteroaromatic group (provided that each group further includes Optionally substituted with one or more substituents selected from halogen, hydroxy, lower alkyl, lower alkoxy, halo lower alkyl.), Or R 3 and R 4 together with the nitrogen atom to which they are attached.
  • a 5- to 7-membered heterocyclic ring, Y is a hydrogen atom or Indicates.
  • R 2 is an aryl group
  • dihydrothiazole represented by the following general formula (IV) can be selectively obtained
  • R 2 is a pyridyl group
  • thiazole represented by the following general formula (VI) can be selectively obtained. Is a feature.
  • R 1 in the above formula is the same as the group shown in the general formula (I) and the general formula (II), and Y is the same as the group shown in the general formula (I).
  • the strong base added to the thioamide represented by the general formula (II) includes n-butyllithium, lithium diisopropylamide, sodium hydride, potassium hydride, potassium t-butoxide, calcium hydride, sodium hydroxide, sodium Examples include amides. These strong bases act on the carbon next to the thioamide nitrogen atom to abstract hydrogen and form a thioamide dianion. As the strong base, n-butyllithium is preferably used.
  • dihydrothiazole represented by the general formula (IV) is a completely new compound in which an amino group is bonded to the 5-position of the thiazoline ring.
  • Thiazoline is known as an intermediate for pharmaceuticals and agricultural chemicals.
  • amino group and phenyl group are bonded to each other instead of the conventional hydrogen atom to form asymmetric carbon at positions 4 and 5. It is possible to search for new possibilities for.
  • R 1 is the same as the group represented by the general formula (I).
  • R 5 and R 6 are the same or different and each is a group selected from a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an aryl group, and a heteroaromatic group (provided that each group further includes And may be substituted with one or more substituents selected from halogen, hydroxy, lower alkyl, lower alkoxy and halo-lower alkyl.
  • At least one of R 5 and R 6 is halogen, hydroxy, lower An aryl group optionally substituted with one or more substituents selected from alkyl, lower alkoxy, halo lower alkyl, or one or more substituents selected from halogen, hydroxy, lower alkyl, lower alkoxy, halo lower alkyl
  • the heteroaromatic group which may be substituted by is shown.
  • the thiazole derivative represented by the general formula (V) has strong fluorescence, particularly when R 5 and R 6 are aryl groups, that is, when the 5-position of the thiazole ring is a diarylamino group. It is a compound that can be developed into an electron transport layer or the like in electroluminescence (abbreviated as “EL”).
  • the method for producing a thiazole derivative of the present invention can be easily produced from easily available and inexpensive raw materials without going through a complicated synthesis route, the synthesis cost can be reduced.
  • the substituent of thioamide for the synthesized product a product can be selectively obtained, and a completely new compound that has never been obtained can be easily obtained. Contributes greatly to the creation of useful new compounds.
  • FIG. 1 is a diagram showing a fluorescence spectrum of an example of a thiazole derivative of the present invention. (Example 6)
  • the present invention is characterized by adding a strong base to thioamide and then reacting with thioformamide.
  • reaction formula (a) As a method for synthesizing this thioamide, the following reaction formula (a) can be used as an example.
  • R 1 in the formula represents a group selected from a branched or cyclic alkyl group having 3 to 12 carbon atoms, an aryl group, and a heteroaromatic group, and each of these groups is further halogen, hydroxy, lower alkyl, lower alkoxy , May be substituted with one or more substituents selected from halo-lower alkyl.
  • branched alkyl groups include isopropyl, isobutyl, t-butyl, etc.
  • examples of cyclic alkyl groups include cyclopropyl, cyclohexyl, etc.
  • examples of aryl groups include heteroaromatic groups such as benzyl, toluyl, xylyl, etc. Includes pyridyl, furyl, thienyl and the like. These are preferable because of the high yield in forming a thioamide dianion by reaction with a strong base.
  • R 2 in the formula represents an aryl group which may be substituted with one or more substituents or a pyridyl group which may be substituted with one or more substituents. More specifically, each is substituted with one or two groups selected from a halogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and an alkoxycarbonyl group having 1 to 6 carbon atoms.
  • the reaction formula (a) is a conventionally known method for synthesizing a thioamide that is a starting material of the present invention.
  • the feature of this method is that any raw material (compound on the left side of the formula) can be easily and inexpensively obtained, and as a result, the structure design of thioamide can be freely performed.
  • R 2 is selectively used for the synthesis of the desired thiazole derivative.
  • dimethylformamide dimethyl sulfoxide, N-methylpyrrolidone, toluene or the like
  • dimethylformamide is preferred from the viewpoint of easy separation of the product in the process of washing the reaction system with water.
  • this reaction is performed at 60 to 110 ° C., preferably 80 to 90 ° C. If the temperature is lower than the above temperature, the reaction rate tends to decrease and the yield tends to decrease. If the temperature is higher, side reactions are likely to occur, and purification may take time.
  • the most preferable ratio is 1: 1.1: 1.1, because the aldehyde group-containing compound is completely reacted and the purification of thioamide proceeds efficiently.
  • This reaction is called the Willgerodt-Kindler reaction and is described in detail in the literature (Brown, E.V. Synthesis 1975, 358).
  • the upper reaction generates thioamide dianion.
  • the reaction is disclosed in the literature (Murai, T. et al., J.Org.Chem. 2005, 70,8153) and the like.
  • a point to note in starting this reaction is that it must be carried out under an inert gas atmosphere such as nitrogen or argon under dehydrating conditions. This is because the thioamide dianion obtained by reacting with a strong base may be easily decomposed by the presence of water or oxygen, and is present stably so as to shift to the next reaction.
  • lithium diisopropylamide, sodium hydride, potassium hydride, potassium t-butoxide, calcium hydride, sodium hydroxide, sodium amide, etc. can be used.
  • -Butyl lithium (nBuLi) is preferable in terms of easy availability. Further, if butyl lithium is used, there is an advantage that separation is easy as butane gas after the reaction.
  • tetrahydrofuran is used as a solvent.
  • Toluene, diethyl ether, and the like can be used as other solvents.
  • the former may cause a slight side reaction, and the latter may cause the reaction intermediate to precipitate without dissolving, thereby reducing the reaction yield.
  • tetrahydrofuran is preferred.
  • the reaction temperature at this time can be carried out in the range of ⁇ 78 ° C. to room temperature, but about 0 ° C. is appropriate in view of suppressing side reactions and considering the efficiency.
  • the mixing ratio of each compound to be reacted is not generally determined depending on the compound to be used, but generally, about 2 equivalents of nBuLi is added to thioamide, and then about 1 equivalent of thioformamide is added.
  • a thiazole skeleton is formed by an intramolecular cyclization reaction.
  • the thioformamide used at this time gives a dihydrothiazole having an amino group introduced at the 5-position, which is not known at all.
  • Both the 5-position carbon to which the amino group is bonded and the 4-position carbon to which the phenyl group are bonded are asymmetric carbons and can be used for various application developments including optical activity.
  • the cyclization reaction can be promoted by adding an appropriate amount of, for example, PhMgBr or nBuMgBr as an organomagnesium compound (Grignard reagent) in the lower reaction.
  • the thiazole derivative represented by the general formula (V) is obtained.
  • an aryl group phenyl group in the general formula (V)
  • dihydrothiazole is basically generated.
  • deprotonation proceeds by adding iodine to the reaction system.
  • at least one of R 5 and R 6 represented by the general formula (V) is one or more substituents selected from halogen, hydroxy, lower alkyl, lower alkoxy and halo lower alkyl.
  • the derivative exhibits fluorescence by being an aryl group which may be substituted with or a heteroaromatic group which may be substituted with the same substituent as described above.
  • the reaction conditions at the time of iodine addition were as follows: thioformamide was added at the above reaction temperature ( ⁇ 78 ° C. to room temperature) and mixed for several minutes to several hours, and then the iodine was converted into thioformamide while maintaining the reaction temperature. It is added so as to have a molar concentration of equimolar to 3 times mol, preferably 1.5 to 2.5 times.
  • solid iodine can be added as it is, or once dissolved in a reaction solvent (for example, tetrahydrofuran) and added to the reaction system.
  • a reaction solvent for example, tetrahydrofuran
  • EL elements using electroluminescence have high visibility due to self-emission and are completely solid elements, and thus have characteristics such as excellent impact resistance. Use is drawing attention.
  • the organic EL element has features such that the applied voltage can be significantly reduced, the size can be easily reduced, and the power consumption is small. So far, an enormous compound group having a diarylamino group has been reported, and its use as an organic EL device is being studied widely.
  • the thiazole derivative represented by the general formula (V) has strong fluorescence, particularly when R 5 and R 6 are diarylamino groups.
  • this compound has a conjugated system of diarylamino group that extends to a thiazole ring and a phenyl substituent, and can create a base compound that can be used as an entirely new electronic material, for example, an electron transport layer in an organic EL device. It is.
  • reaction formula (c) an example using a thioamide bonded to the 2-position of the pyridyl group is shown, but a thioamide bonded to the 3-position or 4-position may be used. However, it is preferable to use a thioamide bonded to the 2-position because the highest yield can be obtained as the final product (general formula (I ′)).
  • the 1 H-nuclear magnetic resonance spectrum and 13 C-nuclear magnetic resonance spectrum of Compound 3 are JNM ⁇ -400 model made by JEOL, and the number of accumulated 1 H-nuclear magnetic resonance spectra is 25 ° C in deuterated chloroform. Eight times, 13 C-nuclear magnetic resonance spectra were measured with 100-200 integrations. The results are as shown below.
  • Example 1 compound 1 shown in Example 1 was synthesized, then compound 1 (0.257 g, 1.0 mmol) was dissolved in THF (2.0 mL), and BuLi hexane solution (1.43 M, 1.40 mL, 2.0 mmol) was added at 0 ° C., and the mixture was stirred for 5 minutes. N, N-diphenylthioformamide (0.213 g, 1.0 mmol) was added to the solution at 0 ° C. and stirred for 30 minutes. To this was added iodine (0.512 g, 2.0 mmol) at 0 ° C. and stirring was continued for 2 hours. The reaction mixture was poured into saturated ammonium chloride solution and extracted with methylene chloride.
  • Example 6 the same procedure was followed except that N-phenyl-N-methylthioformamide (0.119 g, 1.0 mmol) was used instead of N, N-diphenylthioformamide, and 2- (4- Methoxyphenyl) -4-phenyl-5- (N-phenyl-N-methylamino) thiazole was obtained as a yellow solid in 19% yield.
  • the thiazole derivative of the present invention can be easily produced from easily available and inexpensive raw materials through a complicated synthesis route by the production method of the present invention. Further, by specifying the substituent of the starting material for the synthesized product, a product can be selectively obtained, and a completely new compound that has never been obtained can be easily obtained. Therefore, the obtained thiazole derivative can be used as a raw material (and intermediate) for a novel compound useful as a pharmaceutical or agricultural chemical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Abstract

