WO2010092955A1 - シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法 - Google Patents

シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法 Download PDF

Info

Publication number
WO2010092955A1
WO2010092955A1 PCT/JP2010/051893 JP2010051893W WO2010092955A1 WO 2010092955 A1 WO2010092955 A1 WO 2010092955A1 JP 2010051893 W JP2010051893 W JP 2010051893W WO 2010092955 A1 WO2010092955 A1 WO 2010092955A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
glass crucible
crystallization
single crystal
silicon single
Prior art date
Application number
PCT/JP2010/051893
Other languages
English (en)
French (fr)
Inventor
勝 藤代
文雄 高橋
史 阿部
真一 中島
忍 筒井
Original Assignee
株式会社倉元製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/148,768 priority Critical patent/US20120006254A1/en
Application filed by 株式会社倉元製作所 filed Critical 株式会社倉元製作所
Priority to KR1020117018531A priority patent/KR20120013300A/ko
Priority to SG2011057502A priority patent/SG173618A1/en
Priority to CN2010800073695A priority patent/CN102317511A/zh
Priority to EP10741232A priority patent/EP2397582A1/en
Publication of WO2010092955A1 publication Critical patent/WO2010092955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Definitions

  • the present invention relates to a quartz glass crucible used for manufacturing a silicon single crystal used for a substrate of a solar cell or a semiconductor device, and a method for manufacturing a silicon single crystal using the same.
  • Silicon single crystal is manufactured from polycrystalline silicon by FZ method or CZ method.
  • silicon single crystals produced by the CZ method currently occupy more than 70% of the market.
  • this CZ method polycrystalline silicon is put into a quartz glass crucible, melted by heating, and the silicon single crystal is pulled up using a seed crystal.
  • Quartz glass crucible is an important member that determines the yield and quality of silicon single crystal as the only member in contact with silicon melt.
  • the yield of single crystal silicon is that the crystallized material with the size of ⁇ 2 to ⁇ 6 ( Figure 4) scattered at the interface when the silicon melt reacts with the quartz glass crucible at high temperature is the inner surface of the quartz glass crucible. It is lowered by peeling off from the silicon and adhering to the edge of the silicon single crystal to be polycrystallized. Thus, it has been studied to uniformly crystallize the entire inner surface of the quartz glass crucible.
  • Patent Document 1 discloses a method in which high-concentration barium is applied to the entire inner surface of a quartz glass crucible, and the inner surface of the quartz glass crucible is crystallized into a thick crystal layer entirely before use. .
  • Patent Document 2 discloses a method for improving the yield of pulling up a silicon single crystal using the crucible of Patent Document 1 described above.
  • Patent Documents 1 and 2 require a considerably high concentration of barium coating, and there is a concern that defects may be generated by barium mixed during silicon crystal growth. Further, in the case of growing a large-diameter silicon crystal, a severer thermal environment is required, so that the quartz glass crucible that has been thickly crystallized is significantly deteriorated. Moreover, handling becomes difficult by using high concentration barium.
  • Patent Document 3 discloses a method for improving the durability of a crucible by forming a coating film or a solid solution layer of a crystallization accelerator within 1 mm of the inner surface of a quartz glass crucible.
  • a group 2a element compound is used as the crystallization accelerator
  • the solution is applied to the inner surface of the crucible and dried to form a coating film.
  • a 3b group element compound as a crystallization promoter
  • the solid solution layer is formed by sprinkling the powder doped with this during melting.
  • Patent Document 4 discloses that the crystallization accelerator-containing layer on the inner surface of a quartz glass crucible is difficult to peel off, has a high crucible strength at high temperatures, and can stably pull up a silicon single crystal. Yes.
  • the crystallization accelerator-containing layer In order to increase the strength of the quartz glass crucible during the pulling, the crystallization accelerator-containing layer must be thickened to 1 to 2 mm, and quartz powder that gradually increases the concentration of the crystallization accelerator must be deposited stepwise. In other words, it cannot be said that the layer formation efficiency is good.
  • this method has a low concentration of crystallization accelerator, and when used at a low temperature such as a small-diameter quartz glass crucible, the crystallization rate is low and the crystallization material generated on the inner surface of the quartz glass crucible Is peeled off from the inner surface, and it is difficult to stably improve the yield of pulling the silicon single crystal.
  • Japanese Patent Laid-Open No. 9-110590 Japanese Patent Laid-Open No. 9-110579 JP-A-8-002932 JP 2007-001806 A
  • the inner surface is uniformly crystallized in order to suppress the separation and dropping of the crystallized substance having a size of ⁇ 2 to ⁇ 6 (FIG. 4) scattered on the inner surface of the quartz glass crucible. Therefore, no effective solution has been proposed for the separation of the crystal layer from the inner surface of the quartz glass crucible due to excessive crystallization.
  • the present invention has been made in view of the circumstances as described above, and there is no occurrence of separation and dropping of crystallized substances scattered on the inner surface, and a crystal layer is formed on the entire inner surface. As described above, a part of the crystal layer does not exfoliate and a gas discharge hole is not formed, and the dissolved silicon can enter between the crystal layer and the glass layer below it from the gas release hole due to the micro exfoliation. It is an object of the present invention to provide a quartz glass crucible with which a high yield can be obtained and a method for producing a silicon single crystal using the same.
  • the present invention is characterized by the following in order to solve the above problems.
  • a silica glass crucible for pulling up a silicon single crystal having a crystallization accelerator-containing layer on the inner surface, and when pulling up the silicon single crystal, a crystallization accelerator has a patchy crystallization region on the inner surface.
  • the patchy crystallized region is formed by continuously bonding crystallized substances generated in a scattered manner on the inner surface of a quartz glass crucible when the silicon single crystal is pulled up. Quartz glass crucible.
  • the patchy crystallized region includes a unit region substantially having a closed peripheral edge and having an independent shape, and an area of the shape in the range of 10 to 100 mm 2.
  • At least a part of the unit regions of the patchy crystallization region is such that the unit regions are further continuously connected to each other, and the entire area of the patchy crystallization region is 30 to 80 of the inner surface of the quartz glass crucible.
  • the third quartz glass crucible characterized in that it occupies%.
  • the crystallization accelerator is barium, and the crystallization accelerator-containing layer is formed by supplying and melting barium-coated high-purity silica powder on the inner surface of a quartz glass crucible.
  • the quartz glass crucible according to any one of the first to sixth.
  • Tenth The quartz glass crucible according to any one of the seventh to ninth, wherein the crystallization accelerator-containing layer has a barium concentration of 130 to 170 ppm.
