WO2010082570A1 - 改質シュガービートペクチン及びその応用 - Google Patents

改質シュガービートペクチン及びその応用 Download PDF

Info

Publication number
WO2010082570A1
WO2010082570A1 PCT/JP2010/050243 JP2010050243W WO2010082570A1 WO 2010082570 A1 WO2010082570 A1 WO 2010082570A1 JP 2010050243 W JP2010050243 W JP 2010050243W WO 2010082570 A1 WO2010082570 A1 WO 2010082570A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar beet
beet pectin
modified sugar
emulsion
pectin
Prior art date
Application number
PCT/JP2010/050243
Other languages
English (en)
French (fr)
Inventor
誠 中馬
清香 石原
船見 孝博
Original Assignee
三栄源エフ・エフ・アイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三栄源エフ・エフ・アイ株式会社 filed Critical 三栄源エフ・エフ・アイ株式会社
Priority to DK10731239.9T priority Critical patent/DK2388278T3/da
Priority to CN2010800044122A priority patent/CN102272164B/zh
Priority to JP2010523638A priority patent/JP5583014B2/ja
Priority to US13/144,186 priority patent/US9259021B2/en
Priority to EP10731239.9A priority patent/EP2388278B1/en
Publication of WO2010082570A1 publication Critical patent/WO2010082570A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/06Pectin; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a modified sugar beet pectin and a method for producing the same. More specifically, the present invention relates to a modified sugar beet pectin having improved or improved properties relating to emulsification, in particular, emulsion stability compared to sugar beet pectin obtained from nature, and a method for producing the same. Moreover, this invention relates to the use as an emulsifier of the said modified sugar beet pectin, the emulsion (emulsion composition) prepared using modified sugar beet pectin, and food-drinks.
  • Sugar beet pectin is a natural high-molecular polysaccharide derived from sugar beet ( Beta v ulgaris LINNE var. Rapa DUMORTIER). It is composed of a side chain composed of neutral sugars and the like, and a protein bound to the sugar chain. Its average molecular weight is about 3-550,000 g / ml, which is about 1.5 to 3 times that of citrus-derived common pectin, and has a higher proportion of side chains than citrus-derived pectin, making it more spherical It is presumed to have a close structure. Furthermore, sugar beet pectin has a methyl esterification degree of 50% or more and a total esterification degree of 85% or more, and corresponds to high methoxyl (HM) pectin.
  • HM high methoxyl
  • pectin can be used for the preparation of various emulsions (for example, Patent Documents 1 to 3).
  • both low methoxyl pectin and high methoxyl pectin exhibit sufficient emulsifying power with citrus-derived pectin alone. There may not be.
  • sugar beet pectin has higher emulsifying power than citrus-derived pectin, and sugar beet pectin alone can be used to prepare an emulsion having a small particle size with a small addition amount.
  • an emulsion prepared using sugar beet pectin does not necessarily have good storage stability.
  • the sugar beet pectin is polymerized by heating in a powder state (Patent Documents 4 to 6) or by irradiating with ionizing radiation in the presence of water (Patent Documents 7 to 9).
  • Patent Documents 4 to 6 the sugar beet pectin is polymerized by heating in a powder state
  • Patent Documents 7 to 9 Patent Documents 7 to 9
  • Technology has been reported.
  • an object of the present invention is to provide a modified sugar beet pectin capable of preparing an emulsion superior in emulsifiability, in particular, emulsion stability, compared to sugar beet pectin that is generally available from the past.
  • Another object of the present invention is to provide a method by which such modified sugar beet pectin can be easily produced with a general-purpose heating apparatus.
  • this invention aims at providing the use as an emulsifier of modified sugar beet pectin, the emulsion prepared using modified sugar beet pectin, and its use.
  • the present inventors have studied various methods for modifying sugar beet pectin.
  • the emulsifiability particularly emulsification is achieved.
  • a modified sugar beet pectin having excellent stability can be obtained. Therefore, when the structure of the modified sugar beet pectin was analyzed, the modified sugar beet pectin was polymerized by binding sugars with the protein component in the molecule as a linker, and also a hydrophobic component (water-insoluble component). ) Increased, and as a result, it was found that a hydrogel insoluble in water was produced when dispersed in water.
  • sugar beet pectin modified by the above method has specific physical properties different from natural products, such as having a higher molecular weight than natural sugar beet pectin and having a hydrophobic component (water-insoluble component). Turned out to be. Further, as a result, the amount of adsorption to the oil droplet particles increases, so that when this is used as an emulsifier, it was confirmed that an initial emulsion particle having a small particle size and excellent storage stability can be produced, leading to the present invention. It was.
  • the present invention relates to a modified sugar beet pectin having specific physical properties and a method for producing the same, and further uses the modified sugar beet pectin as an emulsifier, and an emulsion prepared using the modified sugar beet pectin and its Regarding usage.
  • Modified sugar beet pectin (I-1) A modified sugar beet pectin comprising a water-insoluble component, wherein the water-insoluble component has a modified sugar beet pectin concentration of 0.1% by mass. As described above, modified sugar beet pectin absorbs water and becomes a hydrogel when dispersed in water at 25 ° C. (I-2) The modified sugar beet pectin according to (I-1), comprising a water-insoluble component in a proportion of 3% by mass or more and less than 90% by mass.
  • (I-3) Measured by subjecting a 1.5% by weight aqueous dispersion of modified sugar beet pectin to 50MPa and subjecting it to size exclusion chromatography with a multi-angle light scattering detector and a refractive index detector.
  • (I-4) Measured by subjecting a 1.5% by weight aqueous dispersion of modified sugar beet pectin to 50 MPa and subjecting it to size exclusion chromatography with a multi-angle light scattering detector and a refractive index detector.
  • modified sugar beet pectin according to any one of (I-1) to (I-3), wherein the radius of rotation square is at least 50 nm.
  • a 0.003 mass% aqueous dispersion of modified sugar beet pectin has a volume average particle diameter measured by a laser diffraction light scattering measuring device of at least 1 ⁇ m (I-1) to ( Modified sugar beet pectin according to any one of I-4).
  • II-6 Modified sugar beet pectin produced by the production method described in any of (II-1) to (II-4) below.
  • (II) Method for producing modified sugar beet pectin (II-1) A method for producing modified sugar beet pectin, comprising a step of heat-treating an aqueous dispersion of sugar beet pectin.
  • (II-2) The production method according to (II-1), wherein the aqueous dispersion of sugar beet pectin contains sugar beet pectin in a proportion of 5 to 40% by mass.
  • (II-3) The production method according to (II-1) or (II-2), wherein the heating temperature is 60 to 100 ° C.
  • (II-4) The production method according to any one of (II-1) to (II-3), wherein the heating time is 1 to 48 hours.
  • Emulsion (IV-1) An emulsion obtained using the emulsifier described in (III).
  • (IV-4) The emulsion according to any one of (IV-1) to (IV-3), wherein the specific gravity of (C) fatty acid triglyceride is 0.9 to 0.97 g / ml.
  • IV-5) The emulsion according to any one of (IV-1) to (IV-4), which is an O / W emulsion or a W / O / W emulsion.
  • IV-6) The emulsion according to any one of (IV-1) to (IV-5), wherein the hydrophobic substance to be emulsified is an edible hydrophobic substance.
  • VI A method for improving the emulsifiability of sugar beet pectin
  • VI-1 A method for improving the emulsifiability of sugar beet pectin, characterized by subjecting sugar beet pectin to heat treatment after being dispersed in water.
  • VI-2 The content of sugar beet pectin dispersed in water is 5 to 40% by mass, and heating is performed at a temperature of 60 to 100 ° C. for 1 to 48 hours, as described in (VI-1) how to.
  • modified sugar beet pectin defined in the present invention or the modified sugar beet pectin prepared by the method defined in the present invention it is possible to provide an emulsion having excellent emulsifiability, particularly emulsification stability. it can.
  • Modified sugar beet pectin and method for producing the same has physical properties and structures different from those of naturally occurring sugar beet pectin in at least the following (1) to (4): It is characterized by excellent emulsifiability, especially emulsification stability, compared to naturally-derived sugar beet pectin.
  • (1) Contain a hydrophobic component (water-insoluble component) (2) The weight average molecular weight is at least 6.5 ⁇ 10 5 g / mol.
  • Rotational square radius is at least 50 nm (4)
  • the volume average particle size is at least 1 ⁇ m.
  • the modified sugar beet pectin of the present invention is polymerized compared to natural sugar beet pectin of natural origin, and because of the high content of hydrophobic components that are not soluble in water (water-insoluble components), It is considered that high emulsification stability is exhibited.
  • the natural sugar beet pectin as a raw material for preparing the modified sugar beet pectin (hereinafter referred to as “sugar beet pectin (raw material)” in the sense of being distinguished from the modified sugar beet pectin of the present invention)
  • a natural high molecular weight polysaccharide extracted from sugar beet ( Beta vulgaris LINNE var. Rapa DUMORTIER) under acidic conditions.
  • ⁇ -1,4 glycoside-linked D-galacturonic acid homo D-galacturonan
  • a side chain composed mainly of neutral sugars such as arabinose and galactose, and a protein bound to the main chain and / or side chain.
  • sugar beet pectin (raw material) has a methyl esterification degree of 50% or more and a total esterification degree of 85% or more, and corresponds to high methoxyl pectin.
  • the sugar beet pectin (raw material) is generally marketed in a powder state, and anyone can obtain it commercially.
  • Commercially available products include, for example, Vistop (trademark) D-2250 (manufactured by Saneigen FFI Co., Ltd.).
  • the modified sugar beet pectin of the present invention containing a hydrophobic component is characterized by containing a water-insoluble component.
  • the water-insoluble component absorbs water and becomes a hydrogel when the modified sugar beet pectin is dispersed in water at 25 ° C. so that the final concentration is 0.1% by mass. That is, in the present specification, “hydrogel” refers to a state in which a water-insoluble component (water-insoluble component) contained in the modified sugar beet pectin has absorbed water.
  • the “water-insoluble component” may be referred to as a “hydrogel component” in the sense that the water-insoluble component absorbs water to become a hydrogel.
  • the ratio of the water-insoluble component (hydrogel component) contained in the modified sugar beet pectin can be determined as follows. 1. The modified sugar beet pectin is put in a 1 g (weight a) beaker by dry weight, and 1000 g of ion-exchanged water is added to this (about 0.1% by mass), and mixed well at room temperature (25 ° C.). Leave at 25 °C for 16 hours. 2. This is filtered through a 300 mesh wire mesh, and when water stops flowing from the wire mesh, the filtration residue remaining on the wire mesh is collected in a round bottom flask.
  • the modified sugar beet pectin of the present invention usually contains a water-insoluble component (hydrogel component) in the range of 3 to 90% by mass. The amount is preferably 10 to 90% by mass, more preferably 20 to 80% by mass.
  • hydrogel component water-insoluble component
  • naturally-occurring sugar beet pectin sucgar beet pectin (raw material)
  • sugar beet pectin does not normally contain a water-insoluble component (hydrogel component) as shown in Experimental Example 1.
  • the content of the water-insoluble component is an index indicating the degree of modification of the modified sugar beet pectin. As the content increases, the modification of sugar beet pectin progresses, indicating that the modified sugar beet pectin has improved emulsifiability and emulsification stability, particularly emulsification stability, which is the object of the present invention.
  • the weight average molecular weight is at least 6.5 ⁇ 10 5 g / mol.
  • the modified sugar beet pectin of the present invention has a higher molecular weight than natural sugar beet pectin, that is, sugar beet pectin (raw material). It is characterized by that.
  • One of the indicators is “weight average molecular weight ( M w )”.
  • the weight average molecular weight ( M w ) is determined by using size exclusion chromatography (SEC) with a multiangle laser light scattering (MALS) detector and a refractive index (RI) detector connected online. be able to.
  • SEC-MALS size exclusion chromatography
  • the molecular weight can be measured with a MALS detector, and the weight (composition ratio) of each component can be measured with an RI detector, and without comparison with a standard sugar beet pectin of known molecular weight, The molecular weight can be determined.
  • SEC-MALS Detailed principles and characteristics of SEC-MALS are described in Idris, OHM, Williams, PA, Phillips, GO, and Food Hydrocolloids, 12 (1998) p.375-388.
  • M w weight average molecular weight began
  • % Mass recovery rate
  • P radius of rotation square
  • R g radius of rotation square
  • the measurement conditions for SEC-MALS used in the present invention are as follows: Column: OHpak SB-806M HQ (made by Showa Denko) Column temperature: 25 ° C Flow rate: 0.5 ml / min Elution solvent: 0.5 M NaNO 3 Sample solution injection volume: 100 ⁇ l Increase in refractive index with respect to concentration (dn / dc): 0.135 Detector temperature: 25 ° C (for both MALS and RI) MALS detector: DAWN DSP (Wyatt Technology, USA) RI detector: RI-930 (manufactured by JASCO).
  • the modified sugar beet pectin of the present invention is a weight average measured by subjecting the treated liquid homogenized at a pressure of 50 MPa to the SEC-MALS after being dispersed in ion-exchanged water so that the final concentration is 1.5% by mass.
  • the molecular weight is at least 6.5 ⁇ 10 5 g / mol. It is preferably 7.5 ⁇ 10 5 g / mol or more and 1 ⁇ 10 7 g / mol or less.
  • the homogenization treatment solution to be subjected to SEC-MALS is specifically prepared by the following method as described in Experimental Example 1 described later.
  • a 1.5 wt% sugar beet pectin dispersion is prepared by adding 1.5 g dry sugar beet pectin to 98.5 g ion-exchanged water and stirring for 1 minute at a rotational speed of 26,000 rpm using a polytron stirrer.
  • This dispersion was homogenized at 50 MPa using a collision type generator, and the treated dispersion was diluted 30-fold with 0.5 M NaNO 3 aqueous solution, and a polytron stirrer was used for 1 minute at a rotation speed of 26,000 rpm.
  • a 0.05% (W / V) sugar beet pectin dispersion is prepared by stirring. 3. This is filtered using a PTFE membrane filter having a pore diameter of 0.45 ⁇ m to obtain a filtrate.
  • the weight average molecular weight ( M w ) is 6.5 ⁇ 10 5 g / mol or less, no effect of improving emulsifiability and emulsification stability is observed. On the other hand, if it exceeds 1 ⁇ 10 7 g / mol, homogenization treatment becomes difficult, which is not preferable.
  • the weight average molecular weight ( M w ) of naturally-derived sugar beet pectin (sugar beet pectin (raw material)) is usually 5.5 ⁇ 10 5 g / mol or less, as shown in Experimental Example 1.
  • Rotational square radius is at least 50 nm
  • the weight average molecular weight ( M is obtained by processing the data obtained by subjecting the homogenized treatment solution to SEC-MALS under the above conditions using software such as ASTRA Version 4.5. Not only w ) but also the radius of rotation square ( R g ) can be obtained.
  • the radius of rotation square is the average value of the square of the distance from the center of rotation ( ⁇ center of gravity) of the molecule, and correlates with the ratio of the molecule to space.
  • the modified sugar beet pectin of the present invention is measured by subjecting the treated liquid homogenized at a pressure of 50 MPa to the SEC-MALS after being dispersed in ion-exchanged water so that the final concentration is 1.5% by mass.
  • R g is at least 50 nm. It is preferably 55 nm or more, more preferably 60 to 80 nm.
  • the volume average particle diameter is at least 1 ⁇ m. Another index indicating that the modified sugar beet pectin of the present invention is polymerized compared to sugar beet pectin (raw material) is “volume average”. The particle size ”.
  • the modified sugar beet pectin of the present invention has a volume average particle size of at least 1 measured by applying a dispersion liquid dispersed in ion-exchanged water to a final concentration of 0.003% by mass in a laser diffraction light scattering measurement device. It is characterized by being ⁇ m. The thickness is preferably 2 to 20 ⁇ m.
  • the volume average particle diameter can be measured using a laser diffraction type light scattering measuring apparatus, but the sample to be used in such an apparatus is specifically prepared by the following method as described in Experimental Example 2 described later.
  • the volume average particle size is 0.4 ⁇ m or less, no improvement effect is seen in emulsification and emulsion stability. On the other hand, if the volume average particle diameter exceeds 30 ⁇ m, it is not preferable because homogenization is difficult.
  • the volume average particle diameter of naturally-derived sugar beet pectin is usually 0.35 ⁇ m or less.
  • the modified sugar beet pectin of the present invention having the above characteristics can be prepared by heat-treating an aqueous dispersion of sugar beet pectin (raw material).
  • sugar beet pectin raw material
  • the form of sugar beet pectin (raw material) regardless of whether it is in the form of a lump, ball, coarsely pulverized, granular, granular, or powder (including spray-dried powder), Can also be used as sugar beet pectin (raw material) to be modified by the present invention.
  • the sugar beet pectin (raw material) in the aqueous dispersion contains a “sugar beet pectin (raw material) aqueous solution” in a state of being dissolved in water; "Wet cake-like sugar” concentrated in a dispersion, suspension, or paste-like sugar beet pectin (raw material) in a state insoluble in water; and a solution containing a high molecular weight polysaccharide extracted from sugar beet under acidic conditions Beet pectin ". Any of these can be subjected to heat treatment in the production of sugar beet pectin according to the present invention.
  • the mixing ratio of sugar beet pectin (raw material) and water is usually 5: 95-40: 60, 10: 90-40: 60, preferably by weight ratio. 10:90 to 35:65 (5 to 40% by mass, preferably 10 to 40% by mass, more preferably 10 to 35% by mass in terms of mass% of sugar beet pectin (raw material)).
  • the water to be blended may be at room temperature or warmed, or at any temperature. Moreover, any of tap water, ion-exchange water, and distilled water may be sufficient. Ion exchange water is preferable.
  • the sugar beet pectin dispersion can be mixed with other polysaccharides or components having a surface-active effect and then heat-treated.
  • the polysaccharide include pectin derived from other plants such as citrus pectin and apple pectin; polysaccharides having emulsifying properties such as gum arabic, gati gum, soybean polysaccharide, quilla saponin, octenyl succinylated starch, etc .; or xanthan gum, guar gum, Examples include polysaccharides having thickening properties such as locust bean gum, carrageenan, gellan gum, glucomannan and the like.