 入手容易な原材料を用いて、簡略化された製造方法によりチアゾール誘導体を提供することを目的とする。 一般式(II)で表されるチオアミドに強塩基を添加して、一般式(III)で示されるチオホルムアミドを反応させることを特徴とする一般式(I)で表される新規なチアゾール誘導体の製造方法および、新規なチアゾール誘導体。

Description

チアゾール誘導体およびその製造方法
 本発明は、チアゾール誘導体およびその製造方法に関するものである。さらに詳しくは、ピリジルチアゾール系化合物またはジヒドロチアゾール系化合物を高収率、安価、簡便かつ選択的に製造する方法に関する。
 チアゾール誘導体は、農薬(殺虫剤など)、医薬品、殺菌剤や染料、電子材料などの機能性化合物(或いはその合成中間体)として有用な化合物である。例えば、チアゾール骨格を有する化合物をインターロイキン6生産抑制剤・骨吸収抑制剤・抗骨粗鬆症剤として使用するもの(特許文献1)、骨形成促進剤として使用するもの(特許文献2)、プロテインキナーゼC阻害剤として使用するもの(特許文献3)、農薬中間体として使用するもの(特許文献4)、ニューロペプチドYアンタゴニストとして使用するもの(特許文献5)などである。
 これらの文献には、チアゾール誘導体の合成例として各種の方法が開示されている。例えば4’-クロロプロピオフェノンのジクロロメタン溶液に臭素を滴下して作用させたのち、チオ尿素を反応させる方法(特許文献1、2)や、チオウレアのエタノール溶液に3-クロロアセチルアセトンを加えて加熱反応させたのち貧溶媒を加えて冷却析出させる方法(特許文献3)、水中でジフルオロフェナシルブロマイドとシアノチオアセトアミドを混合して加熱反応させる方法(特許文献4)、β-アセトナフトンとチオ尿素、臭化テトラブチルアンモニウムとを酢酸エチル中で混合し、これに臭素を滴下して反応させる方法(特許文献6)などである。これらの方法では刺激臭のある臭素を使用する点、特別な試薬を調達する必要がある点などそれぞれに改良すべき余地を残している。
 一方チアゾール誘導体の一つであるピリジルチアゾール系化合物は殺菌剤組成物として有用であり、その製造法については以下の文献(特許文献7)がある。該文献によると、2,6-ジブロムピリジンをアルキルリチウムで処理しついでN,N-ジメチルアセトアミドを添加する。これに酸の存在下、臭素化剤で臭素化したのちチオアセトアミドと反応させて、最後にアルキルハロゲンとのカップリング反応により目的とするピリジルチアゾール系化合物を得る。この工程は多段階のステップがあり、操作方法が多少煩雑となる点に課題がある。
 また、チアゾール誘導体の一つであるジヒドロチアゾール(IUPACではチアゾリンという。本発明では、チアゾールとの差異を明確にするためにジヒドロチアゾールという)の調製方法として、例えばメチル 2-(ジフルオロメチル)-5-(((2-クロロエチル)アミノ)カルボニル)-4-(2-メチルプロピル)-6-トリフルオロメチル)-3-ピリジンカルボキシレートと5硫化2リンを混合加熱して脱ガスすることにより製造する方法(特許文献8)が提案されている。この方法では2位にピリジル基を有する4,5ジヒドロチアゾール化合物を得るために、特殊な出発物質を必要としている。
特開平10-87490号公報 特開平11-209284号公報 特開2002-53566号公報 再表WO2002/094798号公報 特表2006-502131号公報 特開2006-225334号公報 特開平5-194506号公報 特開平11-269174号公報
 上述の通りチアゾール誘導体は薬剤組成物や染料、電子材料などの機能性材料の中間体として非常に有用であるものの、従来の合成法においては、使用される原材料の特殊性、多段階の製造工程を必要とするなどの改善すべき余地があったと思われる。従って、本発明では、入手容易な原材料を用いて、簡略化された製造方法を提案することを目的とする。
 前記課題を解決し、所期の目的を達成するために鋭意検討を行った結果、本発明においてはチオアミドを合成したのち、チオアミドジアニオンを経由してチオホルムアミドを作用させたところ、チオアミドの置換基によって、チアゾールまたはジヒドロチアゾールを選択的に合成可能であることを見いだした。
 すなわち、本発明は、下記一般式(II)で表されるチオアミドに強塩基を添加し、次いで一般式(III)で示されるチオホルムアミドを反応させることを特徴とする一般式(I)で表されるチアゾール誘導体の製造方法に関するものである。
Figure JPOXMLDOC01-appb-C000007
 前記式中、
Figure JPOXMLDOC01-appb-I000008
 は、単結合または二重結合を示し、R1は炭素数3~12の分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基を示し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。
 また、R2は、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いアリール基または、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いピリジル基を示す。
 R3及びR4は同一又は異なって、炭素数1~12の直鎖状、分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基(但し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。)、あるいはR3及びR4はそれらが結合する窒素原子と一緒になって5員ないし7員の複素環を示し、Yは、水素原子または、
Figure JPOXMLDOC01-appb-I000009
を示す。
 前記R2が、アリール基の場合には下記一般式(IV)で表されるジヒドロチアゾールが、ピリジル基の場合には下記一般式(VI)で表されるチアゾールがそれぞれ選択的に得られることが特徴である。
Figure JPOXMLDOC01-appb-C000010
 前記式中のR1は、一般式(I)及び一般式(II)に示される基と同様であり、Yは、一般式(I)に示される基と同様である。
 このような選択的反応についてはこれまでに全く知られていないところであり、その反応機構については後に詳述する。この選択性によって所望のチアゾール誘導体を合成することができるので、医薬分野、基礎材料分野の用途・機能を含めた幅広い候補化合物を簡単な方法により得ることが可能となった。
 前記一般式(II)で表されるチオアミドに添加する強塩基としては、n-ブチルリチウム、リチウムジイソプロピルアミド、水素化ナトリウム、水素化カリウム、カリウムt-ブトキシド、水素化カルシウム、水酸化ナトリウム、ナトリウムアミドなどがある。これらの強塩基はチオアミドの窒素原子の隣の炭素に作用して水素を引き抜きチオアミドジアニオンを形成する。強塩基としてはn-ブチルリチウムが好ましく使用される。
 さらに、一般式(IV)で表されるようなジヒドロチアゾールは、チアゾリン環の5位にアミノ基が結合した全く新規な化合物である。チアゾリンは医薬・農薬の中間体として知られているが、本発明では、従来の水素原子の代わりにアミノ基およびフェニル基がそれぞれ結合して4,5位が不斉炭素となるため、光学活性についても新たな可能性を探索することが可能となる。
 また、一般式(III)で表されるチオホルムアミドを反応させた後、さらにヨウ素を添加して反応させることによって、一般式(IV)で表されるジヒドロチアゾールの他に、下記一般式(V)で表されるチアゾール誘導体を得ることができる。
Figure JPOXMLDOC01-appb-C000011
 式中、R1は一般式(I)に示される基と同様である。R5及びR6は同一又は異なって、炭素数1~12の直鎖状、分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基(但し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。)を示し、R5及びR6のうち少なくとも一方は、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いアリール基または、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いヘテロ芳香族基を示す。
 前記一般式(V)で表されるチアゾール誘導体は、特にR5及びR6がアリール基、すなわちチアゾール環の5位がジアリールアミノ基である場合の蛍光発光性が強く、有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスを「EL」と略記する)における電子輸送層などへ展開できる化合物である。
 本発明のチアゾール誘導体の製造方法は、入手容易でかつ安価な原料から、複雑な合成経路を経ることなく簡易に製造することができるので、合成コストの低減を図ることができる。また、合成物についてはチオアミドの置換基を特定することで、選択的に生成物を得ることができ、しかも、これまでにない全く新規な化合物を容易に得られるところから、医薬・農薬等として有用な新規化合物の創成に多大な寄与・貢献をもたらす。
 さらに、反応系にヨウ素を追加することで、共役系に広がりをもつチアゾール誘導体が得られ、新たな電子材料の開発へ向けて幅広く活用が見込まれる。
図1は本発明のチアゾール誘導体の一例について、蛍光スペクトルを示した図である。(実施例6)
 以下、本発明の製造方法についてさらに詳細に説明する。
 本発明は、チオアミドに強塩基を添加し、次いでチオホルムアミドを反応させることを特徴とするが、このチオアミドの合成方法としては一例として以下の反応式(a)を利用することができる。
Figure JPOXMLDOC01-appb-C000012
 式中のR1は炭素数3~12の分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基を示し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。このような分岐状アルキル基としては、イソプロピル、イソブチル、t-ブチルなどが、また環状アルキル基としてはシクロプロピル、シクロヘキシルなどが、またアリール基としてはベンジル、トルイル、キシリルなど、ヘテロ芳香族基としてはピリジル、フリル、チエニルなどが挙げられる。これらは、強塩基との反応によりチオアミドジアニオンを形成する上で高収率であるために好ましい。
 また、式中のR2は、一種以上の置換基で置換されていても良いアリール基または、一種以上の置換基で置換されていても良いピリジル基を示す。より具体的には、ハロゲン原子、水酸基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルコキシカルボニル基から選ばれる1または2個の基でそれぞれ置換されていてもよいフェニル基、または、ハロゲン原子、水酸基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基および炭素数1~6のアルコキシカルボニル基から選ばれる1または2個の基で置換されていてもよいピリジル基から選択される基であり、本発明のチアゾール誘導体を選択的に合成する鍵となる基である。
 前記反応式(a)は、本発明の出発物質であるチオアミドの合成法として従来公知の方法である。この方法の特徴はいずれの原料(式左側の化合物)も容易かつ安価に入手できること、その結果としてチオアミドの構造設計が自由に行いうることなどである。但し、本発明では目的とするチアゾール誘導体合成のためR2については選択的に用いている。
 この反応は、有機溶媒としてジメチルホルムアミド、ジメチルスルホキシド、Nメチルピロリドン、トルエンなどを用いることができる。これらのうち、チオアミドを一旦精製して単離・保管などを行う場合には、反応系を水洗する過程で生成物を分離することが容易である観点から、ジメチルホルムアミドが好適である。