  • the present invention at the time of pulling a single crystal, there is no formation of scattered crystallized material on the inner surface of the quartz glass crucible, and a patchy crystallized region in which crystallized materials are continuously bonded is formed. It is formed. In this manner, the formation of the patchy crystallized region suppresses the separation of the crystallized material scattered on the inner surface of the quartz glass crucible.
  • the crystallization accelerator in the depth direction of the inner surface of the quartz glass crucible, the crystallization of the patchy crystallization region proceeds in the depth direction of the inner surface. Therefore, it is possible to greatly suppress the detachment of the crystallized material that is scattered on the inner surface.
  • the gas present in the quartz glass crucible is released from a region other than the patchy crystallization region on the inner surface of the quartz glass crucible. Therefore, the crystal layer in the patchy crystallized region does not exfoliate and a gas discharge hole is not formed, and the molten silicon enters between the crystal layer in the patchy crystallized region and the glass layer below it. There is no. Therefore, peeling of the crystal layer in the patchy crystallized region does not occur.
  • the quartz glass crucible of the present invention does not cause the falling of the crystallized material scattered on the inner surface as in the conventional case, and the crystal layer is formed on the entire inner surface. A part of the crystal layer is not finely peeled to form a gas discharge hole, and dissolved silicon does not enter from the gas discharge hole by the fine peel between the crystal layer and the glass layer therebelow. Therefore, it is possible to provide a quartz glass crucible for pulling a silicon single crystal with a very high yield.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a quartz glass crucible for pulling a silicon single crystal of the present invention. It is the figure which showed typically the inner surface of the quartz glass crucible in which the spot-like crystallization area
  • FIG. 6 is a photograph of a gas discharge hole of several tens of ⁇ m generated on the surface of a crystal layer on the inner surface of a quartz glass crucible of a comparative example.
  • 4 is an electron micrograph of a gas discharge hole of several tens of ⁇ m generated on the surface of a crystal layer on the inner surface of a quartz glass crucible of a comparative example. It is the photograph of the state which melt
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a quartz glass crucible for pulling a silicon single crystal of the present invention.
  • the quartz glass crucible 1 of the present invention has a crystallization accelerator-containing layer 4 on the inner surface.
  • the crystallization accelerator contained in the crystallization accelerator-containing layer is formed by reacting the inner surface of the quartz glass crucible with a high-temperature silicon melt when pulling up the silicon single crystal, and generating a crystallization substance at the interface.
  • Specific examples thereof include the group 2a elements magnesium, strontium, calcium, barium and the like. These may be used alone or in combination of two or more.
  • barium has a small segregation coefficient, and therefore has an excellent characteristic that it is difficult to be taken into the silicon single crystal when the silicon single crystal is pulled.
  • barium is used as the crystallization accelerator. Is particularly preferred.
  • a characteristic point in the present invention is that when a silicon single crystal is pulled, a patchy crystallization region is formed on the inner surface by a crystallization accelerator.
  • reference numeral 5 denotes a patchy crystallization region.
  • This mottled crystallized region is formed by continuous bonding of crystallized substances scattered on the inner surface of a quartz glass crucible when the silicon single crystal is pulled up. This is clearly different from the conventionally known scattered crystallized substances.
  • the crystallized substances generated in a scattered manner are typically of a circular shape of ⁇ 2 to ⁇ 6 as shown in FIG. 4, and the shape and size are constant compared to the patchy crystallized region in the present invention. There is a certain order in the range. Most of the crystallized substances generated in a scattered manner have an area of less than 10 mm 2 .
  • the patchy crystallization region in the present invention has an irregular and non-uniform appearance as a whole.
  • the patchy crystallized region 5 includes a unit region 5 a exemplarily surrounded by a dotted ellipse in the figure, which has an independent shape with its peripheral edge closed. It is out.
  • the spot-like crystallized regions are irregular and non-uniform as shown in the photograph of FIG. 3, and the unit regions 5a 1 , unit regions 5a 2 , unit regions 5a 3 and the like are shown as an example in FIG.
  • the unit region 5a includes a continuous portion through a thin portion, the unit region 5a can be grasped as one that can be recognized as an independent shape with its peripheral edge substantially closed for visual convenience.
  • This unit region is a crystallization accelerator in which a high-temperature silicon melt reacts with the inner surface of the quartz glass crucible when the silicon single crystal is pulled, and the crystallized material generated at the interface is contained in the inner surface of the quartz glass crucible.
  • a typical unit region includes one having an area in the range of 10 to 100 mm 2 . Some unit regions have an area exceeding 100 mm 2 .
  • the crystallized material on the inner surface of the quartz glass crucible By continuously bonding the crystallized material on the inner surface of the quartz glass crucible to form a non-uniform spot-like crystallized region, and further including a crystallization accelerator in the depth direction of the inner surface of the quartz glass crucible.
  • the crystallization of the inner surface of the quartz glass crucible proceeds in the depth direction, and the separation of the crystallized material generated on the inner surface can be suppressed.
  • the formation of a non-uniform spot-like crystallization region on the inner surface of the quartz glass crucible means that the gas existing in the quartz glass crucible is pulled into a region 12 other than the spot-like crystallization region in FIG. And the crystal layer of the patchy crystallized region can be prevented from peeling off from the inner surface of the quartz glass crucible.
  • At least a part of the unit regions of the patchy crystallization region is composed of unit regions as illustrated in the unit region 5a 1 , unit region 5a 2 , unit region 5a 3, etc. of FIG. Further, they are continuously bonded, and the entire area of the patchy crystallization region occupies 30 to 80%, preferably 30 to 70%, of the inner surface of the quartz crucible.
  • the gas that is contained in the quartz glass crucible and expands at a high temperature can be sufficiently released when the silicon single crystal is pulled up. It may disappear. In this case, the gas finely peels off the crystal layer to generate a gas discharge hole, and the gas is released from the gas discharge hole (FIG. 6). At this time, it has been confirmed by the present inventors that a lot of minute gas discharge holes of several tens of ⁇ m are generated in the crystal layer (FIG. 5).