  • Components having a surface active effect include synthetic emulsifiers such as monoglycerin fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitan acid fatty acid esters, and propylene glycol fatty acid esters; or protein-based emulsifiers such as sodium caseinate and lecithin. It can be illustrated.
  • the heating temperature is 60 to 100 ° C, more preferably 75 to 100 ° C.
  • the preferred heating time is 1 to 24 hours.
  • the heating method is not particularly limited, and examples thereof include heating by hot water bath, saturated steam heating, heating steam heating, heating wire heating, induction heating, and the like. Moreover, you may add stirring operation at the time of a heating as needed.
  • the said heating can also be performed under the pressure lower than a normal pressure, ie, pressure reduction.
  • the decompression conditions are not particularly limited, and examples include conditions of about 0.01 to 900 hPa, preferably about 300 to 800 hPa, more preferably about 500 to 750 hPa.
  • modified sugar beet pectin of the present invention having excellent properties can be obtained. Furthermore, you may perform the drying process by a well-known method after a heat processing process as needed.
  • the modified sugar beet pectin prepared by the above method is superior in emulsifying property, particularly emulsifying stability, compared to sugar beet pectin (raw material).
  • emulsification stability of an emulsifier is evaluated to be superior as the average particle size of the prepared oil droplet particles is small and the particle size is stably maintained over time (“emulsification with gum arabic” Study of O / W Emulsion by Turbidity Ratio Method ”, Pharmaceutical Journal, 112 (12) .906-913. (1992)).
  • the emulsion preparation method the average particle diameter measurement method, and the temporal stability evaluation method, which are the evaluation criteria for emulsification ability, can follow the methods described in the experimental examples described later.
  • the modified sugar beet pectin of the present invention When used as an emulsifier, the average particle diameter of the oil droplet particles in the emulsion is small and changes with time are less than when the sugar beet pectin (raw material) is used as an emulsifier. That is, the modified sugar beet pectin has higher emulsifiability and emulsification stability than sugar beet pectin (raw material).
  • modified sugar beet pectin is polymerized by binding a sugar chain using a protein component in the molecule as a linker, and is a hydrophobic component that is not soluble in water when dispersed in water (water-insoluble component: Hydrogel component) is increasing.
  • water-insoluble component Hydrogel component
  • Such modified sugar beet pectin maintains a high molecular weight even after high-pressure homogenization treatment.
  • the average particle size of oil droplet particles in the emulsion is smaller than when sugar beet pectin (raw material) is used as an emulsifier, and its change over time.
  • sugar beet pectin raw material
  • the modified sugar beet pectin has higher emulsifying activity and emulsion stability than sugar beet pectin (raw material).
  • the use of modified sugar beet pectin also has the advantage that the amount added to the emulsion composition can be reduced compared to sugar beet pectin (raw material).
  • the modified sugar beet pectin of the present invention can be used as an emulsifier. That is, an emulsifier can be prepared using the modified sugar beet pectin of the present invention.
  • the emulsifier can be suitably used as an emulsifier for edible products that can be taken orally, particularly in the fields of food, pharmaceuticals, quasi drugs, and cosmetics.
  • emulsification of beverages powdered beverages, desserts, chewing gum, tablet confectionery, snack confectionery, processed fishery products, processed livestock products, retort foods, etc.
  • emulsification of oily fragrances emulsification of oily pigments, etc. It can be preferably used.
  • the modified sugar beet pectin of the present invention can be used as it is in the form of an aqueous solution or in the form of a solid such as a granule or a powder (modified sugar beet pectin 100% by mass).
  • other carriers and additives can be blended and used as an emulsifier preparation.
  • the carriers and additives to be used can be appropriately selected according to a conventional method depending on the type of product using the emulsifier and its use. For example, it can be prepared by mixing with saccharides such as dextrin, maltose and lactose, and polyhydric alcohols such as glycerin and propylene glycol.
  • the emulsifier of the present invention can also be used as an emulsifier preparation (preparation agent) by mixing with other polysaccharides or components having a surface active effect.
  • pectin from other plants such as citrus pectin, apple pectin
  • polysaccharides with emulsifying properties such as gum arabic, gati gum, soybean polysaccharide, quilla saponin, octenyl succinylated starch, etc .
  • xanthan gum, guar gum, locust bean gum , Carrageenan, gellan gum, glucomannan and other polysaccharides having a thickening property for example, pectin from other plants such as citrus pectin, apple pectin; polysaccharides with emulsifying properties such as gum arabic, gati gum, soybean polysaccharide, quilla saponin, octenyl succinylated starch, etc .; or x
  • synthetic emulsifiers such as monoglycerin fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitan acid fatty acid esters, and propylene glycol fatty acid esters; or mixed with protein-based emulsifiers such as sodium caseinate and lecithin to prepare an emulsifier formulation
  • the blending ratio of the modified sugar beet pectin in the emulsifier preparation is preferably 1% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • Emulsion The present invention provides an emulsion prepared using the aforementioned modified sugar beet pectin or an emulsifier containing the modified sugar beet pectin as an active ingredient.
  • the emulsion uses the above-described modified sugar beet pectin as an emulsifier or an emulsifier containing the modified sugar beet pectin as an active ingredient, and disperses and stabilizes a hydrophobic substance as a dispersoid in a hydrophilic dispersion medium.
  • examples of the emulsion include oil-in-water (O / W) type and W / O / W type emulsions.
  • the blending ratio of the above-described modified sugar beet pectin or an emulsifier containing the pectin as an active ingredient may be appropriately adjusted according to the hydrophobic substance to be dispersed.
  • the specific blending amount is 100% by mass of the final emulsion.
  • the ratio in which the concentration is about 0.01 to 10% by mass, preferably 0.05 to 5% by mass.
  • the hydrophobic substance to be emulsified here can be used without limitation as long as it is usually provided in the form of an emulsion or has a necessity thereof, preferably in the field of foods, pharmaceuticals, quasi drugs or cosmetics.
  • Examples include edible hydrophobic substances that can be used, more preferably orally.
  • various essential oils obtained from basic plants such as citrus plants such as orange, lime, lemon and grapefruit; oleoresin obtained from oleoresin method from basic plants such as pepper, cinnamon and ginger; jasmine and Absolute obtained from an original plant such as rose; other oily fragrances such as synthetic fragrance compounds and oily blended fragrance compositions; ⁇ -carotene, paprika pigment, lycopene, palm oil, carotene, astaxanthin, donariella carotene and Oil-based pigments such as carrot carotene; oil-soluble vitamins such as vitamins A, D, E, and K; polyunsaturated fatty acids such as docosahexaenoic acid, eicosapentaenoic acid, and ⁇ -linolenic acid; soybean oil, rapeseed oil, corn oil, plant Animal and vegetable oils and fats such as sex sterols and fish oils; SA IB (Sucrose acetate isobutylate), ester gum (Glycerol
  • the method for preparing the emulsion is not particularly limited, and the hydrophobic substance and the hydrophilic dispersion medium are present in the presence of the emulsifier according to a conventional method for preparing an oil-in-water (O / W) emulsion or a W / O / W emulsion.
  • O / W oil-in-water
  • W / O / W emulsion a W / O / W emulsion.
  • it can carry out by stirring and emulsifying mechanically using a homogenizer, a high pressure injection, etc. More specifically, the following method can be illustrated.
  • the emulsifier of the present invention containing modified sugar beet pectin as an active ingredient is dissolved in a hydrophilic solvent such as water, and this is mixed with a target hydrophobic substance (for example, fats and oils, or a mixture of fragrances and pigments previously dissolved in fats and oils). Liquid) with a stirrer or the like and pre-emulsified.
  • a target hydrophobic substance for example, fats and oils, or a mixture of fragrances and pigments previously dissolved in fats and oils.
  • the specific gravity of the hydrophobic substance may be adjusted using a specific gravity adjusting agent such as ester gum or SAIB as necessary.
  • the obtained pre-emulsified mixture is emulsified using an emulsifier.
  • flavor is previously added to fats and oils as the said hydrophobic substance. It is preferable to use a mixed solution in which an oily pigment is dissolved. As a result, emulsification can be further stabilized and volatilization of components can be prevented.
  • Oils and fats that dissolve oily fragrances and oily pigments are not particularly limited. Usually, medium chain triglycerides (C6-C12 fatty acid triglycerides) and vegetable oils such as corn oil, safflower oil, or soybean oil are used. be able to.
  • the emulsifier used for emulsification is not particularly limited, and can be appropriately selected depending on the size of the target oil droplet particles, the viscosity of the sample, and the like.
  • an emulsifier such as a nanomizer, a disper mill, or a colloid mill can be used.
  • a hydrophobic substance was added to the hydrophilic dispersion medium under stirring, and the pre-emulsification was performed by rotating the stirring blades to prepare oil droplet particles having a particle diameter of about 2 to 5 ⁇ m. Thereafter, fine and uniform particles (for example, an average particle size of 1 ⁇ m or less, preferably 0.8 ⁇ m or less) are prepared using an emulsifier such as a homogenizer or a nanomizer.
  • the pigments such as ⁇ -carotene exist as suspensions in the crystalline state. Therefore, in order to prepare these dyes as emulsions (emulsified dyes), it is preferable that the dye crystals are first mixed with an appropriate oil and fat at high temperature and dissolved, and then added to the hydrophilic dispersion medium. In the dispersed state, even if the pigment is dispersed in a liquid or solid state, it does not hinder the effect of the present invention.
  • the emulsion prepared using the above-mentioned emulsifier has a uniform oil particle size distribution compared to an emulsion prepared using only sugar beet pectin (raw material) and is heated and stored for a long time. Also, due to abuse (severe conditions) such as change over time, oil droplet particles are agglomerated or coalesced, and the deterioration of the emulsified state is significantly suppressed, and the emulsion stability is high.
  • the emulsion of the present invention includes emulsions (O / W type, W / O / W type) having the following composition.
  • the emulsions should be stably maintained over a long period of time. It is characterized by. Specifically, the above emulsion is prepared by adjusting the specific gravity of an oil phase composed of an isoprenoid and a fat-soluble substance dissolved therein (for example, fat-soluble vitamins, nutrients such as DHA, pigments, fragrances, etc.) using only fatty acid triglycerides, It is characterized in that the quality is stable for a long time even in beverages and beverage concentrates.
  • a fat-soluble substance dissolved therein for example, fat-soluble vitamins, nutrients such as DHA, pigments, fragrances, etc.
  • the ratio of (A) modified sugar beet pectin in the emulsion may be about 0.01 to 5% by mass, preferably 0.05 to 3% by mass.
  • the isoprenoid referred to in (B) includes terpenes such as monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and tetraterpenes, and fat-soluble substances such as terpenoids having a carbonyl group or a hydroxy group.
  • terpenes such as monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and tetraterpenes
  • fat-soluble substances such as terpenoids having a carbonyl group or a hydroxy group.
  • Oil-soluble components that are compatible with isoprenoids include, but are not limited to, oil-soluble vitamins such as vitamins A, D, E, and K, coenzyme Q10; docosahexaenoic acid, eicosapentaenoic acid, and ⁇ -linolenic acid Examples thereof include oil-based pigments such as ⁇ -carotene, paprika pigment, lycopene, astaxanthin, donariella carotene and carrot carotene; and fat-soluble fragrances extracted from various natural ingredients.
  • the fatty acid triglyceride as referred to in (C) can be used without limitation as long as it is used in food production.
  • animal oils and fats such as palm oil, soybean oil, rapeseed oil, corn oil, vegetable sterols and beef fat, pork fat and fish oil; food fats and oils such as C6 to C12 medium chain triglycerides.
  • it is a fatty acid triglyceride having a specific gravity of 0.9 to 0.97 ⁇ ⁇ ⁇ ⁇ g / ml.
  • the blending ratio of the (B) fat-soluble component compatible with the isoprenoid and the (C) fatty acid triglyceride can be arbitrarily set depending on the type of isoprenoid and fatty acid triglyceride used, and finally (B) and (C
  • the specific gravity after mixing is 0.89 to 0.95 ⁇ ⁇ g / ml, preferably 0.89 to 0.93 g / ml.
  • the method for producing such an emulsion is not particularly limited and can be carried out according to the method described above.
  • the modified sugar beet pectin of the present invention is dissolved in a hydrophilic solvent such as water, and (B) And (C) are mixed with a stirrer or the like and pre-emulsified.
  • the obtained pre-emulsified mixture is emulsified under high pressure conditions using an emulsifier.
  • a hydrophobic substance was added to the hydrophilic dispersion medium with stirring, and the stirring blade was rotated to pre-emulsify to prepare oil droplet particles having a particle diameter of about 2 to 5 ⁇ m. Thereafter, fine and uniform particles (for example, an average particle size of 1 ⁇ m or less, preferably 0.8 ⁇ m or less) are prepared using an emulsifier such as a homogenizer or a nanomizer.
  • the emulsion thus prepared has a smaller average particle size and a uniform particle size distribution compared to an emulsion prepared using sugar beet pectin (raw material). In addition, it is significantly suppressed that the oil droplet particles are aggregated or coalesced to deteriorate the emulsified state, and the emulsification activity and the stability of the emulsification are high.
  • the food and drink provided by the present invention include the above-described modified sugar beet pectin, an emulsifier containing the modified sugar beet pectin, and further modified sugar beet pectin or modified sugar beet pectin. What is necessary is just to use the emulsion prepared with the emulsifier containing this.
  • beverages such as milk beverage, lactic acid bacteria beverage, carbonated beverage, fruit beverage, powdered beverage, sports beverage, tea beverage, green tea beverage
  • puddings such as custard pudding, milk pudding; jelly, Desserts such as Bavaroa and yogurt
  • Frozen desserts such as milk ice cream and ice candy
  • Chewing gum and bubble gum gums Hard candy, soft candy, caramel such as caramel, drop
  • baked confectionery such as hard biscuits, cookies, rice cakes
  • soups such as corn soup, potage soup, dressing, ketchup, mayonnaise, sauce, soup Source such as scan
  • These food and beverage preparation methods include the modified sugar beet pectin according to the present invention as a raw material for the preparation, an emulsifier containing the modified sugar beet pectin, and further an emulsion prepared using the modified sugar beet pectin or the above emulsifier.
  • the beverage prepared using the emulsion prepared from the components (A) to (D) described above is not particularly limited, and examples thereof include carbonated beverages, fruit beverages, powdered beverages, sports beverages, and teas. Examples include beverages, green tea beverages, milk beverages, and lactic acid bacteria beverages.
  • the emulsion is mixed with a beverage stock solution or a beverage concentrate mainly composed of water or a hydrophilic solvent for the purpose of imparting color, aroma, nutritional components and the like to the beverage.
  • beverage stock solution When mixed with beverage stock solution, it is commercialized and shipped as it is packed in a container. After being shipped, it is often left at room temperature or transported until it is drunk, and it is required that no noticeable oil phase floats or adheres during that time.
  • beverage concentrate when mixed with a beverage concentrate, it is not only commercialized after being diluted, but also distributed as a beverage concentrate and may be diluted just before drinking. In the state of a beverage concentrate, it may be allowed to stand or be transported at room temperature, and during that time, it is required that no noticeable oil phase floats or adheres in the beverage concentrate.
  • the viscosity of the beverage concentrate is higher than that of the diluted one, in which the oil phase is less likely to float, but on the other hand, the specific gravity of the concentrate is also high, so the specific gravity difference between the oil phase and the water phase is large. In some cases, oil floating may be promoted.
  • the modified sugar beet pectin of the present invention has an average particle size smaller when the emulsion composition is prepared than sugar beet pectin (raw material), a uniform particle size distribution, and oil droplets even by heating or long-term storage. It is significantly suppressed that the particles are aggregated or coalesced to deteriorate the emulsified state, and the emulsification activity and the emulsion stability are high.
  • the present invention also provides a method for improving the emulsifiability of sugar beet pectin. The method can be performed according to the method described in (I).
  • Sugar beet pectin used as a raw material is a powdery powder (particle size: 100-150 ⁇ m) with a molecular weight of about 500,000 and a loss on drying of about 10% (Bistop (*) D-2250, San-Eigen F.F. Product).
  • this is referred to as “sugar beet pectin (raw material)”.
  • Modified sugar beet pectin (modified products 1 to 5) Sugar beet pectin (raw material) is mixed with ion-exchanged water at the ratio shown in Table 1 using a kitchen aid mixer KSM5 (manufactured by FMI Co., Ltd., the same shall apply hereinafter), filled in a sealed container, and then a thermostatic device SH-641 (ESPEC Heat treatment was performed using a product manufactured by Co., Ltd. (hereinafter the same) (Table 1). The heating temperature was set to 75 ° C., and the heating time was set to 8 to 12 hours.
  • the powdered modified sugar beet pectin (modified product 1) is freeze-dried using a freeze-drying apparatus FDU-1100 (manufactured by Tokyo Rika Equipment Co., Ltd., hereinafter the same) and pulverized in a mortar. To 5) were obtained.
  • Modified sugar beet pectin (modified products 6 to 7)
  • Sugar beet pectin (raw material) was dispersed in ion-exchanged water at a ratio shown in Table 1 using a kitchen aid mixer KSM5. After filling this into an eggplant-shaped flask, it was heat-treated under reduced pressure (700 hPa) using a rotary evaporator system N-1000V (manufactured by Tokyo Rika Kikai Co., Ltd., hereinafter the same). The heating temperature was set to 80 ° C., and the heating time was set to 5 to 8 hours. After the heat treatment, the powder was freeze-dried using a freeze-drying apparatus FDU-1100 and pulverized in a mortar to obtain powdered modified sugar beet pectin (modified products 6 to 7).