 また、この反応は、60~110℃、好ましくは80~90℃で行われる。前記温度よりも低い場合には、反応速度が低下して収率が低下する傾向があり、また、より高温である場合には、副反応が起こりやすく、精製に手間がかかるおそれがある。
 上記反応は、アルデヒド基含有化合物:硫黄:アミノ基含有化合物=1:1:1~1:1.2:1.2のモル比の範囲で行うことができる。この比率のうち最も好ましいのは、1:1.1:1.1であり、アルデヒド基含有化合物を完全に反応させ、チオアミドの精製を効率よく進めるためである。なお、この反応はWillgerodt-Kindler反応と呼ばれ、文献(Brown,E.V. Synthesis 1975,358)に詳説されている。
 前記アミノ基含有化合物としてR2がフェニル基の化合物を用いた場合のジヒドロチアゾールの合成経路について以下に示す。
Figure JPOXMLDOC01-appb-C000013
 前記反応のうち上段の反応はチオアミドジアニオンを生成させるものである。具体的には、文献(Murai,T. et al.,J.Org.Chem. 2005,70,8153)等に開示されている反応である。この反応の開始における留意点は、脱水条件下、窒素またはアルゴンなどの不活性ガス雰囲気下で行う必要があることである。強塩基と反応させて得られるチオアミドジアニオンは、水または酸素の存在により容易に分解するおそれがあり、安定に存在させて次の反応へと移行させるためである。なお、他の強塩基としては、リチウムジイソプロピルアミド、水素化ナトリウム、水素化カリウム、カリウムt-ブトキシド、水素化カルシウム、水酸化ナトリウム、ナトリウムアミドなどを用いることも可能であるが、反応性・価格・入手容易などの点でブチルリチウム(nBuLi)が好ましい。また、ブチルリチウムを使用すれば、反応後にブタンガスとして分離が容易であるという利点もある。
 前記反応には、溶媒としてテトラヒドロフランを用いている。他の溶媒としてトルエン、ジエチルエーテルなども用いることが可能であるが、前者はわずかに副反応が進行するおそれがあり、後者は反応中間体が溶解せずに沈殿し反応収率が低下おそれがあるため、テトラヒドロフランが好適である。このときの反応温度は-78℃~室温の範囲で実施することが可能であるが、副反応を抑えかつ効率を考慮して0℃前後が適当である。
 反応させる各化合物の混合比率は、用いる化合物により一概には決せられないが、一般的にはチオアミドに対して約2当量のnBuLiを加え、ついで約1当量のチオホルムアミドを添加する。チオアミドとnBuLiとは1:2の反応にてジアニオンを生成し、ほぼ100%の収率にて反応が進行する。また、生成したジアニオンも活性が高いためにチオホルムアミドとほぼ100%の反応が起こる。従って、それぞれの化合物のモル比は基本的にはチオアミド:nBuLi:チオホルムアミド=1:2:1である。
 前記反応式の下段では、分子内の環化反応によりチアゾール骨格が形成される。しかもこのとき使用したチオホルムアミドによって、従来では全く知られていない5位にアミノ基が導入されたジヒドロチアゾールが得られるのである。このアミノ基が結合した5位炭素及び、フェニル基が結合した4位炭素はいずれも不斉炭素であり、光学活性を含めて各種の用途開発に用いることができる。
 前記下段の反応に際して有機マグネシウム化合物(Grignard試薬)として例えば、PhMgBrや、nBuMgBrを適量添加することにより環化反応を促進することもできる。
 ところで、4,5-ジヒドロ-1,3-チアゾール類は以前から知られている材料であり、中でも農薬及び製薬工業におけるジヒドロチアゾール及びチアゾールに基づく活性化合物の合成のための重要中間体として用いられている(参考ドイツ国特許 DE10142749など)。本発明では、5位にアミノ基が導入されていることから、これまで用いられているジヒドロチアゾールと同様の用途の他に、新たな用途開発の原材料として充分に期待されるものである。
 上記反応過程において、チオホルムアミドを反応させた後、さらにヨウ素を添加して反応させると、一般式(V)で示すチアゾール誘導体が得られる。上述のように4位にアリール基(一般式(V)ではフェニル基)が存在すると、基本的にはジヒドロチアゾールが生成するが、反応系にヨウ素を添加することによって、脱プロトン化が進行すると考えられる。このようにして得られるチアゾール誘導体の中でも一般式(V)で示すR5及びR6のうち少なくとも一方が、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いアリール基または前記同様の置換基で置換されていても良いヘテロ芳香族基であることによって、当該誘導体が蛍光発光性を示すのである。
Figure JPOXMLDOC01-appb-C000014
 ヨウ素添加時の反応条件としては、チオホルムアミドを前記反応温度(-78℃~室温)で加えて数分から数時間程度混合しながら反応させたのち、反応温度を維持したまま、ヨウ素をチオホルムアミドに対して等モル~3倍モル、このましくは1.5~2.5倍のモル濃度になるように添加する。ヨウ素の添加に際しては、固体ヨウ素をそのまま添加するか、反応溶媒(例えばテトラヒドロフランなど)に一旦溶解させて反応系に添加することもできる。なお、添加後に攪拌などしながら数分から数時間程度反応させれば、目的とする4位にアリール基を有する一般式(V)で表されるチアゾール誘導体が得られるのである。
 ところで、電界発光を利用したEL素子は、自己発光のために視認性が高く、かつ完全固体素子であるため、耐衝撃性に優れるなどの特徴を有することから、各種表示装置における発光素子としての利用が注目されている。特に有機EL素子は印加電圧を大幅に低くしうる上、小型化が容易であって、消費電力が小さいなどの特徴がある。これまでジアリールアミノ基を有する膨大な化合物群が報告され、有機EL素子としての利用が広く検討されているところである。前記一般式(V)で表されるチアゾール誘導体は、特にR5及びR6がジアリールアミノ基である場合の蛍光発光性が強い。すなわち、この化合物は、ジアリールアミノ基の共役系がチアゾール環、置換基フェニルにまで拡がり、全く新たな電子材料として、例えば有機EL素子における電子輸送層などに利用できる基盤化合物を創成することができるのである。
 次に、前記アミノ基含有化合物としてR2がピリジル基の化合物を用いた場合のチアゾールの合成経路について示す。
Figure JPOXMLDOC01-appb-C000015
 前記反応の上段、中段までは、既に述べた反応と変わるところはないので、ここでは下段のみについて説明する。ピリジル基を有するチオアミドにnBuLiを作用させることによりジアニオンを形成し、これにチオホルムアミドを反応させると、一旦ジヒドロチアゾールを生成するものの、ピリジル基の窒素原子によって脱プロトン化が進行し、脱水素により4-(2-ピリジル)チアゾールが生成する。このようなチアゾールは、農薬、医薬品、殺菌剤や染料、電子材料などの機能性化合物(或いはその合成中間体)として有用であり、近年では有機ELの高輝度化、カラー化(特に赤色発光可能化)の発光材料としても注目されつつある。
 前記反応式(c)では、ピリジル基の2位に結合するチオアミドを用いた例を示したが、3位または4位に結合するチオアミドを用いてもよい。但し、2位に結合するチオアミドを用いた方が最終生成物(一般式(I'))として最も高い収率で得られるので好ましい。
 以下本発明をより具体的に明らかにするために、本発明に係る幾つかの実施例を示す。
 化合物3(4,5-ジヒドロ-2,4-ジフェニル-5-ジメチルアミノチアゾール)の合成方法について、全体のスキームは下記に示すとおりである。
Figure JPOXMLDOC01-appb-C000016
 -化合物1(N-フェニルメチルベンゼンカルボチオアミド)の合成-
 ベンジルアミン(12.0mL,0.11mol)のジメチルホルムアミド(DMF:50mL)溶液にベンズアルデヒド(10.1mL,0.1mol)を室温で加えた。ついで、硫黄(3.52g,0.11mol)を加え80~90℃で6時間攪拌しながら加熱した。反応混合液をエチルエーテル(50mL)に注ぎ、有機相を飽和炭酸水素ナトリウム水溶液(200mL)、塩酸(35%,10mL)で洗浄した。さらに有機相を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮し、残渣をヘキサン/塩化メチレン(1:1,30mL)で再結晶して、化合物1を黄色固体として21.3g(収率:94%)を得た。
 -化合物3の合成-
 化合物1(0.227g,1.0mmol)をTHF(2.0mL)に溶解し、この溶液にn-ブチルリチウム-ヘキサン溶液(1.3mL,2.0mmol)を0℃で徐々に加えた。5分攪拌を行ったのち、N,N-ジメチルチオホルムアミドを同じ温度で加え、さらに2.5時間攪拌を続けた。反応混合液に水(10mL)を加え、有機相をジエチルエーテル(10mL)で抽出した。該有機相を水(10mL)で二回洗浄し、さらに水槽をジエチルエーテル(5mL)で再抽出した。集めた有機相を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮し、残渣をシリカゲルクロマトグラフィー(展開溶媒;Hexane:EtOAc:Et2N=5:1:0.01)で精製し、トランス-4,5-ジヒドロ-2,4-ジフェニル-5-ジメチルアミノチアゾール(0.14g,50%)を薄黄色固体として得た。
 融点 89-91℃
 化合物3の1H-核磁気共鳴スペクトルおよび13C-核磁気共鳴スペクトルは、日本電子製JNMα-400型式を用い、重水素化クロロホルム中、25℃で、1H-核磁気共鳴スペクトルは積算回数8回、13C-核磁気共鳴スペクトルは積算回数100-200回で測定した。その結果は次に示す通りである。
(トランス-4,5-ジヒドロ-2,4-ジフェニル-5-ジメチルアミノチアゾール)
 1H NMR (CDCl3)δ2.11(s, 6H, NMe2), 5.11(d, J=2.0 Hz, 1H, SCH), 5.6 (d,J= 2.0 Hz,1H, C=NCH),7.08-7.19 (m, 5H, Ar), 7.27-7.35 (m, 3H, Ar), 7.90-7.92 (m, 2H, Ar); 13C NMR (CDCl3)δ40.0(NMe2), 84.2 (SCH), 90.5 (C=NCH), 126.0, 127.6, 128.4, 128.5, 131.1, 133.5, 139.7, 168.7 (SCN)
 また、IRやMSのデータについても合わせて下記に示す。
 IR (KBr) 2947, 1597, 1450, 1355, 1265, 1229, 1051, 1027, 834, 754, 687, 651, 566, 521 cm-1;MS(EI)m/z 282(M+);HRMS (EI) Calcd for C17H18N2S(M+) 282.1191. found: 282.1177.
 各化合物の混合比、温度、時間などは実施例1と同様の操作であるが、N,N-ジメチルチオホルムアミドを同じ温度で加えた後に、2.5時間攪拌を続ける換わりに、「30分間攪拌を続け、フェニルマグネシウムブロミド(PhMgBr)THF溶液(1.09M,1.83mL,2.0mmol)を室温で加え、2時間撹拌」した。以後実施例1と同様にして操作し、トランス-4,5-ジヒドロ-2,4-ジフェニル-5-ジメチルアミノチアゾール(0.235g,83%)を薄黄色固体として得た。この例に示すようにPhMgBrの添加により環化反応を促進させることができる。
 次に表1に示す各ジヒドロチアゾール(3b~3g)の合成例について、使用した化合物1およびチオホルムアミドとともに収率について同表に示す。なお、各化合物の使用量(モル比)、温度、時間などの諸条件は実施例2と同様である。
Figure JPOXMLDOC01-appb-T000017
