WO2010087224A1 - バルブ制御装置 - Google Patents

バルブ制御装置 Download PDF

Info

Publication number
WO2010087224A1
WO2010087224A1 PCT/JP2010/050212 JP2010050212W WO2010087224A1 WO 2010087224 A1 WO2010087224 A1 WO 2010087224A1 JP 2010050212 W JP2010050212 W JP 2010050212W WO 2010087224 A1 WO2010087224 A1 WO 2010087224A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
motor
command
valve
Prior art date
Application number
PCT/JP2010/050212
Other languages
English (en)
French (fr)
Inventor
今村 直樹
雅宏 家澤
敏 川村
良孝 大西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080005681.0A priority Critical patent/CN102301582B/zh
Priority to US13/144,050 priority patent/US8395345B2/en
Priority to DE112010000768T priority patent/DE112010000768T5/de
Priority to JP2010548458A priority patent/JP5258906B2/ja
Priority to KR1020117019846A priority patent/KR101203250B1/ko
Publication of WO2010087224A1 publication Critical patent/WO2010087224A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle

Definitions

  • the present invention relates to a valve control device in which, for example, an electronic throttle or a valve used for exhaust gas recirculation is driven by a brushless DC motor.
  • a ⁇ voltage control method '' that generates a voltage command to the motor according to the deviation between the command and the actual value and the actual current flowing through the motor winding
  • a “current control method” in which feedback is performed so that the actual current matches the current command.
  • the latter current control method primarily controls the inductance component of the motor winding, so that the current delay due to the inductance component can be ignored within the control band of the current control system, and stable from the low speed range to the high speed range of the motor Torque control is possible.
  • the voltage control method cannot ignore the influence of the current delay due to the inductance component of the motor winding with respect to the voltage command, so the torque followability is worse than the current control method, and the response becomes oscillating. There is.
  • the request DUTY is caused by a restriction on a circuit or the like.
  • the output DUTY is converted into the output current according to the power supply voltage value and the resistance value of the current path, and further smoothed according to the coil inductance component of the torque motor.
  • the back electromotive force is estimated using the processed estimated current, and this is added to the request DUTY, thereby matching the request DUTY with the output DUTY (see, for example, Patent Document 1).
  • a DC motor is controlled by a combination of a feedforward control system and feedback control with respect to a torque balance drive type valve that opens and closes the valve by a torque balance between the return spring by the biasing means and the motor torque of the DC motor. Furthermore, there is one that corrects the operation amount by the feedforward control system and feedback control according to the steady position deviation (for example, see Patent Document 2).
  • a drive voltage for generating motor torque corresponding to the return torque is always applied according to the valve opening / closing direction by the feedforward control system, and the position between the current value and the target value is thereby determined. Since a feedback control system (PID control in Patent Document 2) acts to compensate for the deviation, it is said that the occurrence of vibration can be suppressed by reducing the feedback control amount regardless of the opening / closing direction of the valve.
  • the driving duty calculated by the feedforward control system and the coefficient of the calculation unit of the feedback control system are corrected according to the position deviation, thereby changing due to factors such as environmental temperature. It is said that optimal control can be performed according to the operating characteristics of the valve.
  • the actuator control device described in Patent Document 1 As the response becomes faster, the influence of the sampling period in the control calculation cannot be ignored and a delay occurs in the current detection position, and therefore the winding current of the torque motor is accurately estimated. Since this is not possible, there is a problem that the response becomes oscillating during high-speed driving. In addition, when the resolution of the throttle opening sensor is rough, the angular velocity information required for the counter electromotive voltage calculation processing becomes oscillatory, and as a result, the counter electromotive voltage cannot be accurately estimated, resulting in a problem that the requested DUTY and the output DUTY do not match. . Furthermore, the actuator described in Patent Document 1 is a brushed DC motor, and there is a problem of brush maintainability.
  • the valve control device described in Patent Document 2 is a voltage control system that generates a motor drive duty according to a deviation between a target value and a current value by PID control, and the valve is operated in a direction in which return torque acts in this system.
  • the response of the position control system cannot follow the change in the motor torque as the motor rotates at a high speed by the acceleration action of the return torque.
  • the direction in which the return torque acts is the valve closing direction
  • the response of the valve becomes oscillating during the valve closing operation due to the delay in following the torque, or the valve collides with the machine end. was there.
  • the present invention has been made to solve the above-described problems.
  • the actuator is a brushless DC motor and the brushless DC motor includes a pulse output type sensor
  • the electrical angle resolution is rough.
  • a virtual current that can accurately estimate the phase current by calculating the phase current command and the induced voltage based on the sensor output, and further suppressing the influence of the sampling period by performing phase correction on the position used for current control. Since it has a current control system that performs feedback and directly controls the motor torque by the control system, the current is efficiently generated by the torque component that contributes to the torque, and the valve response speed is increased.
  • An object of the present invention is to obtain a valve control device capable of soft landing without colliding with an end.
  • the valve control device is configured to control the return torque and the motor by controlling a motor that applies a torque by a motor opposite to the return torque with respect to a valve mechanism to which a return torque is applied in an opening direction or a closing direction of the valve.
  • a valve control device that controls opening and closing of a valve by torque balance, a detection position converter that converts an electrical angle detection position that is a current position of the motor detected by a position detection sensor into a mechanical angle detection position, and a motor target
  • a position control system for outputting a q-axis current command based on a deviation between a position command and the mechanical angle detection position; and distributing the q-axis current command to a phase current command for each phase of the motor based on the electrical angle detection position;
  • a phase voltage command for each phase is generated based on the phase current command and the current deviation of the estimated current of each phase that is fed back.
  • An estimated induced voltage of each phase is obtained based on the induced voltage, and an estimated current of each phase is obtained based on the estimated induced voltage and the phase voltage command, and finally a phase voltage command that is saturated within the actual use voltage range. And a current control system for outputting.
  • a current control system having virtual current feedback can be configured with a sensor having a rough electrical angle resolution. Since the torque is directly controlled by the current control system, the motor response can be increased. In addition, wide-band torque control by the current control system effectively generates motor torque that opposes return torque, especially during low-speed rotation of the motor. Even if return torque occurs on the acceleration side, the motor torque reduces the speed, and the valve Collision with the machine end can be prevented. Furthermore, since the current sensor is unnecessary, the cost of the control system can be reduced.
  • FIG. 1 is a block diagram illustrating an overall configuration of a control system including a valve control device according to Embodiment 1 of the present invention. It is a block diagram which shows the structure of the valve control apparatus which concerns on Example 1 of this invention. It is a block diagram which shows the structure of the position control system of the valve
  • the figure which shows the result of having simulated the behavior of the valve position command of each environmental temperature 30 degreeC and 120 degreeC, valve actual position, motor angular velocity, and q-axis current command by valve closing control of the valve control apparatus which concerns on Example 1 of this invention. It is. It is a block diagram which shows the structure of the current control system of the valve
  • valve control device of the present invention will be described with reference to the drawings.
  • FIG. 1 is a block diagram showing an overall configuration of a control system including a valve control device according to Embodiment 1 of the present invention.
  • the same reference numerals indicate the same or corresponding parts.
  • control system includes a valve control device 1, a position detection sensor 100, a drive circuit 110, a brushless DC motor 120, and a valve 130.
  • the actuator that drives the valve 130 is a brushless DC motor 120.
  • the brushless DC motor 120 includes a pulse output type position detection sensor 100 such as a Hall IC.
  • the resolution of the position detection sensor 100 changes by 6 steps in one electrical angle cycle, that is, the resolution of the electrical angle is 60 deg.
  • a spring (not shown) is connected to the valve 130 as an urging means.
  • a preload is applied to the spring in advance so that a return torque by the spring acts in the valve closing direction.
  • the brushless DC motor 120 is connected to a spring via a power transmission mechanism (not shown) linked to the motor rotation shaft.
  • the valve control device 1 gives a phase voltage command to the drive circuit 110 based on the target position command ⁇ m_com of the valve 130 and the electrical angle detection position ⁇ e (current position) obtained from the position detection sensor 100. Then, the drive circuit 110 switches a power element (not shown) by the PWM method based on a phase voltage command that is an output of the valve control device 1.
  • FIG. 2 is a block diagram showing the configuration of the valve control device according to the first embodiment of the present invention.
  • the valve control device 1 controls the return torque by controlling the motor that applies the torque by the brushless DC motor 120 opposite to the return torque with respect to the valve mechanism to which the return torque is applied in the closing direction of the valve 130.