  • Comparative Example 3 Unmodified Sugar Beet Pectin (Unmodified Product 3) As the unmodified product 3, powdered sugar beet pectin (raw material) of a different lot from the unmodified product 1 (Comparative Example 1) and the unmodified product 2 (Comparative Example 2) was used.
  • Comparative Example 4 Unmodified Sugar Beet Pectin (Unmodified Product 4) As the unmodified product 4, powdered sugar beet pectin (raw material) in a different lot from the unmodified product 1 (Comparative Example 1) to the unmodified product 3 (Comparative Example 3) was used.
  • the dry weight (weight b) of the obtained filtration residue was measured, and the ratio of the hydrogel component contained in the dispersion was calculated from the following formula. This was calculated as “the amount of hydrogel produced in the aqueous dispersion (mass%). ) ”.
  • the dispersion was homogenized at 50 MPa using a collision-type generator (Nano-Mizer NM2, manufactured by Yoshida Kikai Kogyo Co., Ltd., hereinafter the same).
  • 0.05% (W / V) sugar beet pectin dispersion by diluting the homogenized dispersion 30 times with 0.5 M NaNO 3 aqueous solution and stirring for 1 minute at 26,000 rpm with a polytron stirrer was prepared. This was filtered using a PTFE membrane filter with a pore size of 0.45 ⁇ m, and then size exclusion chromatography (SEC) connected with the multi-angle light scattering detector (MALS detector) and refractive index detector (RI detector) shown below. subjected to -MALS), was measured weight average molecular weight of sugar beet pectin (M w) and rotated square radius (R g).
  • MALS detector multi-angle light scattering detector
  • RI detector refractive index detector
  • the sugar beet pectin M w can be detected by the MALS detector, and the rotational square radius ( R g ) of the sugar beet pectin can be detected by the MALS and RI detectors.
  • the molecular weight of sugar beet pectin can be determined without comparison.
  • ASTRA Version 4.5 manufactured by Wyatt Technology
  • MALS detector DAWN DSP (Wyatt Technology, USA)
  • RI detector RI-930 (manufactured by JASCO)
  • emulsification characteristics emulsification and emulsion stability
  • emulsions were prepared using the sugar beet pectin of Examples 1 to 7 and Comparative Examples 1 to 4 (Example 1-1). 1-7, Comparative Examples 1-1 to 1-4), volume-based median particle size immediately after preparation and after storage at 60 ° C. for 3 days (hereinafter, “average particle size” is “volume-based unless otherwise specified”) And the ratio of oil droplet particles having an average particle diameter of 1 ⁇ m or more in all oil droplet particles in the emulsion.
  • Experimental samples 1-1 to 1-7 2 g (modified dry weight) of modified sugar beet pectin (modified product) of Examples 1 to 7 was added to 83 g of ion-exchanged water, and the pH was adjusted to 3.25 with an aqueous citric acid solution.
  • Medium chain triglyceride (octanoic acid / decanoic acid triglyceride) (ODO (trade name), Nisshin Oilio Co., Ltd., etc.) with stirring at 24,000 rpm using a high-speed mixer (Heidlph, the same applies hereinafter) ) 15 g was added and mixed for 1 minute. This mixed solution was homogenized twice using a collision type generator at a pressure of 50 MPa to prepare emulsions (experimental samples 1-1 to 1-7).
  • Comparative experimental samples 1-1 to 1-4 Sugar beet pectin (raw material) (unmodified product) 2 g (dry weight conversion) of Comparative Examples 1 to 4 was added to 83 g of ion-exchanged water, and the pH was adjusted to 3.25 with an aqueous citric acid solution. While stirring at 24,000 rpm using a high-speed mixer, 15 g of medium chain triglyceride (octanoic acid / decanoic acid triglyceride) (ODO) was added and mixed for 1 minute. This mixture was homogenized twice using a collision type generator at a pressure of 50 MPa to prepare emulsions (Comparative Experiment Samples 1-1 to 1-4).
  • OEO medium chain triglyceride
  • Sugar beet pectin (modified products 1 to 7) of Examples 1 to 7 all contain a component insoluble in water (hydrogel component), and as the modification time (heating time) becomes longer, There was a tendency for the amount of hydrogel component to increase. On the other hand, none of the unmodified sugar beet pectin (unmodified products 1 to 4) of Comparative Examples 1 to 4 was free of water-insoluble components (hydrogel components).
  • the modified sugar beet pectin (modified products 1 to 7) of Examples 1 to 7 has a weight average molecular weight ( M w ) exceeding 6.5 ⁇ 10 5 g / mol, and the heating time becomes longer.
  • the unmodified sugar beet pectin (unmodified products 1 to 4) of Comparative Examples 1 to 4 had a weight average molecular weight ( M w ) of less than 6.5 ⁇ 10 5 g / mol. As a result, it was confirmed that the modified sugar beet pectin was polymerized compared to the unmodified sugar beet pectin.
  • the average particle size of the oil droplet particles of the emulsions prepared using these sugar beet pectin is the same as that of the emulsions prepared using the modified sugar beet pectin of Examples 1 to 7 in the unmodified examples of Comparative Examples 1 to 4.
  • the tendency was remarkable in the average particle diameter of the oil droplet particles smaller than the emulsion prepared using sugar beet pectin, especially after storage at 60 ° C. for 3 days, which shows emulsion stability. From this, it was confirmed that by modifying sugar beet pectin according to the methods of Examples 1 to 7, pectin having emulsifying properties, particularly excellent emulsifying stability, can be prepared.
  • sugar beet pectin dispersion were measured average particle diameter of the hydrogel particles contained in the sugar beet pectin dispersion ([mu] m).
  • Modified sugar beet pectin is modified by heat treatment of an aqueous dispersion of sugar beet pectin, so that the components of sugar beet pectin are polymerized and become hydrophobic. It is detected as hydrogel particles having a thickness.
  • Comparative experiment sample 3-1 2 g of unmodified sugar beet pectin (in terms of dry weight) of Comparative Example 1 was dispersed in 68 g of ion-exchanged water, and the pH was adjusted to 3.25 with an aqueous citric acid solution. While stirring this dispersion at 24,000 rpm using a high-speed mixer, 30 g of orange oil adjusted to a specific gravity of 0.95 g / ml using ester gum was added and mixed for 1 minute. This mixture was homogenized twice using a collision generator at a pressure of 20 MPa to prepare an emulsion.
  • Comparative experiment sample 3-2 2 g (in terms of dry weight) of unmodified sugar beet pectin (unmodified product 1) of Comparative Example 1 was dispersed in 83 g of ion-exchanged water, and the pH was adjusted to 3.25 with an aqueous citric acid solution. While stirring this at 24,000 rpm using a high-speed mixer, 15 g of coffee flavor oil having a specific gravity of 0.931 g / ml was added and mixed for 1 minute. This mixture was homogenized twice using a collision generator at a pressure of 35 MPa to prepare an emulsion.
  • OEO medium chain triglyceride
  • d-limonene specific gravity 0.91 g / ml
  • Experimental sample 3-1, comparative experimental sample 3-1, experimental sample 3-2 to 3-4, comparative experimental sample 3-2; and experimental sample 3-5 to 3-7 and comparative experimental sample 3-3 In comparison, regardless of the oil component used, the emulsions prepared using the modified sugar beet pectin of Examples 1 to 7 were emulsified compared to the case of using the unmodified sugar beet pectin of Comparative Example 1. Immediately after storage at 60 ° C. for 3 days, the average particle size of the oil droplet particles was small, and the ratio of the average particle size of 1 ⁇ m or more was also low. This tendency was particularly remarkable after storage at 60 ° C. for 3 days.
  • Modified sugar beet pectin (modified products 8 to 16)
  • Sugar beet pectin (raw material) was dispersed in ion-exchanged water at a ratio shown in Table 5 using a kitchen aid mixer KSM5. This was filled in a sealed container and then heat-treated using a thermostatic device SH-641 (Table 5). The heating temperature was set to 60-90 ° C, and the heating time was set to 5-24 hours. After the heat treatment, freeze-drying was performed using a freeze-drying apparatus FDU-1100, and the resulting freeze-dried product was pulverized in a mortar to obtain powdered modified sugar beet pectin (modified products 8 to 16). .
  • freeze-drying was performed using a freeze-drying apparatus FDU-1100, and the resulting freeze-dried product was pulverized in a mortar to obtain powdered modified sugar beet pectin (modified products 17 to 19). .
  • the average particle size of the oil droplet particles immediately after the emulsification is higher than that of the emulsion prepared using unmodified sugar beet pectin (raw material) (comparative experimental sample 4-1) except for experimental sample 4-4.
  • the ratio of oil droplet particles which were small and 1 ⁇ m or more was also low.
  • an emulsion (comparative experimental sample 4-2) prepared using sugar beet pectin (Comparative Example 6) freeze-dried without heating after preparation of the aqueous dispersion was prepared using sugar beet pectin (raw material).
  • the average particle diameter of the oil droplet particles was large, and the ratio of oil droplet particles of 1 ⁇ m or more was also high.
  • the average particle size of the oil droplet particles in the comparative experimental sample 4-1 increased significantly from about 0.6 ⁇ m to about 2 ⁇ m by storage at 60 ° C. for 3 days, but in the experimental samples 4-1 to 4-12, An increase in the average particle size of the droplet particles was suppressed.
  • the proportion of oil droplet particles with an average particle size of 1 ⁇ m or more is also about 5% (immediately after emulsification) to about 12% (after storage at 60 ° C for 3 days) by storing for 3 days at 60 ° C.
  • experimental samples 4-1 to 4-12 have an average particle diameter of oil droplets of 1 ⁇ m or less after storage at 60 ° C. for 3 days, and are emulsion stable. It can be seen that is significantly improved.
  • the comparative experimental sample 4-2 that was freeze-dried without heating had a ratio of oil enemy particle diameter and average particle diameter of 1 ⁇ m or less after storage at 60 ° C. for 3 days. It can be seen that there is no difference from 1 or that the emulsion stability is greatly reduced.
  • Comparative experiment sample 5-1 2 g of sugar beet pectin (raw material) (unmodified product 5) of Comparative Example 5 (in terms of dry weight) was dispersed in 66 g of ion-exchanged water, and after addition of 1 g of 10% aqueous sodium benzoate solution, 10% The pH was adjusted to 3.25 with aqueous citric acid solution. While stirring this dispersion at 24,000 rpm using a high-speed mixer, 30 g of orange oil adjusted to a specific gravity of about 0.95 g / ml using ester gum was added and mixed for 1 minute. This mixed solution was homogenized twice using a collision type generator at a pressure of 20 MPa to prepare an emulsion (Comparative Experiment Sample 5-1).
  • Comparative experiment sample 5-2 2 g of sugar beet pectin (raw material) (unmodified product 5) of Comparative Example 5 (in terms of dry weight) was dispersed in 73.5 g of ion-exchanged water, and after addition of 1 g of 10% aqueous sodium benzoate solution, 10% The pH was adjusted to 3.25 with aqueous citric acid solution. While stirring this dispersion at 24,000 rpm using a high speed mixer, a mixture of 15 g of medium chain triglyceride (ODO) and 7.5 g of orange oil (specific gravity 0.906 g / ml) was added and mixed for 1 minute. This mixture was homogenized twice using a collision type generator at a pressure of 50 MPa to prepare an emulsion (Comparative Experiment Sample 5-2).
  • OEO medium chain triglyceride
  • orange oil specific gravity 0.906 g / ml
  • Comparative experiment sample 5-3 2 g of sugar beet pectin (raw material) (unmodified product 5) of Comparative Example 5 (in terms of dry weight) was dispersed in 81 g of ion-exchanged water, and after addition of 1 g of 10% aqueous sodium benzoate solution, 10% The pH was adjusted to 3.25 with an aqueous citric acid solution. While stirring this dispersion at 24,000 rpm using a high-speed mixer, 15 g of coffee flavor oil having a specific gravity of about 0.93 g / ml was added and mixed for 1 minute. This mixed solution was homogenized twice using a collision type generator at a pressure of 35 MPa to prepare an emulsion (Comparative Experiment Sample 5-3).
  • Comparative experiment sample 5-4 2 g of sugar beet pectin (raw material) (unmodified product 5) of Comparative Example 5 (in terms of dry weight) is dispersed in 81 g of ion-exchanged water, and after adding 1 g of 10% aqueous sodium benzoate, The pH was adjusted to 3.25 with an acid aqueous solution. While stirring this dispersion at 24,000 rpm using a high-speed mixer, 15 g of soybean white squeezed oil having a specific gravity of about 0.91 g / ml was added and mixed for 1 minute. This mixed solution was homogenized twice using a collision type generator at a pressure of 50 MPa to prepare an emulsion (Comparative Experiment Sample 5-4).
  • Emulsions prepared using modified sugar beet pectin (experimental samples 5-1 to 5-4) and emulsions prepared using unmodified sugar beet pectin (raw material) (comparative experimental samples 5-1 to 5-4)
  • these temporal changes (increases) after storage at 60 ° C. for 3 days are Samples 5-1 to 5-4) were significantly suppressed compared to comparative experimental samples 5-1 to 5-4, and were excellent in emulsion stability. This tendency was recognized regardless of the type of oil, but was particularly remarkable in the experimental samples 5-2 and 5-4.
  • a powder sample (gum arabic HA, manufactured by San-Ei Gen FFI Co., Ltd.) (unmodified product) having a molecular weight of about 800,000 and a loss on drying of about 12% was used.
  • Reference experiment samples 7-1 to 7-3 2 g of modified sugar beet pectin prepared in Example 7, 2 g of sugar beet pectin (raw material), or 15 g of gum arabic (all in terms of dry weight) are dispersed in ion-exchanged water, and 1 g of 10% benzoic acid. After adding the aqueous sodium solution, the pH was adjusted to 3.25 with a 10% aqueous citric acid solution (about 1 g). While stirring this dispersion at 24,000 rpm using a high-speed mixer, a mixture of 15 g of medium chain triglyceride (ODO) (specific gravity of about 0.95 g / ml) was added and mixed for 1 minute. This mixture was homogenized twice using a collision type generator at a pressure of 50 MPa to prepare emulsions (reference experimental samples 7-1 to 7-3).
  • OEO medium chain triglyceride
  • the oil droplet particles in the emulsion (reference experiment sample 7-2) using unmodified sugar beet pectin (raw material) as the emulsifier increased to about 1.6 ⁇ m
  • the emulsion prepared using sugar beet pectin and gum arabic (Reference Experimental Samples 7-1 and 7-3) had an average particle diameter of oil droplets of 1.0 ⁇ m or less, and exhibited high emulsification stability.
  • emulsions (experimental samples 7-1 to 7-3) using terpene (D-limonene) and fatty acid triglyceride as the oil phase component, and modified sugar beet pectin as the emulsifier are average oil droplet particles immediately after emulsification.
  • the particle size is smaller than emulsions prepared using unmodified sugar beet pectin (raw material) or gum arabic as an emulsifier (comparative experimental samples 7-1 to 7-3, 7-4 to 7-6).
  • the ratio of oil droplet particles having a particle diameter of 1 ⁇ m or more was also low.
  • Comparative Experimental Samples 7-1 to 7-3 the coarsening of the oil droplet particles was remarkable, and it was shown that the emulsion prepared with unmodified sugar beet pectin (raw material) has low emulsion stability. . Even in the emulsion prepared using gum arabic, the comparative experimental sample 7-4 has a small degree of coarsening of the oil droplet particles, but the comparative experimental samples 7-5 and 7-6 having a high oil phase content do not. Particles were coarser than emulsions prepared using modified sugar beet pectin (raw material).
  • the emulsion prepared using modified sugar beet pectin as an emulsifier has a small average particle diameter of oil droplet particles and is stable even when the oil phase content is relatively high. It was done.
  • Experimental Example 8 Preparation of Beverage Concentrate Beverage concentrate using the emulsions prepared in Experimental Example 7 (Experimental Samples 7-1 to 7-3 and Comparative Experimental Samples 7-1 to 7-6) according to the formulation in Table 12 Were adjusted (experimental samples 8-1 to 8-3, comparative experimental samples 8-1 to 8-6).
  • the neck ring was evaluated using the following symbols. The evaluation becomes lower as it goes down from n to SR. In addition, even if the floating of the oil phase is confirmed, the commercial value as a beverage is not affected as long as it is about SLR. n: No floating or neck ring of the oil phase is confirmed. SLR: Oil phase floating is confirmed very slightly. LR: A very thin ring is confirmed. MR: A moderate neck ring is confirmed. SR: A clear neck ring is confirmed.
  • beverage concentrates prepared using modified sugar beet pectin (experimental samples 8-1 to 8-3), no neck ring or precipitation was observed in all samples until 7 days of storage at 20 ° C. Further, even after storage for 30 days, the experimental sample 8-3 having a high oil phase content showed slight oil floating, but no precipitation was observed. In other words, the beverage concentrate prepared using the modified sugar beet pectin had almost no change in appearance during the 30-day storage period.
  • beverage concentrates prepared using unmodified sugar beet pectin (raw material) were oiled in all beverage concentrates after storage at 20 ° C for 30 days.
  • comparative experimental sample 8-3 having a high oil content, formation of a neck ring was confirmed.
  • gum arabic Comparative Experiment Sample Examples 8-4 to 8-6
  • the change in appearance is more remarkable, and all samples were oiled after storage at 20 ° C. for 7 days. Phase floatation was observed, and necking was observed in comparative experimental samples 8-5 and 8-6 after 30 days storage.
  • beverage concentrate was prepared using modified sugar beet pectin, it was more stable than unmodified sugar beet pectin and gum arabic, which is the most commonly used polysaccharide emulsifier for beverages. It was confirmed that a beverage concentrate can be prepared.
  • Experimental Example 9 Preparation of Beverage Using the beverage concentrates prepared in Experimental Example 8 (Experimental Samples 8-1 to 8-3 and Comparative Experimental Samples 8-1 to 8-6), beverages were prepared according to the formulation in Table 14. (Experimental samples 9-1 to 9-3, comparative experimental samples 9-1 to 9-6).
  • comparative experimental samples 9-1 to 9-3 prepared using unmodified sugar beet pectin (raw material) as an emulsifier showed oil floating on the liquid level of all beverages after storage for 3 days. Neck ring formation was confirmed in all samples after 7 days of storage.
  • Comparative Experiment Samples 9-5 and 9-6 prepared using gum arabic showed necking in storage for 3 days, and after 7 days storage, all of Comparative Experiment Samples 9-4 to 9-6 Neck ring was observed in the samples.
  • the modified sugar beet pectin improves not only the beverage concentrate but also the stability of the beverage product.
  • the difference between the beverage product in which the specific gravity of the aqueous phase is close to that of the oil phase is more likely to be the difference between the examples and the comparative examples. This is thought to be due to the increase in the movement speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明は、天然から取得されるシュガービートペクチンに比して、乳化性および乳化安定性が改善もしくは向上されてなるシュガービートペクチン(改質シュガービートペクチン)及びその製造方法を提供する。当該改質シュガービートペクチンは、水不溶性成分を含み、高圧ホモジナイズ後の分子量が通常のシュガービートペクチンより大きいことを特徴とする。なお当該水不溶性成分は改質シュガービートペクチンを最終濃度0.1質量%になるように25℃の水に分散した際に吸水してハイドロゲルとなるものである。

Description

改質シュガービートペクチン及びその応用
 本発明は、改質されたシュガービートペクチン及びその製造方法に関する。より詳細には、天然から取得されるシュガービートペクチンに比して、乳化に関する特性、特に乳化安定性が改善もしくは向上されてなる改質シュガービートペクチン、及びその製造方法に関する。また、本発明は、当該改質シュガービートペクチンの乳化剤としての用途、並びに改質シュガービートペクチンを用いて調製されるエマルション(乳化組成物)及び飲食物に関する。
 シュガービートペクチンは、甜菜(Beta vulgaris LINNE var. rapa DUMORTIER)に由来する天然の高分子多糖類であり、α-1,4グリコシド結合したD-ガラクツロン酸の主鎖と、主にアラビノース、ガラクトース等の中性糖からなる側鎖、及び糖鎖に結合したタンパクから構成されている。その平均分子量はシトラス由来の一般的なペクチンの約1.5~3倍に相当する約35~55万g/ml程度であり、またシトラス由来のペクチンよりも側鎖の割合が多いため、より球状に近い構造をしているものと推定される。さらに、シュガービートペクチンは、メチルエステル化度が50%以上、総エステル化度が85%以上であり、ハイメトキシル(HM)ペクチンに該当する。
 ペクチンは、各種エマルションの調製に使用できることが知られているが(例えば、特許文献1~3など)、ローメトキシルペクチン及びハイメトキシルペクチンのいずれも、シトラス由来のペクチン単独では充分な乳化力を示さない場合がある。それに対して、シュガービートペクチンは、シトラス由来のペクチンに比べて高い乳化力を持ち、シュガービートペクチン単独でも少ない添加量で小さな粒子径をもつエマルションを調製することができる。
 但し、シュガービートペクチンを用いて調製したエマルションについては、保存安定性が必ずしもよくないことが指摘されている。この問題を解決するためには、シュガービートペクチンを粉末状態で加熱する方法(特許文献4~6)、もしくは水の存在下で電離放射線照射する方法(特許文献7~9)により高分子化する技術が報告されている。しかし、それらの方法を用いるためには、通常シュガービートペクチンの製造には用いられない特殊な装置を用いて温度や湿度などの条件を制御する必要があることや、乳化安定性の改良効果が不十分であるといった課題が残っている。
特開昭58-96010号公報 特開2000-139344号公報 特表2005-525808号公報 特開2005-261430号公報 国際公開第2006/132288号パンフレット 国際公開第2007/037347号パンフレット 特開2006-274226号公報 特開2006-274227号公報 特表2004-536624号公報
 本発明は、上記課題に鑑み、従来より一般に入手できるシュガービートペクチンよりも乳化性、特に乳化安定性に優れたエマルションを調製することができる、改質シュガービートペクチンを提供すること目的とする。また本発明はかかる改質シュガービートペクチンを、汎用の加熱装置で簡単に製造することができる方法を提供することを目的とする。さらに、本発明は改質シュガービートペクチンの乳化剤としての用途、並びに改質シュガービートペクチンを用いて調製されるエマルション及びその用途を提供することを目的とする。
 本発明者らは、上記課題を解決するために、シュガービートペクチンの改質方法を種々検討していたところ、シュガービートペクチンを水に分散した状態で加熱をすることにより、乳化性、特に乳化安定性に優れた改質シュガービートペクチンが得られることを見出した。そこで、当該改質シュガービートペクチンの構造解析をしたところ、当該改質シュガービートペクチンは、分子中のタンパク成分をリンカーとして糖類が結合することによって高分子化し、しかも疎水的な成分(水不溶性成分)が増加していること、その結果、水に分散したときに水に不溶のハイドロゲルが生成することを見出した。
 すなわち、上記方法によって改質されたシュガービートペクチンは、天然のシュガービートペクチンよりも高い分子量を有し疎水性成分(水不溶性成分)を有する等、天然物とは異なる特定の物性を有していることが判明した。また、その結果、油滴粒子への吸着量が増加するため、これを乳化剤として用いると初期の油滴粒子が小さく、保存安定性に優れたエマルションが製造できることを確認して、本発明に至った。
 すなわち、本発明は特定の物性を持つ改質シュガービートペクチン及びその製造方法に関し、さらには当該改質シュガービートペクチンの乳化剤としての用途、並びに改質シュガービートペクチンを用いて調製されるエマルションおよびその用途に関する。
 (I)改質シュガービートペクチン
(I-1)水不溶性成分を含むことを特徴とする改質シュガービートペクチンであって、当該水不溶性成分は改質シュガービートペクチンを最終濃度0.1質量%になるように25℃の水に分散した際に吸水してハイドロゲルとなるものである、改質シュガービートペクチン。
(I-2)水不溶性成分を3質量%以上90質量%未満の割合で含有することを特徴とする、(I-1)に記載の改質シュガービートペクチン。
(I-3)改質シュガービートペクチンの1.5質量%水分散液を圧力50MPaでホモジナイズした処理液を多角度光散乱検出器及び屈折率検出器を接続したサイズ排除クロマトグラフィーに供して測定される重量平均分子量が、少なくとも6.5×105g/molであることを特徴とする、(I-1)又は(I-2)に記載する改質シュガービートペクチン。
(I-4)改質シュガービートペクチンの1.5質量%水分散液を圧力50 MPaでホモジナイズした処理液を多角度光散乱検出器及び屈折率検出器を接続したサイズ排除クロマトグラフィーに供して測定される回転二乗半径が、少なくとも50 nmであることを特徴とする(I-1)乃至(I-3)のいずれかに記載する改質シュガービートペクチン。
(I-5)改質シュガービートペクチンの0.003質量%水分散液についてレーザー回折式光散乱測定装置で測定される体積平均粒子径が少なくとも1μmであることを特徴とする(I-1)乃至(I-4)のいずれかに記載する改質シュガービートペクチン。
(I-6)下記(II-1)乃至(II-4)のいずれかに記載する製造方法で製造された改質シュガービートペクチン。
(I-7)下記(II-1)乃至(II-4)のいずれかに記載する製造方法で製造されたものである、(I-1)乃至(I-5)のいずれかに記載する改質シュガービートペクチン。
 (II)改質シュガービートペクチンの製造方法
(II-1)シュガービートペクチンの水分散液を加熱処理する工程を有する、改質シュガービートペクチンの製造方法。
(II-2)シュガービートペクチンの水分散液が、シュガービートペクチンを5~40質量%の割合で含むものである(II-1)記載の製造方法。
(II-3)加熱温度が60~100℃である(II-1)又は(II-2)に記載する製造方法。
(II-4)加熱時間が1~48時間である(II-1)乃至(II-3)のいずれかに記載する製造方法。
 (III)乳化剤
(I-1)乃至(I-7)のいずれかに記載の改質シュガービートペクチンからなる乳化剤。
 (IV)エマルション
(IV-1)(III)に記載の乳化剤を用いて得られるエマルション。
(IV-2)(A)(I-1)乃至(I-7)のいずれに記載する改質シュガービートペクチン、
(B)イソプレノイドまたはこれに相溶する脂溶性物質、
(C)脂肪酸トリグリセリド、および
(D)水を含有することを特徴とするエマルション。
(IV-3)エマルション中の油相部の比重が0.89~0.95 g/mlに調整されている(IV-1)または(IV-2)に記載のエマルション。
(IV-4)(C)脂肪酸トリグリセリドの比重が0.9~0.97 g/mlである(IV-1)乃至(IV-3)のいずれかに記載するエマルション。
(IV-5)O/W エマルションもしくはW/O/Wエマルションである、(IV-1)乃至(IV-4)のいずれかに記載のエマルション。
(IV-6)乳化される疎水性物質が可食性の疎水性物質である、(IV-1)乃至(IV-5)のいずれかに記載のエマルション。
 (V)飲食物
 (I-1)乃至(I-7)のいずれに記載する改質シュガービートペクチン、(III)に記載する乳化剤、又は(IV-1)乃至(IV-6)のいずれかに記載するエマルションを含むことを特徴とする飲食品。
 (VI)シュガービートペクチンの乳化性向上方法
(VI-1)シュガービートペクチンを水に分散後、加熱処理を施すことを特徴とするシュガービートペクチンの乳化性向上方法。
(VI-2)水に分散させたシュガービートペクチンの含有量が5~40質量%であり、60~100℃の温度で1~48時間加熱することを特徴とする(VI-1)に記載する方法。
 本発明に規定される改質シュガービートペクチンまたは本発明に規定される方法で調製される改質シュガービートペクチンを用いることで、優れた乳化性、特に乳化安定性を有するエマルションを提供することができる。
 (I)改質シュガービートペクチン及びその製造方法
 本発明の改質シュガービートペクチンは、少なくとも下記(1)~(4)の点で天然由来のシュガービートペクチンとは異なる物性及び構造を有し、天然由来のシュガービートペクチンと比べて乳化性、特に乳化安定性に優れていることを特徴とする。
(1)疎水的な成分(水不溶性成分)を含むこと
(2)重量平均分子量が少なくとも6.5×10g/molであること
(3)回転二乗半径が少なくとも50 nmであること
(4)体積平均粒子径が少なくとも1 μmであること。
 すなわち、本発明の改質シュガービートペクチンは、天然由来の通常のシュガービートペクチンに比べて高分子化しており、水に溶けない疎水的な成分(水不溶性成分)の含有量が多いために、高い乳化安定性を発揮するものと考えられる。
 ここで上記改質シュガービートペクチンを調製するために原料となる天然シュガービートペクチン(以下、本発明の改質シュガービートペクチンと区別する意味で、「シュガービートペクチン(原料)」ともいう)は、甜菜(Beta vulgaris LINNE var. rapa DUMORTIER)から酸性条件下で抽出される天然の高分子多糖類であり、前述するように、α-1,4グリコシド結合したD-ガラクツロン酸(ホモD-ガラクツロナン)の主鎖と、主にアラビノースやガラクトース等の中性糖からなる側鎖、及び主鎖および/もしくは側鎖に結合したタンパクから構成されている。また、柑橘系のペクチンよりもタンパク成分含有量が多いため、柑橘系のペクチンよりも高い乳化性を有する。さらに、シュガービートペクチン(原料)は、メチルエステル化度が50%以上、総エステル化度が85%以上であり、ハイメトキシルペクチンに該当する。
 当該シュガービートペクチン(原料)は、一般には粉末状態で市販されており、誰でも商業的に入手することができる。商業的に入手可能な製品としては、例えばビストップ(商標)D-2250(三栄源エフ・エフ・アイ(株)製)を挙げることができる。
 以下、改質シュガービートペクチンの上記(1)~(4)の特徴について説明する。
 (1)疎水的な成分(水不溶性成分)を含む
 本発明の改質シュガービートペクチンは水不溶性成分を含むことを特徴とする。当該水不溶性成分は、改質シュガービートペクチンを最終濃度が0.1質量%になるように25℃の水に分散した際に吸水してハイドロゲルとなるものである。つまり、本明細書において「ハイドロゲル」とは、改質シュガービートペクチンに含まれる水に不溶な成分(水不溶性成分)が吸水した状態のものをいう。また本明細書では、水不溶性成分は水を吸収してハイドロゲルになるという意味で、「水不溶性成分」を「ハイドロゲル成分」という場合もある。
 改質シュガービートペクチン中に含まれる水不溶性成分(ハイドロゲル成分)の割合は、具体的には下記のようにして求めることができる。
1.改質シュガービートペクチンを乾燥重量で1 g(重量a)ビーカーにいれ、これにイオン交換水1000 gを添加し(約0.1質量%)、室温(25℃)にてよく混合した後、室温(25℃)に16時間放置する。
2.これを300メッシュ金網にて濾過し、金網から水が流れなくなった時点で、金網上に残った濾過残渣を丸底フラスコに回収する。
3.得られた濾過残渣に、メタノール200mlを添加して、室温(25℃)にて1時間浸漬放置し、不溶物を沈澱させる。
4.上澄み液をデカンテーションにて除去した後、沈殿物をロータリーエバポレーターを使用して、減圧下で乾燥する。
5.得られた濾過残渣の乾燥重量(重量b)を測定し、下式から、改質シュガービートペクチン中に含まれる水不溶性成分(ハイドロゲル成分)の割合を算出する。
式1
Figure JPOXMLDOC01-appb-I000001
 本発明の改質シュガービートペクチン中には、通常水不溶性成分(ハイドロゲル成分)が3~90質量%の範囲で含まれている。好ましくは10~90質量%、より好ましくは20~80質量%である。これに対して天然由来のシュガービートペクチン(シュガービートペクチン(原料))には、実験例1に示すように、通常水不溶性成分(ハイドロゲル成分)は含まれていない。
 水不溶性成分(ハイドロゲル成分)の含有量は、改質シュガービートペクチンの改質の度合いを示す指標となる。その含有量が多くなるほどシュガービートペクチンの改質が進んでいることとなり、本発明の目的である乳化性及び乳化安定性、特に乳化安定性が向上した改質シュガービートペクチンであることを示す。
 (2)重量平均分子量が少なくとも6.5×10 5 g/molであること
 本発明の改質シュガービートペクチンは、天然のシュガービートペクチン、つまりシュガービートペクチン(原料)に比して高分子化していることを特徴とする。その指標の一つが「重量平均分子量(M w)」である。
 当該重量平均分子量(M w)は、多角度光散乱(MALS:multiangle laser light scattering)検出器および屈折率(RI)検出器をオンラインで接続したサイズ排除クロマトグラフィー(SEC)を使用することによって求めることができる。なお、本明細書において、当該サイズ排除クロマトグラフィーの手法を「SEC-MALS」 と称する。SEC-MALSによれば、分子量はMALS検出器により、各成分の重量(組成比)はRI検出器により測定することができ、分子量既知の標準のシュガービートペクチンと対比することなく、分析成分の分子量を求めることができる。SEC-MALSの詳細な原理や特徴は、Idris , O.H.M. , Williams , P.A., Phillips, G.O.,;Food Hydrocolloids, 12 (1998) p.375 - 388に記載されている。SEC-MALSで得られたデータをASTRA Version 4.5(ワイアットテクノロジー製, 米国)等のソフトウェアを用いて処理することにより、重量平均分子量(M w)を始め、回収率(%Mass)、多分散性値(P)、及び回転二乗半径(R g)等の各種パラメーターを求めることができる。
 なお、本発明で使用するSEC-MALSの測定条件は下記の通りである:
カラム: OHpak SB-806M HQ (昭和電工社製)
カラム温度:25℃
流速:0.5 ml/min
溶出溶媒:0.5 M NaNO
試料液注入量:100μl
濃度に対する屈折率増加分(dn/dc):0.135
検出器温度:25℃(MALS、RIとも)
MALS検出器:DAWN DSP(ワイアットテクノロジー製、米国)
RI検出器:RI-930(日本分光製)。
 本発明の改質シュガービートペクチンは、最終濃度が1.5質量%になるようにイオン交換水に分散した後、50 MPaの圧力でホモジナイズした処理液を上記SEC-MALSに供して測定される重量平均分子量が、少なくとも6.5×10 g/molであることを特徴とする。好ましくは7.5×10 g/mol以上1×10 g/mol以下である。
 SEC-MALSに供するホモジナイズ処理液は、具体的には、後述する実験例1に記載するように、具体的には下記の方法で調製される。
1.乾燥重量1.5 gのシュガービートペクチンを98.5 gのイオン交換水に添加し、ポリトロン式攪拌機を用いて、回転速度26,000 rpmで1分間攪拌することによって1.5質量%のシュガービートペクチン分散液を調製する。
2.この分散液を、衝突型ジェネレーターを用いて50 MPaでホモジナイズ処理し、処理した分散液を0.5 MのNaNO水溶液で30倍希釈し、ポリトロン式攪拌機を使用して、回転速度26,000 rpmで1分間攪拌することによって0.05%(W/V)のシュガービートペクチン分散液を調製する。
3.これを孔径0.45μmのPTFEメンブランフィルターを用いてろ過して濾液を取得する。
 重量平均分子量(M w)が6.5×10 g/mol以下では乳化性及び乳化安定性に向上効果が見られない。一方、1×10 g/molを超えるとホモジナイズ処理が困難になるため好ましくない。ちなみに、天然由来のシュガービートペクチン(シュガービートペクチン(原料))の重量平均分子量(M w)は、実験例1に示すように、通常5.5×10 g/mol以下である。
 (3)回転二乗半径が少なくとも50nmであること
 上記ホモジナイズ処理液を上記条件のSEC-MALSに供して得られたデータをASTRA Version 4.5等のソフトウェアを用いて処理することにより、重量平均分子量(M w)だけでなく、回転二乗半径(R g)も求めることができる。なお、回転二乗半径とは、分子の回転中心(≒重心)からの距離の二乗の平均値であり、分子が空間を占める割合に相関する。
 本発明の改質シュガービートペクチンは、最終濃度が1.5質量%になるようにイオン交換水に分散した後、50MPaの圧力でホモジナイズした処理液を上記SEC-MALSに供して測定される回転二乗半径(R g)が、少なくとも50 nmであることを特徴とする。好ましくは55 nm以上、より好ましくは60~80 nmである。
 (4)体積平均粒子径が少なくとも1 μmであること
 本発明の改質シュガービートペクチンが、シュガービートペクチン(原料)に比して高分子化していることの指標の他の一つが「体積平均粒子径」である。
 本発明の改質シュガービートペクチンは、最終濃度が0.003質量%になるようにイオン交換水に分散した分散液をレーザー回折式光散乱測定装置に供して測定される体積平均粒子径が、少なくとも1 μmであることを特徴とする。好ましくは2 μm~20 μm である。
 体積平均粒子径はレーザー回折式光散乱測定装置を用いて測定することができるが、かかる装置に供する試料は、後述する実験例2に記載するように、具体的には下記の方法で調製される。
 1.改質シュガービートペクチン0.45 g(乾燥重量換算)を150 gのイオン交換水に添加した後に、ポリトロンミキサーを用いて26,000 rpmで1分間攪拌し、約0.3質量%のシュガービートペクチン水分散液を調製する。
 2.これをさらにイオン交換水で100倍希釈する(改質シュガービートペクチンの最終濃度:約0.003質量%)。
 体積平均粒子径が0.4 μm以下では乳化性及び乳化安定性に向上効果は見られない。一方、 体積平均粒子径が30 μmを超えるとホモジナイズ処理が困難になるため好ましくない。ちなみに、天然由来のシュガービートペクチン(シュガービートペクチン(原料))の体積平均粒子径は、実験例2に示すように、通常0.35μm以下である。
 以上の特性を有する本発明の改質シュガービートペクチンは、シュガービートペクチン(原料)の水分散液を加熱処理することで調製することができる。ここでシュガービートペクチン(原料)の形態は、塊状物、玉状物、粗粉砕物、顆粒状、粒状、または粉末状(スプレードライ粉末品を含む)の形態の別を問わず、いずれの形態のものも本発明が改質対象とするシュガービートペクチン(原料)として使用することができる。
 なお、シュガービートペクチン(原料)の水分散液には、水に溶解した状態である「シュガービートペクチン(原料)水溶液」;配合したシュガービートペクチン(原料)の一部が水に溶解し一部が不溶状態にある分散液、懸濁液、またはペースト状のシュガービートペクチン(原料);及びシュガービートから酸性条件下で抽出された高分子多糖類を含有する溶液を濃縮した「ウェットケーキ状シュガービートペクチン」が含まれる。これらのいずれであっても、本発明にかかるシュガービートペクチンの製造における加熱処理に供することができる。
 これらの水に分散させたシュガービートペクチン(原料)において、シュガービートペクチン(原料)と水の配合割合は、重量比で通常5:95~40:60、10:90~40:60、好ましくは10:90~35:65である(シュガービートペクチン(原料)の質量%に換算すると5~40質量%、好ましくは10~40質量%、より好ましくは10~35質量%)。配合する水は、常温のものであっても加温されたものであってもよく、任意の温度のものでよい。また、水道水、イオン交換水、蒸留水のいずれであっても良い。好ましくはイオン交換水である。
 また、上記のシュガービートペクチン分散液に他の多糖類や界面活性効果を有する成分と混合した後に加熱処理をすることもできる。多糖類としては、シトラスペクチン、アップルペクチンなどの他の植物由来のペクチン;アラビアガム、ガティガム、大豆多糖類、キラヤサポニン、オクテニルコハク酸化されたデンプン等といった乳化性を持つ多糖類;またはキサンタンガム、グアーガム、ローカストビーンガム、カラギナン、ジェランガム、グルコマンナン等といった増粘性を持つ多糖類などが挙げられる。界面活性効果を有する成分としては、モノグリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン酸脂肪酸エステル、プロピレングリコール脂肪酸エステル等の合成乳化剤;またはカゼインナトリウムやレシチンなどといったタンパク系の乳化剤を例示することができる。
 加熱温度としては60~100℃、より好ましくは75~100℃である。また、制限されないが、好ましい加熱時間は1~24時間である。加熱方法は特に制限されないが、湯煎による加熱、飽和水蒸気加熱、加熱水蒸気加熱、電熱線加熱、インダクションヒーティング等の方法が例示できる。また、必要に応じて加熱時に攪拌操作を加えてもよい。なお、当該加熱は常圧より低い圧力下、すなわち減圧下で行うこともできる。減圧条件は、特に制限されないが、例えば0.01~900 hPa程度、好ましくは300~800 hPa程度、より好ましくは500~750 hPa程度の条件を挙げることができる。
 以上説明するように、上記の濃度範囲になるように水に分散させたシュガービートペクチンを調製し、上記の温度及び時間範囲で加熱処理を行うことにより、比較的緩やかな条件下でも、乳化安定性に優れる本発明の改質シュガービートペクチンを得ることができる。さらに必要に応じて、加熱処理工程後に公知の方法による乾燥工程を行っても良い。
 上記の方法によって調製される改質シュガービートペクチンは、シュガービートペクチン(原料)に比べて乳化性、特に乳化安定性に優れている。一般に乳化剤の乳化安定性は、調製される油滴粒子の平均粒子径が小さく、またその粒子径が経時的に安定して保持されるほど、優れていると評価される(「アラビアゴムで乳化したO/Wエマルジョンの濁度比法による研究」、薬学雑誌、112(12).906-913.(1992)参照)。
 なお、本発明において、乳化力の評価基準となるエマルションの調製方法、その平均粒子径の測定方法及び経時的安定性の評価方法については、後述する実験例に記載する方法に従うことができる。
 本発明の改質シュガービートペクチンを乳化剤として使用すると、シュガービートペクチン(原料)を乳化剤として使用する場合に比べて、エマルションにおける油滴粒子の平均粒子径が小さく、その経時的な変化も少ない。つまり、改質シュガービートペクチンはシュガービートペクチン(原料)に比べて高い乳化性および乳化安定性を有する。
 この作用機序としては、加熱によってタンパク質成分を介した分子間或いは分子内結合が起こり、シュガービートペクチンの疎水性が増すことによって界面活性能が上昇することによると考えられる。事実、本発明に係る改質シュガービートペクチンは分子中のタンパク成分をリンカーとして糖鎖が結合することによって高分子化し、水に分散した場合に水に溶けない疎水的な成分(水不溶性成分:ハイドロゲル成分)が増加している。その結果、油滴粒子への吸着量が増加するものと考えられる。かかる改質シュガービートペクチンは、高圧ホモジナイズ処理をした後でも、高い分子量を保っている。これを乳化剤として使用し、高圧ホモジナイザーを用いてエマルションを調製すると、シュガービートペクチン(原料)を乳化剤として使用する場合に比べて、エマルションにおける油滴粒子の平均粒子径が小さく、その経時的な変化も少ない。つまり、改質シュガービートペクチンはシュガービートペクチン(原料)に比べて高い乳化活性および乳化安定性を有することとなる。また、改質シュガービートペクチンを使用することにより、シュガービートペクチン(原料)に比べて、乳化組成物への添加量を減らすことができるというメリットもある。
 (II)乳化剤
 本発明の改質シュガービートペクチンは乳化剤として用いることができる。すなわち、本発明の改質シュガービートペクチンを用いて乳化剤を調製することができる。
 当該乳化剤は、特に食品、医薬品、医薬部外品、または香粧品の分野において、とりわけ経口的に摂取され得る可食性製品の乳化剤として好適に使用することができる。具体的には、飲料、粉末飲料、デザート、チューイングガム、錠菓、スナック菓子、水産加工品、畜産加工品、レトルト食品などの飲食品等の乳化、油性香料の乳化、及び油性色素の乳化などに、好適に使用することができる。
 本発明の乳化剤は、本発明の改質シュガービートペクチンを、そのまま水溶液の状態または顆粒状若しくは粉末状等の固体状で用いることもできるが(改質シュガービートペクチン100質量%)、必要に応じてその他の担体や添加剤を配合して乳化剤製剤として用いることもできる。この場合、使用される担体や添加剤は、乳化剤を用いる製品の種類やその用途に応じて、常法に従って適宜選択することができる。例えば、デキストリン、マルトース、乳糖等の糖類や、グリセリン、プロピレングリコール等の多価アルコールと混合して調製することができる。
 また、本発明の乳化剤は他の多糖類や界面活性効果を有する成分と混合して、乳化剤製剤(調合剤)として使用することもできる。例えば、シトラスペクチン、アップルペクチンなどの他の植物由来のペクチン;アラビアガム、ガティガム、大豆多糖類、キラヤサポニン、オクテニルコハク酸化されたデンプン等といった乳化性を持つ多糖類;またはキサンタンガム、グアーガム、ローカストビーンガム、カラギナン、ジェランガム、グルコマンナン等といった増粘性を持つ多糖類などと混合して使用することができる。さらに、モノグリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン酸脂肪酸エステル、プロピレングリコール脂肪酸エステル等の合成乳化剤;またはカゼインナトリウムやレシチンなどといったタンパク系の乳化剤と混合して乳化剤製剤として調製することもできる。
 乳化剤製剤中の改質シュガービートペクチンの配合割合としては、1質量%以上であることが好ましく、10質量%以上であればより好ましく、20質量%以上であればさらに好ましい。
 (III)エマルション
 本発明は、前述の改質シュガービートペクチン、または当該改質シュガービートペクチンを有効成分とする乳化剤を用いて調製されるエマルションを提供する。
 該エマルションは、乳化剤として前述の改質シュガービートペクチンまたは当該改質シュガービートペクチンを有効成分とする乳化剤を使用して、分散質として疎水性物質を親水性分散媒中に分散安定化することによって調製することができる。ここでエマルションとしては、水中油滴(O/W)型、W/O/W型のエマルションを挙げることができる。
 前述の改質シュガービートペクチンまたは当該ペクチンを有効成分とする乳化剤のエマルションに対する配合割合は、分散する疎水性物質に応じて適宜調整すればよく、具体的な配合量としては、最終エマルション100質量%中の濃度が0.01~10質量%程度、好ましくは0.05~5質量%となるような割合を挙げることができる。中でも、乳化剤の配合割合として、シュガービートペクチン(原料)を少なくとも1質量%以上含まないと高い乳化安定効果を得ることができないが、本発明にかかる改質シュガービートペクチンを使用した場合には、1質量%未満においても高い乳化安定性を有するエマルションを調製することが可能となる。
 ここで乳化される疎水性物質は通常エマルション形態に供されるもの若しくはその必要性のあるものであれば制限無く利用することができる、好ましくは食品、医薬品、医薬部外品または香粧品分野で用いられるもの、より好ましくは経口的に用いられることが可能な可食性の疎水性物質を挙げることができる。
 具体的には、オレンジ、ライム、レモン及びグレープフルーツなどの柑橘系植物等の基原植物から得られる各種精油;ペパー、シンナモン及びジンジャーなどの基原植物からオレオレジン方式で得られるオレオレジン;ジャスミンやローズなどの基原植物からアブソリュート方式で得られるアブソリュート;その他、合成香料化合物、及び油性調合香料組成物などの油性香料;β-カロチン、パプリカ色素、リコピン、パーム油、カロチン、アスタキサンチン、ドナリエラカロチン及びニンジンカロチンなどの油性色素;ビタミンA、D、E及びKなどの油溶性ビタミン;ドコサヘキサエン酸、エイコサペンタエン酸、及びγ-リノレン酸などの多価不飽和脂肪酸;大豆油、菜種油、コーン油、植物性ステロール及び魚油などの動植物油脂;SAIB(Sucrose acetate isobutylate:ショ糖酢酸イソ酪酸エステル)、エステルガム(Glycerol Triabietate Ester:トリアビエチン酸エステル)またはC6~C12の中鎖トリグリセライドなどの加工食品用油脂及びこれら可食性油性材料の任意の混合物を例示することができる。
 エマルションの調製方法は、特に制限されず、水中油滴(O/W)型エマルションまたはW/O/W型エマルションの調製に関する常法に従って、疎水性物質と親水性分散媒とを上記乳化剤の存在下で、ホモジナイザーや高圧噴射などを利用して機械的に攪拌乳化することによって行うことができる。より具体的には、下記の方法を例示することができる。
 まず、改質シュガービートペクチンを有効成分とする本発明の乳化剤を水等の親水性溶媒に溶解し、これに、目的の疎水性物質(例えば油脂、また予め油脂に香料や色素を溶解した混合液)を撹拌機等で混合し、予備乳化する。なお、この際、必要に応じてエステルガムやSAIB等の比重調整剤を用いて疎水性物質の比重を調整してもよい。次いで得られた予備乳化混合液を、乳化機を利用して乳化する。
 なお、ここで疎水性物質としては前述のものを例示することができるが、油性香料や油性色素を用いて乳化香料や乳化色素を調製する場合は、上記疎水性物質として予め油脂に油性香料や油性色素を溶解した混合液を用いることが好ましい。これによって、より乳化を安定化し、また成分の揮発を予防することができる。また油性香料や油性色素を溶解する油脂としては、特に制限されないが、通常、中鎖トリグリセライド(炭素数6~12の脂肪酸トリグリセライド)、及びコーン油、サフラワー油、または大豆油などの植物油を用いることができる。
 乳化に使用する乳化機は、特に制限されず、目的とする油滴粒子の大きさや、試料の粘度などに応じて適宜選択することができる。例えば、高圧ホモジナイザーの他、ナノマイザーやディスパーミル、コロイドミルなどの乳化機を使用することができる。
 乳化工程では、前述するように、親水性分散媒中に、攪拌下、疎水性物質を添加し、攪拌羽を回転して予備乳化し、粒子径約2~5 μmの油滴粒子を調製した後、ホモジナイザーやナノマイザーなどの乳化機を用いて微細で均一な粒子(例えば、平均粒子径1 μm以下、好ましくは0.8 μm以下)を調製する。
 なお、β-カロチンなどの色素の多くは、それ自身、結晶の状態でサスペンションとして存在する。したがって、これらの色素をエマルション(乳化色素)として調製するには、まず、色素の結晶を適当な油脂と高温で混合し溶解してから、親水性分散媒に添加することが好ましい。分散した状態において、色素が液体又は固体のどちらの状態で分散していても、何ら本発明の効果を妨げるものではない。
 斯くして前述の乳化剤を用いて調製されるエマルションは、シュガービートペクチン(原料)のみを用いて調製したエマルションと比較して、油滴粒子の粒度分布が均一であり、かつ、加熱や長期保存、経時変化などの虐待(過酷条件)によっても、油滴粒子同士が凝集したり、合一して乳化状態が劣化することが有意に抑制されており、乳化安定性が高い。
 なお、本発明のエマルション中における、親水性分散媒と疎水性物質の配合割合は任意に調整することができるが、例えば、親水性分散媒:疎水性物質=50:50~99:1、好ましくは70:30~95:5の割合で配合することができる。
 本発明のエマルションには、下記の組成からなるエマルション(O/W型、W/O/W型)も含まれる。
(A)改質シュガービートペクチン、
(B)イソプレノイドまたはこれに相溶する脂溶性物質、
(C)脂肪酸トリグリセリド、および
(D)水。
 かかるエマルションは、成分として、臭素化された食用油、ダマーガム、エステルガムおよびSAIB等の化学的に合成された比重調整剤を用いないでも、長期に亘って乳化性が安定に保持されていることを特徴とする。具体的には、上記のエマルションは、イソプレノイドとそれに溶け込んだ脂溶性物質(例えば脂溶性ビタミンやDHA等の栄養成分、色素、香料等)からなる油相を脂肪酸トリグリセリドのみで比重調整することで、飲料や飲料濃縮物中でも長期間に亘って品質が安定していることを特徴とする。
 ここでエマルション中の(A)改質シュガービートペクチンの割合としては、0.01~5質量%程度、好ましくは0.05~3質量%を挙げることができる。
 (B)でいうイソプレノイドには、モノテルペン、セスキテルペン、ジテルペン、セスタテルペン、トリテルペン、テトラテルペン等のテルペンのほか、カルボニル基やヒドロキシ基を有するテルペノイド等の脂溶性物質が含まれる。具体的には、D-リモネン、ジペンテン(1-メチル-4-(1-メチルエテニル)シクロヘキセン)、ミルセン、α-ピネン、リナロール及びこれらの混合物;オレンジ、ライム、レモン及びグレープフルーツなどの柑橘系植物等の基原植物から得られる各種精油;ペパー、シンナモン及びジンジャーなどの基原植物からオレオレジン方式で得られるレジノイドやオレオレジン等が挙げられる。また、イソプレノイドに相溶する油溶性成分として、特に限定されるものではないがビタミンA、D、E及びK、コエンザイムQ10などの油溶性ビタミン;ドコサヘキサエン酸、エイコサペンタエン酸、及びγ-リノレン酸などの多価不飽和脂肪酸;β-カロチン、パプリカ色素、リコピン、アスタキサンチン、ドナリエラカロチン及びニンジンカロチンなどの油性色素;各種天然成分から抽出された脂溶性香料が例示できる。
 また、(C)でいう脂肪酸トリグリセリドも食品製造に利用されているものを制限なく利用できる。具体的には、パーム油、大豆油、菜種油、コーン油、植物性ステロール及び牛脂、豚脂、魚油などの動植物油脂;C6~C12の中鎖トリグリセライドなどの食品用油脂などが挙げられる。好ましくは、比重が0.9~0.97 g/mlである脂肪酸トリグリセリドである。
 (B)イソプレノイドに相溶する脂溶性成分と(C)脂肪酸トリグリセライドの配合割合は、使用するイソプレノイドと脂肪酸トリグリセリドの種類によって適宜任意の割合とすることができ、最終的に(B)と(C)を混合した後の比重が0.89~0.95 g/ml、好ましくは0.89~0.93 g/mlの範囲となるように設定すればよい。
 かかるエマルションの製造方法は、特に制限なく、前述の方法に従って行うことができるが、一例を挙げると、本発明の改質シュガービートペクチンを水等の親水性溶媒に溶解し、これに(B)と(C)の混合物を撹拌機等で混合し、予備乳化する。次いで得られた予備乳化混合液を、乳化機を利用して高圧条件下で乳化する。
 乳化工程では、前述のように、親水性分散媒中に、攪拌下、疎水性物質を添加し、攪拌羽を回転して予備乳化し、粒子径約2~5 μmの油滴粒子を調製した後、ホモジナイザーやナノマイザーなどの乳化機を用いて微細で均一な粒子(例えば、平均粒子径1μm以下、好ましくは0.8 μm以下)を調製する。
 なお、かかるエマルション中における疎水性物質と親水性分散媒の配合割合は任意に調整することができるが、例えば、疎水性物質:親水性分散媒=50:50~99:1、好ましくは、70:30~95:5の割合で配合することができる。
 斯くして調製される上記エマルションは、シュガービートペクチン(原料)を用いて調製したエマルションと比較して、粒子の平均粒子径が小さく、粒度分布が均一であり、かつ、加熱や長期保存によっても、油滴粒子同士が凝集したり、合一して乳化状態が劣化することが有意に抑制されており、乳化活性および乳化安定性が高い。
 (IV)エマルションを用いた飲食物
 本発明が提供する飲食物としては、上述の改質シュガービートペクチン、該改質シュガービートペクチンを含む乳化剤、さらには改質シュガービートペクチンまたは改質シュガービートペクチンを含む乳化剤により調製したエマルションを用いるものであればよい。特に制限するものではないが、例えば、乳飲料、乳酸菌飲料、炭酸飲料、果実飲料、粉末飲料、スポーツ飲料、紅茶飲料、緑茶飲料などの飲料類;カスタードプリン、ミルクプリンなどのプリン類;ゼリー、ババロア及びヨーグルトなどのデザート類;ミルクアイスクリーム、アイスキャンディーなどの冷菓類;チューインガムや風船ガムのガム類;マーブルチョコレートなどのコーティングチョコレートの他、メロンチョコレートなどの香味を付与したチョコレートなどのチョコレート類;ハードキャンディー、ソフトキャンディー、キャラメル、ドロップなどのキャラメル類;ハードビスケット、クッキー、おかきなどの焼き菓子類;コーンスープ、ポタージュスープなどのスープ類、ドレッシング、ケチャップ、マヨネーズ、たれ、ソースなどのソース類;ハム、ソーセージ、焼き豚などの畜肉加工品;魚肉ソーセージ、蒲鉾などの水産練り製品;バター、マーガリン、チーズなどの油脂製品類などの加工食品を例示することができる。
 これらの飲食物の調製方法は、その調製の為の原材料として本発明にかかる改質シュガービートペクチン、該改質シュガービートペクチンを含む乳化剤、さらには改質シュガービートペクチンまたは上記乳化剤により調製したエマルションを用いればよく、既存の製造設備を利用でき、特別な製造条件を設定する必要もなく簡便に乳化性及び乳化安定性に優れた飲食物を調製することができる。
 なお、前述する(A)~(D)の成分から調製されるエマルションを使用して調製される飲料としては、特に制限はされないが、例えば、炭酸飲料、果実飲料、粉末飲料、スポーツ飲料、紅茶飲料、緑茶飲料、乳飲料、乳酸菌飲料などを例示することができる。
 通常、エマルションは、飲料に色、香り、栄養成分等を付与する目的で、大部分が水もしくは親水性の溶媒からなる飲料原液もしくは飲料濃縮物に混和される。
 飲料原液に混和された場合は、そのまま容器に詰められるなどして製品化され出荷される。出荷された後は、飲用されるまで、常温において静置もしくは運搬されることが多く、その間目立った油相の浮遊や付着を生じないことが求められる。一方、飲料濃縮液に混和された場合、希釈された後に製品化されるだけでなく、飲料濃縮液のまま流通し、飲用直前に希釈されることもある。飲料濃縮物の状態で常温において静置もしくは運搬されることがあり、その間、飲料濃縮物中で目立った油相の浮遊や付着が生じないことが求められる。通常、飲料濃縮物の粘度は希釈されたものに比べて高く、その点においては油相の浮遊はおこりにくいが、一方、濃縮物の比重も高いため、油相と水相の比重差が大きい場合は、むしろ油浮きが促進される場合もある。
 一般に、化学的に合成された比重調整剤を用いずに調製されたエマルションを用いた場合には、比較的短時間で飲料中の油相の浮遊等が確認される。しかしながら、上記(A)~(D)の成分を含有するエマルションを用いた場合、飲料中での油相の安定性は顕著に向上し、長期間の保存中においても油相粒子の粗大化やそれに伴う飲料上部への油相成分の浮遊もしくは、飲料下部の油相成分の減少(いわゆる「下すき」)などといった、飲料製品の劣化が起こりにくいという利点がある。
 (V)乳化安定性の向上方法
 本発明の改質シュガービートペクチンを調製することで、シュガービートペクチン(原料)の乳化性を向上させることができる。本発明の改質シュガービートペクチンはシュガービートペクチン(原料)に比べて乳化組成物を調製した場合に平均粒子径が小さく、粒子の粒度分布が均一であり、かつ加熱や長期保存によっても油滴粒子同士が凝集したり、合一して乳化状態が劣化することが有意に抑制され、乳化活性および乳化安定性が高い。
 すなわち、(I)で説明する方法に従ってシュガービートペクチンを改質することにより、シュガービートペクチンの乳化性を向上させることができる。よって、本発明はシュガービートペクチンの乳化性を向上させる方法を提供するものでもある。当該方法は(I)に説明する方法に従って実施することができる。
 以下、本発明の内容を以下の実施例、比較例、及び実験例を用いて具体的に説明する。但し、本発明はこれらに何ら限定されるものではない。なお、下記において特に言及しないかぎり、「%」は「質量%」を意味するものとする。また、「※」は三栄源エフ・エフ・アイ株式会社の登録商標を示す。
 原料として使用するシュガービートペクチンとして、分子量 約50万、乾燥減量 約10%の粉末状(粒子径:100~150μm)の試料(ビストップ(※)D-2250、三栄源エフ・エフ・アイ(株)製)を用いた。以下、これを「シュガービートペクチン(原料)」と称する。
 実施例1~5 改質シュガービートペクチン(改質品1~5)
 シュガービートペクチン(原料)をイオン交換水にキッチンエイドミキサーKSM5((株)FMI製、以下同じ)を用いて表1に示す割合で混合し、密閉容器に充填後に、恒温装置SH-641(エスペック(株)製、以下同じ)を用いて加熱処理した(表1)。加熱温度は75℃、加熱時間は8~12時間に設定した。加熱処理後、凍結乾燥装置FDU-1100(東京理化機器(株)製、以下同じ)を用いて凍結乾燥し、乳鉢中で粉砕することにより、粉末状の改質シュガービートペクチン(改質品1~5)を得た。
 実施例6~7 改質シュガービートペクチン(改質品6~7)
 シュガービートペクチン(原料)をイオン交換水にキッチンエイドミキサーKSM5を用いて表1に示す割合で分散した。これをナス型フラスコに充填後に、ロータリーエバポレーターシステムN-1000V(東京理化機器(株)製、以下同じ)を用いて、減圧下(700hPa)で加熱処理した。加熱温度は80℃、加熱時間は5~8時間に設定した。加熱処理後、凍結乾燥装置FDU-1100を用いて凍結乾燥し、乳鉢中で粉砕することにより、粉末状の改質シュガービートペクチン(改質品6~7)を得た。
 比較例1 未改質シュガービートペクチン(未改質品1)
 未改質品1として、実施例1~7に記載する改質シュガービートペクチンの調製に使用した粉末状のシュガービートペクチン(原料)を用いた。
 比較例2 未改質シュガービートペクチン(未改質品2)
 未改質品2として、実施例1~7に記載する改質シュガービートペクチンの調製に使用した原料ペクチン(未改質品1、比較例1)とは異なるロットの粉末状シュガービートペクチン(原料)を用いた。
 比較例3 未改質シュガービートペクチン(未改質品3)
 未改質品3として、上記未改質品1(比較例1)及び未改質品2(比較例2)とは異なるロットの粉末状シュガービートペクチン(原料)を用いた。
 比較例4 未改質シュガービートペクチン(未改質品4)
 未改質品4として、上記未改質品1(比較例1)~未改質品3(比較例3)とは異なるロットの粉末状シュガービートペクチン(原料)を用いた。
Figure JPOXMLDOC01-appb-T000002
 実験例1 シュガービートペクチンの評価
 上記で調製した各シュガービートペクチン(実施例1~7および比較例1~4)について、(1)水分散液中におけるハイドロゲル生成量、並びに(2)重量平均分子量(M w)及び回転二乗半径( )を測定するとともに、(3)これらのシュガービートペクチンを用いて乳化組成物(エマルション)を調製し、乳化特性(乳化性と乳化安定性)を評価した。
 (1)水分散液中におけるハイドロゲル生成量の測定
 1.シュガービートペクチンを乾燥重量で1g(重量a)ビーカーにいれ、これにイオン交換水1000gを添加し(約0.1質量%)、室温(25℃)にてよく混合した後、室温(25℃)に16時間放置した。
 2.これを300メッシュ金網にて濾過し、金網から水が流れなくなった時点で、金網上に残った濾過残渣を丸底フラスコに回収した。
 3.得られた濾過残渣に、メタノール200mlを添加して、室温(25℃)にて1時間浸漬放置し、不溶物を沈澱させた。
 4.上澄み液をデカンテーションにて除去した後、沈殿物をロータリーエバポレーターを使用して、減圧下で乾燥した。
 5.得られた濾過残渣の乾燥重量(重量b)を測定し、下式から、分散液中に含まれるハイドロゲル成分の割合を算出し、これを「水分散液中におけるハイドロゲル生成量(質量%)」とした。
式2
Figure JPOXMLDOC01-appb-I000003
   