 表1に示す各ジヒドロチアゾールについての核磁気共鳴スペクトル等の計測結果を以下に示す。
(トランス-4,5-ジヒドロ-2-(4-メトキシフェニル)-4-フェニル-5-ジメチルアミノチアゾール(3b);黄色オイル)
 IR(neat) 2951, 2833, 2786, 1605, 1508, 1254, 1170, 1031, 948, 837, 698, 657, 566 cm-11HNMR(CDCl3)δ2.19(s,6H, NMe2), 3.77 (s,3H,OMe), 5.16 (d,J= 2.0 Hz, 1H, SCH), 5.61 (d, J= 2.0 Hz, 1H, C=NCH), 6.88-6.90 (d, J= 8.8 Hz, 2H, Ar), 7.19-7.26 (m, 5H, Ar), 7.92-7.94 (m, 2H, Ar); 13C NMR (CDCl3) δ40.0 (NMe2), 55.2 (OMe), 84.2 (SCH), 90.4 (C=NCH), 113.6, 126.1, 126.2, 127.5, 128.5, 130.1, 140.0, 162.0, 168.0 (SCN); MS(EI)m/z 312(M+); HRMS (EI) Calcd for C18H20N2OS(M+) 312.1296. found: 312.1292.
(トランス-2,4-ジヒドロ-2-イソプロピル-4-フェニル-5-ジメチルアミノチアゾール(3c);黄色液体)
 IR(neat) 2966, 1614, 1454, 1287, 1044, 873, 835, 753, 699, 598 cm-11H NMR (CDCl3)δ1.28(dd, J=6.8 Hz, 2.0 Hz, 6H, CH(CH 3)2), 2.13 (s, 6H, NMe2), (sept, J=6.8 Hz, 1H, CH(CH3)2),4.99(d, J=2.0Hz, 1H, SCH), 5.33-5.34 (d, J=2.0 Hz, 1H, C=NCH), 7.16-7.27 (m, 5H, Ar);13C NMR (CDCl3)δ21.6(CH(CH3)2), 35.0 (CH(CH3)2),40.0 (NMe2), 83.5 (SCH), 89.7(C=NCH),126.0, 127.6, 128.6, 140.0, 178.6 (SCN); MS(EI)m/z 248(M+);HRMS(EI) Calcd for C14H20N2S(M+) 248.1347. found: 248.1354.
(トランス-2,4-ジヒドロ-2-(2-ピリジル)-4-フェニル-5-ジメチルアミノチアゾール(3d);橙色オイル)
 IR (neat) 3290, 3059, 2951, 2788, 1599, 1494, 1467, 1435, 1296, 1280, 1176, 1149, 1045, 1025, 996, 958, 836, 789, 743, 698, 537cm-1;H NMR (CDCl3) δ2.11 (s, 6H, NMe2), 5.14-5.15 (d, J = 2.0 Hz, 1H, SCH), 5.63 (d, J = 2.0 Hz, 1H, C=NCH), 7.18-7.22 (m, 2H, Ar), 7.24-7.25 (m, 2H, Ar), 7.30-7.37 (m, 2H, Ar) 7.68-7.73 (td, J = 7.8 Hz, 2.0 Hz, 1H, Ar), 8.11-8.13 (d, J = 8.29 Hz, 1H, Ar), 8.64-8.66 (d, J = 8.29 Hz, 1H, Ar ); 13C NMR (CDCl3)δ40.1 (NMe2), 84.9 (SCH), 88.9 (C=NCH), 121.9, 125.6, 126.2, 127.8, 128.7, 136.6, 139.6, 149.4, 151.3, 170.9 (SCN); MS (EI) m/z 283 (M+); HRMS (EI) Calcd for C16H17N3S (M+) 283.1143. found: 283.1170.
(トランス-4,5-ジヒドロ-2-(4-フルオロフェニル)-4-フェニル-5-ジメチルアミノチアゾール(3e);橙色オイル)
 IR (neat) 3062, 2949, 1603, 1506, 1451, 1234, 1154, 1028, 949, 842, 753, 698, 657, 562 cm-1;H NMR (CDCl3)δ2.20 (s, 6H, NMe2), 5.22 (d, J= 2.0 Hz, 1H, SCH), 5.63 (d, J = 2.0 Hz, 1H, C=NCH), 7.05-7.10 (t, J= 8. 5 Hz, 2H, Ar), 7.23-7.31 (m, 5H, Ar), 7.95-8.00 (m, 2H, Ar); 13C NMR (CDCl3)δ 40.1(NMe2), 84.3 (SCH), 91.1 (C=NCH), 126.0, 127.6, 128.4, 128.5, 131.1, 133.5, 139.7, 168.7 (SCN); 19F NMR (CDCl3)δ -108.8; MS (EI) m/z 300 (M+);HRMS (EI) Calcd for C17H17FN2S (M+) 300.1096. found: 300.1120.
(トランス-2,4-ジヒドロ-2-ターシャリーブチル-4-フェニル-5-ジメチルアミノチアゾール(3f);黄色液体)
 IR (neat) 2965, 2360, 1611, 1451, 1362, 1042, 1002, 751, 698 cm-1;H NMR (CDCl3)δ1.39 (s, 9H, CH(CH)3),2.21 (s, 6H, NMe2), 5.02-5.03 (d, J = 1.5 Hz, 1H, SCH), 5.46-5.47(d, J= 1.5 Hz, 1H, C=NCH), 7.22-7.35 (m, 5H, Ar); 13C NMR(CDCl3)δ29.6(CH(CH)3), 38.9 (CH(CH)3), 40.0 (NMe2), 83.8 (SCH), 89.5 (C=NCH), 125.9, 127.5, 128.5, 139.9, 181.5 (SCN); MS(EI) m/z 262 (M+); HRMS (EI) Calcd for C15H22N2S(M+) 262.1504. found: 262.1500.
(トランス-4,5-ジヒドロ-2,4-ジフェニル-5-モルホリノチアゾール(3g))
 (m.p. 92-94 ℃): IR (KBr) 2854, 1598, 1450, 1269, 1231, 1137, 1113, 945, 752, 565 cm-1;H NMR (CDCl3)δ 2.47-2.52 (m, 4H, N(CH2)2), 3.67-3.69 (m, 4H, O(CH2)2), 5.08-5.09 (d, J = 2.0 Hz, 1H, SCH), 5.68 (d, J = 2.0 Hz, 1H, C=NCH), 7.18-7.29 (m, 5H, Ar), 7.36-7.41 (m, 3H, Ar), 7.95-7.98 (m, 2H, Ar); 13C NMR (CDCl3)δ47.9 (N(CH2)2), 66.3 (O(CH2)2), 83.6 (SCH), 89.1 (C=NCH), 126.2, 127.8, 128.5, 128.6, 128.7, 131.4, 133.3, 139.4, 168.8 (SCN); MS (EI) m/z 324 (M+); HRMS (EI) Calcd for C19H20N2OS (M+)324.1296. found: 324.1269.
 化合物4(2-フェニル-4-(2-ピリジル)チアゾール)の合成方法について、全体のスキームは下記に示すとおりである。
Figure JPOXMLDOC01-appb-C000018
 -化合物1’(N-(2-ピリジルメチル)ベンゼンカルボチオアミド)の合成-
 ピリジルメチルアミン(2.22mL,0.022mol)のジメチルホルムアミド(DMF:8mL)溶液にベンズアルデヒド(2.03mL,0.02mol)を室温で加えた。ついで、硫黄(0.71g,0.022mol)を加え80~90℃で6時間攪拌しながら加熱した。反応混合液をエチルエーテル(20mL)に注ぎ、有機相を飽和炭酸水素ナトリウム水溶液(50mL)で洗浄した。さらに有機相を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮し、残渣シリカゲルカラムクロマトグラフィー(展開溶媒;Hexane:EtOAc=2:1~1:2)で精製し、化合物1を黄色固体として3.33g(収率:73%)を得た。
 -化合物4の合成-
 化合物1’(0.228g,1.0mmol)をTHF(2.0mL)に溶解し、この溶液にn-ブチルリチウム-ヘキサン溶液(1.3mL,2.0mmol)を0℃で徐々に加えた。5分攪拌を行ったのち、N,N-ジメチルチオホルムアミドを同じ温度で加え、さらに3時間攪拌を続けた。反応混合液に水(10mL)を加え、有機相をジエチルエーテル(10mL)で抽出した。該有機相を水(10mL)で二回洗浄し、さらに水槽をジエチルエーテル(5mL)で再抽出した。集めた有機相を硫酸マグネシウムで乾燥させ、ろ過、減圧濃縮し、残渣をシリカゲルクロマトグラフィー(展開溶媒;Hexane:EtOAc:Et2N=5:1:0.01)で精製し、2-フェニル-4-(2-ピリジル)チアゾール(0.149g,62%)を薄橙色固体として得た。
 融点 107-109℃
 得られた2-フェニル-4-(2-ピリジル)チアゾールについても前記実施例と同様の各種測定を行いその結果を下記に示す。
 IR (KBr) 2362, 1587, 1474, 1420, 1057, 991, 754, 684, 667, 591 cm-1;H NMR (CDCl3)δ 7.07-7.11 (m,1H, Ar), 7.28-7.35 (m, 3H, Ar), 7.62-7.66 (td, J = 7.6 Hz, 7.8 Hz, 1H, Ar), 7.91-7.93 (m, 2H, Ar), 7.97 (s, 1H, SCH), 8.14-8.16 (d, J = 7.8 Hz, 1H, Ar), 8.50-8.51 (d, J= 3.9 Hz, 1H, Ar); 13C NMR (CDCl3)δ116.8, 121.2, 122.7, 126.5, 128.8, 130.0, 133.5, 136.8, 149.3, 152.5, 156.0, 167.9 (SCN); MS (EI) m/z 238 (M+); HRMS (EI) Calcd for C14H10N2S (M+) 238.0565. found: 238.0572.
 次に表2に示す各ピリジルチアゾール(4b~4h)の合成例について、使用した化合物1とともに収率について同表に示す。なお、各化合物の使用量(モル比)、温度、時間などの諸条件は実施例4と同様である。
Figure JPOXMLDOC01-appb-T000019
 表2に示す各ピリジルチアゾールについての核磁気共鳴スペクトル等の計測結果を以下に示す。
(2,4-ジ(2-ピリジル)チアゾール(4b))
 H NMR(CDCl3) δ7.12-7.16(m, 1H, Ar), 7.20-7.24 (m, 1H, Ar), 7.67-7.72 (m, 2H, Ar), 8.11-8.16 (m, 2H, Ar), 8.20-8.22 (d, J = 7.8 Hz, 1H, Ar), 8.52-8.55 (m, 2H, Ar). 
(2-チオフェン-4-(2-ピリジル)チアゾール(4c))
