WO2010103926A1 - ゲル状集合体中への物質の混合方法 - Google Patents

ゲル状集合体中への物質の混合方法 Download PDF

Info

Publication number
WO2010103926A1
WO2010103926A1 PCT/JP2010/052831 JP2010052831W WO2010103926A1 WO 2010103926 A1 WO2010103926 A1 WO 2010103926A1 JP 2010052831 W JP2010052831 W JP 2010052831W WO 2010103926 A1 WO2010103926 A1 WO 2010103926A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
sol
mixed
aggregate
self
Prior art date
Application number
PCT/JP2010/052831
Other languages
English (en)
French (fr)
Inventor
晃司 上杉
祐介 永井
秀典 横井
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to SG2011064664A priority Critical patent/SG174293A1/en
Publication of WO2010103926A1 publication Critical patent/WO2010103926A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids

Definitions

  • the present invention relates to a method for mixing a substance into a gel aggregate.
  • gel-like aggregates have attracted attention, and in particular, gel-like aggregates formed by molecular assembly of self-assembling molecules have attracted attention, and are expected to be used in various applications.
  • An example of such a gel-like assembly is a peptide gel that is a molecular assembly of self-assembling peptides, and the peptide gel is used as a scaffold (cell scaffold) in fields such as regenerative medicine.
  • a method is adopted in which the gel is sonicated for about 30 minutes and then mixed. (Non-Patent Document 1).
  • this method there is a problem that ultrasonic treatment takes time and labor, and further, the substance is not sufficiently dispersed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a mixing method that can uniformly mix (for example, disperse) an object to be mixed in a gel aggregate in a short time. It is.
  • a method for mixing an object to be mixed in a gel-like assembly Freezing the gel aggregate, Thawing the frozen aggregate to obtain a sol, Mixing the obtained sol with the object to be mixed, and reforming the gel-like aggregate from the sol mixed with the object to be mixed.
  • the gel-like aggregate is a gel formed by molecular assembly of self-assembling molecules.
  • the gel aggregate is a gel formed by aggregation of clay minerals.
  • the self-assembling molecule is a self-assembling peptide.
  • assembly with which the mixing target object was mixed is provided. The method Freezing the gel aggregate, Thawing the frozen aggregate to obtain a sol, Mixing the obtained sol with the object to be mixed, and reforming the gel-like aggregate from the sol mixed with the object to be mixed.
  • the object to be mixed can be uniformly mixed (for example, dispersed) in a short time.
  • Gel-like aggregates refer to gels formed by self-assembling molecules or self-assembling crystals spontaneously assembled in a medium.
  • Self-assembling molecules refers to molecules that spontaneously assemble in a medium through the interaction of molecules. Such molecules can spontaneously aggregate due to intermolecular attractive forces, and form a molecular group (so-called molecular assembly) in an orderly, stable and independent of covalent bonds.
  • the interaction is not particularly limited, and examples thereof include a hydrogen bond, an ionic interaction, an electrostatic interaction such as van der Waals force, and a hydrophobic interaction.
  • Gel “Gel” is a colloid that has lost its fluidity.
  • Gels have both viscous and elastic properties. Specifically, for example, when the viscoelasticity measurement is performed and the storage elastic modulus G ′ and the loss elastic modulus G ′′ are measured, “G ′> G ′′” is obtained.
  • Sol The “sol” is a fluid colloid. Specifically, for example, when the storage elastic modulus G ′ and the loss elastic modulus G ′′ are measured by performing dynamic viscoelasticity measurement, “G ′ ⁇ G ′′” is obtained.
  • Sol-gel transition “Sol-gel transition” means “G ′ ⁇ G ′′” from the state where the storage elastic modulus G ′ and the loss elastic modulus G ′′ are “G ′> G ′′”.
  • the mixing method of the present invention is a method of mixing an object to be mixed in a gel-like assembly, Freezing the gel aggregate (freezing step), Thawing the frozen aggregate to obtain a sol (thawing process), It includes mixing the obtained sol and the object to be mixed (mixing step), and reforming a gel-like aggregate from the sol mixed with the object to be mixed (gelation step).
  • the method may further include an optional step as necessary.
  • the gel-like aggregate is a gel formed by molecular assembly of self-assembling molecules
  • freezing and thawing breaks the three-dimensional network structure constituting the gel by breaking the bonds between the molecules.
  • a sol in which molecules are uniformly dispersed can be obtained.
  • the sol in which the crystals are uniformly dispersed is obtained by freezing and thawing, thereby breaking the bonds between the crystals. Can be obtained.
  • the highly uniform sol obtained in this way is mixed with the object to be mixed, so that the object to be mixed is uniformly dispersed within the re-formed gel aggregate.
  • the object to be mixed can be uniformly dispersed in the gel aggregate by an extremely simple operation of freeze-thawing.
  • any suitable aggregate can be adopted as the gel aggregate as long as it forms a sol by freezing and thawing and has a reversible sol-gel transition property.
  • the transition to a gel after forming a sol by freeze-thawing may be due to any of time responsiveness, temperature responsiveness, and pressure responsiveness, or due to two or more of the above responsiveness. There may be.
  • the gel aggregate includes molecules or crystals forming the aggregate, a medium, and optional additives as necessary.
  • any appropriate molecule or crystal can be selected as the self-assembling molecule or self-assembling crystal as long as it forms a colloid having reversible sol-gel transition properties and forms a sol by freezing and thawing.
  • Preferred self-assembling molecules include self-assembling peptides.
  • Preferred examples of the self-assembling crystal include clay minerals. Gels formed from such molecules or crystals rely on relatively weak non-covalent bonds formed between self-assembling molecules or crystals without the use of cross-linking agents, flocculants and other gelling agents. Therefore, these bonds can be easily cleaved and formed into a sol by freezing and thawing treatment. Moreover, it is because gel re-formation from sol can be performed spontaneously by molecular assembly.
  • self-assembling peptides include self-assembling peptides consisting of the following amino acid sequences.
  • Amino acid sequence a 1 b 1 c 1 b 2 a 2 b 3 db 4 a 3 b 5 c 2 b 6 a 4
  • a 1 to a 4 are basic amino acid residues
  • b 1 to b 6 are uncharged polar amino acid residues and / or hydrophobic amino acid residues, of which at least 5 are hydrophobic amino acid residues
  • c 1 and c 2 are acidic amino acid residues
  • d is a hydrophobic amino acid residue.
  • n-RLDLRLALRLLDLR-c SEQ ID NO: 1
  • n-RLDLRLLLLRLDLR-c SEQ ID NO: 2
  • n-RLDLRLALLRLDLRL-c SEQ ID NO: 3
  • self-assembling peptide examples include peptides described in WO 2007/000979 pamphlet, US Pat. No. 5,670,483 and the like. Peptides obtained by modifying these self-assembling peptides such as introduction of protecting groups can also be preferably applied to the method of the present invention.
  • the self-assembling peptide can be prepared by a solid phase method such as Fmoc method or a chemical synthesis method such as a liquid phase method, or a molecular biological method such as gene recombinant expression.
  • the clay mineral include smectite group minerals such as montmorillonite, beidellite, hectorite, saponite, and stevensite. These may be natural or synthetic.
  • the medium of the gel aggregate can be appropriately selected according to the type, concentration, etc. of the molecules or crystals forming the aggregate.
  • the medium is preferably water.
  • the above additives can be appropriately selected according to the type, concentration, etc. of the molecules or crystals forming the aggregate.
  • the additive include a buffer, a surfactant, and a chelating agent.
  • the concentration of the additive in the gel aggregate can be set to a concentration that does not adversely affect the gel reformation in the gelation step.
  • the concentration can be appropriately set according to the type, concentration, etc. of the molecules or crystals forming the gel aggregate, but it is usually preferable that the concentration is low.
  • HEPES and Tris-HCl as buffering agents have a final concentration of preferably 50 mM or less, more preferably 40 mM or less.
  • the final concentration of the sodium bicarbonate solution and the sodium carbonate solution is preferably 5 mM or less, more preferably 4 mM or less.
  • the final concentration of PBS is preferably 0.5 ⁇ PBS or less, more preferably 0.3 ⁇ PBS or less.
  • the final concentration of the pharmacopoeia physiological saline is preferably 0.5% by weight or less, more preferably 0.4% by weight or less.
  • the gel-like aggregate can be prepared by any appropriate method depending on the type and concentration of molecules or crystals constituting the aggregate, the type of medium, and the like.
  • the self-assembling peptide gel is obtained by dissolving or dispersing the self-assembling peptide in a desired medium so that the amount is preferably 0.1 to 5 w / v%, more preferably 0.2 to 3 w / v%. It can be prepared by preparing a peptide sol and allowing the peptide sol to stand to cause molecular assembly of the self-assembling peptide.
  • Self-assembling peptide gels are commercially available, for example, under the trade name “BD TM PuraMatrix TM peptide hydrogel” (BD Biosciences).
  • the gel-like aggregate formed from a clay mineral is available as commercial items, such as a brand name "Laponite XLG" (made by Laporte), a brand name "Laponite RD” (made by Laporte), for example.
  • any appropriate condition can be adopted as long as the gel-like aggregate is frozen.
  • the freezing temperature should just be below the temperature which a gel-like aggregate
  • limiting in the freezing speed You may freeze gradually and may freeze rapidly.
  • a self-assembling peptide gel it can be suitably frozen by placing it under a temperature condition of preferably ⁇ 10 ° C. or lower.
  • any appropriate freezing means such as a home or commercial freezer, liquid nitrogen can be selected.
  • the frozen aggregate can be stored frozen for an arbitrary period until it is subjected to the thawing step.
  • the melting temperature can be set to any appropriate temperature as long as the frozen aggregate is melted to form a sol. Melting may be performed at a constant temperature, or may be performed stepwise at different temperatures. There is no limitation on the melting rate and time, and melting may be performed gradually or rapidly. For example, when obtaining a sol of a self-assembling peptide, thawing can be suitably performed by placing the frozen self-assembling peptide under a temperature condition of preferably 5 to 70 ° C., more preferably 15 to 45 ° C.
  • any appropriate means can be selected.
  • Specific examples of the melting means include a water bath, an oil bath, and a thermostatic bath.
  • the gel-like aggregate By freezing and thawing the gel-like aggregate as described above, various bonds between molecules or crystals forming the gel are cleaved to obtain a sol.
  • the gel can be made into a sol even by ultrasonic treatment for about 30 minutes, various bonds between molecules or crystals cannot be sufficiently cut, and gelation occurs quickly after irradiation. For this reason, the mixed object cannot be uniformly dispersed.
  • the sol obtained by freezing and thawing sufficiently breaks various bonds between molecules or crystals, so that the viscosity is remarkably lowered and it is mixed uniformly with the substance to be mixed in the mixing step described later. Is possible.
  • any appropriate substance can be selected as the mixing target depending on the purpose and the like.
  • Specific examples of the object to be mixed include vitamins; monosaccharides; disaccharides; oligosaccharides; polysaccharides such as hyaluronic acid, chitosan, and hydrophilic cellulose; alcohols; polyols such as glycerin and propylene glycol; zirconia and titanium oxide.
  • the mixed object may be a biological sample such as a cell, a group of cells, a tissue, a microorganism, or a virus.
  • the cell may be an animal cell or a plant cell. Examples of microorganisms include bacteria, yeasts, and protozoa. Only 1 type may be used for a mixing target object, and 2 or more types may be used for it.
  • the mixing amount of the object to be mixed can be set to any appropriate amount as long as the sol can reform the gel aggregate.
  • the self-assembling peptide sol is set so that the peptide concentration after mixing is preferably 0.1 to 5 w / v%, more preferably 0.2 to 3 w / v%.
  • the sol obtained in the melting step maintains the sol state.
  • mixing can be suitably performed preferably at ⁇ 2 to 15 ° C., more preferably at ⁇ 2 to 5 ° C. This is because, within such a temperature range, rapid gelation can be prevented, and as a result, a sufficient mixing time can be secured.
  • the said temperature range is a temperature range of the peptide sol containing a mixing target object, ie, the peptide sol in mixing with a mixing target object.
  • the mixing is preferably performed so that the molecules or crystals and the object to be mixed are sufficiently dispersed in the sol, and the mixing time and mixing means are not limited. Any appropriate means can be selected as the mixing means. In large-scale mixing, a stirring bar, a mixer, or the like can be used, and small-scale mixing may be performed manually such as pipetting.
  • the above freezing, thawing and mixing steps may be repeated twice or more.
  • the gel reforming conditions are not limited as long as the gel-like aggregate is reformed, and can be appropriately set according to the type and concentration of molecules or crystals, the type of medium, etc. .
  • the gel can be spontaneously reformed by the molecular assembly by setting to appropriate conditions.
  • the sol mixed with the object to be mixed obtained in the mixing step may be allowed to stand.
  • the standing temperature is preferably 15 ° C. or higher, more preferably 25 ° C. or higher.
  • the standing time is preferably 1 minute or longer, more preferably 5 minutes or longer.
  • limiting in the place to leave still The inside of containers, such as glass and plastic, the inside of cell culture instruments, such as a petri dish, and the inside of medical instruments, such as a syringe, are mentioned.
  • the sol mixed with the mixing object may be injected into the living body immediately after mixing and gelled on the spot.
  • the mixed object in the re-formed gel aggregate, can exist in a uniformly dispersed state.
  • a method for producing a gel-like aggregate in which a mixing object is mixed can be provided.
  • the manufacturing method includes freezing a gel aggregate, thawing the frozen aggregate to obtain a sol, mixing the obtained sol and a mixed object, and a sol in which the mixed object is mixed Reforming the gel-like aggregate from Each step is as described in the above section B.
  • a gel-like aggregate in which the mixed object is uniformly dispersed can be obtained.
  • the resulting self-assembling peptide gel was frozen with liquid nitrogen.
  • the frozen self-assembling peptide gel was partially thawed with warm water at 37 ° C., and then allowed to stand and melt at room temperature to obtain a sol.
  • the cells were mixed by adding 300 ⁇ l of the obtained sol to a container containing 200 ⁇ l of DMEM medium containing NIH3T3 cells at a concentration of 3.25 ⁇ 10 5 cells / ml and mixing by pipetting three times. A sol was obtained.
  • the self-assembling peptide gel was frozen with liquid nitrogen. Next, the frozen self-assembling peptide gel was partially thawed with warm water at 37 ° C., and then allowed to stand and melt at room temperature to obtain a sol.
  • the cells were mixed by adding 300 ⁇ l of the obtained sol to a container containing 200 ⁇ l of DMEM medium containing NIH3T3 cells at a concentration of 5.38 ⁇ 10 5 cells / ml and mixing by pipetting three times. A sol was obtained.
  • the number of cells at each position in the obtained cell mixed sol was determined in the same manner as in Test Example 1. The results are shown in Table 1.
  • the number of cells at each position in the obtained cell mixed sol was determined in the same manner as in Test Example 1. The results are shown in Table 1.
  • the number of cells at each position in the obtained cell mixed sol was determined in the same manner as in Test Example 1. The results are shown in Table 1.
  • the object to be mixed can be dispersed more uniformly than the sol obtained by ultrasonic treatment.
  • Example 1 The self-assembling peptide 1 was dissolved in water, and an aqueous NaHCO 3 solution was added to a final concentration of 1.2 mM. The peptide concentration in the obtained peptide solution was 0.8 w / v%. The peptide solution was allowed to stand at room temperature for 10 minutes to obtain a self-assembling peptide gel.
  • the obtained self-assembling peptide gel was frozen with liquid nitrogen. Next, the frozen self-assembling peptide gel was partially thawed with warm water at 37 ° C., and then allowed to stand and melt at room temperature to obtain a sol. 300 ⁇ L of the obtained sol was transferred to a sampling tube, 450 ⁇ L of DMEM medium containing phenol red was added, and pipetting was performed 5 times.
  • the self-assembling peptide gel was re-formed by allowing the sampling tube to stand at 25 ° C. for 5 minutes.
  • a photograph of the reshaped gel is shown in FIG.
  • Example 2 As the self-assembling peptide gel, the trade name “BD TM PuraMatrix TM peptide hydrogel” (BD Biosciences, peptide concentration: 1 w / v%, pH 3) was used.
  • the self-assembling peptide gel was frozen with liquid nitrogen. Next, the frozen self-assembling peptide gel was partially thawed with warm water at 37 ° C., and then allowed to stand and melt at room temperature to obtain a sol. 300 ⁇ L of the obtained sol was transferred to a sampling tube, 450 ⁇ L of an eosin aqueous solution was added, and pipetting was performed 5 times.
  • the self-assembling peptide gel was re-formed by allowing the sampling tube to stand at 25 ° C. for 20 minutes.
  • a photograph of the reshaped gel is shown in FIG.
  • Example 3 A self-assembling peptide gel was re-formed in the same manner as in Example 1 except that a 50 ⁇ M FITC-labeled insulin aqueous solution was mixed instead of the DMEM medium containing phenol red. A photograph of the reshaped gel is shown in FIG.
  • Example 4 A self-assembling peptide gel was re-formed in the same manner as in Example 2 except that 50 ⁇ M FITC-labeled insulin aqueous solution was mixed in place of the eosin aqueous solution. A photograph of the reshaped gel is shown in FIG.
  • Example 1 Example except that sol was obtained by sonication instead of freezing and thawing (product name “ultrasonic cleaner US-4R” (manufactured by AS ONE, volume in tank 9.5 L), 160 W, 30 minutes) A self-assembling peptide gel was re-formed as in 1. A photograph of the reshaped gel is shown in FIG.
  • Example 2 Example except that sol was obtained by sonication instead of freezing and thawing (product name “ultrasonic cleaner US-4R” (manufactured by AS ONE, volume in tank 9.5 L), 160 W, 30 minutes) A self-assembling peptide gel was reformed in the same manner as in 2. A photograph of the reshaped gel is shown in FIG.
  • Example 3 Example except that sol was obtained by sonication instead of freezing and thawing (product name “ultrasonic cleaner US-4R” (manufactured by AS ONE, volume in tank 9.5 L), 160 W, 30 minutes) Similar to 3, a self-assembling peptide gel was re-formed. A photograph of the reshaped gel is shown in FIG.
  • Example 4 Example except that sol was obtained by sonication instead of freezing and thawing (product name “ultrasonic cleaner US-4R” (manufactured by AS ONE, volume in tank 9.5 L), 160 W, 30 minutes) A self-assembling peptide gel was re-formed in the same manner as in 4. A photograph of the reshaped gel is shown in FIG.
  • the object to be mixed is uniformly dispersed in a short time by freezing and thawing the molecular aggregate once gelled to form a sol. be able to.
  • the sol obtained by ultrasonic treatment is used, the re-formed gel is dull and it can be seen that the object to be mixed is dispersed unevenly.
  • the mixing method and the production method of the present invention are suitable for the production or use of regenerative medicine, drug delivery systems, cosmetics, artificial vitreous bodies, hemostatic agents, cosmetic injections, bone filling, joint lubricants, wet water retention materials, and the like. Can be applied to.
  • SEQ ID NO: 1 is a self-assembling peptide that can be used in the present invention.
  • SEQ ID NO: 2 is a self-assembling peptide that can be used in the present invention.
  • SEQ ID NO: 3 is a self-assembling peptide that can be used in the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Colloid Chemistry (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

 ゲル状集合体中に混合対象物を短時間で均一に混合し得る混合方法を提供する。本発明の方法は、ゲル状集合体を凍結すること、凍結した集合体を融解してゾルを得ること、得られたゾルと混合対象物とを混合すること、および混合対象物が混合されたゾルからゲル状集合体を再形成することを含む。

Description

ゲル状集合体中への物質の混合方法
 本発明は、ゲル状集合体中への物質の混合方法に関する。
 近年、ゲル状集合体が注目されており、特に自己集合性を有する分子が分子集合して形成されたゲル状集合体が注目され、様々な用途への展開が期待されている。このようなゲル状集合体としては、例えば、自己集合性ペプチドの分子集合体であるペプチドゲルが挙げられ、該ペプチドゲルは、再生医療等の分野でスキャフォールド(細胞の足場)としての用途を有している。該ペプチドゲルをスキャフォールドとして使用する場合において、既にゲル化したペプチドゲルと細胞等の物質とを混合する際には、ゲルに30分程度超音波処理してから混合するという方法が採用されている(非特許文献1)。しかしながら、該方法によれば、超音波処理に時間と手間がかかり、さらには、物質が十分に分散されないという問題がある。
Proc Natl Acad Sci USA,2005,102(24) 8414-8419
 本発明は、上記課題を解決するためになされたものであり、その目的は、ゲル状集合体中に混合対象物を短時間で均一に混合(例えば、分散)し得る混合方法を提供することである。
 本発明によれば、ゲル状集合体中に混合対象物を混合する方法が提供される。該方法は、
 ゲル状集合体を凍結すること、
 凍結した集合体を融解してゾルを得ること、
 得られたゾルと混合対象物とを混合すること、および
 混合対象物が混合されたゾルからゲル状集合体を再形成することを含む。
 好ましい実施形態においては、上記ゲル状集合体が、自己集合性分子が分子集合することによって形成されたゲルである。
 好ましい実施形態においては、上記ゲル状集合体が、粘土鉱物が集合することによって形成されたゲルである。
 好ましい実施形態においては、上記自己集合性分子が、自己集合性ペプチドである。
 本発明の別の局面によれば、混合対象物が混合されたゲル状集合体の製造方法が提供される。該方法は、
 ゲル状集合体を凍結すること、
 凍結した集合体を融解してゾルを得ること、
 得られたゾルと混合対象物とを混合すること、および
 混合対象物が混合されたゾルからゲル状集合体を再形成することを含む。
 本発明によれば、ゲル状集合体をゾル化した状態で混合を行うので、混合対象物を短時間で均一に混合(例えば、分散)し得る。
(a)実施例1で再形成されたゲルの写真であり、(b)比較例1で再形成されたゲルの写真である。 (a)実施例2で再形成されたゲルの写真であり、(b)比較例2で再形成されたゲルの写真である。 (a)実施例3で再形成されたゲルの写真であり、(b)比較例3で再形成されたゲルの写真である。 (a)実施例4で再形成されたゲルの写真であり、(b)比較例4で再形成されたゲルの写真である。
A.語句の定義
(1)ゲル状集合体
 「ゲル状集合体」とは、自己集合性分子または自己集合性を有する結晶が、媒質中において自発的に集合することによって形成されたゲルをいう。
(2)自己集合性分子
 「自己集合性分子」とは、媒質中において、分子同士の相互作用を介して自発的に集合する分子をいう。このような分子は、分子間引力により自発的に凝集し、秩序正しく、安定に、共有結合によらずに分子集団を形成(いわゆる、分子集合)し得る。相互作用としては、特に限定されず、例えば、水素結合、イオン間相互作用、ファンデルワールス力等の静電的相互作用、疎水性相互作用が挙げられる。
(3)ゲル
 「ゲル」とは、流動性を失ったコロイドである。ゲルは、粘性的な性質と弾性的な性質とを併せ持つ。具体的には、例えば、動的粘弾性測定を行なって、貯蔵弾性率G’及び損失弾性率G’’を測定したときに、「G’>G’’」となるものをいう。
(4)ゾル
 「ゾル」とは、流動性を有するコロイドである。具体的には、例えば、動的粘弾性測定を行なって、貯蔵弾性率G’及び損失弾性率G’’を測定したときに、「G’<G’’」となるものをいう。
(5)ゾル‐ゲル転移
 「ゾル‐ゲル転移」とは、貯蔵弾性率G’と損失弾性率G’’が「G’>G’’」である状態から「G’<G’’」である状態、または「G’<G’’」である状態から「G’>G’’」である状態へ転移する現象をいい、該現象が生じる温度をゾル‐ゲル転移点という。すなわち、ゾル‐ゲル転移点は「G’=G’’」となる点である。
B.混合方法
 本発明の混合方法は、ゲル状集合体中に混合対象物を混合する方法であって、
 ゲル状集合体を凍結すること(凍結工程)、
 凍結した集合体を融解してゾルを得ること(融解工程)、
 得られたゾルと混合対象物とを混合すること(混合工程)、および
 混合対象物が混合されたゾルからゲル状集合体を再形成すること(ゲル化工程)を含む。該方法は、必要に応じて、任意の工程をさらに含んでもよい。ゲル状集合体が、自己集合性分子が分子集合することによって形成されたゲルである場合、凍結融解することにより、分子間の結合が切断されてゲルを構成する三次元網目構造が崩壊するので、分子が均一に分散したゾルが得られ得る。また、ゲル状集合体が、自己集合性を有する結晶が集合することによって形成されたゲルである場合、凍結融解することにより、結晶間の結合が切断されて、結晶が均一に分散したゾルが得られ得る。本発明においては、このようにして得られた均一性の高いゾルと混合対象物とを混合するので、再形成されたゲル状集合体の内部においては、混合対象物が均一に分散された状態で存在し得る。凍結融解という極めて簡易な操作でゲル状集合体中に均一に混合対象物を分散し得ることは、本発明の大きな効果の1つである。
B-1.凍結工程
 ゲル状集合体としては、凍結融解によってゾルを形成し、可逆的なゾル-ゲル転移特性を有する限り、任意の適切な集合体が採用され得る。凍結融解によってゾルを形成した後のゲルへの転移は、時間応答性、温度応答性、圧力応答性のいずれによるものであってもよく、また上記応答性のうち2つ以上の要因によるものであってもよい。ゲル状集合体は、該集合体を形成する分子または結晶と、媒質と、必要に応じて任意の添加物を含む。
 上記自己集合性分子または自己集合性を有する結晶としては、可逆的なゾル-ゲル転移特性を有するコロイドを形成し、凍結融解によってゾルを形成する限り、任意の適切な分子または結晶が選択され得る。好ましい自己集合性分子としては、自己集合性ペプチド等が挙げられる。好ましい自己集合性を有する結晶としては、粘土鉱物等が挙げられる。このような分子または結晶から形成されたゲルは、架橋剤、凝集剤等のゲル化剤を用いることなく、自己集合性分子間または結晶間に形成された比較的弱い非共有結合に依存しているので、凍結融解処理により、これらの結合が容易に切断されてゾル化し得る。また、分子集合によってゾルからゲルの再形成が自発的に行われ得るからである。
 自己集合性ペプチドの好ましい例としては、下記のアミノ酸配列からなる自己集合性ペプチドがあげられる。
アミノ酸配列:adb
(該アミノ酸配列中、a~aは、塩基性アミノ酸残基であり;b~bは、非電荷極性アミノ酸残基および/または疎水性アミノ酸残基であり、ただし、そのうちの少なくとも5個は、疎水性アミノ酸残基であり;cおよびcは、酸性アミノ酸残基であり;dは、疎水性アミノ酸残基である。)
 上記アミノ酸配列を有する自己集合性ペプチドの具体例としては、以下の配列を有するペプチドが挙げられる。
  n-RLDLRLALRLDLR-c(配列番号1)
  n-RLDLRLLLRLDLR-c(配列番号2)
  n-RLDLRLALRLDLRL-c(配列番号3)
 自己集合性ペプチドの別の好ましい具体例としてはWO2007/000979号パンフレット、米国特許5670483号等に記載のペプチドが挙げられる。また、これらの自己集合性ペプチドに保護基の導入等の修飾を施したペプチドも本発明の方法に好ましく適用され得る。
 上記自己集合性ペプチドは、Fmoc法等の固相法又は液相法等の化学合成方法、遺伝子組換え発現等の分子生物学的方法で作製し得る。
 粘土鉱物の好ましい具体例としては、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト等のスメクタイト族鉱物が挙げられる。これらは、天然のものであってもよく、合成品であってもよい。
 ゲル状集合体の媒質は、該集合体を形成する分子または結晶の種類、濃度等に応じて適切に選択され得る。例えば、自己集合性ペプチドまたは粘土鉱物から形成されるゲル状集合体においては、媒質は、好ましくは水である。
 上記添加物は、該集合体を形成する分子または結晶の種類、濃度等に応じて適切に選択され得る。該添加物としては、例えば、緩衝剤、界面活性剤、キレート剤などが挙げられる。
 ゲル状集合体中の添加物の濃度は、ゲル化工程におけるゲルの再形成に悪影響を及ぼさない濃度に設定され得る。該濃度は、ゲル状集合体を形成する分子または結晶の種類、濃度等に応じて、適切に設定され得るが、通常、低い濃度であることが好ましい。例えば、自己集合性ペプチドゲルの場合、緩衝剤としては、HEPESおよびTris-HClは終濃度が、好ましくは50mM以下、さらに好ましくは40mM以下である。炭酸水素ナトリウム溶液および炭酸ナトリウム溶液は終濃度が、好ましくは5mM以下、さらに好ましくは4mM以下である。PBSは終濃度が、好ましくは0.5×PBS以下、さらに好ましくは0.3×PBS以下である。また緩衝剤以外の添加物として、局方生理食塩水は終濃度が、好ましくは0.5重量%以下、さらに好ましくは0.4重量%以下である。
 上記ゲル状集合体は、該集合体を構成する分子または結晶の種類および濃度、媒質の種類等に応じて、任意の適切な方法によって調製され得る。例えば、自己集合性ペプチドゲルは、自己集合性ペプチドを好ましくは0.1~5w/v%、さらに好ましくは0.2~3w/v%となるように所望の媒質中に溶解または分散してペプチドゾルを調製し、該ペプチドゾルを静置して自己集合性ペプチドを分子集合させることにより調製され得る。また、自己集合性ペプチドゲルは、例えば、商品名「BDTM PuraMatrixTM ペプチド ハイドロゲル」(BD Biosciences社)等の市販品として入手可能である。また、粘土鉱物から形成されるゲル状集合体は、例えば、商品名「ラポナイトXLG」(ラポート社製)、商品名「ラポナイトRD」(ラポート社製)等の市販品として入手可能である。
 凍結条件は、ゲル状集合体が凍結する限りにおいて、任意の適切な条件が採用され得る。凍結温度は、ゲル状集合体が凍結する温度以下であればよい。凍結速度にも制限はなく、徐々に冷凍してもよく、急速冷凍してもよい。例えば、自己集合性ペプチドゲルの場合は、好ましくは-10℃以下の温度条件下に置くことで好適に凍結され得る。
 凍結手段としては、家庭用または業務用冷凍庫、液体窒素等の任意の適切な凍結手段が選択され得る。なお、凍結した集合体は、融解工程に供するまでの任意の期間、凍結したまま保存することが可能である。
B-2.融解工程
 融解温度は、上記凍結した集合体が融解してゾルを形成する温度であれば、任意の適切な温度に設定され得る。一定の温度で融解してもよく、異なる温度で段階的に融解してもよい。融解速度および時間に制限はなく、徐々に融解してもよく、急速に融解してもよい。例えば、自己集合性ペプチドのゾルを得る場合は、好ましくは5~70℃、さらに好ましくは15~45℃の温度条件下に凍結した自己集合性ペプチドを置くことで好適に融解を行い得る。
 融解手段としては、任意の適切な手段が選択され得る。融解手段の具体例としては、水浴、油浴、恒温槽等が挙げられる。
 上記のようにゲル状集合体を凍結融解することにより、ゲルを形成する分子間または結晶間の種々の結合が切断されて、ゾルが得られる。30分程度の超音波処理によってもゲルをゾル化することが可能であるが、分子間または結晶間の種々の結合を十分に切断することができず、照射後、すばやくゲル化してしまう。そのため、混合対象物を均一に分散することができない。これに対し、凍結融解によって得られたゾルは分子間または結晶間の種々の結合が十分に切断されるので、粘度が著しく低下し、後述の混合工程において、混合対象物質と均一に混合することが可能である。
B-3.混合工程
 混合対象物は、目的等に応じて、任意の適切な物質が選択され得る。混合対象物の具体例としては、ビタミン類;単糖;二糖;オリゴ糖;ヒアルロン酸、キトサン、親水化セルロース等の多糖類;アルコール;グリセリン、プロピレングリコール等のポリオール;ジルコニア、酸化チタン等の金属酸化物;色素;ホルモン、サイトカイン、造血因子、増殖因子等の生理活性物質;ペプチド;酵素;抗体;DNA;RNA;触媒;架橋剤;培養液;その他一般的な低分子化合物が挙げられる。また、混合対象物は、細胞、細胞群、組織、微生物、ウイルス等の生物試料であってもよい。細胞は、動物細胞であっても、植物細胞であってもよい。微生物としては、例えば、細菌、酵母、原生動物が挙げられる。混合対象物は1種のみを用いてもよく、2種以上用いてもよい。
 混合対象物の混合量は、ゾルがゲル状集合体を再形成し得る限り、任意の適切な量に設定され得る。例えば、自己集合性ペプチドゾルは、混合後のペプチド濃度が、好ましくは0.1~5w/v%、さらに好ましくは0.2~3w/v%となるように設定される。
 混合は、上記融解工程で得られたゾルがゾル状態を維持する間に行われる。例えば、自己集合性ペプチドのゾルの場合は、好ましくは-2~15℃、さらに好ましくは-2~5℃で好適に混合が行われ得る。このような温度範囲であれば、急速なゲル化を防止し得、その結果、十分な混合時間を確保し得るからである。なお、上記温度範囲は、混合対象物を含むペプチドゾル、すなわち、混合対象物と混合中のペプチドゾルの温度範囲である。
 混合は、ゾル中に分子または結晶および混合対象物が十分に分散するように行われることが好ましく、混合時間および混合手段に制限はない。混合手段としては、任意の適切な手段が選択され得る。大スケールな混合においては、攪拌棒、混合機等が用いられ得、小スケールな混合は、ピペッティング等の手作業で行われてもよい。
 上記凍結、融解、混合工程は2回以上繰り返して行ってもよい。
B-4.ゲル化工程
 ゲルの再形成条件(温度、時間等)は、ゲル状集合体が再形成される限り制限はなく、分子または結晶の種類および濃度、媒質の種類等に応じて適切に設定され得る。ゾル中に含まれる分子が自己集合性分子である場合、適切な条件に設定することにより、分子集合によってゲルが自発的に再形成され得る。
 例えば、自己集合性ペプチドゲルを再形成する場合、上記混合工程で得られた混合対象物が混合されたゾルを静置すればよい。静置温度は、好ましくは15℃以上、さらに好ましくは25℃以上である。静置時間は、好ましくは1分以上、さらに好ましくは5分以上である。また静置する場所に制限はなく、ガラス、プラスチック等の容器内、シャーレ等の細胞培養器具内、注射器等の医療器具内が挙げられる。さらには、上記混合対象物が混合されたゾルを混合直後に生体内へ注入し、その場でゲル化させてもよい。
 再形成されたゲル状集合体においては、混合対象物が均一に分散した状態で存在し得る。
C.製造方法
 本発明の別の局面によれば、混合対象物が混合されたゲル状集合体の製造方法が提供され得る。該製造方法は、ゲル状集合体を凍結すること、凍結した集合体を融解してゾルを得ること、得られたゾルと混合対象物とを混合すること、および混合対象物が混合されたゾルからゲル状集合体を再形成することを含む。各工程については、上記B項で記載したとおりである。該製造方法によれば、混合対象物が均一に分散されたゲル状集合体が得られ得る。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
[試験例1]
 常法により、N末端をアセチル化し、C末端をアミド化した自己集合性ペプチド1([CHCO]-RLDLRLALRLDLR-[NH])を得た。該自己集合性ペプチド1を水に溶解し、NaHCO水溶液を終濃度が1.2mMとなるように加えた。得られたペプチド溶液中のペプチド濃度は1w/v%であった。該ペプチド溶液を室温で10分静置し、自己集合性ペプチドゲルを得た。
 得られた自己集合性ペプチドゲルを液体窒素で凍結した。次いで、凍結した自己集合性ペプチドゲルを37℃の温水で一部融解し、その後室温で静置して融解することにより、ゾルを得た。得られたゾル300μlを、3.25×10cells/mlの濃度でNIH3T3細胞を含むDMEM培地200μlが入った容器に加え、ピペッティングを3回行って混合することにより、細胞が混合されたゾルを得た。
 得られた細胞混合ゾルの上層、中層、および下層から100μlずつサンプリングし、それぞれの試料をPBSで5倍希釈した。希釈した各試料を用いて血球計算盤上の4区画の細胞数を計測することにより、細胞混合ゾル中の各位置における細胞数を求めた。結果を表1に示す。
[試験例2]
 自己集合性ペプチドゲルとして、商品名「BDTM PuraMatrixTM ペプチド ハイドロゲル」(BD Biosciences社、ペプチド濃度:1w/v%、pH3)を用いた。
 上記自己集合性ペプチドゲルを液体窒素で凍結した。次いで、凍結した自己集合性ペプチドゲルを37℃の温水で一部融解し、その後室温で静置して融解することにより、ゾルを得た。得られたゾル300μlを、5.38×10cells/mlの濃度でNIH3T3細胞を含むDMEM培地200μlが入った容器に加え、ピペッティングを3回行って混合することにより、細胞が混合されたゾルを得た。
 得られた細胞混合ゾル中の各位置における細胞数を試験例1と同様にして求めた。結果を表1に示す。
[比較試験例1]
 試験例1と同様にして得た自己集合性ペプチドゲルに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)を施すことにより、ゾルを得た。得られたゾル300μlを、3.25×10cells/mlの濃度でNIH3T3細胞を含むDMEM培地200μlが入った容器に加え、ピペッティングを3回行って混合することにより、細胞が混合されたゾルを得た。
 得られた細胞混合ゾル中の各位置における細胞数を試験例1と同様にして求めた。結果を表1に示す。
[比較試験例2]
 試験例2と同様の自己集合性ペプチドゲルに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)を施すことにより、ゾルを得た。得られたゾル300μlを、5.38×10cells/mlの濃度でNIH3T3細胞を含むDMEM培地200μlが入った容器に加え、ピペッティングを3回行って混合することにより、細胞が混合されたゾルを得た。
 得られた細胞混合ゾル中の各位置における細胞数を試験例1と同様にして求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、凍結融解によって得られるゾルには、超音波処理によって得られるゾルよりも均一に混合対象物を分散することができる。
[実施例1]
 上記自己集合性ペプチド1を水に溶解し、NaHCO水溶液を終濃度が1.2mMとなるように加えた。得られたペプチド溶液中のペプチド濃度は0.8w/v%であった。該ペプチド溶液を室温で10分静置し、自己集合性ペプチドゲルを得た。
 得られた自己集合性ペプチドゲルを液体窒素で凍結した。次いで、凍結した自己集合性ペプチドゲルを37℃の温水で一部融解し、その後室温で静置して融解することにより、ゾルを得た。得られたゾル300μLをサンプリングチューブに移し、フェノールレッドを含むDMEM培地450μLを加えて、5回ピペッティングした。
 ついで、該サンプリングチューブを25℃で5分静置することにより、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図1に示す。
[実施例2]
 自己集合性ペプチドゲルとして、商品名「BDTM PuraMatrixTM ペプチド ハイドロゲル」(BD Biosciences社、ペプチド濃度:1w/v%、pH3)を用いた。
 上記自己集合性ペプチドゲルを液体窒素で凍結した。次いで、凍結した自己集合性ペプチドゲルを37℃の温水で一部融解し、その後室温で静置して融解することにより、ゾルを得た。得られたゾル300μLをサンプリングチューブに移し、エオシン水溶液450μLを加えて、5回ピペッティングした。
 ついで、該サンプリングチューブを25℃で20分静置することにより、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図2に示す。
[実施例3]
 フェノールレッドを含むDMEM培地の代わりに50μM FITC標識インスリン水溶液を混合したこと以外は実施例1と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図3に示す。
[実施例4]
 エオシン水溶液の代わりに50μM FITC標識インスリン水溶液を混合したこと以外は実施例2と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図4に示す。
[比較例1]
 凍結融解する代わりに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)をしてゾルを得たこと以外は実施例1と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図1に示す。
[比較例2]
 凍結融解する代わりに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)をしてゾルを得たこと以外は実施例2と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図2に示す。
[比較例3]
 凍結融解する代わりに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)をしてゾルを得たこと以外は実施例3と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図3に示す。
[比較例4]
 凍結融解する代わりに超音波処理(製品名「超音波洗浄機 US-4R」(アズワン社製、槽内体積9.5L)、160W、30分間)をしてゾルを得たこと以外は実施例4と同様にして、自己集合性ペプチドゲルを再形成した。再形成されたゲルの写真を図4に示す。
 図1~4に示されるとおり、本発明の方法によれば、一旦ゲル化した分子集合体に対して、凍結融解を行ってゾル化することにより、混合対象物を短時間で均一に分散することができる。一方、超音波処理によって得られたゾルを用いた場合、再形成されたゲルはモヤがかっており、混合対象物が不均一に分散されたことがわかる。
[参考例1] 
 商品名「ラポナイトXLG」(ラポート社製)を6w/v%の濃度で含むゲル状集合体(媒質:水)を液体窒素で凍結した。次いで、凍結した集合体を37℃の温水で一部融解し、その後室温で静置して融解することにより、ゾルを得た。得られたゾルを25℃で5時間静置することにより、ゲル状集合体を再形成した。
[参考例2]
 商品名「ラポナイトXLG」(ラポート社製)を2w/v%の濃度で含むゲル状集合体(媒質:0.75重量%界面活性剤(商品名「OS-14」、日光ケミカルズ社製)および1.0重量%EDTA-2Na含有水溶液)液体窒素で凍結した。次いで、凍結した集合体を37℃の温水で一部融解し、その後室温静置して融解することにより、ゾルを得た。得られたゾルを25℃で15分静置することにより、ゲル状集合体を再形成した。
 本発明の混合方法および製造方法は、再生医療、ドラッグデリバリーシステム、化粧品、人工硝子体、止血剤、美容整形用注射剤、骨充填、関節潤滑剤、湿潤用保水材等の製造または使用において好適に適用され得る。
 配列番号1は、本発明に使用され得る自己集合性ペプチドである。
 配列番号2は、本発明に使用され得る自己集合性ペプチドである。
 配列番号3は、本発明に使用され得る自己集合性ペプチドである。

Claims (5)

  1.  ゲル状集合体を凍結すること、
     凍結した集合体を融解してゾルを得ること、
     得られたゾルと混合対象物とを混合すること、および
     混合対象物が混合されたゾルからゲル状集合体を再形成することを含む、ゲル状集合体中に混合対象物を混合する方法。
  2.  前記ゲル状集合体が、自己集合性分子が分子集合することによって形成されたゲルである、請求項1に記載の方法。
  3.  前記ゲル状集合体が、粘土鉱物が集合することによって形成されたゲルである、請求項1に記載の方法。
  4.  前記自己集合性分子が、自己集合性ペプチドである、請求項2に記載の方法。
  5.  ゲル状集合体を凍結すること、
     凍結した集合体を融解してゾルを得ること、
     得られたゾルと混合対象物とを混合すること、および
     混合対象物が混合されたゾルからゲル状集合体を再形成することを含む、混合対象物が混合されたゲル状集合体の製造方法。
     
PCT/JP2010/052831 2009-03-09 2010-02-24 ゲル状集合体中への物質の混合方法 WO2010103926A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG2011064664A SG174293A1 (en) 2009-03-09 2010-02-24 Method for mixing substance into gel assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-054982 2009-03-09
JP2009054982A JP4448552B1 (ja) 2009-03-09 2009-03-09 ゲル状集合体中への物質の混合方法

Publications (1)

Publication Number Publication Date
WO2010103926A1 true WO2010103926A1 (ja) 2010-09-16

Family

ID=42101862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052831 WO2010103926A1 (ja) 2009-03-09 2010-02-24 ゲル状集合体中への物質の混合方法

Country Status (8)

Country Link
US (1) US7863412B2 (ja)
EP (1) EP2228382B1 (ja)
JP (1) JP4448552B1 (ja)
CN (1) CN101829510B (ja)
AT (1) ATE543830T1 (ja)
SG (1) SG174293A1 (ja)
TW (1) TWI454308B (ja)
WO (1) WO2010103926A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255548A (zh) * 2014-03-11 2016-12-21 凸版印刷株式会社 液滴制造器件、液滴的制造方法、脂质体的制造方法、固定工具及液滴制造工具盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115063A (ja) * 1985-11-13 1987-05-26 Agency Of Ind Science & Technol 可逆伸縮性高分子材料の製造法
JPH0568511A (ja) * 1991-03-15 1993-03-23 Ina Shokuhin Kogyo Kk 寒天ゲルの製造方法及び製造装置
JP2003206181A (ja) * 2002-01-15 2003-07-22 Ngk Insulators Ltd 成形用材料の製造方法、成形体の製造方法、焼結体の製造方法、成形用材料、成形体、焼結体およびゲル生成物質粉末
JP2007514629A (ja) * 2003-07-30 2007-06-07 ウニヴェルジテート ブレーメン セラミック材料から成形体を製造するための方法およびスリップ、セラミック成形体およびかかる成形体の使用方法
JP2007217375A (ja) * 2006-02-17 2007-08-30 Nagoya Institute Of Technology 自己組織化ペプチド

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1949360A (en) * 1928-12-29 1934-02-27 Burgess Lab Inc C F Method for making artificial zeolites
GB9124403D0 (en) * 1991-11-16 1992-01-08 Foseco Int Ceramic material
US5670483A (en) * 1992-12-28 1997-09-23 Massachusetts Insititute Of Technology Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor
JP2000069917A (ja) * 1998-08-31 2000-03-07 Snow Brand Milk Prod Co Ltd ゼリー状食品
US7473391B2 (en) * 2001-03-13 2009-01-06 Ngk Insulators, Ltd. Methods for making molding material, molded body, and sintered body
JP2003192448A (ja) * 2001-12-27 2003-07-09 Ngk Insulators Ltd 成形体の製造方法、成形用材料、成形体および焼結体
DE10247409B4 (de) * 2002-10-11 2008-09-25 Robert Bosch Gmbh Keramischer Substratkörper und Verfahren zu dessen Herstellung
JP4245406B2 (ja) * 2003-05-19 2009-03-25 財団法人川村理化学研究所 ゲル発泡体及びその製造方法
GB0316742D0 (en) * 2003-07-17 2003-08-20 Fermentas Uab Electrophoretic gels and their manufacture
JP4920176B2 (ja) * 2004-03-25 2012-04-18 セーレン株式会社 生体適合性をもつ多孔質体およびその製造方法
JP4766528B2 (ja) 2005-06-27 2011-09-07 株式会社メニコン 自己組織化ペプチドおよびそれより得られるゲル
CN101368198A (zh) * 2008-09-24 2009-02-18 江南大学 一种纳米金和λDNA链连接的自组装材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115063A (ja) * 1985-11-13 1987-05-26 Agency Of Ind Science & Technol 可逆伸縮性高分子材料の製造法
JPH0568511A (ja) * 1991-03-15 1993-03-23 Ina Shokuhin Kogyo Kk 寒天ゲルの製造方法及び製造装置
JP2003206181A (ja) * 2002-01-15 2003-07-22 Ngk Insulators Ltd 成形用材料の製造方法、成形体の製造方法、焼結体の製造方法、成形用材料、成形体、焼結体およびゲル生成物質粉末
JP2007514629A (ja) * 2003-07-30 2007-06-07 ウニヴェルジテート ブレーメン セラミック材料から成形体を製造するための方法およびスリップ、セラミック成形体およびかかる成形体の使用方法
JP2007217375A (ja) * 2006-02-17 2007-08-30 Nagoya Institute Of Technology 自己組織化ペプチド

Also Published As

Publication number Publication date
ATE543830T1 (de) 2012-02-15
TWI454308B (zh) 2014-10-01
JP4448552B1 (ja) 2010-04-14
US7863412B2 (en) 2011-01-04
CN101829510B (zh) 2014-03-12
EP2228382B1 (en) 2012-02-01
US20100227398A1 (en) 2010-09-09
TW201036694A (en) 2010-10-16
EP2228382A1 (en) 2010-09-15
SG174293A1 (en) 2011-10-28
JP2010207679A (ja) 2010-09-24
CN101829510A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
ES2895947T3 (es) Composición y conjuntos para matrices de microgel pseudoplástico
JP4620804B2 (ja) 自己組織化ペプチドおよび高強度ペプチドゲル
CN105796478B (zh) 由纳米胶体颗粒组装的、高强度、自修复、可注射复合胶体凝胶材料及其制备方法和应用
CN108697805B (zh) 包含核酸及壳聚糖的温敏性水凝胶组合物
US8536230B2 (en) Methods for regulating gelation of polysaccharide solutions and uses thereof
US10744228B2 (en) Methacrylated devitalized cartilage and devitalized cartilage particles
US10052283B2 (en) Composition for forming pluronic-based hydrogel with improved stability
US20140005306A1 (en) Hyaluronic Acid-Gelatin Crosslinked Thermoreversible Pluronic Hydrogels
Ishikawa et al. On-demand retrieval of cells three-dimensionally seeded in injectable thioester-based hydrogels
JP2014103985A (ja) コラーゲン水溶液及びそれから得られるゲル
CN102399370A (zh) 一种壳聚糖聚合物及其制备方法
JP4448552B1 (ja) ゲル状集合体中への物質の混合方法
JP2010207801A (ja) ゲル状集合体中への物質の混合方法
US20160158410A1 (en) Polysaccharide hydrogels for injection with tunable properties
CN113559331A (zh) 一种高活性可注射材料及其制备方法和应用
CN116903719A (zh) 基于藤壶生物胶蛋白的仿生多肽、自组装水凝胶及其制备工艺、应用
de Siqueira et al. Recent advances in the development of the physically crosslinked hydrogels and their biomedical applications
US20220372421A1 (en) Kit and method for preparation of digestible spheroid stabilizing hydrogels
CN114763415A (zh) 一种高性能可加工水凝胶及其制备方法和应用
JP2024506853A (ja) ハイブリッドネットワークヒドロゲルの作製および使用のための組成物および方法
WO2022107108A1 (en) Gellan gum based inks, method of obtaining and uses thereof
CN113663132A (zh) 脂肪组织再生水凝胶及其制备方法和应用
Melvik et al. New Alginate Self-gelling Technology for Tissue Engineering
THERMOREVERSIBLE Rafailovich et al.(43) Pub. Date: Jan. 2, 2014

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750680

Country of ref document: EP

Kind code of ref document: A1