 (2)重量平均分子量(M w )及び回転二乗半径(R g )の測定
 乾燥重量1.5 gのシュガービートペクチンを98.5 gのイオン交換水に添加し、ポリトロン式攪拌機を用いて、回転速度26,000 rpmで1分間攪拌することにより1.5質量%のシュガービートペクチン分散液を調製した。
 この分散液を衝突型ジェネレーター(Nano-Mizer NM2、吉田機械興業(株)製、以下同じ)を用いて50MPaでホモジナイズ処理を行った。ホモジナイズされた分散液を0.5 MのNaNO3水溶液で30倍希釈し、ポリトロン式攪拌機を使用して、回転速度26,000rpmで1分間攪拌することによって0.05%(W/V)のシュガービートペクチン分散液を調製した。これを、孔径0.45 μmのPTFEメンブランフィルターを用いてろ過した後に、下記に示す多角度光散乱検出器(MALS検出器)及び屈折率検出器(RI検出器)を接続したサイズ排除クロマトグラフィー(SEC-MALS)に供して、シュガービートペクチンの重量平均分子量(M w)及び回転二乗半径(R g )を測定した。
 当該SEC-MALSによれば、MALS検出器によりシュガービートペクチンのM wを、MALS及びRI検出器によりシュガービートペクチンの回転二乗半径(R g )を検出することができ、分子量既知の標準品と対比することなくシュガービートペクチンの分子量を求めることができる。解析にはASTRA Version 4.5(ワイアットテクノロジー社製)ソフトウェアを用いた。
 <サイズ排除クロマトグラフィーの測定条件>
カラム: OHpak SB-806M HQ(昭和電工社製)
カラム温度:25℃
流速:0.5 ml/min
溶出溶媒:0.5 M NaNO3
試料液注入量:100μl。
 <MALS検出器及びRI検出器の装置条件>
MALS検出器:DAWN DSP(ワイアットテクノロジー製、米国)
RI検出器:RI-930(日本分光製)
濃度に対する屈折率増加分(dn/dc):0.135
MALSディテクター:LS#4~#13(26°~132°に配置された計10個のディテクター)
検出器温度:25℃(MALS、RIとも)
 (3)乳化特性(乳化性、乳化安定性)の測定
 下記に示すように、上記実施例1~7及び比較例1~4のシュガービートペクチンを用いてエマルションを調製し(実施例1-1~1-7、比較例1-1~1-4)、調製直後と60℃3日保存後の体積基準のメジアン粒子径(以後、「平均粒子径」は、特に断りのない限り「体積基準のメジアン粒子径」を示す)と、エマルション中の全油滴粒子中、平均粒子径が1μm以上の油滴粒子の割合を測定した。
 実験試料1-1~1-7
 実施例1~7の改質シュガービートペクチン(改質品)2 g(乾燥重量換算)をイオン交換水83gに添加し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサー(Heidlph社製、以下同じ)を用いて24,000rpmで攪拌下、中鎖トリグリセライド(オクタン酸・デカン酸トリグリセライド)(O.D.O(商品名)、日清オイリオ(株)製、以下同じ)15 gを添加し、1分間混合した。この混合液を、衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルションを調製した(実験試料1-1~1-7)。
 比較実験試料1-1~1-4
 比較例1~4のシュガービートペクチン(原料)(未改質品)2 g(乾燥重量換算)をイオン交換水83 gに添加し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサーを用いて24,000 rpmで攪拌下、中鎖トリグリセライド(オクタン酸・デカン酸トリグリセライド)(O.D.O)15 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルションを調製した(比較実験試料1-1~1-4)。
 (4)測定結果
 シュガービートペクチン水分散液中のハイドロゲル生成量、シュガービートペクチンの重量平均分子量(M w)および回転二乗半径(R g)、並びにエマルションの調製直後と60℃3日後の平均粒子径、およびエマルションに含まれる油滴粒子において平均粒子径が1μm以上の油滴粒子の割合を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~7のシュガービートペクチン(改質品1~7)は、いずれも水に不溶な成分(ハイドロゲル成分)を含有しており、改質時間(加熱時間)が長くなるにしたがって、ハイドロゲル成分の生成量が増加する傾向が認められた。一方、比較例1~4の未改質シュガービートペクチン(未改質品1~4)にはいずれも水に不溶な成分(ハイドロゲル成分)が存在していなかった。
 また、実施例1~7の改質シュガービートペクチン(改質品1~7)は、いずれも重量平均分子量(M w)が6.5×105g/molを超えており、加熱時間が長くなるにしたがって重量平均分子量が増加する傾向が見られた。一方、比較例1~4の未改質のシュガービートペクチン(未改質品1~4)はいずれも重量平均分子量(M w)は6.5×105g/mol未満であった。この結果、改質シュガービートペクチンは、未改質シュガービートペクチンに比べて高分子化していることが確認できた。
 またこれらのシュガービートペクチンを用いて調製したエマルションの油滴粒子の平均粒子径は、実施例1~7の改質シュガービートペクチンを用いて調製したエマルションのほうが比較例1~4の未改質シュガービートペクチンを用いて調製したエマルションよりも小さく、特に乳化安定性を示す60℃3日保存後の油滴粒子の平均粒子径においてその傾向が顕著であった。このことから、シュガービートペクチンを実施例1~7の方法に従って改質することにより、乳化性、特に優れた乳化安定性を有するペクチンを調製できることが確認できた。
 実験例2 シュガービートペクチン分散液に含まれるハイドロゲル粒子の平均粒子径
 次の方法により、シュガービートペクチン分散液中に含まれるハイドロゲル粒子の平均粒子径(μm)を測定した。なお、改質シュガービートペクチンは、シュガービートペクチンの水分散液を加熱処理して改質されることで、シュガービートペクチンの構成成分が重合して疎水的になるため、吸水して所定の大きさを有するハイドロゲル粒子として検出される。 
 <体積平均粒子径の測定法>
 実施例1~7及び比較例1~4のシュガービートペクチン0.45 g(乾燥重量換算)を150gのイオン交換水に添加した後に、ポリトロンミキサーを用いて26,000 rpmで1分間攪拌し、約0.3%のシュガービートペクチンの水分散液を調製した。これをさらにイオン交換水で100倍希釈したもの(シュガービートペクチンの最終濃度:約0.003%)(実験試料1~7、比較実験試料1~4)をレーザー回折式光散乱測定装置(SALD-2100:島津製作所(株)製)に供して、ハイドロゲル粒子の平均粒子径(μm)を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 シュガービートペクチンを約0.003%の水分散液にしたとき、実施例1~7の改質シュガービートペクチンはいずれもその体積平均粒子径が1 μm以上になっていた。一方、比較例1~4の未改質シュガービートペクチンは、いずれも平均粒子径が0.35 μm以下であった。「0.35 μm以下」は商業的に入手できる一般的なシュガービートペクチンの体積平均粒子径に相当する。この結果から、実施例1~7の方法に従って改質することによりシュガービートペクチンが高分子化し、体積平均粒子径が増大することが判明した。
 実験例3 改質シュガービートペクチンの乳化性
 実施例1~7及び比較例1~4の改質および未改質のシュガービートペクチンを用い、下記の方法によってエマルションを調製し(実験試料3-1~3-7,比較実験試料3-1~3-3)、乳化性及び乳化安定性を評価した。
 (1)エマルションの調製
(1-1)実験試料3-1
 実施例1の改質シュガービートペクチン(改質品1)2 g(乾燥重量換算)を、イオン交換水68 gに添加し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサーを用いて24,000 rpmで攪拌下、エステルガム(ハーキュリーズ社製、以下同じ)を用いて比重を約0.95 g/mlに調整したオレンジオイル(FUSGAARD社製、以下同じ)30 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力20 MPaで2回ホモジナイズ処理し、エマルションを調製した(実験試料3-1)。
 (1-2)実験試料3-2~3-4
 実施例2、実施例4および実施例6の改質シュガービートペクチン2 g(乾燥重量換算)を、イオン交換水83 gに添加し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサーを用いて24,000 rpmで攪拌下、比重0.931 g/mlのコーヒーフレーバーオイル(J. MANHEIMER社製、以下同じ)15 gを添加混合した。この混合液を衝突型ジェネレーターを用いて圧力35 MPaで2回ホモジナイズ処理し、エマルションを調製した(順に実験試料3-2~3-4)。
 (1-3)実験試料3-5~3-7
 実施例3、実施例5および実施例7の改質シュガービートペクチン2 g(乾燥重量換算)を、イオン交換水75.5 gに添加し、クエン酸水溶液でpHを3.25に調整した。これに、高速ミキサーを用いて24,000 rpmで攪拌下、中鎖トリグリセライド(O.D.O:オクタン酸・デカン酸トリグリセライド)15 gとd-リモネン(和光純薬(株)製、以下同じ)7.5 gの混合物(比重0.911  g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルションを調製した(順に実験試料3-5~3-7)。
 (1-4)比較実験試料3-1
 比較例1の未改質シュガービートペクチン2 g(乾燥重量換算)を、イオン交換水68gに分散し、クエン酸水溶液でpHを3.25に調整した。この分散液を、高速ミキサーを用いて24,000 rpmで攪拌しながら、エステルガムを用いて比重を0.95 g/mlに調整したオレンジオイル30 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力20 MPaで2回ホモジナイズし、エマルションを調製した。
 (1-5)比較実験試料3-2
 比較例1の未改質シュガービートペクチン(未改質品1)2 g(乾燥重量換算)を、イオン交換水83gに分散し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサーを用いて24,000rpmで攪拌しながら、比重0.931 g/mlのコーヒーフレーバーオイル15 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力35 MPaで2回ホモジナイズし、エマルションを調製した。
 (1-6)比較実験試料3-3
 比較例1の未改質シュガービートペクチン(未改質品1)2 g(乾燥重量換算))を、イオン交換水73.5 gに分散し、クエン酸水溶液でpHを3.25に調整した。これを、高速ミキサーを用いて24,000rpmで攪拌しながら、中鎖トリグリセライド(O.D.O:オクタン酸・デカン酸トリグリセライド)15 gとd-リモネン7.5 gの混合物(比重0.91 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルションを調製した。
 (2)エマルションの乳化性および保存後の乳化安定性の評価
 上記で得られた各エマルションについて、乳化直後及び60℃で3日間保存後の油滴粒子の平均粒子径、及びエマルションの全油滴粒子数中平均粒子径が1μm以上の油滴粒子のエマルション中の油滴粒子全体に占める割合をレーザー回折式粒度分布測定装置SALD-2100(島津製作所(株)製)を用いて測定した。なお、油滴粒子の平均粒子径が小さい程、また、1 μm以上の油滴粒子が少ない程、安定な乳化状態であることを示す。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 実験試料3-1と比較実験試料3-1、実験試料3-2~3-4と比較実験試料3-2;および実験試料3-5~3-7と比較実験試料3-3のそれぞれを比較すると、使用した油成分の別かかわらず、実施例1~7の改質シュガービートペクチンを用いて調製したエマルションは比較例1の未改質のシュガービートペクチンを用いた場合に比べて、乳化直後および60℃3日間保存後の油滴粒子の平均粒子径が小さく、また、平均粒子径1μm以上の割合も低かった。この傾向は60℃3日保存後において特に顕著であった。
 これらの結果は、改質シュガービートペクチンを用いることにより未改質のペクチン(原料)では乳化できないような油でも乳化性および乳化安定性の高いエマルションを調製できることを示すものである。
 実施例8~16 改質シュガービートペクチン(改質品8~16)
 シュガービートペクチン(原料)をイオン交換水に、キッチンエイドミキサーKSM5を用いて表5に示す割合で分散した。これを密閉容器に充填後、恒温装置SH-641を用いて加熱処理をした(表5)。加熱温度は60-90℃、加熱時間は5-24時間に設定した。加熱処理後、凍結乾燥装置FDU-1100を用いて凍結乾燥し、得られた凍結乾燥品を乳鉢で粉砕することにより、粉末状の改質シュガービートペクチン(改質品8~16)を得た。
 実施例17~19 改質シュガービートペクチン(改質品17~19)
 シュガービートペクチン(原料)をイオン交換水に、キッチンエイドミキサーKSM5を用いて表5に示す割合で分散した。これをナス型フラスコに充填後、ロータリーエバポレーターシステムN-1000Vを用いて、減圧下(700 hPa)で加熱処理をした(表5)。加熱温度は75-90℃、加熱時間は5-12時間に設定した。加熱処理後、凍結乾燥装置FDU-1100を用いて凍結乾燥し、得られた凍結乾燥品を乳鉢で粉砕することにより、粉末状の改質シュガービートペクチン(改質品17~19)を得た。
 比較例5 未改質シュガービートペクチン(未改質品5)
 実施例8~19の改質シュガービートペクチンの調製に使用した粉末状のシュガービートペクチン(原料)をそのまま用いた(未改質品5)。
 比較例6 水分散後、加熱せずに凍結乾燥したシュガービートペクチン
 粉末状のシュガービートペクチン(原料)をイオン交換水に、キッチンエイドミキサーKSM5を用いて表5に示す割合で分散した。これを加熱することなく、凍結乾燥装置FDU-1100を用いて凍結乾燥し、得られた凍結乾燥品を乳鉢で粉砕することにより、粉末状のシュガービートペクチンを得た。
Figure JPOXMLDOC01-appb-T000007
 実験例4 乳化性及び乳化安定性の評価(1)
 上記実施例8~19及び比較例5~9で調製したシュガービートペクチンを用い、各々下記の方法によってエマルションを調製し(実験試料4-1~4-12,比較実験試料4-1~4-5)、乳化性及び乳化安定性を評価した。
 (1)エマルションの調製
(1-1)実験試料4-1~4-12
 実施例8~19で調製した改質シュガービートペクチン2g(乾燥重量換算)をイオン交換水73.5gに分散し、これに1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)15gとD-リモネン7.5 gの混合物(比重約0.91 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(実験試料4-1~4-12)を調製した。
 (1-2)比較実験試料4-1~4-5
 比較例5~9のシュガービートペクチン2g(乾燥重量換算)をイオン交換水73.5 gに分散し、これに1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液(約1g)でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)15gとD-リモネン7.5gの混合物(比重約0.91 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(比較実験試料4-1~4-5)を調製した。
 (2)エマルションの評価
 上記で得られた各エマルションについて、乳化直後及び60℃で3日間保存した後の、油滴粒子の平均粒子径、及び平均粒子径が1 μm以上の油滴粒子の割合をレーザー回折式粒度分布測定装置SALD-2100を用いて測定した。
Figure JPOXMLDOC01-appb-T000008
 乳化直後の油滴粒子の平均粒子径は、実験試料4-4を除くいずれのエマルションも、未改質のシュガービートペクチン(原料)を用いて調製したエマルション(比較実験試料4-1)よりも小さく、また、1 μm以上の油滴粒子の割合も低かった。一方、水分散物を調製後、加熱することなく凍結乾燥したシュガービートペクチン(比較例6)を用いて調製したエマルション(比較実験試料4-2)は、シュガービートペクチン(原料)を用いて調製したエマルション(比較実験試料4-1)と比べて油滴粒子の平均粒子径が大きく、また1 μm以上の油滴粒子の割合も高かった。また、60℃で3日間保存により、比較実験試料4-1では油滴粒子の平均粒子径が約0.6 μmから約2 μmへと著しく増加したが、実験試料4-1~4-12では油滴粒子の平均粒子径の増加が抑制されていた。平均粒子径が1 μm以上の油滴粒子の割合も、60℃で3日間の保存により比較実験試料4-1では約5%(乳化直後)から約12%(60℃で3日間保存後)と著しく増加したが、実験試料4-1~4-12では、増加が抑制されていた。特に、実験試料4-2、4-5、4-7、4-8及び4-10は、60℃、3日保存後の油滴粒子の平均粒子径が1 μm以下であり、乳化安定性が顕著に向上していることがわかる。
 これに対して、加熱せずに凍結乾燥した比較実験試料4-2は、何れも60℃、3日保存後の油敵粒子径および平均粒子径が1 μm以下の割合が比較実験試料4-1と差がないか、あるいは大きく乳化安定性が低下したことがわかる。
 実験例5 乳化性及び乳化安定性の評価(2)
 上記の実施例8、9及び比較例5のシュガービートペクチンを用いて、下記の様々な油成分(オイル)を用いてエマルションを調製し、乳化性及び乳化安定性を評価した。
 (1)エマルションの調製
(1-1)実験試料5-1
 実施例8で調製した改質シュガービートペクチン2 g(乾燥重量換算)をイオン交換水66 gに分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000rpmで攪拌しながら、エステルガムを用いて比重を約0.95g/mlに調整したオレンジオイル30gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力20MPaで2回ホモジナイズし、エマルション(実験試料5-1)を調製した。
