WO2010089843A1 - 車両の充電システムおよび充電システムの制御方法 - Google Patents

車両の充電システムおよび充電システムの制御方法 Download PDF

Info

Publication number
WO2010089843A1
WO2010089843A1 PCT/JP2009/051758 JP2009051758W WO2010089843A1 WO 2010089843 A1 WO2010089843 A1 WO 2010089843A1 JP 2009051758 W JP2009051758 W JP 2009051758W WO 2010089843 A1 WO2010089843 A1 WO 2010089843A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charging
charger
storage device
target value
Prior art date
Application number
PCT/JP2009/051758
Other languages
English (en)
French (fr)
Inventor
光谷 典丈
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/146,894 priority Critical patent/US8604751B2/en
Priority to PCT/JP2009/051758 priority patent/WO2010089843A1/ja
Priority to CN200980155925.0A priority patent/CN102301559B/zh
Priority to EP09839621.1A priority patent/EP2395622B1/en
Priority to JP2010549286A priority patent/JP5327235B2/ja
Publication of WO2010089843A1 publication Critical patent/WO2010089843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle charging system and a charging system control method, and more particularly to a vehicle charging system and a charging system control method in which a power storage device that can be charged from the outside of the vehicle is mounted.
  • Patent Document 1 discloses a charge control device for charging a battery mounted on an electric vehicle. Detection values of the abnormality detection sensor and the current sensor are input to this charging control device. When the charging control device determines that the battery is normal, the charging control device adjusts the power control unit to feed back the value of the current sensor so that an optimum charging current is supplied to the battery. On the other hand, when a state that should not be charged, such as battery abnormality or full charge, is detected, the output power from the power control unit is adjusted so that the detected value of the current sensor becomes substantially zero. Therefore, power to a fan or the like that operates when the battery is abnormal is supplied directly from the charge control device, and is not discharged from or charged to the battery in an abnormal state or a fully charged state. Japanese Patent Application Laid-Open No. 07-194015
  • the temperature of the battery is monitored by a temperature sensor in order to detect a battery abnormality.
  • a temperature sensor in order to detect a battery abnormality.
  • An object of the present invention is to provide a vehicle charging system and a charging system control method capable of normally making a failure determination of a charging system in a situation where charging is restricted, and thus increasing the chances of charging. Is to provide.
  • the present invention is a vehicle charging system for charging an on-vehicle power storage device, and a charger configured to be supplied with electric power from a power source outside the vehicle to charge the power storage device, and a charger And a charge control device that controls the charger by generating a power command value for.
  • the charge control device includes a charge power detection unit that detects charge power supplied to the power storage device, a target value determination unit that determines a target value of charge power for the power storage device, and a difference between the charge power and the target value.
  • the charging abnormality monitoring unit has the target value within the abnormality detectable range when the charging power is lower than the first threshold value and the supplied power is lower than the second threshold value.
  • the diagnosis that the charger is abnormal is confirmed and the operation of the charger is stopped, and when the target value is not within the abnormality detectable range, the execution of the abnormality diagnosis of the charger is suspended and the operation of the charger is stopped. .
  • the vehicle includes an auxiliary device that can be driven by part of the electric power output from the charger.
  • the power storage device includes a first power storage device connected to the power supply path to the auxiliary machine, and a second power storage device connected to the output of the charger.
  • a vehicle charging system includes a first voltage converter that performs voltage conversion between a voltage of a first power storage device and a supply voltage to an electric load, and a voltage between a voltage of the second power storage device and a supply voltage. And a second voltage converter for performing the conversion.
  • the charge control device controls the first and second voltage converters to select a charge target to be supplied with charge power from the charger from the first and second power storage devices.
  • the vehicle includes a vehicle driving motor that operates by receiving electric power from the power storage device, and an internal combustion engine that is used together with the motor for driving the vehicle.
  • the present invention provides a control method for a charging system that charges an in-vehicle power storage device, and the charging system is configured to be supplied with electric power from a power source outside the vehicle in order to charge the power storage device.
  • a charging control device that controls the charger by generating a power command value for the charger.
  • the charging control device is based on a charging power detection unit that detects charging power supplied to the power storage device, a target value determination unit that determines a target value of charging power for the power storage device, and a difference between the target value and the charging power.
  • a feedback control unit for correcting the target value to generate a power command value and a supply power detection unit for detecting the supply power output from the charger are included.
  • the control method includes a step of determining whether or not the charging power is lower than the first threshold value and the supplied power is lower than the second threshold value, and the target value is within an abnormality detectable range.
  • the method includes a step of confirming a diagnosis that the charger is abnormal and suspending execution of the charger abnormality diagnosis and terminating the system when the target value is not within the abnormality detectable range.
  • the present invention it is possible to prevent a case where a battery charger is mistakenly diagnosed and to avoid useless system operation in a condition where charging is not possible. Moreover, when it is normal, the opportunity for charging increases.
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to the present invention.
  • FIG. 2 is a schematic configuration diagram of converters 12-1 and 12-2 shown in FIG. It is a schematic block diagram of the charger 42 shown in FIG. It is a functional block diagram of charge ECU46 shown in FIG. 6 is a flowchart for explaining control executed by a charging abnormality monitoring unit 62 in FIG. 4.
  • FIG. 6 is a diagram for explaining setting of a threshold value Pth used in step S1 of FIG.
  • FIG. 6 is a diagram for explaining an abnormality detectable range of a charging target value PR in step S5 of FIG.
  • FIG. 1 is an overall block diagram of a hybrid vehicle shown as an example of an electric vehicle according to the present invention.
  • hybrid vehicle 100 includes power storage devices 10-1 to 10-3, system main relays (System Main Relay) 11-1 to 11-3, converters 12-1 and 12-2, Main positive bus MPL, main negative bus MNL, smoothing capacitor C, and auxiliary machine 22 are provided.
  • Hybrid vehicle 100 further includes inverters 30-1 and 30-2, motor generators 32-1 and 32-2, power split device 34, engine 36, and drive wheels 38.
  • the hybrid vehicle 100 includes voltage sensors 14-1 to 14-3, 18-1, 18-2, 20, current sensors 16-1 to 16-3, 19, and an MG-ECU (Electronic Control Unit) 40.
  • Hybrid vehicle 100 further includes a charger 42, a vehicle inlet 44, and a charging ECU 46.
  • Each of power storage devices 10-1 to 10-3 is a rechargeable DC power source, and includes, for example, a secondary battery such as nickel metal hydride or lithium ion, a large capacity capacitor, and the like.
  • Power storage device 10-1 is connected to converter 12-1 via system main relay 11-1, and power storage devices 10-2 and 10-3 are converters via system main relays 11-2 and 11-3, respectively. 12-2 is connected.
  • System main relay 11-1 is provided between power storage device 10-1 and converter 12-1.
  • System main relay 11-2 is provided between power storage device 10-2 and converter 12-2, and system main relay 11-3 is provided between power storage device 10-3 and converter 12-2.
  • system main relays 11-2 and 11-3 are selectively turned on and are not simultaneously turned on.
  • Converters 12-1 and 12-2 are connected in parallel to main positive bus MPL and main negative bus MNL.
  • Converter 12-1 performs voltage conversion between power storage device 10-1 and main positive bus MPL and main negative bus MNL based on signal PWC1 from MG-ECU 40.
  • converter 12-2 and main positive bus MPL and main negative bus are connected to one of power storage device 10-2 and power storage device 10-3 electrically connected to converter 12-2. Voltage conversion is performed with the MNL.
  • Auxiliary machine 22 is connected to positive line PL1 and negative line NL1 arranged between system main relay 11-1 and converter 12-1.
  • Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components contained in main positive bus MPL and main negative bus MNL.
  • Inverters 30-1 and 30-2 are connected in parallel to main positive bus MPL and main negative bus MNL.
  • Inverter 30-1 drives motor generator 32-1 based on signal PWI1 from MG-ECU 40.
  • Inverter 30-2 drives motor generator 32-2 based on signal PWI2 from MG-ECU 40.
  • Motor generators 32-1 and 32-2 are AC rotating electric machines, for example, permanent magnet type synchronous motors having a rotor in which permanent magnets are embedded. Motor generators 32-1 and 32-2 are connected to power split device 34.
  • Power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36.
  • the sun gear is coupled to the rotation shaft of motor generator 32-1.
  • the ring gear is connected to the rotation shaft of motor generator 32-2 and drive wheel 38.
  • the motor generator 32-1 generates power using the power of the engine 36 divided by the power split device 34. For example, when the SOC of power storage devices 10-1 to 10-3 decreases, engine 36 is started and power is generated by motor generator 32-1, and the generated power is supplied to the power storage device.
  • motor generator 32-2 generates driving force using at least one of the power supplied from at least one of power storage devices 10-1 to 10-3 and the power generated by motor generator 32-1.
  • the driving force of the motor generator 32-2 is transmitted to the driving wheels 38.
  • the motor generator 32-2 operates as a generator.
  • motor generator 32-2 operates as a regenerative brake that converts and recovers the kinetic energy of the vehicle into electric power.
  • MG-ECU 40 generates signals PWC1 and PWC2 for driving converters 12-1 and 12-2, and outputs the generated signals PWC1 and PWC2 to converters 12-1 and 12-2, respectively.
  • MG-ECU 40 generates signals PWI1 and PWI2 for driving motor generators 32-1 and 32-2, and outputs the generated signals PWI1 and PWI2 to inverters 30-1 and 30-2, respectively. .
  • MG-ECU 40 activates signal CH1 received from charge ECU 46 when battery 42 is charged with power storage device 10-1, and from charger 42 to converter 12-2, main positive bus MPL and Signals PWC1 and PWC2 are generated and output to converters 12-1 and 12-2 so that charging power is supplied to power storage device 10-1 sequentially through main negative bus MNL and converter 12-1.
  • Charger 42 has an input end connected to vehicle inlet 44, and an output end connected to positive line PL2 and negative line NL2 arranged between system main relays 11-2 and 11-3 and converter 12-2. Is done.
  • the charger 42 receives power supplied from a power source 48 (hereinafter also referred to as “external power source”) 48 from the vehicle inlet 44.
  • the charger 42 receives the power command value CHPW from the charging ECU 46 and outputs the output power of the charger 42 so as to match the power command value CHPW while controlling the output voltage of the charger 42 to a predetermined DC voltage. Control power.
  • the vehicle inlet 44 is a power interface for receiving power from the external power supply 48.
  • Voltage sensors 14-1 to 14-3 detect voltage VB1 of power storage device 10-1, voltage VB2 of power storage device 10-2, and voltage VB3 of power storage device 10-3, respectively, and output the detected values to charging ECU 46. To do.
  • Current sensors 16-1 to 16-3 input current IB1 input to and output from power storage device 10-1, current IB2 input to and output from power storage device 10-2, and input to power storage device 10-3. The output current IB3 is detected, and the detected value is output to the charging ECU 46.
  • Voltage sensors 18-1 and 18-2 respectively detect voltage VL1 between positive electrode line PL1 and negative electrode line NL1, and voltage VL2 between positive electrode line PL2 and negative electrode line NL2, and charge ECU 46 detects the detected values.
  • Current sensor 19 detects current IL of positive line PL2 input / output to / from converter 12-2, and outputs the detected value to charge ECU 46.
  • the current sensor 19 can detect the current flowing from the charger 42 to the converter 12-2 when the power storage device 10-1 is charged by the charger 42.
  • Voltage sensor 20 detects voltage VH between main positive bus MPL and main negative bus MNL, and outputs the detected value to charging ECU 46.
  • the charging ECU 46 sets the target value PR of the charging power (kW / h) of the power storage devices 10-1 to 10-3. Received from a vehicle ECU (not shown). Charging ECU 46 also receives a signal SEL from the vehicle ECU indicating which of power storage devices 10-1 to 10-3 is charged by charger 42. That is, in the first embodiment, power storage devices 10-1 to 10-3 are sequentially charged in a predetermined order.
  • Charging ECU 46 generates power command value CHPW indicating the target value of the output power of charger 42 when power storage devices 10-1 to 10-3 are charged by external power supply 48, and uses the generated power command value CHPW. Output to the charger 42.
  • charging ECU 46 receives the detected values of voltages VB1 to VB3, VL1, VL2, and VH and currents IB1 to IB3, IL, and the charging power that is actually supplied to power storage devices 10-1 to 10-3 is the target.
  • the power command value CHPW of the charger 42 is feedback-corrected based on the detected values so as to coincide with the value PR. That is, in this embodiment, not only the charger 42 is controlled so that the output power of the charger 42 matches the target value, but also the power storage device so that the actual charging power of the power storage device matches the target value.
  • the power command value CHPW is feedback corrected based on the state of the apparatus.
  • the charging power of power storage devices 10-1 to 10-3 can be made to match the target value PR with certainty.
  • Hybrid vehicle 100 further includes a voltage sensor 47 that detects voltage VAC input from external power supply 48.
  • Charging ECU 46 receives the detection result given from voltage sensor 47.
  • charging ECU outputs a control signal CHRQ for performing on / off control of charger 42 to charger 42.
  • FIG. 2 is a schematic configuration diagram of converters 12-1 and 12-2 shown in FIG. Since the configuration and operation of each converter are the same, the configuration and operation of converter 12-1 will be described below as a representative.
  • converter 12-1 includes a chopper circuit 13-1, a positive bus LN1A, a negative bus LN1C, a wiring LN1B, and a smoothing capacitor C1.
  • Chopper circuit 13-1 includes switching elements Q1A and Q1B, diodes D1A and D1B, and an inductor L1.
  • Positive bus LN1A has one end connected to the collector of switching element Q1B and the other end connected to main positive bus MPL.
  • Negative bus LN1C has one end connected to negative electrode line NL1 and the other end connected to main negative bus MNL.
  • Switching elements Q1A and Q1B are connected in series between negative bus LN1C and positive bus LN1A. Specifically, the emitter of switching element Q1A is connected to negative bus LN1C, and the collector of switching element Q1B is connected to positive bus LN1A. Diodes D1A and D1B are connected in antiparallel to switching elements Q1A and Q1B, respectively. Inductor L1 is connected between a connection node of switching elements Q1A and Q1B and wiring LN1B.
  • Wiring LN1B has one end connected to positive line PL1 and the other end connected to inductor L1. Smoothing capacitor C1 is connected between line LN1B and negative bus LN1C, and reduces the AC component included in the DC voltage between line LN1B and negative bus LN1C.
  • the chopper circuit 13-1 generates a bidirectional DC voltage between the power storage device 10-1 (FIG. 1) and the main positive bus MPL and the main negative bus MNL in response to a signal PWC1 from the MG-ECU 40 (FIG. 1). Perform conversion.
  • Signal PWC1 includes a signal PWC1A for controlling on / off of switching element Q1A constituting the lower arm element and a signal PWC1B for controlling on / off of switching element Q1B constituting the upper arm element.
  • the MG-ECU 40 controls the duty ratio (on / off period ratio) of the switching elements Q1A and Q1B within a certain duty cycle (the sum of the on period and the off period).
  • switching elements Q1A and Q1B are controlled so that the on-duty of switching element Q1A is increased (since switching elements Q1A and Q1B are complementarily turned on / off except for the dead time period, switching element Q1B is turned on The duty is reduced.)
  • the amount of pump current flowing from the power storage device 10-1 to the inductor L1 is increased, and the electromagnetic energy accumulated in the inductor L1 is increased.
  • the amount of current discharged from the inductor L1 to the main positive bus MPL via the diode D1B at the timing when the switching element Q1A transitions from the on state to the off state increases, and the voltage of the main positive bus MPL increases.
  • switching elements Q1A and Q1B are controlled so as to increase the on-duty of switching element Q1B (the on-duty of switching element Q1A decreases), the main positive bus MPL passes through switching element Q1B and inductor L1. Since the amount of current flowing to power storage device 10-1 increases, the voltage on main positive bus MPL decreases.
  • the duty ratio of switching elements Q1A and Q1B the voltage of main positive bus MPL can be controlled, and the current (power) that flows between power storage device 10-1 and main positive bus MPL can be controlled.
  • the current (power) that flows between power storage device 10-1 and main positive bus MPL can be controlled.
  • Direction and current amount (power amount) can be controlled.
  • FIG. 3 is a schematic configuration diagram of the charger 42 shown in FIG. 1.
  • charger 42 includes a filter 81, a power limiting unit 80, a temperature sensor 87, voltage sensors 91, 93, 94, current sensors 92, 95, and a microcomputer (microcomputer) 88. including.
  • the power limiting unit 80 includes an AC / DC conversion unit 82, a smoothing capacitor 83, a DC / AC conversion unit 84, an insulating transformer 85, and a rectification unit 86.
  • the filter 81 is provided between the vehicle inlet 44 (FIG. 1) and the AC / DC converter 82, and is charged from the vehicle inlet 44 when the power storage devices 10-1 to 10-3 are charged by the external power supply 48 (FIG. 1). This prevents high frequency noise from being output to the external power supply 48.
  • AC / DC converter 82 includes a single-phase bridge circuit. The AC / DC converter 82 converts AC power supplied from the external power supply 48 into DC power based on a drive signal from the microcomputer 88 and outputs the DC power to the positive line PLC and the negative line NLC. Smoothing capacitor 83 is connected between positive line PLC and negative line NLC, and reduces the power fluctuation component contained between positive line PLC and negative line NLC.
  • the DC / AC converter 84 includes a single-phase bridge circuit.
  • the DC / AC conversion unit 84 converts the DC power supplied from the positive line PLC and the negative line NLC into high frequency AC power based on the drive signal from the microcomputer 88 and outputs the high frequency AC power to the insulation transformer 85.
  • Insulation transformer 85 includes a core including a magnetic material, and a primary coil and a secondary coil wound around the core. The primary coil and the secondary coil are electrically insulated and connected to the DC / AC converter 84 and the rectifier 86, respectively.
  • Insulation transformer 85 converts high-frequency AC power received from DC / AC converter 84 into a voltage level corresponding to the turn ratio of the primary coil and the secondary coil, and outputs the voltage level to rectifier 86.
  • Rectifying unit 86 rectifies the AC power output from insulation transformer 85 into DC power and outputs the DC power to positive line PL2 and negative line NL2.
  • the voltage sensor 91 detects the voltage of the external power supply 48 after the filter 81 and outputs the detected value to the microcomputer 88.
  • Current sensor 92 detects a current supplied from external power supply 48 and outputs the detected value to microcomputer 88.
  • Voltage sensor 93 detects the voltage between positive line PLC and negative line NLC, and outputs the detected value to microcomputer 88.
  • the voltage sensor 94 detects the voltage on the output side of the rectifying unit 86 and outputs the detected value to the microcomputer 88.
  • the current sensor 95 detects the current output from the rectifying unit 86 and outputs the detected value to the microcomputer 88.
  • the microcomputer 88 uses the voltage sensors 91, 93, 94 and the current sensors 92, 95 so that the output power of the charger 42 calculated based on the detection values of the voltage sensor 94 and the current sensor 95 matches the power command value CHPW.
  • a drive signal for driving the AC / DC conversion unit 82 and the DC / AC conversion unit 84 is generated based on each detected value. Then, the microcomputer 88 outputs the generated drive signal to the AC / DC converter 82 and the DC / AC converter 84.
  • the temperature sensor 87 detects whether or not the save operation condition that the charger 42 may be overheated is satisfied. Specifically, the temperature sensor 87 detects the temperature TC of the charger 42 and transmits it to the microcomputer 88. The microcomputer 88 changes the operation mode of the charger 42 between the save mode and the normal mode based on the temperature TC output from the temperature sensor 87. The power limiting unit 80 limits the power from the power source outside the vehicle under the control of the microcomputer 88 and supplies it as charging power to the power storage devices 10-1 to 10-3.
  • FIG. 4 is a functional block diagram of charge ECU 46 shown in FIG.
  • charging ECU 46 includes a charging power target value determination unit 51, a charging power detection unit 52, and a charger supply power detection unit 61.
  • Charging power target value determination unit 51 detects detection value VAC given from voltage sensor 47 in FIG. 1 and battery information (battery temperature TV, charging state SOC, charging power limit value Win, and discharging power limit) given from battery ECU (not shown). Based on the value Wout, etc.), the target value PR of the power to be charged in the battery is output.
  • Charging power target value determination unit 51 sets charging target power PR with detected value VAC (100 V / 200 V), sets target power PW large when charging state SOC is low (rapid charging), and when charging state SOC increases.
  • the target charging power PR is small (indentation charging). However, if the charging limit upper limit Win is set small due to the battery temperature or the like, the target charging power PW is limited thereto.
  • charging power detection unit 52 When power storage device 10-1 is charged by charger 42, charging power detection unit 52 refers to the charging power of power storage device 10-1 based on the detected values of voltage VB1 and current IB1, and calculates the calculation result. Output as monitor value PM2. Note that charging of power storage device 10-1 by charger 42 is determined by a signal SEL received from a vehicle ECU (not shown).
  • charging power detection unit 52 When power storage device 10-2 is charged by charger 42, charging power detection unit 52 refers to the charging power of power storage device 10-2 based on the detected values of voltage VB2 and current IB, and calculates the power. The result is output as monitor value PM2. Further, when power storage device 10-3 is charged by charger 42, charging power detection unit 52 calculates the charging power of power storage device 10-3 based on the detected values of voltage VB3 and current IB3, and the calculation thereof. The result is output as monitor value PM2.
  • the charger supply power detection unit 61 uses, as a monitor value PM, the power supplied from the charger 42 based on the current IL detected by the current sensor 19 of FIG. 1 and the voltage VL2 detected by the voltage sensor 18-2. Detect and output.
  • the charging ECU 46 further includes a charging abnormality monitoring unit 62, a subtraction unit 53, a feedback control unit 54, and addition units 55, 56, and 57.
  • the subtractor 53 subtracts the target value PR from the monitor value PM2, and gives the calculation result to the feedback controller 54.
  • the feedback control unit 54 performs proportional-integral control based on the deviation given from the subtraction unit 53, and outputs a correction value PC for the target value PR.
  • the adding unit 55 adds the correction value PC to the target value PR.
  • the adding unit 56 adds the expected value Paux of power consumed by the auxiliary machine 22 in FIG. 1 to the calculation result of the adding unit 55.
  • the adding unit 57 adds the charging loss Ploss of the charger 42 to the calculation result of the adding unit 56 to calculate the power command value CHPW output to the charger 42.
  • the charging abnormality monitoring unit 62 outputs a control signal CHRQ for on / off control of the charger 42 based on the monitor values PM and PM2 and the target value PR.
  • FIG. 5 is a flowchart for explaining the control executed by the charging abnormality monitoring unit 62 of FIG.
  • step S1 it is determined whether or not the battery charging power (VB ⁇ IB) has significantly decreased. That is, it is determined whether or not the product VB ⁇ IB of the current and voltage of the battery to be charged is smaller than a predetermined expression Pth.
  • FIG. 6 is a diagram for explaining the setting of the threshold value Pth used in step S1 of FIG.
  • step S1 if VB ⁇ IB ⁇ Pth is not established in step S1, the process proceeds to step S9, the control is transferred to the main routine, and the charging is continued.
  • step S1 it is determined whether the charger supply power (VL2 ⁇ IL) is also reduced. That is, it is determined whether or not the product of the voltage value VL2 detected by the voltage sensor 18-2 in FIG. 1 and the detection value IL detected by the current sensor 19 is smaller than a predetermined threshold value Pth2.
  • step S2 if VL2 ⁇ IL ⁇ Pth2 is not satisfied, the process proceeds to step S3.
  • step S3 it is determined that the power consumed by the auxiliary machine 22 is large because the power supplied from the charger has not decreased even if the power charged in the battery has decreased. Then, it is determined in step S4 whether or not there is a margin in the state of charge SOC of power storage device 10-1.
  • step S4 determines whether the state of charge SOC has a margin. If it is not determined in step S4 that the state of charge SOC has a margin, that is, if the state of charge SOC has fallen below a predetermined threshold, the process proceeds to step S7, where the system is normally terminated. It is. In the normal termination of the system, the charger 42 is turned off, and the system main relays 11-1 to 11-3 are controlled to be turned off.
  • step S5 it is determined whether or not the charging target value PR is within an abnormality detectable range.
  • FIG. 7 is a diagram for explaining an abnormality detectable range of the charging target value PR in step S5 of FIG.
  • the actual value is somewhere within the sensor variation range ⁇ ⁇ P with respect to the charging target value PR. Therefore, if a value lower by ⁇ P, which is a variation with respect to the charging target value PR, is larger than the abnormality determination threshold value Pth, it can be said that an abnormality can be detected.
  • the charging target value PR is too low and the difference from the abnormality determination threshold value is within the variation ⁇ P, it is impossible to detect the abnormality of the charger. In other words, abnormality detection is not possible unless the range of charge target value PR that can be detected by abnormality is greater than or equal to ⁇ P that is determined by sensor variation from abnormality determination threshold value Pth of power IB ⁇ VB.
  • step S5 if the charge target value PR is not within the abnormality detectable range in step S5, the process proceeds to step S7, and the normal termination process of the system is performed. That is, the charger 42 is controlled to the off state, and the system main relays 11-1 to 11-3 are controlled to the off state.
  • step S5 if it is determined in step S5 that the charging target value PR is within a range in which an abnormality can be detected, the process proceeds to step S6.
  • step S6 the diagnosis that the charger is abnormal is confirmed, and in step S8, an emergency stop of the system is executed.
  • the charger 42 is controlled to the off state, and the system main relays 11-1 to 11-3 are also controlled to the off state.

Abstract

 充電制御装置は、蓄電装置に供給される充電電力を検出する充電電力検出部(52)と、蓄電装置に対する充電電力の目標値を決定する目標値決定部(51)と、充電電力と目標値との差に基づいて目標値を補正して電力指令値を生成するためのフィードバック制御部(54)と、充電器から出力される供給電力を検出する供給電力検出部(61)と、充電電力が第1のしきい値より低下し、かつ供給電力が第2のしきい値よりも低下した場合に、目標値が異常検出可能範囲内であったときには充電器が異常である旨の診断を確定し、目標値が異常検出可能範囲内でないときには充電器の異常診断の実行を保留する充電異常監視部(62)とを含む。

Description

車両の充電システムおよび充電システムの制御方法
 この発明は、車両の充電システムおよび充電システムの制御方法に関し、特に、車両外部から充電可能な蓄電装置を搭載する車両の充電システムおよび充電システムの制御方法に関する。
 近年、環境に配慮した車両として電気自動車やハイブリッド自動車など、走行用のモータを搭載し、それを駆動するためのバッテリを搭載した車両の開発が盛んになってきている。
 特開平07-194015号公報(特許文献1)は、電気自動車に搭載されたバッテリを充電するための充電制御装置を開示する。この充電制御装置には、異常検出センサおよび電流センサの検出値が入力される。充電制御装置は、バッテリが正常であると判断すると、電力制御部を調節して最適の充電電流がバッテリへ供給されるように電流センサの値をフィードバックして充電を行なう。一方バッテリの異常や満充電など充電すべきでない状態が検出されると、電流センサの検出値がほぼ0となるように電力制御部からの出力電力が調節される。したがって、バッテリの異常時に作動するファンなどへの電力は、充電制御装置から直接供給され、異常状態や満充電状態にあるバッテリから放電されたりあるいはバッテリに充電されたりすることはなくなる。
特開平07-194015号公報
 上記の特開平07-194015号公報で開示された技術では、バッテリの異常を検出するために温度センサでバッテリの温度を監視していた。しかし、外部電源からバッテリを充電することが可能に構成されたシステムにおいては、バッテリの異常だけでなく、充電器の異常も検出することが望ましい。このような充電器を含む充電系統の異常の検出は、電池充電電力、充電器供給電力を観測し、これらのモニタ値がともに大きく低下していることで行なうことができる。
 しかしながら、バッテリの温度が極めて低い場合など、充電電力を大きくできない場合には、もともと充電電力が制限されているので、充電器の故障が発生していても、その故障を検出することができず、充電を終了させることができない。
 この発明の目的は、充電が制限されている状況下において正常に充電系統の故障判断を行なうことができ、ひいては充電の機会を増やすことが可能となる車両の充電システムおよび充電システムの制御方法を提供することである。
 この発明は、要約すると、車載の蓄電装置を充電する車両の充電システムであって、蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器と、充電器に対する電力指令値を生成することによって充電器の制御を行なう充電制御装置とを備える。充電制御装置は、蓄電装置に供給される充電電力を検出する充電電力検出部と、蓄電装置に対する充電電力の目標値を決定する目標値決定部と、充電電力と目標値との差に基づいて目標値を補正して電力指令値を生成するためのフィードバック制御部と、充電器から出力される供給電力を検出する供給電力検出部と、充電電力が第1のしきい値より低下し、かつ供給電力が第2のしきい値よりも低下した場合に、目標値が異常検出可能範囲内であったときには充電器が異常である旨の診断を確定し、目標値が異常検出可能範囲内でないときには充電器の異常診断の実行を保留する充電異常監視部とを含む。
 好ましくは、充電異常監視部は、充電電力が第1のしきい値より低下し、かつ供給電力が第2のしきい値よりも低下した場合に、目標値が異常検出可能範囲内であったときには充電器が異常である旨の診断を確定させるとともに充電器の動作を停止させ、目標値が異常検出可能範囲内でないときには充電器の異常診断の実行を保留するとともに充電器の動作を停止させる。
 好ましくは、車両は、充電器から出力される電力の一部によって駆動され得る補機を含む。蓄電装置は、補機への電力供給経路に接続された第1の蓄電装置と、充電器の出力が接続された第2の蓄電装置とを含む。車両の充電システムは、第1の蓄電装置の電圧と電気負荷への供給電圧との間で電圧変換を行なう第1の電圧コンバータと、第2の蓄電装置の電圧と供給電圧との間で電圧変換を行なう第2の電圧コンバータとをさらに備える。充電制御装置は、第1、第2の電圧コンバータを制御することにより充電器から充電電力が供給される充電対象を第1、第2の蓄電装置のうちから選択する。
 好ましくは、車両は、蓄電装置から電力を受けて作動する車両駆動用のモータと、モータと共に車両駆動用として併用される内燃機関とを含む。
 この発明は、他の局面では、車載の蓄電装置を充電する充電システムの制御方法であって、充電システムは、蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器と、充電器に対する電力指令値を生成することによって充電器の制御を行なう充電制御装置とを含む。充電制御装置は、蓄電装置に供給される充電電力を検出する充電電力検出部と、蓄電装置に対する充電電力の目標値を決定する目標値決定部と、目標値と充電電力との差に基づいて目標値を補正して電力指令値を生成するためのフィードバック制御部と、充電器から出力される供給電力を検出する供給電力検出部とを含む。制御方法は、充電電力が第1のしきい値より低下し、かつ供給電力が第2のしきい値よりも低下したか否かを判断するステップと、目標値が異常検出可能範囲内であったときには充電器が異常である旨の診断を確定し、目標値が異常検出可能範囲内でないときには充電器の異常診断の実行を保留してシステムを終了させるステップとを含む。
 本発明によれば、充電器の異常と誤診断される場合が防止されるとともに、充電不能な条件における無駄なシステム稼動が回避される。また正常時には、充電可能な機会が増加する。
この発明による電動車両の一例として示されるハイブリッド自動車の全体ブロック図である。 図1に示したコンバータ12-1,12-2の概略構成図である。 図1に示した充電器42の概略構成図である。 図1に示した充電ECU46の機能ブロック図である。 図4の充電異常監視部62で実行される制御を説明するためのフローチャートである。 図5のステップS1で用いられるしきい値Pthの設定の説明をするための図である。 図5のステップS5における充電目標値PRの異常検出可能範囲について説明するための図である。
符号の説明
 19 電流センサ、20 電圧センサ、22 補機、34 動力分割装置、36 エンジン、38 駆動輪、40 MG-ECU、42 充電器、44 車両インレット、46 充電ECU、47 電圧センサ、48 電源、51 充電電力目標値決定部、52 充電電力検出部、53 減算部、54 フィードバック制御部、55,56,57 加算部、61 充電器供給電力検出部、62 充電異常監視部、80 電力制限部、81 フィルタ、82 AC/DC変換部、83 平滑コンデンサ、84 DC/AC変換部、85 絶縁トランス、86 整流部、87 温度センサ、88 マイコン、91,93,94 電圧センサ、92,95 電流センサ、100 ハイブリッド自動車、C,C1 平滑コンデンサ、D1A,D1B ダイオード、L1 インダクタ、LN1A 正母線、LN1B 配線、LN1C 負母線、MNL 主負母線、MPL 主正母線、NL1,NL2,NLC 負極線、PL1,PL2,PLC 正極線、Q1A,Q1B スイッチング素子。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [車両の全体構成]
 図1は、この発明による電動車両の一例として示されるハイブリッド自動車の全体ブロック図である。
 図1を参照して、ハイブリッド自動車100は、蓄電装置10-1~10-3と、システムメインリレー(System Main Relay)11-1~11-3と、コンバータ12-1,12-2と、主正母線MPLと、主負母線MNLと、平滑コンデンサCと、補機22とを備える。また、ハイブリッド自動車100は、インバータ30-1,30-2と、モータジェネレータ(Motor Generator)32-1,32-2と、動力分割装置34と、エンジン36と、駆動輪38とをさらに備える。さらに、ハイブリッド自動車100は、電圧センサ14-1~14-3,18-1,18-2,20と、電流センサ16-1~16-3,19と、MG-ECU(Electronic Control Unit)40とを備える。さらに、ハイブリッド自動車100は、充電器42と、車両インレット44と、充電ECU46とを備える。
 蓄電装置10-1~10-3の各々は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や、大容量のキャパシタ等を含む。蓄電装置10-1は、システムメインリレー11-1を介してコンバータ12-1に接続され、蓄電装置10-2,10-3は、それぞれシステムメインリレー11-2,11-3を介してコンバータ12-2に接続される。
 システムメインリレー11-1は、蓄電装置10-1とコンバータ12-1との間に設けられる。システムメインリレー11-2は、蓄電装置10-2とコンバータ12-2との間に設けられ、システムメインリレー11-3は、蓄電装置10-3とコンバータ12-2との間に設けられる。なお、蓄電装置10-2と蓄電装置10-3との短絡を避けるため、システムメインリレー11-2,11-3は、選択的にオンされ、同時にオンされることはない。
 コンバータ12-1,12-2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。コンバータ12-1は、MG-ECU40からの信号PWC1に基づいて、蓄電装置10-1と主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。コンバータ12-2は、MG-ECU40からの信号PWC2に基づいて、コンバータ12-2に電気的に接続された蓄電装置10-2および蓄電装置10-3のいずれかと主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。
 補機22は、システムメインリレー11-1とコンバータ12-1との間に配設される正極線PL1および負極線NL1に接続される。平滑コンデンサCは、主正母線MPLと主負母線MNLとの間に接続され、主正母線MPLおよび主負母線MNLに含まれる電力変動成分を低減する。
 インバータ30-1,30-2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。インバータ30-1は、MG-ECU40からの信号PWI1に基づいてモータジェネレータ32-1を駆動する。インバータ30-2は、MG-ECU40からの信号PWI2に基づいてモータジェネレータ32-2を駆動する。
 モータジェネレータ32-1,32-2は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。モータジェネレータ32-1,32-2は、動力分割装置34に連結される。動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車を含む。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、モータジェネレータ32-1の回転軸に連結される。リングギヤは、モータジェネレータ32-2の回転軸および駆動輪38に連結される。この動力分割装置34によって、エンジン36が発生する動力は、駆動輪38へ伝達される経路と、モータジェネレータ32-1へ伝達される経路とに分割される。
 そして、モータジェネレータ32-1は、動力分割装置34によって分割されたエンジン36の動力を用いて発電する。たとえば、蓄電装置10-1~10-3のSOCが低下すると、エンジン36が始動してモータジェネレータ32-1により発電が行なわれ、その発電された電力が蓄電装置へ供給される。
 一方、モータジェネレータ32-2は、蓄電装置10-1~10-3の少なくとも1つから供給される電力およびモータジェネレータ32-1により発電された電力の少なくとも一方を用いて駆動力を発生する。モータジェネレータ32-2の駆動力は、駆動輪38に伝達される。なお、車両の制動時には、車両の運動エネルギーが駆動輪38からモータジェネレータ32-2に伝達されてモータジェネレータ32-2が駆動され、モータジェネレータ32-2が発電機として作動する。これにより、モータジェネレータ32-2は、車両の運動エネルギーを電力に変換して回収する回生ブレーキとして作動する。
 MG-ECU40は、コンバータ12-1,12-2をそれぞれ駆動するための信号PWC1,PWC2を生成し、その生成した信号PWC1,PWC2をそれぞれコンバータ12-1,12-2へ出力する。また、MG-ECU40は、モータジェネレータ32-1,32-2をそれぞれ駆動するための信号PWI1,PWI2を生成し、その生成した信号PWI1,PWI2をそれぞれインバータ30-1,30-2へ出力する。
 また、MG-ECU40は、充電器42によって蓄電装置10-1の充電が行なわれるとき、充電ECU46から受ける信号CH1が活性化されると、充電器42からコンバータ12-2、主正母線MPLおよび主負母線MNLならびにコンバータ12-1を順次介して蓄電装置10-1へ充電電力が供給されるように信号PWC1,PWC2を生成してコンバータ12-1,12-2へそれぞれ出力する。
 充電器42は、車両インレット44に入力端が接続され、システムメインリレー11-2,11-3とコンバータ12-2との間に配設される正極線PL2および負極線NL2に出力端が接続される。充電器42は、車両外部の電源(以下「外部電源」とも称する。)48から供給される電力を車両インレット44から受ける。そして、充電器42は、充電ECU46から電力指令値CHPWを受け、充電器42の出力電圧を所定の直流電圧に制御しつつ、充電器42の出力電力が電力指令値CHPWに一致するように出力電力を制御する。車両インレット44は、外部電源48から電力を受けるための電力インターフェースである。
 電圧センサ14-1~14-3は、蓄電装置10-1の電圧VB1、蓄電装置10-2の電圧VB2および蓄電装置10-3の電圧VB3をそれぞれ検出し、その検出値を充電ECU46へ出力する。電流センサ16-1~16-3は、蓄電装置10-1に対して入出力される電流IB1、蓄電装置10-2に対して入出力される電流IB2および蓄電装置10-3に対して入出力される電流IB3をそれぞれ検出し、その検出値を充電ECU46へ出力する。
 電圧センサ18-1,18-2は、正極線PL1と負極線NL1との間の電圧VL1、および正極線PL2と負極線NL2との間の電圧VL2をそれぞれ検出し、その検出値を充電ECU46へ出力する。電流センサ19は、コンバータ12-2に対して入出力される正極線PL2の電流ILを検出し、その検出値を充電ECU46へ出力する。なお、この電流センサ19は、充電器42によって蓄電装置10-1の充電が行なわれるとき、充電器42からコンバータ12-2へ流れる電流を検出可能である。電圧センサ20は、主正母線MPLと主負母線MNLとの間の電圧VHを検出し、その検出値を充電ECU46へ出力する。
 充電ECU46は、車両インレット44に接続される外部電源48による蓄電装置10-1~10-3の充電時、蓄電装置10-1~10-3の充電電力(kW/h)の目標値PRを図示されない車両ECUから受ける。また、充電ECU46は、充電器42によって蓄電装置10-1~10-3のいずれの充電が行なわれるかを示す信号SELを上記の車両ECUから受ける。すなわち、この実施の形態1においては、蓄電装置10-1~10-3は、予め定められた順序で順次充電される。
 なお、蓄電装置10-1の充電が行なわれるときは、充電ECU46からMG-ECU40へ信号CH1が出力され、充電器42からコンバータ12-2およびコンバータ12-1を順次介して蓄電装置10-1へ電力が流れるようにコンバータ12-1,12-2が動作する。ここで、蓄電装置10-1とコンバータ12-1との間に接続されている補機22は、蓄電装置10-1の充電が行なわれるときは、充電器42から供給される電力によって動作する。一方、蓄電装置10-2または蓄電装置10-3の充電が行なわれるときは、補機22は、蓄電装置10-1から電力の供給を受ける。
 そして、充電ECU46は、外部電源48による蓄電装置10-1~10-3の充電時、充電器42の出力電力の目標値を示す電力指令値CHPWを生成し、その生成した電力指令値CHPWを充電器42へ出力する。
 ここで、充電ECU46は、電圧VB1~VB3,VL1,VL2,VHおよび電流IB1~IB3,ILの各検出値を受け、蓄電装置10-1~10-3に実際に供給される充電電力が目標値PRに一致するように、充電器42の電力指令値CHPWを上記各検出値に基づいてフィードバック補正する。すなわち、この実施の形態においては、充電器42の出力電力が目標値に一致するように充電器42を制御するだけでなく、蓄電装置の実際の充電電力が目標値に一致するように、蓄電装置の状態に基づいて電力指令値CHPWがフィードバック補正される。これにより、蓄電装置10-1~10-3の充電電力を目標値PRに確実に一致させることができる。
 ハイブリッド自動車100は、外部電源48から入力される電圧VACを検出する電圧センサ47をさらに含む。充電ECU46は、電圧センサ47から与えられる検出結果を受ける。充電ECUは、充電器42に対して電力指令値CHPWを出力することに加え、充電器42のオン/オフ制御を行なう制御信号CHRQを充電器42に出力する。
 図2は、図1に示したコンバータ12-1,12-2の概略構成図である。なお、各コンバータの構成および動作は同様であるので、以下ではコンバータ12-1の構成および動作について代表として説明する。
 図2を参照して、コンバータ12-1は、チョッパ回路13-1と、正母線LN1Aと、負母線LN1Cと、配線LN1Bと、平滑コンデンサC1とを含む。チョッパ回路13-1は、スイッチング素子Q1A,Q1Bと、ダイオードD1A,D1Bと、インダクタL1とを含む。
 正母線LN1Aは、一方端がスイッチング素子Q1Bのコレクタに接続され、他方端が主正母線MPLに接続される。負母線LN1Cは、一方端が負極線NL1に接続され、他方端が主負母線MNLに接続される。
 スイッチング素子Q1A,Q1Bは、負母線LN1Cと正母線LN1Aとの間に直列に接続される。具体的には、スイッチング素子Q1Aのエミッタが負母線LN1Cに接続され、スイッチング素子Q1Bのコレクタが正母線LN1Aに接続される。ダイオードD1A,D1Bは、それぞれスイッチング素子Q1A,Q1Bに逆並列に接続される。インダクタL1は、スイッチング素子Q1A,Q1Bの接続ノードと配線LN1Bとの間に接続される。
 配線LN1Bは、一方端が正極線PL1に接続され、他方端がインダクタL1に接続される。平滑コンデンサC1は、配線LN1Bと負母線LN1Cとの間に接続され、配線LN1Bおよび負母線LN1C間の直流電圧に含まれる交流成分を低減する。
 チョッパ回路13-1は、MG-ECU40(図1)からの信号PWC1に応じて、蓄電装置10-1(図1)と主正母線MPLおよび主負母線MNLとの間で双方向の直流電圧変換を行なう。信号PWC1は、下アーム素子を構成するスイッチング素子Q1Aのオン/オフを制御する信号PWC1Aと、上アーム素子を構成するスイッチング素子Q1Bのオン/オフを制御する信号PWC1Bとを含む。そして、一定のデューティーサイクル(オン期間およびオフ期間の和)内でのスイッチング素子Q1A,Q1Bのデューティー比(オン/オフ期間比率)がMG-ECU40によって制御される。
 スイッチング素子Q1Aのオンデューティーが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると(スイッチング素子Q1A,Q1Bはデッドタイム期間を除いて相補的にオン/オフ制御されるので、スイッチング素子Q1Bのオンデューティーは小さくなる。)、蓄電装置10-1からインダクタL1に流れるポンプ電流量が増大し、インダクタL1に蓄積される電磁エネルギーが大きくなる。その結果、スイッチング素子Q1Aがオン状態からオフ状態に遷移したタイミングでインダクタL1からダイオードD1Bを介して主正母線MPLへ放出される電流量が増大し、主正母線MPLの電圧が上昇する。
 一方、スイッチング素子Q1Bのオンデューティーが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると(スイッチング素子Q1Aのオンデューティーは小さくなる。)、主正母線MPLからスイッチング素子Q1BおよびインダクタL1を介して蓄電装置10-1へ流れる電流量が増大するので、主正母線MPLの電圧は下降する。
 このように、スイッチング素子Q1A,Q1Bのデューティー比を制御することによって、主正母線MPLの電圧を制御することができるとともに、蓄電装置10-1と主正母線MPLとの間に流す電流(電力)の方向および電流量(電力量)を制御することができる。
 図3は、図1に示した充電器42の概略構成図である。
 図3を参照して、充電器42は、フィルタ81と、電力制限部80と、温度センサ87と、電圧センサ91,93,94と、電流センサ92,95と、マイコン(マイクロコンピュータ)88とを含む。
 電力制限部80は、AC/DC変換部82と、平滑コンデンサ83と、DC/AC変換部84と、絶縁トランス85と、整流部86とを含む。
 フィルタ81は、車両インレット44(図1)とAC/DC変換部82との間に設けられ、外部電源48(図1)による蓄電装置10-1~10-3の充電時、車両インレット44から外部電源48へ高周波のノイズが出力されるのを防止する。AC/DC変換部82は、単相ブリッジ回路を含む。AC/DC変換部82は、マイコン88からの駆動信号に基づいて、外部電源48から供給される交流電力を直流電力に変換して正極線PLCおよび負極線NLCへ出力する。平滑コンデンサ83は、正極線PLCと負極線NLCとの間に接続され、正極線PLCおよび負極線NLC間に含まれる電力変動成分を低減する。
 DC/AC変換部84は、単相ブリッジ回路を含む。DC/AC変換部84は、マイコン88からの駆動信号に基づいて、正極線PLCおよび負極線NLCから供給される直流電力を高周波の交流電力に変換して絶縁トランス85へ出力する。絶縁トランス85は、磁性材を含むコアと、コアに巻回された一次コイルおよび二次コイルを含む。一次コイルおよび二次コイルは、電気的に絶縁されており、それぞれDC/AC変換部84および整流部86に接続される。そして、絶縁トランス85は、DC/AC変換部84から受ける高周波の交流電力を一次コイルおよび二次コイルの巻数比に応じた電圧レベルに変換して整流部86へ出力する。整流部86は、絶縁トランス85から出力される交流電力を直流電力に整流して正極線PL2および負極線NL2へ出力する。
 電圧センサ91は、フィルタ81後の外部電源48の電圧を検出し、その検出値をマイコン88へ出力する。電流センサ92は、外部電源48から供給される電流を検出し、その検出値をマイコン88へ出力する。電圧センサ93は、正極線PLCと負極線NLCとの間の電圧を検出し、その検出値をマイコン88へ出力する。電圧センサ94は、整流部86の出力側の電圧を検出し、その検出値をマイコン88へ出力する。電流センサ95は、整流部86から出力される電流を検出し、その検出値をマイコン88へ出力する。
 マイコン88は、電圧センサ94および電流センサ95の検出値に基づいて算出される充電器42の出力電力が電力指令値CHPWに一致するように、電圧センサ91,93,94および電流センサ92,95の各検出値に基づいて、AC/DC変換部82およびDC/AC変換部84を駆動するための駆動信号を生成する。そして、マイコン88は、その生成した駆動信号をAC/DC変換部82およびDC/AC変換部84へ出力する。
 温度センサ87は、充電器42が過熱状態に至るおそれがあるというセーブ運転条件が成立しているか否かを検出する。具体的には、温度センサ87は、充電器42の温度TCを検出しマイコン88に送信する。マイコン88は、温度センサ87の出力する温度TCに基づいて、セーブモードと通常モードとの間で充電器42の動作モードを変更する。電力制限部80は、マイコン88の制御の下で車両外部の電源からの電力を制限して蓄電装置10-1~10-3への充電電力として供給する。
 図4は、図1に示した充電ECU46の機能ブロック図である。
 図4を参照して、充電ECU46は、充電電力目標値決定部51と、充電電力検出部52と、充電器供給電力検出部61とを含む。充電電力目標値決定部51は、図1の電圧センサ47から与えられる検出値VACと、図示しないバッテリECUから与えられる電池情報(バッテリ温度TV、充電状態SOC、充電電力制限値Winおよび放電電力制限値Woutなど)に基づいて、バッテリに充電すべき電力の目標値PRを出力する。
 充電電力目標値決定部51は、検出値VAC(100V/200V)で充電目標電力PRを設定し、充電状態SOCが低いときには目標電力PWを大きく設定し(急速充電)、充電状態SOCが高くなると、目標充電電力PRを小(押込み充電)とする。しかし、電池温度などで充電制限上限値Winが小さく設定されると、目標充電電力PWはそれに制限される。
 充電電力検出部52は、充電器42によって蓄電装置10-1の充電が行なわれるとき、電圧VB1および電流IB1の検出値に基づいて蓄電装置10-1の充電電力を参照し、その演算結果をモニタ値PM2として出力する。なお、充電器42によって蓄電装置10-1の充電が行なわれることは、図示されない車両ECUから受ける信号SELによって判断される。
 また、充電器42によって蓄電装置10-2の充電が行なわれるとき、充電電力検出部52は、電圧VB2および電流IBの検出値に基づいて蓄電装置10-2の充電電力を参照し、その演算結果をモニタ値PM2として出力する。また、充電器42によって蓄電装置10-3の充電が行なわれるとき、充電電力検出部52は、電圧VB3および電流IB3の検出値に基づいて蓄電装置10-3の充電電力を算出し、その演算結果をモニタ値PM2として出力する。
 充電器供給電力検出部61は、図1の電流センサ19によって検出される電流ILと、電圧センサ18-2によって検出される電圧VL2に基づいて充電器42から供給される電力をモニタ値PMとして検出して出力する。
 充電ECU46は、さらに、充電異常監視部62と、減算部53と、フィードバック制御部54と、加算部55,56,57とを含む。減算部53は、モニタ値PM2から目標値PRを減算してその演算結果をフィードバック制御部54に与える。フィードバック制御部54は、減算部53から与えられる偏差に基づいて比例積分制御を行ない目標値PRに対する補正値PCを出力する。加算部55は、目標値PRに対して補正値PCを加算する。加算部56は、加算部55の演算結果に対して、図1の補機22で消費される電力の見込み値Pauxを加算する。そして加算部57は、加算部56の演算結果に対して、充電器42の充電損失Plossを加算して、充電器42に対して出力される電力指令値CHPWを演算する。
 充電異常監視部62は、モニタ値PM,PM2および目標値PRに基づいて、充電器42をオン/オフ制御するための制御信号CHRQを出力する。
 図5は、図4の充電異常監視部62で実行される制御を説明するためのフローチャートである。
 図5を参照して、まずステップS1において、電池充電電力(VB×IB)が著しく低下したか否かが判断される。すなわち充電対象となっている電池の電流と電圧の積VB×IBが所定の式Pthより小さいか否かが判断される。
 図6は、図5のステップS1で用いられるしきい値Pthの設定の説明をするための図である。
 図6を参照して、充電電力すなわちIB×VBが0(異常)のときでも、これを検出するセンサのばらつきでΔPと検出される可能性がある。したがって、しきい値PthをセンサばらつきΔPより大きく設定することでステップS1において充電電力IB×VB=0となる異常を確実に検出する。
 再び図5を参照して、ステップS1において、VB×IB<Pthが成立しない場合にはステップS9に処理が進み、制御はメインルーチンに移され充電が継続される。
 一方ステップS1においてVB×IB<Pthが成立した場合には、ステップS2に処理が進む。ステップS2では充電器供給電力(VL2×IL)も低下しているか否かが判断される。すなわち図1の電圧センサ18-2で検出された電圧値VL2と電流センサ19で検出された検出値ILの積が所定のしきい値Pth2より小さいか否かが判断される。
 ステップS2において、VL2×IL<Pth2が成立しない場合には、ステップS3に処理が進む。ステップS3では、電池に充電される電力が低下していても、充電器から供給される電力は低下していないため、補機22で消費される電力が大きいのであると判定される。そして蓄電装置10-1の充電状態SOCに余裕があるか否かがステップS4で判断される。
 補機消費電力が「大」である場合には、場合によっては蓄電装置10-1から補機22に電流が放電され充電状態SOCの低下が進むことが考えられる。蓄電装置10-1は、ハイブリッドシステムのマスタバッテリであるため、あまり充電状態が低下してしまうと走行に支障を来たすようになってしまう。このため、ステップS4において蓄電装置10-1の充電状態SOCに余裕があると判定された場合にはステップS9に処理が進み充電が継続される。一方、ステップS4において充電状態SOCに余裕があると判断されない場合すなわち所定のしきい値よりも充電状態SOCが低下してしまった場合には、ステップS7に処理が進み、システムの通常終了が行なわれる。このシステムの通常終了においては、充電器42は動作がオフされ、そしてシステムメインリレー11-1~11-3はオフ状態に制御される。
 次にステップS2においてVL2×IL<Pth2が成立した場合には、ステップS5に処理が進む。ステップS5では、充電目標値PRが異常検出可能範囲内であるか否かが判断される。
 図7は、図5のステップS5における充電目標値PRの異常検出可能範囲について説明するための図である。
 図7を参照して、充電目標値PRに対し、実際の値は、センサばらつき範囲±ΔPの範囲内のどこかにある。したがって、充電目標値PRに対しばらつきであるΔPだけ低い値が異常判定しきい値Pthよりも大きければ、異常検出可能な状態であるといえる。一方、充電目標値PRが低下し過ぎて異常判定しきい値との間の差がばらつきΔP以内になってしまった場合には、充電器の異常検出が不可能な状態である。すなわち、異常検出可能な充電目標値PRの範囲は、電力IB×VBの異常判定しきい値Pthよりもセンサばらつきで決定されるΔPだけ大きい値以上でなければ異常検出が可能ではない。
 再び図5を参照して、ステップS5において、充電目標値PRが異常検出可能範囲内でない場合には、ステップS7に処理が進みシステムの通常終了処理が行なわれる。すなわち充電器42はオフ状態に制御され、システムメインリレー11-1~11-3はオフ状態に制御される。
 このような場合は、たとえば蓄電装置が極低温状態であり、充電電力が著しく制限されており、その結果としてステップS1の充電電力の低下およびステップS2の充電器供給電力の低下が検出された場合である。このような場合は、充電器の異常であると判定することは誤りであるので、システム異常の誤検出を防ぐために、異常の診断の確定処理は行なわれない。
 一方ステップS5において、充電目標値PRが異常を検出可能範囲内であると判断された場合には、ステップS6に処理が進む。ステップS6では、充電器の異常であるという診断が確定され、そしてステップS8においてシステムの非常停止が実行される。システムの非常停止においては、充電器42はオフ状態に制御され、システムメインリレー11-1~11-3もオフ状態に制御される。
 以上説明したように、本実施の形態によれば、充電器の異常と誤診断される場合が防止されるとともに、充電不能な条件における無駄なシステム稼動が回避される。また正常時には、充電可能な機会が増加する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (5)

  1.  車載の蓄電装置(10-1~10-3)を充電する車両の充電システムであって、
     前記蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器(42)と、
     前記充電器に対する電力指令値を生成することによって前記充電器の制御を行なう充電制御装置(46)とを備え、
     前記充電制御装置は、
     前記蓄電装置に供給される充電電力を検出する充電電力検出部(52)と、
     前記蓄電装置に対する充電電力の目標値を決定する目標値決定部(51)と、
     前記充電電力と前記目標値との差に基づいて前記目標値を補正して前記電力指令値を生成するためのフィードバック制御部(54)と、
     前記充電器から出力される供給電力を検出する供給電力検出部(61)と、
     前記充電電力が第1のしきい値より低下し、かつ前記供給電力が第2のしきい値よりも低下した場合に、前記目標値が異常検出可能範囲内であったときには前記充電器が異常である旨の診断を確定し、前記目標値が異常検出可能範囲内でないときには前記充電器の異常診断の実行を保留する充電異常監視部(62)とを含む、車両の充電システム。
  2.  前記充電異常監視部(62)は、前記充電電力が第1のしきい値より低下し、かつ前記供給電力が第2のしきい値よりも低下した場合に、前記目標値が異常検出可能範囲内であったときには前記充電器が異常である旨の診断を確定させるとともに前記充電器の動作を停止させ、前記目標値が異常検出可能範囲内でないときには前記充電器の異常診断の実行を保留するとともに前記充電器の動作を停止させる、請求の範囲第1項に記載の車両の充電システム。
  3.  前記車両(100)は、
     前記充電器から出力される電力の一部によって駆動され得る補機(22)を含み、
     前記蓄電装置は、
     前記補機への電力供給経路に接続された第1の蓄電装置(10-1)と、
     前記充電器の出力が接続された第2の蓄電装置(10-2)とを含み、
     前記車両の充電システムは、
     前記第1の蓄電装置の電圧と電気負荷への供給電圧との間で電圧変換を行なう第1の電圧コンバータ(12-1)と、
     前記第2の蓄電装置の電圧と前記供給電圧との間で電圧変換を行なう第2の電圧コンバータ(12-2)とをさらに備え、
     前記充電制御装置は、前記第1、第2の電圧コンバータを制御することにより前記充電器から前記充電電力が供給される充電対象を前記第1、第2の蓄電装置のうちから選択する、請求の範囲第1項に記載の車両の充電システム。
  4.  前記車両(100)は、
     前記蓄電装置から電力を受けて作動する車両駆動用のモータ(32-2)と、
     前記モータと共に車両駆動用として併用される内燃機関(36)とを含む、請求の範囲第1項に記載の車両の充電システム。
  5.  車載の蓄電装置(10-1~10-3)を充電する充電システムの制御方法であって、
     前記充電システムは、前記蓄電装置を充電するために車両外部の電源から電力が供給されるように構成された充電器(42)と、前記充電器に対する電力指令値を生成することによって前記充電器の制御を行なう充電制御装置(46)とを含み、
     前記充電制御装置は、前記蓄電装置に供給される充電電力を検出する充電電力検出部(52)と、前記蓄電装置に対する充電電力の目標値を決定する目標値決定部(51)と、前記目標値と前記充電電力との差に基づいて前記目標値を補正して前記電力指令値を生成するためのフィードバック制御部(54)と、前記充電器から出力される供給電力を検出する供給電力検出部(61)とを含み、
     前記制御方法は、
     前記充電電力が第1のしきい値より低下し、かつ前記供給電力が第2のしきい値よりも低下したか否かを判断するステップ(S1,S2)と、
     前記目標値が異常検出可能範囲内であったときには前記充電器が異常である旨の診断を確定し、前記目標値が異常検出可能範囲内でないときには前記充電器の異常診断の実行を保留してシステムを終了させるステップ(S5,S6)とを含む、充電システムの制御方法。
PCT/JP2009/051758 2009-02-03 2009-02-03 車両の充電システムおよび充電システムの制御方法 WO2010089843A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/146,894 US8604751B2 (en) 2009-02-03 2009-02-03 Charging system for vehicle and method for controlling charging system
PCT/JP2009/051758 WO2010089843A1 (ja) 2009-02-03 2009-02-03 車両の充電システムおよび充電システムの制御方法
CN200980155925.0A CN102301559B (zh) 2009-02-03 2009-02-03 车辆的充电系统及充电系统的控制方法
EP09839621.1A EP2395622B1 (en) 2009-02-03 2009-02-03 Charging system for vehicle and method for controlling charging system
JP2010549286A JP5327235B2 (ja) 2009-02-03 2009-02-03 車両の充電システムおよび充電システムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051758 WO2010089843A1 (ja) 2009-02-03 2009-02-03 車両の充電システムおよび充電システムの制御方法

Publications (1)

Publication Number Publication Date
WO2010089843A1 true WO2010089843A1 (ja) 2010-08-12

Family

ID=42541767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051758 WO2010089843A1 (ja) 2009-02-03 2009-02-03 車両の充電システムおよび充電システムの制御方法

Country Status (5)

Country Link
US (1) US8604751B2 (ja)
EP (1) EP2395622B1 (ja)
JP (1) JP5327235B2 (ja)
CN (1) CN102301559B (ja)
WO (1) WO2010089843A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143842A (ja) * 2013-01-24 2014-08-07 Toyota Motor Corp 車両の電源装置およびそれを備える車両
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP2016049895A (ja) * 2014-09-01 2016-04-11 三菱自動車工業株式会社 ハイブリッド自動車
JP2017153255A (ja) * 2016-02-25 2017-08-31 株式会社Subaru 車両用電源装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820444B2 (en) * 2010-04-16 2014-09-02 Tuan Nguyen Electric vehicle having exchangeable battery modules and method of resupply therefor
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
CN102906958B (zh) * 2010-08-30 2014-06-11 丰田自动车株式会社 蓄电装置的充电装置以及充电方法
KR101241221B1 (ko) 2010-12-06 2013-03-13 주식회사 이지트로닉스 마일드 하이브리드 차량용 충전 장치
US9623761B2 (en) * 2010-12-22 2017-04-18 Ford Global Technologies, Llc Vehicle and method for authenticating a charge station
CN102097849B (zh) * 2011-02-11 2013-11-06 蒋小平 直流电机电动车用感应器电能量回收装置
US20120312196A1 (en) * 2011-06-08 2012-12-13 Newkirk David C Overbed table with wireless power transfer
DE102012008687B4 (de) * 2012-04-28 2017-02-09 Audi Ag Kraftwagen mit einem Hochvolt-Energieversorgungssystem
US10065511B2 (en) * 2013-07-02 2018-09-04 Mitsubishi Electric Corporation Hybrid drive system
US9969276B2 (en) * 2013-10-09 2018-05-15 Ford Global Technologies, Llc Plug-in vehicle with secondary DC-DC converter
US10046661B2 (en) 2013-10-09 2018-08-14 Ford Global Technologies, Llc Detection of on-board charger connection to electric vehicle supply equipment
US10286800B2 (en) 2013-10-09 2019-05-14 Ford Global Technologies, Llc Control pilot latch-out mechanism to reduce off-board energy consumption
JP6187377B2 (ja) * 2014-04-22 2017-08-30 トヨタ自動車株式会社 車両の充電装置
JP2016022566A (ja) * 2014-07-23 2016-02-08 株式会社マキタ 電動機械器具
JP2017178083A (ja) * 2016-03-30 2017-10-05 トヨタ自動車株式会社 ハイブリッド自動車
TWI660560B (zh) * 2017-03-31 2019-05-21 黃柏原 可蓄電永磁同步馬達及其電路裝置
JP7056393B2 (ja) * 2018-06-14 2022-04-19 トヨタ自動車株式会社 電圧変換器
JP2020108206A (ja) * 2018-12-26 2020-07-09 トヨタ自動車株式会社 充電器および充電器の異常要因判定方法
WO2020179192A1 (ja) * 2019-03-06 2020-09-10 三洋電機株式会社 異常診断システム、及び車両用電源システム
WO2020191682A1 (zh) * 2019-03-27 2020-10-01 深圳欣锐科技股份有限公司 车载充电机及制造方法、车载充电机系统
IT202000002566A1 (it) * 2020-02-10 2021-08-10 Hitachi Rail S P A Veicolo a trazione elettrica includente un sistema di gestione di energia, e metodo di gestione di energia in tale veicolo a trazione elettrica
FR3113790A1 (fr) * 2020-08-25 2022-03-04 Psa Automobiles Sa Systeme de batterie couple a un reseau de distribution electrique terrestre.
US11691531B2 (en) * 2020-10-29 2023-07-04 GM Global Technology Operations LLC Adaptation of charge current limits for a rechargeable energy storage system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300667A (ja) * 1992-04-21 1993-11-12 Nippon Purotekutaa:Kk スイッチング電源形充電器
JPH07194015A (ja) 1993-12-28 1995-07-28 Toyota Motor Corp 充電制御装置
JP2001339803A (ja) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd ハイブリッド電気自動車の充電装置
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法
JP2008236930A (ja) * 2007-03-22 2008-10-02 Yamaha Motor Co Ltd 二次電池の充電装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123519A (ja) * 1993-10-18 1995-05-12 Toyota Motor Corp 充電制御装置および接続装置
JPH07298502A (ja) * 1994-04-21 1995-11-10 Daihatsu Motor Co Ltd バッテリ充電装置
JP3043704B2 (ja) * 1998-03-02 2000-05-22 米沢日本電気株式会社 バッテリパックの過充放電防止制御方法および装置
US6275006B1 (en) * 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
JP3468220B2 (ja) * 2000-12-26 2003-11-17 株式会社リコー 充放電保護回路、および該充放電保護回路を組み込んだバッテリーパック、該バッテリーパックを用いた電子機器
TWI256830B (en) * 2004-04-14 2006-06-11 Benq Corp Mobile communication device having protection circuit on handset side and method of operating the same
JP4311363B2 (ja) * 2005-03-17 2009-08-12 トヨタ自動車株式会社 蓄電システムおよび蓄電システムの異常処理方法
JP4232785B2 (ja) * 2006-02-23 2009-03-04 トヨタ自動車株式会社 ハイブリッド車両
JP2008067425A (ja) * 2006-09-04 2008-03-21 Yamaha Motor Electronics Co Ltd 車両用充電制御装置
JP4894656B2 (ja) * 2007-07-13 2012-03-14 トヨタ自動車株式会社 車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300667A (ja) * 1992-04-21 1993-11-12 Nippon Purotekutaa:Kk スイッチング電源形充電器
JPH07194015A (ja) 1993-12-28 1995-07-28 Toyota Motor Corp 充電制御装置
JP2001339803A (ja) * 2000-05-24 2001-12-07 Fuji Heavy Ind Ltd ハイブリッド電気自動車の充電装置
JP2008187884A (ja) * 2007-01-04 2008-08-14 Toyota Motor Corp 電源システムおよびそれを備える車両、ならびにその制御方法
JP2008236930A (ja) * 2007-03-22 2008-10-02 Yamaha Motor Co Ltd 二次電池の充電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2395622A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143842A (ja) * 2013-01-24 2014-08-07 Toyota Motor Corp 車両の電源装置およびそれを備える車両
WO2015008757A1 (ja) * 2013-07-16 2015-01-22 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
CN105379058A (zh) * 2013-07-16 2016-03-02 日本电气株式会社 用于蓄电池的快速充电方法、快速充电系统和程序
JPWO2015008757A1 (ja) * 2013-07-16 2017-03-02 日本電気株式会社 蓄電池の急速充電方法、急速充電システムおよびプログラム
JP2016049895A (ja) * 2014-09-01 2016-04-11 三菱自動車工業株式会社 ハイブリッド自動車
JP2017153255A (ja) * 2016-02-25 2017-08-31 株式会社Subaru 車両用電源装置

Also Published As

Publication number Publication date
CN102301559B (zh) 2014-01-01
EP2395622A1 (en) 2011-12-14
CN102301559A (zh) 2011-12-28
EP2395622B1 (en) 2018-07-11
US20110309793A1 (en) 2011-12-22
JPWO2010089843A1 (ja) 2012-08-09
US8604751B2 (en) 2013-12-10
JP5327235B2 (ja) 2013-10-30
EP2395622A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5327235B2 (ja) 車両の充電システムおよび充電システムの制御方法
JP5343981B2 (ja) 車両の充電システム
JP4780180B2 (ja) 車両の充電システム
JP5359413B2 (ja) 車両の充電システムおよび車両
JP5333457B2 (ja) 車両の充電システム
JP5035427B2 (ja) 車両の充電システム
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP5287983B2 (ja) 電源システムおよびそれを備える車両
JP6130634B2 (ja) 電気車両を充電するための装置および方法
JP4483976B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
CN103221246B (zh) 车辆的充电装置
US20120065827A1 (en) Power supply system for electric powered vehicle and control method thereof
US20100318250A1 (en) Charging control apparatus for power storage device and method for controlling charging of power storage device
WO2010100736A1 (ja) ハイブリッド車両の充放電制御システムおよびその制御方法
US20100289516A1 (en) Malfunction determining apparatus and malfunction determining method for charging system
US9169764B2 (en) Hybrid vehicle
US20100204860A1 (en) Control apparatus and control method for vehicle
JP5228824B2 (ja) 車両の電源システムおよび車両
JP2010183672A (ja) 充電システム、電動車両および充電制御方法
JP2010119170A (ja) 車両の充電システム、電動車両および車両の充電制御方法
JP2010051072A (ja) 電源システムの異常監視装置および電源システムの異常監視方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155925.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549286

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13146894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009839621

Country of ref document: EP