WO2010092747A1 - 電子線装置および電子線装置用試料保持装置 - Google Patents
電子線装置および電子線装置用試料保持装置 Download PDFInfo
- Publication number
- WO2010092747A1 WO2010092747A1 PCT/JP2010/000282 JP2010000282W WO2010092747A1 WO 2010092747 A1 WO2010092747 A1 WO 2010092747A1 JP 2010000282 W JP2010000282 W JP 2010000282W WO 2010092747 A1 WO2010092747 A1 WO 2010092747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- electron beam
- beam apparatus
- gas
- diaphragm
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 147
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 150000004767 nitrides Chemical class 0.000 claims abstract description 5
- 230000001678 irradiating effect Effects 0.000 claims abstract 2
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000007789 gas Substances 0.000 abstract description 79
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 241000252073 Anguilliformes Species 0.000 description 9
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010206 sensitivity analysis Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/006—Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2002—Controlling environment of sample
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2002—Controlling environment of sample
- H01J2237/2003—Environmental cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2002—Controlling environment of sample
- H01J2237/2003—Environmental cells
- H01J2237/2004—Biological samples
Definitions
- the present invention relates to an electron beam apparatus for observing a sample using an electron beam and a sample holder for an electron beam apparatus, and in particular, a micro gas space (environmental cell) of an atmospheric gas containing a sample with a diaphragm inside a sample chamber.
- Electron beam equipment and sample holder for electron beam equipment that can accurately control the pressure in the environmental cell and perform high-resolution observation and high-sensitivity analysis immediately after the reaction in a high-pressure gas atmosphere Relates to the device.
- Patent Document 1 and Patent Document 2 For observation in a gas atmosphere, as described in Patent Document 1 and Patent Document 2, there is a method in which a sample holder is provided with a mechanism for sandwiching a sample between two grids and introducing and exhausting gas between them. Further, as described in Patent Document 3, there is a method of providing a cylindrical cover around a sample and providing a hole with a diaphragm through which two electron beams pass through the cover.
- Patent Document 5 there is a method of observing a gas reaction at a high temperature by providing a capillary tube for blowing a gas so as to oppose a heater for heating a sample.
- a charged particle beam device has a mechanism for heating a sample and a mechanism for quenching by blowing gas to a reaction site, There is a method in which the reaction process is observed, and then the observation site is cut out with a focused ion beam and observed with a transmission electron microscope.
- An object of the present invention is to provide an electron beam apparatus and a sample holding apparatus for an electron beam apparatus capable of observing a reaction between a sample and a gas with high resolution while maintaining a gas atmosphere even with a thin diaphragm.
- the sample holding means includes a gas A gas supply means for supplying gas, and an exhaust means for exhausting, in order to constitute a cell in which the gas atmosphere and the vacuum in the sample chamber are isolated, and the atmosphere around the sample is sealed, a diaphragm is arranged above and below the sample, and A mechanism for injecting gas to the outside of the diaphragm was provided inside the sample chamber.
- a gas having a low electron beam scattering ability for example, hydrogen, oxygen, nitrogen or the like was used.
- the material of the diaphragm was an amorphous film composed of light elements such as a carbon film, an oxide film, and a nitride film that can transmit an electron beam.
- a micro gas space (environmental cell) of an atmospheric gas containing a sample with a diaphragm is created inside the sample chamber using an electron beam apparatus, and the sample and gas are kept in a state where the gas atmosphere is maintained even with a thin diaphragm.
- the reaction can be observed with high resolution.
- the basic block diagram of the electron beam apparatus 1 which is one Example of this invention, and the sample holder 6 for electron beam apparatuses.
- maintenance apparatus 6 for electron beam apparatuses of one Example. 1 is a configuration diagram of an electron beam apparatus sample holding device 6 according to an embodiment, (a) an electron beam apparatus sample holding apparatus cross-sectional view, (b) an electron beam apparatus sample holding apparatus tip cross-sectional view, and (c) an electron beam apparatus. Top view of the sample holding device tip.
- Operation explanatory diagram of the electron beam apparatus sample holding device 6 of one embodiment (a) the electron beam apparatus sample holding apparatus 6 cross-sectional view, (b) the electron beam apparatus sample holding apparatus 6 tip cross-sectional view, (c) The top view of the front end of the sample holder 6 for an electron beam apparatus.
- Explanatory drawing of operation movement of the sample holder 6 for electron beam apparatuses of one Example. 1 is a cross-sectional view of a sample holding device for an electron beam apparatus and a top view thereof.
- the sample holder 6 for electron beam apparatuses of one Example (a) Sectional drawing of the sample holder for electron beam apparatuses, (b) Top view of the sample holder for electron beam apparatuses.
- the sample holder 6 for electron beam apparatuses of one Example (a) Sectional drawing of the sample holder for electron beam apparatuses, (b) Top view of the sample holder for electron beam apparatuses.
- the sample holder 6 for electron beam apparatuses of one Example (a) Sectional drawing of the sample holder for electron beam apparatuses, (b) Top view of the sample holder for electron beam apparatuses. Explanatory drawing of the sample holder 6 for electron beam apparatuses of one Example.
- the sample holder 6 for electron beam apparatuses of one Example (a) Sectional drawing of the sample holder for electron beam apparatuses, (b) Top view of the sample holder for electron beam apparatuses.
- the sample holder 6 for electron beam apparatuses of one Example (a) Sectional drawing of the sample holder for electron beam apparatuses, (b) Top view of the sample holder for electron beam apparatuses.
- FIG. 1 shows a basic configuration diagram of an electron beam apparatus 1 and an electron beam apparatus sample holding apparatus 6 according to an embodiment of the present invention.
- the mirror body of the electron beam apparatus 1 includes an electron gun 2, a condenser lens 3, an objective lens 4, and a projection lens 5. Between the condenser lens 3 and the objective lens 4, a sample holding device 6 for an electron beam apparatus is inserted.
- a fluorescent screen 7 is mounted below the projection lens 5, and a TV camera 8 is mounted below the fluorescent screen 7.
- the TV camera 8 is connected to the image display unit 9.
- An EELS detector 10 is attached to the lower part of the TV camera 8 and connected to the EELS control unit 11.
- An EDX detector 12 is provided above the electron beam sample holding device 6 and is connected to the EDX controller 13.
- a sample 20 is loaded in a cell 19 sealed with a diaphragm 18 formed of an amorphous material such as carbon, oxide, or nitride.
- the tip of the exhaust pipe 22 is inserted into the cell 19.
- the gas introduction pipe 21a is connected to the gas storage unit 24a via the gas pressure control valve 23a.
- the gas exhaust pipe 22 is connected to the vacuum pump 17 via the valve 16. Further, in the electron beam sample chamber 14, a distal end portion of a gas introduction tube 21b is inserted and connected to a gas storage portion 24b via a gas pressure control valve 23b so that gas can be blown to the outside of the diaphragm 18 partial cell.
- the electron beam 25 generated from the electron gun 2 is converged by the condenser lens 3 and irradiated onto the sample 20.
- the electron beam 25 that has passed through the sample 20 is imaged by the objective lens 4, magnified by the projection lens 5, and projected onto the fluorescent screen 7.