 (m.p. 114-115 ℃) : IR (KBr) 3126, 1587, 1473, 1424, 1227, 1052, 830, 767, 698 cm-1 H NMR(CDCl3)δ7.09-7.10(m, 1H, Ar), 7.22- 7.25 (m, 1H, Ar), 7.42-7.43 (dd, J = 4.9 Hz, 1.0 Hz, 1H, Ar), 7.56-7.58 (dd, J = 3.9 Hz, 1.0 Hz, 1H, Ar), 7.76-7.80 (m, 1H, Ar), 8.04(s, 1H, SCH), 8.23-8.25 (d, J =7.8 Hz, 1H, ), 8.63-8.64 (m, 1H, Ar); 13C NMR (CDCl3)δ116.0,121.3, 122.8, 126.6, 127.6, 127.7, 136.8, 137.2, 149.3, 152.2, 155.6, 161.5 (SCN);MS(EI) m/z 244 (M+); HRMS (EI) Calcd for C12H8N2S2(M+) 244.0129. found: 244.0105.
(2-(4-メトキシフェニル)-4-(2-ピリジル)チアゾール(4d))
 (m.p. 100-103 ℃): IR (KBr) 3085, 2836, 1605, 1476, 1306, 1247, 1180, 1026, 834, 776, 713 cm-1;H NMR (CDCl3)δ3.76 (s, 1H, OMe), 6.85-6.89 (d, J= 8.8 Hz, 2H, Ar), 7.11- 7.17 (m, 1H, Ar), 7.66-7.70 (td, J = 7.8 Hz, 2.0 Hz, 1H, Ar), 7.86-7.90 (d, J = 8.8 Hz, 2H, Ar), 7.93 (s, 1H, SCH), 8.15-8.17(d, J = 7.8 Hz, ;1H, Ar), 8.52 -8.54 (m, 1H, Ar); 13C NMR (CDCl3)δ55.3(CH3), 114.2, 116.0, 121.2, 122.7, 126.5, 128.0, 136.9, 149.3,152.6, 155.7, 161.1, 167.9 (SCN); MS (EI) m/z 268 (M+); HRMS (EI) Calcd for C15H12N2OS (M+)268.0670. found: 268.0663.
(2-(4-フルオロフェニル)-4-(2-ピリジル)チアゾール(4e))
 (m.p.140-144℃): IR (KBr) 3103, 1588, 1519, 1477, 1229, 1060, 994, 832, 751, 581, 505 cm-1;H NMR (CDCl3)δ7.12-7.18 (t, J = 8.8 Hz, 2H, Ar), 7.22-7.25 (m, 1H, Ar), 7.76-7.81 (td, J= 7.82 Hz, 1H, Ar), 7.99-8.04 (m, 2H, Ar), 8.08 (s, 1H, SCH), 8.23-8.25 (d, J= 7.81 Hz, 1H, Ar), 8.63-8.64 (m, 1H, Ar); 13C NMR (CDCl3)δ115.8, 116.0, 116.8, 121.2,122.8, 129.9, 129.9, 136.9, 149.3, 152.4, 156.0, 162.6 165.1, 166.8 (SCN); 19F NMR (CDCl3) δ-20.0; MS (EI)m/z 256 (M+); HRMS (EI) Calcd for C14H9FN2S(M+) 256.0470. found: 256.0474.
(2-(4-トリフルオロメチルフェニル)-4-(2-ピリジル)チアゾール(4f))
 (m.p.123-127 ℃): IR (KBr) 2361, 1588, 1475, 1407, 1327, 1162, 1110, 1068, 846, 764, 673, 608 cm-1;H NMR (CDCl3) δ7.13-7.17(m, 1H, Ar), 7.59-7.91 (d, J = 8.3 Hz, 2H, Ar), 7.66-7.71 (td, J =7.6 Hz, 1H, Ar), 8.01-8.03 (m, 3H, Ar), 8.13-8.15 (d, J = 7.8 Hz, 1H, Ar), 8.52-8.54 (d, J = 4.9 Hz, 1H, Ar); 13C NMR (CDCl3) δ117.8, 121.3, 122.5, 123.0, 125.8, 125.9, 126.7, 131.4, 131.7, 136.6, 136.9, 149.4, 152.2, 156.6, 166.0 (SCN);19F NMR (CDCl3) δ-63.1; MS (EI) m/z 306 (M+);HRMS (EI) Calcd for C15H9 F3N2S(M+) 306.0439. found: 306.0428.
(2-イソプロピル-4-(2-ピリジル)チアゾール(4g))
 橙色液体:IR (neat) 2967, 1588, 1496, 1420, 1331, 1051, 754, 621 cm-1;H NMR (CDCl3)δ1.35-1.37 (d, J= 7.3 Hz, 6H, CH(CH 3)2), 3.25-3.35 (sept, J = 6.9 Hz, 1H, CH(CH3)2), 7.08-7.11 (m, 1H, Ar), 7.62-7.67 (td, J = 7.6 Hz, 1H, Ar), 7.84 (s, 1H, SCH), 8.02-8.04 (d, J = 7.84 Hz, 1H, Ar), 8.51-8.52 (d, J =4.9 Hz, 1H, Ar); 13C NMR (CDCl3)δ23.1 (CH(CH3)2), 33.4 (CH(CH3)2), 115.6, 121.1, 122.4, 136.8, 149.3, 152.8, 154.5, 178.0 (SCN); MS (EI) m/z 204 (M+); HRMS (EI)Calcd for C11H12N2S (M+) 204.0721. found: 204.0691.
(2-ターシャリーブチル-4-(2-ピリジル)チアゾール(4h))
 橙色オイル:IR (neat) 2961, 2925, 1588, 1495, 1463, 1065, 994, 754 cm-1;H NMR (CDCl3)δ1.42 (s, 9H, C(CH3)3), 7.10-7.19 (m, 1H, Ar), 7.65-7.69 (td, J = 7.8 Hz, 1H, Ar), 7.85 (s, 1H, SCH), 8.08-8.10 (dd, J = 7.8 Hz, 1.0 Hz, 1H, Ar), 8.51-8.52 (d, J= 7.8 Hz, 1H, Ar); 13C NMR (CDCl3)δ30.9 (C(CH3)3), 37.8 (C(CH3)3), 115.6, 121.3, 122.4, 136.8, 149.3, 153.0, 154.4, 181.1 (SCN); MS (EI) m/z 218 (M+); HRMS (EI) Calcd for C12H14N2S (M+) 218.0878. found: 218.0857.
 次ぎにヨウ素を添加する反応による化合物5(2-(4-メトキシフェニル)-4-フェニル-5-ジフェニルアミノチアゾール)の合成方法について、全体のスキームは下記に示すとおりである。
Figure JPOXMLDOC01-appb-C000020
 具体的には、実施例1で示す化合物1を合成した後、化合物1(0.257g,1.0mmol)をTHF(2.0mL)に溶解し、この溶液にBuLiヘキサン溶液(1.43M,1.40mL,2.0mmol)を0℃で加え、5分間攪拌を行った。その溶液にN,N-ジフェニルチオホルムアミド(0.213g,1.0mmol)を0℃で加え30分攪拌した。これにヨウ素(0.512g,2.0mmol)を0℃で加え2時間攪拌を続けた。反応混合液を塩化アンモニウム飽和溶液に注ぎ、塩化メチレンで抽出した。有機相を硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、2-(4-メトキシフェニル)-4-フェニル-5-ジフェニルアミノチアゾールを収率26%で黄色固体として得た。
 この化合物5について核磁気共鳴スペクトル等の計測結果を以下に示す。また、同化合物の蛍光分光光度計による蛍光スペクトル(実線)を図1に示す。図において蛍光強度はローダミンBを100としたときの値である。この図には比較として2-(4-メトキシフェニル)-4-フェニル-5-ジメチルアミノチアゾールの蛍光スペクトル(点線)が示されており、置換基としてジフェニルアミノ基にした場合の効果が顕著にしめされている。
(2-(4-メトキシフェニル)-4-フェニル-5-ジフェニルアミノチアゾール)
 mp.:152-155℃;IR(KBr)3064, 2926, 2839, 1602, 1515, 1490, 1415, 1341, 1290, 1245, 1173, 1029, 975, 838, 748, 514 cm-1;H NMR (CDCl3)δ3.75 (s, 3H, OMe), 6.86 (d, J= 8.8 Hz, 2H, Ar), 6.90 (t, J = 7.3 Hz, 2H, Ar), 7.05-7.07 (m, 4H, Ar), 7.10-7.20 (m, 7H, Ar), 7.82(d, J= 8.8 Hz, 2H, Ar), 7.85-7.88 (m, 2H, Ar); 13C NMR (CDCl3)δ55.4(OMe), 114.1, 121.3, 122.9, 127.0, 127.4, 127.7, 127.9, 128.2, 129.2, 133.4, 138.9, 146.5, 148.6, 161.2, 163.6 (SC=N) ;MS (EI) m/z 434 (M);HRMS (EI) Calcd for C28H22N2OS(M) 434.1453. found: 434.1437.
 実施例6において、N,N-ジフェニルチオホルムアミドの代わりに、N-フェニル-N-メチルチオホルムアミド(0.119g,1.0mmol)を用いた他は、同様の操作を行い、2-(4-メトキシフェニル)-4-フェニル-5-(N-フェニル-N-メチルアミノ)チアゾールを収率19%で黄色固体として得た。
(2-(4-メトキシフェニル)-4-フェニル-5-(N-フェニル-N-メチルアミノ)チアゾール)
 mp.:100-101℃;IR(KBr) 2939, 1904, 1596, 1491, 1298, 1258, 1221, 1168, 1136, 1111, 1028, 977, 833, 751, 701cm-1;H NMR (CDCl3)δ3.10 (s, 3H, NMe), 3.74 (s, 3H, OMe),6.76-6.87 (m, 5H, Ar), 7.12-7.21 (m, 3H, Ar), 7.26 (t, J = 7.3 Hz, 2H, Ar), 7.83 (d,J = 9.4 Hz, 2H, Ar), 7.90 (d,J= 7.32 Hz, 2H, Ar); 13C NMR (CDCl3)δ40.3 (NMe), 55.3 (OMe), 114.1, 114.2, 119.3, 127.1, 127.3, 127.7, 127.9, 128.5, 129.1, 133.8, 141.0, 148.3, 148.4, 161.1, 163.2 (SC=N);MS(EI)m/z 372 (M).
 本発明のチアゾール誘導体は、本発明の製造方法によって、入手容易でかつ安価な原料から、複雑な合成経路を経ることなく簡易に製造することができる。また、合成物については出発物質の置換基を特定することで、選択的に生成物を得ることができ、しかも、これまでにない全く新規な化合物を容易に得られる。従って、得られたチアゾール誘導体を、医薬・農薬等として有用な新規化合物の素材(および中間体)として利用することができる。