  • the valve control device 1 controls opening / closing of a valve based on a balance of motor torque, and includes a position control system 80, a current control system 10, and a detection position converter 95.
  • FIG. 3 is a block diagram showing the configuration of the position control system of the valve control device according to the first embodiment of the present invention as a continuous transfer function.
  • the position control system 80 includes Ki 81, Kp ⁇ s 82, s 2 83, a filter 84, Kd 85, (1 / s) 86, and a saturation processor 87.
  • FIG. 4 is a block diagram showing the configuration of the current control system of the valve control device according to the first embodiment of the present invention.
  • the current control system 10 includes a current command distributor 20, two current controllers 30, a saturation processor 40, a filter 50, an induced voltage estimator 60, and two current estimators 70.
  • a phase corrector 90 is provided.
  • the position control system 80 is provided in the target position (target opening) command ⁇ m_com of the valve 130 from the computer upstream of the valve control device 1 and the brushless DC motor 120.
  • the q-axis current command iq_com is generated based on the mechanical angle detection position ⁇ m obtained by converting the electrical angle detection position ⁇ e detected by the detected position detection sensor 100 with the detection position converter 95.
  • the detection position converter 95 performs conversion processing from electrical angle to mechanical angle. Specifically, the mechanical angle detection position ⁇ m is converted to ⁇ e / p, where p is the number of motor pole pairs.
  • a specific configuration of the position control system 80 for generating the q-axis current command iq_com is, for example, differential precedence type PI-D control of a speed type algorithm as shown in FIG.
  • the configuration of the position control system 80 may be another configuration such as I-PD control in addition to the differential preceding PI-D control.
  • the PI calculation (81, 82) for the deviation between the target position command ⁇ m_com and the mechanical angle detection position ⁇ m, and the differential calculation (83) for the mechanical angle detection position ⁇ m and the differential value are smoothed.
  • the q-axis current command iq_com is obtained by subtracting the difference value from the value subjected to the filtering process (84) and multiplying the difference value by the speed gain Kd (85).
  • the output of the q-axis current command iq_com is limited by the saturation processor 87. Further, when the q-axis current command iq_com exceeds the output limit, the integration calculation (81) by the action of the integral gain Ki is stopped. Winding up is performed. By doing in this way, the overshoot of the position response caused by the winding up of the operation amount by the integral calculation (windup) is suppressed.
  • the current control system 10 that outputs a phase voltage command to the drive circuit 110 based on the q-axis current command iq_com that is the output of the position control system 80 and the electrical angle detection position ⁇ e obtained from the position detection sensor 100. Will be described with reference to FIG.
  • the current control system 10 includes the current command distributor 20, the current controller 30, the saturation processor 40, the filter 50, the induced voltage estimator 60, the current estimator 70, and the phase corrector 90. .
  • the current command distributor 20 performs a process of distributing the q-axis current command iq_com to the U-phase current command iu_com and the V-phase current command iv_com.
  • the electrical angle resolution is as coarse as 60 deg
  • the command distribution process 3 In the current control of the phase motor, the calculation by the general trigonometric function is not adopted in consideration of the calculation load reduction.
  • the U-phase current command and the V-phase current command which are ideally obtained as a sine wave by arithmetic processing using a trigonometric function, are detected from the electrical angle detection position ⁇ e.
  • a process of approximating a rectangular wave shape is performed for each section.
  • FIG. 5 shows a U-phase current command and a V-phase current command during forward rotation of the motor
  • FIG. 6 shows a U-phase current command and a V-phase current command during reverse rotation of the motor.
  • the solid line indicates a rectangular wave phase current command approximated to a rectangular wave shape
  • the broken line indicates an ideal sine wave phase current command by trigonometric function calculation.
  • a specific waveform shaping method from a sine wave phase current command to a rectangular wave phase current command is summarized as shown in FIG. 7 with reference to FIGS.
  • the rotation direction of the motor is determined by the sign of the q-axis current command iq_com, the sign of the electrical angular velocity ⁇ e_dot obtained by calculating the electrical angle detection position ⁇ e by the filter 50 configured in the current control system 10, or the q-axis current command iq_com and the electric What is necessary is just to determine with both codes
  • the half amplitude i_max of the phase current command is calculated by the following equation (1).
  • a phase current command can be generated without using a trigonometric function.
  • Iu_com-iu_est is a current deviation obtained by calculating a difference between the U-phase current command iu_com and the V-phase current command iv_com, which are outputs of the current command distributor 20, and a U-phase estimated current iu_est and a V-phase estimated current iv_est described later.
  • Iv_com-iv_est is used to generate a U-phase voltage command and a V-phase voltage command.
  • the U-phase voltage command and the V-phase voltage command are configured only with a proportional gain so as to obtain a controller output proportional to a current deviation, which is a known technique.
  • the saturation processor 40 limits one amplitude of the U-phase voltage command, the V-phase voltage command, and the W-phase voltage command according to the voltage level on the drive circuit 110 side.
  • the W-phase voltage command vw_b is calculated by the following equation (2), with the U-phase voltage command and the V-phase voltage command obtained as outputs of the current controller 30 as vu_b and vv_b, respectively.
  • the induced voltage estimator 60 calculates the U-phase estimated induced voltage eu_est and the V-phase estimated induced voltage ev_est using the electrical angle detection position ⁇ e, the electrical angular velocity ⁇ e_dot, and the measured values of the induced voltage of the brushless DC motor 120.
  • the electrical angular velocity ⁇ e_dot is obtained as an output of the filter 50 that differentiates the electrical angle detection position ⁇ e detected for each electrical angle resolution and smoothes the differential value, and the electrical angular velocity ⁇ e_dot with small vibration by the action of the filter 50 is obtained. It can be calculated.
  • the measured value of the induced voltage of the brushless DC motor 120 is obtained, for example, as shown by a broken line in FIG.
  • the vertical axis represents the induced voltage normalized by dividing the induced voltage by the motor rotation speed at the time of measurement.
  • the normalized induced voltage includes harmonic components such as a triple electrical angle component in addition to a single electrical angle component (basic harmonic).
  • the induced voltage estimator 60 uses only the induced voltage of the electrical angle 1 time component as information. Specifically, the normalized induced voltage indicated by the broken line in FIG. 9 is approximated by least squares up to a component with an electrical angle of 1 and the obtained half amplitude v_norm is used for the estimation calculation. Note that v_norm is a positive real number.
  • the rotation direction of the motor may be determined by the sign of the electrical angular velocity ⁇ e_dot calculated from the electrical angle detection position ⁇ e by the filter 50 configured in the current control system 10. Further, the half amplitude v_max of the induced voltage is calculated by the following equation (3).
  • the electrical angle detection position ⁇ e, the electrical angular velocity ⁇ e_dot, and the induced voltage measurement value of the brushless DC motor 120 are approximated by a sine wave only for the electrical angle 1-fold component.
  • the waveform shaped into a rectangular waveform for each detection section of the electrical angle (the detection section corresponds to the electrical angle resolution) is used as the U-phase estimated induced voltage eu_est and V-phase estimated. Calculated as the induced voltage ev_est.
  • the current estimator 70 includes a U-phase voltage command vu_com and a V-phase voltage command vv_com obtained as outputs of the saturation processor 40, and a U-phase estimate obtained as an output of the induced voltage estimator 60 described above. Based on the induced voltage eu_est and the V-phase estimated induced voltage ev_est, the phase currents flowing in the U phase and the V phase are to be estimated.
  • the gain of the current control system 10 is set high enough to prevent current response from oscillating, that is, current control.
  • the bandwidth is widened to improve responsiveness.
  • the estimation accuracy of the induced voltage and the modeling accuracy of the current estimator 70 are good, and the gain of the current control system 10 (proportionality of the current controller 30). If the gain is set so high that the current response does not oscillate, the actual phase current matches the estimated phase current, and the current response is improved. Therefore, in such a state, it is considered that the phase voltage command matches the actual phase voltage of the three-phase motor.
  • a current estimator 70 for example, as a primary delay element with a winding resistance per phase as R and a winding inductance per phase as L. Model simply.
  • the specific calculation of the current estimator 70 is given by the following equations (4) and (5) with the sampling period of the current control system 10 as ⁇ Tc.
  • n is a sampling number and is a positive integer.
  • the above is the calculation method of the U-phase estimated current iu_est and the V-phase estimated current iv_est when the current estimator 70 is modeled as a first-order lag element.
  • the estimated induced voltages of the U phase and the V phase obtained by the induced voltage estimator 60, the phase voltage commands of the U phase and the V phase, and the voltage per phase of the three-phase motor
  • the estimated current of each phase calculated by Equation (4) and Equation (5) is fed back to the phase current command.
  • a virtual current feedback that does not require a current sensor can be configured.
  • the acquisition of the electrical angle detection position is delayed due to the influence of the sampling period of the current control system 10, so that the current command calculated by the current control system 10 is obtained.