- the fluorescent screen 7 is lifted and projected onto the TV camera 8, and a transmission image is displayed on the image display unit 9.
- FIG. 2 shows a configuration diagram of an electron beam sample chamber 14 according to an embodiment and a partially enlarged view of the sample holder 6 for an electron beam apparatus.
- the gas pressure inside the cell 19 is adjusted by the gas pressure control valve 23a from the gas introduction pipe 21a, and the sample 20 is observed inside the gas.
- the gas inside the cell 19 is exhausted from the gas exhaust pipe 22 by the vacuum pump 17.
- the pressure inside the cell 19 is set high by reducing the pressure difference inside and outside the cell 19 by blowing the gas from the gas introduction tube 21b to the electron beam sample chamber 14 and protecting the diaphragm 18.
- the diaphragm 18 is prevented from being broken.
- an intermediate chamber 26 separated by a narrowed wall is provided between the electron beam sample chamber 14 and the electron gun 2, and the gas reaches the electron gun 2 directly by exhausting with a different vacuum pump 17. It is possible to prevent the electron gun 2 from being damaged.
- the material of the diaphragm was an amorphous film composed of light elements such as a carbon film, an oxide film, and a nitride film that can transmit an electron beam.
- a gas having a low electron beam scattering ability for example, hydrogen, oxygen, nitrogen or the like was used.
- FIG. 3 shows an overall cross-sectional view (a), a front-end cross-sectional view (b), and a top-end top view (c) of a sample holder 6 for an electron beam apparatus that can move the diaphragm of one embodiment in the horizontal direction.
- the diaphragm 18 is attached to a diaphragm driving unit 27, and the diaphragm driving unit 27 is connected to a micrometer 28 outside the body of the electron beam apparatus 1, and the diaphragm driving unit 27 is operated horizontally by rotating the micrometer 28.
- the sample 20 is fixed to a grid having a diameter of about 3 mm or punched into a disk shape having a diameter of about 3 mm, and is fixed to the cell 19 by a ring spring 32.
- An O-ring 30 is interposed between the diaphragm driving unit 27 and the electron beam apparatus sample holding device 6 body, and the cell 19 is set by setting the diaphragm driving unit 27 so that the part of the diaphragm 18 is disposed in the part where the electron beam 25 passes. It is possible to shut off the atmosphere inside.
- the gas 20 is introduced into the cell 19 from the gas introduction pipe 21a, and the sample 20 in the gas atmosphere can be observed.
- FIG. 4 is an overall cross-sectional view (a), a front-end cross-sectional view (b), and a front-end top view of the sample holder 6 for an electron beam apparatus when the diaphragm driving unit 27 is moved so as to open the cell 19 of one embodiment.
- the cell 19 can be opened by rotating the micrometer 28 from outside the body of the electron beam apparatus 1, and the gas inside the cell 19 can be exhausted in a short time after the gas reaction, and then the field of view is not lost.
- High-resolution transmission image observation, EDX analysis, and EELS analysis that have been hindered by the diaphragm 18 and gas can be quickly performed.
- FIG. 4 shows a structure in which the upper and lower diaphragms 18 move simultaneously, but a micrometer 28 may be provided so that one or both of the diaphragms 18 horizontally move separately.
- FIG. 5 illustrates an embodiment in which the diaphragm can be moved in the vertical direction.
- FIG. 5 shows a cross-sectional view of the tip of the sample holder 6 (sample holder) for an electron beam apparatus that can move the diaphragm 18 of one embodiment in the vertical direction.
- the diaphragm 18 is fixed to the presser 31, and the contact portion between the presser 31 and the diaphragm operating part 27 is threaded, so that the diaphragm 18 can move in the vertical direction (a).
- the diaphragm 18 can be brought closer to the sample 20 by screwing the central part of the main body of the sample holder 6 for the electron beam apparatus (b). As a result, the gas volume can be reduced, scattering of the electron beam can be suppressed, and higher resolution observation can be performed.
- the lower diaphragm 18 with respect to the sample 20 is set in the central part of the main body of the sample holder 6 for the electron beam apparatus, and the upper diaphragm 18 is set in the diaphragm driving unit 27 so that only the upper diaphragm 18 can move. It is. Thereby, even when the cell 19 is sealed with the diaphragm 18, the volume of the cell 19 can be reduced, the volume of gas can be suppressed, and high-resolution observation is possible. Further, after the reaction, the upper diaphragm 18 is moved horizontally and the cell 19 is opened, so that the inside of the cell 19 can be exhausted in a short time, and high-resolution observation immediately after the reaction and more sensitive EDX analysis and EELS analysis can be performed. (C) becomes possible.
- FIG. 6 shows an explanatory diagram when the diaphragm 18 is moved in the vertical direction.
- An O-ring 30 is attached to the presser 31 to which the diaphragm 18 is attached, and the inside and outside of the cell 19 are blocked.
- a special screwdriver 33 is used to move the diaphragm 18, and the presser 31 to which the diaphragm 18 is attached is moved up and down by inserting and rotating a protrusion provided on the special driver 33 into a hole provided in the presser 31.
- the sample heating mechanism will be described with reference to FIG.
- FIG. 7 shows a sectional view of the tip (a-1, b-1) and a top view of the tip (a-2, b-2) of the sample holder 6 for an electron beam apparatus according to one embodiment.
- a heater 34 is fixed to the electron beam apparatus sample holder 6 with screws 35 inside the cell 19 of the electron beam apparatus sample holder 6.
- the heater 34 is connected to a heating power source 37 outside the body of the electron beam apparatus 1 via a lead wire 36.
- the sample 20 is powder and is directly attached to the heater 34. By introducing a gas from the gas introduction pipe 21a into the sealed cell 19 and then flowing an electric current through the heater 34, the sample 20 is directly heated, a gas reaction occurs, and the state can be observed. (A-1, 2).
- the gas is exhausted while the current is passed through the heater 34, the upper and lower diaphragms 18 are moved horizontally, and the cell 19 is opened, so that high-resolution observation of the sample 20 immediately after the reaction in the same field of view is possible. Further, even when the electron beam 25 is focused and the EELS analysis of a minute region is performed, analysis with high spatial resolution and no influence of the diaphragm 18 is possible (b-1, 2).
- FIG. 8 shows a sectional view (a) of the tip of the sample holder 6 for an electron beam apparatus according to one embodiment, and a top view (b) of the tip.
- another evaporation heater 34b is provided at the tip of the electron beam apparatus sample holding device 6 in order to deposit a different metal or the like on the sample 20.
- the vapor deposition heater 34 b is installed inside the cell 19 sealed with the diaphragm 18.
- the vapor deposition heater 34b is connected to the lead wire 36b, and is connected to a heating power source different from the heating of the sample 20 via the lead wire 36b.
- a vapor deposition metal 38 is directly attached to the vapor deposition heater 34b. By heating the deposition heater 34b, the deposition metal 38 on the heater 34b is deposited on the sample 20.
- FIG. 9 shows a sectional view (a) of the tip of the sample holder 6 for an electron beam apparatus according to one embodiment and a top view (b) of the tip.