Claims (5)

  1.  一般式(II)で表されるチオアミドに強塩基を添加して、一般式(III)で示されるチオホルムアミドを反応させることを特徴とする一般式(I)で表されるチアゾール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     [式中、
    Figure JPOXMLDOC01-appb-I000002
     は、単結合または二重結合を示し、
     R1は炭素数3~12の分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基を示し、各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良く、
     R2は、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いアリール基または、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いピリジル基を示し、
     R3及びR4は同一又は異なって、炭素数1~12の直鎖状、分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基(但し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。)、あるいはR3及びR4はそれらが結合する窒素原子と一緒になって5員ないし7員の複素環を示し、
     Yは、水素原子または、
    Figure JPOXMLDOC01-appb-I000003
     を示す。]
  2.  前記強塩基が、n-ブチルリチウム、リチウムジイソプロピルアミド、水素化ナトリウム、水素化カリウム、カリウムt-ブトキシド、水素化カルシウム、水酸化ナトリウム、ナトリウムアミドから選択される一種以上である請求項1記載のチアゾール誘導体の製造方法。
  3.  前記チオホルムアミドを反応させた後、さらにヨウ素を添加して反応させることを特徴とする請求項1または2に記載のチアゾール誘導体の製造方法。
  4.  一般式(IV)
    Figure JPOXMLDOC01-appb-C000004
     [式中、
     R1は炭素数3~12の分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基を示し、各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良く、
     Yは、水素原子または、
    Figure JPOXMLDOC01-appb-I000005
     {R3及びR4は同一又は異なって、炭素数1~12の直鎖状、分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基(但し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。)、あるいはR3及びR4はそれらが結合する窒素原子と一緒になって5員ないし7員の複素環を示す}を示す]
    で表されるチアゾール誘導体。
  5.   一般式(V)
    Figure JPOXMLDOC01-appb-C000006
     [式中、
     R1は炭素数3~12の分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基を示し、各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良く、
     R5及びR6は同一又は異なって、炭素数1~12の直鎖状、分岐状または環状のアルキル基、アリール基、ヘテロ芳香族基から選択される基(但し、前記各基はさらに、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良い。)を示し、R5及びR6のうち少なくとも一方は、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いアリール基または、ハロゲン、ヒドロキシ、低級アルキル、低級アルコキシ、ハロ低級アルキルから選択される一種以上の置換基で置換されていても良いヘテロ芳香族基を示す]
    で表されるチアゾール誘導体。
PCT/JP2010/053765 2009-03-10 2010-03-08 チアゾール誘導体およびその製造方法 WO2010104027A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/255,202 US8871944B2 (en) 2009-03-10 2010-03-08 Thiazole derivative and process for producing same
EP10750780.8A EP2388253B1 (en) 2009-03-10 2010-03-08 Thiazole derivative and process for producing same
JP2011503804A JP5610351B2 (ja) 2009-03-10 2010-03-08 チアゾール誘導体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009055787 2009-03-10
JP2009-055787 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010104027A1 true WO2010104027A1 (ja) 2010-09-16