 (1-2)実験試料5-2
 実施例9で調製した改質シュガービートペクチン2g(乾燥重量換算)を、イオン交換水73.5gに分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)15 gとオレンジオイル7.5gの混合物(比重約0.91 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(実験試料5-2)を調製した。
 (1-3)実験試料5-3
 実施例8で調製した改質シュガービートペクチン2 g(乾燥重量換算)を、イオン交換水81 gに分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、比重0.931g/mlのコーヒーフレーバーオイル15 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力35 MPaで2回ホモジナイズし、エマルション(実験試料5-3)を調製した。
 (1-4)実験試料5-4
 実施例9で調製した改質シュガービートペクチン2 g(乾燥重量換算)を、イオン交換水81 gに分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、比重約0.91 g/mlの大豆白絞油(不二製油社製、以下同じ)15 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(実験試料5-4)を調製した。
 (1-5)比較実験試料5-1
 比較例5のシュガービートペクチン(原料)(未改質品5)2 g(乾燥重量換算)を、イオン交換水66 gに分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、エステルガムを用いて比重を約0.95 g/mlに調整したオレンジオイル30 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力20 MPaで2回ホモジナイズし、エマルション(比較実験試料5-1)を調製した。
 (1-6)比較実験試料5-2
 比較例5のシュガービートペクチン(原料)(未改質品5)2 g(乾燥重量換算)を、イオン交換水73.5 gに分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)15 gとオレンジオイル7.5 gの混合物(比重0.906 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(比較実験試料5-2)を調製した。
 (1-7)比較実験試料5-3
 比較例5のシュガービートペクチン(原料)(未改質品5)2 g(乾燥重量換算)を、イオン交換水81 gに分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、比重約0.93 g/mlのコーヒーフレーバーオイル15gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力35 MPaで2回ホモジナイズし、エマルション(比較実験試料5-3)を調製した。
 (1-8)比較実験試料5-4
 比較例5のシュガービートペクチン(原料)(未改質品5)2 g(乾燥重量換算)を、イオン交換水81gに分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000rpmで攪拌しながら、比重約0.91 g/mlの大豆白絞油15 gを添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズし、エマルション(比較実験試料5-4)を調製した。
 (2)エマルションの評価
 上記で調製した各エマルションについて、乳化性と乳化安定性を実験例4と同様の方法で、評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000009
 改質シュガービートペクチンを用いて調製したエマルション(実験試料5-1~5-4)と未改質のシュガービートペクチン(原料)を用いて調製したエマルション(比較実験試料5-1~5-4)を比較すると、乳化直後では油滴粒子の平均粒子径および平均粒子径1μm以上の割合に大差はなかったが、60℃、3日間保存後のこれらの経時変化(増加)は、前者(実験試料5-1~5-4)のほうが比較実験試料5-1~5-4よりも有意に抑制されており、乳化安定性に優れていた。この傾向は油の種類に関係なく認められたが、特に、実験試料5-2及び5-4で顕著であった。
 これらの結果は、改質シュガービートペクチンを用いることにより未改質のシュガービートペクチン(原料)では乳化できないような油でも乳化性および乳化安定性の高いエマルションを調製で記すことを示すものである。本実験で用いた油はいずれも食品産業界で汎用されているものであり、本発明の改質シュガービートペクチンが幅広い食品に適応できることがわかる。
 実験例6:エマルションの飲料中での安定性試験
 本発明の改質シュガービートペクチンを用いて調製したエマルジョンを飲料に配合し、飲料中での安定性を調べた。
 (1)飲料の調製
(1-1)実験試料6-1
 糖度55%のシロップ120gに20%安息香酸ナトリウム水溶液1.5gと実験試料5-2のエマルション0.5gを添加し、プロペラ攪拌機を用いて2,000 rpmで10分間攪拌した。50%クエン酸水溶液を用いてpHを3.3に調整し、イオン交換水を用いて溶液重量を125gに調整した後に、プロペラ攪拌機を用いて2000 rpmで60分間攪拌し、シロップエマルションを調製した。300 ml容量のペットボトルに250gのミネラル炭酸水(サントリー社製、以下同じ)を注入し、その上から上記シロップエマルション50gを添加し、ペットボトルをゆっくりと10回転倒することで、内容物を穏やかに攪拌することによって飲料を調製した。
 (1-2)比較実験試料6-1
 糖度55%のシロップ120gに20%安息香酸ナトリウム水溶液1.5 gと比較実施試料5-2のエマルション0.5gを添加し、プロペラ攪拌機を用いて2,000 rpmで10分間攪拌した。50%クエン酸水溶液を用いてpHを3.3に調整し、イオン交換水を用いて溶液重量を125gに調整した後に、プロペラ攪拌機を用いて2,000 rpmで60分間攪拌し、シロップエマルションを調製した。300 ml容量のペットボトルに250 gのミネラル炭酸水を注入し、その上から上記シロップエマルション50gを添加し、ペットボトルをゆっくりと10回転倒することで、内容物を穏やかに攪拌することによって飲料を調製した。
 (2)飲料の安定性の評価
 飲料の安定性は、調製直後および40℃、7日保存後における外観から評価した。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000010
 表8に示すように、改質シュガービートペクチンを用いて調製したエマルションを配合した飲料(実験試料6―1)は、未改質のシュガービートペクチン(原料)を用いて調製したエマルションを配合した飲料(比較実験試料6―1)に比べて安定性が顕著に優れていた。これらの結果は、本発明の改質シュガービートペクチンが、エマルション(乳化組成物)の飲料中での安定性を向上させるうえで有効であることを示している。
 実験例7 エマルションの飲料中での安定性試験
(1)エマルションの調製
 乳化剤として実施例7で調製した改質シュガービートペクチンを用い、表9に示す処方に従ってエマルションを調製した(実験試料7-1~7-3)。また、比較のため、改質シュガービートペクチンに代えて比較例1の未改質のシュガービートペクチン(原料)(未改質品1)、及びアラビアガムをそれぞれ用い、表9に示す処方に従ってエマルションを調製した(比較実験試料7-1~7-9)。また参考のため、油相成分としてd-リモネンを配合しないエマルションを調製した(参考実験試料7-1~7-3)。
 なお、アラビアガムとして分子量約80万、乾燥減量約12%の粉末の試料(ガムアラビックHA、三栄源エフ・エフ・アイ(株)製)(未改質品)を用いた。
Figure JPOXMLDOC01-appb-T000011
 (1-1)実験試料7-1~7-3および比較実験試料7-1~7-3の調製
 実施例7で調製した改質シュガービートペクチン又は比較例1の未改質のシュガービートペクチン(原料)2 g(乾燥重量換算)をイオン交換水に分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)とd-リモネン7.5 gの混合物(いずれも比重0.89 g/ml以上)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルション(実験試料7-1~7-3、比較実験試料7-1~7-3)を調製した。
 (1-2)比較実験試料7-4~7-6の調製
 アラビアガム15 g(乾燥重量換算)をイオン交換水に分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)と、テルペンとしてd-リモネン7.5gの混合物(いずれも比重0.89 g/ml以上)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルション(比較実験試料7-4~7-6)を調製した。
 (1-3)比較実験試料7-7~7-9
 実施例7で調製した改質シュガービートペクチン2 g、比較例1のシュガービートペクチン(原料)2 g、又はアラビアガム15 g(いずれも乾燥重量換算)を、イオン交換水に分散し、1gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000rpmで攪拌しながら、d-リモネン7.5gの混合物(比重0.85 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルション((比較実験試料7-7~7-7)を調製した。
 (1-4)参考実験試料7-1~7-3
 実施例7で調製した改質シュガービートペクチン2 g、シュガービートペクチン(原料)2 g、又はアラビアガム15 g(いずれも乾燥重量換算)をイオン交換水に分散し、1 gの10%安息香酸ナトリウム水溶液を添加後、10%のクエン酸水溶液(約1g)でpHを3.25に調整した。この分散液を高速ミキサーを用いて24,000 rpmで攪拌しながら、中鎖トリグリセライド(O.D.O)15 gの混合物(比重約0.95 g/ml)を添加し、1分間混合した。この混合液を衝突型ジェネレーターを用いて圧力50 MPaで2回ホモジナイズ処理し、エマルション(参考実験試料7-1~7-3)を調製した。
 (2)エマルションの評価
 上記で調製した各エマルションについて、乳化直後及び20℃、30日間保存後の油滴粒子の平均粒子径、及び平均粒子径が1 μm以上の割合をレーザー回折式粒度分布測定装置SALD-2100を用いて測定した。結果を表10及び表11に示す。参考として、実験試料7-1~7-3および比較実験試料7-1~7-9のエマルションについて油相の含有率(%)、油相および水相の比重(g/ml)も併せて記載する。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表からわかるように、油相成分としてd-リモネンを用いずに脂肪酸トリグリセリドのみを用いた場合(参考実験試料7-1~7-3)、乳化直後のエマルション中の油滴粒子の平均粒子径は、いずれの場合でも0.5~0.6 μmであった。一方、20℃、30日間保存後は、乳化剤に未改質のシュガービートペクチン(原料)を用いたエマルション(参考実験試料7-2)の油滴粒子は1.6 μm程度に増加したが、改質シュガービートペクチンとアラビアガムを用いて調製したエマルション(参考実験試料7-1および7-3)の油滴粒子の平均粒子径は1.0μm以下であり、高い乳化安定性を示した。
 また油相成分としてテルペン(D-リモネン)と脂肪酸トリグリセリドを用い、さらに乳化剤として改質シュガービートペクチンを用いたエマルション(実験試料7-1~7-3)は、乳化直後の油滴粒子の平均粒子径は、乳化剤として未改質のシュガービートペクチン(原料)やアラビアガムを用いて調製したエマルション(比較実験試料7-1~7-3、7-4~7-6)よりも小さく、平均粒子径が1μm以上の油滴粒子の割合も低かった。未改質のシュガービートペクチンやアラビアガムでは、油相含有量が高いほど、油滴粒子の粒子径が大きくなる傾向があるが、改質シュガービートペクチンでは認められず、油相含有量の高いエマルションの調製に有効であることがわかった。20℃、30日間保存したエマルションの油滴粒子の平均粒子径は、実験試料7-3のエマルションにおいて多少粗大化が見られるものの、実験試料7-1および7-2においては粒子の粗大化はごく僅かであり、いずれも1 μm以下を保っていた。一方、比較実験試料7-1~7-3では、油滴粒子の粗大化が顕著であり、未改質のシュガービートペクチン(原料)で調製したエマルションは乳化安定性が低いことが示された。アラビアガムを用いて調製したエマルションにおいても、比較実験試料7-4は油滴粒子の粗大化の度合いが小さいものの、油相含有率の高い比較実験試料7-5および7-6においては、未改質のシュガービートペクチン(原料)を用いて調製したエマルションよりも粒子が粗大化していた。
 なお、油相にO.D.Oを添加しないもの(比較実験試料7-7~7-9)は、いずれの乳化剤であっても、均一で小さい油滴粒子は得られなかった。
 以上の結果から、乳化剤として改質シュガービートペクチンを用いて調製されたエマルションは、油相の含有率が比較的高い場合においても、油滴粒子の平均粒子径が小さく安定していることが確認された。
 実験例8 飲料濃縮物の調製
 上記実験例7で調製したエマルション(実験試料7-1~7-3および比較実験試料7-1~7-6)を用い、表12の処方に従って、飲料濃縮物を調整した(実験試料8-1~8-3、比較実験試料8-1~8-6)。
Figure JPOXMLDOC01-appb-T000014
 Brix75のシロップ126gに10%安息香酸ナトリウム水溶液2 gと実験試料7-1~7-3もしくは比較実験試料7-1~7-6のエマルション1.5gを添加し、プロペラ攪拌機を用いて2,000rpmで10分間攪拌した。50%クエン酸水溶液2.5 gを用いてpHを3.3に調整し、イオン交換水を用いて重量を132 gに調整した後に、プロペラ攪拌機を用いて2,000 rpmで60分間攪拌することにより、飲料濃縮物を調製した。飲料濃縮物の調製後、20℃で3、7、30日間静置保存し、外観を評価した。評価結果を表13に示す。また、参考のため、実験試料8-1~8-3および比較実験試料8-1~8-6の飲料濃縮物について、油相の含有率(%)、油相および水相の比重(g/ml)も併せて記載する。
Figure JPOXMLDOC01-appb-T000015
ネックリングの評価は、以下の記号を用いて表記した。n→SRと下にいくほど評価は低くなる。なお、油相の浮遊が確認されてもSLR程度であれば飲料としての商品価値に影響はない。
  n:油相の浮遊やネックリングは確認されない。
  SLR:極僅かに油相の浮遊が確認される。
  LR:極薄いリングが確認される。
  MR:中程度のネックリングが確認される。
  SR:明確なネックリングが確認される。
 沈殿の評価は、以下の記号を用いて表記した。n→EPと下にいくほど評価は低くなる。
  n:沈殿が確認されない。
  SP:極僅かな沈殿が確認される。
  BP:はっきりと分かる程度の沈殿が確認される。
 改質シュガービートペクチンを用いて調製した飲料濃縮物(実験試料8-1~8-3)では、20℃での保存7日間までは全ての試料でネックリングや沈殿が確認されなかった。また、30日保存後においても、油相の含有率の高い実験試料8-3で極僅かな油の浮遊が見られるものの、沈殿は全くみられなかった。つまり改質シュガービートペクチンを用いて調製した飲料濃縮物には、30日間の保存期間において外観上の変化はほとんどなかった。
 一方、未改質のシュガービートペクチン(原料)を用いて調製した飲料濃縮物(比較実験試料8-1~8-3)は、20℃で、30日間の保存で全ての飲料濃縮物に油の浮遊がみられ、油含有量の高い比較実験試料8-3においては、ネックリングの形成が確認された。また、アラビアガムを用いて調製した飲料濃縮物(比較実験試料例8-4~8-6)では、外観上の変化はより顕著であり、20℃で7日間の保存で全ての試料で油相の浮遊がみられ、30日保存後には、比較実験試料8-5および8-6においてネックリングが観察された。
 これらの結果から、改質シュガービートペクチンを用いて飲料濃縮物を調製すると、未改質のシュガービートペクチンや飲料用に最も汎用される多糖類乳化剤であるアラビアガムよりも、安定性に優れた飲料濃縮物を調製できることが確認された。
 実験例9 飲料の調製
 実験例8で調製した飲料濃縮物(実験試料8-1~8-3および比較実験試料8-1~8-6)を用い、表14の処方に従って、飲料を調製した(実験試料9-1~9-3、比較実験試料9-1~9-6)。
Figure JPOXMLDOC01-appb-T000016
 200 ml容量のペットボトルに実験試料8-1~8-3もしくは比較実験試料8-1~8-6の飲料濃縮物35 gを添加し、その上から165 gのミネラル炭酸水(サントリー社製)を注いだ後に、キャップをしっかりと閉めた。ペットボトルをゆっくりと10回転倒し、内容物を穏やかに攪拌することによって飲料を調製した。
 飲料調製後、20℃で3、7、30日間静置保存し、外観を評価した。評価結果を表15に示す。
Figure JPOXMLDOC01-appb-T000017
 実験試料9-1~9-3の飲料について、20℃での静置保存3日間までは全ての条件でネックリングや沈殿は確認されなかった。実験試料9-1および9-3について、7日間保存後に極僅かな油相の浮遊が見られ、実験試料9-3においては30日後に薄い油相の形成が見られたが、飲料としての商品価値を損なうものではなかった。油相の比重が0.912g/mlである実験試料9-2は30日の保存においても、外観上の変化がみられなかった。
 一方、乳化剤として未改質のシュガービートペクチン(原料)を用いて調製した比較実験試料9-1~9-3は、3日の保存で全ての飲料の液面に油の浮遊が見られ、7日間の保存では全ての試料でネックリングの形成が確認された。また、アラビアガムを用いて調製した比較実験試料9-5および9-6は、3日間の保存においてネックリングがみられ、7日保存後では、比較実験試料9-4~9-6の全ての試料でネックリングが観察された。
 これらの結果から、改質シュガービートペクチンは、飲料濃縮物だけでなく飲料製品の安定性も向上させることが確認できた。水相の比重が油相に近い飲料製品のほうが飲料濃縮物に比べて実施例と比較例に差がでやすいが、これは、飲料製品の粘度が飲料濃縮物に比して低いため、粒子の移動速度が高くなることが原因であると考えられる。