- the tip of the electron beam apparatus sample holder 6 is fixed to a grid having a diameter of about 3 mm or punched into a disk shape having a diameter of about 3 mm.
- a sample 20b is mounted.
- the sample 20 b is fixed in the cell 19 with a ring spring 32.
- the heater 34a can also be used as a deposition source, and different types of deposition sources can be deposited on the sample 20b. It is also possible to heat the sample 20b using the radiant heat of the heater.
- FIG. 10 shows a sectional view (a) of the tip of the sample holder 6 for an electron beam apparatus according to one embodiment and a top view (b) of the tip.
- the sample 20 attached to the tip of the sample holder 6 for electron beam apparatus and the heater 34 can be connected to a heating power source 37 and a liquid nitrogen storage unit 39 via a lead wire 36. Further, a thermocouple 40 is provided in the vicinity of the sample 20 to enable temperature measurement.
- the sample 20 is directly attached to the heater 34, and the sample 20 and the heater 34 can be cooled by connecting to the liquid nitrogen storage unit 39 via the cooling rod 29. Thereby, the reaction of the sample 20 in a wide temperature range can be observed.
- FIG. 11 shows an explanatory diagram when the sample 20 is heated using the present embodiment.
- the magnetic field of the objective lens 4 is in the vertical direction, so that the heater 34 receives a horizontal Lorentz force from the direction of the heating current. .
- FIG. 12 shows a top view of the tip of the sample holder 6 for an electron beam apparatus according to the present embodiment.
- the shape of the diaphragm 18 of the sample holder 6 for an electron beam apparatus is an elliptical shape or a rectangular shape whose long axis matches the moving direction. From FIG. 11, the moving direction of the heater 34 and the sample 20 when the sample 20 is heated is the horizontal direction, so that even if it moves, it is possible to observe without missing the visual field.
- FIG. 13 shows a cross-sectional view (a) and a top view (b) of the tip of the sample holder 6 for an electron beam apparatus according to one embodiment.
- a minute pressure measuring element 41 is provided on the main body of the sample holding device 6 for the electron beam apparatus inside the cell 19 sealed by the diaphragm 18, and is connected to a pressure gauge 42 outside the electron beam apparatus 1. As a result, the pressure inside the cell 19 sealed with the diaphragm 18 can be directly measured.
- FIG. 14 shows an electron beam sample chamber 14 and an electron beam apparatus sample holding device 6 according to an embodiment.
- the electron beam sample chamber 14 is provided in the electron beam apparatus 1 and has a structure in which an electron beam can pass through a central portion indicated by a center line.
- another micro pressure measurement element 41b is provided on the main body of the electron beam apparatus sample holding apparatus 6 outside the cell 19.
- the minute pressure measuring element 41b is connected to the pressure gauge 42b.
- FIG. 15 is a diagram for explaining the use of the sample holder 6 for an electron beam apparatus according to the embodiment of FIG. (1)
- the sample 20 is attached to the heater 34a. Further, a different metal 38 for vapor deposition is attached to the sample 20 to the vapor deposition heater 34b.
- (3) The sample 20 is observed without the diaphragm 18. If necessary, perform EDX analysis and EELS analysis.
- the cell 19 is sealed with the diaphragm 18.
- a gas such as air is introduced to set the pressure in the cell 19. If there is a possibility that the diaphragm 18 may be damaged due to high pressure, gas is also introduced into the outside of the cell 19, that is, the electron beam sample chamber 14.
- Heat the sample 20 Observe and analyze the gas reaction of the sample due to heating. (6) Stop the heating after the reaction.
- the diaphragm 18 is moved horizontally, and the gas inside and outside the cell 19 is exhausted. (8) High resolution observation and
- the reaction process in the gas atmosphere can be freely observed without taking out the sample 20 from the electron beam apparatus 1 while maintaining the observation visual field, and furthermore, high-resolution observation and analysis are possible. .
- the pressure in the environmental cell is accurately controlled, and the reaction process in high-pressure gas atmosphere or liquid, for example, crystal growth process by high-temperature gas reaction, observation of oxidation-reduction reaction, micro atmospheric space It is possible to observe living organisms, etc., and perform high-resolution observation and high-sensitivity analysis immediately after reaction in a high-pressure gas atmosphere.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本発明の目的は、薄い隔膜でもガス雰囲気を保持した状態で試料とガスの反応が高分解能で観察可能な電子線装置および電子線装置用試料保持装置を提供することにある。 上記の課題の一つを解決するため、本発明では、鏡体の電子線照射部と試料室および観察室を別個に排気する機能を備えた電子線装置において、試料保持手段に、試料にガスを供給するガス供給手段、および排気する排気手段を備え、ガス雰囲気と試料室の真空を隔離,試料周囲の雰囲気を密閉したセルを構成するために、試料の上下に隔膜を配し、さらに、前記試料室内部に、前記隔膜の外側にガスを噴射する機構を備えた。隔膜の外側に噴射するガスは、電子線散乱能が低いガス、例えば水素,酸素,窒素などを用いた。隔膜の材質は電子線が透過可能なカーボン膜,酸化膜,窒化膜などの軽元素で構成される非晶質膜とした。
Description
本発明は、電子線を用いて試料の観察を行う電子線装置および電子線装置用試料保持装置に係り、特に、試料室内部に隔膜で試料を包含する雰囲気ガスの微小ガス空間(環境セル)をつくり、環境セル内での圧力を正確に制御し、高圧ガス雰囲気中での反応プロセスや反応直後の高分解能観察と高感度分析を行うことが可能な電子線装置および電子線装置用試料保持装置に関する。
電子線装置において、常温で試料を観察するほかに、高温に加熱、あるいは冷却して試料の変化を観察する方法がある。また、より実際の条件に近づけるために反応ガス雰囲気中での、その変化の様子を観察する方法がある。
ガス雰囲気中での観察については、特許文献1,特許文献2に記載のように、試料を2枚のグリッドで挟み込み、その間にガスを導入,排気する機構を試料ホルダに設ける方法がある。また、特許文献3に記載のように試料周りに筒状のカバーを設けそのカバーに2つの電子線が通過する隔膜を張った穴を設ける方法がある。
高温,特定雰囲気下での試料の反応をリアルタイムで観察する電子顕微鏡としては、特許文献4に記載のように、試料ホルダに、試料を気密に保持するための薄膜で真空と仕切られた試料室と、前記試料室にガスを導入するためのパイプおよび試料加熱機構を設け、試料を特定雰囲気下に保った状態において試料を加熱し、種々の反応を観察する方法がある。
また、特許文献5に記載のように、試料を加熱するヒータと対抗するようにガスを吹き付けるためのキャピラリーチューブを設け、高温でのガス反応を観察する方法がある。
また、別の従来技術では、特許文献6のように試料保持部周辺に試料を冷却する冷媒を収容する冷媒溜が設けられ、試料を冷却し観察する方法がある。
また、別の従来技術では、特許文献7,特許文献8,特許文献9に記載のように、荷電粒子ビーム装置に試料を加熱する機構と反応部位にガスを吹き付けることによって急冷する機構を備え、反応プロセスを観察、その後、観察部位を集束イオンビームにより切り出し透過電子顕微鏡観察する方法がある。
上記従来技術において、ガス雰囲気と真空を仕切り、試料のガス反応を観察するために、電子線が通過する隔膜の保護については配慮されておらず、高い圧力での観察には、隔膜が破れてしまうという問題があった。また、隔膜の破れるのを防ぐために厚い隔膜を用いた場合、電子線が散乱されてしまうために像にボケが生じるという問題があった。
本発明の目的は、薄い隔膜でもガス雰囲気を保持した状態で試料とガスの反応が高分解能で観察可能な電子線装置および電子線装置用試料保持装置を提供することにある。
上記の課題の一つを解決するため、本発明では、鏡体の電子線照射部と試料室および観察室を別個に排気する機能を備えた電子線装置において、試料保持手段に、試料にガスを供給するガス供給手段、および排気する排気手段を備え、ガス雰囲気と試料室の真空を隔離,試料周囲の雰囲気を密閉したセルを構成するために、試料の上下に隔膜を配し、さらに、前記試料室内部に、前記隔膜の外側にガスを噴射する機構を備えた。
隔膜の外側に噴射するガスは、電子線散乱能が低いガス、例えば水素,酸素,窒素などを用いた。
隔膜の材質は電子線が透過可能なカーボン膜,酸化膜,窒化膜などの軽元素で構成される非晶質膜とした。
本発明によれば、電子線装置を用いて、試料室内部に隔膜で試料を包含する雰囲気ガスの微小ガス空間(環境セル)をつくり、薄い隔膜でもガス雰囲気を保持した状態で試料とガスの反応が高分解能で観察可能となる。
図1に本発明の一実施例である電子線装置1および電子線装置用試料保持装置6の基本構成図を示す。電子線装置1の鏡体は、電子銃2,コンデンサーレンズ3,対物レンズ4,投射レンズ5により構成されている。コンデンサーレンズ3,対物レンズ4の間には、電子線装置用試料保持装置6が挿入される。投射レンズ5の下方には、蛍光板7が、蛍光板7の下には、TVカメラ8が装着されている。TVカメラ8は、画像表示部9に接続されている。TVカメラ8の下部には、EELS検出器10が取り付けられ、EELS制御部11に接続されている。電子線装置用試料保持装置6上方には、EDX検出器12が装備されており、EDX制御部13に接続されている。
電子銃2近傍,コンデンサーレンズ3近傍,電子線試料室14,観察室15はそれぞれ、バルブ16を介して、異なる真空ポンプ17に接続されている。電子線装置用試料保持装置6にはカーボンや酸化物,窒化物などのアモルファスで形成された隔膜18で密封されたセル19内部に試料20が装填されており、ガス導入管21a先端部およびガス排気管22先端部がセル19内部に挿入されている。
ガス導入管21aはガス圧コントロールバルブ23aを介してガス貯蔵部24aに接続されている。ガス排気管22はバルブ16を介して真空ポンプ17に接続されている。また、電子線試料室14には、隔膜18部分セル外部にガスを吹き付けられるように、ガス導入管21b先端部が挿入されガス圧コントロールバルブ23bを介してガス貯蔵部24bに接続されている。
電子銃2から発生した電子線25はコンデンサーレンズ3により収束され試料20に照射される。試料20を透過した電子線25は対物レンズ4により結像され、投射レンズ5により拡大、蛍光板7上に投影される。または、蛍光板7を持ち上げ、TVカメラ8に投影し、画像表示部9に透過像が表示される。
図2に一実施例の電子線試料室14構成図および電子線装置用試料保持装置6の一部拡大図を示す。ガス導入管21aからガス圧コントロールバルブ23aでセル19内部のガス圧を調整し、ガス内部での試料20の観察を行う。セル19内部のガスの排気は、ガス排気管22から真空ポンプ17により排気する。
この際、電子線試料室14にも、ガス導入管21bからガスを吹き付けることにより、セル19内外の圧力差を軽減し、隔膜18を保護することにより、セル19内部の圧力を高めに設定しても隔膜18が破れないようにする。
また、電子線試料室14と電子銃2の間には絞りを儲けた壁で区切られた中間室26を有し、異なる真空ポンプ17で排気することにより、ガスが直接電子銃2に到達し、電子銃2を破損するのを防ぐことが可能である。
隔膜の材質は電子線が透過可能なカーボン膜,酸化膜,窒化膜などの軽元素で構成される非晶質膜とした。
隔膜の外側に噴射するガスは、電子線散乱能が低いガス、例えば、水素,酸素,窒素などを用いた。
図3に一実施例の隔膜を水平方向に移動可能な電子線装置用試料保持装置6の全体断面図(a),先端断面図(b),先端上面図(c)を示す。隔膜18は隔膜駆動部27に取り付けられており、隔膜駆動部27は電子線装置1の鏡体外のマイクロメータ28に接続されており、マイクロメータ28を回転することにより隔膜駆動部27を水平稼働可能である。試料20は、直径3mm程度のグリッドなどに固定あるいは、直径3mm程度の円板状に打ち抜かれた形状で、セル19内にリングバネ32で固定されている。隔膜駆動部27と電子線装置用試料保持装置6本体にはOリング30が介在しており、電子線25通過部分に隔膜18部分が配置するように隔膜駆動部27をセットすることによりセル19内の雰囲気を外部と遮断することが可能である。セル19内部にガス導入管21aからガスを導入し、ガス雰囲気での試料20を観察可能である。
図4を用いて、隔膜部を可動にした実施例について説明する。
従来技術では、隔膜部の稼働については考慮されておらず、反応後の試料のEDX分析やEELS分析は不可能であった。また、反応のためのガス雰囲気の交換を短時間で行うことが困難であるという問題があった。
図4に一実施例のセル19を開放するように隔膜駆動部27を移動した場合の電子線装置用試料保持装置6の全体断面図(a),先端断面図(b),先端上面図(c)を示す。セル19の開放は電子線装置1の鏡体外からマイクロメータ28を回転することにより可能であり、ガス反応後のセル19内部のガス排気を短時間で可能であり、その後、視野を失うことなく隔膜18やガスにより阻害されていた高分解能透過像観察,EDX分析,EELS分析を迅速に行うことが可能となる。
図4では上下の隔膜18が同時に移動するような構造であるが、片方あるいは、両方の隔膜18が別個に水平移動するようにマイクロメータ28を備えてもよい。
図5では、隔膜を垂直方向に移動可能な実施例について説明する。
従来技術では、ガス空間と試料の距離の調節については考慮されていないために、セル中のガス圧力が高い場合には、ガスによる電子線の散乱により、高分解能観察が困難であるという問題があった。
図5(a,b,c)に一実施例の隔膜18を垂直方向に移動可能な電子線装置用試料保持装置6(試料ホルダ)の先端断面図を示す。
隔膜18は押さえ31に固定され、押さえ31と隔膜稼働部27の接触部にはネジが切ってあり、隔膜18は垂直方向に移動することが可能である(a)。
また、電子線装置用試料保持装置6本体中央部分にもネジをきることによって、隔膜18をより試料20により近づけることが可能である(b)。これにより、ガス容積を小さくし電子線の散乱を抑え、より高分解能観察を行うことが可能である。
さらに、試料20に対して下方の隔膜18を電子線装置用試料保持装置6本体中央部分にセットし、上部隔膜18は隔膜駆動部27にセットすることによって、上部隔膜18のみ移動することが可能である。これにより、隔膜18でセル19を密封した際も、セル19の容積が少なくでき、ガスの容積も抑えることができ高分解能観察が可能である。さらに反応後は、上部隔膜18を水平移動させ、セル19を開放することによって、セル19内の排気が短時間で行え、反応直後の高分解能観察および、より感度の高いEDX分析,EELS分析が可能となる(c)。
図6に隔膜18を垂直方向に移動する場合の説明図を示す。隔膜18が取り付けられた押さえ31にはOリング30が取り付けられ、セル19内部と外部と遮断している。隔膜18の移動には特殊ドライバー33を用い、特殊ドライバー33に設けた突起部を押さえ31に設けた穴に差込回転させることにより、隔膜18を取り付けた押さえ31を上下に移動させる。
図7を用いて、試料の加熱機構について説明する。
図7に一実施例の電子線装置用試料保持装置6の先端断面図(a-1,b-1),先端上面図(a-2,b-2)を示す。電子線装置用試料保持装置6のセル19内部にヒータ34が電子線装置用試料保持装置6にネジ35で固定されている。ヒータ34はリード線36を介して電子線装置1鏡体外の加熱電源37に接続している。試料20は粉体であり、ヒータ34に直接付着している。密閉されたセル19内部に、ガス導入管21aよりガスを導入し、その後ヒータ34に電流を流すことにより、試料20が直接加熱され、ガス反応が生じ、その様子を観察することが可能となる(a-1,2)。
その後ヒータ34に電流を流したまま、ガスを排気し、上下隔膜18を水平移動させ、セル19を開放することによって、試料20の同一視野の反応直後の高分解能観察が可能である。また、電子線25を絞って、微小領域のEELS分析を行う際も、空間分解能が高く、かつ隔膜18の影響のない分析が可能となる(b-1,2)。
図8を用いて、加熱した試料への蒸着について説明する。
図8に一実施例の電子線装置用試料保持装置6の先端断面図(a),先端上面図(b)を示す。電子線装置用試料保持装置6の先端部には試料20,加熱用ヒータ34aの他に、試料20に異なる金属などを蒸着するために別の蒸着用ヒータ34bが電子線装置用試料保持装置6にネジ35bで固定されている。蒸着用ヒータ34bは隔膜18で密閉されたセル19内部に設置される。蒸着用ヒータ34bはリード線36bに接続され、試料20加熱とは別の加熱電源にリード線36bを介し、接続される。蒸着用ヒータ34bには、蒸着用の金属38が直接付着されている。蒸着用ヒータ34bを加熱することによりヒータ34b上の蒸着用の金属38が試料20へ蒸着される。
図9に一実施例の電子線装置用試料保持装置6の先端断面図(a),先端上面図(b)を示す。電子線装置用試料保持装置6の先端部には試料20,加熱用ヒータ34a,蒸着用ヒータ34bの他に、直径3mm程度のグリッドなどに固定あるいは、直径3mm程度の円板状に打ち抜かれた試料20bが装着されている。試料20bはセル19内にリングバネ32で固定されている。これにより、加熱用ヒータ34aも蒸着源として使用することが可能で、異なる種類の蒸着源を試料20bに蒸着することが可能である。また、ヒータの輻射熱を利用して、試料20bを加熱することも可能である。
図10に一実施例の電子線装置用試料保持装置6の先端断面図(a),先端上面図(b)を示す。電子線装置用試料保持装置6の先端部に取り付けられた試料20,加熱用ヒータ34にはリード線36を介して加熱電源37および液体窒素貯蔵部39に接続可能となっている。また、試料20近傍には熱電対40を設け温度測定が可能とする。試料20はヒータ34に直接付着されており、冷却棒29を介して液体窒素貯蔵部39に接続することにより、試料20およびヒータ34を冷却することが可能である。これにより、広い温度範囲での試料20の反応を観察可能である。
また、高温加熱および冷却による試料ドリフトが生じる場合の実施例について説明する。
図11に、本実施例を用いて試料20を加熱した場合の説明図を示す。
電子線装置1内の試料室14に電子線装置用試料保持装置6をセットした場合、対物レンズ4の磁界は垂直方向であるので、加熱電流の方向からヒータ34は水平方向のローレンツ力を受ける。
図12に本実施例の電子線装置用試料保持装置6の先端上面図を示す。電子線装置用試料保持装置6の隔膜18の形状は、移動方向と長軸が合うような楕円形あるいは長方形状とする。図11から、試料20加熱時のヒータ34および試料20の移動方向は水平方向となるため、移動しても、視野を逃すことなく観察することが可能である。
図13に一実施例の電子線装置用試料保持装置6の先端断面図(a),先端上面図(b)を示す。隔膜18で密閉されたセル19内部の電子線装置用試料保持装置6本体に微小圧力測定素子41を設け、電子線装置1外の圧力計42に接続されている。これにより、隔膜18で密閉されたセル19内部の圧力を直接測定することが可能である。
図14に一実施例の電子線試料室14および電子線装置用試料保持装置6を示す。電子線試料室14は、電子線装置1内に備えられ、中心線で示した中央部を電子線が通過できる構造である。セル19内部の電子線装置用試料保持装置6本体に微小圧力測定素子41aを設けた他に、セル19外部の電子線装置用試料保持装置6本体に別の微小圧力測定素子41bを設ける。微小圧力測定素子41bは、圧力計42bに接続されている。これによりセル19内部の圧力のほかに、セル19外部近傍の電子線試料室14内部の圧力を測定することが可能である。
図15に図7の実施例の電子線装置用試料保持装置6の使用説明図を示す。
(1)試料20を加熱用ヒータ34aに付着させる。また、試料20に異なる蒸着用の金属38を蒸着用ヒータ34bに付着させる。
(2)電子線装置用試料保持装置6を電子線試料室14に挿入する。
(3)隔膜18のない状態で試料20を観察する。必要があればEDX分析・EELS分析を行う。
(4)隔膜18により、セル19を密閉する。ガス例えば空気を導入し、セル19内の圧力を設定する。圧力が高いために隔膜18が破損する恐れのある場合、セル19外部すなわち電子線試料室14にもガスを導入する。
(5)試料20を加熱する。加熱による試料のガス反応を観察,分析する。
(6)反応後、加熱を停止。
(7)隔膜18を水平移動させ、セル19内外のガスを排気する。
(8)反応生成物高分解能観察、および分析する。
(1)試料20を加熱用ヒータ34aに付着させる。また、試料20に異なる蒸着用の金属38を蒸着用ヒータ34bに付着させる。
(2)電子線装置用試料保持装置6を電子線試料室14に挿入する。
(3)隔膜18のない状態で試料20を観察する。必要があればEDX分析・EELS分析を行う。
(4)隔膜18により、セル19を密閉する。ガス例えば空気を導入し、セル19内の圧力を設定する。圧力が高いために隔膜18が破損する恐れのある場合、セル19外部すなわち電子線試料室14にもガスを導入する。
(5)試料20を加熱する。加熱による試料のガス反応を観察,分析する。
(6)反応後、加熱を停止。
(7)隔膜18を水平移動させ、セル19内外のガスを排気する。
(8)反応生成物高分解能観察、および分析する。
以上のように、観察視野を保持したまま、電子線装置1から一度も試料20を出すことなく、自由にガス雰囲気での反応プロセスを観察可能で、さらに、高分解能観察,分析が可能である。
上記の構成を組み合わせることにより、環境セル内での圧力を正確に制御し、高圧ガス雰囲気中あるいは液体中での反応プロセス、例えば高温ガス反応による結晶成長プロセス,酸化還元反応の観察,微小大気空間内での生物などの観察、また、高圧ガス雰囲気中での反応直後の高分解能観察と高感度分析を行うことが可能となる。
1 電子線装置
2 電子銃
3 コンデンサーレンズ
4 対物レンズ
5 投射レンズ
6 電子線装置用試料保持装置
7 蛍光板
8 TVカメラ
9 画像表示部
10 EELS検出器
11 EELS制御部
12 EDX検出器
13 EDX制御部
14 電子線試料室
15 観察室
16 バルブ
17 真空ポンプ
18 隔膜
19 セル
20 試料
21 ガス導入管
22 ガス排気管
23 ガス圧コントロールバルブ
24 ガス貯蔵部
25 電子線
26 中間室
27 隔膜駆動部
28 マイクロメータ
29 冷却棒
30 Oリング
31 押さえ
32 リングバネ
33 特殊ドライバー
34 ヒータ
35 ネジ
36 リード線
37 加熱電源
38 蒸着用の金属
39 液体窒素貯蔵部
40 熱電対
41 微小圧力測定素子
42 圧力計
2 電子銃
3 コンデンサーレンズ
4 対物レンズ
5 投射レンズ
6 電子線装置用試料保持装置
7 蛍光板
8 TVカメラ
9 画像表示部
10 EELS検出器
11 EELS制御部
12 EDX検出器
13 EDX制御部
14 電子線試料室
15 観察室
16 バルブ
17 真空ポンプ
18 隔膜
19 セル
20 試料
21 ガス導入管
22 ガス排気管
23 ガス圧コントロールバルブ
24 ガス貯蔵部
25 電子線
26 中間室
27 隔膜駆動部
28 マイクロメータ
29 冷却棒
30 Oリング
31 押さえ
32 リングバネ
33 特殊ドライバー
34 ヒータ
35 ネジ
36 リード線
37 加熱電源
38 蒸着用の金属
39 液体窒素貯蔵部
40 熱電対
41 微小圧力測定素子
42 圧力計
Claims (12)
- 一次電子線を放出する電子源と、
前記電子源から放出される電子線を収束し、試料に照射する電子線制御手段と、
試料から発生した電子を検出する検出器と、
前記検出器からの信号に基づいて試料像を作成する制御手段と、前記試料像を表示する表示手段と、
前記試料を保持する試料保持手段と、
を備えた電子顕微鏡において、
前記試料保持手段に、前記試料にガスを供給するガス供給手段、および排気する排気手段を備え、
試料の上下に隔膜を配し、ガス雰囲気と試料室の真空を隔離し試料周囲の雰囲気を密閉したセルを構成し、
前記試料室内部に、前記隔膜の外側にガスを噴射する機構を備え、前記隔膜の外側に真空より高い圧力のガス層を作ることを特徴とする電子線装置および電子線装置用試料保持装置。 - 請求項1記載の電子線装置において、隔膜の外側に噴射するガスは、電子線散乱能が低いガスであることにより、試料とガスの反応が高分解能で観察,分析が可能なことを特徴とする電子線装置。
- 請求項1記載の電子線装置用試料保持装置において、隔膜の材質は電子線が透過可能なカーボン膜,酸化膜,窒化膜などの軽元素で構成される非晶質膜であることを特徴とする電子線装置用試料保持装置。
- 請求項1記載の電子線装置用試料保持装置において、試料の上下に配した隔膜は、上下隔膜の両方或いは片方の隔膜が水平方向に移動可能な機構を有することを特徴とする電子線装置および電子線装置用試料保持装置。
- 請求項1記載の電子線装置用試料保持装置において、試料の上下に配した隔膜は、垂直方向に移動可能な機構を有することを特徴とする電子線装置および電子線装置用試料保持装置。
- 請求項1記載の電子線装置および電子線装置用試料保持装置において、セル内に試料を加熱する機構を設けたことにより、試料加熱時におけるガス雰囲気中での試料の状態を観察可能な電子線装置および電子線装置用試料保持装置。
- 請求項6記載の電子線装置用試料保持装置において、試料を加熱する機構はらせん状ヒータであり、1個あるいは複数個備え、試料を直接ヒータに付着させることで、ガス雰囲気中での試料加熱あるいは、一つのヒータに付着させた試料へ別のヒータに付着させた物質の蒸着が可能であることを特徴とする電子線装置および電子線装置用試料保持装置。
- 請求項7記載の電子線装置用試料保持装置において、らせん状ヒータに、冷却機構を連結したことを特徴とする電子線装置および電子線装置用試料保持装置。
- 請求項7記載の電子線装置用試料保持装置において、セルを構成する隔膜部の形状は長方形および楕円形とし、前記隔膜部の長手方向とヒータ軸が直交するように配置することを特徴とする電子線装置用試料保持装置。
- 請求項1記載の電子線装置用試料保持装置において、セル内にマイクロプレッシャーゲージを備えることを特徴とする電子線装置用試料保持装置。
- 請求項1記載の電子線装置および電子線装置用試料保持装置において、セル外部かつ隔膜近傍にマイクロプレッシャーゲージを備えたことを特徴とする電子線装置または電子線装置用試料保持装置。
- 請求項1記載の電子線装置および電子線装置用試料保持装置において、セル内部に液体を導入する機構を設けたことを特徴とする電子線装置または電子線装置用試料保持装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/201,820 US8604429B2 (en) | 2009-02-16 | 2010-01-20 | Electron beam device and sample holding device for electron beam device |
EP10741027.6A EP2398036B1 (en) | 2009-02-16 | 2010-01-20 | Electron beam device and sample holding device for electron beam device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-032124 | 2009-02-16 | ||
JP2009032124A JP5124507B2 (ja) | 2009-02-16 | 2009-02-16 | 電子線装置および電子線装置用試料保持装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092747A1 true WO2010092747A1 (ja) | 2010-08-19 |
Family
ID=42561596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000282 WO2010092747A1 (ja) | 2009-02-16 | 2010-01-20 | 電子線装置および電子線装置用試料保持装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8604429B2 (ja) |
EP (1) | EP2398036B1 (ja) |
JP (1) | JP5124507B2 (ja) |
WO (1) | WO2010092747A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011104801A1 (ja) * | 2010-02-24 | 2011-09-01 | 株式会社 日立ハイテクノロジーズ | 電子顕微鏡、および試料ホルダ |
WO2012140822A1 (ja) * | 2011-04-11 | 2012-10-18 | 株式会社 日立ハイテクノロジーズ | 荷電粒子線装置 |
US20150179396A1 (en) * | 2012-07-27 | 2015-06-25 | Hitachi High-Technologies Corporation | Electron microscope and electron microscope sample retaining device |
WO2017033219A1 (ja) * | 2015-08-21 | 2017-03-02 | 株式会社 日立ハイテクノロジーズ | 荷電粒子顕微鏡の観察支援ユニットおよびこれを用いた試料観察方法 |
DE112012001306B4 (de) | 2011-04-28 | 2022-03-24 | Hitachi High-Tech Corporation | Probenhaltevorrichtung, Elektronenmikroskop und Probenhalterung |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013506137A (ja) * | 2009-09-24 | 2013-02-21 | プロトチップス,インコーポレイテッド | 電子顕微鏡において温度制御デバイスを用いる方法 |
EP2601669B1 (en) | 2010-08-02 | 2017-04-05 | Protochips, Inc. | Electron microscope sample holder for forming a gas or liquid cell with two semiconductor devices |
JP5576825B2 (ja) * | 2011-05-13 | 2014-08-20 | 日本電子株式会社 | 電子線装置及び電子顕微鏡用ガス反応試料ホルダ |
JP5824262B2 (ja) * | 2011-07-08 | 2015-11-25 | 日本電子株式会社 | 試料観察方法および圧力測定用ホルダ |
EP2555221B1 (en) * | 2011-08-03 | 2013-07-24 | Fei Company | Method of studying a sample in an ETEM |
JP2016501428A (ja) | 2012-11-16 | 2016-01-18 | プロトチップス,インコーポレイテッド | 電子顕微鏡ホルダにおいて試料支持体への電気的接続を形成する方法 |
CN105103262B (zh) * | 2013-04-12 | 2017-10-10 | 株式会社日立高新技术 | 带电粒子束装置以及过滤部件 |
JP6117070B2 (ja) | 2013-09-26 | 2017-04-19 | 株式会社日立ハイテクノロジーズ | 電子顕微鏡 |