Family

ID=42728316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053765 WO2010104027A1 (ja) 2009-03-10 2010-03-08 チアゾール誘導体およびその製造方法

Country Status (5)

Country Link
US (1) US8871944B2 (ja)
EP (1) EP2388253B1 (ja)
JP (1) JP5610351B2 (ja)
KR (1) KR20110113775A (ja)
WO (1) WO2010104027A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123058A1 (en) 2016-01-14 2017-07-20 Handok Inc. Compounds antagonizing a3 adenosine receptor, method for preparing them, and medical-use thereof
JP2023001168A (ja) * 2017-02-08 2023-01-04 国立大学法人東海国立大学機構 新規な芳香族アミン化合物および蛍光発光材料と紫外線吸収剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298648B (zh) * 2017-06-06 2019-01-25 上海市伤骨科研究所 一类大黄酸硫代酰胺类化合物、其制备方法及用途

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029284A (ja) 1988-06-28 1990-01-12 Toshiba Corp Itv画像の画像記録装置
JPH0269174A (ja) 1988-09-02 1990-03-08 Sumitomo Heavy Ind Ltd バイオプロセス用計側装置
JPH05194506A (ja) 1990-12-20 1993-08-03 Imperial Chem Ind Plc <Ici> ピリジルチアゾール系化合物、その製造方法、殺菌剤組成物及び殺菌方法
JPH0648907A (ja) * 1992-06-12 1994-02-22 Yashima Chem Ind Co Ltd ダニ防除剤
JPH06145169A (ja) * 1992-09-17 1994-05-24 Nippon Soda Co Ltd 新規な含窒素5員環化合物、その製造方法及び有害生物防除剤
JPH087490A (ja) 1994-04-19 1996-01-12 Sony Corp ディジタル信号再生装置
JPH11222483A (ja) * 1998-02-02 1999-08-17 Yashima Chemical Ind Co Ltd 2,4−ジフエニル−2−オキサ(チア)ゾリン誘導体およびこれを有効成分とする除草剤
JP2002053566A (ja) 2000-08-11 2002-02-19 Japan Tobacco Inc チアゾール化合物及びその医薬用途
WO2002094798A1 (fr) 2001-05-23 2002-11-28 Nippon Soda Co.,Ltd. Preparation de composes thiazole
DE10142749A1 (de) 2001-08-31 2003-03-20 Haarmann & Reimer Gmbh Verfahren zur Herstellung von 4,5-Dihydro-1,3-thiazolen
JP2003212863A (ja) * 2002-01-18 2003-07-30 Daito Kagaku Kk ハロゲン化ケトンとチオホルムアミドとの縮合によるチアゾールの製造方法
JP2006502131A (ja) 2002-08-07 2006-01-19 エフ.ホフマン−ラ ロシュ アーゲー チアゾール誘導体
JP2006225334A (ja) 2005-02-18 2006-08-31 Fuji Photo Film Co Ltd チアゾール誘導体の製造方法
CN101265257A (zh) * 2008-04-24 2008-09-17 中国农业大学 2,4-二取代噻唑啉衍生物及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339868A (ja) 1986-08-04 1988-02-20 Otsuka Pharmaceut Factory Inc ジ低級アルキルフエノ−ル誘導体
JPH11209284A (ja) 1998-01-27 1999-08-03 Sagami Chem Res Center 骨形成促進剤
EP0936222B1 (en) 1998-02-13 2005-09-07 Dow AgroSciences LLC A method to prepare 2-(3-pyridyl)-4,5-dihydrothiazoles
EP1975204B1 (en) * 2007-03-27 2013-10-02 FUJIFILM Corporation Azo dye and azo compound