  • the molten silicon melted by heating put in the quartz glass crucible is a glass layer of the quartz glass crucible (transparent layer or an opaque layer on the outer periphery thereof) located under the crystal layer from a small gas discharge hole of several tens of ⁇ m. ) (FIG. 7), the glass layer is melted by the high-temperature molten silicon, the molten silicon enters between the crystal layer and the glass layer, and the crystal layer is separated from the quartz glass crucible (FIG. 8).
  • the crystallization accelerator is barium
  • the crystallization accelerator-containing layer is formed by supplying and melting barium-coated high-purity silica powder on the inner surface of the quartz glass crucible.
  • the crystallization accelerator-containing layer thus formed preferably has a thickness of 30 to 200 ⁇ m.
  • the crystallization accelerator When the crystallization accelerator is contained within 30 ⁇ m from the inner surface, the crystallization is not promoted unless the crystallization accelerator is contained at a high concentration as in the case of application to the inner surface, and the crystallization generated on the inner surface. The peeled material will peel off.
  • the crystal accelerator when contained at 200 ⁇ m or more from the inner surface, crystallization proceeds and the entire surface of the inner surface of the quartz glass crucible is crystallized, so that a nonuniform spotted region cannot be obtained. That is, the crystal layer is peeled off from the inner surface of the quartz glass crucible.
  • the crystallization accelerator-containing layer has a barium concentration of preferably 100 to 200 ppm, more preferably 130 to 170 ppm.
  • the concentration of barium as a crystallization accelerator is low, so that crystallization is not promoted, and the crystallization substance generated on the inner surface of the quartz glass crucible may be peeled off.
  • the barium concentration exceeds 200 ppm
  • crystallization proceeds excessively, the entire inner surface of the quartz glass crucible is crystallized, and a patchy crystallized region cannot be obtained. For this reason, the crystal layer may be peeled off from the inner surface of the quartz glass crucible.
  • the barium concentration in the crystallization accelerator-containing layer is set to 130 to 170 ppm, it is possible to reliably make 30 to 80% of the inner surface of the quartz glass crucible a patchy crystallization region. That is, the amount of heat applied to the quartz glass crucible among the conditions for pulling the silicon single crystal varies depending on the diameter of the quartz glass crucible and the like. The state of the spot-like crystallized region on the inner surface of the quartz glass crucible is influenced by the amount of heat applied to the quartz glass crucible, so that it is reliably 30 to 80% of the inner surface regardless of the conditions for pulling the silicon single crystal.
  • a patchy crystallization region can be reliably formed on 30 to 80% of the inner surface within a barium concentration range of 130 to 200 ppm.
  • the aperture size is 24 inches, a patchy crystallized region can be reliably formed on 30 to 80% of the inner surface within a barium concentration range of 100 to 170 ppm.
  • a silicon single crystal ingot serving as a base for a silicon substrate used as an element for solar cells or semiconductors is manufactured under conventional conditions known in the past. be able to. That is, a general method for manufacturing a silicon single crystal ingot using this quartz glass crucible is that a quartz glass crucible is filled with a necessary amount of polycrystalline silicon, the inside of the silicon single crystal pulling apparatus is replaced with argon gas, and graphite heat generation is performed. The body is heated to 1500 ° C. to 1600 ° C., which is 1420 ° C. or higher, to dissolve the polycrystalline silicon.
  • the temperature is gradually lowered and the temperature of the melt surface is adjusted to 1420 ° C., and then the seed crystal (6 to 8 mm prismatic shape) is immersed in the melt to dissolve the surface of the seed crystal.
  • the diameter is 3 to 5 mm and the length is 100 to 300 mm at a relatively high pulling speed (1 to 5 mm / min). A narrow and long neck is formed.
  • the temperature in the vicinity of the upper surface of the melt in the quartz glass crucible is lowered and the pulling speed is also slowed to 0.1 to 0.5 mm / min. A shoulder that increases in diameter is formed.
  • the constant diameter portion is grown so that the crystal diameter is constant by adjusting the temperature and the pulling speed. When it reaches a certain length, the temperature is lowered slightly, and the pulling speed is increased to make the crystal thinner, the diameter gradually decreases from the constant diameter part, and a tail with a diameter of zero is formed, and the silicon single crystal ingot is melted.
  • the pulling manufacturing work is completed when the distance is away from the substrate, and the silicon single crystal can be manufactured with a high yield.
  • the thickness of the crystallization accelerator-containing layer is divided into three stages in the range of 30 to 200 ⁇ m, and divided into four stages in the range of the barium concentration of the crystallization accelerator-containing layer in the range of 100 to 200 ppm, and the diameter of the quartz glass crucible is 16 inches. And 24 inch quartz glass crucibles were prepared.
  • the patchy crystallized region has an irregular and non-uniform appearance as a whole, and the unit region includes one having an area of 10 to 100 mm 2. It was. At least a part of the unit areas of the spot-like crystallized area is further continuously connected to each other, and the total area of the spot-like crystallized area occupies 30 to 80% of the inner surface of the quartz crucible. It was.
  • any of the quartz glass crucibles of the present example peeling of the crystallized material generated on the inner surface is suppressed, and the crystal layer does not peel from the inner surface of the quartz glass crucible due to the generation of gas discharge holes, and a high single crystal of 75% or more. Achieved a chemical yield.
  • the results are shown in Table 1.
  • the thickness of the crystallization accelerator-containing layer is 10 ⁇ m or 220 ⁇ m
  • the barium concentration of the crystallization accelerator-containing layer is 0 ppm, 70 ppm, or 230 ppm.
  • 16-inch and 24-inch quartz glass crucibles were prepared. Using these quartz glass crucibles, the silicon single crystal was pulled up.
  • Table 1 The results are shown in Table 1.
  • the thickness of the crystallization accelerator-containing layer is less than 30 ⁇ m and 10 ⁇ m, a large number of crystallization substances having a size of ⁇ 2 to ⁇ 6 generated when the crystallization accelerator is not contained are generated on the inner surface of the quartz glass crucible, This crystallized material was peeled off from the inner surface of the quartz glass crucible. Therefore, the yield of single crystal pulling could not be improved.
  • the thickness of the crystallization accelerator-containing layer is more than 200 ⁇ m and 220 ⁇ m, almost the entire surface exceeding 80% of the inner surface of the quartz glass crucible is crystallized, and gas discharge holes which are small holes of several tens of ⁇ m are formed on the crystal layer surface. Many were confirmed, and dissolved silicon penetrated between the crystal layer and the opaque layer from this gas discharge hole (FIG. 7). Therefore, the yield of single crystal pulling could not be improved.
  • the inner surface of the quartz glass crucible is A large number of crystallized substances having a size of ⁇ 2 to ⁇ 6 generated when the crystallization accelerator was not contained were generated, and the crystallized substances were separated from the inner surface of the quartz glass crucible. Therefore, the yield of single crystal pulling could not be improved.

Abstract

 本発明の石英ガラスルツボは、結晶化促進剤含有層を内表面に有し、シリコン単結晶の引き上げ時に、内表面に結晶化促進剤により斑状の結晶化領域が形成されることを特徴とし、内表面に点在的に発生する結晶化物質の剥離が生じることがなく、そして内表面全面に結晶層を形成した場合のように結晶層の一部が微小剥離してガス放出穴が形成されることがなく、また溶解シリコンが微小剥離によるガス放出穴から結晶層とその下のガラス層との間に入り込むこともなく、それにより高い歩留まりが得られるシリコン単結晶引き上げ用の石英ガラスルツボおよびそれを用いたシリコン単結晶の製造方法を提供する。

Description

シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法
 本発明は、太陽電池や半導体デバイスの基板等に使用されるシリコン単結晶の製造に用いられる石英ガラスルツボおよびそれを用いたシリコン単結晶の製造方法に関するものである。
 シリコン単結晶は多結晶シリコンからFZ法やCZ法によって製造されている。特に現在はCZ法によって製造されたシリコン単結晶が市場の7割以上を占めている。このCZ法においては、多結晶シリコンを石英ガラスルツボ内に投入して、加熱により溶解し、種結晶を用いてシリコン単結晶を引き上げている。
 石英ガラスルツボはシリコン融液と接触する唯一の部材としてシリコン単結晶の歩留まりや品質を決定する重要な部材である。シリコン単結晶の歩留まりは、高温でシリコン融液が石英ガラスルツボと反応することにより界面で点在的に発生するφ2~φ6の大きさの結晶化物質(図4)が石英ガラスルツボの内表面から剥離し、シリコン単結晶端に付着して多結晶化することにより低下する。そこで、石英ガラスルツボの内表面全面を均一に結晶化させることが検討されている。
 例えば、特許文献1には、石英ガラスルツボの内表面全面に高濃度のバリウムを塗布し、石英ガラスルツボの内表面を使用前に全面的に厚い結晶層に結晶化させる方法が開示されている。
 特許文献2には、上記特許文献1のルツボを用いたシリコン単結晶の引き上げ歩留まりの向上方法が開示されている。
 しかしながら、上記特許文献1、2に記載の方法では、相当に高濃度のバリウムのコーティングが必要となり、シリコン結晶成長中に混入するバリウムにより欠陥を生成させる懸念がある。さらに大口径シリコン結晶成長の場合、より過酷な熱環境が要求されるため、厚く結晶化した石英ガラスルツボの劣化が著しくなる。また、高濃度のバリウムを用いることにより取扱いが困難になる。
 特許文献3には、石英ガラスルツボの内表面1mm以内に結晶化促進剤の塗布膜または固溶層を形成し、ルツボの耐久性を高める方法が開示されている。結晶化促進剤として2a族元素化合物を用いる場合、その溶液をルツボ内表面に塗布、乾燥させ塗布膜を形成している。一方、結晶化促進剤として3b族元素化合物を用いる場合、これをドープした粉を溶融中に散布することにより固溶層を形成している。
 しかしながら、いずれの方法も結晶化促進剤の濃度が高過ぎるため、結晶層が石英ガラスルツボの内表面から分離して剥離しやすくなり、シリコン単結晶引き上げの歩留まりを向上させることは難しい。
 特許文献4には、石英ガラスルツボの内表面の結晶化促進剤含有層が剥離し難く、高温下でのルツボ強度が高く、安定にシリコン単結晶の引き上げを行うことができる旨が開示されている。
 しかしながら、引き上げ中における石英ガラスルツボの強度を高くするために、結晶化促進剤含有層を1~2mmと厚くし、結晶化促進剤の濃度が次第に高くなる石英粉を段階的に堆積させなければならず、層の形成効率が良いとは言えない。
 また、この方法は、結晶化促進剤の濃度が低く、小口径石英ガラスルツボのように低い温度で使用される場合は、結晶化速度が遅く、石英ガラスルツボの内表面に発生した結晶化物質が内表面から剥離し、シリコン単結晶引き上げの歩留まりを安定的に向上させることは難しい。
特開平9-110590号公報 特開平9-110579号公報 特開平8-002932号公報 特開2007-001806号公報
 以上のような従来技術においては、石英ガラスルツボの内表面に点在的に発生したφ2~φ6の大きさの結晶化物質(図4)の剥離落下を抑制するため、内表面を均一に結晶化させることを重視しており、過度の結晶化によって結晶層が石英ガラスルツボの内表面から剥離することに対する有効な解決策が提案されていない。すなわち、本発明者らの検討によれば、石英ガラスルツボの内表面全面に結晶層を形成した場合、シリコン単結晶引上げ時の高温下で膨張した石英ガラスルツボに内在しているガス、例えばSiO、気泡中の空気、気体の不純物等は、石英ガラスルツボの内表面全面を均一に結晶化させた結晶層によりガスの逃げ道がなくなるため、結晶層の一部が微小剥離して内在したガスを放出させる数10μmのガス放出穴が数多く発生する(図5、図6)。そして溶解シリコンが微小剥離によるガス放出穴から結晶層とその下のガラス層(透明層または不透明層)との間へ入り込み(図7、図8)、結晶層の剥離が生じる。
 一方、結晶層が石英ガラスルツボの内表面から剥離することを懸念して結晶化度を低下させてしまうと、石英ガラスルツボの内表面に点在的に発生したφ2~φ6の大きさの結晶化物質の剥離落下を抑制できなくなる。
 本発明は、以上の通りの事情に鑑みてなされたものであり、内表面に点在的に発生する結晶化物質の剥離落下が生じることがなく、そして内表面全面に結晶層を形成した場合のように結晶層の一部が微小剥離してガス放出穴が形成されることがなく、また溶解シリコンが微小剥離によるガス放出穴から結晶層とその下のガラス層との間に入り込むこともなく、それにより高い歩留まりが得られる石英ガラスルツボおよびそれを用いたシリコン単結晶の製造方法を提供することを課題としている。
 本発明は、上記の課題を解決するために、以下のことを特徴としている。
 第1:シリコン単結晶引き上げ用の石英ガラスルツボであって、結晶化促進剤含有層を内表面に有し、シリコン単結晶の引き上げ時に、内表面に結晶化促進剤により斑状の結晶化領域が形成されることを特徴とする石英ガラスルツボ。
 第2:斑状の結晶化領域は、シリコン単結晶の引き上げ時に石英ガラスルツボの内表面に点在的に発生した結晶化物質が連続的に結合して形成されることを特徴とする上記第1の石英ガラスルツボ。
 第3:斑状の結晶化領域は、実質的に周縁部が閉じて独立した形状を有し当該形状の面積が10~100mm2の範囲にある単位領域を含むことを特徴とする上記第1または第2の石英ガラスルツボ。
 第4:斑状の結晶化領域の単位領域のうち少なくとも一部は、単位領域同士がさらに連続的に結合しており、斑状の結晶化領域の全面積が石英ガラスルツボの内表面の30~80%を占めることを特徴とする上記第3の石英ガラスルツボ。
 第5:斑状の結晶化領域には、シリコン単結晶の引上げ時に10~100μmの微少穴が発生しないことを特徴とする上記第4の石英ガラスルツボ。
 第6:結晶化促進剤は、マグネシウム、ストロンチウム、カルシウム、およびバリウムから選ばれる2a族元素の少なくとも1種であることを特徴とする上記第1から第5のいずれかの石英ガラスルツボ。
 第7:結晶化促進剤はバリウムであり、結晶化促進剤含有層は、バリウムをコーティングした高純度シリカ粉を石英ガラスルツボの内表面に供給し溶融させて形成したものであることを特徴とする上記第1から第6のいずれかの石英ガラスルツボ。
 第8:結晶化促進剤含有層は、厚さが30~200μmであることを特徴とする上記第7の石英ガラスルツボ。
 第9:結晶化促進剤含有層は、バリウム濃度が100~200ppmであることを特徴とする上記第7または第8の石英ガラスルツボ。
 第10:結晶化促進剤含有層は、バリウム濃度が130~170ppmであることを特徴とする上記第7から第9のいずれかの石英ガラスルツボ。
 第11:上記第1から第10のいずれかの石英ガラスルツボを用いたシリコン単結晶の製造方法であって、多結晶シリコンを石英ガラスルツボ内に投入する工程と、多結晶シリコンを加熱溶解してシリコン融液とする工程と、種結晶を用いて石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げる工程とを含むことを特徴とするシリコン単結晶の製造方法。
 本発明によれば、単結晶引き上げ時に、石英ガラスルツボの内表面には点在的に発生した結晶化物質が形成されることなく、結晶化物質が連続的に結合した斑状の結晶化領域が形成される。このように、斑状の結晶化領域が形成されることで、その石英ガラスルツボ内表面に点在的に発生した結晶化物質の剥離が抑制される。特に、結晶化促進剤を石英ガラスルツボの内表面の深さ方向に有していることにより、斑状の結晶化領域のその結晶化は、内表面の深さ方向に進行する。そのため、その内表面に点在的に発生した結晶化物質の剥離を大幅に抑制することができる。
 さらに、シリコン単結晶の引き上げ時に、石英ガラスルツボの内表面における斑状の結晶化領域以外の領域から石英ガラスルツボに内在しているガスが放出される。そのため、斑状の結晶化領域の結晶層が微小剥離してガス放出穴が形成されることがなく、また溶解シリコンが斑状の結晶化領域の結晶層とその下のガラス層との間へ入り込むことがない。従って、斑状の結晶化領域の結晶層の剥離は発生することはない。
 このように、本発明の石英ガラスルツボは、従来のように内表面に点在的に発生する結晶化物質の落下が生じることがなく、そして内表面全面に結晶層を形成した場合のように結晶層の一部が微小剥離してガス放出穴が形成されることがなく、また溶解シリコンが微小剥離によるガス放出穴から結晶層とその下のガラス層との間へ入り込むことがない。従って、歩留まりが極めて高いシリコン単結晶引き上げ用の石英ガラスルツボを提供することができる。
本発明のシリコン単結晶引き上げ用の石英ガラスルツボの一実施形態を概略的に示す断面図である。 斑状の結晶化領域が形成された石英ガラスルツボの内表面を模式的に示した図である。 実施例の石英ガラスルツボを用いてシリコン単結晶の引き上げを行った後の、斑状の結晶化領域が形成された石英ガラスルツボの内表面の写真である。 比較例の石英ガラスルツボの内表面に発生したφ2~φ6の大きさの結晶化物質の写真である。 比較例の石英ガラスルツボの内表面の結晶層表面に発生した数10μmのガス放出穴の写真である。 比較例の石英ガラスルツボの内表面の結晶層表面に発生した数10μmのガス放出穴の電子顕微鏡写真である。 比較例の石英ガラスルツボにおいて発生した、溶解シリコンが約10μmのガス放出穴から結晶層下に流れ込んだ状態の写真である。 比較例の石英ガラスルツボにおいて発生した、溶解シリコンが結晶層と石英ガラスの不透明層との間に入りこんで結晶層が石英ガラスの不透明層から剥離した状態の写真である。
 1  石英ガラスルツボ
 2  石英ガラスの不透明層
 3  石英ガラスの透明層
 4  結晶化促進剤含有層
 5  斑状の結晶化領域
 5a 単位領域
 6  ガス放出穴
 7  シリコン
 8  結晶層表面
 9  結晶層
10  シリコン
11  石英ガラスの不透明層
12  斑状の結晶化領域以外の領域
 以下、本発明について詳細に説明する。
 図1は、本発明のシリコン単結晶引き上げ用石英ガラスルツボの一実施形態を概略的に示す断面図である。同図に示すように本発明の石英ガラスルツボ1は、結晶化促進剤含有層4を内表面に有している。
 本発明において結晶化促進剤含有層に含有される結晶化促進剤は、シリコン単結晶引き上げ時に、石英ガラスルツボの内表面が高温のシリコン融液と反応し、その界面での結晶化物質の発生を助長させるものであり、その具体例としては、2a族元素のマグネシウム、ストロンチウム、カルシウム、バリウム等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 これらの結晶化促進剤のうちバリウムは偏析係数が小さいため、シリコン単結晶の引き上げ時にシリコン単結晶に取り込まれ難いという優れた特性を有しており、本発明ではバリウムを結晶化促進剤として用いるのが特に好ましい。
 そして本発明において特徴的な点は、シリコン単結晶の引き上げ時に、内表面に結晶化促進剤により斑状の結晶化領域が形成されることである。
 ここで、斑状の結晶化領域について図2の模式図および図3の写真を参照しながら説明する。図2および図3において符号5が斑状の結晶化領域である。
 この斑状の結晶化領域は、シリコン単結晶の引き上げ時に石英ガラスルツボの内表面に点在的に発生した結晶化物質が連続的に結合して形成されたものであり、その形状および大きさにおいて従来知られている点在的に発生した結晶化物質とは明確に相違するものである。
 すなわち点在的に発生した結晶化物質は、図4に示すように代表的にはφ2~φ6の円形状のものであり、本発明における斑状の結晶化領域に比べると形状および大きさが一定範囲にあり一定の秩序が認められる。そして点在的に発生した結晶化物質は、面積が10mm2未満のものが多数を占める。
 これに対して本発明における斑状の結晶化領域は、全体として不定形かつ不均一な外観を有している。そして図2に模式的に示すように、斑状の結晶化領域5は、実質的に周縁部が閉じて独立した形状を有する、図中点線楕円で囲んだものに例示される単位領域5aを含んでいる。
 斑状の結晶化領域は図3の写真にも示されるように不定形かつ不均一なものであり、図2に一例として示すように単位領域5a1、単位領域5a2、単位領域5a3等の複数の単位領域5aが細い部分を介して連続したものも含まれるが、単位領域5aは、視覚上便宜的に、実質的に周縁部が閉じて独立した形状として認識し得るものとして把握できる。
 この単位領域は、シリコン単結晶引上げ時に高温のシリコン融液が石英ガラスルツボの内表面と反応し、その界面で発生した結晶化物質が、石英ガラスルツボの内表面に含有させた結晶化促進剤の作用により連続的に結合したものである。すなわち上記したφ2~φ6の円形状の結晶化物質が連続的に結合して拡大したものであり、当該結晶化物質のサイズに比べて明らかに大きいものである。単位領域の典型的なものとして、その面積が10~100mm2の範囲にあるものが含まれる。なお、単位領域として100mm2を超える面積を有するものも存在する。
 石英ガラスルツボの内表面の結晶化物質を連続的に結合させて不均一な斑状の結晶化領域を形成させ、更に石英ガラスルツボの内表面の深さ方向に結晶化促進剤を含有させることにより、石英ガラスルツボの内表面の結晶化が深さ方向に進行し、内表面に発生した結晶化物質の剥離を抑制できる。また、石英ガラスルツボの内表面に不均一な斑状の結晶化領域を形成することは、シリコン単結晶の引き上げ時に、石英ガラスルツボに内在したガスを図2の斑状の結晶化領域以外の領域12により放出させることができ、斑状の結晶化領域の結晶層が石英ガラスルツボ内表面から剥離することを防止できる。
 そして本発明における好ましい態様では、斑状の結晶化領域の単位領域のうち少なくとも一部は、図2の単位領域5a1、単位領域5a2、単位領域5a3等に例示したように単位領域同士がさらに連続的に結合しており、かつ、斑状の結晶化領域の全面積が石英ルツボの内表面の30~80%、好ましくは30~70%を占めている。
 斑状の結晶化領域の全面積が石英ルツボの内表面の30%未満であると、シリコン単結晶の引き上げ時に、φ2~φ6の円形状の結晶化物質が多数内表面に存在し、その剥離が頻繁になり、単結晶引き上げの歩留まりが低下する場合がある。
 一方、斑状の結晶化領域の全面積が石英ルツボの内表面の80%を超えると、シリコン単結晶の引き上げ時に、石英ガラスルツボに内在し高温下で膨張したガスを十分に放出することができなくなる場合がある。この場合、当該ガスが結晶層を微小剥離させてガス放出穴が発生し、ガス放出穴より当該ガスが放出される(図6)。このとき、結晶層には数10μmの微小なガス放出穴が数多く発生することが本発明者らにより確認されている(図5)。
 そして石英ガラスルツボ内に投入されている加熱溶解された溶融シリコンは、その数10μmの微小なガス放出穴から結晶層下に位置する石英ガラスルツボのガラス層(透明層またはその外周部の不透明層)に流れ込み(図7)、ガラス層は高温の溶融シリコンにより溶解されて、溶融シリコンが結晶層とガラス層との間に入りこみ結晶層は石英ガラスルツボから剥離する(図8)。
 本発明における好ましい態様では、結晶化促進剤はバリウムであり、結晶化促進剤含有層は、バリウムをコーティングした高純度シリカ粉を石英ガラスルツボの内表面に供給し溶融させて形成したものである。このようにして形成した結晶化促進剤含有層は、厚さが好ましくは30~200μmである。このような厚さの範囲にバリウムを含有させ、石英ガラスルツボの内表面の深さ方向に結晶化を進行させることにより、内表面に発生した結晶化物質の剥離を抑制できる。
 内表面から30μm未満に結晶促進剤を含有させた場合、内表面に塗布した場合と同じく、高濃度に結晶化促進剤を含有させなければ結晶化は促進されず、内表面に発生した結晶化した物質は剥離してしまう。
 また、内表面から200μm以上に結晶促進剤を含有させた場合、結晶化が進み石英ガラスルツボ内表面の全面が結晶化され、不均一な斑状領域を得ることができなくなる。つまり、結晶層が石英ガラスルツボ内表面から剥離する。
 そして上記の結晶化促進剤含有層は、バリウム濃度が好ましくは100~200ppm、より好ましくは130~170ppmである。
 バリウム濃度が100ppm未満であると、結晶化促進剤としてのバリウムの濃度が低いため結晶化が促進されず、石英ガラスルツボの内表面に発生した結晶化物質の剥離が発生する場合がある。
 バリウム濃度が200ppmを超えると、結晶化が過度に進行し石英ガラスルツボの内表面全面が結晶化され、斑状の結晶化領域を得ることができなくなる。そのため、結晶層が石英ガラスルツボの内表面から剥離する場合がある。
 一方、結晶化促進剤含有層のバリウム濃度を130~170ppmとすることで、確実に石英ガラスルツボの内表面の30~80%の領域を斑状の結晶化領域とすることができる。すなわち、シリコン単結晶引上げ時の条件のうち石英ガラスルツボに加える熱量は、石英ガラスルツボの口径等により異なる。そして石英ガラスルツボの内表面の斑状の結晶化領域の状態は、石英ガラスルツボに加えられる熱量に影響されるため、シリコン単結晶引上げ時の条件に依存せず確実に内表面の30~80%の領域を不均一な斑状態にするためには130~170ppmの濃度でバリウムを結晶化促進剤含有層に分布させる必要がある。例えば、石英ガラスルツボの口径寸法が16インチの場合では、バリウム濃度130~200ppmの範囲で確実に内表面の30~80%に斑状の結晶化領域を形成することができる。一方、口径寸法が24インチの場合では、バリウム濃度100~170ppmの範囲で確実に内表面の30~80%に斑状の結晶化領域を形成することができる。
 以上に説明した本発明の石英ガラスルツボを用いて、例えば従来より知られている通常の条件により、太陽電池や半導体向けの素子として使用されるシリコン基板の基となるシリコン単結晶インゴットを製造することができる。すなわち、この石英ガラスルツボを用いたシリコン単結晶インゴットの一般的な製造方法は、石英ガラスルツボに必要量の多結晶シリコンを充填し、シリコン単結晶引き上げ装置内をアルゴンガスに置換し、グラファイト発熱体により1420℃以上の1500℃~1600℃に加熱して、多結晶シリコンを溶解する。次に、徐々に温度を下げ融液表面の温度を1420℃まで下げるなどの調整をした後、種結晶(6~8mm角柱状)を融液に浸し、種結晶の表面を溶解する。種結晶中に存在していた転位および種づけ時に熱ショックで新たに発生した転位などを除去するため、比較的速い引上げ速度(1~5mm/min)で直径3~5mm、長さ100~300mmの細くて長いネック部を形成する。石英ガラスルツボ内融液上面近傍の温度を下げると共に引上げ速度も0.1~0.5mm/minと遅くし、細い直径のネック部から所定の直径の定径部まで、短時間でかつ急激に増径する肩部を形成する。温度と引き上げ速度を調整し、結晶径が一定になるように定径部の育成を行う。所定の長さになったら温度を少し下げ、かつ引き上げ速度を速めて結晶を細くし、定径部から直径を次第に減少させ、直径を零とする尾部を形成し、シリコン単結晶インゴットが融液から離れたら引き上げ製造作業は完了となり、シリコン単結晶を高い歩留まりで製造することができる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例>
 回転するモールドに天然石英粉を投入した後に、黒鉛電極に電圧を印加し、電流を流す電気アーク加熱によって、モールド内面から石英ガラスルツボの不透明層を形成した。引き続いて、アーク火炎中に天然石英粉を徐々に散布供給し透明層を形成した。さらに連続して、本発明の結晶化促進剤であるバリウムを含有する溶液を天然石英粉にコーティングすることにより得た、バリウムをコーティングした天然石英粉を徐々に散布供給して、結晶化促進剤含有層を形成し溶融を終了した。その後は、公知の工程により、図1に示すように外周部に石英ガラスの不透明層2、その内側に石英ガラスの透明層3、さらにその内側に結晶化促進剤含有層4を有する石英ガラスルツボを作製した。
 なお、結晶化促進剤含有層の厚さは30~200μmの範囲で3段階、結晶化促進剤含有層のバリウム濃度が100~200ppmの範囲で4段階に分け、石英ガラスルツボ口径寸法が16インチと24インチのそれぞれについて石英ガラスルツボを作製した。
 このようにして得られた口径寸法16インチと24インチのそれぞれの石英ガラスルツボを用いて、シリコン単結晶の引き上げを行った結果、引き上げ時に内表面に斑状の結晶化領域が形成された。斑状の結晶化領域は、図2にも示すように、全体として不定形かつ不均一な外観を有しており、その単位領域には面積が10~100mm2の範囲にあるものが含まれていた。そして斑状の結晶化領域の単位領域のうち少なくとも一部は、単位領域同士がさらに連続的に結合しており、斑状の結晶化領域の全面積は石英ルツボの内表面の30~80%を占めていた。
 本実施例の石英ガラスルツボはいずれも内表面に発生する結晶化物質の剥離が抑制され、ガス放出穴の発生により結晶層が石英ガラスルツボ内表面から剥離せず、75%以上の高い単結晶化歩留りを達成した。その結果を表1に示す。
<比較例>
 上記実施例において、結晶化促進剤含有層の厚さを10μmまたは220μm、結晶化促進剤含有層のバリウム濃度を0ppm、70ppm、または230ppmとし、それ以外は実施例と同様にして、口径寸法が16インチと24インチのそれぞれの石英ガラスルツボを作製した。これらの石英ガラスルツボを用いて、シリコン単結晶の引き上げを行った。その結果を表1に示す。
 結晶化促進剤含有層の厚さが30μm未満の10μmの場合、石英ガラスルツボの内表面に、結晶化促進剤を含有させない時に発生するφ2~φ6の大きさの結晶化物質が多数生成し、この結晶化物質が石英ガラスルツボ内表面から剥離した。そのため、単結晶引き上げ歩留まりを向上させることはできなかった。
 結晶化促進剤含有層の厚さが200μmを超える220μmの場合、石英ガラスルツボの内表面の80%を超えるほぼ全面が結晶化し、結晶層表面には数10μmの小さい穴であるガス放出穴が数多く確認され、このガス放出穴から溶解シリコンが結晶層と不透明層との間に入りこんだ(図7)。そのため、単結晶引き上げ歩留まりを向上させることはできなかった。
 また、石英ガラスルツボの口径寸法が16インチで結晶化促進剤含有層のバリウム濃度が130ppm未満の場合と、口径寸法が24インチでバリウム濃度が100ppm未満の場合、石英ガラスルツボの内表面に、結晶化促進剤を含有させない時に発生するφ2~φ6の大きさの結晶化物質が多数生成し、この結晶化物質が石英ガラスルツボ内表面から剥離した。そのため、単結晶引き上げ歩留まりを向上させることはできなかった。
 石英ガラスルツボの口径寸法が16インチで結晶化促進剤含有層のバリウム濃度が200ppmを超える場合と、口径寸法が24インチでバリウム濃度が170ppmを超える場合、石英ガラスルツボの内表面の80%を超えるほぼ全面が結晶化し、結晶層表面には数10μmの小さい穴であるガス放出穴が数多く確認され、このガス放出穴から溶解シリコンが結晶層と不透明層との間に入りこんだ(図7)。そのため、単結晶引き上げ歩留まりを向上させることはできなかった。
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  シリコン単結晶引き上げ用の石英ガラスルツボであって、結晶化促進剤含有層を内表面に有し、シリコン単結晶の引き上げ時に、内表面に結晶化促進剤により斑状の結晶化領域が形成されることを特徴とする石英ガラスルツボ。
  2.  斑状の結晶化領域は、シリコン単結晶の引き上げ時に石英ガラスルツボの内表面に点在的に発生した結晶化物質が連続的に結合して形成されることを特徴とする請求項1に記載の石英ガラスルツボ。
  3.  斑状の結晶化領域は、実質的に周縁部が閉じて独立した形状を有し当該形状の面積が10~100mm2の範囲にある単位領域を含むことを特徴とする請求項1または2に記載の石英ガラスルツボ。
  4.  斑状の結晶化領域の単位領域のうち少なくとも一部は、単位領域同士がさらに連続的に結合しており、斑状の結晶化領域の全面積が石英ガラスルツボの内表面の30~80%を占めることを特徴とする請求項3に記載の石英ガラスルツボ。
  5.  斑状の結晶化領域には、シリコン単結晶の引上げ時に10~100μmの微少穴が発生しないことを特徴とする請求項4に記載の石英ガラスルツボ。
  6.  結晶化促進剤は、マグネシウム、ストロンチウム、カルシウム、およびバリウムから選ばれる2a族元素の少なくとも1種であることを特徴とする請求項1から5のいずれかに記載の石英ガラスルツボ。
  7.  結晶化促進剤はバリウムであり、結晶化促進剤含有層は、バリウムをコーティングした高純度シリカ粉を石英ガラスルツボの内表面に供給し溶融させて形成したものであることを特徴とする請求項1から6のいずれかに記載の石英ガラスルツボ。
  8.  結晶化促進剤含有層は、厚さが30~200μmであることを特徴とする請求項7に記載の石英ガラスルツボ。
  9.  結晶化促進剤含有層は、バリウム濃度が100~200ppmであることを特徴とする請求項7または8に記載の石英ガラスルツボ。
  10.  結晶化促進剤含有層は、バリウム濃度が130~170ppmであることを特徴とする請求項7から9のいずれかに記載の石英ガラスルツボ。
  11.  請求項1から10のいずれかに記載の石英ガラスルツボを用いたシリコン単結晶の製造方法であって、多結晶シリコンを石英ガラスルツボ内に投入する工程と、多結晶シリコンを加熱溶解してシリコン融液とする工程と、種結晶を用いて石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げる工程とを含むことを特徴とするシリコン単結晶の製造方法。
PCT/JP2010/051893 2009-02-10 2010-02-09 シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法 WO2010092955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/148,768 US20120006254A1 (en) 2009-02-10 2009-02-09 Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
KR1020117018531A KR20120013300A (ko) 2009-02-10 2010-02-09 실리콘 단결정 인상용의 석영 유리 도가니 및 실리콘 단결정의 제조방법
SG2011057502A SG173618A1 (en) 2009-02-10 2010-02-09 Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
CN2010800073695A CN102317511A (zh) 2009-02-10 2010-02-09 硅单结晶拉升用石英玻璃坩埚及硅单结晶的制造方法
EP10741232A EP2397582A1 (en) 2009-02-10 2010-02-09 Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-028444 2009-02-10
JP2009028444A JP4866924B2 (ja) 2009-02-10 2009-02-10 シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2010092955A1 true WO2010092955A1 (ja) 2010-08-19