JP6364167B2 (ja) * | 2013-09-30 | 2018-07-25 | 株式会社日立ハイテクノロジーズ | 環境制御型荷電粒子観察システム |
JP6373568B2 (ja) * | 2013-10-07 | 2018-08-15 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
DE102014103360A1 (de) | 2014-03-12 | 2015-09-17 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh | Vorrichtung für die korrelative Raster-Transmissionselektronenmikroskopie (STEM) und Lichtmikroskopie |
US9466459B2 (en) | 2014-06-03 | 2016-10-11 | Protochips, Inc. | Method for optimizing fluid flow across a sample within an electron microscope sample holder |
DE102014108331A1 (de) | 2014-06-13 | 2015-12-17 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung | Spezifische Proteinmarkierung sowie Verfahren zur Identifizierung der statistischen Verteilung der Proteinstöchiometrie |
DE102014108825A1 (de) * | 2014-06-24 | 2015-12-24 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung | Vorrichtung und Verfahren für die stöchiometrische Analyse von Proben |
JP6774761B2 (ja) * | 2016-02-05 | 2020-10-28 | 日本電子株式会社 | 試料ホルダー |
WO2018207309A1 (ja) * | 2017-05-11 | 2018-11-15 | 株式会社日立ハイテクノロジーズ | 試料ホルダ、電子顕微鏡 |
JP7493101B2 (ja) | 2021-04-13 | 2024-05-30 | 株式会社日立ハイテク | 透過型電子顕微鏡 |
DE112022005559T5 (de) * | 2022-03-15 | 2024-10-10 | Hitachi, Ltd. | Probenhaltewerkzeug, elektronenstrahl-einrichtung und herstellungsverfahren für probenhaltewerkzeug |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4724960U (ja) * | 1971-04-14 | 1972-11-20 | ||
JPS51267A (en) | 1974-06-19 | 1976-01-05 | Hitachi Ltd | Denshikenbikyotono shiryohojisochi |
JPH0222559U (ja) * | 1988-07-29 | 1990-02-15 | ||
US5326971A (en) | 1993-05-17 | 1994-07-05 | Motorola, Inc. | Transmission electron microscope environmental specimen holder |
JPH09129168A (ja) | 1995-11-01 | 1997-05-16 | Jeol Ltd | 隔膜型ガス雰囲気試料室を有する試料ホルダ |
JP2000133186A (ja) | 1998-10-27 | 2000-05-12 | Jeol Ltd | ガス雰囲気試料ホルダ |
JP2000208083A (ja) | 1999-01-20 | 2000-07-28 | Jeol Ltd | 電子顕微鏡の試料冷却装置 |
JP2001305028A (ja) | 2000-04-25 | 2001-10-31 | Nippon Steel Corp | 固相反応試料の透過電子顕微鏡観察用試料作製方法および荷電粒子ビーム装置 |
JP2003187735A (ja) | 2001-12-18 | 2003-07-04 | Jeol Ltd | 試料ホルダ |
JP2005190864A (ja) | 2003-12-26 | 2005-07-14 | Hitachi High-Technologies Corp | 電子線装置及び電子線装置用試料ホルダー |
JP2008108429A (ja) | 2006-10-23 | 2008-05-08 | Hitachi High-Technologies Corp | 荷電粒子線装置および荷電粒子線装置用試料保持装置 |
JP2009117196A (ja) * | 2007-11-07 | 2009-05-28 | Jeol Ltd | 隔膜型ガス雰囲気試料ホルダ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2629915B1 (fr) | 1988-04-08 | 1992-10-23 | Lefel Marie France | Procede de detection de traces de stupefiants et produits pour la mise en oeuvre de ce procede |
AU2101902A (en) * | 2000-12-01 | 2002-06-11 | Yeda Res & Dev | Device and method for the examination of samples in a non-vacuum environment using a scanning electron microscope |
JP2003115273A (ja) * | 2001-10-03 | 2003-04-18 | Jeol Ltd | 試料ホルダー及び電子顕微鏡 |
JP4723414B2 (ja) * | 2006-04-27 | 2011-07-13 | 株式会社日立ハイテクノロジーズ | 走査電子顕微鏡 |
CN101461026B (zh) * | 2006-06-07 | 2012-01-18 | Fei公司 | 与包含真空室的装置一起使用的滑动轴承 |
JP4991390B2 (ja) * | 2007-05-21 | 2012-08-01 | 株式会社日立ハイテクノロジーズ | マイクロサンプル加熱用試料台 |
JP2010230417A (ja) * | 2009-03-26 | 2010-10-14 | Jeol Ltd | 試料の検査装置及び検査方法 |
JP5260575B2 (ja) * | 2010-02-24 | 2013-08-14 | 株式会社日立ハイテクノロジーズ | 電子顕微鏡、および試料ホルダ |
US9207196B2 (en) * | 2010-11-17 | 2015-12-08 | Vanderbilt University | Transmission electron microscopy for imaging live cells |
-
2009
- 2009-02-16 JP JP2009032124A patent/JP5124507B2/ja active Active
-
2010
- 2010-01-20 US US13/201,820 patent/US8604429B2/en active Active
- 2010-01-20 WO PCT/JP2010/000282 patent/WO2010092747A1/ja active Application Filing
- 2010-01-20 EP EP10741027.6A patent/EP2398036B1/en not_active Not-in-force
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4724960U (ja) * | 1971-04-14 | 1972-11-20 | ||
JPS51267A (en) | 1974-06-19 | 1976-01-05 | Hitachi Ltd | Denshikenbikyotono shiryohojisochi |
JPH0222559U (ja) * | 1988-07-29 | 1990-02-15 | ||
US5326971A (en) | 1993-05-17 | 1994-07-05 | Motorola, Inc. | Transmission electron microscope environmental specimen holder |
JPH09129168A (ja) | 1995-11-01 | 1997-05-16 | Jeol Ltd | 隔膜型ガス雰囲気試料室を有する試料ホルダ |
JP2000133186A (ja) | 1998-10-27 | 2000-05-12 | Jeol Ltd | ガス雰囲気試料ホルダ |
JP2000208083A (ja) | 1999-01-20 | 2000-07-28 | Jeol Ltd | 電子顕微鏡の試料冷却装置 |
JP2001305028A (ja) | 2000-04-25 | 2001-10-31 | Nippon Steel Corp | 固相反応試料の透過電子顕微鏡観察用試料作製方法および荷電粒子ビーム装置 |
JP2003187735A (ja) | 2001-12-18 | 2003-07-04 | Jeol Ltd | 試料ホルダ |
JP2005190864A (ja) | 2003-12-26 | 2005-07-14 | Hitachi High-Technologies Corp | 電子線装置及び電子線装置用試料ホルダー |
JP2008108429A (ja) | 2006-10-23 | 2008-05-08 | Hitachi High-Technologies Corp | 荷電粒子線装置および荷電粒子線装置用試料保持装置 |
JP2009117196A (ja) * | 2007-11-07 | 2009-05-28 | Jeol Ltd | 隔膜型ガス雰囲気試料ホルダ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2398036A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011175809A (ja) * | 2010-02-24 | 2011-09-08 | Hitachi High-Technologies Corp | 電子顕微鏡、および試料ホルダ |
US8878144B2 (en) | 2010-02-24 | 2014-11-04 | Hitachi High-Technologies Corporation | Electron microscope and sample holder |
WO2011104801A1 (ja) * | 2010-02-24 | 2011-09-01 | 株式会社 日立ハイテクノロジーズ | 電子顕微鏡、および試料ホルダ |
CN103477415B (zh) * | 2011-04-11 | 2016-10-12 | 株式会社日立高新技术 | 带电粒子束装置及利用带电粒子束装置进行观察的方法 |
WO2012140822A1 (ja) * | 2011-04-11 | 2012-10-18 | 株式会社 日立ハイテクノロジーズ | 荷電粒子線装置 |
JP2012221766A (ja) * | 2011-04-11 | 2012-11-12 | Hitachi High-Technologies Corp | 荷電粒子線装置 |
CN103477415A (zh) * | 2011-04-11 | 2013-12-25 | 株式会社日立高新技术 | 带电粒子束装置 |
US8710439B2 (en) | 2011-04-11 | 2014-04-29 | Hitachi High-Technologies Corporation | Charged particle beam apparatus |
US8921786B2 (en) | 2011-04-11 | 2014-12-30 | Hitachi High-Technologies Corporation | Charged particle beam apparatus |
US9105442B2 (en) | 2011-04-11 | 2015-08-11 | Hitachi High-Technologies Corporation | Charged particle beam apparatus |
DE112012001306B4 (de) | 2011-04-28 | 2022-03-24 | Hitachi High-Tech Corporation | Probenhaltevorrichtung, Elektronenmikroskop und Probenhalterung |
US20150179396A1 (en) * | 2012-07-27 | 2015-06-25 | Hitachi High-Technologies Corporation | Electron microscope and electron microscope sample retaining device |
US9378922B2 (en) * | 2012-07-27 | 2016-06-28 | Hitachi High-Technologies Corporation | Electron microscope and electron microscope sample retaining device |
WO2017033219A1 (ja) * | 2015-08-21 | 2017-03-02 | 株式会社 日立ハイテクノロジーズ | 荷電粒子顕微鏡の観察支援ユニットおよびこれを用いた試料観察方法 |
JPWO2017033219A1 (ja) * | 2015-08-21 | 2018-06-14 | 株式会社日立ハイテクノロジーズ | 観察支援ユニットおよびこれを用いた試料観察方法、荷電粒子線装置 |
US10431416B2 (en) | 2015-08-21 | 2019-10-01 | Hitachi High-Technologies Corporation | Observation support unit for charged particle microscope and sample observation method using same |
Also Published As
Publication number | Publication date |
---|---|
US8604429B2 (en) | 2013-12-10 |
JP5124507B2 (ja) | 2013-01-23 |
EP2398036A1 (en) | 2011-12-21 |
EP2398036A4 (en) | 2013-01-09 |
EP2398036B1 (en) | 2014-10-01 |
US20110303845A1 (en) | 2011-12-15 |
JP2010192126A (ja) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124507B2 (ja) | 電子線装置および電子線装置用試料保持装置 | |
US10068745B2 (en) | Charged particle beam device and sample holder for charged particle beam device | |
US9105442B2 (en) | Charged particle beam apparatus | |
JP6093752B2 (ja) | イオンビーム装置 | |
JP5260575B2 (ja) | 電子顕微鏡、および試料ホルダ | |
US9508521B2 (en) | Ion beam device | |
EP2555221B1 (en) | Method of studying a sample in an ETEM | |
US20120212583A1 (en) | Charged Particle Radiation Apparatus, and Method for Displaying Three-Dimensional Information in Charged Particle Radiation Apparatus | |
JP2007172862A (ja) | 荷電粒子線源用清浄化装置及びそれを用いた荷電粒子線装置 | |
US12002656B2 (en) | Operating a gas feed device for a particle beam apparatus | |
WO2016056446A1 (ja) | イオンビーム装置 | |
US20230326707A1 (en) | Examining, analyzing and/or processing an object using an object receiving container | |
JP5891030B2 (ja) | 電子顕微鏡 | |
US20230221268A1 (en) | Observation device for observation target gas, method of observing target ions, and sample holder | |
WO2015045477A1 (ja) | 試料ホールダ及び荷電粒子装置 | |
JP5824262B2 (ja) | 試料観察方法および圧力測定用ホルダ | |
JP7407689B2 (ja) | 試料ホルダ及びそれを備える荷電粒子線装置 | |
US20230215688A1 (en) | Gas supply device, particle beam apparatus having a gas supply device, and method of operating the gas supply device and the particle beam apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741027 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13201820 Country of ref document: US Ref document number: 2010741027 Country of ref document: EP |