  • the phase current command that is the output of the distributor 20 and the estimated induced voltage that is the output of the induced voltage estimator 60 are delayed with respect to the response of the actual phase current or the actual induced voltage. .
  • a new motor current that is used for the control calculation by the current control system 10 is used for the phase delay amount of the electrical angle detection position due to the influence of the sampling period of the current control system 10.
  • phase delay amount d ⁇ e is calculated by the following equation (6), where ⁇ Tc is the sampling period of the current control system 10, and T_ ⁇ e is one period of electric angle during motor driving.
  • phase current command that is the output of the current command distributor 20 and the estimated induced voltage that is the output of the induced voltage estimator 60 are added with the phase delay amount d ⁇ e set by the phase corrector 90, and the broken line in FIG. Are calculated by the current command distributor 20 and the induced voltage estimator 60, and each output referring to the new motor current position is applied.
  • the phase delay amount d ⁇ e is set to a fixed value determined from the maximum angular velocity of the motor. By doing so, it is possible to suppress the delay in calculation of the current command of each phase and the calculation delay of the induced voltage due to the sampling period of the current control system 10.
  • the induced voltage and the phase current of the brushless DC motor 120 being driven can be accurately estimated by the position detection sensor 100 having a rough electrical angle resolution.
  • the virtual current feedback is configured in the current control system 10 using the estimated value, a current sensor is unnecessary and the cost of the control system can be reduced.
  • valve control device 1 The basic operation of the valve control device 1 according to the first embodiment has been described above. Next, in order to show the effect of the valve control device 1, a calculation example will be specifically described below.
  • the valve 130 has a configuration in which a return torque acts in the valve closing direction, and in order to show an effect that a motor torque opposed to the return torque that relaxes the change in the motor angular velocity immediately before the valve 130 is fully closed can be effectively generated, a fully opened 230 step is shown.
  • a fully opened 230 step is shown to the fully closed 0 step.
  • Frictional loads that can change depending on the ambient temperature, motor winding resistance, winding inductance, and the like give values corresponding to the ambient temperature.
  • the electrical angle detection position used in the current control system 10 is delayed due to the influence of the control cycle as the motor angular speed increases.
  • the correction amount of the electrical angle phase delay is set to a fixed value of 45 deg in the phase corrector 90. The calculation of each of the current command distributor 20 and the induced voltage estimator 60 is taken into consideration.
  • FIGS. 12 and 13 show various time waveforms of the phase induced voltage and the phase current during the actual operation of the valve shown in FIG. 14, and the time scales of the horizontal axes from FIGS. 12 to 14 are all the same. .
  • FIG. 12 shows the behavior of the actual induced voltage of each phase with a broken line and the behavior of the estimated induced voltage with a solid line.
  • the electrical angle detection position ⁇ e taken in every sampling period of the current control system 10 cannot be changed in a regular order as the valve closing speed of the valve 130 increases, that is, 6 steps in one electrical angle period. It is what has occurred. However, this phenomenon can be improved, for example, by reducing the sampling period of the current control system 10.
  • FIG. 13 shows the behavior of the actual phase current of each phase by a broken line and the behavior of the estimated current of each phase by a solid line.
  • (a) shows various time responses at an environmental temperature of 30 ° C.
  • (b) shows various time responses at an environmental temperature of 120 ° C.
  • the valve position command and valve The actual position is indicated by a broken line and a solid line
  • the motor angular velocity is indicated by a solid line on the second stage
  • the q-axis current command is indicated by a solid line on the third stage.
  • (B) has the same notation as (a).
  • the q-axis current command is effectively generated opposite to the direction of return torque operation in the low-speed rotation range before full closure at both the environmental temperature of 30 ° C and the environmental temperature of 120 ° C, and the actual valve position does not collide with the machine end (0step). You can see the soft landing.
  • the mechanical characteristics such as the friction load of the valve 130 and the electrical characteristics such as the winding resistance of the motor 120 may change depending on the environmental temperature, but the response time from the fully opened 230 step to the 10% opening (23 step). Since the difference in response time is as small as 11 ms even when the ambient temperature changes to 162 ms at the ambient temperature of 30 ° C. and 151 ms at the ambient temperature of 120 ° C., a stable valve behavior with little variation in response time can be realized.
  • the actuator is the brushless DC motor 120 and the valve control device 1 having the brushless DC motor 120 provided with the pulse output type position detection sensor 100 has a sensor output with a rough electrical angle resolution.
  • the phase current command and the induced voltage are calculated, and the influence of the sampling period is suppressed by performing phase correction on the position used for current control, and current that provides virtual current feedback that can accurately estimate the phase current
  • the valve 130 is controlled while efficiently generating a current corresponding to the torque and increasing the response speed of the valve 130. Soft landing is possible without colliding with the machine end.
  • FIG. 15 is a block diagram showing the configuration of the current control system of the valve control apparatus according to Embodiment 2 of the present invention.
  • the current control system 10A of the valve control device 1 according to the second embodiment of the present invention determines the phase delay amount d ⁇ e from the maximum motor angular velocity in the current control system 10 of the valve control device 1 according to the first embodiment.
  • a phase corrector 90A that provides an optimal phase correction amount according to the motor angular velocity is used instead of the fixed value set by the phase corrector 90. Therefore, in the first embodiment, the phase correction amount (same as d ⁇ e) is constant, but in this second embodiment, the phase correction amount also changes according to the motor angular velocity.
  • the valve control device 1 includes a phase corrector 90A that provides an optimal phase correction amount according to the motor angular velocity in the current control system 10 described in the first embodiment, so that the valve 130 When the motor angular velocity is increased by the opening / closing control, the phase delay in taking in the electrical angle detection position due to the influence of the sampling period of the current control system 10A is automatically adjusted, and the valve response, particularly when the motor is started or stopped The purpose is to improve the characteristics.
  • the phase correction is performed by the phase corrector 90A instead of the phase corrector 90 of the first embodiment.
  • the phase corrector 90A corrects the phase of the phase lag in capturing the electrical angle detection position due to the influence of the sampling period of the current control system 10A.
  • the specific phase correction amount d ⁇ e is calculated by the following equation (7), where the sampling period of the current control system 10A is ⁇ Tc. Then, referring to the new motor current position in consideration of the phase correction amount d ⁇ e, the current command distributor 20 calculates the phase current command of each phase, and the induced voltage estimator 60 calculates the estimated induced voltage of each phase. .
  • This equation (7) is a function of the electrical angular velocity ⁇ e_dot, and therefore the optimum phase correction amount can be automatically adjusted for any motor angular velocity.
  • the phase lag of each of the phase current command and the estimated induced voltage calculated by the current control system 10A is adjusted to be small with respect to the phase of each of the actual phase current and the actual induced voltage. Can be improved.
  • FIG. 16 is a block diagram showing the configuration of the current control system of the valve control apparatus according to Embodiment 3 of the present invention.
  • the valve control device 1 according to the third embodiment of the present invention calculates the estimated current of each phase using the actual phase voltage instead of the phase voltage command. To do.
  • the U phase actual voltage and the V phase actual voltage are smoothed by the filter 91 and the filter 92, respectively, for use in current estimation in order to attenuate noise synchronized with the PWM carrier frequency.
  • winding inductance L and the winding resistance R of the current estimator 70 shown in the first to third embodiments are, for example, fixed arithmetic values of values at the environmental temperature upper limit value and values at the environmental temperature lower limit value. If temperature information is given from a host controller located upstream of the valve control device 1 (not shown), a previously measured temperature and winding resistance and temperature and winding inductance map is used. The value may be updated.
  • the q-axis current command which is the output of the position control system 80, is corrected with reference to the motor power supply voltage in order to cope with the fluctuation of the motor power supply voltage when the valve is driven. May be.
  • the rectangular wave approximation calculation of the phase current command and the estimated induced voltage is shown in the first embodiment. It can be carried out in the same manner as described above.
  • valve control device 10, 10A, 10B current control system, 20 current command distributor, 30 current controller, 40 saturation processor, 50 filter, 60 induced voltage estimator, 70 current estimator, 80 position control system, 87 Saturation processor, 90, 90A phase corrector, 91, 92 filter, 95 detection position converter, 100 position detection sensor, 110 drive circuit, 120 brushless DC motor, 130 valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 リターントルクが作用するバルブ機構に対して、電気角分解能が粗い位置検出センサが具備されたブラシレスDCモータで駆動されるバルブの応答を高速化するとともに、バルブが機械端へ衝突せずにソフトランディングできるバルブ制御装置を得る。バルブの開方向もしくは閉方向にリターントルクが付与されるバルブ機構の開閉制御において、ブラシレスDCモータの目標位置指令とパルス出力式の位置検出センサを用いた粗いモータの現在位置との位置偏差をもとにq軸電流指令を出力する位置制御系と、q軸電流指令とパルス出力式の位置検出センサを用いた粗いモータの現在位置をもとに相電圧指令を電流センサレスで出力せしめる仮想的な電流フィードバックが組まれた電流制御系とを設けた。

Description

バルブ制御装置
 この発明は、例えば、電子スロットルや排気ガス再循環に用いられるバルブが、ブラシレスDCモータにより駆動されるバルブ制御装置に関するものである。
 モータで駆動されるシステムの速度制御や位置制御をする際に、指令と実値の偏差に応じてモータへの電圧指令を生成する「電圧制御方式」と、モータの巻線に流れる実電流をフィードバックし、電流指令に実電流が一致するように制御する「電流制御方式」がある。
 後者の電流制御方式は、モータ巻線のインダクタンス成分に強引に打ち勝って制御をかけるため、電流制御系の制御帯域内で当該インダクタンス成分による電流遅れを無視でき、モータの低速域から高速域まで安定したトルク制御を可能とする。一方、電圧制御方式は、電圧指令に対してモータ巻線のインダクタンス成分による電流遅れの影響を無視できないため、電流制御方式に比較してトルクの追従性が悪化し、応答が振動的になる欠点がある。
 ところで、従来技術として、内燃機関のアクチュエータ制御装置において、運転状態を制御するトルクモータに対する要求電流に基づく要求DUTYに応じて出力DUTYを設定する際に、回路上の制約などに起因し要求DUTYに応じた出力DUTYが設定されない場合を回避するために、出力DUTYが電源電圧値と電流経路の抵抗値とに応じた出力電流への変換処理と、さらにトルクモータのコイルインダクタンス成分に応じて平滑化処理された推定電流を用いて逆起電力を推定し、これを要求DUTYに加算することで、要求DUTYと出力DUTYを一致させるものがある(例えば、特許文献1参照)。
 また、付勢手段によるリターンスプリングと直流モータのモータトルクとのトルクバランスによりバルブを開閉動作するトルクバランス駆動方式のバルブに対して、直流モータをフィードフォワード制御系とフィードバック制御との組み合わせによって制御し、さらに、位置の定常偏差に応じて上記フィードフォワード制御系とフィードバック制御による操作量を補正するものがある(例えば、特許文献2参照)。
 特許文献1記載の発明によれば、アクチュエータの応答遅れがなく追従安定性が向上するとされている。
 また、特許文献2記載の発明によれば、フィードフォワード制御系によって、リターントルク分のモータトルク発生用の駆動電圧がバルブ開閉方向に応じて常に加えられ、それによる現在値と目標値との位置偏差分を補うように、フィードバック制御系(特許文献2ではPID制御)が作用するため、バルブの開閉方向によらずフィードバック制御量を小さくして振動の発生が抑制できるとされている。
 さらに、特許文献2記載の発明によれば、位置偏差に応じてフィードフォワード制御系で演算される駆動デューティとフィードバック制御系の演算部の係数を補正することで、環境温度などの要因で変化するバルブの作動特性に応じた最適な制御ができるとされている。
特開2000-130229号公報 特開2000-234564号公報
 しかしながら、特許文献1記載のアクチュエータ制御装置では、応答が高速になるにつれて制御演算におけるサンプリング周期の影響を無視できずに現在検出位置に遅れが生じ、このためトルクモータの巻線電流を正確に推定できないため、高速駆動時に応答が振動的になるという課題があった。また、スロットル開度センサの分解能が粗い場合、逆起電圧演算処理で要す角速度情報が振動的となり、逆起電圧を正確に推定できない結果、要求DUTYと出力DUTYが一致しないという課題があった。さらに、特許文献1記載のアクチュエータはブラシ付DCモータであり、ブラシの保守性の課題もあった。
 また、特許文献2記載のバルブ制御装置は、目標値と現在値との偏差に応じたモータの駆動デューティをPID制御で生成する電圧制御方式であり、当該方式でリターントルクが作用する方向にバルブを制御する場合、リターントルクの加速作用でモータが高速回転するにつれて、位置制御系の応答がモータトルク変化に追従できなくなる。その結果、例えば、リターントルクが作用する方向が閉弁方向の場合、トルクの追従遅れで閉弁動作の際にバルブの応答が振動的になる、あるいはバルブが機械端と衝突してしまうという課題があった。
 本発明は、前記のような課題を解決するためになされたものであり、アクチュエータがブラシレスDCモータで、当該ブラシレスDCモータにパルス出力式のセンサを具備したバルブ制御装置において、電気角分解能の粗いセンサ出力をもとに相電流指令と誘起電圧を演算し、さらにサンプリング周期の影響を電流制御に用いる位置に対して位相補正を行うことで抑制し、精度良く相電流を推定できる仮想的な電流フィードバックをなす電流制御系を有し、当該制御系によって直接的にモータトルクを制御するため、トルクに寄与するトルク分電流を効率的に発生させバルブの応答速度を高速化させつつ、バルブを機械端と衝突させずにソフトランディングできるバルブ制御装置を得ることを目的とする。
 本発明に係るバルブ制御装置は、バルブの開方向もしくは閉方向にリターントルクが付与されるバルブ機構に対して、前記リターントルクと対向にモータによるトルクを付与するモータの制御によって前記リターントルクとモータトルクのバランスでバルブを開閉制御するバルブ制御装置であって、位置検出センサで検出されたモータの現在位置である電気角検出位置を機械角検出位置に換算する検出位置換算器と、モータの目標位置指令と前記機械角検出位置との偏差に基づきq軸電流指令を出力する位置制御系と、前記電気角検出位置に基づき前記q軸電流指令をモータ各相の相電流指令に分配し、前記相電流指令とフィードバックされた各相の推定電流の電流偏差に基づき各相の相電圧指令を生成し、前記電気角検出位置及び予め実測された誘起電圧に基づき各相の推定誘起電圧を求め、前記推定誘起電圧及び前記相電圧指令に基づき各相の推定電流を求めるとともに、最終的に実使用電圧範囲内で飽和処理した相電圧指令を出力する電流制御系とを備えるものである。
 本発明に係るバルブ制御装置によれば、電気角分解能が粗いセンサで、仮想的な電流フィードバックを有する電流制御系を構成できる。そして、当該電流制御系で直接的にトルクを制御するため、モータの応答を高速化できる。また、当該電流制御系による広帯域なトルク制御で特にモータ低速回転時にリターントルクと対向したモータトルクを効果的に発生させ、リターントルクが加速側に生じてもモータトルクで速度を緩和し、バルブが機械端と衝突することを防止できる。さらに、電流センサも不要な構成のため、制御システムを低コスト化できる。
この発明の実施例1に係るバルブ制御装置を含む制御システムの全体構成を示すブロック図である。 この発明の実施例1に係るバルブ制御装置の構成を示すブロック図である。 この発明の実施例1に係るバルブ制御装置の位置制御系の構成を連続系の伝達関数で示すブロック図である。 この発明の実施例1に係るバルブ制御装置の電流制御系の構成を示すブロック図である。 この発明の実施例1に係るバルブ制御装置のモータ正転時のU相電流指令とV相電流指令を示す図である。 この発明の実施例1に係るバルブ制御装置のモータ逆転時のU相電流指令とV相電流指令を示す図である。 この発明の実施例1に係るバルブ制御装置の正弦波相電流指令から矩形波相電流指令への具体的な波形整形方法を示す図である。 この発明の実施例1に係るバルブ制御装置の誘起電圧の基本調波に対して矩形波誘起電圧を生成する様子を示す図である。 この発明の実施例1に係るバルブ制御装置の正規化誘起電圧を基本調波で近似した様子を示す図である。 この発明の実施例1に係るバルブ制御装置の各相の誘起電圧を推定するための具体的な波形整形方法を示す図である。 この発明の実施例1に係るバルブ制御装置のモータ電気角の位相補正を示す図である。 この発明の実施例1に係るバルブ制御装置のバルブ閉弁制御で環境温度30℃と120℃それぞれの推定誘起電圧と実誘起電圧の挙動をシミュレーションした結果を示す図である。 この発明の実施例1に係るバルブ制御装置のバルブ閉弁制御で環境温度30℃と120℃それぞれの推定相電流と実相電流の挙動をシミュレーションした結果を示す図である。 この発明の実施例1に係るバルブ制御装置のバルブ閉弁制御で環境温度30℃と120℃それぞれのバルブ位置指令、バルブ実位置、モータ角速度、q軸電流指令の挙動をシミュレーションした結果を示す図である。 この発明の実施例2に係るバルブ制御装置の電流制御系の構成を示すブロック図である。 この発明の実施例3に係るバルブ制御装置の電流制御系の構成を示すブロック図である。
 以下、本発明のバルブ制御装置の好適な実施例につき図面を用いて説明する。
 この発明の実施例1に係るバルブ制御装置について図1から図14までを参照しながら説明する。図1は、この発明の実施例1に係るバルブ制御装置を含む制御システムの全体構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
 図1において、制御システムは、バルブ制御装置1と、位置検出センサ100と、駆動回路110と、ブラシレスDCモータ120と、バルブ130とが設けられている。
 図1において、バルブ130を駆動するアクチュエータは、ブラシレスDCモータ120である。また、ブラシレスDCモータ120には、例えば、ホールICのようなパルス出力式の位置検出センサ100が具備されている。この位置検出センサ100の分解能は、電気角1周期で6ステップ変化、すなわち電気角の分解能は60degとする。
 バルブ130には、付勢手段として図示しないスプリングが連結されており、例えば、スプリングによるリターントルクがバルブの閉弁方向に作用するように予めスプリングにはプレロードが与えられているものとする。一方、ブラシレスDCモータ120には、モータ回転軸と連動した図示しない動力伝達機構を介してスプリングと連結されており、バルブが閉弁動作する際には、プレロードによるトルク(リターントルク)でバルブが機械端に押し当てられた状態となる。
 バルブ制御装置1は、バルブ130の目標位置指令θm_comと位置検出センサ100から得られる電気角検出位置θe(現在位置)をもとに、駆動回路110に対して相電圧指令を与えるものである。そして、駆動回路110では、バルブ制御装置1の出力である相電圧指令をもとに、PWM方式で図示しないパワー素子をスイッチングする。
 図2は、この発明の実施例1に係るバルブ制御装置の構成を示すブロック図である。
 図2において、バルブ制御装置1は、バルブ130の閉方向にリターントルクが付与されるバルブ機構に対して、このリターントルクと対向にブラシレスDCモータ120によるトルクを付与するモータの制御によってリターントルクとモータトルクのバランスでバルブを開閉制御するバルブ制御装置1であって、位置制御系80と、電流制御系10と、検出位置換算器95とが設けられている。
 図3は、この発明の実施例1に係るバルブ制御装置の位置制御系の構成を連続系の伝達関数で示すブロック図である。
 図3において、位置制御系80は、Ki81と、Kp・s82と、s283と、フィルタ84と、Kd85と、(1/s)86と、飽和処理器87とが設けられている。
 図4は、この発明の実施例1に係るバルブ制御装置の電流制御系の構成を示すブロック図である。
 図4において、電流制御系10は、電流指令分配器20と、2つの電流制御器30と、飽和処理器40と、フィルタ50と、誘起電圧推定器60と、2つの電流推定器70と、位相補正器90とが設けられている。
 つぎに、この実施例1に係るバルブ制御装置の動作について図面を参照しながら説明する。
 図1、図2及び図3に示すように、位置制御系80は、バルブ制御装置1の上流にあるコンピュータからのバルブ130の目標位置(目標開度)指令θm_comと、ブラシレスDCモータ120に具備された位置検出センサ100で検出される電気角検出位置θeを検出位置換算器95で換算した機械角検出位置θmとに基づき、q軸電流指令iq_comを生成する。検出位置換算器95では、電気角から機械角への換算処理を行う。具体的には、モータ極対数をpとして、機械角検出位置θmをθe/pで換算する。
 ここで、q軸電流指令iq_comを生成する具体的な位置制御系80の構成は、例えば、図3に示すような速度型アルゴリズムの微分先行型PI-D制御とする。なお、位置制御系80の構成は、微分先行型PI-D制御以外に、I-PD制御などの別の構成でもよい。このように、目標位置指令θm_comと機械角検出位置θmとの偏差に対してPI演算(81、82)した値と、機械角検出位置θmに対して微分演算(83)と当該微分値を平滑化するフィルタ処理(84)を施した値とを差分し、当該差分値に対して速度ゲインKdを乗算(85)することでq軸電流指令iq_comを得る。
 なお、q軸電流指令iq_comには飽和処理器87で出力制限し、さらに、q軸電流指令iq_comが出力制限を超えた場合には、積分ゲインKiの作用による積分演算(81)を中止するアンチワインドアップ処理を施す。このようにすることで、積分演算による操作量の巻上げ(ワインドアップ)が要因で発生する位置応答のオーバーシュートを抑制する。
 次に、位置制御系80の出力であるq軸電流指令iq_comと、位置検出センサ100から得られる電気角検出位置θeをもとに駆動回路110に対して相電圧指令を出力する電流制御系10の動作について、図4を用いて説明する。
 電流制御系10は、前述したように、電流指令分配器20、電流制御器30、飽和処理器40、フィルタ50、誘起電圧推定器60、電流推定器70、及び位相補正器90から構成される。
 まず、電流指令分配器20では、q軸電流指令iq_comをU相電流指令iu_comとV相電流指令iv_comに分配する処理を行うが、電気角分解能が60degと粗いため、当該指令分配の処理では3相モータの電流制御では一般的な三角関数による演算は演算負荷軽減を考慮して採用しない。
 本実施例では、図5と図6に示すように、理想的には三角関数を用いた演算処理によって正弦波として得られるU相電流指令とV相電流指令を、電気角検出位置θeの検出区間毎に矩形波状に近似する処理を行う。図5は、モータ正転時のU相電流指令とV相電流指令を、図6は、モータ逆転時のU相電流指令とV相電流指令をそれぞれ示している。なお、図5と図6において、実線は矩形波状に近似した矩形波相電流指令を、破線は三角関数演算による理想的な正弦波相電流指令をそれぞれ示している。
 正弦波相電流指令から矩形波相電流指令への具体的な波形整形方法は、図5と図6を参照して、図7のようにまとめられる。モータの回転方向は、q軸電流指令iq_comの符号、もしくは電気角検出位置θeを電流制御系10の内部に構成されるフィルタ50で演算した電気角速度θe_dotの符号、あるいはq軸電流指令iq_comと電気角速度θe_dotの両方の符号で判定すればよい。また、相電流指令の片振幅i_maxは次の式(1)で演算する。
Figure JPOXMLDOC01-appb-M000001
 以上、正弦波相電流指令を矩形波相電流指令へ波形整形する方法を説明した。このように、トルク変化に追従する目的で構成する電流制御系10については、位置検出センサ100の電気角分解能が60degと粗い場合でも、電気角の検出区間毎(検出区間は電気角分解能に対応)に矩形波状に波形整形することで、三角関数を用いることなく相電流指令を生成することができる。
 次に、電流制御器30について説明する。これは、電流指令分配器20の出力であるU相電流指令iu_comおよびV相電流指令iv_comと、後述するU相推定電流iu_estおよびV相推定電流iv_estをそれぞれ差分演算した電流偏差であるiu_com-iu_est、iv_com-iv_estから、U相電圧指令とV相電圧指令を生成するもので、例えば、公知技術である電流偏差に比例した制御器出力となるように比例ゲインのみで構成する。
 また、飽和処理器40は、駆動回路110側の電圧レベルに応じてU相電圧指令、V相電圧指令、W相電圧指令の片振幅を制限するものである。なお、W相電圧指令vw_bは、電流制御器30の出力として得られるU相電圧指令とV相電圧指令をそれぞれvu_b、vv_bとして、次の式(2)で演算する。
Figure JPOXMLDOC01-appb-M000002
 次に、誘起電圧推定器60について図8から図10までを用いて説明する。誘起電圧推定器60では、電気角検出位置θe、電気角速度θe_dot、ブラシレスDCモータ120の誘起電圧の測定値を用いて、U相推定誘起電圧eu_estとV相推定誘起電圧ev_estを演算する。
 電気角速度θe_dotは、電気角分解能毎に検出される電気角検出位置θeを微分し、さらに当該微分値を平滑化するフィルタ50の出力として得られ、フィルタ50の作用で振動が小さい電気角速度θe_dotを算出できる。
 ブラシレスDCモータ120の誘起電圧の測定値は、例えば、図9の破線のように得られる。なお、縦軸は測定時のモータ回転数で誘起電圧を除して正規化した誘起電圧である。図9のように、正規化した誘起電圧は、電気角1倍成分(基本調波)のほかに電気角3倍成分などの高調波成分を含んでいる。
 誘起電圧推定器60では、電気角1倍成分の誘起電圧のみを情報として用いる。具体的には、図9の破線で示した正規化誘起電圧を電気角1倍成分までで最小二乗近似し、得られた片振幅v_normを推定演算に用いる。なお、v_normは正の実数である。
 次に、電気角1倍成分の誘起電圧モデルを誘起電圧推定器60へ組み込んで、矩形波状に波形を整形する方法を示す。これは、図10のようにまとめられる。モータの回転方向は、電気角検出位置θeを電流制御系10の内部に構成されるフィルタ50で演算した電気角速度θe_dotの符号で判定すればよい。また、誘起電圧の片振幅v_maxは次の式(3)で演算される。
Figure JPOXMLDOC01-appb-M000003
 このように、誘起電圧推定器60では、図8に示すように、電気角検出位置θe、電気角速度θe_dot、ブラシレスDCモータ120の誘起電圧測定値を電気角1倍成分のみを正弦波近似して得られる正規化誘起電圧の片振幅v_normを用いて、電気角の検出区間毎(検出区間は電気角分解能に対応)に矩形波状に波形整形したものを、U相推定誘起電圧eu_est、V相推定誘起電圧ev_estとして演算する。
 次に、電流推定器70について説明する。図4に示すように、電流推定器70は、飽和処理器40の出力として得られるU相電圧指令vu_comならびにV相電圧指令vv_comと、前述した誘起電圧推定器60の出力として得られるU相推定誘起電圧eu_estならびにV相推定誘起電圧ev_estをもとに、U相とV相にそれぞれ流れる相電流を推定しようとするものである。
 例えば、3相モータの相電流を個別にフィードバックする一般的な電流制御では、電流制御系10のゲイン(電流制御器30の比例ゲイン)を電流応答が発振しない程度まで高く設定し、つまり電流制御の帯域幅を広くして応答性を向上させる。
 一方、電流センサが使えない、つまり電流フィードバックができない状態であっても、誘起電圧の推定精度や電流推定器70のモデル化の精度が良く、電流制御系10のゲイン(電流制御器30の比例ゲイン)を電流応答が発振しない程度まで高く設定していれば、実相電流と推定相電流は一致し、電流応答は向上する。そこで、このような状態においては、相電圧指令は3相モータの実相電圧と一致しているものと見なす。
 U相推定電流iu_estとV相推定電流iv_estを演算するために、電流推定器70として、例えば、1相あたりの巻線抵抗をR、1相あたりの巻線インダクタンスをLとした一次遅れ要素として簡易的にモデル化する。そして、電流推定器70の具体的な演算は、電流制御系10のサンプリング周期をΔTcとして、次の式(4)と式(5)で与える。ここで、nはサンプリング数であり、正の整数である。
Figure JPOXMLDOC01-appb-M000004
 以上が、電流推定器70を一次遅れ要素としてモデル化した場合のU相推定電流iu_estとV相推定電流iv_estの演算方法である。
 このように、バルブ130の開閉制御時に、誘起電圧推定器60によって得られるU相とV相の推定誘起電圧と、U相とV相の相電圧指令と、3相モータ1相あたりの電圧と電流の関係を一次遅れ要素でモデル化した電流推定器70を用いて、式(4)と式(5)で演算される各相の推定電流を相電流指令にフィードバックする構成とすることで、電流センサを不要とした仮想的な電流フィードバックを構成することができる。
 ところで、バルブ130の開閉制御でモータ角速度が増大していくと、電流制御系10のサンプリング周期の影響で電気角検出位置の取り込みが遅れてしまう結果、電流制御系10で演算している電流指令分配器20の出力である相電流指令と誘起電圧推定器60の出力である推定誘起電圧が、実相電流や実誘起電圧の応答に対して遅れる結果、バルブ130の応答性が低下する場合がある。このような状況の場合には、以下に説明するように、電流制御系10のサンプリング周期の影響による電気角検出位置の位相遅れ量分を、電流制御系10で制御演算に用いる新たなモータ現在位置に加味することで応答性低下を回避する。
 この位相遅れ量dθeは、電流制御系10のサンプリング周期をΔTc、モータ駆動中の電気角1周期をT_θeとして、次の式(6)で演算される。
Figure JPOXMLDOC01-appb-M000005
 そして、電流指令分配器20の出力である相電流指令や、誘起電圧推定器60の出力である推定誘起電圧には、位相補正器90で設定した位相遅れ量dθeを加味し、図11の破線に示すdθe分だけ位相補正した新たなモータ現在位置を電流指令分配器20と誘起電圧推定器60でそれぞれ演算し、当該新たなモータ現在位置を参照した各出力が適用される。本実施例1において、当該位相遅れ量dθeは、例えば、モータの最大角速度から決定した固定値を設定する。こうすることで、電流制御系10のサンプリング周期による各相の電流指令の演算遅れや、誘起電圧の演算遅れを抑制できる。
 この実施例1によれば、電気角分解能が粗い位置検出センサ100で、駆動中のブラシレスDCモータ120の誘起電圧と相電流を精度良く推定できる。また、当該推定値を用いて仮想的な電流フィードバックを電流制御系10内で構成するため、電流センサが不要で、制御システムを低コスト化できる。
 以上、本実施例1に係るバルブ制御装置1の基本的な動作について説明した。次に、バルブ制御装置1の効果を示すために、以下、計算例を具体的に説明する。
 目標位置指令を230step全開(1stepは電気角で60degに相当)からバルブ130の機械端に相当する0step全閉のステップ入力を加えたときの各種の時間応答を図12、図13、及び図14にそれぞれ示す。
 バルブ130は閉弁方向にリターントルクが作用する構成であり、バルブ130が全閉する直前でモータ角速度変化を緩和するリターントルクに対向したモータトルクを有効に発生できる効果を示すために、全開230stepから全閉0stepの入力を与えている。また、環境温度に対しても安定したバルブの位置応答が得られる効果を示すために、環境温度を30℃と120℃の2ケースを想定する。環境温度によって変化しえる摩擦負荷やモータの巻線抵抗や巻線インダクタンスなどは、その環境温度に対応した数値を与える。また、電流制御系10で用いる電気角検出位置はモータ角速度増大に伴って制御周期の影響で遅れるが、ここでは、当該電気角位相遅れの補正量を位相補正器90において45degの固定値として、電流指令分配器20と誘起電圧推定器60それぞれの演算に考慮している。
 図12から図14までにおいて、(a)は環境温度が30℃の場合の挙動を、(b)は環境温度が120℃の場合の挙動をそれぞれ示している。さらに、図12と図13については、図14に示すバルブ実動作中の相誘起電圧と相電流の各種時間波形であって、図12から図14までの横軸の時間スケールはすべて同じである。
 図12は、各相の実誘起電圧の挙動を破線で、推定誘起電圧の挙動を実線で示している。破線で示した実誘起電圧と実線で示した推定誘起電圧とで、電圧振幅が異なる領域が現れる。これは、電流制御系10のサンプリング周期毎に取り込む電気角検出位置θeが、バルブ130の閉弁速度が増大するに伴って規則正しい順序、すなわち電気角1周期で6ステップの変化ができなくなるために発生しているものである。ただし、当該現象は、例えば、電流制御系10のサンプリング周期を小さくすることによって改善可能である。
 図13は、各相の実相電流の挙動を破線で、各相の推定電流の挙動を実線で示している。前記の推定誘起電圧の推定精度の影響があるものの、実相電流と推定相電流は良く一致し、この結果は、図4に示したように、モータの電気的特性を1相あたりの巻線抵抗成分と巻線インダクタンス成分の直列結合でモデル化した簡易的な一次遅れ要素でも仮想的な電流フィードバックが実現可能であることを明示している。
 図14において、環境温度30℃の各種時間応答を(a)で、環境温度120℃の各種時間応答を(b)としており、例えば(a)のグラフでは、1段目にバルブ位置指令とバルブ実位置をそれぞれ破線と実線で、2段目にモータ角速度を実線で、3段目にq軸電流指令を実線で示している。(b)も(a)と同様の表記である。環境温度30℃と環境温度120℃ともに、全閉手前の低速回転域でq軸電流指令がリターントルクの作用方向と対向に効果的に発生され、バルブ実位置は機械端(0step)に衝突なくソフトランディングできている様子が分かる。
 また、バルブ130の摩擦負荷のような機械的特性や、モータ120の巻線抵抗のような電気的特性は環境温度によって変化しえるが、全開230stepから10%開度(23step)に至る応答時間は、環境温度30℃で162ms、環境温度120℃で151msと、環境温度変化に対しても応答時間の差が11msと小さく、応答時間のばらつきの小さい安定したバルブの挙動を実現できている。
 以上、本実施例1によれば、アクチュエータがブラシレスDCモータ120で、このブラシレスDCモータ120にパルス出力式の位置検出センサ100を具備したバルブ制御装置1において、電気角分解能の粗いセンサ出力をもとに相電流指令と誘起電圧を演算し、さらにサンプリング周期の影響を電流制御に用いる位置に対して位相補正を行うことで抑制し、精度良く相電流を推定できる仮想的な電流フィードバックをなす電流制御系10を有し、当該電流制御系10によって直接的にモータトルクを制御するため、トルクに寄与するトルク分電流を効率的に発生させバルブ130の応答速度を高速化させつつ、バルブ130を機械端と衝突させずにソフトランディングできる。
 この発明の実施例2に係るバルブ制御装置について図15を参照しながら説明する。図15は、この発明の実施例2に係るバルブ制御装置の電流制御系の構成を示すブロック図である。
 図15において、本発明の実施例2に係るバルブ制御装置1の電流制御系10Aは、上記の実施例1に係るバルブ制御装置1の電流制御系10において位相遅れ量dθeをモータ最大角速度から決まる固定値として位相補正器90で設定していたものを、モータ角速度に応じて最適な位相補正量を与える位相補正器90Aを備えることが異なる。従って、上記の実施例1では、位相補正量(dθeと同一)が一定であったことに対して、この実施例2では、モータ角速度に応じて位相補正量も変化する。
 本実施例2に係るバルブ制御装置1は、上記の実施例1で説明した電流制御系10において、モータ角速度に応じて最適な位相補正量を与える位相補正器90Aを備えることで、バルブ130の開閉制御でモータ角速度が増大していく際の電流制御系10Aのサンプリング周期の影響による電気角検出位置の取り込みの位相遅れを自動で調整せしめ、バルブの応答性、特にモータ始動時やモータ停止時の特性を向上することを目的としている。
 図15では、実施例1の位相補正器90の代わりに、位相補正器90Aで位相補正する。この位相補正器90Aは、先に述べたように、電流制御系10Aのサンプリング周期の影響による電気角検出位置の取り込みの位相遅れ分の位相を補正する。
 その具体的な位相補正量dθeは、電流制御系10Aのサンプリング周期をΔTcとして、次の式(7)で演算される。そして、当該位相補正量dθeを加味した新たなモータ現在位置を参照して、電流指令分配器20で各相の相電流指令を、誘起電圧推定器60で各相の推定誘起電圧をそれぞれ演算する。
Figure JPOXMLDOC01-appb-M000006
 この式(7)は電気角速度θe_dotの関数となっており、従って、任意のモータ角速度に対して最適な位相補正量を自動で調整することができる。その結果、実相電流と実誘起電圧それぞれの位相に対して、電流制御系10Aで演算している相電流指令と推定誘起電圧それぞれの位相遅れ分が小さくなるように調整され、バルブ130の応答性を向上できる。
 この発明の実施例3に係るバルブ制御装置について図16を参照しながら説明する。図16は、この発明の実施例3に係るバルブ制御装置の電流制御系の構成を示すブロック図である。
 本発明の実施例3に係るバルブ制御装置1は、上記の実施例1に係るバルブ制御装置1の電流制御系10において、相電圧指令の代わりに実相電圧を用いて各相の推定電流を演算するものである。
 実相電圧を用いる場合、PWMキャリア周波数に同期したノイズを減衰せしめるためにU相実電圧、V相実電圧をそれぞれフィルタ91、フィルタ92で平滑化して電流推定に利用する。なお、フィルタ91、92には電流制御系10Bのサンプリング周期による位相遅れを補正するための位相補正演算を追加してもよい。このような構成とすることで、実施例1あるいは実施例2と同等な効果を得ることができる。
 なお、実施例1から実施例3までに示した電流推定器70の巻線インダクタンスLと巻線抵抗Rは、例えば、環境温度上限値における値と環境温度下限値における値の算術平均を固定値として用いても良いし、図示しないバルブ制御装置1の上流に位置する上位コントローラより温度情報が与えられれば、予め計測しておいた温度と巻線抵抗および温度と巻線インダクタンスのマップを用いて、値を更新しても良い。
 さらに、実施例1から実施例3までにおいて、バルブ駆動時のモータ電源電圧の変動に対処するために、モータ電源電圧を参照して、位置制御系80の出力であるq軸電流指令を補正してもよい。
 また、バルブ機構を駆動するブラシレスDCモータ120に具備される位置検出センサ100の電気角分解能が30degの場合でも、相電流指令や推定誘起電圧の矩形波近似演算は、先の実施例1で示した方法と同様に実施できる。
 1 バルブ制御装置、10、10A、10B 電流制御系、20 電流指令分配器、30 電流制御器、40 飽和処理器、50 フィルタ、60 誘起電圧推定器、70 電流推定器、80 位置制御系、87 飽和処理器、90、90A 位相補正器、91、92 フィルタ、95 検出位置換算器、100 位置検出センサ、110 駆動回路、120 ブラシレスDCモータ、130 バルブ。

Claims (4)

  1.  バルブの開方向もしくは閉方向にリターントルクが付与されるバルブ機構に対して、前記リターントルクと対向にモータによるトルクを付与するモータの制御によって前記リターントルクとモータトルクのバランスでバルブを開閉制御するバルブ制御装置であって、
     位置検出センサで検出されたモータの現在位置である電気角検出位置を機械角検出位置に換算する検出位置換算器と、
     モータの目標位置指令と前記機械角検出位置との偏差に基づきq軸電流指令を出力する位置制御系と、
     前記電気角検出位置に基づき前記q軸電流指令をモータ各相の相電流指令に分配し、前記相電流指令とフィードバックされた各相の推定電流の電流偏差に基づき各相の相電圧指令を生成し、前記電気角検出位置及び予め実測された誘起電圧に基づき各相の推定誘起電圧を求め、前記推定誘起電圧及び前記相電圧指令に基づき各相の推定電流を求めるとともに、最終的に実使用電圧範囲内で飽和処理した相電圧指令を出力する電流制御系と
     を備えたバルブ制御装置。
  2.  前記電流制御系は、
      電流制御系のサンプリング周期で遅れるモータの現在位置の位相を補正するための位相補正量を出力する位相補正器と、
      前記位相補正量及び前記電気角検出位置に基づき前記q軸電流指令をモータ各相の相電流指令に分配する電流指令分配器と、
      前記相電流指令とフィードバックされた各相の推定電流の差分演算で得られる電流偏差に基づき相電圧指令を生成する電流制御器と、
      前記相電圧指令を実使用電圧範囲内で飽和処理して出力する飽和処理器と、
      前記モータの現在位置である電気角検出位置を平滑化してモータの現在速度である電気角速度を求めるフィルタと、
      前記位相補正量、前記電気角検出位置、前記電気角速度及び予め実測された誘起電圧に基づき各相の誘起電圧を推定する誘起電圧推定器と、
      前記誘起電圧推定器の出力である推定誘起電圧及び前記飽和処理器の出力である相電圧指令に基づき各相の電流を推定し、この推定電流を前記電流制御器へフィードバックする一次遅れ要素の電流推定器とを含む
     請求項1記載のバルブ制御装置。
  3.  前記電流指令分配器は、
      前記位相補正器からの位相補正量に基づき補正演算した新たなモータの現在位置である電気角検出位置と、前記q軸電流指令とに基づいて、前記電気角検出位置の検出区間毎に波形整形して矩形波の各相の相電流指令を生成する
     請求項2記載のバルブ制御装置。
  4.  前記誘起電圧推定器は、
      前記位相補正器からの位相補正量に基づき補正演算した新たなモータの現在位置である電気角検出位置と、前記電気角速度と、予め実測された誘起電圧とに基づいて、前記電気角検出位置の検出区間毎に波形整形して矩形波の各相の推定誘起電圧を生成する
     請求項2記載のバルブ制御装置。
PCT/JP2010/050212 2009-01-28 2010-01-12 バルブ制御装置 WO2010087224A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080005681.0A CN102301582B (zh) 2009-01-28 2010-01-12 阀控制装置
US13/144,050 US8395345B2 (en) 2009-01-28 2010-01-12 Valve control device
DE112010000768T DE112010000768T5 (de) 2009-01-28 2010-01-12 Ventilsteuervorr!chtung
JP2010548458A JP5258906B2 (ja) 2009-01-28 2010-01-12 バルブ制御装置
KR1020117019846A KR101203250B1 (ko) 2009-01-28 2010-01-12 밸브 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-016828 2009-01-28
JP2009016828 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087224A1 true WO2010087224A1 (ja) 2010-08-05

Family

ID=42395486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050212 WO2010087224A1 (ja) 2009-01-28 2010-01-12 バルブ制御装置

Country Status (6)

Country Link
US (1) US8395345B2 (ja)
JP (1) JP5258906B2 (ja)
KR (1) KR101203250B1 (ja)
CN (1) CN102301582B (ja)
DE (1) DE112010000768T5 (ja)
WO (1) WO2010087224A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240264A (ja) * 2012-04-20 2013-11-28 Mitsubishi Electric Corp モータ制御装置
US9065378B2 (en) 2012-02-22 2015-06-23 Denso Corporation AC motor control apparatus
JP2015122915A (ja) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 同期回転機用回転角度検出装置
JP2015224759A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 バルブ制御装置およびバルブ制御方法
EP2530829A3 (en) * 2011-04-28 2018-03-28 Jtekt Corporation Motor control unit and vehicle steering system
JP2018132822A (ja) * 2017-02-13 2018-08-23 株式会社島津製作所 自動圧力調整バルブおよびバルブ制御装置
JP2019129633A (ja) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 モータ制御装置及び画像形成装置
JP2019170089A (ja) * 2018-03-23 2019-10-03 株式会社富士通ゼネラル モータ制御装置
CN111487949A (zh) * 2020-04-24 2020-08-04 涌镇液压机械(上海)有限公司 一种换向阀控制板的调试方法、装置及换向阀控制板
JP2021027651A (ja) * 2019-08-01 2021-02-22 株式会社豊田自動織機 電動機の制御装置
WO2021215111A1 (ja) * 2020-04-24 2021-10-28 パナソニックIpマネジメント株式会社 モータ駆動装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404212B2 (ja) * 2009-06-30 2014-01-29 キヤノン株式会社 モータ制御装置及び画像形成装置
DE102012210729A1 (de) 2012-06-25 2014-01-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Plausibilisierung einer Stellung eines Stellglieds eines Stellgebersystems mit einer elektronisch kommutierten elektrischen Maschine
WO2014030244A1 (ja) * 2012-08-23 2014-02-27 トヨタ自動車 株式会社 ウェイストゲートバルブの制御装置
JP5996476B2 (ja) * 2013-04-02 2016-09-21 愛三工業株式会社 エンジンの排気還流装置
DE102013211020A1 (de) * 2013-06-13 2014-12-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektronisch kommutierten Stellmotors sowie Stellgebersystem mit einem Stellmotor
JP5850076B2 (ja) * 2013-07-03 2016-02-03 株式会社デンソー バルブ装置
US9325263B1 (en) * 2014-11-05 2016-04-26 Stmicroelectronics S.R.L. Sensorless rotor angle detection circuit and method for a permanent magnet synchronous machine
JP6602044B2 (ja) * 2015-05-08 2019-11-06 キヤノン株式会社 振動型駆動装置、制御装置及び医用システム
US10183852B2 (en) * 2015-07-30 2019-01-22 Danfoss Power Solutions Gmbh & Co Ohg Load dependent electronic valve actuator regulation and pressure compensation
JP2018060289A (ja) * 2016-10-03 2018-04-12 オムロン株式会社 軌跡生成装置、軌跡生成装置の制御方法、制御プログラム、および記録媒体
CN112740536A (zh) * 2018-09-07 2021-04-30 贝利莫控股公司 具有电动机的致动器和控制电动机以维持当前位置的方法
DE102019129509A1 (de) * 2018-11-01 2020-05-07 Steering Solutions Ip Holding Corporation Aktive steuerung der stromzufuhrdynamik für synchronmotorantriebe
KR102095660B1 (ko) * 2018-12-27 2020-03-31 창원대학교 산학협력단 Egr 밸브의 이동범위를 학습하는 방법
CN110707970B (zh) * 2019-06-26 2021-02-12 扬州大学 灌溉一体化智能阀门的无速度传感器控制及参数校准方法
DE102019214191A1 (de) * 2019-09-18 2021-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer elektrischen Maschine
CN114484039B (zh) * 2020-10-27 2024-06-07 株式会社岛津制作所 阀控制装置、真空阀以及阀控制方法
CN112906180B (zh) * 2020-12-17 2024-03-29 中国人民解放军63919部队 一种电性能仿真设备
CN112947047B (zh) * 2021-01-26 2022-08-09 重庆长安汽车股份有限公司 一种基于自适应pid算法的自动驾驶加速度控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298644A (ja) * 1989-05-12 1990-12-11 Hitachi Ltd 電子式絞り弁開度制御装置
JP2005027386A (ja) * 2003-06-30 2005-01-27 Yaskawa Electric Corp 同期電動機の電流センサレス制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130229A (ja) 1998-10-27 2000-05-09 Denso Corp 内燃機関のアクチュエータ制御装置
JP2000234564A (ja) 1999-02-10 2000-08-29 Unisia Jecs Corp Egrバルブの制御装置
JP2004201487A (ja) * 2002-11-28 2004-07-15 Nsk Ltd モータ及びその駆動制御装置
JP5453729B2 (ja) * 2008-04-14 2014-03-26 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298644A (ja) * 1989-05-12 1990-12-11 Hitachi Ltd 電子式絞り弁開度制御装置
JP2005027386A (ja) * 2003-06-30 2005-01-27 Yaskawa Electric Corp 同期電動機の電流センサレス制御装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530829A3 (en) * 2011-04-28 2018-03-28 Jtekt Corporation Motor control unit and vehicle steering system
US9065378B2 (en) 2012-02-22 2015-06-23 Denso Corporation AC motor control apparatus
JP2013240264A (ja) * 2012-04-20 2013-11-28 Mitsubishi Electric Corp モータ制御装置
JP2015122915A (ja) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 同期回転機用回転角度検出装置
JP2015224759A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 バルブ制御装置およびバルブ制御方法
JP2018132822A (ja) * 2017-02-13 2018-08-23 株式会社島津製作所 自動圧力調整バルブおよびバルブ制御装置
JP2019129633A (ja) * 2018-01-25 2019-08-01 コニカミノルタ株式会社 モータ制御装置及び画像形成装置
JP2019170089A (ja) * 2018-03-23 2019-10-03 株式会社富士通ゼネラル モータ制御装置
JP7247468B2 (ja) 2018-03-23 2023-03-29 株式会社富士通ゼネラル モータ制御装置
JP2021027651A (ja) * 2019-08-01 2021-02-22 株式会社豊田自動織機 電動機の制御装置
JP7172910B2 (ja) 2019-08-01 2022-11-16 株式会社豊田自動織機 電動機の制御装置
CN111487949A (zh) * 2020-04-24 2020-08-04 涌镇液压机械(上海)有限公司 一种换向阀控制板的调试方法、装置及换向阀控制板
CN111487949B (zh) * 2020-04-24 2021-10-01 涌镇液压机械(上海)有限公司 一种换向阀控制板的调试方法、装置及换向阀控制板
WO2021215111A1 (ja) * 2020-04-24 2021-10-28 パナソニックIpマネジメント株式会社 モータ駆動装置

Also Published As

Publication number Publication date
CN102301582B (zh) 2014-01-01
US20110273127A1 (en) 2011-11-10
US8395345B2 (en) 2013-03-12
KR20110120922A (ko) 2011-11-04
CN102301582A (zh) 2011-12-28
DE112010000768T5 (de) 2012-11-08
JP5258906B2 (ja) 2013-08-07
JPWO2010087224A1 (ja) 2012-08-02
KR101203250B1 (ko) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5258906B2 (ja) バルブ制御装置
JP4685509B2 (ja) 交流電動機の駆動制御装置および駆動制御方法
JP4434184B2 (ja) 電気モータのフィードバック制御方法および装置
JP5982901B2 (ja) 電動機の制御装置及び電動機の制御方法
JP4910445B2 (ja) Ipmモータのベクトル制御装置
JP5326429B2 (ja) 電動機の脈動抑制装置
JP2014515244A (ja) 温度補償と共に電気モータを制御する方法およびシステム
JP2004328814A (ja) 電動パワーステアリング装置
JP2009136085A (ja) 交流モータの制御装置
WO2014199994A1 (ja) 周期外乱自動抑制装置
CN108462413B (zh) 电动机控制装置以及电动机控制方法
CN111464096A (zh) 校正用于空气压缩机电机的霍尔传感器的信号延迟的方法
JP5088413B2 (ja) 電動機の脈動抑制装置
JP2009011017A (ja) 電圧形インバータの制御装置
JP4522273B2 (ja) モータ制御装置及びこれを有するモータ駆動システム
JP2019083672A (ja) インバータ並びにモータの駆動制御方法
CN102983807A (zh) 异步电机转子时间常数在线识别系统及方法
WO2005069475A1 (ja) 電動パワーステアリング装置の制御装置
JP2006180605A (ja) 電動機の制御装置
JP4680754B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP2009290962A (ja) 永久磁石形同期電動機の制御装置
JP6966978B2 (ja) 工作機械用モータ駆動装置
JP4884342B2 (ja) 誘導電動機の制御装置
JP5813217B2 (ja) 電子制御式バルブの制御装置および制御方法
WO2020213453A1 (ja) モータ駆動装置およびそれを用いた空気調和機の室外機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005681.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13144050

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010000768

Country of ref document: DE

Ref document number: 1120100007683

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117019846

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10735694

Country of ref document: EP

Kind code of ref document: A1