Claims (15)

  1.  水不溶性成分を含むことを特徴とする改質シュガービートペクチンであって、当該水不溶性成分は改質シュガービートペクチンを最終濃度0.1質量%になるように25℃の水に分散した際に吸水してハイドロゲルとなるものである、改質シュガービートペクチン。
  2.  水不溶性成分を3質量%以上90質量%未満の割合で含有することを特徴とする、請求項1に記載の改質シュガービートペクチン。
  3.  改質シュガービートペクチンの1.5質量%水分散液を圧力50 MPaでホモジナイズした処理液を多角度光散乱検出器及び屈折率検出器を接続したサイズ排除クロマトグラフィーに供して測定される重量平均分子量が、少なくとも6.5×105g/molであることを特徴とする、請求項1又は2に記載する改質シュガービートペクチン。
  4.  改質シュガービートペクチンの1.5質量%水分散液を圧力50 MPaでホモジナイズした処理液を多角度光散乱検出器及び屈折率検出器を接続したサイズ排除クロマトグラフィーに供して測定される回転二乗半径が、少なくとも50 nmであることを特徴とする請求項1又は2記載する改質シュガービートペクチン。
  5.  改質シュガービートペクチンの0.003質量%水分散液についてレーザー回折式光散乱測定装置で測定される体積平均粒子径が少なくとも1 μmであることを特徴とする請求項1又は2に記載する改質シュガービートペクチン。
  6.  シュガービートペクチンの水分散液を加熱処理する工程を有する、改質シュガービートペクチンの製造方法。
  7.  シュガービートペクチンの水分散液が、シュガービートペクチンを5~40質量%の割合で含むものである請求項6記載の製造方法。
  8.  請求項6乃至7のいずれかに記載する製造方法で製造された改質シュガービートペクチンである、請求項1又は2に記載する改質シュガービートペクチン。
  9.  請求項1乃至5または8のいずれかに記載の改質シュガービートペクチンからなる乳化剤。
  10.  請求項9に記載の乳化剤を用いて得られるエマルション。
  11. (A)請求項1乃至5または8のいずれに記載する改質シュガービートペクチン、
    (B)イソプレノイドまたはこれに相溶性する脂溶性物質、
    (C)脂肪酸トリグリセリド、および
    (D)水を含有することを特徴とするエマルション。
  12.  エマルション中の油相部の比重が0.89~0.95 g/mlに調整されている請求項10又は11に記載のエマルション。
  13.  請求項1乃至5または8のいずれに記載する改質シュガービートペクチン、請求項9に記載する乳化剤、又は請求項10乃至12のいずれかに記載するエマルションを含むことを特徴とする飲食品。
  14.  シュガービートペクチンを水に分散後、加熱処理を施すことを特徴とするシュガービートペクチンの乳化性向上方法。
  15.  水に分散させたシュガービートペクチンの含有量が5~40質量%であり、60~100℃の温度で1~48時間加熱することを特徴とする請求項14に記載する方法。
PCT/JP2010/050243 2009-01-13 2010-01-12 改質シュガービートペクチン及びその応用 WO2010082570A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK10731239.9T DK2388278T3 (da) 2009-01-13 2010-01-12 Modificeret sukkerroepektin og fremgangsmåder til anvendelse af denne
CN2010800044122A CN102272164B (zh) 2009-01-13 2010-01-12 改性甜菜果胶及其应用
JP2010523638A JP5583014B2 (ja) 2009-01-13 2010-01-12 改質シュガービートペクチン及びその応用
US13/144,186 US9259021B2 (en) 2009-01-13 2010-01-12 Modified sugar beet pectin and method for using the same
EP10731239.9A EP2388278B1 (en) 2009-01-13 2010-01-12 Modified sugar beet pectin and method for using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-004754 2009-01-13
JP2009004754 2009-01-13

Publications (1)

Publication Number Publication Date
WO2010082570A1 true WO2010082570A1 (ja) 2010-07-22

Family

ID=42339824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050243 WO2010082570A1 (ja) 2009-01-13 2010-01-12 改質シュガービートペクチン及びその応用

Country Status (6)

Country Link
US (1) US9259021B2 (ja)
EP (1) EP2388278B1 (ja)
JP (1) JP5583014B2 (ja)
CN (1) CN102272164B (ja)
DK (1) DK2388278T3 (ja)
WO (1) WO2010082570A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062554A1 (ja) 2016-09-30 2018-04-05 三栄源エフ・エフ・アイ株式会社 低分子ガティガム
JP2019103495A (ja) * 2017-12-14 2019-06-27 康二 岡井 多糖類加熱焙煎飲食品及びその製法
JP2019183144A (ja) * 2018-03-30 2019-10-24 三栄源エフ・エフ・アイ株式会社 低分子ガティガムの製造方法
US11647775B2 (en) 2017-03-31 2023-05-16 San-Ei Gen F.F.I., Inc. Emulsion composition
CN116869934A (zh) * 2023-09-06 2023-10-13 成都自然素生物科技有限公司 一种多酚类物质的超分子纳米胶体及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950003B2 (en) 2013-12-12 2018-04-24 Technion Research & Development Foundation Ltd. Pectin based nanoparticles
WO2019048715A2 (en) * 2018-01-16 2019-03-14 Cp Kelco Aps COMPOSITIONS CONTAINING A BIOMASS COMPOSITION CONTAINING ACTIVATED PECTIN, AND METHODS FOR PREPARING SUCH COMPOSITIONS
GB202010053D0 (en) * 2020-07-01 2020-08-12 Givaudan Sa Composition
WO2023038621A1 (en) * 2021-09-09 2023-03-16 Tosoh Bioscience Llc Light scattering detectors and methods for the same
CA3233483A1 (en) * 2021-10-15 2023-04-20 Elena RIHA-MILOSKOVSKA Sugar beet pectin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896010A (ja) 1981-11-30 1983-06-07 Nitta Zerachin Kk 乳化粧料
JPH03197502A (ja) * 1989-11-01 1991-08-28 Sbp Inc テンサイペクチンの製造方法並びにその可食物における利用物と利用方法
JP2000139344A (ja) 1998-11-16 2000-05-23 Kanegafuchi Chem Ind Co Ltd 耐酸、耐熱性を有する水中油型エマルション
JP2004536624A (ja) 2001-03-13 2004-12-09 フィリップス ハイドロコロイド リサーチ リミテッド 不飽和ガス雰囲気中での固体照射により得られる新規なバイオポリマー
JP2005525808A (ja) 2002-05-16 2005-09-02 フイルメニツヒ ソシエテ アノニム 食品に適用するための香味付けされた水中油型エマルジョン
JP2005261430A (ja) 2004-02-19 2005-09-29 Sanei Gen Ffi Inc ペクチンの改質方法及びその応用
JP2006274227A (ja) 2005-03-30 2006-10-12 National Food Research Institute ハイドロゲル成分含有組成物の調製方法およびその用途
JP2006274226A (ja) 2005-03-30 2006-10-12 National Food Research Institute 改質シュガービートペクチンの製造方法およびその用途
WO2006132288A1 (ja) 2005-06-07 2006-12-14 San-Ei Gen F.F.I., Inc. ペクチンの改質方法及びその応用
WO2007037347A1 (ja) 2005-09-28 2007-04-05 San-Ei Gen F.F.I., Inc. 乳化組成物及びその調製方法
WO2007066233A2 (en) * 2005-12-09 2007-06-14 Danisco Sugar A/S Stabilised emulsion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923981A (en) 1982-09-03 1990-05-08 Sbp, Inc. Use of parenchymal cell cellulose to improve comestibles
US4629575A (en) 1982-09-03 1986-12-16 Sbp, Inc. Well drilling and production fluids employing parenchymal cell cellulose
US4831127A (en) 1983-07-12 1989-05-16 Sbp, Inc. Parenchymal cell cellulose and related materials
WO2006131963A1 (ja) * 2005-06-07 2006-12-14 San-Ei Gen F.F.I., Inc. ペクチンの改質方法及びその応用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896010A (ja) 1981-11-30 1983-06-07 Nitta Zerachin Kk 乳化粧料
JPH03197502A (ja) * 1989-11-01 1991-08-28 Sbp Inc テンサイペクチンの製造方法並びにその可食物における利用物と利用方法
JP2000139344A (ja) 1998-11-16 2000-05-23 Kanegafuchi Chem Ind Co Ltd 耐酸、耐熱性を有する水中油型エマルション
JP2004536624A (ja) 2001-03-13 2004-12-09 フィリップス ハイドロコロイド リサーチ リミテッド 不飽和ガス雰囲気中での固体照射により得られる新規なバイオポリマー
JP2005525808A (ja) 2002-05-16 2005-09-02 フイルメニツヒ ソシエテ アノニム 食品に適用するための香味付けされた水中油型エマルジョン
JP2005261430A (ja) 2004-02-19 2005-09-29 Sanei Gen Ffi Inc ペクチンの改質方法及びその応用
JP2006274227A (ja) 2005-03-30 2006-10-12 National Food Research Institute ハイドロゲル成分含有組成物の調製方法およびその用途
JP2006274226A (ja) 2005-03-30 2006-10-12 National Food Research Institute 改質シュガービートペクチンの製造方法およびその用途
WO2006132288A1 (ja) 2005-06-07 2006-12-14 San-Ei Gen F.F.I., Inc. ペクチンの改質方法及びその応用
WO2007037347A1 (ja) 2005-09-28 2007-04-05 San-Ei Gen F.F.I., Inc. 乳化組成物及びその調製方法
WO2007066233A2 (en) * 2005-12-09 2007-06-14 Danisco Sugar A/S Stabilised emulsion

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Studies on the Oil-in-Water Emulsions Stabilized with Gum Arabic by Using the Turbidity Ratio Method", JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 112, no. 12, 1992, pages 906 - 913
IDRIS, O.H.M., WILLIAMS, P.A., PHILLIPS, G.O., FOOD HYDROCOLLOIDS, vol. 12, 1998, pages 375 - 388
See also references of EP2388278A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062554A1 (ja) 2016-09-30 2018-04-05 三栄源エフ・エフ・アイ株式会社 低分子ガティガム
CN109790228A (zh) * 2016-09-30 2019-05-21 三荣源有限公司 低分子印度树胶
US11136417B2 (en) 2016-09-30 2021-10-05 San-Ei Gen F.F.I., Inc. Low molecular gum ghatti
US11647775B2 (en) 2017-03-31 2023-05-16 San-Ei Gen F.F.I., Inc. Emulsion composition
JP2019103495A (ja) * 2017-12-14 2019-06-27 康二 岡井 多糖類加熱焙煎飲食品及びその製法
JP2019183144A (ja) * 2018-03-30 2019-10-24 三栄源エフ・エフ・アイ株式会社 低分子ガティガムの製造方法
JP7358063B2 (ja) 2018-03-30 2023-10-10 三栄源エフ・エフ・アイ株式会社 低分子ガティガムの製造方法
CN116869934A (zh) * 2023-09-06 2023-10-13 成都自然素生物科技有限公司 一种多酚类物质的超分子纳米胶体及其制备方法
CN116869934B (zh) * 2023-09-06 2023-11-10 成都自然素生物科技有限公司 一种多酚类物质的超分子纳米胶体及其制备方法

Also Published As

Publication number Publication date
EP2388278A1 (en) 2011-11-23
CN102272164A (zh) 2011-12-07
DK2388278T3 (da) 2019-09-23
EP2388278A4 (en) 2013-04-03
US9259021B2 (en) 2016-02-16
JP5583014B2 (ja) 2014-09-03
JPWO2010082570A1 (ja) 2012-07-05
EP2388278B1 (en) 2019-08-07
US20110274812A1 (en) 2011-11-10
CN102272164B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5583014B2 (ja) 改質シュガービートペクチン及びその応用
JP4294606B2 (ja) 乳化香料組成物
JP4208939B2 (ja) W1/o/w2型複合乳化ドレッシング類およびその製造方法
JP7073265B2 (ja) クルクミン組成物
KR20090093966A (ko) 식품 및 음료용 유화제
JP2007511225A (ja) スクロースアセテートイソブチレート配合物、それを含む飲料エマルジョン、コンセントレート、シロップ、プレミックス及び飲料
JP2023174986A (ja) 飲料、乳化油脂組成物及び乳化剤組成物
JP2741093B2 (ja) 飲食品用乳化液組成物の製法
US20040062845A1 (en) Beverage emulsion stabilizer
JP5507795B2 (ja) 乳化剤組成物、乳化組成物及びその安定性の改良方法
JPWO2005092930A1 (ja) アラビアガムの改質方法、その方法で得られた改質アラビアガム及びその用途
CA2921473C (en) Encapsulated weighting agents for beverage emulsions
JP7077301B2 (ja) 乳化組成物
JPWO2005026213A1 (ja) 改質アラビアガムの製造方法
EP1343388A1 (en) Beverage emulsion stabilizer
JP5576539B1 (ja) 乳化組成物
WO2019107574A1 (ja) 乳化組成物
JP5013355B2 (ja) 改質シュガービートペクチンの製造方法およびその用途
JP2016141708A (ja) パプリカ色素及びその製造方法
JP5260365B2 (ja) 改質シュガービートペクチンを用いて製造される乳化組成物及びその製造方法
KR20220047285A (ko) 아라비아 검
JP2006204262A (ja) 分散安定剤製剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004412.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010523638

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13144186

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010731239

Country of ref document: EP