WO2010090330A1 - L-アミノ酸の製造法 - Google Patents

L-アミノ酸の製造法 Download PDF

Info

Publication number
WO2010090330A1
WO2010090330A1 PCT/JP2010/051886 JP2010051886W WO2010090330A1 WO 2010090330 A1 WO2010090330 A1 WO 2010090330A1 JP 2010051886 W JP2010051886 W JP 2010051886W WO 2010090330 A1 WO2010090330 A1 WO 2010090330A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
dna
seq
gene
protein
Prior art date
Application number
PCT/JP2010/051886
Other languages
English (en)
French (fr)
Inventor
田畑 和彦
彰宏 妹尾
Original Assignee
協和発酵バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵バイオ株式会社 filed Critical 協和発酵バイオ株式会社
Priority to US13/148,564 priority Critical patent/US8623619B2/en
Priority to JP2010549542A priority patent/JP5662167B2/ja
Priority to EP10738658.3A priority patent/EP2395096B1/en
Publication of WO2010090330A1 publication Critical patent/WO2010090330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine

Definitions

  • the present invention relates to a method for producing an L-amino acid using a microorganism having an ability to produce an L-amino acid and having an L-amino acid transport activity higher than that of a parent strain. More specifically, a microorganism having a higher activity for transporting L-amino acid from the inside of the microbial cell to the outside of the microbial cell is constructed to produce L-amino acid, and the generated L-amino acid is circulated from the microbial cell to the outside of the microbial cell.
  • the present invention relates to a production method for improving amino acid productivity by efficiently discharging to the surface.
  • amino acid fermentation The production of amino acids using microorganisms is called amino acid fermentation and has been widely performed in the field of applied microbiology.
  • amino acid transport activity that is, how the produced amino acid is discharged out of the bacterial cell, is a critical process that affects amino acid productivity.
  • Various ideas have been made so far in order to increase the discharge efficiency.
  • a method for producing L-lysine using a strain of a Corynebacterium microorganism in which expression of L-lysine and L-arginine excretion gene (lysE) is enhanced (see Patent Document 1), L- Threonine, L-homoserine excretion gene (rhtA) (see non-patent document 2), L-cysteine, L-cystine, N-acetylserine or thiazoline derivative excretion gene (ydeD / eamA) (see non-patent document 3)
  • Method for producing L-cysteine, L-cystine, N-acetylserine or thiazoline derivative using Escherichia microorganism strain with enhanced expression Patent Document 2
  • L-lysine excretion gene involved in L-lysine resistance A method for producing L-amino acids such as L-lysine using a strain of an Escherichi
  • Non-patent Document 4 the norM gene of Escherichia coli is an efflux pump gene related to quinolone resistance.
  • the emrD gene has been reported as an SDS transport gene (Non-patent Document 5). Although rarD is predicted to be a drug transporter gene, none is known to have amino acid excretion activity (Non-patent Document 6).
  • the eamA (ydeD) gene has been reported to be a gene having the excretion activity of L-cysteine, L-cystine, N-acetylserine or thiazoline derivatives (Non-patent Document 3).
  • the problem to be solved by the present invention is to provide an efficient production method of L-amino acid by producing a L-amino acid in a microorganism having a higher L-amino acid transport activity than the parent strain. More specifically, productivity of five neutral amino acids including L-serine and L-glutamine, which had not been reported so far by enhancing L-amino acid transport activity, by enhancing excretion proteins It is to provide a novel manufacturing method with high cost.
  • the present invention relates to the following [1] to [4].
  • a microorganism having L-amino acid transport activity and having the protein activity of any one of the following [1] to [3] higher than the parent strain is cultured in a medium to produce L-amino acid
  • a protein having an amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6, and 8 [2] In the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6, and 8, one or more A protein having an amino acid sequence deleted, substituted or added and having L-amino acid transport activity [3] 80% or more of the amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6 and 8 A protein comprising a homologous amino acid sequence and having an L-amino acid transport activity [2] A microorganism transformed with the DNA according to any one of [1] to [3] below, The method for producing an L-amino acid according to [1], which is a microorganism in which expression of the gene is enhanced by modifying an expression regulatory sequence.
  • L-amino acid according to any one of [1] to [3], wherein the L-amino acid is an L-amino acid selected from the group consisting of L-serine, L-glutamine, L-cysteine, L-phenylalanine and L-threonine.
  • L-serine L-glutamine
  • L-cysteine L-phenylalanine
  • L-threonine A process for producing L-amino acids.
  • the production method of the present invention is a production method with high productivity in the production of L-amino acids, in particular, L-serine, L-glutamine, L-cysteine, L-phenylalanine or L-threonine.
  • the production method of the present invention efficiently produces L-serine and L-glutamine using a microorganism by enhancing the activity of a protein having an activity of transporting an L-amino acid in the cell of the microorganism to the outside of the cell. It is a method to do.
  • L-cysteine, L-threonine and L-phenylalanine are also provided with a novel production method by enhancing L-amino acid transport activity.
  • the inventor of the present invention has found that a known transport gene norM, emrD or rarD of Escherichia coli has a function of transporting an amino acid to the outside of a cell, and the transport gene is L-serine or L-glutamine, or It has been found that it can be advantageously used for the production of L-cysteine, L-threonine, or L-phenylalanine.
  • eamA which was known to have L-amino acid transport activity, was newly found to be responsible for L-serine transport, and a method for producing L-serine using this was devised.
  • the production of L-amino acid when the activity of the amino acid transport gene is increased, the production of L-amino acid can be remarkably improved by the selective active transport of the produced L-amino acid outside the cells.
  • the microorganism used for L-amino acid production may be gram-positive or gram-negative regardless of the type of outer membrane (presence or absence of cell wall, capsule or mucus layer). That is, the production method of the present invention can be used in any of Gram-positive bacteria such as Corynebacterium, Bacillus, and Streptomyces, and Gram-negative bacteria such as Escherichia, Serratia, and Pseudomonas. This is a highly versatile manufacturing method.
  • L-serine is a non-essential amino acid but plays an important role in the living body, and has high utility as a raw material for amino acid mixtures in the pharmaceutical field and cosmetic field.
  • L-glutamine is an amino acid that maintains normal functions of the gastrointestinal tract and muscles in the body and is a raw material for anti-alcoholic compositions. If a production method with high productivity of these L-amino acids is established and industrial mass production becomes possible, the industrial applicability is very high. L-cysteine, L-threonine and L-phenylalanine can be produced more economically by the production method of the present invention.
  • L-cysteine is a highly valuable amino acid in the cosmetic industry as a raw material for cosmetics because of its whitening effect.
  • L-threonine and L-phenylalanine are both essential amino acids
  • L-threonine is a component of amino acid infusions and health foods
  • L-phenylalanine is a low-calorie sweetener aspartame (methyl ester of aspartylphenylalanine, sugar
  • Each is a useful amino acid as a raw material (having 200 times the sweetness), and an improvement in productivity by the production method of the present invention is expected.
  • Microorganism used in the production method of the present invention Microorganism having higher L-amino acid transport activity than parent strain
  • Microorganism having higher activity of protein having L-amino acid transport activity than parent strain is (a) L-amino acid transport on the chromosomal DNA of the parent strain. Obtained by modification of DNA encoding a protein having activity, i) a microorganism having a higher specific activity of the protein than the parent strain, and ii) a microorganism having an increased production amount of a protein having L-amino acid transport activity than the parent strain, and (B) A microorganism obtained by transforming a parent strain with DNA encoding a protein having L-amino acid transport activity.
  • the parent strain in this specification may be a wild strain or a mutant strain, and is a former strain that is the object of modification or transformation.
  • a wild strain refers to a strain having the phenotype most frequently observed in the wild population.
  • the parent strain for example, when the microorganism is Escherichia coli, E. coli K-12 strain, B strain, B / r strain, W strain wild strain, or a mutant strain thereof can be mentioned, E. coli XL1-Blue, E. coli XL2-Blue, E. coli DH1, E. coli MC1000, E. coli ATCC12435, E. coli W1485, E. coli JM109, E. coli HB101, E. coli No. 49 E. coli W3110, E. coli NY49, E. coli MP347, E. coli NM522, E. coli BL21, E. coli ME8415, E. coli ATCC9637 and the like.
  • the protein having L-amino transport activity the protein according to any one of the following [1] to [3]: [1] a protein having an amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6, and 8; [2] A protein comprising an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6 and 8, and having L-amino acid transport activity And [3] a protein having an amino acid sequence having 80% or more homology with the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6 and 8, and having L-amino acid transport activity; Can give.
  • each DNA sequence of SEQ ID NOs: 1, 3, 5, and 7 encodes the norM gene, emrD gene, rarD gene, and eamA gene in E. coli, respectively.
  • the amino acid sequences shown represent the norM protein, emrD protein, rarD protein and eamA protein encoded by the gene, respectively.
  • a protein comprising an amino acid sequence in which one or more amino acid residues are deleted, substituted or added and having L-amino acid transport activity is selected from MolecularMCloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press ( 1989) (hereinafter abbreviated as Molecular Cloning 3rd Edition), Current Protocols in Molecular Molecular Biology, John Wiley and Sons (1987-1997) (hereinafter abbreviated as Current Protocols in Molecular Biology), Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), Proc. Natl.
  • a protein comprising an amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6 and 8 is encoded. Specific site for DNA By introducing mutations, it can be obtained.
  • the number of amino acid residues to be deleted, substituted or added is not particularly limited, but is such a number that can be deleted, substituted or added by a known method such as the above-mentioned site-specific mutation method, and is 1 to several tens.
  • the number is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • amino acid sequence represented by SEQ ID NOs: 2, 4, 6 and 8 one or more amino acids are deleted, substituted or added means one or more amino acid residues at any position in the same sequence May be deleted, substituted or added.
  • amino acid positions at which amino acid residues can be deleted or added include, for example, 10 amino acid residues on the N-terminal side and C-terminal side of the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6, and 8. I can give you.
  • Natural amino acids include L-alanine, L-asparagine, L-aspartic acid, L-arginine, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L -Methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine and the like.
  • amino acids included in the same group can be substituted for each other.
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
  • Group C asparagine, glutamine
  • D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid
  • Group E proline, 3 -Hydroxyproline, 4-hydroxyproline
  • Group F serine, threonine, homoserine
  • Group G phenyl, threonine
  • a protein having an amino acid sequence in which one or more amino acid residues are deleted, substituted or added in the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6 and 8 is a protein having L-amino acid transport activity.
  • a transformant expressing a protein whose activity is to be confirmed using, for example, a DNA recombination method is prepared, and labeled L-amino acid, and an inverted membrane vesicle prepared from the transformant [J. Biol .Chem., 277, 49841 (2002)] [J. Biol. Chem., 280, 32254 (2005)].
  • a protein having an amino acid sequence in which one or more amino acid residues are deleted, substituted or added in the amino acid sequences represented by SEQ ID NOs: 2, 4, 6, and 8 is a protein having L-amino acid transport activity. For example, by transforming a parent strain with DNA encoding a protein whose activity is to be confirmed, a transformant having a higher activity of the protein than the parent strain is produced and produced in the culture solution of the parent strain or the transformant. This can also be confirmed by comparing the amount of accumulated L-amino acid.
  • the parent strain can be obtained by modifying the DNA encoding the protein having L-amino acid transport activity on the chromosomal DNA of the parent strain (i) of (a) above and having a higher specific activity of the protein than the parent strain. Since the protein has a protein having an amino acid sequence substituted with one or more amino acids, preferably 1 to 10 amino acids, more preferably 1 to 5 amino acids, and still more preferably 1 to 3 amino acids in the amino acid sequence of the protein, A microorganism having a mutant protein having improved activity compared to the parent strain having an L-amino acid transport activity can be mentioned.
  • the production amount of the protein having L-amino acid transport activity improved from the parent strain obtained by modifying the DNA encoding the protein having L-amino acid transport activity on the chromosomal DNA of the parent strain in (ii) of (a) above.
  • the microorganism is one or more bases, preferably 1 to 10 bases, more preferably 1 to 5 bases in the base sequence of the transcriptional regulatory region or promoter region of the gene encoding the protein present on the chromosomal DNA of the parent strain, more preferably 1 to 5 bases.
  • Microorganisms obtained by transforming the parent strain (b) with a DNA encoding a protein having L-amino acid transport activity include: [4] DNA encoding the protein according to any one of [1] to [3] above; [5] DNA having the base sequence represented by any of SEQ ID NOs: 1, 3, 5 and 7; or [6] complementary to the base sequence represented by any of SEQ ID NOs: 1, 3, 5, and 7.
  • microorganism examples include i) a microorganism having a DNA encoding a protein having an exogenous L-amino acid transport activity on chromosomal DNA, and ii) a microorganism having an extrachromosomal DNA. That is, the i) microorganism has one or more of the newly introduced DNAs on the chromosomal DNA when the parent strain does not have DNA encoding a protein having L-amino acid transport activity.
  • the parent strain When the parent strain originally possesses DNA encoding a protein having L-amino acid transport activity, it is a microorganism and encodes two or more proteins having L-amino transport activity containing the newly introduced DNA It is a microorganism that has DNA to be chromosomally present.
  • the microorganism of ii) is a microorganism having DNA encoding a protein having L-amino acid transport activity on plasmid DNA.
  • L-amino acid transport activity refers to the activity of discharging intracellular L-amino acids out of cells.
  • hybridize means that the DNA hybridizes to DNA having a specific base sequence or a part of the DNA. Therefore, the DNA having the specific base sequence or a part thereof is a DNA that can be used as a probe for Northern or Southern blot analysis and can be used as an oligonucleotide primer for PCR analysis. Examples of the DNA used as a probe include at least 100 bases, preferably 200 bases or more, more preferably 500 bases or more.
  • the DNA used as a primer is at least 10 bases, preferably 15 bases. The above DNA can be mentioned.
  • DNA hybridization experiment methods are well known. For example, those skilled in the art can determine hybridization conditions according to the present specification. The hybridization conditions are described in Molecular Cloning 2nd Edition, 3rd Edition (2001), MethodsMethodfor General and Molecular Bacteriolgy, ASM Press (1994), Immunology methods manual, Academic (press (Molecular). Can be done according to other standard textbooks.
  • stringent conditions means that a DNA-immobilized filter and probe DNA are 50% formamide, 5 ⁇ SSC (750 mmol / l sodium chloride, 75 mmol / l sodium citrate), 50 mmol / l After overnight incubation at 42 ° C. in a solution containing sodium phosphate (pH 7.6), 5 ⁇ Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / l denatured salmon sperm DNA, for example about 65 Conditions that wash the filter in 0.2 x SSC solution at 0 ° C are preferred, but lower stringent conditions can also be used.
  • Stringent conditions can be changed by adjusting the concentration of formamide (the lower the formamide concentration, the lower the stringency), and changing the salt concentration and temperature conditions.
  • low stringent conditions for example, 6 ⁇ SSCE (20 ⁇ SSCE is 3 mol / l sodium chloride, 0.2 mol / l sodium dihydrogen phosphate, 0.02 mol / l EDTA, pH 7.4), 0.5% Incubate overnight at 37 ° C in a solution containing SDS, 30% formamide, 100 ⁇ g / l denatured salmon sperm DNA, then wash with 50 ° C 1x SSC, 0.1% SDS solution.
  • examples of lower stringent conditions include conditions in which hybridization is performed using a solution having a high salt concentration (for example, 5 ⁇ SSC) under the above-described low stringency conditions and then washed.
  • the various conditions described above can also be set by adding or changing a blocking reagent used to suppress the background of the hybridization experiment.
  • the addition of the blocking reagent described above may be accompanied by a change in hybridization conditions in order to adapt the conditions.
  • the DNA that can hybridize under the stringent conditions described above is any one of SEQ ID NOs: 1, 3, 5, and 7 when calculated based on the above-described parameters using, for example, the above-mentioned BLAST and FASTA. And a DNA having a homology of at least 90% or more, preferably 95% or more, more preferably 97% or more, still more preferably 98% or more, particularly preferably 99% or more with a DNA comprising the base sequence represented by Can do.
  • microorganism used in the present invention (1) Preparation of microorganism having higher activity of protein having L-amino acid transport activity than parent strain Among microorganisms having higher activity of protein having L-amino acid transport activity than parent strain, specific activity is higher in parent strain
  • Microorganisms higher than the protein having L-amino acid transport activity of the present invention are subjected to in vitro mutagenesis using a mutagen or error-prone PCR, etc., to the DNA encoding the protein having L-amino acid transport activity. After the mutation is introduced, the DNA encoding the protein having L-amino acid transport activity existing on the chromosomal DNA of the parent strain before the mutation and a known method [Proc. Natl. Acad. Sci. USA., 97, 6640 (2000)] to produce a variant that expresses the mutant DNA, and the L-amino acid transfer between the parent strain and the variant by the method described above. They can be obtained by comparing the activity.
  • the microorganism whose production amount of the protein is higher than the production amount of the parent strain is the protein having the L-amino acid transport activity possessed by the parent strain.
  • a transcriptional regulatory region and a promoter region of the gene to be encoded for example, DNA having a base sequence of 200 bp upstream, preferably 100 bp upstream of the initiation codon of the protein, is subjected to in-vitro mutation treatment or error-prone PCR, etc.
  • the transcriptional regulatory region and the promoter region of the gene encoding the protein having L-amino acid transporting activity existing on the chromosomal DNA of the parent strain before the mutation introduction and a known method [Proc. Natl. Acad. Sci. USA., 97, 66402000 (2000)] to replace the mutant transcriptional regulatory region or promoter region
  • a method for comparing the transcription amount of a gene encoding a protein having L-amino acid transport activity between the parent strain and the variant by RT-PCR or Northern hybridization, or the parent strain by SDS-PAGE or the like can be confirmed by a method of comparing the production amount of the protein having L-amino acid transport activity.
  • Such promoters derived from E. Trp promoter which functions in coli (P trp), lac promoter (P lac), P L promoter, P R promoter and P SE promoter, Escherichia coli, phage and the like Examples include promoters, SPO1 promoters, SPO2 promoters, penP promoters, and the like. Further, artificially constructed promoters such as a promoter in which two P trp are connected in series, a tac promoter, a lacT7 promoter, a let I promoter and the like can also be mentioned.
  • the xylA promoter (Appl. Microbiol. Biotechnol., 35, 594-599 (1991)] for expression in microorganisms belonging to the genus Bacillus and the P54-6 promoter for expression in microorganisms belonging to the genus Corynebacterium [Appl. Microbiol. Biotechnol., 53, 674-679 (2000)] can also be used.
  • DNA encoding a protein having L-amino acid transport activity is, for example, an amino acid sequence represented by any one of SEQ ID NOs: 2, 4, 6 and 8 It can be designed based on Southern hybridization to a chromosomal DNA library of microorganisms such as E. coli using probe DNA that can be designed based on the base sequence of DNA encoding the protein having It can be obtained by PCR [PCR Protocols, Academic Press (1990)] using a primer DNA and a chromosomal DNA of a microorganism, preferably E. coli, as a template.
  • the base sequence of DNA encoding a protein having the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6, and 8 with respect to various gene sequence databases is 80% or more, preferably 90% or more.
  • a sequence having a homology of 95% or more, more preferably 97% or more, particularly preferably 98% or more, and most preferably 99% or more is searched, and the base sequence is obtained based on the base sequence obtained by the search. It is also possible to obtain DNA encoding a protein having L-amino acid transport activity from the chromosomal DNA, cDNA library, etc. of microorganisms having
  • the obtained DNA is cut as it is or with an appropriate restriction enzyme and incorporated into a vector by a conventional method.
  • a commonly used nucleotide sequence analysis method such as the dideoxy method [ Proc. Natl. Acad. Sci., USA, 74, 5463 (1977)] or 3700 DNA analyzer (manufactured by Applied Biosystems) etc. can do.
  • the above vectors include pBluescriptII KS (+) (Stratagene), pDIRECT [Nucleic Acids Res., 18, 6069 (1990)], pCR-Script Amp SK (+) (Stratagene), pT7Blue ( Novagen), pCR II (Invitrogen), pCR-TRAP (Gen Hunter), and the like.
  • Examples of host cells include microorganisms belonging to the genus Escherichia.
  • Examples of microorganisms belonging to the genus Escherichia include, for example, E. coli XL1-Blue, E. coli XL2-Blue, E. coli DH1, E. coli MC1000, E. coli ATCC 12435, E. coli W1485, E. coli JM109, E. coli HB101, E. coli No.49, E. coli W3110, E. coli NY49, E. coli MP347, E. coli NM522, E. coli BL21, E. coli ME8415 and the like.
  • any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. Natl. Acad. Sci., USA, 69, 2110 (1972)]
  • protoplast method Japanese Patent Laid-Open No. 63-248394
  • electroporation method [Nucleic Acids Res., 16, 6127 (1988)] and the like.
  • the full-length DNA can be obtained by Southern hybridization or the like for a chromosomal DNA library using the partial length DNA as a probe.
  • the target DNA can be prepared by chemical synthesis using a 8905 type DNA synthesizer manufactured by Perceptive Biosystems.
  • DNA obtained as described above include DNA encoding a protein having the amino acid sequence represented by any of SEQ ID NOs: 2, 4, 6, and 8, and SEQ ID NOs: 1, 3, 5, and 7. Examples thereof include DNA having a base sequence represented by any of them.
  • a recombinant DNA is prepared by inserting the DNA fragment downstream of the promoter of an appropriate expression vector.
  • a transformant in which the activity of the protein having L-amino acid transport activity is improved from that of the host cell, that is, the parent strain can be obtained.
  • a vector containing a promoter at a position where it can be autonomously replicated in the host cell or can be integrated into a chromosome and can transcribe DNA encoding a protein having L-amino acid transport activity is used.
  • a recombinant DNA having a DNA encoding a protein having L-amino acid transport activity can autonomously replicate in the prokaryotic organism, and at the same time, a promoter, a ribosome binding sequence, L- A recombinant DNA composed of a DNA encoding a protein having amino acid transport activity and a transcription termination sequence is preferred.
  • a gene that controls the promoter may also be included.
  • Expression vectors include pColdI (Takara Bio), pCDF-1b, pRSF-1b (Novagen), pMAL-c2x (New England Biolabs), pGEX-4T-1 (GE Healthcare Bio) Science), pTrcHis (Invitrogen), pSE280 (Invitrogen), pGEMEX-1 (Promega), pQE-30 (Qiagen), pET-3 (Novagen), pKYP10 58-110600), pKYP200 [Agric. Biol. Chem., 48, 669 (1984)], pLSA1 [Agric. Biol. Chem., 53, 277 (1989)], pGEL1 [Proc. Natl.
  • any promoter can be used as long as it functions in a host cell such as E. coli.
  • trp promoter P trp
  • lac promoter P lac
  • P L promoter P L promoter
  • P R promoter P SE promoter
  • E. Promoter from coli, phage and the like SPO1 promoter
  • SPO2 promoter SPO2 promoter
  • penP promoter and the like Can give.
  • artificially designed and modified promoters such as a promoter in which two P trp are connected in series, tac promoter, lacT7 promoter, let I promoter, and the like can also be used.
  • the xylA promoter (Appl. Microbiol. Biotechnol., 35, 594-599 (1991)] for expression in microorganisms belonging to the genus Bacillus and the P54-6 promoter [Appl. For expression in microorganisms belonging to the genus Corynebacterium. Microbiol. Biotechnol., 53, 674-679 (2000)] can also be used.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the start codon is adjusted to an appropriate distance (eg, 6 to 18 bases).
  • a transcription termination sequence is not necessarily required, but a transcription termination sequence is preferably arranged immediately below the structural gene. .
  • Examples of such recombinant DNA include pSnorM, pSemrD, pSrarD and pSeamA described later.
  • Examples of the host for the recombinant DNA include prokaryotes, more preferably bacteria.
  • Prokaryotes include Escherichia genus, Serratia genus, Bacillus genus, Brevibacterium genus, Corynebacterium genus, Microbacterium genus, Pseudomonas genus, Agrobacterium genus, Alicyclobacillus genus, Anabaena genus, Anacystis genus, Arthrobacter genus, Azotobacter genus, Chromatium genus, Erwinia (Erwinia genus) ), Methylobacterium, Phormidium, Rhodobacter, Rhodopseudomonas, Rhodospirillum, Scenedesmus, Streptomyces Genus Microorganisms belonging to the genus Synechoccus, Zymomonas, etc., for example, Escherichia coli, Bacill
  • Rhodobacter capsulatus Rhodobacter sphaeroides, Rhodopseudomonas blastica, Rhodopseudomonas marina, Rhodopseudomonas palustris, Rhodospirumum rumum, Rhodospirillum rubrum ), Streptomyces ambofaciens, Streptomyces aureofaciens, Streptomyces aureus, Streptomyces fungicidicus, Streptomyces fungicidicus, ⁇ Griseochromogenes (Streptomyces griseochromogenes), Streptomyces griseus (Streptomyces griseus), Streptomyces Streptomyces lividans, Streptomyces olivogriseus, Streptomyces rameus, Streptomyces tanashiensis, Streptomyces vinaceus, Streptomyces vinaceus, Streptomyces vin
  • Species belonging to the genus Escherichia, Serratia, Bacillus, Brevibacterium, Corynebacterium, Pseudomonas or Streptomyces can be mentioned, and more preferred bacteria are Escherichia
  • microorganism having ability to produce L-amino acid used in the method for producing L-amino acid of the present invention may be any microorganism having such ability. It may be a microorganism. If the strain itself isolated from nature has the ability, it may be the strain itself, and if it is a modified or transformed mutant strain, it has the ability to produce the desired L-amino acid by a known method. Artificial microorganisms can be listed.
  • A a method for mitigating or releasing at least one of the mechanisms controlling amino acid biosynthesis;
  • B a method for enhancing expression of at least one enzyme involved in amino acid biosynthesis;
  • C a method for increasing the number of copies of at least one enzyme gene involved in amino acid biosynthesis;
  • D a method of weakening or blocking at least one metabolic pathway that branches from a biosynthetic pathway of an amino acid to a metabolite other than the amino acid; and (e) a cell having a higher resistance to an amino acid analog than a wild-type strain.
  • the above known methods can be used alone or in combination.
  • the sdaA gene, sdaB gene, sdaC gene and glyA gene having L-serine degradation and uptake activity are deleted.
  • microorganisms with enhanced expression of desensitized serA gene for L-serine microorganisms lacking the glnE gene as L-glutamine-producing bacteria, and L-cysteine-producing bacteria such as desensitization against L-cysteine
  • L-threonine producing bacterium such as a microorganism that retains the type cysE gene, an L-phenylalanine producing bacterium, a microorganism that expresses a desensitized pheA gene of L-phenylalanine and / or a desensitized aroF gene of tyrosine, -Amino- ⁇ -hydroxyvalerate (AHV) resistance and L-isoleucine, L-methionine and L-proline requirements
  • HAV -Amino- ⁇ -hydroxyvalerate
  • the microorganism for producing and accumulating the amino acid described above may be any microorganism as long as it is a microorganism to which the above methods (a) to (e) can be applied or a microorganism having the above-mentioned genetic trait, and preferably Can include prokaryotes, more preferably bacteria.
  • Examples of the host for the recombinant DNA include prokaryotes, more preferably bacteria.
  • microorganisms that produce amino acids include L-serine producing strains that lack L-serine degrading enzymes (sdaA, sdaB, glyA) and uptake system (sdaC), and are L-serine desensitized serA gene Escherichia coli CC ATCC9637sdaABCglyA / pSserAfbr2 strain, L-glutamine producing strain having expression plasmid, Escherichia coli JGLE1 and Escherichia coli GL JGLBE1 described in International Publication No. 06/001379 pamphlet or US Publication No. 2005-0287626 pamphlet, etc.
  • L-cysteine producing strain As an L-cysteine producing strain, the L-serine degrading enzymes (sdaA, sdaB) and the uptake system (sdaC) are deleted, the cysE gene on the chromosomal DNA is replaced with the L-cysteine desensitized cysE gene, and L -Escherichia coli ATCC9637sdaABCcysE256 / pScysEfbr1 strain carrying the cysteine-desensitized cysE gene expression plasmid, L-phenyla L-threonine producing strains such as Escherichia coli NM522 / pBpheAfbraroFfbr strains carrying L-phenylalanine desensitized pheA gene and L-tyrosine desensitized aroF gene expression plasmids, such as ATCC21148, ATCC21277 and AT
  • microorganisms having the ability to produce amino acids include L-glutamic acid producing strains such as FERM-5BP-5807 and ATCC13032, L-glutamine producing strains such as FERM P-4806 and ATCC14751 as L-lysine producing strains.
  • FERM P-5084 and ATCC13286 L-methionine producing strains such as FERM P-5479, VKPM B-2175 and ATCC21608, L-isoleucine producing strains such as FERM BP-3757 and ATCC14310, L-valine producing strains such as ATCC13005 and ATCC19561 L-leucine production strains such as FERM BP-4704 and ATCC21302, L-alanine production strains such as FERM BP-4121 and ATCC15108, L-serine production strains such as ATCC21523 and FERM BP-6576, etc.
  • L-proline production strains FERM BP-2807 and ATCC19224 L-arginine producing strains such as FERM P-5616 and ATCC21831, L-ornithine producing strains such as ATCC13232 and L-histidine living Strains such as FERM BP-6674 and ATCC21607, L-tryptophan producing strains such as DSM10118, DSM10121, DSM10123 and FERM BP-1777, L-phenylalanine producing strains such as ATCC13281 and ATCC21669, L-tyrosine producing strains such as ATCC21652, L- W3110 / pHC34 (described in JP 2003-511086) as a cysteine-producing strain, Escherichia coli SOLR / pRH71 as described in WO96 / 27669 as a L-4-hydroxyproline-producing strain, and FERM BP as an L-3-hydroxyproline-producing strain Examples of L-citrulline
  • the strain represented by the above FERM number is the National Institute of Advanced Industrial Science and Technology Patent Organism Depositary (Japan), and the strain represented by the ATCC number is the American Type Culture Collection (USA), VKPM number. These strains can be obtained from the Russian National Collection of Industrial Microorganisms (USD), and the strain represented by the DSM number can be obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (Germany).
  • a microorganism culture that can be prepared by the method described in 2 above contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the microorganism, and enables efficient culture of transformants.
  • the microorganism can be obtained by culturing the microorganism using a natural medium or a synthetic medium that can be prepared in a simple manner.
  • the carbon source may be anything that can be assimilated by the organism, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol, Alcohols such as propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein Hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells, digested products thereof, and the like can be used.
  • monopotassium phosphate dipotassium phosphate
  • magnesium phosphate magnesium sulfate
  • sodium chloride ferrous sulfate
  • manganese sulfate copper sulfate
  • calcium carbonate calcium carbonate
  • the culture is usually carried out under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C., and the culture time is usually 5 to 7 days.
  • the pH is maintained at 3.0 to 9.0.
  • the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
  • antibiotics such as an ampicillin and a tetracycline, to a culture medium as needed during culture
  • an inducer may be added to the medium as necessary.
  • an inducer For example, isopropyl- ⁇ -D-thiogalactopyranoside is used when cultivating a microorganism transformed with an expression vector using the lac promoter, and indole acrylic is used when culturing a microorganism transformed with an expression vector using the trp promoter.
  • An acid or the like may be added to the medium.
  • a transformant of a microorganism that has been constructed as described above and has an ability to produce an L-amino acid and expresses a protein having an L-amino acid transport activity is cultured in a medium to produce L-amino. .
  • the produced L-amino acid is efficiently transported from the cells into the medium by the L-amino acid transport activity of the transformant and accumulates in the medium. Therefore, the target L-amino can be efficiently produced by collecting the L-amino from the culture.
  • Collection of L-amino accumulated in an aqueous medium or in a culture can be performed by an ordinary method using activated carbon, ion exchange resin, or the like, or extraction with an organic solvent, crystallization, thin layer chromatography, high performance liquid chromatography, etc. Can be performed.
  • An amino acid-producing bacterium was produced by the method shown below.
  • [1] Construction of desensitized serA gene expression plasmid PCR was carried out using the chromosomal DNA of Escherichia coli W3110 strain as a template and the synthetic DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 18 and 19 as a primer set. .
  • PCR For PCR, 0.1 ⁇ g of chromosomal DNA as a template, 0.3 ⁇ mol / L of each primer, 1 unit of KOD-plus-DNA polymerase (Toyobo), 5 ⁇ L of KOD-plus-DNA polymerase ⁇ 10 buffer (Toyobo) 50 ⁇ L of a reaction solution containing 100 ⁇ mol / L MgSO 4 and 200 ⁇ mol / L dNTP (dATP, dGTP, dCTP and dTTP) was prepared at 94 ° C. for 15 seconds, 55 ° C. for 30 seconds, and 68 ° C. for 2 minutes. The process was repeated 30 times.
  • the amplified DNA fragment obtained by PCR was digested with BglII and HindIII, and pTrs30 was digested with BamHI and HindIII. Then, both DNAs were ligated using a ligation kit (manufactured by Takara Bio Inc.), and Escherichia coli was ligated using the ligated DNA. The DH5 ⁇ strain was transformed. By the above method, plasmid DNA in which the serA gene was linked downstream of the trp promoter was obtained and named pTrs30-serA.
  • PCR was performed using pTrs30-serA as a template and a synthetic DNA in which the 5 ′ end consisting of the nucleotide sequences represented by SEQ ID NOs: 20 and 21 was modified with a phosphate group as a primer set.
  • the PCR reaction was carried out under the same conditions and reaction solution composition as above except that 0.01 ⁇ g of pTrs30-serA DNA was used as a template. After the PCR reaction, it was confirmed that a DNA fragment of about 5.8 kb was amplified, and the amplified DNA fragment was purified according to a conventional method.
  • the linear DNA fragments amplified as described above were ligated with a ligation kit (manufactured by Takara Bio Inc.) into a circular shape, and Escherichia coli DH5 ⁇ strain was transformed with the circular DNA.
  • a transformant was selected using ampicillin resistance as an index, and plasmid DNA was extracted from the obtained transformant.
  • a plasmid having a structure in which the L-serine desensitized serA gene in which the 294th glycine of the amino acid sequence represented by SEQ ID NO: 17 is substituted with L-valine is inserted downstream of the trp promoter of pTrs30.
  • DNA was prepared and named pSserAfbr1.
  • PCR was performed using pSserAfbr1 as a template and a synthetic DNA in which the 5 ′ end consisting of the nucleotide sequences represented by SEQ ID NOs: 22 and 23 was modified with a phosphate group as a primer set.
  • the composition of the PCR reaction solution and the reaction conditions are the same as described above.
  • the amplified linear DNA fragments were ligated into a circular shape, and Escherichia coli DH5 ⁇ strain was transformed with the circular DNA. Plasmid DNA was extracted from the obtained transformant.
  • L-serine desensitization in which the 294th glycine of the amino acid sequence represented by SEQ ID NO: 17 was substituted with L-valine and the 364th L-asparagine was substituted with L-alanine downstream of the trp promoter of pTrs30.
  • a plasmid DNA having a structure in which a type serA gene was inserted was prepared and named pSserAfbr2.
  • DNA fragment amplification primer sets are used for sdaC-sdaB gene deletion DNAs consisting of the nucleotide sequences represented by SEQ ID NOs: 28 and 29 and 30 and 31 as DNA fragment amplification primer sets are represented by SEQ ID NOs: 32 and 33, and 34 and 35 as DNA fragment amplification primer sets for glyA gene deletion.
  • PCR was carried out using each of the DNAs represented by the base sequences and using the chromosomal DNA of Escherichia coli ATCC9637 as a template.
  • PCR was performed using 40 ⁇ L of a reaction solution containing 0.1 ⁇ g of chromosomal DNA, 0.5 ⁇ mol / L of each primer, 2.5 units of Pfu DNA polymerase, 4 ⁇ L of Pfu DNA polymerase ⁇ 10 buffer, and 200 ⁇ mol / L of each deoxyNTP. The process consisting of 1 minute at °C, 2 minutes at 55 °C, and 1 minute at 72 °C was repeated 30 times.
  • upstream DNA fragment and downstream DNA fragment were obtained (referred to as upstream DNA fragment and downstream DNA fragment, respectively).
  • the sdaA gene-deficient DNA fragment comprises a synthetic DNA comprising the nucleotide sequences represented by SEQ ID NOs: 24 and 27 as a primer set.
  • the synthetic DNA consisting of the nucleotide sequence represented by SEQ ID NOs: 28 and 31 is used as a primer set
  • the glyA gene deficient DNA fragment is represented by SEQ ID NOs: 32 and 35.
  • the Escherichia coli ATCC9637 / pKD46 obtained by culturing in the presence of 10 mmol / L L-arabinose and 50 ⁇ g / ml ampicillin was introduced with the DNA fragment for sdaA gene deletion obtained above by electroporation, A transformant in which the DNA fragment is integrated by homologous recombination on the chromosomal DNA of Escherichia coli ATCC9637 / pKD46 using chloramphenicol resistance as an index (the transformant is Escherichia coli ATCC9637 / pKD46 sdaA :: cat Selected).
  • Escherichia coli ATCC9637 / pKD46 sdaA cat, LB agar medium containing 25 mg / L chloramphenicol [LB medium [10 g / l Bactotrypton (Difco), 5 g / l Yeast extract (Difco) ), 5 g / l sodium chloride] with 1.5% agar added], and cultured at 42 ° C. for 14 hours, and then a single colony was isolated. Each colony obtained was replicated on LB agar medium containing 25 mg / L chloramphenicol and LB agar medium containing 100 mg / l ampicillin and cultured at 37 ° C. to be resistant to chloramphenicol and sensitive to ampicillin.
  • a strain (Escherichia coli ATCC 9637 sdaA :: cat) from which pKD46 had been dropped was selected as an index.
  • Escherichia coli ATCC9637 sdaA :: cat was transformed with pCP20 to obtain a strain carrying pCP20 (Escherichia coli ATCC9637 / pCP20 sdaA :: cat).
  • Escherichia coli ATCC9637 / pCP20 sdaA :: cat was inoculated into an LB agar medium without any drug, cultured at 42 ° C. for 14 hours, and then a single colony was isolated.
  • Each colony obtained was replicated on LB agar medium containing no drug, LB agar medium containing 25 mg / L chloramphenicol, and LB agar medium containing 100 mg / L ampicillin, and cultured at 30 ° C. Several strains showing phenicol sensitivity and ampicillin sensitivity were selected.
  • Chromosomal DNA was prepared from each strain selected above, and on the chromosomal DNA, DNA designed based on the base sequence of DNA located outside the sdaA gene was used as a primer set, and PCR using the chromosomal DNA as a template was performed. went.
  • the strain in which the sdaA gene was confirmed to be deleted from the chromosomal DNA by the PCR was named Escherichia coli ATCC9637sdaA strain.
  • each gene-deficient strain was obtained by the above-described method is that, as in (2) above, chromosomal DNA was prepared from each selected strain and located outside the sdaC-sdaB or glyA gene on the chromosomal DNA. DNA designed based on the base sequence of the DNA to be used was used as a primer set and confirmed by PCR using chromosomal DNA as a template.
  • the strain that was confirmed to be a multigene-deficient strain of each gene of sdaA, sdaC-sdaB, and glyA as described above was named Escherichia coli ATCC9637sdaABCglyA strain.
  • [3] Construction of desensitized pheA gene and desensitized aroF gene expression plasmids derived from Escherichia coli (1) Construction of desensitized pheA gene expression plasmids Removal of phenylalanine obtained by introducing a phenylalanine analog resistant mutation Plasmid pE expressing desensitized pheA gene from plasmid pE pheA 22 (JP-A-61-260892) expressing sensitized pheA gene and tyrosine desensitized aroF gene obtained by introducing tyrosine-resistant mutation A desensitized aroF gene was obtained from aroF 18 (Japanese Patent Laid-Open No. 62-65691), and an expression plasmid was constructed by the following method.
  • PCR was performed using the synthetic DNAs having the base sequences represented by SEQ ID NO: 36 and SEQ ID NO: 37 as a primer set and plasmid pEpheA 22 as a template.
  • a reaction solution containing 10 ng of plasmid DNA, 0.5 ⁇ mol / L of each primer, 2.5 units of Pfu DNA polymerase, 4 ⁇ L of Pfu DNA polymerase ⁇ 10 buffer, 200 ⁇ mol / L of each dNTP, and 94 The process consisting of 1 minute at °C, 2 minutes at 55 °C, and 3 minutes at 72 °C was repeated 30 times.
  • the amplified DNA was cleaved with restriction enzymes ClaI and BamHI, and DNA fragments were separated by agarose gel electrophoresis. Then, a 1.1 kb DNA fragment containing the pheA gene was recovered using Gene Clean II kit. . After cutting 0.2 ⁇ g of the expression vector pTrS30 containing trp promoter with restriction enzymes ClaI and BamHI, the DNA fragment was separated by agarose gel electrophoresis, and the 4.6 kb DNA fragment was recovered by the same method as described above.
  • the 1.1 kb DNA fragment containing the pheA gene obtained above and the 4.6 kb DNA fragment were ligated by reaction at 16 ° C. for 16 hours using a ligation kit.
  • the transformant After transforming Escherichia coli NM522 strain using the reaction solution by a method using calcium ions, the transformant was applied to an LB agar medium containing 50 ⁇ g / ml ampicillin and cultured at 30 ° C. overnight. .
  • a plasmid was extracted from the grown colonies of the transformant according to a known method, and it was confirmed by restriction enzyme digestion that a desensitized pheA gene expression plasmid was obtained.
  • the plasmid was named pPHEA1.
  • the resulting upper layer was mixed with 2 volumes of cold ethanol and allowed to stand at ⁇ 80 ° C. for 30 minutes.
  • the DNA precipitate obtained by centrifuging the solution was dissolved in 20 ⁇ L of TE.
  • the amplified DNA was cleaved with restriction enzymes BglII and BamHI, DNA fragments were separated by agarose gel electrophoresis, and then 1.1 kb DNA containing the desensitized aroF gene using GeneClean II kit Fragments were collected.
  • the 1.1 kb DNA fragment containing the desensitized aroF gene obtained above and the 5.7 kb DNA fragment treated with alkaline phosphatase were ligated by reaction at 16 ° C. for 16 hours using a ligation kit. After transforming Escherichia coli NM522 strain using the reaction solution by a method using calcium ions, the strain was applied to an LB agar medium containing 50 ⁇ g / mL ampicillin and cultured at 30 ° C. overnight.
  • a plasmid is extracted from a colony of a transformant that has grown in accordance with a known method, and a desensitized aroF gene and a desensitized aroF gene in which a desensitized aroF gene is inserted in a forward direction with the desensitized pheA gene It was confirmed by restriction enzyme digestion that the gene expression plasmid was obtained, and the plasmid was named pBpheAfbraroFfbr.
  • a primer set for amplifying a DNA fragment for desensitizing cysE gene replacement a synthetic DNA consisting of the base sequences represented by SEQ ID NOs: 40 and 44, and a synthetic DNA consisting of the base sequences represented by SEQ ID NOs: 43 and 45 are used.
  • PCR was carried out in the same manner as described above using the chromosomal DNA of Escherichia coli W3110 strain as a template, respectively as a primer set, and upstream and downstream homologous sequence fragments for substitution of desensitized cysE (respectively, substituted upstream DNA fragments, Substituted downstream DNA fragment) was obtained.
  • the base represented by SEQ ID NOs: 40 and 43 using the obtained upstream DNA fragment for the cysE gene deletion, the downstream DNA fragment, and pKD3 cleaved with HindIII as a template.
  • the DNA consisting of the sequence was inserted into the primer set by the crossover PCR method to obtain a DNA fragment in which the chloramphenicol resistance gene portion of pKD3 was inserted into the center and the three DNA fragments were linked.
  • DNA fragment for replacement of the desensitized cysE gene in order to obtain a DNA fragment for replacement of the desensitized cysE gene, the above upstream DNA fragment and downstream downstream DNA fragment were used as a template, and DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 40 and 43 was crossed into a primer set. A DNA fragment in which two DNA fragments containing a desensitizing mutation on the cysE gene were linked by the over PCR method was obtained.
  • Escherichia coli ATCC9637sdaABC strain lacking each of the sdaA, sdaB, and sdaC genes obtained in (3) was transformed with pKD46.
  • the obtained transformant was named Escherichia coli ATCC9637sdaABC / pKD46.
  • a strain that did not contain the cysE gene and gave a short amplified fragment was designated as a cysE gene-deficient strain and named Escherichia coli ATCC9637sdaABCcysE1 strain.
  • M9 + glucose minimum agar medium [6g / L disodium hydrogen phosphate, 3g / L potassium dihydrogen phosphate, 0.5g / L sodium chloride, 1g / L ammonium chloride, 2g / L glucose, 1mM magnesium sulfate heptahydrate , 0.1 mM calcium chloride dihydrate, 10 mg / l vitamin B 1 , agar 15 g / L, of which glucose, magnesium sulfate, calcium chloride and vitamin B 1 were individually sterilized and added].
  • Chromosomal DNA is prepared from each strain selected above, and DNA designed based on the base sequence of DNA located outside the cysE gene on the chromosomal DNA is used as a primer set, as in [2] (2). PCR was performed. It was confirmed that a desensitized cysE gene replacement strain was obtained by amplifying a DNA fragment containing the cysE gene in the above PCR, and named Escherichia coli ATCC9637sdaABCcysE256 strain.
  • the amplified DNA fragment obtained by the PCR and pTrs30 were digested with HindIII and BamHI, respectively, and then both DNAs were ligated using a ligation kit (Takara Bio Inc.), and Escherichia coli DH5 ⁇ strain was used using the ligated DNA. Was transformed. Plasmid DNA was extracted from the obtained transformant.
  • pScysEfbr1 an expression vector in which the desensitized cysE gene was linked downstream of the trp promoter was constructed and named pScysEfbr1.
  • Example 1 Construction of norM gene expression plasmid PCR was performed using Escherichia coli W3110 strain chromosomal DNA as a template and synthetic DNA consisting of the nucleotide sequences represented by SEQ ID NOs: 9 and 10 as a primer set.
  • PCR For PCR, 0.1 ⁇ g of chromosomal DNA as a template, 0.3 ⁇ mol / L of each primer, 1 unit of KOD-plus-DNA polymerase (Toyobo), 5 ⁇ L of KOD-plus-DNA polymerase ⁇ 10 buffer (Toyobo) 50 ⁇ L of a reaction solution containing 100 ⁇ mol / L MgSO 4 and 200 ⁇ mol / L dNTP (dATP, dGTP, dCTP and dTTP) was prepared at 94 ° C. for 15 seconds, 55 ° C. for 30 seconds, and 68 ° C. for 2 minutes. The process was repeated 30 times.
  • DNA fragment of about 1.4 kb was amplified, and the DNA fragment was purified according to a conventional method.
  • the DNA fragment and the expression vector pTrs30 (which can be prepared from E. coli JM109 / pTrS30 (FERM BP-5407)) were cleaved with HindIII and BamHI, respectively, and DNA fragments were separated by agarose electrophoresis. Then, GENECLEAN II kit (BIO 101) ) was used to recover each restriction enzyme digested DNA fragment.
  • the DNA fragment of about 1.4 kb obtained and the restriction enzyme digested fragment of pTrs30 were ligated using a ligation kit (manufactured by Takara Bio Inc.).
  • Escherichia coli DH5 ⁇ strain (manufactured by Toyobo) was transformed with the ligated DNA, and transformants were selected using ampicillin resistance as an index.
  • a plasmid is extracted from the selected transformant according to a known method, the structure is analyzed using a restriction enzyme, and the obtained plasmid is a nucleotide sequence represented by SEQ ID NO: 1 downstream of the trp promoter of the expression vector pTrS30. It was confirmed that the norM gene consisting of The plasmid was named pTrs30-norM.
  • Plasmid pTrs30-norM and expression vector pSTV29 (manufactured by Takara Bio Inc.) were cleaved with EcoRI and BamHI, respectively, and ligated in the same manner as described above. Plasmid DNA having a structure in which trp promoter and norM gene were inserted into pSTV29 Prepared. The resulting plasmid was named pSnorM.
  • the obtained plasmid DNA was designated as pTrs30-emrD.
  • pTrs30-emrD After digesting the pTrs30-emrD and pSTV29 obtained above with EcoRI and SacI, respectively, plasmid DNA in which the trp promoter and the emrD gene were linked to pSTV29 was prepared by the same method as (1).
  • the obtained plasmid DNA was named pSemrD.
  • a plasmid DNA in which the trp promoter and the rarD gene are linked to pSTV29 is constructed in the same manner as in (1). Named.
  • eamA gene expression plasmid Synthetic DNA comprising the nucleotide sequences represented by SEQ ID NOs: 15 and 16 using the chromosomal DNA of Escherichia coli W3110 strain as a template according to the same reaction solution composition and reaction conditions as in (1) Was used as a primer set. After digesting the amplified DNA fragment obtained by PCR and pTrs30 with HindIII and BamHI, respectively, the eamA gene consisting of the nucleotide sequence represented by SEQ ID NO: 7 is inserted downstream of the trp promoter of pTrs30 by the same method as (1). A plasmid having the following structure was prepared and named pTrs30-eamA.
  • Example 2 Production of L-serine (L-Ser) Preparation of amino acid-producing strain [2]
  • the ATCC9637sdaABCglyA strain obtained in [2] was transformed with pSserAfbr2 obtained in [1], and an L-serine biosynthetic intermediate (3-phospho -hydroxy-pyruvate) Escherichia coli ATCC9637sdaABCglyA / pSserAfbr2 having the ability to produce a protein having a synthase activity was obtained.
  • Escherichia coli ATCC9637sdaABCglyA / pSserAfbr2 was transformed, respectively, and the resulting transformants were transformed into Escherichia coli ATCC9637sdaABCserAp pSnorM, ATCC9637sdaABCglyA / pSserAfbr2 / pSemrD, ATCC9637sdaABCglyA / pSserAfbr2 / pSrarD, ATCC9637sdaABCglyA / pSserAfbr2 / pSeamA and ATCC9637sdaABCglyA / pSserAfbr2 / pST
  • the transformant obtained above was added to medium A [10 g / L tryptone (Difco), 5 g / L Yeast extract (Difco), 5 g / L sodium chloride containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol. , 1 g / L potassium dihydrogen phosphate, 3 g / L dipotassium hydrogen phosphate] was inoculated into a large test tube containing 5 ml, and cultured at 30 ° C. for 16 hours.
  • the culture solution was added to medium B [0.72 g / L Yeast extract, 14.4 g / L ammonium sulfate, 1.8 g / L magnesium sulfate heptahydrate, 72 mg / ml containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol.
  • the norM gene represented by SEQ ID NO: 1, hereinafter referred to only by SEQ ID NO
  • emrD gene SEQ ID NO: 3
  • rarD gene SEQ ID NO: 5
  • eamA gene SEQ ID NO: 7
  • Expression plasmids having the respective gene sequences, and the expression levels of the norM protein (SEQ ID NO: 2), emerD protein (SEQ ID NO: 4), rarD protein (SEQ ID NO: 6) or eamA protein (SEQ ID NO: 8), respectively.
  • Example 3 Production of L-glutamine (L-Gln)
  • the JGLE1 strain International Publication No. 06/001380 pamphlet, US Publication No. 2008-0038786 pamphlet
  • the resulting transformants were named Escherichia coli JGLE1 / pSnorM, JGLE1 / pSrarD, and JGLE1 / pSTV29, respectively, and transformed with pSnorM, pSrarD, and pSTV29.
  • the transformant obtained above was inoculated into a large test tube containing 8 ml of LB medium containing 20 ⁇ g / ml of chloramphenicol and cultured at 30 ° C. for 16 hours.
  • the medium was mixed with medium C containing 20 ⁇ g / ml chloramphenicol [16 g / L dipotassium hydrogen phosphate, 14 g / L potassium dihydrogen phosphate, 2 g / L ammonium sulfate, 1 g / L citric acid (anhydrous), 1 g / L casamino acid (Difco), 10 g / L glucose, 10 mg / L vitamin B 1, 2 g / L magnesium sulfate heptahydrate, 10 mg / L manganese sulfate pentahydrate, 50 mg / L iron sulfate, 7 hydrate, 100 mg / L L-proline, pH 7.2 adjusted with 10 mol / L sodium hydroxide, glucose, vitamin B 1
  • Example 4 Production of L-cysteine (L-Cys) Lacking L-serine degrading enzymes (sdaA, sdaB) and uptake system (sdaC) obtained in the preparation of amino acid producing bacteria [4] and cysE gene on chromosomal DNA Escherichia coli ATCC9637sdaABCcysE256 having an L-cysteine desensitized cysE gene expression plasmid in which is desensitized cysE gene is substituted with pScysEfbr1 obtained in [5] above, A strain having the ability to produce a synthetic intermediate (O-acetyl-L-serine) synthase, Escherichia coli ATCC9637sdaABCcysE256 / pScysEfbr1, was obtained.
  • Escherichia coli ATCC9637sdaABCcysE256 / pScysEfbr was transformed with pSrarD, pSeamA and pSTV29 obtained in Example 1, and the resulting transformants were transformed into Escherichia coli ATCC9637sdaABCcysE256 / pScysEfD1 / AScyE They were named / pScysEfbr1 / pSeamA and Escherichia coli ATCC9637sdaABCcysE256 / pScysEfbr1 / pSTV29.
  • the transformant obtained above was inoculated into a large test tube containing 5 ml of the same medium A as in Example 2 containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol, and was incubated at 30 ° C. for 16 hours. Cultured. Medium D containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol, and the composition of medium B used in Example 2 except that it does not contain glycine and contains 2 g / L thiosulfate. 10% was inoculated into a test tube containing 5 ml of the same] and cultured at 30 ° C. for 24 hours, and then the culture was centrifuged to obtain a culture supernatant. The product in the culture supernatant was analyzed using HPLC. The results are shown in Table 3.
  • Embodiment 5 Production of L-threonine (L-Thr)
  • the ATCC21277 strain [US Pat. No. 3,580,810] reported as an E. coli strain producing L-threonine was transformed with pSeamA and pSTV29 obtained in Example 1 and obtained.
  • the transformants were named Escherichia coli ATCC21277 / pSeamA and Escherichia coli ATCC21277 / pSTV29, respectively.
  • the transformant obtained above was inoculated into a large test tube containing 5 ml of the same medium A as in Example 2 containing 20 ⁇ g / ml of chloramphenicol and cultured at 30 ° C. for 16 hours.
  • Medium E containing 20 ⁇ g / ml of chloramphenicol, medium E [same as the composition of medium B used in Example 2 except that glycine and yeast extract were not included, but 5 g / L casamino acid was included] was inoculated 10% into a test tube containing 5 ml and cultured at 30 ° C. for 24 hours, and then the culture was centrifuged to obtain a culture supernatant. The product in the culture supernatant was analyzed using HPLC. The results are shown in Table 4.
  • the expression plasmid having the gene sequence of norM gene (SEQ ID NO: 1) was introduced to enhance the expression level of norM protein (SEQ ID NO: 2).
  • SEQ ID NO: 1 the expression plasmid having the gene sequence of norM gene
  • SEQ ID NO: 2 the expression level of norM protein
  • Example 6 Using the expression plasmid pBpheAfbraroFfbr with the forward insertion of the desensitized aroF gene and desensitized pheA gene produced in L-phenylalanine (L-Phe) production [3] (2), the NM522 strain was transformed. The resulting transformant was Escherichia coli NM522 / pBpheAfbraroFfbr, which produced L-phenylalanine synthase.
  • pSemrD, pSrarD and pTV29 obtained in Example 1 were used to transform Escherichia coli NM522 / pBpheAfbraroFfbr, and the resulting transformants were transformed into Escherichia coli NM522 / pBpheAfbraroFfbr / pSemrD, NM522 / pBphebrAfbraroFfbr, respectively.
  • the transformant obtained above was inoculated into a large test tube containing 5 ml of the same medium A as in Example 2 containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol, and was incubated at 30 ° C. for 16 hours. Cultured. A test containing 5 ml of medium F (same composition of medium B used in Example 2 except that it does not contain glycine) containing 100 ⁇ g / ml ampicillin and 20 ⁇ g / ml chloramphenicol. After inoculating the tube with 10% and culturing at 30 ° C. for 24 hours, the culture solution was centrifuged to obtain a culture supernatant. The product in the culture supernatant was analyzed using HPLC. The results are shown in Table 5.
  • L-serine is highly useful as a raw material for amino acid mixtures in the pharmaceutical and cosmetic fields
  • L-glutamine is a raw material for anti-alcoholic compositions and the like.
  • L-cysteine is a very valuable amino acid in the cosmetic industry
  • L-threonine and L-phenylalanine are useful as ingredients for amino acid infusion solutions and health foods, and aspartame for low calorie sweeteners, respectively.
  • SEQ ID NO: 9 Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 10—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 11—Description of artificial sequence: synthetic DNA SEQ ID NO: 12—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 13—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 14—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 15—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 16—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 18—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 19—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 20—Description of artificial sequence: synthetic DNA SEQ ID NO: 21—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 22—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 23—Description of artificial sequence: synthetic DNA SEQ ID NO: 24—Description of Artificial Sequence: Synthetic DNA SEQ ID NO: 25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、L-アミノ酸の発酵生産の効率を向上させる方法を提供する。具体的には、以下の[1]~[3]のいずれか1つに記載の蛋白質の活性が親株より高い微生物を、培地に培養し、L-アミノ酸を生成させ、該L-アミノ酸を該培地中に蓄積せしめ、続いて該培地中から該L-アミノ酸を採取することを特徴とする、L-アミノ酸の製造法を提供する。[1]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質;[2]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質;又は[3]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列と80%以上の相同性があるアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質。

Description

L-アミノ酸の製造法
 本発明は、L-アミノ酸を生産する能力を有し、かつL-アミノ酸輸送活性が親株よりも高い微生物を用いた、L-アミノ酸の製造法に関する。より具体的には、L-アミノ酸を菌体内から菌体外へ輸送する活性が親株よりも高い微生物を構築してL-アミノ酸を生成させ、生成L-アミノ酸を該微生物菌体内から菌体外へ効率よく排出させることにより、アミノ酸生産性を高める製造法に関する。
 微生物を利用したアミノ酸の製造は、アミノ酸発酵と呼ばれ、応用微生物学の分野において、従来広く行われている。アミノ酸発酵においては、その最終ステップにおいては、アミノ酸輸送活性、すなわち、生成アミノ酸をいかに細菌の菌体外へ排出させるかが、アミノ酸生産性を左右する重大なプロセスとなっており、菌体外への排出効率を上げるための様々な工夫が、これまでになされてきた。
 微生物菌体内のアミノ酸を菌体外へ運ぶには、通常、生体エネルギーを用いた能動輸送が必要である。菌体内アミノ酸を菌体外へ排出する蛋白質(排出蛋白質)が同定され、該蛋白質の発現強化によってもアミノ酸の生産能を付与又は増強できる事が知られている。例えばL-リジン、L-アルギニン排出遺伝子(lysE)(非特許文献1参照)の発現を強化したコリネバクテリウム属微生物の菌株を用いたL-リジンの製造法(特許文献1参照)、L-スレオニン、L-ホモセリンの排出遺伝子(rhtA)(非特許文献2参照)、L-システイン、L-シスチン、N-アセチルセリン又はチアゾリン誘導体の排出遺伝子(ydeD/eamA)(非特許文献3参照)の発現を強化したエシェリヒア属微生物の菌株を用いたL-システイン、L-シスチン、N-アセチルセリン又はチアゾリン誘導体の製造法(特許文献2)、又はL-リジンの耐性に関与するL-リジン排出遺伝子(ybjE)の発現を強化したエシェリヒア属微生物の菌株を用いたL-リジンを始めとするL-アミノ酸の製造法(特許文献3)などが知られている。
 しかしながら、L-セリン及びL-グルタミンに関する排出蛋白質、及び該蛋白質の活性を強化したアミノ酸の製造法の報告は無い。
 ところで、大腸菌のnorM遺伝子はキノロン(quinolone)耐性に関わる排出ポンプ遺伝子であることが知られている(非特許文献4)。emrD遺伝子はSDS輸送遺伝子と報告されている(非特許文献5)。rarDは薬剤輸送遺伝子と予測されているが、いずれもアミノ酸排出活性があることは知られていない(非特許文献6)。一方で、eamA(ydeD)遺伝子は、L-システイン、L-シスチン、N-アセチルセリン又はチアゾリン誘導体の排出活性を有する遺伝子であると報告されている(非特許文献3)。
国際公開97/23597号パンフレット 特開平11-56381号公報 特開2005-237379号公報
Mol. Microbiol., 22, 815-826(1996) Res. Microbiol., 154, 123-135(2003) Mol. Microbiol., 36, 1101-1112(2000) J. Antimicrob. Chemother., 51, 545-56 (2003) J. Bacteriol., 183, 5803-5812 (2001) Science, 308, 1321-1323 (2005)
 本発明が解決しようとする課題は、L-アミノ酸輸送活性が親株よりも高い微生物にL-アミノ酸を生成させることによる、L-アミノ酸の効率のよい製造法を提供することにある。より具体的には、これまでL-アミノ酸輸送活性を強化することによる製造法の報告がなかったL-セリン及びL-グルタミンを含む、5つの中性アミノ酸について、排出蛋白質の強化による、生産性の高い新規の製造法を提供することである。
 すなわち、本発明は、以下の〔1〕~〔4〕に関する。
〔1〕L-アミノ酸輸送活性を有する以下の[1]~[3]のいずれかに記載の蛋白質の活性が親株より高い微生物を、培地に培養し、L-アミノ酸を生成させ、該L-アミノ酸を該培地中に蓄積せしめ、次いで該培地中から該L-アミノ酸を採取することを特徴とする、L-アミノ酸の製造法。
[1]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質
[2]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質
[3]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列と80%以上の相同性があるアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質
〔2〕微生物が以下の[1]~[3]のいずれかに記載のDNAで形質転換された微生物、又は該DNAの発現調節配列を改変することにより該遺伝子の発現が増強された微生物である、〔1〕記載のL-アミノ酸の製造法。
[1]〔1〕の[1]~[3]のいずれかに記載の蛋白質をコードするDNA
[2]配列番号1、3、5及び7のいずれかで表される塩基配列を有するDNA
[3]配列番号1、3、5及び7のいずれかで表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつL-アミノ酸輸送活性を有する蛋白質をコードするDNA
〔3〕微生物が、エシェリヒア属、コリネバクテリウム属、バチルス属、セラチア属、シュードモナス属又はストレプトマイセス属に属する微生物である、〔1〕又は〔2〕記載のL-アミノ酸の製造法。
〔4〕L-アミノ酸がL-セリン、L-グルタミン、L-システイン、L-フェニルアラニン及びL-スレオニンからなる群より選ばれるL-アミノ酸である、〔1〕~〔3〕のいずれかに記載のL-アミノ酸の製造法。
 本発明の製造法は、L-アミノ酸のうち、とりわけ、L-セリン、L-グルタミン、L-システイン、L-フェニルアラニン又はL-スレオニンの製造において、生産性の高い製造法である。
 本発明の製造法は、微生物の菌体内のL-アミノ酸を菌体外に輸送する活性を有する蛋白質の活性を強化することにより、該微生物を用いて効率よくL-セリン及びL-グルタミンを製造する方法である。またL-システイン、L-スレオニン及びL-フェニルアラニンについても、同様にL-アミノ酸輸送活性を高めることによる、新規の製造法を提供する。
 本発明の発明者は、大腸菌の公知の輸送遺伝子norM、emrD又はrarDが、アミノ酸を菌体外へ輸送する機能を有することを見出し、前記輸送遺伝子が、L-セリン若しくはL-グルタミン、又は、L-システイン、L-スレオニン、若しくはL-フェニルアラニンの製造に有利に利用可能であることを見出した。
 また、L-アミノ酸輸送活性が知られていたeamAについても、L-セリンの輸送を担うことを新たに見出し、これを利用したL-セリンの製造法を考案した。
 本発明の方法によれば、前記アミノ酸輸送遺伝子の活性を高めると、生成L-アミノ酸の菌体外への選択的能動輸送により、L-アミノ酸の生産を顕著に向上させることができる。しかもL-アミノ酸製造に用いる微生物は、外膜の種類(細胞壁、莢膜又は粘液層などの有無)によらず、グラム陽性・グラム陰性を問わない。つまり本発明の製造法は、コリネバクテリウム属、バチルス属、及びストレプトマイセス属等のグラム陽性菌、並びに、エシュリヒア属、セラチア属、及びシュードモナス属等のグラム陰性菌のどちらにおいても使用することができる、汎用性の高い製造法である。
 本発明の製造法により、L-セリン及びL-グルタミンの製造効率がこれまでより飛躍的に改善される。とりわけL-セリンは、非必須アミノ酸ながら、生体内において重要な役割を担うアミノ酸であり、医薬品分野や化粧品分野において、アミノ酸混合物の原料として、利用価値が高い。またL-グルタミンは、体内で胃腸や筋肉などの機能を正常に保つアミノ酸であり、抗アルコール症組成物などの原料となる。これらのL-アミノ酸の生産性の高い製造法が確立され、工業的な大量生産が可能になれば、産業上の利用可能性は非常に高い。
 L-システイン、L-スレオニン及びL-フェニルアラニンについても、本発明の製造法により、より一層経済的な生産が可能となった。L-システインは、美白効果があるため化粧品の原料として、化粧品業界で非常に価値の高いアミノ酸である。L-スレオニン及びL-フェニルアラニンは、ともに必須アミノ酸であり、L-スレオニンはアミノ酸輸液及び健康食品の成分として、またL-フェニルアラニンは、低カロリー甘味料のアスパルテーム(アスパルチルフェニルアラニンのメチルエステル、砂糖の200倍の甘みを有する)の原料として、各々有用なアミノ酸であり、本発明の製造法による生産性の向上が期待される。
1.本発明の製造法に用いられる微生物
L-アミノ酸輸送活性が親株より高い微生物
 L-アミノ酸輸送活性を有する蛋白質の活性が親株より高い微生物は、(a)親株の染色体DNA上の、L-アミノ酸輸送活性を有する蛋白質をコードするDNAの改変により得られる、i)親株より該蛋白質の比活性が向上した微生物、及びii)親株よりL-アミノ酸輸送活性を有する蛋白質の生産量が向上した微生物、並びに(b)親株をL-アミノ酸輸送活性を有する蛋白質をコードするDNAで形質転換して得られる微生物、である。なお、本明細書中における親株とは、野生株でも、変異株であってもよく、改変又は形質転換の対象である元株である。野生株とは、野生集団中で最も高頻度に観察される表現型をもつ株をいう。該親株としては例えば微生物がEscherichia coli である場合、E. coli K-12株、B株、B/r株、W株の野生株、又はその変異株をあげることができ、該変異株としてはE. coli XL1-Blue、E. coli XL2-Blue、E. coli DH1、E. coli MC1000、E. coli ATCC12435、E. coli W1485、E. coli JM109、E. coli HB101、E. coli No.49、E. coli W3110、E. coli NY49、E. coli MP347、E. coli NM522、E. coli BL21、E. coli ME8415、E. coli ATCC9637 等をあげることができる。
 L-アミノ輸送活性を有する蛋白質としては、以下の[1]~[3]のいずれかに記載の蛋白質:
[1]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質;
[2]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質;並びに
[3]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列と80%以上の相同性があるアミノ酸配列を有し、かつL-アミノ酸輸送活性を有する蛋白質;
をあげることができる。
 ここで、配列番号1、3、5、7の各DNA配列は、各々、前記の大腸菌におけるnorM遺伝子、emrD遺伝子、rarD遺伝子及びeamA遺伝子をコードしており、配列2、4、6及び8で表されるアミノ酸配列は、各々、前記遺伝子がコードする、norM蛋白質、emrD蛋白質、rarD蛋白質及びeamA蛋白質を表している。
 上記において、1以上のアミノ酸残基が欠失、置換又は付加されたアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質は、Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press (1989)(以下、モレキュラー・クローニング第3版と略す)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)(以下、カレント・プロトコールズ・イン・モレキュラー・バイオロジーと略す)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci. USA, 79, 6409(1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci. USA, 82, 488 (1985)等に記載の部位特異的変異導入法を用いて、例えば配列番号2、4、6及び8のいずれかで表されるアミノ酸配列からなる蛋白質をコードするDNAに部位特異的変異を導入することにより、取得することができる。
 欠失、置換又は付加されるアミノ酸残基の数は特に限定されないが、上記の部位特異的変異法等の周知の方法により欠失、置換又は付加できる程度の数であり、1個から数十個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個である。
 配列番号2、4、6及び8で表されるアミノ酸配列において1個以上のアミノ酸が欠失、置換又は付加されたとは、同一配列中の任意の位置において、1個又は複数個のアミノ酸残基が欠失、置換又は付加されていてもよい。
 アミノ酸残基の欠失又は付加が可能なアミノ酸の位置としては、例えば配列番号2、4、6及び8のいずれかで表されるアミノ酸配列のN末端側及びC末端側の10アミノ酸残基をあげることができる。
 欠失、置換又は付加は同時に生じてもよく、置換又は付加されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-アルギニン、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン、L-システインなどがあげられる。
 以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
 A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
 B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
 C群:アスパラギン、グルタミン
 D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
 E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
 F群:セリン、スレオニン、ホモセリン
 G群:フェニルアラニン、チロシン
 また、L-アミノ酸輸送活性を有する蛋白質としては、配列番号2、4、6及び8のいずれかで表されるアミノ酸配列との相同性が80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは98%以上、最も好ましくは99%以上の相同性を有するアミノ酸配列からなる蛋白質であり、かつL-アミノ酸輸送活性を有する蛋白質をあげることができる。
 アミノ酸配列や塩基配列の相同性は、Karlin and AltschulによるアルゴリズムBLAST[Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]やFASTA[Methods Enzymol., 183, 63 (1990)]を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている[J. Mol. Biol., 215, 403(1990)]。BLASTに基づいてBLASTNによって塩基配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法はよく知られている。
 配列番号2、4、6及び8のいずれかで表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換又は付加されたアミノ酸配列からなる蛋白質が、L-アミノ酸輸送活性を有する蛋白質であることは、例えばDNA組換え法を用いて活性を確認したい蛋白質を発現する形質転換体を作製し、ラベル化したL-アミノ酸、及び該形質転換体から調製できる反転膜小胞[J. Biol. Chem., 277, 49841 (2002)]を用いる方法[J. Biol. Chem., 280, 32254 (2005)]により確認することができる。
 また、配列番号2、4、6及び8で表されるアミノ酸配列において1以上のアミノ酸残基が欠失、置換又は付加されたアミノ酸配列からなる蛋白質が、L-アミノ酸輸送活性を有する蛋白質であることは、例えば活性を確認したい蛋白質をコードするDNAで親株を形質転換することにより該親株より該蛋白質の活性が高い形質転換体を作製し、該親株又は該形質転換体の培養液中に生成、蓄積したL-アミノ酸の量を比較することによっても確認できる。
 上記(a)のi)の、親株の染色体DNA上の、L-アミノ酸輸送活性を有する蛋白質をコードするDNAの改変により得られる、親株より該蛋白質の比活性が向上した微生物としては、親株が有する該蛋白質のアミノ酸配列において1アミノ酸以上、好ましくは1~10アミノ酸、より好ましくは1~5アミノ酸、さらに好ましくは1~3アミノ酸が置換しているアミノ酸配列を有する蛋白質を有しているため、親株のL-アミノ酸輸送活性を有する蛋白質と比較して、その活性が向上した変異型蛋白質を有する微生物をあげることができる。
 上記(a)のii)の、親株の染色体DNA上の、L-アミノ酸輸送活性を有する蛋白質をコードするDNAの改変により得られる、親株よりL-アミノ酸輸送活性を有する蛋白質の生産量が向上した微生物としては、親株の染色体DNA上に存在する該蛋白質をコードする遺伝子の転写調節領域又はプロモーター領域の塩基配列において1塩基以上、好ましくは1~10塩基、より好ましくは1~5塩基、さらに好ましくは1~3塩基の塩基が置換しているプロモーター領域を有しているため、親株のL-アミノ酸輸送活性を有する蛋白質の生産量と比較して、該蛋白質の生産量が向上している微生物をあげることができる。
 上記(b)の親株をL-アミノ酸輸送活性を有する蛋白質をコードするDNAで形質転換して得られる微生物としては:
[4]上記[1]~[3]のいずれかに記載の蛋白質をコードするDNA;
[5]配列番号1、3、5及び7のいずれかで表される塩基配列を有するDNA;又は
[6]配列番号1、3、5及び7のいずれかで表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつL-アミノ酸輸送活性を有する蛋白質をコードするDNA;
を用いて親株を形質転換して得られる微生物をあげることができる。
 該微生物としては、外来のL-アミノ酸輸送活性を有する蛋白質をコードするDNAをi)染色体DNA上に有する微生物、及びii)染色体外に有する微生物をあげることができる。すなわち、i)の微生物は、親株がL-アミノ酸輸送活性を有する蛋白質をコードするDNAを保有していない場合は、新たに導入された該DNAを1つ又は2つ以上、染色体DNA上に有する微生物であり、親株がL-アミノ酸輸送活性を有する蛋白質をコードするDNAを元来保有する場合には、新たに導入された該DNAを含む2つ以上のL-アミノ輸送活性を有する蛋白質をコードするDNAを染色体DNA上に有する微生物である。ii)の微生物は、L-アミノ酸輸送活性を有する蛋白質をコードするDNAをプラスミドDNA上に有する微生物である。
 本明細書において「L-アミノ酸輸送活性」とは、細胞内のL-アミノ酸を細胞外へ排出する活性をいう。
 上記の「ハイブリダイズする」とは、特定の塩基配列を有するDNA又は該DNAの一部にDNAがハイブリダイズすることである。したがって、該特定の塩基配列を有するDNA又はその一部は、ノーザン又はサザンブロット解析のプローブとして用いることができ、またPCR解析のオリゴヌクレオチドプライマーとして使用できるDNAである。プローブとして用いられるDNAとしては、少なくとも100塩基以上、好ましくは200塩基以上、より好ましくは500塩基以上のDNAをあげることができ、プライマーとして用いられるDNAとしては、少なくとも10塩基以上、好ましくは15塩基以上のDNAをあげることができる。
 DNAのハイブリダイゼーション実験の方法はよく知られており、例えば当業者であれば本願明細書に従い、ハイブリダイゼーションの条件を決定することができる。該ハイブリダイゼーションの条件は、モレキュラー・クローニング第2版、第3版(2001年)、Methods for General and Molecular Bacteriolgy, ASM Press(1994)、Immunology methods manual, Academic press(Molecular)に記載の他、多数の他の標準的な教科書に従っておこなうことができる。
 上記の「ストリンジェントな条件」とは、DNAを固定化したフィルターとプローブDNAとを50%ホルムアミド、5×SSC(750mmol/lの塩化ナトリウム、75mmol/lのクエン酸ナトリウム)、50mmol/lのリン酸ナトリウム(pH7.6)、5×デンハルト溶液、10%の硫酸デキストラン、及び20μg/lの変性させたサケ精子DNAを含む溶液中で、42℃にて一晩インキュベートした後、例えば約65℃の0.2×SSC溶液中で該フィルターを洗浄する条件が好ましいが、より低いストリンジェント条件を用いることもできる。ストリンジェントな条件の変更は、ホルムアミドの濃度調整(ホルムアミドの濃度を下げるほど低ストリンジェントになる)、塩濃度及び温度条件の変更により可能である。低ストリンジェント条件としては、例えば6×SSCE(20×SSCEは、3mol/lの塩化ナトリウム、0.2mol/lのリン酸二水素ナトリウム、0.02mol/lのEDTA、pH7.4)、0.5%のSDS、30%のホルムアミド、100μg/lの変性させたサケ精子DNAを含む溶液中で、37℃で一晩インキュベートした後、50℃の1×SSC、0.1%SDS溶液を用いて洗浄する条件をあげることができる。また、さらに低いストリンジェントな条件としては、上記した低ストリンジェント条件において、高塩濃度(例えば5×SSC)の溶液を用いてハイブリダイゼーションを行った後、洗浄する条件をあげることができる。
 上記した様々な条件は、ハイブリダイゼーション実験のバックグラウンドを抑えるために用いるブロッキング試薬を添加、又は変更することにより設定することもできる。上記したブロッキング試薬の添加は、条件を適合させるために、ハイブリダイゼーション条件の変更を伴ってもよい。
 上記したストリンジェントな条件下でハイブリダイズ可能なDNAとしては、例えば上記したBLASTやFASTA等を用いて上記したパラメータ等に基づいて計算したときに、配列番号1、3、5及び7のいずれかで表される塩基配列からなるDNAと少なくとも90%以上、好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、特に好ましくは99%以上の相同性を有するDNAをあげることができる。
2.本発明で用いられる微生物の調製
(1)L-アミノ酸輸送活性を有する蛋白質の活性が親株より高い微生物の調製
 L-アミノ酸輸送活性を有する蛋白質の活性が親株より高い微生物のうち、比活性が親株のL-アミノ酸輸送活性を有する蛋白質より高い微生物は、L-アミノ酸輸送活性を有する蛋白質をコードするDNAをin vitroにおける変異剤を用いた変異処理、又はエラープローンPCRなどに供することにより該DNAに変異を導入した後、該変異DNAを親株の染色体DNA上に存在する変異導入前のL-アミノ酸輸送活性を有する蛋白質をコードするDNAと公知の方法[Proc. Natl. Acad. Sci. USA., 97, 6640 (2000)]を用いて置換することにより該変異DNAを発現する改変体を作製し、上記した方法により親株と改変体のL-アミノ酸輸送活性を比較することにより取得することができる。
 また、L-アミノ酸輸送活性を有する蛋白質の活性が親株より高い微生物のうち、該蛋白質の生産量が親株の生産量より向上している微生物は、親株が有するL-アミノ酸輸送活性を有する蛋白質をコードする遺伝子の転写調節領域及びプロモーター領域、例えば該蛋白質の開始コドンの上流側200bp、好ましくは100bpの塩基配列を有するDNAをin vitroにおける変異処理、又はエラープローンPCRなどに供することにより該DNAに変異を導入した後、該変異DNAを親株の染色体DNA上に存在する変異導入前のL-アミノ酸輸送活性を有する蛋白質をコードする遺伝子の転写調節領域及びプロモーター領域と公知の方法[Proc. Natl. Acad. Sci. USA., 97, 6640 (2000)]を用いて置換することにより変異型の転写調節領域又はプロモーター領域を有する改変体を作製し、RT-PCR又はノーザンハイブリダイゼーションなどにより、親株と改変体のL-アミノ酸輸送活性を有する蛋白質をコードする遺伝子の転写量を比較する方法、又はSDS-PAGEなどにより親株と改変体のL-アミノ酸輸送活性を有する蛋白質の生産量を比較する方法により確認することができる。
 また、親株のL-アミノ酸輸送活性を有する蛋白質をコードする遺伝子のプロモーター領域を公知の強力なプロモーター配列と置換することによっても、親株よりL-アミノ酸輸送活性を有する蛋白質の生産量が向上した微生物を取得することもできる。
 そのようなプロモーターとしては、E. coliで機能するtrpプロモーター(Ptrp)、lacプロモーター(Plac)、PLプロモーター、PRプロモーター、PSEプロモーター等の、エシェリヒア・コリやファージ等に由来するプロモーター、SPO1プロモーター、SPO2プロモーター、penPプロモーター等をあげることができる。またPtrpを2つ直列させたプロモーター、tacプロモーター、lacT7プロモーター、let Iプロモーターなどの人為的に造成したプロモーターもあげることができる。
 さらにバチルス(Bacillus)属に属する微生物中で発現させるためのxylAプロモーター[Appl. Microbiol. Biotechnol., 35, 594-599 (1991)]やCorynebacterium属に属する微生物中で発現させるためのP54-6プロモーター[Appl. Microbiol. Biotechnol., 53, 674-679 (2000)]なども用いることができる。
 以下に、L-アミノ酸輸送活性を有する蛋白質をコードするDNAの取得法、及び親株を該DNAで形質転換して得られる微生物の調製法について詳細に説明する。
(a)L-アミノ酸輸送活性を有する蛋白質をコードするDNAの取得
 L-アミノ酸輸送活性を有する蛋白質をコードするDNAは、例えば配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質をコードするDNAの塩基配列に基づき設計することができるプローブDNAを用いた、E. coliなどの微生物の染色体DNAライブラリーに対するサザンハイブリダイゼーション、又は該塩基配列に基づき設計することができるプライマーDNAを用いた、微生物、好ましくはE. coliの染色体DNAを鋳型としたPCR[PCR Protocols, Academic Press (1990)]により取得することができる。
 また、各種の遺伝子配列データベースに対して配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質をコードするDNAの塩基配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは98%以上、最も好ましくは99%以上の相同性を有する配列を検索し、該検索によって得られた塩基配列に基づき、該塩基配列を有する微生物の染色体DNA、cDNAライブラリー等から上記した方法によりL-アミノ酸輸送活性を有する蛋白質をコードするDNAを取得することもできる。
 取得したDNAをそのまま、あるいは適当な制限酵素などで切断し、常法によりベクターに組み込み、得られた組換え体DNAを宿主細胞に導入した後、通常用いられる塩基配列解析方法、例えばジデオキシ法 [Proc. Natl. Acad. Sci.,  USA, 74, 5463 (1977)]又は3700 DNAアナライザー(アプライドバイオシステムズ社製)等の塩基配列分析装置を用いて分析することにより、該DNAの塩基配列を決定することができる。
 上記のベクターとしては、pBluescriptII KS(+)(ストラタジーン社製)、pDIRECT[Nucleic Acids Res., 18, 6069 (1990)]、pCR-Script Amp SK(+)(ストラタジーン社製)、pT7Blue(ノバジェン社製)、pCR II(インビトロジェン社製)及びpCR-TRAP(ジーンハンター社製)などをあげることができる。
 宿主細胞としては、Escherichia属に属する微生物などをあげることができる。Escherichia属に属する微生物としては、例えば、E. coli XL1-Blue、E. coli XL2-Blue、E. coli DH1、E. coli MC1000、E. coli ATCC 12435、E. coli W1485、E. coli JM109、E. coli HB101、E. coli No.49、E. coli W3110、E. coli NY49、E. coli MP347、E. coli NM522、E. coli BL21、E. coli ME8415等をあげることができる。
 組換え体DNAの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法[Proc. Natl. Acad. Sci.,  USA, 69, 2110 (1972)]、プロトプラスト法(特開昭63-248394)、エレクトロポレーション法[Nucleic Acids Res., 16, 6127 (1988)]等をあげることができる。
 塩基配列を決定した結果、取得されたDNAが部分長であった場合は、該部分長DNAをプローブに用いた、染色体DNAライブラリーに対するサザンハイブリダイゼーション法等により、全長DNAを取得することができる。
 更に、決定されたDNAの塩基配列に基づいて、パーセプティブ・バイオシステムズ社製8905型DNA合成装置等を用いて化学合成することにより目的とするDNAを調製することもできる。
 上記のようにして取得されるDNAとして、例えば、配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質をコードするDNA、及び配列番号1、3、5及び7のいずかで表される塩基配列を有するDNAをあげることができる。
(b)L-アミノ酸輸送活性を有する蛋白質を発現するプラスミドベクターで形質転換された微生物の取得
 上記(a)の方法で得られるL-アミノ酸輸送活性を有する蛋白質をコードするDNAをもとにして、必要に応じて、L-アミノ酸輸送活性を有する蛋白質をコードする部分を含む適当な長さのDNA断片を調製する。また、L-アミノ酸輸送活性を有する蛋白質をコードする部分の塩基配列を、宿主細胞での発現に最適なコドンとなるように塩基を置換することにより、該蛋白質量が向上した形質転換体を取得することができる。
 該DNA断片を適当な発現ベクターのプロモーターの下流に挿入することにより、組換え体DNAを作製する。
 該組換え体DNAを、該発現ベクターに適合した宿主細胞に導入することにより、L-アミノ酸輸送活性を有する蛋白質の活性が宿主細胞、すなわち親株より向上した形質転換体を得ることができる。
 発現ベクターとしては、上記宿主細胞において自律複製可能又は染色体中への組込みが可能で、L-アミノ酸輸送活性を有する蛋白質をコードするDNAを転写できる位置にプロモーターを含有しているものが用いられる。
 原核生物を宿主細胞として用いる場合は、L-アミノ酸輸送活性を有する蛋白質をコードするDNAを有する組換え体DNAは、原核生物中で自律複製可能であると同時に、プロモーター、リボソーム結合配列、L-アミノ酸輸送活性を有する蛋白質をコードするDNA、転写終結配列より構成された組換え体DNAであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。
 発現ベクターとしては、pColdI(タカラバイオ社製)、pCDF-1b、pRSF-1b(いずれもノバジェン社製)、pMAL-c2x(ニューイングランドバイオラブス社製)、pGEX-4T-1(ジーイーヘルスケアバイオサイエンス社製)、pTrcHis(インビトロジェン社製)、pSE280(インビトロジェン社製)、pGEMEX-1(プロメガ社製)、pQE-30(キアゲン社製)、pET-3(ノバジェン社製)、pKYP10(特開昭58-110600)、pKYP200[Agric. Biol. Chem., 48, 669 (1984)]、pLSA1[Agric. Biol. Chem., 53, 277 (1989)]、pGEL1[Proc. Natl. Acad. Sci., USA, 82, 4306 (1985)]、pBluescriptII SK(+)、pBluescript II KS(-)(ストラタジーン社製)、pTrS30 [エシェリヒア・コリ JM109/pTrS30(FERM BP-5407)より調製]、pTrS32 [エシェリヒア・コリ JM109/pTrS32(FERM BP-5408)より調製]、pPAC31 (WO98/12343)、pUC19 [Gene, 33, 103 (1985)]、pSTV28(タカラバイオ社製)、pUC118(タカラバイオ社製)、pPA1(特開昭63-233798)等を例示することができる。
 プロモーターとしては、E. coli等の宿主細胞中で機能するものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター(Plac)、PLプロモーター、PRプロモーター、PSEプロモーター等の、E. coliやファージ等に由来するプロモーター、SPO1プロモーター、SPO2プロモーター、penPプロモーター等をあげることができる。またPtrpを2つ直列させたプロモーター、tacプロモーター、lacT7プロモーター、let Iプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。
 さらにBacillus属に属する微生物中で発現させるためのxylAプロモーター[Appl. Microbiol. Biotechnol., 35, 594-599 (1991)]やCorynebacterium属に属する微生物中で発現させるためのP54-6プロモーター[Appl. Microbiol. Biotechnol., 53, 674-679 (2000)]なども用いることができる。
 リボソーム結合配列であるシャイン-ダルガノ(Shine-Dalgarno)配列と開始コドンとの間を適当な距離(例えば6~18塩基)に調節したプラスミドを用いることが好ましい。
 L-アミノ酸輸送活性を有する蛋白質をコードするDNAを発現ベクターに結合させた組換え体DNAにおいては、転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。
 このような組換え体DNAとしては、例えば後述するpSnorM、pSemrD、pSrarD及びpSeamAをあげることができる。
 該組換え体DNAの宿主としては、原核生物、より好ましくは細菌をあげることができる。
 原核生物としては、エシェリヒア(Escherichia)属、セラチア(Serratia)属、バチルス属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ミクロバクテリウム(Microbacterium)属、シュードモナス(Pseudomonas)属、アグロバクテリウム(Agrobacterium)属、アリシクロバチルス(Alicyclobacillus)属、アナベナ(Anabaena)属、アナシスティス(Anacystis)属、アスロバクター(Arthrobacter)属、アゾトバクター(Azotobacter)属、クロマチウム(Chromatium)属、エルビニア(Erwinia)属、メチロバクテリウム(Methylobacterium)属、フォルミディウム(Phormidium)属、ロドバクター(Rhodobacter)属、ロドシュードモナス(Rhodopseudomonas)属、ロドスピリウム(Rhodospirillum)属、セネデスムス(Scenedesmus)属、ストレプトマイセス(Streptomyces)属、シネコッカス(Synechoccus)属、ザイモモナス(Zymomonas)属等に属する微生物、例えば、エシェリヒア・コリ、バチルス・サブチリス(Bacillus subtilis)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・アミロリケファシエンス(Bacillus amyloliquefaciens)、バチルス・コアギュランス(Bacillus coagulans)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・プミルス(Bacillus pumilus)、ブレビバクテリウム・アンモニアゲネス(Brevibacterium ammoniagenes)、ブレビバクテリウム・イマリオフィルム(Brevibacterium immariophilum)、ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)、ブレビバクテリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム・アセトアシドフィルム(Corynebacterium acetoacidophilum)、ミクロバクテリウム・アンモニアフィルム(Microbacterium ammoniaphilum)、セラチア・フィカリア(Serratia ficaria)、セラチア・フォンチコラ(Serratia fonticola)、セラチア・リケファシエンス(Serratia liquefaciens)、セラチア・マルセッセンス(Serratia marcescens)、シュードモナス・エルギノーサ(Pseudomonas aeruginosa)、シュードモナス・プチダ(Pseudomonas putida)、アグロバクテリウム・ラジオバクター(Agrobacterium radiobacter)、アグロバクテリウム・リゾジーンズ(Agrobacterium rhizogenes)、アグロバクテリウム・ルビ(Agrobacterium rubi)、アナベナ・シリンドリカ(Anabaena cylindrica)、アナベナ・ドリオルム(Anabaena doliolum)、アナベナ・フロスアクア(Anabaena flos-aquae)、アースロバクター・オーレッセンス(Arthrobacter aurescens)、アースロバクター・シトレウス(Arthrobacter citreus)、アースロバクター・グロブフォルミス(Arthrobacter globformis)、アースロバクター・ヒドロカーボグルタミカス(Arthrobacter hydrocarboglutamicus)、アースロバクター・ミソレンス(Arthrobacter mysorens)、アースロバクター・ニコチアナ(Arthrobacter nicotianae)、アースロバクター・パラフィネウス(Arthrobacter paraffineus)、アースロバクター・プロトフォルミエ(Arthrobacter protophormiae)、アースロバクター・ロセオパラフィナス(Arthrobacter roseoparaffinus)、アースロバクター・スルフレウス(Arthrobacter sulfureus)、アースロバクター・ウレアファシエンス(Arthrobacter ureafaciens)、クロマチウム・ブデリ(Chromatium buderi)、クロマチウム・テピダム(Chromatium tepidum)、クロマチウム・ビノサム(Chromatium vinosum)、クロマチウム・ワーミンギ(Chromatium warmingii)、クロマチウム・フルビアタティレ(Chromatium fluviatile)、エルビニア・ウレドバラ(Erwinia uredovora)、エルビニア・カロトバラ(Erwinia carotovora)、エルビニア・アナス(Erwinia ananas)、エルビニア・ヘリコラ(Erwinia herbicola)、エルビニア・パンクタタ(Erwinia punctata)、エルビニア・テレウス(Erwinia terreus)、メチロバクテリウム・ロデシアナム(Methylobacterium rhodesianum)、メチロバクテリウム・エクソトルクエンス(Methylobacterium extorquens)、フォルミディウム・エスピー(Phormidium sp.) ATCC29409、ロドバクター・カプスラタス(Rhodobacter capsulatus)、ロドバクター・スフェロイデス(Rhodobacter sphaeroides)、ロドシュードモナス・ブラスチカ(Rhodopseudomonas blastica)、ロドシュードモナス・マリナ(Rhodopseudomonas marina)、ロドシュードモナス・パルストリス(Rhodopseudomonas palustris)、ロドスピリウム・リブラム(Rhodospirillum rubrum)、ロドスピリウム・サレキシゲンス(Rhodospirillum salexigens)、ロドスピリウム・サリナラム(Rhodospirillum salinarum)、ストレプトマイセス・アンボファシエンス(Streptomyces ambofaciens)、ストレプトマイセス・オーレオファシエンス(Streptomyces aureofaciens) 、ストレプトマイセス・アウレウス(Streptomyces aureus)、ストレプトマイセス・フンジシディカス(Streptomyces fungicidicus)、ストレプトマイセス・グリセオクロモゲナス(Streptomyces griseochromogenes)、ストレプトマイセス・グリセウス(Streptomyces griseus)、ストレプトマイセス・リビダンス(Streptomyces lividans)、ストレプトマイセス・オリボグリセウス(Streptomyces olivogriseus)、ストレプトマイセス・ラメウス(Streptomyces rameus)、ストレプトマイセス・タナシエンシス(Streptomyces tanashiensis)、ストレプトマイセス・ビナセウス(Streptomyces vinaceus)、ザイモモナス・モビリス(Zymomonas mobilis)等をあげることができ、好ましい原核生物としては、エシェリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、コリネバクテリウム属、シュードモナス属又はストレプトマイセス属等に属する細菌、例えば上記したエシェリヒア属、セラチア属、バチルス属、ブレビバクテリウム属、コリネバクテリウム属、シュードモナス属又はストレプトマイセス属等に属する種をあげることができ、より好ましい細菌としてはエシェリヒア・コリ、コリネバクテリウム・グルタミクム、コリネバクテリウム・アンモニアゲネス、コリネバクテリウム・ラクトファーメンタム、コリネバクテリウム・フラバム、コリネバクテリウム・エフィシェンス、バチルス・サチルス、バチルス・メガテリウム、セラチア・マルセッセンス、シュードモナス・プチダ、シュードモナス・エルギノーサ、ストレプトマイセス・セリカラー又はストレプトミセス・リビダンスをあげることができ、特に好ましくはエシェリヒア・コリをあげることができる。
(c)L-アミノ酸輸送活性を有する蛋白質をコードするDNAが染色体DNAに組み込まれた微生物の取得
 上記(a)の方法で得られるL-アミノ酸輸送活性を有する蛋白質をコードするDNAを染色体DNAの任意の位置に組み込むことにより、L-アミノ酸輸送活性を有する蛋白質の活性が親株より高い微生物を取得することもできる。
 L-アミノ酸輸送活性を有する蛋白質をコードするDNAを微生物の染色体DNAの任意の位置に組み込む方法としては、相同組換えを利用した方法をあげることができ、宿主、すなわち親株としてE. coliを用いる場合にはProc. Natl. Acad. Sci. USA., 97, 6640 (2000)に記載の方法をあげることができる。
(2)L-アミノ酸を生産する能力を有する微生物の調製
 本発明のL-アミノ酸の製造法で用いられる、L-アミノ酸を生産する能力を有する微生物としては、該能力を有する微生物であればいずれの微生物であってもよい。自然界から分離された株自身が該能力を有する場合は、該株そのものであってよく、改変又は形質転換された変異株である場合は、公知の方法により所望のL-アミノ酸を生産する能力を人為的に付与した微生物などをあげることができる。
 当該公知の方法としては、
(a)アミノ酸の生合成を制御する機構の少なくとも1つを緩和又は解除する方法、
(b)アミノ酸の生合成に関与する酵素の少なくとも1つを発現強化する方法、
(c)アミノ酸の生合成に関与する酵素遺伝子の少なくとも1つのコピー数を増加させる方法、
(d)アミノ酸の生合成経路から該アミノ酸以外の代謝産物へ分岐する代謝経路の少なくとも1つを弱化又は遮断する方法、及び
(e)野生型株に比べ、アミノ酸のアナログに対する耐性度が高い細胞株を選択する方法、
などをあげることができ、上記公知の方法は単独又は組み合わせて用いることができる。
 上記(a)については、例えばAgric. Biol. Chem., 43, 105-111(1979)、J. Bacteriol., 110, 761-763(1972)及びAppl. Microbiol. Biotechnol., 39, 318-323(1993)などに、上記(b)については、例えばAgric. Biol. Chem., 43, 105-111(1979)及びJ. Bacteriol., 110, 761-763(1972)などに、上記(c)については、例えばAppl. Microbiol. Biotechnol., 39, 318-323(1993)及びAgric. Biol. Chem., 39, 371-377(1987)などに、上記(d)については、例えばAppl. Environ. Micribiol., 38, 181-190(1979)及びAgric. Biol. Chem., 42, 1773-1778(1978)などに、上記(e)については、例えばAgric. Biol. Chem., 36, 1675-1684(1972)、Agric. Biol. Chem., 41, 109-116(1977)、Agric. Biol. Chem., 37, 2013-2023(1973)及びAgric. Biol. Chem., 51, 2089-2094(1987)などに記載されている。上記文献等を参考に各種アミノ酸を生産する能力を有する微生物を調製することができる。
 さらに上記(a)~(e)のいずれか、又は組み合わせた方法によるアミノ酸を生産する能力を有する微生物の調製方法については、Biotechnology 2nd ed., Vol.6, Products of Primary Metabolism (VCH Verlagsgesellschaft mbH, Weinheim, 1996) section 14a, 14bやAdvances in Biochemical Engineering/ Biotechnology, 79, 1-35 (2003)、アミノ酸発酵、学会出版センター、相田 浩ら(1986)に多くの例が記載されており、また上記以外にも具体的なアミノ酸を生産する能力を有する微生物の調製方法は、特開2003-164297、Agric. Biol. Chem., 39, 153-160 (1975)、Agric. Biol. Chem., 39, 1149-1153(1975)、特開昭58-13599、J. Gen. Appl. Microbiol., 4, 272-283(1958)、特開昭63-94985、Agric. Biol. Chem., 37, 2013-2023(1973)、国際公開97/15673号パンフレット、特開昭56-18596、特開昭56-144092及び特表2003-511086など数多くの報告があり、上記文献等を参照することにより1種以上のアミノ酸を生産する能力を有する微生物を調製することができる。
 上記方法によって調製することができるアミノ酸を生産する能力を有する微生物としては、例えばL-セリン生産菌として、L-セリン分解と取り込み活性を有するsdaA遺伝子、sdaB遺伝子、sdaC遺伝子及びglyA遺伝子が欠損し、かつL-セリンに対する脱感作型serA遺伝子の発現が強化された微生物、L-グルタミン生産菌として、glnE遺伝子が欠損した微生物、L-システイン生産菌として、例えば、L-システインに対する脱感作型cysE遺伝子を保持する微生物、L-フェニルアラニン生産菌として、L-フェニルアラニンの脱感作型pheA遺伝子及び/又はチロシンの脱感作型aroF遺伝子を発現する微生物など、L-スレオニン生産菌として、α-アミノ-β-ヒドロキシ吉草酸(AHV)耐性並びにL-イソロイシン、L-メチオニン及びL-プロリン要求性が付与された微生物をあげることができる。
 上記したアミノ酸を生成、蓄積する微生物としては、上記(a)~(e)の方法が適用することができる微生物又は上記遺伝的形質を有する微生物であればいずれの微生物であってもよく、好ましくは原核生物、より好ましくは細菌をあげることができる。該組換え体DNAの宿主としては、原核生物、より好ましくは細菌をあげることができる。
 アミノ酸を生産する微生物の具体例としては、L-セリン生産株として、L-セリン分解酵素(sdaA、sdaB、glyA)及び取り込み系(sdaC)を欠損し、かつL-セリン脱感作型serA遺伝子発現プラスミドを保有する、エシェリヒア・コリ ATCC9637sdaABCglyA/pSserAfbr2株、L-グルタミン生産株として、国際公開06/001379号パンフレットまたは米国公開公報2005-0287626号パンフレットに記載のエシェリヒア・コリ JGLE1及びエシェリヒア・コリ JGLBE1など、L-システイン生産株として、L-セリン分解酵素(sdaA、sdaB)及び取り込み系(sdaC)を欠損し、染色体DNA上のcysE遺伝子がL-システイン脱感作型cysE遺伝子に置換され、かつL-システイン脱感作型cysE遺伝子発現プラスミドを保有するエシェリヒア・コリ ATCC9637sdaABCcysE256/pScysEfbr1株、L-フェニルアラニン生産株として、L-フェニルアラニン脱感作型pheA遺伝子及びL-チロシン脱感作型aroF遺伝子発現プラスミドを保有するエシェリヒア・コリ NM522/pBpheAfbraroFfbr株など、L-スレオニン生産株として、ATCC21148、ATCC21277及びATCC21650などをあげることができる。
 さらに、アミノ酸を生産する能力を有する微生物の具体例としては、L-グルタミン酸生産株としてFERM BP-5807及びATCC13032など、L-グルタミン生産株としてFERM P-4806及びATCC14751など、L-リジン生産株としてFERM P-5084及びATCC13286など、L-メチオニン生産株としてFERM P-5479、VKPM B-2175及びATCC21608など、L-イソロイシン生産株としてFERM BP-3757及びATCC14310など、L-バリン生産株としてATCC13005及びATCC19561など、L-ロイシン生産株としてFERM BP-4704及びATCC21302など、L-アラニン生産株としてFERM BP-4121及びATCC15108など、L-セリン生産株としてATCC21523及びFERM BP-6576など、L-プロリン生産株としてFERM BP-2807及びATCC19224など、L-アルギニン生産株としてFERM P-5616及びATCC21831など、L-オルニチン生産株としてATCC13232など、L-ヒスチジン生産株としてFERM BP-6674及びATCC21607など、L-トリプトファン生産株としてDSM10118、DSM10121、DSM10123及びFERM BP-1777など、L-フェニルアラニン生産株としてATCC13281及びATCC21669など、L-チロシン生産株としてATCC21652など、L-システイン生産株としてW3110/pHC34(特表2003-511086記載)など、L-4-ヒドロキシプロリン生産株としてWO96/27669記載のエシェリヒア・コリSOLR/pRH71など、L-3-ヒドロキシプロリン生産株としてFERM BP-5026及びFERMBP-5409など、L-シトルリン生産株としてFERM P-5643及びFERM P-1645などをあげることができる。
 なお、上記のFERM番号で表される菌株は、独立行政法人産業技術総合研究所特許生物寄託センター(日本)、ATCC番号で表される菌株は、American Type Culture Collection(米国)、VKPM番号で表される菌株は、Russian National Collection of Industrial Microorganisms(ロシア)、DSM番号で表される菌株はDeutsche Sammlung von Mikroorganismen und Zellkulturen(ドイツ)からそれぞれ入手することができる。
3.本発明のL-アミノ酸の製造法
 上記2記載の方法で調製できる微生物の培養物は、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える天然培地又は合成培地を用いて該微生物を培養することにより取得することができる。
 炭素源としては、該生物が資化し得るものであればよく、グルコース、フルクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類等を用いることができる。
 窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体、及びその消化物等を用いることができる。
 無機塩としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。
 培養は、通常振盪培養又は深部通気攪拌培養等の好気的条件下で行う。培養温度は15~40℃がよく、培養時間は、通常5時間~7日間である。培養中pHは3.0~9.0に保持する。pHの調整は、無機又は有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニア等を用いて行う。
 また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。
 プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
 上記のようにして構築された、L-アミノ酸を生産する能力を有し、かつL-アミノ酸輸送活性を有する蛋白質を発現した微生物の形質転換体を、培地に培養し、L-アミノを生成させる。生成されたL-アミノ酸は、上記の形質転換体が有するL-アミノ酸輸送活性により、菌体内から該培地中に効率よく輸送され、培地中に蓄積する。従って、該培養物中から該L-アミノを採取することにより、目的のL-アミノを効率よく製造することができる。
 水性媒体中、又は培養物中に蓄積されたL-アミノの採取は、活性炭やイオン交換樹脂などを用いる通常の方法あるいは、有機溶媒による抽出、結晶化、薄層クロマトグラフィー、高速液体クロマトグラフィー等により行うことができる。
 以下に示す方法でアミノ酸生産菌を作製した。
[1]脱感作型serA遺伝子発現プラスミドの造成
 エシェリヒア・コリW3110株の染色体DNAを鋳型とし、配列番号18及び19で表される塩基配列からなる合成DNAをプライマーセットとして用いてPCRを行った。PCRは、鋳型として0.1μgの染色体DNA、0.3μmol/Lの各プライマー、1 unitsのKOD-plus- DNAポリメラーゼ(東洋紡製)、5μLのKOD-plus- DNAポリメラーゼ用×10緩衝液(東洋紡製)、100μmol/LのMgSO4、各200μmol/LのdNTP(dATP、dGTP、dCTP及びdTTP)を含む反応液50μLを調製し、94℃で15秒間、55℃で30秒間、68℃で2分間の工程を30回繰り返すことにより行った。
 PCRで得られた増幅DNA断片をBglII及びHindIIIで、pTrs30をBamHI及びHindIIIで消化した後、ライゲーションキット(タカラバイオ社製)を用いて両DNAを連結し、連結したDNAを用いてエシェリヒア・コリ DH5α株を形質転換した。以上の方法でtrpプロモーター下流にserA遺伝子が連結されたプラスミドDNAを取得し、これをpTrs30-serAと命名した。
 pTrs30-serAを鋳型とし、配列番号20及び21で表される塩基配列からなる5’側末端をリン酸基で修飾した合成DNAをプライマーセットとして用い、PCRを行った。
 PCR反応は、鋳型として0.01μgのpTrs30-serAのDNAを用いるほか、上記と同様の条件及び反応液組成により行った。
 PCR反応後、約5.8kbのDNA断片が増幅したことを確認し、該増幅DNA断片を常法に従って精製した。
 上記で増幅した直鎖状のDNA断片をライゲーションキット(タカラバイオ社製)により連結して環状とし、該環状DNAを用いてエシェリヒア・コリ DH5α株を形質転換した。アンピシリン耐性を指標に形質転換体を選択し、得られた形質転換体からプラスミドDNAを抽出した。
 以上により、pTrs30のtrpプロモーター下流に、配列番号17で表されるアミノ酸配列の294番目のグリシンがL-バリンに置換された、L-セリン脱感作型serA遺伝子が挿入された構造を有するプラスミドDNAを調製し、これをpSserAfbr1と命名した。
 さらに、pSserAfbr1を鋳型とし、配列番号22及び23で表される塩基配列からなる5’側末端をリン酸基で修飾した合成DNAをプライマーセットとして、PCRを行った。
 PCRの反応液の組成及び反応条件は上記と同様である。
 増幅した直鎖状のDNA断片を連結して環状とし、該環状DNAを用いてエシェリヒア・コリ DH5α株を形質転換した。得られた形質転換体からプラスミドDNAを抽出した。
 以上により、pTrs30のtrpプロモーター下流に、配列番号17で表されるアミノ酸配列の294番目のグリシンがL-バリンに、364番目のL-アスパラギンがL-アラニンに置換された、L-セリン脱感作型serA遺伝子が挿入された構造を有するプラスミドDNAを調製し、これをpSserAfbr2と命名した。
[2]sdaA、sdaB、sdaC及びglyA遺伝子が欠損した微生物の作製
 エシェリヒア・コリの染色体DNA上の特定遺伝子の欠損は、ラムダファージの相同組換え系を利用した方法[Proc. Natl. Acad. Sci. USA., 97, 6641-6645(2000)]に従って行った。以下に記載のプラスミドpKD46、pKD3及びpCP20は、エシェリヒア・コリ ジェネティック ストック センター(米国エール大学)から該プラスミドを保持するエシェリヒア・コリ株を入手し、当該株から公知の方法により抽出して用いた。
(1)遺伝子欠損用薬剤耐性遺伝子断片のクローニング
 sdaA遺伝子欠損用DNA断片増幅用プライマーセットとして配列番号24及び25、並びに26及び27で表される塩基配列からなるDNAを、sdaC-sdaB遺伝子欠損用DNA断片増幅用プライマーセットとして配列番号28及び29、並びに30及び31で表される塩基配列からなるDNAを、glyA遺伝子欠損用DNA断片増幅用プライマーセットとして配列番号32及び33、並びに34及び35で表される塩基配列からなるDNAをそれぞれ用い、エシェリヒア・コリATCC9637株の染色体DNAを鋳型としてPCRを行った。PCRは0.1μgの染色体DNA、0.5μmol/Lの各プライマー、2.5units のPfu DNAポリメラーゼ、4μLのPfu DNAポリメラーゼ用×10緩衝液、200μmol/L の各deoxyNTPを含む40μLの反応液を用い、94℃で1分間、55℃で2分間、72℃で1分間からなる工程を30回繰り返すことにより行った。
 該PCRにより、目的とするsdaA、sdaB、sdaC及びglyA各遺伝子欠損用の上流及び下流域の相同配列断片(それぞれ、上流DNA断片、下流DNA断片という)を取得した。
 次に上記の各遺伝子の上流DNA断片、下流DNA断片、及びHindIIIで切断したpKD3を鋳型に、sdaA遺伝子欠損用DNA断片では配列番号24及び27で表される塩基配列からなる合成DNAをプライマーセットとして、sdaC-sdaB遺伝子欠損用DNA断片では配列番号28及び31で用いた表される塩基配列からなる合成DNAをプライマーセットとして、glyA遺伝子欠損用DNA断片では配列番号32及び35で用いた表される塩基配列からなる合成DNAをプライマーセットとして、クロスオーバーPCR法 [J. Bacteriol., 179, 6228-6237 (1997)]により、中心部にpKD3のクロラムフェニコール耐性遺伝子部分が挿入し、3つのDNA断片が連結したDNA断片(sdaA、sdaB、sdaC及びglyA各遺伝子欠損用DNA断片)を取得した。
(2)sdaA遺伝子が欠損したエシェリヒア・コリの作製
 エシェリヒア・コリATCC9637株をpKD46で形質転換し、得られた形質転換体をエシェリヒア・コリATCC9637/pKD46と命名した。
 10mmol/LのL-アラビノースと50μg/mlのアンピシリンの存在下で培養して得られたエシェリヒア・コリATCC9637/pKD46に、エレクトロポレーション法により上記で取得したsdaA遺伝子欠損用DNA断片を導入し、クロラムフェニコール耐性を指標にしてエシェリヒア・コリATCC9637/pKD46の染色体DNA上に該DNA断片が相同組換えにより組込まれた形質転換体(該形質転換体をエシェリヒア・コリATCC9637/pKD46 sdaA::catと命名した)を選択した。
 エシェリヒア・コリATCC9637/pKD46 sdaA::catを、25mg/Lのクロラムフェニコールを含むLB寒天培地[LB培地[10g/l バクトトリプトン(ディフコ社製)、5g/l イーストエキス(ディフコ社製)、5g/l 塩化ナトリウム]に1.5%の寒天を加えたもの]に植菌し、42℃で14時間培養した後、単コロニー分離した。得られた各コロニーを25mg/Lのクロラムフェニコールを含むLB寒天培地、及び100mg/lのアンピシリンを含むLB寒天培地にレプリカして37℃で培養し、クロラムフェニコール耐性かつアンピシリン感受性を指標にしてpKD46が脱落した株(エシェリヒア・コリATCC9637 sdaA::cat)を選択した。
 次にエシェリヒア・コリATCC9637 sdaA::catをpCP20を用いて形質転換し、pCP20を保持する株(エシェリヒア・コリATCC9637/pCP20 sdaA::cat)を取得した。
 エシェリヒア・コリATCC9637/pCP20 sdaA::catを薬剤無添加のLB寒天培地に植菌し、42℃で14時間培養した後、単コロニー分離した。得られた各コロニーを薬剤無添加LB寒天培地、25mg/Lのクロラムフェニコールを含むLB寒天培地及び100mg/Lのアンピシリンを含むLB寒天培地にレプリカして、30℃で培養し、クロラムフェニコール感受性かつアンピシリン感受性を示す株を数株選択した。
 上記で選択した各株からそれぞれ染色体DNAを調製し、染色体DNA上において、sdaA遺伝子の外側に位置するDNAの塩基配列に基づいて設計したDNAをプライマーセットとして用い、染色体DNAを鋳型にしたPCRを行った。PCRは、0.1gの染色体DNA、0.5μmol/Lの各プライマー、2.5units のPfu DNAポリメラーゼ、4μLのPfu DNAポリメラーゼ用×10緩衝液、200μmol/L の各deoxyNTPを含む40μLの反応液を用い、94℃で1分間、55℃で2分間、72℃で3分間からなる工程を30回繰り返すことにより行った。
 上記PCRにより染色体DNAよりsdaA遺伝子が欠損したことが確認できた株を、エシェリヒア・コリATCC9637sdaA株と命名した。
(3)sdaA、sdaB、sdaC及びglyA各遺伝子が多重欠損したエシェリヒア・コリの作製
 (2)で得られたATCC9637sdaA株について、(1)で取得したsdaC-sdaB又はglyA 遺伝子欠損用クロラムフェニコール耐性遺伝子断片を用いて(2)で行った方法を繰り返すことにより、さらにsdaC、sdaB及びglyA遺伝子が欠損した株を作製した。
 上記方法により、各々の遺伝子欠損株が取得されたことは、上記(2)と同様、選択した各株からそれぞれ染色体DNAを調製し、染色体DNA上において、sdaC-sdaB又はglyA遺伝子の外側に位置するDNAの塩基配列に基づいて設計したDNAをプライマーセットとして用い、染色体DNAを鋳型にしたPCRにより確認した。
 上記によりsdaA、sdaC-sdaB及びglyAの各遺伝子の多重遺伝子欠損株であると確認された株を、エシェリヒア・コリATCC9637sdaABCglyA株と名付けた。
[3]エシェリヒア・コリ由来の脱感作型pheA遺伝子及び脱感作型aroF遺伝子発現プラスミドの構築
(1)脱感作型pheA遺伝子発現プラスミドの造成
 フェニルアラニンアナログ耐性変異導入により得られたフェニルアラニンの脱感作型pheA遺伝子を発現するプラスミドpE pheA 22(特開昭61-260892)から脱感作型pheA遺伝子を、チロシン耐性変異導入により得られたチロシンの脱感作型aroF遺伝子を発現するプラスミドpE aroF 18(特開昭62-65691)から脱感作型aroF遺伝子を取得し、以下の方法により発現プラスミドを構築した。
 配列番号36及び配列番号37で表される塩基配列を有する合成DNAをプライマーセットとし、プラスミドpE pheA 22を鋳型として、PCRを行った。PCRは、10ngのプラスミドDNA、0.5μmol/Lの各プライマー、2.5 unitsのPfu DNAポリメラーゼ、4μLのPfu DNAポリメラーゼ用×10緩衝液、200μmol/L の各dNTPを含む反応液40μLを調製し、94℃で1分間、55℃で2分間、72℃で3分間からなる工程を30回繰り返すことにより行った。
 該反応液の1/10量をアガロースゲル電気泳動し、pheA遺伝子断片に相当する約1.1kbの断片が増幅していることを確認後、残りの反応液と等量のTE飽和フェノール/クロロホルムを添加し、混合した。該混合液を遠心分離後、得られた上層に2倍容量の冷エタノールを加えて混合し、-80℃に30分間放置した。該溶液を遠心分離し、得られたDNAの沈殿を20μLのTEに溶解した。
 該溶解液5μLを用い、増幅したDNAを制限酵素ClaI及びBamHIで切断し、アガロースゲル電気泳動によりDNA断片を分離した後、ジーンクリーンIIキットにより、pheA遺伝子を含む1.1kbのDNA断片を回収した。
 trpプロモーターを含む発現ベクターpTrS30 0.2μgを制限酵素ClaI及びBamHIで切断後、アガロースゲル電気泳動によりDNA断片を分離し、上記と同様の方法により4.6kbのDNA断片を回収した。
 上記で得られたpheA遺伝子を含む1.1kbのDNA断片と4.6kbのDNA断片とをライゲーションキットを用いて、16℃で16時間反応させ連結した。
 該反応液を用いてエシェリヒア・コリ NM522株をカルシウムイオンを用いる方法によって形質転換した後、該形質転換体を50μg/mlのアンピシリンを含むLB寒天培地に塗布して、30℃で一晩培養した。
 生育してきた形質転換体のコロニーから公知の方法に従ってプラスミドを抽出して、脱感作型pheA遺伝子発現プラスミドが取得されていることを制限酵素消化により確認し、該プラスミドをpPHEA1と命名した。
(2)脱感作型pheA遺伝子及び脱感作型aroF遺伝子発現プラスミドの構築
 配列番号38及び配列番号39で表される塩基配列を有する合成DNAをプライマーセットとして用い、プラスミドpE aroF 18を鋳型としてPCRを行った。PCRは、上記(1)と同様の反応液組成及び反応条件により行った。
 該反応液の1/10量をアガロースゲル電気泳動し、aroF遺伝子断片に相当する約1.1kbの断片が増幅していることを確認後、残りの反応液と等量のTE飽和フェノール/クロロホルムを添加し、混合した。該混合液を遠心分離後、得られた上層に2倍容量の冷エタノールを加えて混合し、-80℃に30分間放置した。該溶液を遠心分離して得られたDNAの沈殿を20μLのTEに溶解した。
 該溶解液5μLを用い、増幅したDNAを制限酵素BglII及びBamHIで切断し、アガロースゲル電気泳動によりDNA断片を分離した後、ジーンクリーンIIキットにより、脱感作型aroF遺伝子を含む1.1kbのDNA断片を回収した。
 次に上記(1)で取得した脱感作型pheA遺伝子発現プラスミドpPHEA1 0.2μgを制限酵素BamHIで切断後、アガロースゲル電気泳動によりDNA断片を分離し、上記と同様の方法により5.7kbのDNA断片を回収した。該5.7kbのDNA断片の末端脱リン酸化を、60℃で30分間、アルカリホスファターゼ処理することにより行った。反応液と等量のTE飽和フェノール/クロロホルムを添加、混合して遠心分離した後、得られた上層に2倍容量の冷エタノールを加えて混合し、-80℃に30分間放置した。該溶液を遠心分離して得られたDNAの沈殿を20μLのTEに溶解した。
 上記で得られた脱感作型aroF遺伝子を含む1.1kbのDNA断片とアルカリホスファターゼ処理した5.7kbのDNA断片とをライゲーションキットを用いて、16℃で16時間反応させ連結した。
 該反応液を用いてエシェリヒア・コリ NM522株をカルシウムイオンを用いる方法によって形質転換した後、50μg/mLのアンピシリンを含むLB寒天培地に塗布して、30℃で一晩培養した。
 生育してきた形質転換体のコロニーから公知の方法に従ってプラスミドを抽出し、脱感作型aroF遺伝子が脱感作型pheA遺伝子と順向きに挿入された脱感作型aroF遺伝子及び脱感作型pheA 遺伝子発現プラスミドが取得されていることを制限酵素消化により確認し、該プラスミドをpBpheAfbraroFfbrと命名した。
[4]セリン分解及び取り込み系sdaA、sdaB、sdaC遺伝子が欠損し、染色体に脱感作型cysE遺伝子が置換された微生物の作製
(1)cysE遺伝子欠損用薬剤耐性遺伝子断片と脱感作型cysE遺伝子置換用遺伝子断片のクローニング
 cysE遺伝子欠損用DNA断片増幅用プライマーセットとして配列番号40及び41、並びに配列番号42及び43で表される塩基配列からなる合成DNAをそれぞれ用いて、エシェリヒア・コリW3110株の染色体DNAを鋳型として[2](1)と同条件でPCRをそれぞれ行った。該PCRにより、目的とするcysE遺伝子欠損用の上流及び下流域の相同配列断片(それぞれ、上流DNA断片、下流DNA断片という)を取得した。
 また、脱感作型cysE遺伝子置換用DNA断片増幅用プライマーセットとして配列番号40及び44で表される塩基配列からなる合成DNA、並びに配列番号43及び45で表される塩基配列からなる合成DNAをそれぞれプライマーセットとして用い、エシェリヒア・コリW3110株の染色体DNAを鋳型として上記と同様にでPCRを行い、脱感作型cysE置換用の上流及び下流域の相同配列断片(それぞれ、置換上流DNA断片、置換下流DNA断片という)を取得した。
 次にcysE遺伝子欠損用DNA断片取得のために、上記で取得したcysE遺伝子欠損用の上流DNA断片、下流DNA断片、及びHindIIIで切断したpKD3を鋳型に、配列番号40及び43で表される塩基配列からなるDNAをプライマーセットにクロスオーバーPCR法により、中心部にpKD3のクロラムフェニコール耐性遺伝子部分が挿入し、3つのDNA断片が連結したDNA断片を取得した。
 また脱感作型cysE遺伝子置換用DNA断片取得のために、上記の置換上流DNA断片、置換下流DNA断片を鋳型に、配列番号40及び43で表される塩基配列からなるDNAをプライマーセットにクロスオーバーPCR法により、cysE遺伝子上に脱感作型の変異を含む2つのDNA断片が連結したDNA断片を取得した。
(2)脱感作型cysE遺伝子に置換されたエシェリヒア・コリの作製
 [2](3)で得られたsdaA、sdaB、sdaCの各遺伝子が欠損したエシェリヒア・コリATCC9637sdaABC株をpKD46で形質転換し、得られた形質転換体をエシェリヒア・コリATCC9637sdaABC/pKD46と命名した。
 [2](2)と同様の方法で、エシェリヒア・コリATCC9637sdaABC/pKD46の染色体DNA上に上記(1)のcysE遺伝子欠損用DNA断片が相同組換えにより組込まれた形質転換体(エシェリヒア・コリATCC9637sdaABC/pKD46 cysE::cat)を選択し、その後クロラムフェニコール耐性遺伝子の脱落した株を選択した。
 上記で選択した各株からそれぞれ染色体DNAを調製し、染色体DNA上において、cysE遺伝子の外側に位置するDNAの塩基配列に基づいて設計したDNAをプライマーセットとして用い、[2](2)同様のPCRを行った。
 上記PCRにおいて、cysE遺伝子を含まない、短い増幅断片を与えた株をcysE遺伝子欠損株とし、エシェリヒア・コリATCC9637sdaABCcysE1株と命名した。
 次に、脱感作型cysE遺伝子の染色体上での置換を行った。
 上記のエシェリヒア・コリATCC9637sdaABCcysE1株をpKD46で形質転換し、得られた形質転換体をエシェリヒア・コリATCC9637sdaABCcysE1/pKD46と命名した。
 [2](2)と同様の方法で、エシェリヒア・コリATCC9637sdaABCcysE1/pKD46の染色体DNA上に上記(1)の脱感作型cysE遺伝子置換用DNA断片が相同組換えにより組込まれた形質転換体をM9+グルコース最小寒天培地[6g/L リン酸水素二ナトリウム、3g/L リン酸二水素カリウム、0.5g/L 塩化ナトリウム、1g/L 塩化アンモニウム、2g/L グルコース、1mM硫酸マグネシウム・7水和物、0.1mM 塩化カルシウム・2水和物、10mg/l ビタミンB1、寒天15g/L、そのうちグルコース、硫酸マグネシウム、塩化カルシウム、ビタミンB1は個別滅菌し添加した]上での生育で選択した。
 上記で選択した各株からそれぞれ染色体DNAを調製し、染色体DNA上において、cysE遺伝子の外側に位置するDNAの塩基配列に基づいて設計したDNAをプライマーセットとして用い、[2](2)と同様のPCRを行った。
 上記PCRにおいてcysE遺伝子を含むDNA断片が増幅されたことにより、脱感作型cysE遺伝子置換株が取得されたことを確認し、エシェリヒア・コリATCC9637sdaABCcysE256株と命名した。
[5] エシェリヒア・コリ由来の脱感作型cysE遺伝子発現プラスミドの構築
 [4]で得られたエシェリヒア・コリATCC9637sdaABCcysE256株をLB培地に植菌し30℃で一晩静置培養した。培養後、カレント・プロトコールズ・イン・モレキュラー・バイオロジーに記載の飽和フェノールを用いる方法により、該微生物の染色体DNAを単離精製した。
 配列番号46及び47で表される塩基配列からなる合成DNAをプライマーセットとして用い、鋳型として上記の染色体DNAを用いて、[1]と同様の条件及び反応液組成でPCRを行った。
 上記PCRで得られた増幅DNA断片、及びpTrs30をそれぞれHindIII及びBamHIで消化した後、ライゲーションキット(タカラバイオ社製)を用いて両DNAを連結し、連結体DNAを用いてエシェリヒア・コリ DH5α株を形質転換した。得られた形質転換体からプラスミドDNAを抽出した。
 以上の方法でtrpプロモーター下流に脱感作型cysE遺伝子が連結された発現ベクターを造成し、pScysEfbr1と命名した。
 以下、本発明の実施例を示すが、本発明は実施例に限定されるものではない。
実施例1
(1)norM遺伝子発現プラスミドの造成
 エシェリヒア・コリW3110株の染色体DNAを鋳型とし、配列番号9及び10で表される塩基配列からなる合成DNAをプライマーセットとして、PCRを行った。
 PCRは、鋳型として0.1μgの染色体DNA、0.3μmol/Lの各プライマー、1 unitsのKOD-plus- DNAポリメラーゼ(東洋紡製)、5μLのKOD-plus- DNAポリメラーゼ用×10緩衝液(東洋紡製)、100μmol/LのMgSO4、各200μmol/LのdNTP(dATP、dGTP、dCTP及びdTTP)を含む反応液50μLを調製し、94℃で15秒間、55℃で30秒間、68℃で2分間の工程を30回繰り返すことにより行った。
 約1.4kbのDNA断片が増幅したことを確認し、該DNA断片を常法に従って精製した。
 該DNA断片及び発現ベクターpTrs30〔大腸菌JM109/pTrS30(FERM BP-5407)より調製可能〕をそれぞれHindIII、BamHIで切断し、アガロース電気泳動によりDNA断片を分離した後、GENECLEAN II kit(BIO 101 社製)を用いて、制限酵素消化DNA断片をそれぞれ回収した。
 回収して得られた約1.4kbのDNA断片及びpTrs30の制限酵素消化断片をライゲーションキット(タカラバイオ社製)を用いて連結した。
 連結後のDNAを用いてエシェリヒア・コリ DH5α株(東洋紡製)を形質転換し、アンピシリン耐性を指標に形質転換体を選択した。
 選択した形質転換体より公知の方法に従ってプラスミドを抽出し、制限酵素を用いてその構造を解析し、得られたプラスミドが、発現ベクターpTrS30のtrpプロモーター下流に、配列番号1で表される塩基配列からなるnorM遺伝子が挿入された構造を有していることを確認した。当該プラスミドをpTrs30-norMと命名した。
 プラスミドpTrs30-norM及び発現ベクターpSTV29(タカラバイオ社製)をそれぞれEcoRI、BamHIで切断し、上記と同様の方法により連結し、pSTV29に、trpプロモーター及びnorM遺伝子が挿入された構造を有するプラスミドDNAを調製した。得られたプラスミドをpSnorMと命名した。
(2)emrD遺伝子発現プラスミドの造成
 (1)と同様の反応液組成及び反応条件により、エシェリヒア・コリW3110株の染色体DNAを鋳型とし、配列番号11及び12で表される塩基配列からなる合成DNAをプライマーセットとして、PCRを行った。
 PCRで得られた増幅DNA断片及びpTrs30をそれぞれHindIII及びSacIで消化した後、(1)と同様の方法でpTrs30のtrpプロモーター下流に配列番号3で表される塩基配列からなるemrD遺伝子が挿入された構造を有するプラスミドDNAを取得した。この得られたプラスミドDNAをpTrs30-emrDと命名した。
 上記で得られたpTrs30-emrD及びpSTV29をそれぞれEcoRI及びSacIで消化した後、(1)と同様の方法でpSTV29に、trpプロモーター及びemrD遺伝子が連結されたプラスミドDNAを調製した。得られたプラスミドDNAをpSemrDと命名した。
(3)rarD遺伝子発現プラスミドの造成
 (1)と同様の反応液組成及び反応条件により、エシェリヒア・コリW3110株の染色体DNAを鋳型とし、配列番号13及び14で表される塩基配列からなる合成DNAをプライマーセットとして用いてPCRを行った。
 PCRで得られた増幅DNA断片、及びpTrs30をそれぞれHindIII及びBamHIで消化した後、(1)と同様の方法でpTrs30のtrpプロモーター下流に配列番号5で表される塩基配列からなるrarD遺伝子が挿入された構造を有するプラスミドDNAを調製し、これをpTrs30-rarDと命名した。
 上記で得られたpTrs30-rarD及びpSTV29をそれぞれEcoRI及びBamHIで消化した後、(1)と同様の方法でpSTV29に、trpプロモーター及びrarD遺伝子が連結されたプラスミドDNAを造成し、これをpSrarDと命名した。
(4)eamA遺伝子発現プラスミドの造成
 (1)と同様の反応液組成及び反応条件により、エシェリヒア・コリW3110株の染色体DNAを鋳型とし、配列番号15及び16で表される塩基配列からなる合成DNAをプライマーセットとして用いてPCRを行った。
 PCRで得られた増幅DNA断片及びpTrs30をそれぞれHindIII及びBamHIで消化した後、(1)と同様の方法でpTrs30のtrpプロモーター下流に配列番号7で表される塩基配列からなるeamA遺伝子が挿入された構造を有するプラスミド調製し、これをpTrs30-eamAと命名した。
 上記で得られたpTrs30-eamA及びpSTV29をそれぞれEcoRI及びBamHIで消化した後、(1)と同様の方法で、pSTV29にtrpプロモーター及びeamA遺伝子が挿入された構造を有するプラスミドDNAを調製し、これをpSeamAと命名した。
実施例2.L-セリン(L-Ser)の生産
 アミノ酸生産株の作製[2]で得られたATCC9637sdaABCglyA株に同[1]で得られたpSserAfbr2を形質転換し、L-セリン生合成中間体(3-phospho-hydroxy-pyruvate)合成酵素活性を有する蛋白質を生産する能力を有するエシェリヒア・コリ ATCC9637sdaABCglyA/pSserAfbr2を取得した。
 次に同[1]で得られたpSnorM、pSemrD、pSrarD、pSeamA及びpSTV29を用いて、エシェリヒア・コリ ATCC9637sdaABCglyA/pSserAfbr2をそれぞれ形質転換し、得られた形質転換体をそれぞれエシェリヒア・コリ ATCC9637sdaABCglyA/pSserAfbr2/pSnorM、ATCC9637sdaABCglyA/pSserAfbr2/pSemrD、ATCC9637sdaABCglyA/pSserAfbr2/pSrarD、ATCC9637sdaABCglyA/pSserAfbr2/pSeamA及びATCC9637sdaABCglyA/pSserAfbr2/pSTV29を取得した。
 上記で得られた形質転換体を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む培地A[10g/L トリプトン(ディフコ)、5g/L Yeast extract(ディフコ)、5g/L塩化ナトリウム、1g/L リン酸二水素カリウム、3g/L リン酸水素二カリウム]が5ml入った太型試験管に接種し、30℃で16時間培養した。
 該培養液を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む培地B[0.72g/L Yeast extract、14.4g/L 硫酸アンモニウム、1.8g/L硫酸マグネシウム・7水和物、72mg/L 塩化カルシウム、100μg/L ビタミンB1、21.6mg/L 硫酸鉄・7水和物、7.2mg/L 硫酸マンガン、1.4mg/L 硫酸銅、3.6mg/L 硫酸亜鉛、1.4mg/L 塩化ニッケル、1.4mg/L 塩化コバルト、21.6mg/L パントテン酸カルシウム、14.4mg/L ニコチン酸、36mg/L チアミン、14.4mg/L ピリドキシン塩酸塩、72mg/L グリシン、21g/L 炭酸カルシウム、48g/L グルコース、0.56g/L リン酸二水素カリウム、2.88g/L リン酸水素二カリウム、0.6g/Lリン酸水素二ナトリウム、pH無調製、グルコース、リン酸二水素カリウム、リン酸水素二カリウム、リン酸水素二ナトリウムは別個に蒸煮後添加した]が5ml入っている試験管に10%接種し、30℃で24 時間培養した後、該培養液を遠心分離して培養上清を取得した。
 HPLCを用いて該培養上清中の生成物を分析した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した通り、norM遺伝子(配列番号1で表される。以下、配列番号のみで記す)、emrD遺伝子(配列番号3)、rarD遺伝子(配列番号5)、又はeamA遺伝子(配列番号7)の各遺伝子配列をそれぞれ有する発現プラスミドを導入し、それぞれnorM蛋白質(配列番号2)、emerD蛋白質(配列番号4)、rarD蛋白質(配列番号6)又はeamA蛋白質(配列番号8)の発現量を増加させた結果、いずれの場合も、培地中のL-セリンの蓄積量が増加した。
実施例3.L-グルタミン(L-Gln)の生産
 L-グルタミン生産株として公知のJGLE1株(国際公開06/001380号パンフレット、米国公開公報2008-0038786号パンフレット)を、アミノ酸生産菌の作製[1]で得られたpSnorM、pSrarD及びpSTV29でそれぞれ形質転換し、得られた形質転換体をそれぞれエシェリヒア・コリ JGLE1/pSnorM、JGLE1/pSrarD及びJGLE1/pSTV29と命名した。
 上記で得られた形質転換体を20μg/mlのクロラムフェニコールを含む8mlのLB培地が入った太型試験管に接種し、30℃で16時間培養した。
 該培養液を20μg/mlのクロラムフェニコールを含む培地C[16g/L リン酸水素二カリウム、14g/L リン酸二水素カリウム、2g/L 硫酸アンモニウム、1g/L クエン酸(無水)、1g/L カザミノ酸(ディフコ社製)、10g/L グルコース、10mg/L ビタミンB1、2g/L 硫酸マグネシウム・7水和物、10mg/L 硫酸マンガン・5水和物、50mg/L 硫酸鉄・7水和物、100mg/L L-プロリン、pH7.2に10mol/Lの水酸化ナトリウムで調整、グルコース、ビタミンB1、硫酸マグネシウム・7水和物、硫酸マンガン・5水和物、硫酸鉄・7水和物、L-プロリンは別個に蒸煮後添加した]が8ml入っている試験管に1%接種し、30℃で24 時間培養した後、該培養液を遠心分離して培養上清を取得した。
 HPLCを用いて該培養上清中の生成物を分析した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示した通り、norM遺伝子(配列番号1)、又はrarD遺伝子(配列番号5)の各遺伝子配列をそれぞれ有する発現プラスミドを導入し、それぞれnorM蛋白質(配列番号2)又はrarD蛋白質(配列番号6)の発現量を増加させた結果、いずれの場合も培地中のL-グルタミンの蓄積量が増加した。
実施例4.L-システイン(L-Cys)の生産
 アミノ酸生産菌の作製[4]で得られた、L-セリン分解酵素(sdaA、sdaB)及び取り込み系(sdaC)を欠損し、かつ染色体DNA上のcysE遺伝子が脱感作型cysE遺伝子に置換された、L-システイン脱感作型cysE遺伝子発現プラスミドを有するエシェリヒア・コリATCC9637sdaABCcysE256株を、同[5]で得られたpScysEfbr1で形質転換し、L-システイン生合成中間体(O-acetyl-L-serine)の合成酵素を生産する能力を有する菌株、エシェリヒア・コリ ATCC9637sdaABCcysE256/pScysEfbr1を取得した。
 次に実施例1で得られたpSrarD、pSeamA及びpSTV29を用いて、エシェリヒア・コリATCC9637sdaABCcysE256/pScysEfbrを形質転換し、得られた形質転換体をそれぞれエシェリヒア・コリATCC9637sdaABCcysE256/pScysEfbr1/pSrarD、エシェリヒア・コリATCC9637sdaABCcysE256/pScysEfbr1/pSeamA及びエシェリヒア・コリATCC9637sdaABCcysE256/pScysEfbr1/pSTV29と命名した。
 上記で得られた形質転換体を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む、実施例2と同じ培地Aが5ml入った太型試験管に接種し、30℃で16時間培養した。
 該培養液を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む、培地D[グリシンを含まず、2g/L チオ硫酸を含む以外は、実施例2で使用した培地Bの組成と同じ]が5ml入った試験管に10%接種し、30℃で24 時間培養した後、該培養液を遠心分離して培養上清を取得した。
 HPLCを用いて該培養上清中の生成物を分析した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示した通り、rarD遺伝子(配列番号5)、又はeamA遺伝子(配列番号7)の各遺伝子配列をそれぞれ有する発現プラスミドを導入し、それぞれrarD蛋白質(配列番号6)又はeamA蛋白質(配列番号8)の発現量を増加させた結果、いずれの場合も培地中のL-システインの蓄積量が増加した。
実施例5.L-スレオニン(L-Thr)の生産
 L-スレオニンを生産する大腸菌株として報告のあるATCC21277株[米国特許3,580,810号]を、実施例1で得られたpSeamA及びpSTV29で形質転換し、得られた形質転換体を、それぞれエシェリヒア・コリATCC21277/pSeamA及びエシェリヒア・コリATCC21277/pSTV29と命名した。
 上記で得られた形質転換体を20μg/mlのクロラムフェニコールを含む、実施例2と同じ培地Aが5ml入った太型試験管に接種し、30℃で16時間培養した。
 該培養液を20μg/mlのクロラムフェニコールを含む、培地E[グリシン、及びyeast extractを含まず、5g/L カザミノ酸を含む以外は、実施例2で使用した培地Bの組成と同じ]が5ml入った試験管に10%接種し、30℃で24 時間培養した後、該培養液を遠心分離して培養上清を取得した。
 HPLCを用いて該培養上清中の生成物を分析した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示した通り、norM遺伝子(配列番号1)の遺伝子配列を有する発現プラスミドを導入し、norM蛋白質(配列番号2)の発現量を強化させた結果、培地中のL-スレオニンの蓄積量が増加した。
実施例6.L-フェニルアラニン(L-Phe)の生産
 [3](2)で作製した、脱感作型aroF遺伝子及び脱感作型pheA遺伝子が順向きに挿入された発現プラスミドpBpheAfbraroFfbrにて、NM522株を形質転換し、L-フェニアルアラニン合成酵素を生産する形質転換体、エシェリヒア・コリ NM522/pBpheAfbraroFfbrを取得した。
 次に実施例1で得られたpSemrD、pSrarD及びpTV29を用いて、エシェリヒア・コリNM522/pBpheAfbraroFfbrを形質転換し、得られた形質転換体をそれぞれエシェリヒア・コリNM522/pBpheAfbraroFfbr/pSemrD、NM522/pBpheAfbraroFfbr/pSrarD及びNM522/pBpheAfbraroFfbr/pSTV29と命名した。
 上記で得られた形質転換体を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む、実施例2と同じ培地Aが5ml入った太型試験管に接種し、30℃で16時間培養した。
 該培養液を100μg/mlのアンピシリン及び20μg/mlのクロラムフェニコールを含む、培地F[グリシンを含まない事以外は、実施例2で使用した培地Bの組成と同じ]が5ml入った試験管に10%接種し、30℃で24 時間培養した後、該培養液を遠心分離して培養上清を取得した。
 HPLCを用いて該培養上清中の生成物を分析した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示した通り、emrD遺伝子(配列番号3)、又はrarD遺伝子(配列番号5)の各遺伝子配列をそれぞれ有する発現プラスミドを導入し、それぞれemerD蛋白質(配列番号4)、又はrarD蛋白質(配列番号6)の発現量を増加させた結果、いずれの場合も培地中のL-フェニルアラニンの蓄積量が増加した。
 本発明の製造法により、L-アミノ酸の生産性の高い製造法が確立され、工業的な大量生産が可能になれば、産業上の利用可能性は非常に高い。例えば、L-セリンは、医薬品分野や化粧品分野において、アミノ酸混合物の原料として、利用価値が高く、L-グルタミンは、抗アルコール症組成物などの原料となる。また、L-システインは、化粧品業界で非常に価値の高いアミノ酸であり、L-スレオニン及びL-フェニルアラニンは、それぞれアミノ酸輸液及び健康食品の成分および低カロリー甘味料のアスパルテームの原料として有用である。
 本出願は、日本で出願された特願2009-027881(出願日:平成21年2月9日)を基礎としており、その内容はすべて本明細書に包含されるものとする。
配列番号9-人工配列の説明:合成DNA
配列番号10-人工配列の説明:合成DNA
配列番号11-人工配列の説明:合成DNA
配列番号12-人工配列の説明:合成DNA
配列番号13-人工配列の説明:合成DNA
配列番号14-人工配列の説明:合成DNA
配列番号15-人工配列の説明:合成DNA
配列番号16-人工配列の説明:合成DNA
配列番号18-人工配列の説明:合成DNA
配列番号19-人工配列の説明:合成DNA
配列番号20-人工配列の説明:合成DNA
配列番号21-人工配列の説明:合成DNA
配列番号22-人工配列の説明:合成DNA
配列番号23-人工配列の説明:合成DNA
配列番号24-人工配列の説明:合成DNA
配列番号25-人工配列の説明:合成DNA
配列番号26-人工配列の説明:合成DNA
配列番号27-人工配列の説明:合成DNA
配列番号28-人工配列の説明:合成DNA
配列番号29-人工配列の説明:合成DNA
配列番号30-人工配列の説明:合成DNA
配列番号31-人工配列の説明:合成DNA
配列番号32-人工配列の説明:合成DNA
配列番号33-人工配列の説明:合成DNA
配列番号34-人工配列の説明:合成DNA
配列番号35-人工配列の説明:合成DNA
配列番号36-人工配列の説明:合成DNA
配列番号37-人工配列の説明:合成DNA
配列番号38-人工配列の説明:合成DNA
配列番号39-人工配列の説明:合成DNA
配列番号40-人工配列の説明:合成DNA
配列番号41-人工配列の説明:合成DNA
配列番号42-人工配列の説明:合成DNA
配列番号43-人工配列の説明:合成DNA
配列番号44-人工配列の説明:合成DNA
配列番号45-人工配列の説明:合成DNA
配列番号46-人工配列の説明:合成DNA
配列番号47-人工配列の説明:合成DNA

Claims (4)

  1. L-アミノ酸輸送活性を有する以下の[1]~[3]のいずれかに記載の蛋白質の活性が親株より高い微生物を、培地に培養し、L-アミノ酸を生成させ、該L-アミノ酸を該培地中に蓄積せしめ、次いで該培地中から該L-アミノ酸を採取することを特徴とする、L-アミノ酸の製造法。
    [1]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列を有する蛋白質
    [2]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列において、1以上のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質
    [3]配列番号2、4、6及び8のいずれかで表されるアミノ酸配列と80%以上の相同性があるアミノ酸配列からなり、かつL-アミノ酸輸送活性を有する蛋白質
  2. 微生物が以下の[1]~[3]のいずれかに記載のDNAで形質転換された微生物、又は該DNAの発現調節配列を改変することにより該遺伝子の発現が増強された微生物である、請求項1記載のL-アミノ酸の製造法。
    [1]請求項1の[1]~[3]のいずれかに記載の蛋白質をコードするDNA
    [2]配列番号1、3、5及び7のいずれかで表される塩基配列を有するDNA
    [3]配列番号1、3、5及び7のいずれかで表される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつL-アミノ酸輸送活性を有する蛋白質をコードするDNA
  3. 微生物が、エシェリヒア属、コリネバクテリウム属、バチルス属、セラチア属、シュードモナス属又はストレプトマイセス属に属する微生物である、請求項1又は2記載のL-アミノ酸の製造法。
  4. L-アミノ酸がL-セリン、L-グルタミン、L-システイン、L-フェニルアラニン及びL-スレオニンからなる群より選ばれるL-アミノ酸である、請求項1~3のいずれか1項に記載のL-アミノ酸の製造法。
PCT/JP2010/051886 2009-02-09 2010-02-09 L-アミノ酸の製造法 WO2010090330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/148,564 US8623619B2 (en) 2009-02-09 2010-02-09 Process for producing L-amino acid
JP2010549542A JP5662167B2 (ja) 2009-02-09 2010-02-09 L−アミノ酸の製造法
EP10738658.3A EP2395096B1 (en) 2009-02-09 2010-02-09 Process for producing L-amino acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009027881 2009-02-09
JP2009-027881 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010090330A1 true WO2010090330A1 (ja) 2010-08-12

Family

ID=42542214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051886 WO2010090330A1 (ja) 2009-02-09 2010-02-09 L-アミノ酸の製造法

Country Status (4)

Country Link
US (1) US8623619B2 (ja)
EP (1) EP2395096B1 (ja)
JP (1) JP5662167B2 (ja)
WO (1) WO2010090330A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106588A (ja) * 2011-11-24 2013-06-06 Kyowa Hakko Bio Co Ltd L−アスパラギンの製造法
JP2014518078A (ja) * 2011-06-30 2014-07-28 ワッカー ケミー アクチエンゲゼルシャフト 発酵による天然l−システインの製造方法
JP2015528301A (ja) * 2012-09-17 2015-09-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG L−システインおよび該アミノ酸の誘導体の発酵生産方法
JP2018503385A (ja) * 2015-01-27 2018-02-08 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet L−セリンに対して改善された耐性を有する遺伝子組換え微生物
JP2022515496A (ja) * 2018-12-26 2022-02-18 デサン・コーポレイション L-アミノ酸を生産する大腸菌変異株またはコリネバクテリウムグルタミカム変異株、およびそれを用いたl-アミノ酸の生産方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3322679A4 (en) * 2015-07-13 2019-07-10 Pivot Bio, Inc. METHODS AND COMPOSITIONS FOR IMPROVING THE CHARACTERISTICS OF A PLANT
CN111587287A (zh) 2017-10-25 2020-08-25 皮沃特生物股份有限公司 用于改良固氮的工程微生物的方法和组合物
JP2021521897A (ja) 2018-05-04 2021-08-30 味の素株式会社 パントエア属細菌を用いたl−メチオニンの製造方法
CN108486133B (zh) * 2018-06-29 2021-06-01 江南大学 一种l-丝氨酸转运蛋白的应用方法
WO2020067487A1 (en) 2018-09-28 2020-04-02 Ajinomoto Co., Inc. Method for producing l-methionine using a bacterium
CN109837230B (zh) * 2019-04-17 2022-05-27 中国科学院水生生物研究所 解淀粉芽孢杆菌y1711、培养方法及其应用
KR102221040B1 (ko) * 2019-05-09 2021-03-03 씨제이제일제당 주식회사 L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
KR102134418B1 (ko) * 2019-06-17 2020-07-16 씨제이제일제당 주식회사 L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
KR102616694B1 (ko) * 2020-12-09 2023-12-20 씨제이제일제당 (주) 쉬와넬라 아틀란티카 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
KR20230123544A (ko) * 2022-02-16 2023-08-24 대상 주식회사 수송단백질 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580810A (en) 1967-07-28 1971-05-25 Ajinomoto Kk Fermentative production of l-threonine
JPS5618596A (en) 1979-07-23 1981-02-21 Ajinomoto Co Inc Production of l-lysine through fermentation process
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
JPS5813599A (ja) 1981-07-08 1983-01-26 シエ−リング・アクチエンゲゼルシヤフト プラスミド、その製法、e・コリ−突然変異体、l−プロリンの製法及び新規菌株物の製法
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS61260892A (ja) 1985-05-14 1986-11-19 Kyowa Hakko Kogyo Co Ltd L−フエニルアラニンの製造法
JPS6394985A (ja) 1986-10-09 1988-04-26 Kyowa Hakko Kogyo Co Ltd L−チロシンの製造法
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH06265691A (ja) 1993-03-15 1994-09-22 Nuclear Fuel Ind Ltd 燃料集合体の組立装置
WO1996027669A1 (fr) 1995-03-07 1996-09-12 Kyowa Hakko Kogyo Co., Ltd. Procede de production de trans-4-hydroxy-l-proline
JPH0915673A (ja) 1995-06-28 1997-01-17 Olympus Optical Co Ltd カメラ
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
US6001379A (en) 1993-09-15 1999-12-14 L'oreal Stable acidic oil-in- water type emulsions and compositions containing them
US6001380A (en) 1994-04-12 1999-12-14 Creative Products Resource, Inc. Medicated applicator sheet for topical drug delivery
WO2001053459A1 (fr) * 2000-01-21 2001-07-26 Ajinomoto Co., Inc. Procede de production de l-lysine
JP2002537771A (ja) * 1999-02-22 2002-11-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング L−バリンを微生物により製造する方法
JP2003511086A (ja) 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング L−システイン又はl−システイン誘導体を発酵により製造する方法
JP2003164297A (ja) 2001-11-30 2003-06-10 Ajinomoto Co Inc 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法
JP2005237379A (ja) * 2004-01-30 2005-09-08 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
US20050287626A1 (en) 2004-06-25 2005-12-29 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
US20080038786A1 (en) 2004-06-25 2008-02-14 Kyowa Hakko Kogyo Co., Ltd. Method of Producing Substance
WO2008044714A1 (en) * 2006-10-04 2008-04-17 Ajinomoto Co., Inc. Process for the preparation of l-threonine employing a bacterium of the enterobacteriaceae family with enhanced mdte and mdtf expression
JP2009027881A (ja) 2007-07-23 2009-02-05 Toyota Motor Corp 半導体スイッチング素子の駆動制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548222A1 (de) 1995-12-22 1997-06-26 Forschungszentrum Juelich Gmbh Verfahren zur mikrobiellen Herstellung von Aminosäuren durch gesteigerte Aktivität von Exportcarriern
DE19726083A1 (de) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten
PL1664318T3 (pl) 2004-01-30 2010-03-31 Ajinomoto Kk Mikroorganizm wytwarzający L-aminokwas i sposób wytwarzania L-aminokwasu

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580810A (en) 1967-07-28 1971-05-25 Ajinomoto Kk Fermentative production of l-threonine
JPS5618596A (en) 1979-07-23 1981-02-21 Ajinomoto Co Inc Production of l-lysine through fermentation process
JPS56144092A (en) 1980-04-14 1981-11-10 Ajinomoto Co Inc Preparation of l-methionine by fermentation
JPS5813599A (ja) 1981-07-08 1983-01-26 シエ−リング・アクチエンゲゼルシヤフト プラスミド、その製法、e・コリ−突然変異体、l−プロリンの製法及び新規菌株物の製法
JPS58110600A (ja) 1981-12-25 1983-07-01 Kyowa Hakko Kogyo Co Ltd ヒトβ型インタ−フエロン遺伝子を含む組みかえ体プラスミド
JPS61260892A (ja) 1985-05-14 1986-11-19 Kyowa Hakko Kogyo Co Ltd L−フエニルアラニンの製造法
JPS6394985A (ja) 1986-10-09 1988-04-26 Kyowa Hakko Kogyo Co Ltd L−チロシンの製造法
JPS63233798A (ja) 1986-10-09 1988-09-29 Kyowa Hakko Kogyo Co Ltd 5′−グアニル酸の製造法
JPS63248394A (ja) 1987-04-06 1988-10-14 Kyowa Hakko Kogyo Co Ltd 核酸関連物質の製造法
JPH06265691A (ja) 1993-03-15 1994-09-22 Nuclear Fuel Ind Ltd 燃料集合体の組立装置
US6001379A (en) 1993-09-15 1999-12-14 L'oreal Stable acidic oil-in- water type emulsions and compositions containing them
US6001380A (en) 1994-04-12 1999-12-14 Creative Products Resource, Inc. Medicated applicator sheet for topical drug delivery
WO1996027669A1 (fr) 1995-03-07 1996-09-12 Kyowa Hakko Kogyo Co., Ltd. Procede de production de trans-4-hydroxy-l-proline
JPH0915673A (ja) 1995-06-28 1997-01-17 Olympus Optical Co Ltd カメラ
WO1998012343A1 (fr) 1996-09-17 1998-03-26 Kyowa Hakko Kogyo Co., Ltd. Procedes de production de nucleotides de sucre et de glucides complexes
JP2002537771A (ja) * 1999-02-22 2002-11-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング L−バリンを微生物により製造する方法
JP2003511086A (ja) 1999-10-14 2003-03-25 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング L−システイン又はl−システイン誘導体を発酵により製造する方法
WO2001053459A1 (fr) * 2000-01-21 2001-07-26 Ajinomoto Co., Inc. Procede de production de l-lysine
JP2003164297A (ja) 2001-11-30 2003-06-10 Ajinomoto Co Inc 新規変異型グルタミンシンテターゼ、およびアミノ酸の生産方法
JP2005237379A (ja) * 2004-01-30 2005-09-08 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
US20050287626A1 (en) 2004-06-25 2005-12-29 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
US20080038786A1 (en) 2004-06-25 2008-02-14 Kyowa Hakko Kogyo Co., Ltd. Method of Producing Substance
WO2008044714A1 (en) * 2006-10-04 2008-04-17 Ajinomoto Co., Inc. Process for the preparation of l-threonine employing a bacterium of the enterobacteriaceae family with enhanced mdte and mdtf expression
JP2009027881A (ja) 2007-07-23 2009-02-05 Toyota Motor Corp 半導体スイッチング素子の駆動制御装置

Non-Patent Citations (57)

* Cited by examiner, † Cited by third party
Title
"Biotechnology", vol. 6, 1996, VCH VERLAGSGESELLSCHAFT MBH, article "Products of Primary Metabolism"
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"Immunology methods manual", ACADEMIC PRESS
"Methods for General and Molecular Bacteriolgy", 1994, ASM PRESS
"Molecular Cloning", 2001
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
"PCR Protocols", 1990, ACADEMIC PRESS
ADVANCES IN BIOCHEMICAL ENGINEERING/ BIOTECHNOLOGY, vol. 79, 2003, pages 1 - 35
AGRIC. BIOL. CHEM., vol. 36, 1972, pages 1675 - 1684
AGRIC. BIOL. CHEM., vol. 37, 1973, pages 2013 - 2023
AGRIC. BIOL. CHEM., vol. 39, 1975, pages 1149 - 1153
AGRIC. BIOL. CHEM., vol. 39, 1975, pages 153 - 160
AGRIC. BIOL. CHEM., vol. 39, 1987, pages 371 - 377
AGRIC. BIOL. CHEM., vol. 41, 1977, pages 109 - 116
AGRIC. BIOL. CHEM., vol. 42, 1978, pages 1773 - 1778
AGRIC. BIOL. CHEM., vol. 43, 1979, pages 105 - 111
AGRIC. BIOL. CHEM., vol. 48, 1984, pages 669
AGRIC. BIOL. CHEM., vol. 51, 1987, pages 2089 - 2094
APPL. ENVIRON. MICRIBIOL., vol. 38, 1979, pages 181 - 190
APPL. MICROBIOL. BIOTECHNOL., vol. 35, 1991, pages 594 - 599
APPL. MICROBIOL. BIOTECHNOL., vol. 39, 1993, pages 318 - 323
APPL. MICROBIOL. BIOTECHNOL., vol. 53, 2000, pages 674 - 679
DASSLER, T. ET AL.: "Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway.", MOL. MICROBIOL., vol. 36, no. 5, 2000, pages 1101 - 1112, XP000992212 *
GENE, vol. 33, 1985, pages 103
GENE, vol. 34, 1985, pages 315
HIROSHI AIDA ET AL.: "Aminosan Hakko", 1986, JAPAN SCIENTIFIC SOCIETIES PRESS
J. ANTIMICROB. CHEMOTHER., vol. 51, 2003, pages 545 - 56
J. BACTERIOL., vol. 110, 1972, pages 761 - 763
J. BACTERIOL., vol. 179, 1997, pages 6228 - 6237
J. BACTERIOL., vol. 183, 2001, pages 5803 - 5812
J. BIOL. CHEM., vol. 277, 2002, pages 49841
J. BIOL. CHEM., vol. 280, 2005, pages 32254
J. GEN. APPL. MICROBIOL., vol. 4, 1958, pages 272 - 283
J. MOL. BIOL., vol. 215, 1990, pages 403
KARLIN, ALTSCHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
LIVSHITS, V. A. ET AL.: "Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli.", RES. MICROBIOL., vol. 154, 2003, pages 123 - 135, XP002464283 *
LONG, F. ET AL.: "Functional Cloning and Characterization of the Multidrug Efflux Pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli.", ANTIMICROB. AGENTS CHEMOTHER., vol. 52, no. 9, September 2008 (2008-09-01), pages 3052 - 3060, XP055100245 *
METHODS ENZYMOL., vol. 183, 1990, pages 63
MOL. MICROBIOL., vol. 22, 1996, pages 815 - 826
MOL. MICROBIOL., vol. 36, 2000, pages 1101 - 1112
NUCLEIC ACIDS RES., vol. 16, 1988, pages 6127
NUCLEIC ACIDS RES., vol. 18, 1990, pages 6069
NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487
NUCLEIC ACIDS RESEARCH, vol. 13, 1985, pages 4431
OMOTE, H. ET AL.: "The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations.", TRENDS PHARMACOL. SCI., vol. 27, no. 11, September 2006 (2006-09-01), pages 587 - 593, XP027891581 *
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI. USA., vol. 97, 2000, pages 6640
PROC. NATL. ACAD. SCI. USA., vol. 97, 2000, pages 6641 - 6645
PROC. NATL. ACAD. SCI., USA, vol. 69, 1972, pages 2110
PROC. NATL. ACAD. SCI., USA, vol. 74, 1977, pages 5463
PROC. NATL. ACAD. SCI., USA, vol. 82, 1985, pages 4306
RES. MICROBIOL., vol. 154, 2003, pages 123 - 135
ROUQUETTE-LOUGHLIN, C. ET AL.: "The NorM Efflux Pump of Neisseria gonorrhoeae and Neisseria meningitidis Recognizes Antimicrobial Cationic Compounds.", J. BACTERIOL., vol. 185, no. 3, February 2003 (2003-02-01), pages 1101 - 1106, XP055100238 *
SCIENCE, vol. 308, 2005, pages 1321 - 1323
See also references of EP2395096A4
VRLJIC, M. ET AL.: "A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum.", MOL. MICROBIOL., vol. 22, no. 5, 1996, pages 815 - 826, XP001034378 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518078A (ja) * 2011-06-30 2014-07-28 ワッカー ケミー アクチエンゲゼルシャフト 発酵による天然l−システインの製造方法
JP2013106588A (ja) * 2011-11-24 2013-06-06 Kyowa Hakko Bio Co Ltd L−アスパラギンの製造法
JP2015528301A (ja) * 2012-09-17 2015-09-28 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG L−システインおよび該アミノ酸の誘導体の発酵生産方法
JP2018503385A (ja) * 2015-01-27 2018-02-08 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet L−セリンに対して改善された耐性を有する遺伝子組換え微生物
JP2018503384A (ja) * 2015-01-27 2018-02-08 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet セリン分解経路が欠如した遺伝子組換え微生物を使用するl−セリンの製造方法
JP2022515496A (ja) * 2018-12-26 2022-02-18 デサン・コーポレイション L-アミノ酸を生産する大腸菌変異株またはコリネバクテリウムグルタミカム変異株、およびそれを用いたl-アミノ酸の生産方法
JP7304953B2 (ja) 2018-12-26 2023-07-07 デサン・コーポレイション L-アミノ酸を生産する大腸菌変異株またはコリネバクテリウムグルタミカム変異株、およびそれを用いたl-アミノ酸の生産方法

Also Published As

Publication number Publication date
EP2395096B1 (en) 2014-04-09
US8623619B2 (en) 2014-01-07
EP2395096A1 (en) 2011-12-14
EP2395096A4 (en) 2012-08-29
JPWO2010090330A1 (ja) 2012-08-09
US20120015409A1 (en) 2012-01-19
JP5662167B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5662167B2 (ja) L−アミノ酸の製造法
JP6018357B2 (ja) グルタチオンおよびγ−グルタミルシステインの製造法
EP1627884B1 (en) Process for producing dipeptides
US8685914B2 (en) L-alanyl-L-glutamine crystal
JP5319521B2 (ja) ジペプチドの製造法
US20100248307A1 (en) Peptide production method
WO2006121055A1 (ja) γ-グルタミルアミド化合物の製造方法
JP2011239707A (ja) ペプチドの製造法
JP5860287B2 (ja) L−アミノ酸の製造法
US20240141402A1 (en) Method for producing dipeptide
JP2010200682A (ja) メナキノンの製造法
JPWO2005083077A1 (ja) アミノ酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549542

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13148564

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010738658

Country of ref document: EP