Family

ID=42561797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051893 WO2010092955A1 (ja) 2009-02-10 2010-02-09 シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法

Country Status (8)

Country Link
US (1) US20120006254A1 (ja)
EP (1) EP2397582A1 (ja)
JP (1) JP4866924B2 (ja)
KR (1) KR20120013300A (ja)
CN (1) CN102317511A (ja)
SG (1) SG173618A1 (ja)
TW (1) TW201035392A (ja)
WO (1) WO2010092955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055195A1 (zh) * 2010-10-27 2012-05-03 杭州先进石英材料有限公司 一种石英玻璃坩埚及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610570B2 (ja) * 2010-07-20 2014-10-22 株式会社Sumco シリカガラスルツボ、シリコンインゴットの製造方法
JP5509188B2 (ja) 2011-12-26 2014-06-04 ジルトロニック アクチエンゲゼルシャフト 単結晶シリコンの製造方法
JP5509189B2 (ja) 2011-12-26 2014-06-04 ジルトロニック アクチエンゲゼルシャフト 単結晶シリコンの製造方法
KR101680215B1 (ko) * 2015-01-07 2016-11-28 주식회사 엘지실트론 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳
KR101829291B1 (ko) * 2016-08-05 2018-02-19 에스케이실트론 주식회사 도가니 및 이를 포함하는 단결정 성장 장치
US11162186B2 (en) * 2016-09-23 2021-11-02 Sumco Corporation Quartz glass crucible, manufacturing method thereof, and manufacturing method of silicon single crystal using quartz glass crucible
TWI651283B (zh) * 2017-04-28 2019-02-21 友達晶材股份有限公司 坩堝結構及其製作方法與矽晶結構及其製作方法
CN115142121B (zh) * 2021-03-31 2023-06-20 晶科能源股份有限公司 提高复投单晶硅成晶率的方法及单晶硅制备装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030106491A1 (en) * 2001-12-12 2003-06-12 Heraeus Shin-Etsu America Silica crucible with inner layer crystallizer and method
JP2005145731A (ja) * 2003-11-12 2005-06-09 Kuramoto Seisakusho Co Ltd 結晶化石英ルツボ
JP2006021985A (ja) * 2004-06-10 2006-01-26 Kuramoto Seisakusho Co Ltd 石英ルツボ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095678A (ja) * 2001-07-16 2003-04-03 Heraeus Shin-Etsu America シリコン単結晶製造用ドープ石英ガラスルツボ及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030106491A1 (en) * 2001-12-12 2003-06-12 Heraeus Shin-Etsu America Silica crucible with inner layer crystallizer and method
JP2005145731A (ja) * 2003-11-12 2005-06-09 Kuramoto Seisakusho Co Ltd 結晶化石英ルツボ
JP2006021985A (ja) * 2004-06-10 2006-01-26 Kuramoto Seisakusho Co Ltd 石英ルツボ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012055195A1 (zh) * 2010-10-27 2012-05-03 杭州先进石英材料有限公司 一种石英玻璃坩埚及其制备方法

Also Published As

Publication number Publication date
JP4866924B2 (ja) 2012-02-01
EP2397582A1 (en) 2011-12-21
SG173618A1 (en) 2011-09-29
JP2010184819A (ja) 2010-08-26
CN102317511A (zh) 2012-01-11
TW201035392A (en) 2010-10-01
US20120006254A1 (en) 2012-01-12
KR20120013300A (ko) 2012-02-14

Similar Documents

Publication Publication Date Title
JP4866924B2 (ja) シリコン単結晶引き上げ用の石英ガラスルツボおよびシリコン単結晶の製造方法
JP4995069B2 (ja) 内面結晶化ルツボおよび該ルツボを用いた引上げ方法
JP5947389B2 (ja) サファイア単結晶育成用坩堝およびサファイア単結晶育成用坩堝の製造方法
CN101696514A (zh) 一种多晶锭的生产方法
JP4601437B2 (ja) 内表面が半結晶化した石英ガラスルツボとその製造方法
JP4454059B2 (ja) シリコン単結晶引き上げ用大口径石英ガラスるつぼ
KR102290102B1 (ko) 단결정 실리콘 인상용 석영 유리 도가니 및 그의 제조방법
JP2009269799A (ja) 単結晶の成長方法および単結晶の引き上げ装置
JP2008162865A (ja) 石英ガラスルツボ
WO2002014587A1 (fr) Creuset en quartz et procede de fabrication d'un monocristal
JP5610570B2 (ja) シリカガラスルツボ、シリコンインゴットの製造方法
JP2006021985A (ja) 石英ルツボ
JP4132786B2 (ja) 薄板製造方法および太陽電池
TWI338728B (ja)
JP2010202515A (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP2000072589A (ja) シリコン単結晶引き上げ用石英ガラスるつぼ及び その製造方法
JP2012091969A (ja) 石英ガラスルツボとその製造方法およびシリコン単結晶の製造方法
JP2005306708A (ja) 石英ルツボ
JP2007277026A (ja) シリコン単結晶の引上げ方法
JP2005239533A (ja) シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法
JP2005145732A (ja) 結晶化石英ルツボ
WO2024043030A1 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びこれを用いたシリコン単結晶の製造方法
WO2022249570A1 (ja) 石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
JP2004292213A (ja) シリコン単結晶引上げ用石英ルツボ
JP5077280B2 (ja) シリコン単結晶の引き上げ方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007369.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741232

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117018531

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010741232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148768

Country of ref document: US