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029284A (ja) 1988-06-28 1990-01-12 Toshiba Corp Itv画像の画像記録装置
JPH0269174A (ja) 1988-09-02 1990-03-08 Sumitomo Heavy Ind Ltd バイオプロセス用計側装置
JPH05194506A (ja) 1990-12-20 1993-08-03 Imperial Chem Ind Plc <Ici> ピリジルチアゾール系化合物、その製造方法、殺菌剤組成物及び殺菌方法
JPH0648907A (ja) * 1992-06-12 1994-02-22 Yashima Chem Ind Co Ltd ダニ防除剤
JPH06145169A (ja) * 1992-09-17 1994-05-24 Nippon Soda Co Ltd 新規な含窒素5員環化合物、その製造方法及び有害生物防除剤
JPH087490A (ja) 1994-04-19 1996-01-12 Sony Corp ディジタル信号再生装置
JPH11222483A (ja) * 1998-02-02 1999-08-17 Yashima Chemical Ind Co Ltd 2,4−ジフエニル−2−オキサ(チア)ゾリン誘導体およびこれを有効成分とする除草剤
JP2002053566A (ja) 2000-08-11 2002-02-19 Japan Tobacco Inc チアゾール化合物及びその医薬用途
WO2002094798A1 (fr) 2001-05-23 2002-11-28 Nippon Soda Co.,Ltd. Preparation de composes thiazole
DE10142749A1 (de) 2001-08-31 2003-03-20 Haarmann & Reimer Gmbh Verfahren zur Herstellung von 4,5-Dihydro-1,3-thiazolen
JP2003212863A (ja) * 2002-01-18 2003-07-30 Daito Kagaku Kk ハロゲン化ケトンとチオホルムアミドとの縮合によるチアゾールの製造方法
JP2006502131A (ja) 2002-08-07 2006-01-19 エフ.ホフマン−ラ ロシュ アーゲー チアゾール誘導体
JP2006225334A (ja) 2005-02-18 2006-08-31 Fuji Photo Film Co Ltd チアゾール誘導体の製造方法
CN101265257A (zh) * 2008-04-24 2008-09-17 中国农业大学 2,4-二取代噻唑啉衍生物及其制备方法与应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ABRUNHOSA, I. ET AL.: "Chiral thiazoline ligands: application in Pd-catalysed allylic substitution", TETRAHEDRON, vol. 60, no. 41, 2004, pages 9263 - 9272 *
BROWN, E. V., SYNTHESIS, 1975, pages 358
KATRITZKY, A. R. ET AL.: "Convenient Synthesis of Novel N-Substituted-5-aminothiazole Derivatives", JOURNAL OF ORGANIC CHEMISTRY, vol. 65, no. 23, 2000, pages 8077 - 8079, XP002203041 *
LIU, L. ET AL.: "Synthesis and biological activity of 2-indolyl oxazoline and thiazoline derivatives", YOUJI HUAXUE, vol. 28, no. 10, 2008, pages 1841 - 1845 *
MCKEON, S. C.: "New Thiazoline-Oxazoline Ligands and Their Application in the Asymmetric Friesel-Crafts Reaction", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 28, 2009, pages 4833 - 4841 *
MURAI, T. ET AL., J. ORG. CHEM., vol. 70, 2005, pages 8153
See also references of EP2388253A4 *
SUZUKI, J. ET AL.: "Synthesis and Activity of Novel Acaricidal/Insecticidal 2,4-Diphenyl-1,3- oxazolines", NIPPON NOYAKUGAKU ZASSHI, vol. 27, no. 1, 2002, pages 1 - 8 *
TIECCO, M.: "Asymmetric synthesis of thioamido selenides. A simple synthetic route to enantiopure thiazolines", TETRAHEDRON: ASYMMETRY, vol. 13, no. 4, 2002, pages 429 - 435 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123058A1 (en) 2016-01-14 2017-07-20 Handok Inc. Compounds antagonizing a3 adenosine receptor, method for preparing them, and medical-use thereof
US10196396B2 (en) 2016-01-14 2019-02-05 Handok Inc. Compounds antagonizing A3 adenosine receptor, method for preparing them, and medical-use thereof
JP2023001168A (ja) * 2017-02-08 2023-01-04 国立大学法人東海国立大学機構 新規な芳香族アミン化合物および蛍光発光材料と紫外線吸収剤
JP7426047B2 (ja) 2017-02-08 2024-02-01 国立大学法人東海国立大学機構 新規な芳香族アミン化合物および蛍光発光材料と紫外線吸収剤

Also Published As

Publication number Publication date
EP2388253B1 (en) 2015-02-11
EP2388253A4 (en) 2012-08-08
JPWO2010104027A1 (ja) 2012-09-13
US8871944B2 (en) 2014-10-28
JP5610351B2 (ja) 2014-10-22
KR20110113775A (ko) 2011-10-18
US20110319616A1 (en) 2011-12-29
EP2388253A1 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
AU2007282148B2 (en) Process for the preparation of 2-substituted-5-(1-alkylthio)alkylpyridines
ES2561355T3 (es) Procedimiento para la oxidación de ciertas sulfiliminas substituidas a sulfoximinas insecticidas
Jurčı́k et al. Preparation of aminals in water
JP5610351B2 (ja) チアゾール誘導体およびその製造方法
JP5077969B2 (ja) 2−置換5−(1−アルキルチオ)アルキルピリジンの調製方法
JP5327794B2 (ja) 1,2−ベンゾイソチアゾリン−3−オン化合物の製造方法
KR101603324B1 (ko) 3-알킬티오-2-브로모피리딘 화합물의 제조방법
JP5298636B2 (ja) ペンタフルオロスルファニル基を有する複素環オリゴマー化合物
JP4975738B2 (ja) 2−アルケニル−3−アミノチオフェン誘導体及びその製造方法
JP2009504721A (ja) 化学工程
JP4853910B2 (ja) イソチアゾロピリジン−3−オン化合物の製造方法
JP5765371B2 (ja) ペンタフルオロスルファニル基を有する複素環オリゴマー化合物
JPH064614B2 (ja) 4−オキソ−4h−ピラン−3−カルボキサミド化合物の製造法
JP6479486B2 (ja) 4−アルコキシ−5−(トリフルオロメチル)ピリミジン誘導体及びその製造方法
CN105085370A (zh) (s)-1-卤代-2-[2-(1,3-二氧异吲哚)基]乙基氯甲酸酯及其制备方法
CN105085371A (zh) (s)-{1-(氯甲酸酯基)-2-[2-(1,3-二氧异吲哚)基]乙基}卤化盐及其制备方法
JP2009504720A (ja) 農薬として使用されるベンゾキサゾール誘導体の調製のための化学的方法
WO2004014883A1 (ja) アクリロニトリル類の製造方法
JP2018076240A (ja) チオピラン化合物の製造方法
EP1367049A1 (en) Cyanothioacetamide derivative and process for producing the same
JPH1077270A (ja) 2−(1−クロロビニル)ピリジン誘導体およびその製造方法
JPH0331712B2 (ja)
JPWO2002079177A1 (ja) (4−フェニルチアゾール−2−イル)アルカンニトリルの製造方法
JPH0977747A (ja) 芳香族誘導体およびその製造法
JP2003055355A (ja) 1,2,5−チアジアゾイルメタノン誘導体の製造方法及びジオキシム誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010750780

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011503804

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255202

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117021059

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE