WO2010074214A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2010074214A1
WO2010074214A1 PCT/JP2009/071562 JP2009071562W WO2010074214A1 WO 2010074214 A1 WO2010074214 A1 WO 2010074214A1 JP 2009071562 W JP2009071562 W JP 2009071562W WO 2010074214 A1 WO2010074214 A1 WO 2010074214A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
speed
idle
control
Prior art date
Application number
PCT/JP2009/071562
Other languages
English (en)
French (fr)
Inventor
石川 伸一
滋彦 杉森
和人 徳川
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2010074214A1 publication Critical patent/WO2010074214A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • F02D31/005Electric control of rotation speed controlling air supply for idle speed control by controlling a throttle by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine provided with an idle speed control valve provided in a bypass passage that bypasses a throttle valve in an intake passage.
  • an object of the present invention is to provide a control device for an internal combustion engine that solves the above-described problems and is capable of detecting an abnormality of an idle speed control valve while having a simple configuration.
  • the throttle valve disposed in the intake passage of the internal combustion engine, and the throttle valve connected to the intake passage are bypassed.
  • An internal combustion engine comprising: a bypass path that controls the idle speed of the internal combustion engine by adjusting an air amount of the bypass path; and a stepping motor that drives the idle speed control valve
  • the internal combustion engine is started when the throttle valve is at the idle opening, and the idle opening start state determining means for determining whether or not the engine is still at the idle opening after being started, When it is determined that the engine is in the idle opening start state, the rotational speed of the internal combustion engine is within a predetermined range set according to the target idle rotational speed.
  • a rotational speed range determining means for determining whether or not the rotational speed of the internal combustion engine is not within the predetermined range, so that the rotational speed of the internal combustion engine matches the target idle rotational speed.
  • Feedback control means for performing feedback control of the opening degree of the idle speed control valve via a stepping motor, and after a predetermined time has elapsed since execution of the feedback control, the speed of the internal combustion engine converges within the predetermined range.
  • the feedback control means is configured to perform a predetermined time after it is determined that the rotational speed of the internal combustion engine is not within the predetermined range.
  • the opening degree of the idle speed control valve is feedback controlled.
  • a control device for an internal combustion engine wherein the temperature detection means for detecting the temperature of the internal combustion engine and the detected temperature of the internal combustion engine are used. Based on the target step position calculating means for calculating the target step position of the stepping motor and the detected temperature of the internal combustion engine, the difference between the rotational speed of the internal combustion engine and the target idle rotational speed is determined during execution of the feedback control.
  • a replacement means is provided for replacing the position of the stepping motor when it falls below a predetermined value with the step value of the target step position.
  • the target step position calculation means is configured to perform the idle rotation as the detected temperature of the internal combustion engine rises.
  • the target step position of the stepping motor is calculated so that the numerical control valve has a low opening.
  • the control device for an internal combustion engine it is determined that an abnormality has occurred in the idle speed control valve, and the speed of the internal combustion engine is set to a predetermined speed.
  • the engine is configured to include a rotation speed increase prevention means for controlling at least one of ignition and fuel injection of the internal combustion engine to prevent the rotation speed of the internal combustion engine from increasing.
  • the present invention is configured such that the predetermined rotational speed is the target idle rotational speed.
  • the present invention provides that the rotation speed increase preventing means includes retard control of ignition timing of the internal combustion engine and reduction control of the fuel injection. Is configured to prevent an increase in the rotational speed of the internal combustion engine by executing at least one of the above.
  • the rotation speed increase preventing means is configured to perform the rotation according to a deviation between the rotation speed of the internal combustion engine and the predetermined rotation speed. At least one of ignition timing retardation control and fuel injection reduction control is executed.
  • the feedback control means is configured to open or close the idle speed control valve during the execution of the feedback control.
  • the feedback control is stopped when a predetermined number of steps are continuously driven in the direction and the amount of change in the rotational speed of the internal combustion engine is less than a predetermined value.
  • the feedback control means performs the feedback control after a predetermined stop time has elapsed since the feedback control was stopped. Was configured to resume.
  • the control device for an internal combustion engine when it is determined that the internal combustion engine is started when the throttle valve is at the idle opening and is still at the idle opening after being started, When it is determined whether the rotational speed of the internal combustion engine is within a predetermined range set according to the target idle rotational speed, and when it is determined that the rotational speed of the internal combustion engine is not within the predetermined range, the rotational speed of the internal combustion engine is the target When the opening speed of the idle speed control valve is feedback-controlled so that it matches the idle speed, and the engine speed does not converge within a predetermined range after a predetermined time has elapsed, an abnormality has occurred in the idle speed control valve.
  • the opening degree of the idle rotational speed control valve is feedback-controlled.
  • the feedback control can be started at a more appropriate timing according to the operating state of the internal combustion engine.
  • the target step position of the stepping motor is calculated based on the temperature of the internal combustion engine, and during execution of feedback control based on the temperature of the internal combustion engine,
  • the position of the stepping motor is replaced with the step value of the target step position when the difference between the rotational speed and the target idle speed is equal to or less than the predetermined value (in other words, when the engine speed converges to the target idle speed). Since it is configured, in addition to the above-described effects, for example, the deviation between the step position recognized by the control device caused by the step-out of the stepping motor and the actual step position of the stepping motor can be corrected. The control accuracy of the valve can be ensured.
  • the target step position of the stepping motor is calculated so that the idle speed control valve becomes a low opening degree as the detected temperature of the internal combustion engine rises.
  • the internal combustion engine control apparatus is configured such that the predetermined rotational speed is a target idle rotational speed, that is, when the internal combustion engine rotational speed is equal to or higher than the target idle rotational speed. And at least one of the fuel injection to control the increase in the rotational speed of the internal combustion engine. Only in some cases, the control for preventing the increase in the rotational speed can be executed.
  • At least one of the ignition timing retarding control and the fuel injection reduction control of the internal combustion engine is executed to prevent an increase in the rotational speed of the internal combustion engine.
  • At least one of ignition timing retard control and fuel injection reduction control is executed in accordance with a deviation between the rotational speed of the internal combustion engine and a predetermined rotational speed.
  • the ignition timing retarding control and the fuel injection reduction control are executed in accordance with the operating state of the internal combustion engine (specifically, the rotational speed of the internal combustion engine). Therefore, an unnecessary increase in the rotational speed of the internal combustion engine can be prevented more effectively.
  • the idle speed control valve is continuously driven in a predetermined number of steps in the opening direction or the closing direction, and the speed of the internal combustion engine is determined. Since the feedback control is stopped when the change amount of the engine is less than the predetermined value, the feedback control can be stopped in an operation state in which the feedback control need not be executed in addition to the above-described effect. Stalls can be prevented.
  • FIG. 2 is an enlarged schematic cross-sectional view showing the vicinity of an ISC valve and a stepping motor shown in FIG. 1 in an enlarged manner.
  • FIG. 2 is a block diagram showing the overall configuration of an ECU shown in FIG. 1.
  • 2 is a flowchart showing the operation of the control device for the internal combustion engine shown in FIG. 1.
  • 5 is a sub-routine flowchart of the rotation speed abnormality detection process of FIG. 4.
  • FIG. 5 is a flowchart showing an ISC target step position and target idle speed calculation process used in the process of FIG. 4 and the like.
  • FIG. 6 is a graph showing a characteristic of the engine temperature with respect to the ISC target step position calculated by the processing of the flowchart of FIG. 6 is a graph showing the engine temperature characteristic with respect to the target idle speed calculated by the processing of the flow chart of FIG. 5 is a sub-routine flowchart of the feedback control stop determination process of FIG. 4.
  • 5 is a sub-routine flowchart of the ISC valve abnormality determination process of FIG. 4.
  • 5 is a sub-routine flowchart of the engine speed increase prevention process of FIG. 4.
  • FIG. 12 is a graph showing a characteristic of deviation of the engine speed with respect to the ignition timing retardation correction value calculated by the processing of the flowchart of FIG. 11.
  • FIG. 11 It is a graph which shows the characteristic of the deviation of an engine speed with respect to the fuel reduction correction value calculated by the process of FIG. 11 flow chart.
  • 2 is a time chart showing the operation of the control device for the internal combustion engine shown in FIG. 1.
  • FIG. 15 is a time chart similar to FIG. 14 showing the operation of the control device for the internal combustion engine shown in FIG. 1.
  • FIG. 1 is a schematic view schematically showing a control device for an internal combustion engine according to an embodiment of the present invention.
  • reference numeral 10 indicates an internal combustion engine (hereinafter referred to as “engine”) mounted on a vehicle (not shown) (for example, a motorcycle).
  • the engine 10 is a four-cycle single-cylinder water-cooled type and is composed of a gasoline engine having a displacement of about 250 cc.
  • Reference numeral 10a denotes a crankcase of the engine 10.
  • a throttle valve 14 is disposed in the intake passage 12 of the engine 10.
  • the throttle valve 14 is mechanically connected to an accelerator (throttle grip) provided in the vehicle so as to be manually operable via a throttle wire (both not shown), and is opened and closed in accordance with the operation amount of the accelerator 10.
  • the intake air is regulated, specifically, the amount of air drawn from the air cleaner 16 and flowing through the intake passage 12 is adjusted.
  • the throttle valve 14 is set to have an idle opening when the accelerator is not operated.
  • the bypass passage 20 that connects the upstream side and the downstream side of the throttle valve 14 and bypasses the throttle valve 14 is connected to the intake passage 12.
  • An idle speed control valve (idle speed control valve; hereinafter referred to as “ISC valve”) 22 for adjusting the idle speed of the engine 10 by adjusting the air amount of the bypass path 20 is provided in the middle of the bypass path 20 and is stepping. It is driven by a motor (electric motor, actuator) 24.
  • FIG. 2 is an enlarged schematic sectional view showing the vicinity of the ISC valve 22 and the stepping motor 24 shown in FIG.
  • the stepping motor 24 is coaxially connected to the first and second coils (A-phase and B-phase coils) 24a and 24b, the magnet rotor 24c, and the lower end of the magnet rotor 24c,
  • This is a bipolar two-phase excitation type stepping motor comprising a feed screw 24d having a male screw threaded on its outer peripheral surface and a case 24e for housing first and second coils 24a, 24b and the like.
  • the ISC valve 22 is arranged in a valve body (plunger valve) 22a for opening and closing the bypass passage 20 and an internal space of the valve body 22a, and a slide piece formed with a female screw corresponding to the male screw of the feed screw 24d. 22b and a spring 22c inserted between the valve body 22a and the slide piece 22b are integrally attached. As shown in the figure, the stepping motor 24 and the ISC valve 22 are connected by screwing the male screw of the feed screw 24d and the female screw of the slide piece 22b, and the valve body 22a is connected from the case 24e. It is positioned so as to protrude toward the bypass 20.
  • the magnet rotor 24c and the feed screw 24d are rotated by alternately switching the directions of the currents flowing through the first and second coils 24a and 24b, and the rotation direction of the feed screw 24d is rotated. Accordingly, the ISC valve 22 is displaced in the vertical direction in FIG. 2 while the movement in the rotational direction is restricted by the guide 24 f, thereby opening and closing the bypass path 20 and adjusting the amount of air flowing through the bypass path 20.
  • an injector 26 is disposed near the intake port on the downstream side of the throttle valve 14 in the intake passage 12, and gasoline fuel is injected into the intake air adjusted by the throttle valve 14 and the ISC valve 22.
  • the injected fuel mixes with intake air to form an air-fuel mixture, and the air-fuel mixture flows into the combustion chamber 32 when the intake valve 30 opens.
  • the air-fuel mixture flowing into the combustion chamber 32 is ignited by spark discharge from the spark plug 36 with a high voltage supplied from the ignition coil 34 and burns, and the piston 40 is driven downward in FIG. 1 to rotate the crankshaft 42. .
  • the exhaust gas generated by the combustion flows through the exhaust pipe 46 when the exhaust valve 44 is opened.
  • a catalyst device 50 is disposed in the exhaust pipe 46 to remove harmful components in the exhaust gas.
  • the exhaust gas purified by the catalyst device 50 flows further downstream and is discharged to the outside of the engine 10.
  • a starter motor 52 for starting the engine 10 is connected to the crankshaft 42.
  • a throttle opening sensor 54 composed of a potentiometer is provided in the vicinity of the throttle valve 14 to generate an output indicating the opening ⁇ TH of the throttle valve 14.
  • An intake air temperature sensor 56 is provided on the upstream side of the throttle valve 14 in the intake passage 12 to generate an output indicating the temperature TA of the intake air, and an absolute pressure sensor 60 is provided on the downstream side to provide an absolute pressure in the intake passage ( Engine load) produces an output indicating PBA.
  • a water temperature sensor (temperature detection means) 62 is attached to the cooling water passage 10b of the cylinder block of the engine 10, and an output corresponding to the temperature (engine cooling water temperature) TW of the engine 10 is generated.
  • a crank angle sensor 64 is mounted near the crankshaft 42 of the engine 10 and outputs a crank angle signal at a predetermined crank angle position.
  • an ignition switch 66 and a starter switch 70 are installed at appropriate positions of the vehicle.
  • the ignition switch 66 has three known positions in order of lock, off, and on, and supplies and shuts off electric power to each electric device according to the position selected by the driver. Specifically, when the lock or off position is selected in the ignition switch 66, all the power supply to each sensor, the stepping motor 24, etc. is cut off, and when the on position is selected, it is mounted on the vehicle. The battery 72 is connected, and power supply to each sensor except the starter motor 52 and the stepping motor 24 is started. When the lock position is selected, a handle (not shown) is fixed (locked).
  • the starter switch 70 is connected to the battery 72 to drive the starter motor 52 when operated by the driver, thereby starting cranking and starting the engine 10.
  • ECU electronice control unit
  • FIG. 3 is a block diagram showing the overall configuration of the ECU 74.
  • the ECU 74 is composed of a microcomputer, and as shown in FIG. 3, the A / D conversion receives the output of the waveform shaping circuit 74a to which the output of the crank angle sensor 64 is input, the rotation speed counter 74b, the water temperature sensor 62, and the like. A circuit 74c and a CPU 74d are provided. The ECU 74 further includes an ignition circuit 74e for energizing the ignition coil 34 according to a control signal from the CPU 74d, two drive circuits 74f and 74g for driving the injector 26 and the stepping motor 24, a ROM 74h, a RAM 74i, and a timer 74j. Prepare.
  • the waveform shaping circuit 74a shapes the output (signal waveform) of the crank angle sensor 64 into a pulse signal and outputs it to the rotation number counter 74b.
  • the rotational speed counter 74b counts the input pulse signal to detect (calculate) the engine rotational speed NE, and outputs a signal indicating the engine rotational speed NE to the CPU 74d.
  • the A / D conversion circuit 74c receives the output of each sensor such as the throttle opening sensor 54, converts the analog signal value into a digital signal value, and outputs it to the CPU 74d.
  • the CPU 74d performs an operation according to a program stored in the ROM 74h based on the converted digital signal and the like, sends a control signal to the drive circuit 74g to control energization to the stepping motor 24, and opens the ISC valve 22.
  • the amount of air in the bypass 20 is adjusted by adjusting the degree.
  • the CPU 74d similarly executes a calculation according to a program stored in the ROM 74h based on a digital signal or the like, and sends a control signal to the ignition circuit 74e or each of the drive circuits 74f and 74g to drive the ignition coil 16 and the injector 26.
  • the ignition timing and the fuel injection amount are controlled.
  • the RAM 74i is used for buffering the engine speed NE performed in a program to be described later, and the timer 74j is also used for time measurement processing in the program.
  • FIG. 4 is a flowchart showing the operation of the control apparatus for an internal combustion engine according to this embodiment.
  • the illustrated program is executed (looped) at a predetermined time interval, for example, 20 msec, in the ECU 74 when the ignition switch 66 is turned on.
  • the process proceeds to S16, and the rotation speed abnormality detection process is executed. Specifically, in S16, whether or not the engine 10 is in a start state in which an abnormality in the engine speed NE can be detected, and in a start state in which the abnormality can be detected, the engine speed NE is within a predetermined range (described later). This is a process for detecting whether or not there is.
  • FIG. 5 is a sub-routine flow chart of the rotation speed abnormality detection process.
  • S100 it is determined whether or not the engine speed NE is 0. In other words, it is determined whether or not the starter switch 70 is not turned on and before the engine 10 is started.
  • the routine proceeds from S102 to S108, and the bits of a rotation speed abnormality detection flag F_XOBXISCS, a rotation speed abnormality detection history flag F_XICSRCSR, a throttle opening history flag F_THOPEN, and an idle opening start state flag F_IDLECNT are set to 0, respectively. Set to.
  • the program proceeds to S120, in which it is determined whether the bit of the idle opening start state flag F_IDLECNT is 1. Since the flag F_IDLECNT is set to 0 in S108, the result in S120 is negative and the process proceeds to S122, in which it is determined whether the engine speed NE is equal to or higher than the complete explosion speed NEref (for example, 750 rpm).
  • setting the idling opening start state flag F_IDLECNT to 1 starts the engine 10 when the throttle valve 14 is at the idling opening (exactly, it is cranked when the engine 10 is stopped). This means that the engine is still in the idling opening after being started, and thus it is in a starting state in which an abnormality of the engine speed NE described later can be detected.
  • the start state of the engine 10 as described above is also referred to as “idle opening start state”.
  • the process proceeds to S126, and the engine speed NE is set to a predetermined range set according to the target idle speed NEa (for example, the lower limit value is 1000 rpm and the upper limit value is the target idle speed NEa). It is determined whether or not it is within a range (NEb) set as a rotational speed obtained by adding a predetermined value (500 rpm). The calculation of the target idle speed NEa will be described later.
  • a first predetermined time (predetermined time) Ta has elapsed since the engine speed NE is not within the predetermined range NEb.
  • a first predetermined time Ta for example, 3 sec
  • an abnormality detection timer down counter
  • time measurement is started to detect abnormality. This is done by determining whether the timer value has become zero.
  • S132 it is determined whether or not the engine speed NE is equal to or higher than the target idle speed NEa. That is, S132 is a process for determining whether or not the engine speed NE has exceeded the predetermined range NEb on the high rotation side.
  • the program proceeds to S134, in which an ISC step position ISCSTEP indicating the step position of the stepping motor 24 recognized by the ECU 74 is set to a value indicating the fully opened position of the ISC valve 22 (fully opened step position, specifically 200 steps).
  • the process proceeds to S136, and a value indicating the fully closed position of the ISC valve 22 (fully closed step position, specifically 0 step) is set in ISCSTEP.
  • the fully opened step is set to the ISC step position ISCSTEP.
  • the position or fully closed step position was temporarily set.
  • bit of the flag F_XOBXISCS is set to 1 in S130, it is affirmed in S110 in the subsequent program loop and proceeds to S138, and the bit of the rotation speed abnormality detection history flag F_XICSRCD is set to 1. That is, when the bit of the flag F_XICSRCD is set to 1, it means that there is a history in which a state where the engine speed NE continues for the first predetermined time Ta and is not within the predetermined range NEb is detected.
  • the bit of the rotation speed convergence flag F_NETRGCNV (initial value 0) indicating that the engine rotation speed NE has converged to the target idle rotation speed NEa is 1.
  • the bit of the flag F_NETRGCNV is set to 1 when the engine speed NE converges to the target idle speed NEa by feedback control executed after detecting an abnormality of the ISC valve 22, as will be described later. 0.
  • the bit of the engine speed abnormality detection flag F_XOBXISCS is set to 0 (S142). For example, it is determined that the engine speed NE is normal and the ISC valve 22 is not abnormal (normal).
  • bit of the flag F_XOBXISCS is set to 0 in S142 and the result is negative in S110 in the next and subsequent program loops
  • bit of the flag F_XISCSRCD is set to 1 in S138, so that the result is affirmed in S116 and S118 to S124. Is skipped, that is, the process of determining whether or not the engine 10 has been started when the throttle valve 14 is at the idle opening is skipped, and the processes after S126 described above are performed.
  • the process then proceeds to S18, in which it is determined whether or not the bit of the rotation speed abnormality detection flag F_XOBXISCS is “1”.
  • the program proceeds to S20, in which it is determined whether or not the engine speed NE is within the predetermined range NEb.
  • the current program loop is executed, for example, immediately after the ignition switch 66 is turned on or immediately after the starter switch 70 is turned on, the engine speed NE is normally not within the predetermined range NEb. , It is determined whether the bit of the flag F_XOBXISCS is 1.
  • the program proceeds to S24, and the stepping motor 24 is controlled in an open loop.
  • the step position of the stepping motor 24 is set to the ISC target step position (target step position), and the ISC valve 22 is controlled to have an appropriate opening degree corresponding to the engine temperature TW.
  • FIG. 6 is a flowchart showing a process for calculating the ISC target step position and the target idle speed NEa.
  • the illustrated program is executed by the ECU 74 in parallel with the processes of FIGS. 4 and 5 at predetermined intervals (for example, 100 msec).
  • the engine temperature TW is detected (calculated) based on the output of the water temperature sensor 62.
  • the ISC target step position of the stepping motor 24 is calculated based on the detected engine temperature TW.
  • the ISC target step position means the step position of the stepping motor 24 corresponding to the opening degree of the ISC valve 22 when the engine 10 is operated at the idle speed, and the value is set according to the engine temperature TW. .
  • the ISC target step position is obtained by searching a table showing the characteristics in FIG.
  • the ISC target step position is set so that the number of steps is large when the engine temperature TW is relatively low, that is, the ISC valve 22 has a high opening, and as the engine temperature TW increases.
  • the number of steps is set to decrease (the ISC valve 22 has a low opening).
  • the target idle speed NEa is calculated based on the engine temperature TW.
  • the target idle speed NEa is calculated by searching a table showing the characteristics in FIG. 8 from the detected engine temperature TW.
  • the target idle speed NEa is set to a high speed when the engine temperature TW is relatively low, and is set to a low speed as the engine temperature TW rises.
  • the target idle speed NEa calculated in S204 is used when executing the setting of the predetermined range NEb, the feedback control, and the like.
  • the tables shown in FIGS. 7 and 8 are obtained in advance through experiments and stored in the ROM 74h.
  • the process proceeds to S26, in which it is determined whether or not the throttle valve 14 is at the idle opening. If NO in S26, that is, if the accelerator is operated by the driver and the throttle valve 14 is not at the idle opening, the process proceeds to S22 and S24, and the above-described processing is performed. It is determined whether the value of a timer (described later) is zero. Since the initial value of the feedback restart delay timer is 0, when the process of S28 is executed for the first time, the determination is affirmative and the process proceeds to S30, and the feedback control stop determination process is executed.
  • FIG. 9 is a sub-routine flowchart of the feedback control stop determination process in S30.
  • the process then proceeds to S32, in which it is determined whether the bit of the feedback control stop flag F_ISCFBNG (described later) is 1. Since the initial value of the flag F_ISCFBNG is set to 0, when the process of S32 is executed for the first time, the result is negative and the process proceeds to S34, and the difference between the engine speed NE and the idle speed NEa is a predetermined value (for example, 20 rpm) in absolute value. Whether or not the following state continues for the second predetermined time Tb (for example, 3 seconds), in other words, the state where the engine speed NE is in the vicinity of the idle speed NEa continues for the second predetermined time Tb. Determine whether or not.
  • Tb for example, 3 seconds
  • the program proceeds to S36, the bit of the rotation speed convergence flag F_NETRGCNV is set to 0, the program proceeds to S38, and feedback control is executed.
  • the ISC valve is set via the stepping motor 24 so that the engine speed NE matches the idle speed NEa (more precisely, the idle speed NEa calculated in S204 of FIG. 6).
  • the opening degree of 22 is feedback controlled (PID control). More specifically, when the engine speed NE exceeds the idle speed NEa, the ISC valve 22 is driven in the closing direction, while when the engine speed NE is less than the idle speed NEa, the ISC valve 22 is opened.
  • the operation of the stepping motor 24 is controlled so as to drive.
  • the feedback control in S38 is basically performed when the throttle valve 14 is at the idle opening (Yes in S26) and the engine speed NE is not in the vicinity of the idle speed NEa (No in S34). Although it is executed, after detecting an abnormality in the engine speed NE (Yes in S18), the throttle valve 14 is at the idle opening (Yes in S26), and the engine speed NE is not in the vicinity of the idle speed NEa (S34). Is also executed).
  • FIG. 10 is a sub-routine flowchart of the ISC valve abnormality determination process in S46 of FIG.
  • S400 it is determined whether or not the bit of the rotation speed abnormality detection flag F_XOBXISCS is 1.
  • the process proceeds to S402, and it is determined whether or not the timer XTMISCS is equal to or longer than a third predetermined time (predetermined time, for example, 30 sec) Tc. If the engine speed NE does not converge within the predetermined range NEb after the third predetermined time Tc has elapsed after executing feedback control after detecting an abnormality in the engine speed NE in S402, that is, when the abnormality is detected in the engine speed NE, the process proceeds to S404. Then, the bit of the ISC abnormality determination flag F_XAPXICS indicating that it is determined that an abnormality has occurred in the ISC valve 22 is set to 1. If the result in S400 or S402 is NO, the subsequent processing is skipped.
  • the process proceeds to S48 in FIG. 4 to execute an engine speed increase prevention process.
  • the engine speed NE may rise unnecessarily depending on the operating state (rising up), which may cause the driver to feel uncomfortable. Therefore, in S48, ignition and fuel injection of the engine 10 are controlled to prevent an increase in the engine speed NE.
  • FIG. 11 is a sub-routine flowchart of the engine speed increase prevention process.
  • the program proceeds to S506, and a value obtained by subtracting the predetermined engine speed NEc from the engine engine speed NE is set as a deviation DNEXSC.
  • the ignition timing retardation correction value IGISCR is calculated based on the deviation DNEXSC. Specifically, the ignition timing retardation correction value IGISCR is obtained by searching a table showing the characteristics in FIG.
  • the ignition timing retardation correction value IGISCR is set to 0 deg when the deviation DNEXSC is relatively small, that is, a value that does not retard the ignition timing, while the ignition timing is increased as the deviation DNEXSC increases. It is set to a value that increases the amount of retardation of.
  • the process proceeds to S510, and similarly to S508, the fuel reduction correction value MISCLEAN is calculated based on the calculated deviation DNEXSC by searching a table showing its characteristics in FIG. As shown in FIG. 13, the fuel reduction correction value MISCLEAN is set to a value that is 1.0 times when the deviation DNEXSC is relatively small, that is, a value that does not reduce the fuel injection amount, while the fuel increases as the deviation DNEXSC increases. The amount by which the injection amount is decreased is increased. In other words, the value is such that the fuel injection amount is further decreased.
  • the routine proceeds to S512, where the ignition timing retardation correction value IGISCR is set to 0 deg, and the routine proceeds to S514.
  • the reduction correction value MISCLEAN is set to 1.0 times, that is, a value that does not correct the ignition timing and the fuel injection amount.
  • the routine proceeds to S516, where the basic ignition timing and the basic fuel injection calculated based on the engine speed NE, the intake pipe absolute pressure PBA, etc. in a program (not shown) according to the ignition timing retard correction value IGISSCR and the fuel reduction correction value MISCLEAN. Correct the amount. Specifically, a control signal indicating the ignition timing corrected by adding the ignition timing retardation correction value IGISSCR to the basic ignition timing is sent to the ignition coil 34 via the ignition circuit 74e to retard the ignition timing (ignition). In addition, a control signal indicating a value obtained by multiplying the reference injection fuel amount by the fuel reduction correction value MISCLEAN is sent to the injector 26 via the drive circuit 74f to reduce the fuel injection amount. (Fuel injection reduction control is executed). As a result, the engine speed NE can be prevented from unnecessarily rising (blowing), and the driver does not feel uncomfortable.
  • the difference between the engine speed NE and the idle speed NEa is not more than a predetermined value in absolute value, that is, the engine speed NE is equal to the target idle speed. It may converge to the rotational speed NEa. In this case, the result is affirmative in S34, and the process proceeds to S52, where the ISC step position ISCSTEP is replaced with the step value of the ISC target step position calculated in S202 of FIG.
  • a value indicating the fully open position or the fully closed position of the ISC valve 22 is temporarily set in the ISC step position ISCSTEP, but the engine speed NE converges to the target idle speed NEa by feedback control.
  • the ISC step position ISCSTEP is calculated based on the engine temperature TW. Replaced with step value at step position.
  • the deviation between the step position recognized by the ECU 74 caused by the step-out of the stepping motor 24 and the actual step position of the stepping motor (hereinafter also referred to as “actual step position”) can be corrected, and the ISC by the stepping motor 24 can be corrected. It becomes possible to ensure the control accuracy of the valve 22.
  • FIG. 14 and 15 are time charts for explaining the above-described processing. 14 shows a case where it is determined in S404 that an abnormality has occurred in the ISC valve 22, and FIG. 15 shows a case where it is determined that no abnormality has occurred (normal).
  • the ignition switch 66 is turned on at time t1.
  • the starter switch 70 is turned on with the throttle valve 14 in the idling position (time point t2), cranking is started and the engine 10 is started, and the engine speed NE becomes equal to or higher than the complete explosion speed NEref (time point). t3, S112 to S124).
  • the abnormality detection timer is started (time t4). S126, S128).
  • the bit of the engine speed abnormality detection flag F_XOBXICSS is set to 1 (S130).
  • the fully open step position is temporarily set at 22 in the ISC step position ISCSTEP (S134), and the ISC is set via the stepping motor 24 so that the engine speed NE coincides with the idle speed NEa.
  • the opening degree of the valve 22 is feedback controlled (S38). Also, the feedback control elapsed time timer XTMISCS is started (S44).
  • timer XTMISCS reaches the third predetermined time Tc, that is, when the engine speed NE does not converge within the predetermined range NEb after the third predetermined time Tc has elapsed since the execution of the feedback control (time t6, S402).
  • the bit of the ISC abnormality determination flag F_XAPXICSS is set to 1 (S404), and the energization to the stepping motor 24 is stopped (S50).
  • the bit of the engine speed abnormality detection flag F_XOBXICSS is set to 0 ( In other words, it is determined that no abnormality has occurred in the ISC valve 22 (normal). Further, at time t7, the ISC step position ISCSTEP is replaced with the step value of the ISC target step position (S52), and the deviation between the step position recognized by the ECU 74 and the actual step position of the stepping motor 24 is corrected.
  • the feedback control drives the ISC valve 22 by controlling the operation of the stepping motor 24 so that the engine speed NE coincides with the idle speed NEa.
  • the intake air amount may be insufficient depending on the driving state of the vehicle, and the engine 10 may stall.
  • the crankshaft 42 of the engine 10 is rotated by an external force acting from the road surface.
  • the engine speed NE is kept constant (or increased). If the engine speed NE exceeds the target idle speed NEa in such a state, the ISC valve 22 is driven in the closing direction to reduce the intake air amount by feedback control. At that time, power transmission between the engine 10 and the rear wheel is cut off by the clutch, and if the ISC valve 22 is in the vicinity of the fully closed position, the intake air amount is insufficient, the engine speed NE decreases, and the engine 10 There is a risk of stalling.
  • the feedback control during the feedback control, the correlation between the drive of the ISC valve 22 and the engine speed NE that fluctuates due to the drive of the ISC valve 22 is monitored, and the feedback control is executed.
  • the feedback control is stopped when it can be judged that the driving state is not necessary.
  • S300 it is determined whether feedback control has been executed in the previous program loop. Since the current program loop is executing feedback control, an affirmative decision is made in S300 and the routine proceeds to S308, where it is determined whether or not the ISC valve 22 is continuously driven by the stepping motor 24 for a predetermined number of steps ISCSTEPref (for example, 20 steps). . This is determined based on whether or not the difference between the ISC step position ISCSTEP and the value ISCSTEPBUF buffered in S304 is equal to or greater than a predetermined step number ISCSTEPref.
  • a predetermined number of steps ISCSTEPref for example, 20 steps.
  • the process proceeds to S310, and it is determined whether or not the ISC step position ISCSTEP is greater than or equal to the value ISCSTEPBUF.
  • the process proceeds to S312 and the bit of the opening direction driving flag F_DSTEPFB is set to 1.
  • the process proceeds to S314, and the bit of the opening direction driving flag F_DSTEPFB is set to 0.
  • the process proceeds to S316, and a change amount DNEFB of the engine speed NE is calculated.
  • the change amount DNEFB is an absolute value of a difference obtained by subtracting the value NEBUF buffered in S302 from the engine speed NE.
  • the predetermined timer value is set to such a value that it can be determined that the operation of driving the ISC valve 22 for a predetermined number of steps in the opening direction or the closing direction is continuously performed, for example, 200 msec.
  • the stepping motor 24 is driven at a driving frequency of 200 pps (that is, it takes 5 msec to drive one step).
  • a driving frequency of 200 pps that is, it takes 5 msec to drive one step.
  • the program proceeds to S326, in which it is determined whether or not the changing direction of the engine speed NE matches the opening / closing direction of the ISC valve 22. This is determined by whether or not the bits of the opening direction drive flag F_DSTEPFB and the rotation speed increase flag F_DNEFB match.
  • the engine speed NE decreases despite the ISC valve 22 being driven in the opening direction (that is, the intake air amount is increasing). Although the engine speed NE rises despite being driven in the closing direction (that is, the intake air amount is decreasing), the ISC valve 22 increases or decreases the intake air amount and the engine speed NE increases or decreases. This is a process in which it is determined that it is not necessary to execute feedback control when the operating states do not match.
  • the program proceeds to S328, in which it is determined whether or not the engine speed change amount DNEFB is less than a predetermined value DNEFBref. If the result in S328 is affirmative or the result in S326 is negative, it is determined that the engine 10 may stall as described above, and it is determined that there is no need to execute feedback control. The process proceeds to S330 and the feedback control stop flag F_ISCFBNG Set the bit of.
  • the predetermined delay timer value (predetermined stop time) is set to the value of the feedback restart delay timer (down counter). Since the feedback restart delay timer is a timer that avoids (prevents) feedback control from being stopped for a long time, the predetermined delay timer value is set to an appropriate time (for example, 5 sec).
  • S28 is negated until the value of the feedback restart delay timer becomes 0, and the open loop control is continued.
  • the open loop control is switched to the feedback control, that is, the feedback control is restarted. .
  • the throttle valve 14 disposed in the intake passage 12 of the internal combustion engine (engine) 10, the bypass passage 20 connected to the intake passage and bypassing the throttle valve, And an idle speed control valve (ISC valve) 22 that adjusts the air amount of the bypass passage to adjust the idle speed NEa of the internal combustion engine, and a stepping motor 24 that drives the idle speed control valve.
  • ISC valve idle speed control valve
  • the internal combustion engine 10 is started when the throttle valve 14 is at the idle opening, and after the start, it is determined whether the idle opening is still at the idle opening.
  • State determination means ECU 74. S16, S112 to S124
  • a rotational speed range determining means for determining whether or not the rotational speed NE of the internal combustion engine is within a predetermined range NEb set according to the target idle rotational speed NEa (ECU 74, S16, S126); When it is determined that the number NE is not within the predetermined range NEb, the idling engine speed control valve 22 is controlled via the stepping motor 24 so that the engine speed NE of the internal combustion engine matches the target idle engine speed NEa.
  • Feedback control means for feedback control of the opening degree (ECU 74, S38), and after a predetermined time (third predetermined time) Tc has elapsed since execution of the feedback control, the rotational speed NE of the internal combustion engine is within the predetermined range NEb.
  • An abnormality determining means for determining that an abnormality has occurred in the idle speed control valve 22 when it does not converge within Ku was constructed (ECU74.S46, S400 ⁇ S404).
  • the abnormality of the ISC valve 22 can be detected (detected) without requiring a device (for example, a vehicle speed sensor) that specifically detects the no-load state of the engine as in the prior art, although it has a simple configuration. ) As well as cost advantages.
  • the feedback control means determines that the idle speed control valve 22 of the idle speed control valve 22 when a predetermined time (first predetermined time) Ta elapses after it is determined that the rotational speed NE of the internal combustion engine is not within the predetermined range NEb. Since the opening degree is configured to be feedback controlled (S16, S126, S128, S38), the feedback control can be started at a more appropriate timing according to the operating state of the engine 10.
  • temperature detecting means for detecting the temperature (engine temperature) TW of the internal combustion engine (water temperature sensor 62. ECU 74, S200), and a target step position (stepping motor 24) based on the detected temperature TW of the internal combustion engine ( Target step position calculation means for calculating (ISC target step position) (ECU 74, S202), and based on the detected temperature TW of the internal combustion engine, during the execution of the feedback control, the rotational speed NE of the internal combustion engine and the target Since it is configured to include replacement means for replacing the position of the stepping motor 24 with the step value of the target step position when the difference in the idle speed NEa is equal to or less than a predetermined value (ECU 74, S34, S52), for example, a stepping motor
  • the step recognized by the ECU 74 caused by the step-out of 24 Position can correct misalignment between the (ISC step position ISCSTEP) and the actual step position of the stepping motor (actual step position), it is possible to ensure the control accuracy of the ISC
  • the target step position calculating means is configured to set the target step position (ISC target step) of the stepping motor 24 so that the idle speed control valve 22 becomes a low opening as the detected temperature TW of the internal combustion engine increases. (Position) is calculated (S202), it is possible to calculate a target step position that more closely matches the operating state of the engine 10.
  • the predetermined rotational speed NEc is configured to be the target idle rotational speed NEa (S504), the control for preventing the increase in the rotational speed is performed only when the engine 10 is in an operating state in which the rotational speed is likely to blow up. Can be executed.
  • the rotation speed increase preventing means executes at least one of ignition timing retard control of the internal combustion engine 10 and fuel injection reduction control to prevent the rotation speed NE of the internal combustion engine 10 from increasing.
  • the rotation speed increase preventing means is at least one of retarding control of the ignition timing and reduction control of the fuel injection according to a deviation DNEXSC between the rotation speed NE of the internal combustion engine 10 and the predetermined rotation speed NEc. (S506 to S510, S516), the ignition timing retarding control and the fuel injection decreasing control according to the operating state of the engine 10 (specifically, the engine speed NE) can be executed. Therefore, an unnecessary increase in engine speed NE can be more effectively prevented.
  • the feedback control means is configured to drive the idle speed control valve 22 in a predetermined number of steps (predetermined number of steps) ISCSTrefref continuously in the opening direction or the closing direction during the execution of the feedback control. Since the above-described feedback control is stopped when the amount of change DNEFB in the rotation speed is less than the predetermined value DNEFBref (ECU 74. S24, S30, S32, S300 to S332), an operation state in which it is not necessary to execute the feedback control is provided. Sometimes the feedback control can be stopped, thus preventing the engine 10 from stalling.
  • the feedback control means is configured to resume the feedback control after a predetermined suspension time has elapsed since the feedback control was suspended (when the value of the feedback restart delay timer becomes 0) (the ECU 74). S58, S28), it becomes possible to resume the feedback control which has been stopped at an effective timing.
  • the ISC target step position and the target idle speed NEa are calculated based on the engine temperature TW.
  • the present invention is not limited to this.
  • the intake air temperature TA The calculation may be performed in consideration of the absolute pressure PBA in the intake passage, the amount of change in an electric load such as an air conditioner or a radiator fan (not shown).
  • the ignition timing is retarded and the fuel injection amount is reduced.
  • the present invention is not limited to this, and the engine speed NE is cut by performing ignition cut or fuel cut. You may make it prevent a raise of. From that point of view, it is stated in claim 5 that “an increase in the rotational speed of the internal combustion engine is prevented by controlling at least one of ignition and fuel injection of the internal combustion engine”.
  • predetermined range NEb the predetermined time Tc, the predetermined delay timer value, the displacement of the engine 10 and the like are shown as specific values, these are examples and are not limited.
  • a two-wheeled motor vehicle has been described as an example of the vehicle, the present invention is not limited thereto.
  • a so-called saddle-type vehicle in which a driver rides over a seat (saddle) such as a scooter or an ATV (All Terrain Vehicle).
  • Any other vehicle for example, a four-wheeled vehicle may be used.
  • the control device for an internal combustion engine when it is determined that the internal combustion engine is started when the throttle valve is at the idle opening and is still at the idle opening after being started, Is determined to be within a predetermined range set according to the target idle rotational speed, and when it is determined that the rotational speed of the internal combustion engine is not within the predetermined range, the rotational speed of the internal combustion engine is equal to the target idle rotational speed.
  • the opening degree of the idling engine speed control valve is feedback-controlled through the stepping motor so as to match the number, and after a predetermined time has elapsed since the feedback control was executed, the engine speed of the internal combustion engine does not converge within the predetermined range At this time, since it is determined that an abnormality has occurred in the idle speed control valve, the configuration is simple as in the prior art. Abnormality of the idle speed control valve can be detected (detected) without requiring a device (such as a vehicle speed sensor) for detecting an unloaded state of the internal combustion engine, and it is also advantageous in terms of cost. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 内燃機関の制御装置において、スロットルバルブ(14)がアイドル開度にあるときに内燃機関(10)が始動され、その後も依然としてアイドル開度にあると判定されるとき、内燃機関の回転数NEが目標アイドル回転数NEaに応じて設定された所定範囲NEbにあるか否か判定すると共に(S16,S126)、内燃機関の回転数が所定範囲にないと判定されるとき、内燃機関の回転数が目標アイドル回転数に一致するように、ステッピングモータ(24)を介してアイドル回転数制御バルブ(22)の開度をフィードバック制御し(S38)、フィードバック制御を実行してから所定時間Tc経過した後、内燃機関の回転数が所定範囲内に収束しないとき、アイドル回転数制御バルブに異常が生じたと判定する(S46,S400~S404)。これにより、簡易な構成でありながら、アイドル回転数制御バルブの異常を検出できると共に、コスト的にも有利にすることができる。

Description

内燃機関の制御装置
 この発明は内燃機関の制御装置に関し、より詳しくは吸気路のスロットルバルブをバイパスするバイパス路に設けられるアイドル回転数制御バルブを備えた内燃機関の制御装置に関する。
 従来より、吸気路のスロットルバルブが全閉位置付近にあるとき(即ち、機関始動時やアイドル運転時)、スロットルバルブの上流側と下流側とを連通するバイパス路に配置されたアイドル回転数制御バルブをステッピングモータで駆動(開閉)することで、内燃機関のアイドル回転数を調整するようにした内燃機関の制御装置は広く知られている。
 上記した内燃機関の制御装置において、アイドル回転数制御バルブの異常(バルブの固着などに起因するステッピングモータの脱調など)を検出(検知)する技術も提案されている(例えば特許文献1参照)。特許文献1記載の技術にあっては、内燃機関の無負荷状態が検出されるとき、内燃機関の回転数が目標アイドル回転数に一致するようにアイドル回転数制御バルブの開度をフィードバック制御すると共に、フィードバック制御を実行中に、内燃機関の回転数が目標アイドル回転数に応じて設定された所定範囲にないとき、アイドル回転数制御バルブに異常が生じたと判定するようにしている。
特許第2836455号公報
 しかしながら、特許文献1記載の技術の如く、アイドル回転数制御バルブの異常検出を、内燃機関の無負荷状態を検出してフィードバック制御を実行しているときに行うように構成すると、内燃機関の無負荷状態を検出する装置(例えば車速センサなど)が必要となり、構成が複雑になるという不都合があった。
 従って、この発明の目的は上記した課題を解決し、簡易な構成でありながら、アイドル回転数制御バルブの異常を検出できるようにした内燃機関の制御装置を提供することにある。
 この発明は、上記の目的を達成するために、後述する如く、請求項1にあっては、内燃機関の吸気路に配置されるスロットルバルブと、前記吸気路に接続されて前記スロットルバルブをバイパスするバイパス路と、前記バイパス路の空気量を調整して前記内燃機関のアイドル回転数を調整するアイドル回転数制御バルブと、前記アイドル回転数制御バルブを駆動するステッピングモータとを備えた内燃機関の制御装置において、前記スロットルバルブがアイドル開度にあるときに前記内燃機関が始動されると共に、始動された後も依然として前記アイドル開度にあるか否か判定するアイドル開度始動状態判定手段と、前記アイドル開度始動状態と判定されるとき、前記内燃機関の回転数が目標アイドル回転数に応じて設定された所定範囲にあるか否か判定する回転数範囲判定手段と、前記内燃機関の回転数が前記所定範囲にないと判定されるとき、前記内燃機関の回転数が前記目標アイドル回転数に一致するように、前記ステッピングモータを介して前記アイドル回転数制御バルブの開度をフィードバック制御するフィードバック制御手段と、前記フィードバック制御を実行してから所定時間経過した後、前記内燃機関の回転数が前記所定範囲内に収束しないとき、前記アイドル回転数制御バルブに異常が生じたと判定する異常判定手段とを備える如く構成した。
 また、この発明は、後述する如く、請求項2に係る内燃機関の制御装置にあっては、前記フィードバック制御手段は、前記内燃機関の回転数が前記所定範囲にないと判定されてから既定時間が経過するとき、前記アイドル回転数制御バルブの開度をフィードバック制御する如く構成した。
 また、この発明は、後述する如く、請求項3に係る内燃機関の制御装置にあっては、前記内燃機関の温度を検出する温度検出手段と、前記検出された内燃機関の温度に基づいて前記ステッピングモータの目標ステップ位置を算出する目標ステップ位置算出手段と、前記検出された内燃機関の温度に基づき、前記フィードバック制御の実行中に、前記内燃機関の回転数と前記目標アイドル回転数の差が既定値以下となるときの前記ステッピングモータの位置を前記目標ステップ位置のステップ値に置き換える置き換え手段とを備える如く構成した。
 また、この発明は、後述する如く、請求項4に係る内燃機関の制御装置にあっては、前記目標ステップ位置算出手段は、前記検出された内燃機関の温度が上昇するに連れて前記アイドル回転数制御バルブが低開度となるように前記ステッピングモータの目標ステップ位置を算出する如く構成した。
 また、この発明は、後述する如く、請求項5に係る内燃機関の制御装置にあっては、前記アイドル回転数制御バルブに異常が生じたと判定されると共に、前記内燃機関の回転数が所定回転数以上となるとき、前記内燃機関の点火と燃料噴射のうちの少なくともいずれかを制御して前記内燃機関の回転数の上昇を防止する回転数上昇防止手段を備える如く構成した。
 また、この発明は、後述する如く、請求項6に係る内燃機関の制御装置にあっては、前記所定回転数は前記目標アイドル回転数である如く構成した。
 また、この発明は、後述する如く、請求項7に係る内燃機関の制御装置にあっては、前記回転数上昇防止手段は、前記内燃機関の点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行して前記内燃機関の回転数の上昇を防止する如く構成した。
 また、この発明は、後述する如く、請求項8に係る内燃機関の制御装置にあっては、前記回転数上昇防止手段は、前記内燃機関の回転数と前記所定回転数の偏差に応じて前記点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行する如く構成した。
 また、この発明は、後述する如く、請求項9に係る内燃機関の制御装置にあっては、前記フィードバック制御手段は、前記フィードバック制御の実行中に、前記アイドル回転数制御バルブが開方向または閉方向に連続して所定ステップ数駆動されると共に、前記内燃機関の回転数の変化量が所定値未満のとき、前記フィードバック制御を中止する如く構成した。
 また、この発明は、後述する如く、請求項10に係る内燃機関の制御装置にあっては、前記フィードバック制御手段は、前記フィードバック制御を中止してから所定の中止時間経過した後、前記フィードバック制御を再開する如く構成した。
 請求項1に係る内燃機関の制御装置にあっては、スロットルバルブがアイドル開度にあるときに内燃機関が始動されると共に、始動された後も依然としてアイドル開度にあると判定されるとき、内燃機関の回転数が目標アイドル回転数に応じて設定された所定範囲にあるか否か判定すると共に、内燃機関の回転数が所定範囲にないと判定されるとき、内燃機関の回転数が目標アイドル回転数に一致するようにアイドル回転数制御バルブの開度をフィードバック制御し、所定時間経過した後、内燃機関の回転数が所定範囲内に収束しないとき、アイドル回転数制御バルブに異常が生じたと判定するように構成したので、簡易な構成でありながら、具体的には従来技術のように内燃機関の無負荷状態を検出する装置(例えば車速センサなど)を必要とすることなく、アイドル回転数制御バルブの異常を検出(検知)することができると共に、コスト的にも有利にすることができる。
 請求項2に係る内燃機関の制御装置にあっては、内燃機関の回転数が所定範囲にないと判定されてから既定時間が経過するとき、アイドル回転数制御バルブの開度をフィードバック制御するように構成したので、上記した効果に加え、内燃機関の運転状態に応じたより一層適切なタイミングで前記フィードバック制御を開始することができる。
 請求項3に係る内燃機関の制御装置にあっては、内燃機関の温度に基づいてステッピングモータの目標ステップ位置を算出すると共に、内燃機関の温度に基づき、フィードバック制御の実行中に、内燃機関の回転数と目標アイドル回転数の差が既定値以下となるとき(換言すれば、機関回転数が目標アイドル回転数に収束するとき)のステッピングモータの位置を目標ステップ位置のステップ値に置き換えるように構成したので、上記した効果に加え、例えばステッピングモータの脱調によって生じた制御装置の認識するステップ位置とステッピングモータの実際のステップ位置との間のズレを修正でき、ステッピングモータによるアイドル回転数制御バルブの制御精度を確保することができる。
 請求項4に係る内燃機関の制御装置にあっては、検出された内燃機関の温度が上昇するに連れてアイドル回転数制御バルブが低開度となるようにステッピングモータの目標ステップ位置を算出するように構成したので、請求項3で述べた効果に加え、内燃機関の運転状態により一層即した目標ステップ位置を算出することができる。
 請求項5に係る内燃機関の制御装置にあっては、アイドル回転数制御バルブに異常が生じたと判定されると共に、内燃機関の回転数が所定回転数以上となるとき、内燃機関の点火と燃料噴射のうちの少なくともいずれかを制御して内燃機関の回転数の上昇を防止するように構成したので、上記した効果に加え、アイドル回転数制御バルブに異常が生じたときの内燃機関の回転数の不要な上昇(吹き上がり)を効果的に防止することができる。
 請求項6に係る内燃機関の制御装置にあっては、所定回転数は目標アイドル回転数であるように構成、即ち、内燃機関の回転数が目標アイドル回転数以上となるとき、内燃機関の点火と燃料噴射のうちの少なくともいずれかを制御して内燃機関の回転数の上昇を防止するように構成したので、請求項5で述べた効果に加え、内燃機関の回転が吹き上がり易い運転状態のときに限って前記した回転数の上昇を防止する制御を実行することができる。
 請求項7に係る内燃機関の制御装置にあっては、内燃機関の点火時期の遅角制御と燃料噴射の減量制御のうちの少なくともいずれかを実行して内燃機関の回転数の上昇を防止するように構成したので、請求項5および6で述べた効果に加え、アイドル回転数制御バルブに異常が生じたときの内燃機関の回転数の不要な上昇を確実に防止することができる。
 請求項8に係る内燃機関の制御装置にあっては、内燃機関の回転数と所定回転数の偏差に応じて点火時期の遅角制御と燃料噴射の減量制御のうちの少なくともいずれかを実行するように構成したので、請求項7で述べた効果に加え、内燃機関の運転状態(具体的には、内燃機関の回転数)に応じた点火時期の遅角制御と燃料噴射の減量制御を実行でき、よって内燃機関の回転数の不要な上昇をより一層効果的に防止することができる。
 請求項9に係る内燃機関の制御装置にあっては、フィードバック制御の実行中に、アイドル回転数制御バルブが開方向または閉方向に連続して所定ステップ数駆動されると共に、内燃機関の回転数の変化量が所定値未満のとき、フィードバック制御を中止するように構成したので、上記した効果に加え、フィードバック制御を実行する必要がない運転状態のときにフィードバック制御を中止でき、よって内燃機関のストールを防止することができる。
 請求項10に係る内燃機関の制御装置にあっては、フィードバック制御を中止してから所定の中止時間経過した後、フィードバック制御を再開するように構成したので、請求項9で述べた効果に加え、中止していたフィードバック制御を効果的なタイミングで再開させることが可能となる。
この発明の実施例に係る内燃機関の制御装置を模式的に示す概略図である。 図1に示すISCバルブとステッピングモータ付近を拡大して示す拡大模式断面図である。 図1に示すECUの構成を全体的に示すブロック図である。 図1に示す内燃機関の制御装置の動作を示すフロー・チャートである。 図4の回転数異常検出処理のサブ・ルーチン・フロー・チャートである。 図4などの処理で利用されるISC目標ステップ位置と目標アイドル回転数の算出処理を示すフロー・チャートである。 図6フロー・チャートの処理で算出するISC目標ステップ位置に対するエンジン温度の特性を示すグラフである。 図6フロー・チャートの処理で算出する目標アイドル回転数に対するエンジン温度の特性を示すグラフである。 図4のフィードバック制御中止判断処理のサブ・ルーチン・フロー・チャートである。 図4のISCバルブ異常判定処理のサブ・ルーチン・フロー・チャートである。 図4のエンジン回転数上昇防止処理のサブ・ルーチン・フロー・チャートである。 図11フロー・チャートの処理で算出する点火時期遅角補正値に対するエンジン回転数の偏差の特性を示すグラフである。 図11フロー・チャートの処理で算出する燃料減量補正値に対するエンジン回転数の偏差の特性を示すグラフである。 図1に示す内燃機関の制御装置の動作を示すタイム・チャートである。 図1に示す内燃機関の制御装置の動作を示す、図14と同様なタイム・チャートである。
 以下、添付図面に即してこの発明に係る内燃機関の制御装置を実施するための形態について説明する。
 図1はこの発明の実施例に係る内燃機関の制御装置を模式的に示す概略図である。
 図1において符号10は、図示しない車両(例えば自動二輪車)に搭載された内燃機関(以下「エンジン」という)を示す。エンジン10は4サイクル単気筒の水冷式で、排気量250cc程度のガソリン・エンジンからなる。尚、符号10aはエンジン10のクランクケースを示す。
 エンジン10の吸気路12にはスロットルバルブ14が配置される。スロットルバルブ14は、車両に手動操作自在に設けられたアクセラレータ(スロットルグリップ)にスロットルワイヤ(共に図示せず)を介して機械的に接続され、アクセラレータの操作量に応じて開閉されてエンジン10の吸気を調量、具体的にはエアクリーナ16から吸入され、吸気路12を通って流れる空気の量を調整する。尚、スロットルバルブ14は、アクセラレータが操作されないとき、アイドル開度となるように設定される。
 吸気路12には、スロットルバルブ14の上流側と下流側とを連通してスロットルバルブ14をバイパスするバイパス路20が接続される。バイパス路20の途中にはバイパス路20の空気量を調整してエンジン10のアイドル回転数を調整するアイドル回転数制御バルブ(アイドルスピードコントロールバルブ。以下「ISCバルブ」という)22が設けられ、ステッピングモータ(電動モータ。アクチュエータ)24によって駆動される。
 図2は、図1に示すISCバルブ22とステッピングモータ24付近を拡大して示す拡大模式断面図である。
 図2に示す如く、ステッピングモータ24は、第1、第2のコイル(A相、B相コイル)24a,24bと、マグネットロータ24cと、マグネットロータ24cの下端部に同軸に接続されると共に、外周面に雄ネジが螺刻される送りネジ24dと、第1、第2のコイル24a,24bなどを収容するケース24eとからなる、バイポーラ2相励磁式のステッピングモータである。
 ISCバルブ22は、バイパス路20を開閉するバルブ体(プランジャバルブ)22aと、バルブ体22aの内部空間に配置されると共に、前記送りネジ24dの雄ネジに対応する雌ネジが形成されるスライドピース22bと、バルブ体22aとスライドピース22bの間に介挿されるスプリング22cとが一体的に取り付けられてなる。ステッピングモータ24とISCバルブ22は、図示のように、送りネジ24dの雄ネジとスライドピース22bの雌ネジを螺合させることで接続されると共に、接続されたときのバルブ体22aはケース24eからバイパス路20に向けて突出するように位置される。
 従って、ステッピングモータ24にあっては、第1、第2のコイル24a,24bに流れる電流の向きを交互に切り換えることでマグネットロータ24cと送りネジ24dが回転させられると共に、送りネジ24dの回転方向に応じてISCバルブ22は、ガイド24fによって回転方向への動きを規制されつつ図2において上下方向に変位させられ、それによってバイパス路20を開閉し、バイパス路20を流れる空気量を調整する。
 図1の説明に戻ると、吸気路12においてスロットルバルブ14の下流側の吸気ポート付近にはインジェクタ26が配置され、スロットルバルブ14およびISCバルブ22で調整された吸入空気にガソリン燃料を噴射する。噴射された燃料は吸入空気と混合して混合気を形成し、混合気は、吸気バルブ30が開弁するとき、燃焼室32に流入する。
 燃焼室32に流入した混合気は、点火コイル34から供給された高電圧で点火プラグ36から火花放電により点火されて燃焼し、ピストン40を図1において下方に駆動してクランクシャフト42を回転させる。燃焼によって生じた排ガスは、排気バルブ44が開弁するとき、排気管46を流れる。排気管46には触媒装置50が配置され、排ガス中の有害成分を除去する。触媒装置50で浄化された排ガスはさらに下流に流れ、エンジン10の外部に排出される。また、クランクシャフト42には、エンジン10を始動させるためのスタータモータ52が接続される。
 スロットルバルブ14の付近にはポテンショメータからなるスロットル開度センサ54が設けられ、スロットルバルブ14の開度θTHを示す出力を生じる。吸気路12のスロットルバルブ14の上流側には吸気温センサ56が設けられて吸入空気の温度TAを示す出力を生じると共に、下流側には絶対圧センサ60が設けられ、吸気路内絶対圧(エンジン負荷)PBAを示す出力を生じる。
 エンジン10のシリンダブロックの冷却水通路10bには水温センサ(温度検出手段)62が取り付けられ、エンジン10の温度(エンジン冷却水温)TWに応じた出力を生じる。エンジン10のクランクシャフト42の付近にはクランク角センサ64が取り付けられて所定クランク角度位置でクランク角度信号を出力する。
 また、車両の適宜位置にはイグニッションスイッチ66とスタータスイッチ70が設置される。イグニッションスイッチ66は、図示は省略するが、順にロック、オフおよびオンの公知の3つのポジションを有し、運転者によって選択されたポジションに応じて各電気機器への電力の供給および遮断を行う。具体的には、イグニッションスイッチ66においてロックまたはオフポジションが選択されると、各センサやステッピングモータ24などへの一切の電力供給が遮断されると共に、オンポジションが選択されると、車両に搭載されたバッテリ72と接続され、スタータモータ52を除く各センサやステッピングモータ24などへの電力供給が開始される。尚、ロックポジションが選択されるときは図示しないハンドルが固定(ロック)される。
 スタータスイッチ70は、運転者によって操作されるときにバッテリ72に接続されてスタータモータ52を駆動し、それによってクランキングが開始されてエンジン10を始動させる。
 また、上記したスロットル開度センサ54などの各センサの出力は電子制御ユニット(Electronic Control Unit。以下「ECU」という)74に入力される。
 図3は、そのECU74の構成を全体的に示すブロック図である。
 ECU74はマイクロコンピュータからなり、図3に示すように、クランク角センサ64の出力が入力される波形整形回路74aと、回転数カウンタ74bと、水温センサ62などの出力が入力されるA/D変換回路74cと、CPU74dとを備える。ECU74はさらに、CPU74dからの制御信号に応じ、点火コイル34を通電する点火回路74eと、インジェクタ26、ステッピングモータ24を駆動する2個の駆動回路74f,74gと、ROM74hと、RAM74iおよびタイマ74jを備える。
 波形整形回路74aは、クランク角センサ64の出力(信号波形)をパルス信号に波形整形し、回転数カウンタ74bに出力する。回転数カウンタ74bは入力されたパルス信号をカウントしてエンジン回転数NEを検出(算出)し、エンジン回転数NEを示す信号をCPU74dへ出力する。A/D変換回路74cは、スロットル開度センサ54などの各センサの出力が入力され、アナログ信号値をデジタル信号値に変換してCPU74dに出力する。
 CPU74dは、変換されたデジタル信号などに基づき、ROM74hに格納されているプログラムに従って演算を実行し、駆動回路74gに制御信号を送出してステッピングモータ24への通電を制御し、ISCバルブ22の開度を調整してバイパス路20の空気量を調整する。また、CPU74dは、デジタル信号などに基づき、同様にROM74hに格納されているプログラムに従って演算を実行し、点火回路74eあるいは各駆動回路74f,74gに制御信号を送り、点火コイル16やインジェクタ26を駆動して点火時期や燃料噴射量を制御する。
 RAM74iは、後述するプログラムにおいて行われるエンジン回転数NEのバッファリングなどに利用されると共に、タイマ74jもプログラム中の時間計測処理に利用される。
 図4はこの実施例に係る内燃機関の制御装置の動作を示すフロー・チャートである。図示のプログラムは、イグニッションスイッチ66がオンされたとき、ECU74において所定時間間隔、例えば20msecごとに実行(ループ)される。
 以下説明すると、先ずS10においてISC異常判定フラグF_XAPXISCS(後述)のビットが1か否か判断する。フラグF_XAPXISCSは初期値が0とされるため、S10で否定されてS12に進み、クランク角センサ64の出力に基づいてエンジン回転数NEを検出(算出)し、S14に進んでスロットル開度センサ54の出力に基づいてスロットルバルブ14の開度θTHを検出(算出)する。
 次いでS16に進み、回転数異常検出処理を実行する。S16は、具体的には、エンジン10がエンジン回転数NEの異常を検出可能な始動状態であるか否か、および異常検出可能な始動状態のときにエンジン回転数NEが所定範囲(後述)にあるか否か検出する処理である。
 図5は、その回転数異常検出処理のサブ・ルーチン・フロー・チャートである。
 先ずS100においてエンジン回転数NEが0か否か判断、換言すれば、スタータスイッチ70がオンされておらず、エンジン10の始動前か否か判断する。S100で肯定されるときはS102からS108の処理に進み、後述する回転数異常検出フラグF_XOBXISCS、回転数異常検出履歴フラグF_XISCSRCD、スロットル開履歴フラグF_THOPENおよびアイドル開度始動状態フラグF_IDLECNTのビットをそれぞれ0にセットする。
 次回以降のプログラムループにおいてスタータスイッチ70がオンされてクランキングが開始されると、S100で否定されてS110に進み、回転数異常検出フラグF_XOBXISCSのビットが1か否か判断する。フラグF_XOBXISCSはS102で0にセットされるため、ここでは否定されてS112に進み、スロットルバルブ14がアイドル開度にあるか否か判断する。
 S112で否定、即ち、運転者によってアクセラレータが操作されてスロットルバルブ14がアイドル開度にないときはS114に進み、スロットル開履歴フラグF_THOPENのビットを1にセットする。従って、フラグF_THOPENのビットが1にセットされることは、アクセラレータが操作されてスロットルバルブ14がアイドル開度から開方向に一度でも駆動した履歴があることを、0にセットされることは、アクセラレータが操作されずにスロットルバルブ14がアイドル開度のままであることを意味する。
 他方、S112で肯定されるときはS116に進み、回転数異常検出履歴フラグF_XISCSRCDのビットが1か否か判断する。フラグF_XISCSRCDはS102で0にセットされるため、S116の処理を最初に実行するときは否定されてS118に進み、スロットル開履歴フラグF_THOPENのビットが1か否か判断する。
 S118で否定されるときはS120に進み、アイドル開度始動状態フラグF_IDLECNTのビットが1か否か判断する。フラグF_IDLECNTはS108で0にセットされるため、S120で否定されてS122に進み、エンジン回転数NEが完爆回転数NEref(例えば750rpm)以上か否か判断する。
 S122で否定、即ち、エンジン回転数NEが0から完爆回転数NErefの間にあるときはS124に進み、アイドル開度始動状態フラグF_IDLECNTのビットを1にセットする一方、肯定されるときはS108に進み、フラグF_IDLECNTのビットを0にセットする。
 S124でフラグF_IDLECNTのビットが1にセットされると、次回以降のプログラムループにおいてS120で肯定されてS122,S124をスキップする。また、次回以降のプログラムループにおいて、アクセラレータが一度でも操作されてスロットル開履歴フラグF_THOPENのビットが1にセットされると(S114)、S118で肯定されてS108に進み、フラグF_IDLECNTのビットを0にセットする。
 従って、このアイドル開度始動状態フラグF_IDLECNTが1にセットされることは、スロットルバルブ14がアイドル開度にあるときにエンジン10が始動される(正確にはエンジン10が停止した状態でクランキングされて完爆する)と共に、始動された後も依然としてアイドル開度にあり、よって後述するエンジン回転数NEの異常検出を行うことが可能な始動状態であることを意味する。以下、上記したようなエンジン10の始動状態を「アイドル開度始動状態」ともいう。
 エンジン10がアイドル開度始動状態のときは次いでS126に進み、エンジン回転数NEが目標アイドル回転数NEaに応じて設定された所定範囲(例えば下限値を1000rpm、上限値を目標アイドル回転数NEaに所定値(500rpm)を加算した回転数として設定される範囲)NEbにあるか否か判断する。尚、目標アイドル回転数NEaの算出については後に説明する。
 ISCバルブ22が正常である場合のエンジン回転数NEは、エンジン始動後に実行されるオープンループ制御(後述)によってアイドル回転数NEa近傍となるため、S126で肯定されて以降の処理をスキップする。
 一方、S126で否定されるときはS128に進み、エンジン回転数NEが所定範囲NEbにない状態となってから第1の所定時間(既定時間)Ta経過したか否か判断する。S128の判断は、具体的にはS126で否定されるとき、図示しないプログラムにおいて異常検出タイマ(ダウンカウンタ)に第1の所定時間Ta(例えば3sec)をセットして時間計測を開始し、異常検出タイマの値が0になったか否か判断することで行う。
 S128で否定されるときは以降の処理をスキップする一方、肯定されるときはS130に進み、回転数異常検出フラグF_XOBXISCSのビットを1にセットする。即ち、フラグF_XOBXISCSのビットが1にセットされることは、エンジン回転数NEが第1の所定時間Ta継続して所定範囲NEbにない状態(回転数異常)であり、ISCバルブ22に異常が生じている可能性があることを意味する。
 次いでS132に進み、エンジン回転数NEが目標アイドル回転数NEa以上か否か判断する。即ち、S132はエンジン回転数NEが所定範囲NEbの高回転側に超えた状態か否か判断する処理である。S132で肯定されるときはS134に進み、ECU74が認識するステッピングモータ24のステップ位置を示すISCステップ位置ISCSTEPにISCバルブ22の全開位置を示す値(全開ステップ位置。具体的には200ステップ)をセットする一方、否定されるときはS136に進んでISCSTEPにISCバルブ22の全閉位置を示す値(全閉ステップ位置。具体的には0ステップ)をセットする。
 即ち、S132からS136では、後に実行されるフィードバック制御に備える、具体的にはステッピングモータ24を介してISCバルブ22を閉方向あるいは閉方向に駆動する動作に備えるため、ISCステップ位置ISCSTEPに全開ステップ位置または全閉ステップ位置を一時的にセットするようにした。
 また、S130においてフラグF_XOBXISCSのビットが1にセットされると、次回以降のプログラムループにおいてS110で肯定されてS138に進み、回転数異常検出履歴フラグF_XISCSRCDのビットを1にセットする。即ち、フラグF_XISCSRCDのビットが1にセットされることは、エンジン回転数NEが第1の所定時間Ta継続して所定範囲NEbにない状態が検出された履歴があることを意味する。
 次いでS140に進み、エンジン回転数NEが目標アイドル回転数NEaに収束したことを示す回転数収束フラグF_NETRGCNV(初期値0)のビットが1か否か判断する。フラグF_NETRGCNVのビットは、後述する如く、ISCバルブ22の異常を検出した後に実行されるフィードバック制御によってエンジン回転数NEが目標アイドル回転数NEaに収束するときに1にセットされる一方、収束しないときに0とされる。
 従って、S140の処理を最初に実行するときは通例否定されて以降の処理をスキップする。また、次回以降のプログラムループにおいてS140で肯定されるときはS142に進み、回転数異常検出フラグF_XOBXISCSのビットを0にセットする。
 このように、フィードバック制御によってエンジン回転数NEが目標アイドル回転数NEaに収束するとき(S140で肯定されるとき)は、回転数異常検出フラグF_XOBXISCSのビットを0にセット(S142)、別言すれば、エンジン回転数NEが正常であり、ISCバルブ22に異常が生じていない(正常)と判定する。
 尚、S142でフラグF_XOBXISCSのビットが0にセットされ、次回以降のプログラムループにおいてS110で否定される場合、S138でフラグF_XISCSRCDのビットが1にセットされているため、S116で肯定されてS118からS124をスキップ、即ち、スロットルバルブ14がアイドル開度にあるときにエンジン10が始動されたか否か判定する処理をスキップし、前述したS126以降の処理を行う。
 図4の説明に戻ると、次いでS18に進み、回転数異常検出フラグF_XOBXISCSのビットが1か否か判断する。S18で否定されるときはS20に進み、エンジン回転数NEが前記した所定範囲NEbにあるか否か判断する。今回のプログラムループが例えばイグニッションスイッチ66がオンされた直後、またはスタータスイッチ70がオンされた直後に実行されるときは通常、エンジン回転数NEは所定範囲NEbにないため、否定されてS22に進み、フラグF_XOBXISCSのビットが1か否か判断する。
 S22で否定されるときはS24に進み、ステッピングモータ24をオープンループ制御する。S24においては、具体的には、ステッピングモータ24のステップ位置がISC目標ステップ位置(目標ステップ位置)となるようにし、ISCバルブ22をエンジン温度TWに即した適切な開度にする制御を行う。
 ここで、上記したISC目標ステップ位置および目標アイドル回転数NEaについて説明する。
 図6はISC目標ステップ位置と目標アイドル回転数NEaの算出処理を示すフロー・チャートである。図示のプログラムは、ECU74において図4,5の処理と平行して、所定の周期(例えば100msec)ごとに実行される。
 先ずS200において水温センサ62の出力に基づいてエンジン温度TWを検出(算出)する。次いでS202に進み、検出されたエンジン温度TWに基づいてステッピングモータ24のISC目標ステップ位置を算出する。ISC目標ステップ位置とは、エンジン10をアイドル回転数で運転するときのISCバルブ22の開度に対応する、ステッピングモータ24のステップ位置を意味し、エンジン温度TWに応じてその値が設定される。具体的には、ISC目標ステップ位置は図7にその特性を示すテーブルを検索することによって求められる。
 図7に示す如く、ISC目標ステップ位置は、エンジン温度TWが比較的低いときは大きいステップ数、即ち、ISCバルブ22が高開度となるように設定され、エンジン温度TWが上昇するに連れてステップ数は減少する(ISCバルブ22が低開度となる)ように設定される。
 次いでS204に進み、エンジン温度TWに基づいて目標アイドル回転数NEaを算出する。目標アイドル回転数NEaの算出は、図8にその特性を示すテーブルを検出されたエンジン温度TWから検索することで行う。
 目標アイドル回転数NEaは、図8に示すように、エンジン温度TWが比較的低いときは高回転に設定される一方、エンジン温度TWが上昇するに連れて低回転となるように設定される。S204で算出された目標アイドル回転数NEaは、前記した所定範囲NEbの設定、フィードバック制御などを実行する際に利用される。尚、図7および図8に示すテーブルは予め実験により求められてROM74hに格納される。
 図4の説明に戻ると、S18またはS20で肯定されるときはS26に進み、スロットルバルブ14がアイドル開度にあるか否か判断する。S26で否定、即ち、アクセラレータが運転者によって操作されてスロットルバルブ14がアイドル開度にないときはS22,S24に進んで前述した処理を行う一方、肯定されるときはS28に進み、フィードバック再開ディレイタイマ(後述)の値が0か否か判断する。フィードバック再開ディレイタイマは初期値が0であるため、S28の処理を最初に実行するときは肯定されてS30に進み、フィードバック制御中止判断処理を実行する。
 図9はS30のフィードバック制御中止判断処理のサブ・ルーチン・フロー・チャートである。
 先ずS300において、前回のプログラムループでフィードバック制御を実行したか否か判断する。S300の処理を最初に行うときは未だフィードバック制御を実行していないため、否定されてS302に進み、エンジン回転数NEを値NEBUFとしてRAM74iにバッファリングし、S304に進んでISCステップ位置ISCSTEPも値ISCSTEPBUFとして同様にRAM74iにバッファリングする。次いでS306に進み、ISCステップ駆動所要時間計測タイマTMFBCHK(アップカウンタ)に0をセットし、タイマTMFBCHKをスタートさせる。図9におけるその他の処理については後に説明する。
 図4の説明に戻ると、次いでS32に進み、フィードバック制御中止フラグF_ISCFBNG(後述)のビットが1か否か判断する。フラグF_ISCFBNGは初期値が0とされるため、S32の処理を最初に実行するときは否定されてS34に進み、エンジン回転数NEとアイドル回転数NEaの差が絶対値において既定値(例えば20rpm)以下の状態が第2の所定時間Tb(例えば3sec)継続しているか否か、別言すれば、エンジン回転数NEがアイドル回転数NEaの近傍にある状態が第2の所定時間Tb継続しているか否か判断する。
 S34で否定されるときはS36に進み、回転数収束フラグF_NETRGCNVのビットを0にセットしてS38に進み、フィードバック制御を実行する。S38においては、具体的には、エンジン回転数NEがアイドル回転数NEa(正確には、図6のS204で算出されたアイドル回転数NEa)に一致するように、ステッピングモータ24を介してISCバルブ22の開度をフィードバック制御する(PID制御)。より具体的には、エンジン回転数NEがアイドル回転数NEaを超えるときはISCバルブ22を閉方向に駆動する一方、エンジン回転数NEがアイドル回転数NEa未満のときはISCバルブ22を開方向に駆動するように、ステッピングモータ24の動作を制御する。
 以上から分かるように、S38のフィードバック制御は、基本的にはスロットルバルブ14がアイドル開度にあって(S26で肯定)エンジン回転数NEがアイドル回転数NEa近傍にないとき(S34で否定)に実行されるが、エンジン回転数NEの異常を検出後(S18で肯定)、スロットルバルブ14がアイドル開度にあって(S26で肯定)エンジン回転数NEがアイドル回転数NEa近傍にないとき(S34で否定)にも実行される。
 次いでS40に進み、回転数異常検出フラグF_XOBXISCSのビットが1か否か判断する。S40で否定されるときはS42に進んでフィードバック制御経過時間タイマXTMISCS(アップカウンタ)に0をセットする一方、肯定されるときはS44に進んでタイマXTMISCSをスタートさせる。即ち、タイマXTMISCSは、エンジン回転数NEの異常を検出した後のフィードバック制御が実行されてからの経過時間を示す。
 次いでS46に進み、ISCバルブ22の異常判定処理を実行する。
 図10は、図4のS46のISCバルブ異常判定処理のサブ・ルーチン・フロー・チャートである。
 先ずS400において回転数異常検出フラグF_XOBXISCSのビットが1か否か判断する。S400で肯定されるときはS402に進み、タイマXTMISCSが第3の所定時間(所定時間。例えば30sec)Tc以上か否か判断する。S402で肯定、即ち、エンジン回転数NEの異常を検出した後のフィードバック制御を実行してから第3の所定時間Tc経過した後、エンジン回転数NEが所定範囲NEb内に収束しないときはS404に進み、ISCバルブ22に異常が生じたと判定したことを示すISC異常判定フラグF_XAPXISCSのビットを1にセットする。尚、S400またはS402で否定されるときは以降の処理をスキップする。
 次いで図4のS48に進み、エンジン回転数上昇防止処理を実行する。具体的には、図10の処理でISCバルブ22に異常が生じたと判定されるとき、運転状態によってはエンジン回転数NEが不要に上昇し(吹き上がり)、運転者に違和感を与える恐れがあるため、S48においてエンジン10の点火と燃料噴射を制御し、エンジン回転数NEの上昇を防止するようにした。
 図11は、そのエンジン回転数上昇防止処理のサブ・ルーチン・フロー・チャートである。
 先ずS500においてISC異常判定フラグF_XAPXISCSのビットが1か否か判断し、肯定されるときはS502に進み、スロットルバルブ14がアイドル開度にあるか否か判断する。S502で肯定されるときはS504に進み、エンジン回転数NEが所定回転数NEc(具体的には目標アイドル回転数NEa)以上か否か判断する。
 S504で肯定されるときはS506に進み、エンジン回転数NEから所定回転数NEcを減算して得た値を偏差DNEXISCとする。次いでS508に進み、偏差DNEXISCに基づいて点火時期遅角補正値IGISCRを算出する。具体的には、点火時期遅角補正値IGISCRは図12にその特性を示すテーブルを検索することによって求められる。
 図12に示す如く、点火時期遅角補正値IGISCRは、偏差DNEXISCが比較的小さいときは0deg、即ち、点火時期を遅角させない値に設定される一方、偏差DNEXISCが増加するに連れて点火時期の遅角量を増加させるような値に設定される。
 次いでS510に進み、S508と同様、算出された偏差DNEXISCに基づいて燃料減量補正値MISCLEANを、図13にその特性を示すテーブルを検索することによって算出する。燃料減量補正値MISCLEANは、図13に示すように、偏差DNEXISCが比較的小さいときは1.0倍、即ち、燃料噴射量を減量させない値に設定される一方、偏差DNEXISCの増加に伴って燃料噴射量を減少させる量を増加、逆に言えば、燃料噴射量をより減量するような値とされる。
 また、S500,S502,S504で否定されるときは、エンジン回転数NEが不要に上昇することはないため、S512に進んで点火時期遅角補正値IGISCRに0degをセットし、S514に進んで燃料減量補正値MISCLEANに1.0倍をセットする、即ち、点火時期と燃料噴射量の補正を行わないような値にする。
 次いでS516に進み、点火時期遅角補正値IGISCRと燃料減量補正値MISCLEANに応じて、図示しないプログラムにおいてエンジン回転数NEや吸気管内絶対圧PBAなどに基づいて算出された基本点火時期と基本燃料噴射量を補正する。具体的には、基本点火時期に点火時期遅角補正値IGISCRを加算して補正した点火時期を示す制御信号を点火回路74eを介して点火コイル34に送出し、点火時期を遅角させる(点火時期の遅角制御を実行する)と共に、基準噴射燃料量に燃料減量補正値MISCLEANを乗算して補正した値を示す制御信号を駆動回路74fを介してインジェクタ26に送り、燃料噴射量を減量する(燃料噴射の減量制御を実行する)。これにより、エンジン回転数NEが不要に上昇する(吹き上がる)のを防止でき、運転者に違和感を与えることもない。
 図4の説明に戻ると、ISC異常判定フラグF_XAPXISCSのビットが図10のS404で1にセットされると、次回のプログラムループにおいてはS10で肯定され、S50に進んでステッピングモータ24への通電を停止する。即ち、ISCバルブ22に異常が生じたと判定されるときはステッピングモータ24を停止させる。
 また、エンジン回転数NEの異常を検出した後にS38のフィードバック制御を実行することで、エンジン回転数NEとアイドル回転数NEaの差が絶対値において既定値以下、即ち、エンジン回転数NEが目標アイドル回転数NEaに収束することがある。その場合はS34で肯定され、S52に進み、ISCステップ位置ISCSTEPを図6のS202で算出されるISC目標ステップ位置のステップ値に置き換える。
 即ち、図5のS128,S130でISCステップ位置ISCSTEPにISCバルブ22の全開位置または全閉位置を示す値を一時的にセットしたが、フィードバック制御によってエンジン回転数NEが目標アイドル回転数NEaに収束するときは、ステッピングモータ24のステップ位置が図7に示されるISC目標ステップ位置にあると推定することができるため、S52では、ISCステップ位置ISCSTEPを、エンジン温度TWに基づいて算出されるISC目標ステップ位置のステップ値に置き換えるようにした。
 これにより、ステッピングモータ24の脱調によって生じたECU74の認識するステップ位置とステッピングモータの実際のステップ位置(以下「実ステップ位置」ともいう)との間のズレを修正でき、ステッピングモータ24によるISCバルブ22の制御精度を確保することが可能となる。
 次いでS54に進み、前述したS140で利用される回転数収束フラグF_NETRGCNVのビットを1にセットし、S56に進んでステッピングモータ24の駆動を停止させた後、S46,S48の処理を実行する。
 図14および図15は、上記した処理を説明するタイム・チャートである。尚、図14はS404でISCバルブ22に異常が生じたと判定される場合を示し、図15は異常が生じていない(正常)と判定する場合を示す。
 図14を参照してISCバルブ22に異常が生じたと判定する場合を説明すると、先ず時点t1においてイグニッションスイッチ66がオンされる。スロットルバルブ14がアイドル開度の状態でスタータスイッチ70がオンされると(時点t2)、クランキングが開始されてエンジン10は始動し、エンジン回転数NEが完爆回転数NEref以上となる(時点t3。S112~S124)。
 エンジン10が始動された後も依然としてスロットルバルブ14がアイドル開度にある状態において、エンジン回転数NEが所定範囲NEbにないとき(回転数異常のとき)は異常検出タイマをスタートさせる(時点t4。S126,S128)。そしてエンジン回転数NEが第1の所定時間Ta継続して所定範囲NEbにないとき(時点t5。S128)、回転数異常検出フラグF_XOBXISCSのビットを1にセットする(S130)。
 さらに、時点t5においては、ISCステップ位置ISCSTEPに22に全開ステップ位置を一時的にセットすると共に(S134)、エンジン回転数NEがアイドル回転数NEaに一致するように、ステッピングモータ24を介してISCバルブ22の開度をフィードバック制御する(S38)。また、フィードバック制御経過時間タイマXTMISCSをスタートさせる(S44)。
 タイマXTMISCSが第3の所定時間Tcとなる、即ち、フィードバック制御を実行してから第3の所定時間Tc経過した後、エンジン回転数NEが所定範囲NEb内に収束しないとき(時点t6。S402)、ISCバルブ22に異常が生じたと判断してISC異常判定フラグF_XAPXISCSのビットを1にセットし(S404)、ステッピングモータ24への通電を停止する(S50)。
 他方、図15に示す如く、時点t5で開始されたフィードバック制御によってエンジン回転数NEが目標アイドル回転数NEaに収束すると(時点t7。S34)、回転数異常検出フラグF_XOBXISCSのビットを0にセット(S140,S142)、別言すれば、ISCバルブ22に異常が生じていない(正常)と判定する。さらに、時点t7においては、ISCステップ位置ISCSTEPをISC目標ステップ位置のステップ値に置き換え(S52)、ECU74の認識するステップ位置とステッピングモータ24の実ステップ位置との間のズレを修正する。
 図4フロー・チャートの説明に戻り、前記したフィードバック制御中止判断処理について説明する。
 フィードバック制御は、前述したように、エンジン回転数NEをアイドル回転数NEaに一致させるようにステッピングモータ24の動作を制御してISCバルブ22を駆動する。そのようなフィードバック制御を実行しているとき、車両の運転状態によっては吸入空気量が不足し、エンジン10がストールする恐れがある。
 即ち、例えばエンジン10の出力が変速機とクラッチを介して後輪(駆動輪)に伝達される状態で降坂路を走行する場合、路面から作用する外力によってエンジン10のクランクシャフト42は回転させられ、エンジン回転数NEは一定に保持される(あるいは上昇する)。そのような状態でエンジン回転数NEが目標アイドル回転数NEaを超えると、ISCバルブ22はフィードバック制御によって吸入空気量を減ずる閉方向へ駆動されることとなる。そのとき、エンジン10と後輪との動力伝達がクラッチによって断たれると共に、ISCバルブ22が全閉位置付近にあると、吸入空気量が不足してエンジン回転数NEが低下し、エンジン10がストールする恐れがある。
 そこで、この発明に係る内燃機関の制御装置あっては、フィードバック制御の実行中に、ISCバルブ22の駆動とISCバルブ22の駆動によって変動するエンジン回転数NEの相関を監視し、フィードバック制御を実行する必要がない運転状態にあると判断できるときはフィードバック制御を中止するようにした。
 以下具体的に説明すると、図4フロー・チャートにおいてフィードバック制御の実行中に、S30の処理が実行されると、図9に示すフィードバック制御中止(停止)判断処理が行われる。
 図9に示すように、先ずS300において、前述した如く、前回のプログラムループでフィードバック制御を実行したか否か判断する。今回のプログラムループはフィードバック制御の実行中であるため、S300で肯定されてS308に進み、ステッピングモータ24によってISCバルブ22が連続して所定ステップ数ISCSTEPref(例えば20ステップ)駆動されたか否か判断する。これは、ISCステップ位置ISCSTEPとS304でバッファリングした値ISCSTEPBUFとの差が絶対値において所定ステップ数ISCSTEPref以上か否かで判断する。
 S308で否定されるときは以降の処理をスキップする一方、肯定されるときはS310に進み、ISCステップ位置ISCSTEPが値ISCSTEPBUF以上か否か判断する。S310で肯定、即ち、ISCバルブ22が開方向に駆動したときはS312に進み、開方向駆動フラグF_DSTEPFBのビットを1にセットする。他方、S310で否定、即ち、ISCバルブ22が閉方向に駆動したときはS314に進み、開方向駆動フラグF_DSTEPFBのビットを0にセットする。
 次いでS316に進み、エンジン回転数NEの変化量DNEFBを算出する。変化量DNEFBは、具体的にはエンジン回転数NEからS302でバッファリングした値NEBUFを減算して得た差の絶対値である。
 次いでS318に進み、エンジン回転数NEがS302でバッファリングした値NEBUF以上か否か判断する。S318で肯定されるときはS320に進み、回転数上昇フラグF_DNEFBのビットを1にセットする一方、否定されるときはS322に進んでフラグF_DNEFBのビットを0にセットする。従って、回転数上昇フラグF_DNEFBのビットが1にセットされることは、エンジン回転数NEが上昇(増加)していることを、0にセットされることはエンジン回転数NEが下降(減少)していることを意味する。
 次いでS324に進み、前述したS306でスタートさせたタイマTMFBCHKの値が所定タイマ値以上か否か判断する。所定タイマ値としては、ISCバルブ22において開方向または閉方向に所定ステップ数駆動する動作が連続して行われたと判断できるような値に設定され、例えば200msecとされる。
 具体的に説明すると、ステッピングモータ24は駆動周波数200pps(即ち、1ステップ駆動するのに5msecを要する)で駆動される。所定ステップ数ISCSTEPrefを例えば20ステップと設定する場合、ISCバルブ22が連続して駆動すると100msecの時間を要することとなる。よって所定タイマ値を200msecとすることで、タイマTMFBCHKの値が所定タイマ値未満であれば、連続して駆動されたと判断できる一方、所定タイマ値以上であれば比較的長い時間をかけて駆動された、換言すれば、連続して駆動されていないと判断することができる。
 S324で否定されるときはS326に進み、ISCバルブ22の開閉方向に対してエンジン回転数NEの変化方向が一致しているか否か判断する。これは、開方向駆動フラグF_DSTEPFBと回転数上昇フラグF_DNEFBのビットが一致しているか否かで判断する。
 S326は、具体的には、ISCバルブ22が開方向へ駆動されている(即ち、吸入空気量が増加している)にも関わらずエンジン回転数NEが下降する、逆に、ISCバルブ22が閉方向へ駆動されている(即ち、吸入空気量が減少している)にも関わらずエンジン回転数NEが上昇するという、ISCバルブ22による吸入空気量の増減とエンジン回転数NEの上昇・下降が一致していない運転状態の場合、フィードバック制御を実行する必要がないと判断するようにした処理である。
 S326で肯定されるときはS328に進み、エンジン回転数の変化量DNEFBが所定値DNEFBref未満か否か判断する。S328で肯定またはS326で否定されるときは、上記したようなエンジン10がストールする恐れがあり、フィードバック制御を実行する必要がない運転状態にあると判断し、S330に進んでフィードバック制御中止フラグF_ISCFBNGのビットを1にセットする。
 他方、S324で肯定あるいはS328で否定されるときは、フィードバック制御を実行しても良い運転状態にあると判断し、S332に進んでフィードバック制御中止フラグF_ISCFBNGのビットを0にセットする。S330またはS332の処理後、前記したS302からS306の処理を実行し、図4フロー・チャートへ戻る。
 S332においてフラグF_ISCFBNGのビットが0にセットされるときはS32で否定されてS34以降の処理に進み、フィードバック制御を継続して実行する。一方、S330においてフラグF_ISCFBNGのビットが1にセットされると、S32で肯定されてS58に進み、フィードバック再開ディレイタイマ(ダウンカウンタ)の値に所定ディレイタイマ値(所定の中止時間)をセットする。このフィードバック再開ディレイタイマは、フィードバック制御が長時間に亘って中止されるのを回避(防止)するタイマであるため、所定ディレイタイマ値は適宜な時間(例えば5sec)とされる。
 次いでS22で否定されるときにS24に進み、フィードバック制御を中止し(フィードバック制御に代え)、ステッピングモータ24を前記したオープンループ制御する。このように、フィードバック制御の実行中に、ISCバルブ22が開方向または閉方向に連続して所定ステップ数(所定ステップ数ISCSTEPref)駆動されると共に、エンジンの回転数の変化量DNEFBが所定値DNEFBref未満のとき、フィードバック制御を中止する。
 次回以降のプログラムループにおいては、フィードバック再開ディレイタイマの値が0になるまではS28で否定され、オープンループ制御を継続する。そして、フィードバック再開ディレイタイマの値が0になるとき(換言すれば、フィードバック制御を中止してから所定の中止時間経過した後)、オープンループ制御からフィードバック制御に切り換える、即ち、フィードバック制御を再開する。
 以上の如く、この発明の実施例にあっては、内燃機関(エンジン)10の吸気路12に配置されるスロットルバルブ14と、前記吸気路に接続されて前記スロットルバルブをバイパスするバイパス路20と、前記バイパス路の空気量を調整して前記内燃機関のアイドル回転数NEaを調整するアイドル回転数制御バルブ(ISCバルブ)22と、前記アイドル回転数制御バルブを駆動するステッピングモータ24とを備えた内燃機関の制御装置において、前記スロットルバルブ14がアイドル開度にあるときに前記内燃機関10が始動されると共に、始動された後も依然として前記アイドル開度にあるか否か判定するアイドル開度始動状態判定手段と(ECU74。S16,S112~S124)、前記アイドル開度始動状態と判定されるとき、前記内燃機関の回転数NEが目標アイドル回転数NEaに応じて設定された所定範囲NEbにあるか否か判定する回転数範囲判定手段と(ECU74。S16,S126)、前記内燃機関の回転数NEが前記所定範囲NEbにないと判定されるとき、前記内燃機関の回転数NEが前記目標アイドル回転数NEaに一致するように、前記ステッピングモータ24を介して前記アイドル回転数制御バルブ22の開度をフィードバック制御するフィードバック制御手段と(ECU74。S38)、前記フィードバック制御を実行してから所定時間(第3の所定時間)Tc経過した後、前記内燃機関の回転数NEが前記所定範囲NEb内に収束しないとき、前記アイドル回転数制御バルブ22に異常が生じたと判定する異常判定手段とを備える如く構成した(ECU74。S46,S400~S404)。
 これにより、簡易な構成でありながら、具体的には従来技術のようにエンジンの無負荷状態を検出する装置(例えば車速センサなど)を必要とすることなく、ISCバルブ22の異常を検出(検知)することができると共に、コスト的にも有利にすることができる。
 また、前記フィードバック制御手段は、前記内燃機関の回転数NEが前記所定範囲NEbにないと判定されてから既定時間(第1の所定時間)Taが経過するとき、前記アイドル回転数制御バルブ22の開度をフィードバック制御する如く構成したので(S16,S126,S128,S38)、エンジン10の運転状態に応じたより一層適切なタイミングで前記フィードバック制御を開始することができる。
 また、前記内燃機関の温度(エンジン温度)TWを検出する温度検出手段と(水温センサ62。ECU74。S200)、前記検出された内燃機関の温度TWに基づいて前記ステッピングモータ24の目標ステップ位置(ISC目標ステップ位置)を算出する目標ステップ位置算出手段と(ECU74。S202)、前記検出された内燃機関の温度TWに基づき、前記フィードバック制御の実行中に、前記内燃機関の回転数NEと前記目標アイドル回転数NEaの差が既定値以下となるときの前記ステッピングモータ24の位置を前記目標ステップ位置のステップ値に置き換える置き換え手段とを備える如く構成した(ECU74。S34,S52)ので、例えばステッピングモータ24の脱調によって生じたECU74の認識するステップ位置(ISCステップ位置ISCSTEP)とステッピングモータの実際のステップ位置(実ステップ位置)との間のズレを修正でき、ステッピングモータ24によるISCバルブ22の制御精度を確保することができる。
 前記目標ステップ位置算出手段は、前記検出された内燃機関の温度TWが上昇するに連れて前記アイドル回転数制御バルブ22が低開度となるように前記ステッピングモータ24の目標ステップ位置(ISC目標ステップ位置)を算出する如く構成したので(S202)、エンジン10の運転状態により一層即した目標ステップ位置を算出することができる。
 また、前記アイドル回転数制御バルブ22に異常が生じたと判定されると共に、前記内燃機関の回転数NEが所定回転数NEc以上となるとき、前記内燃機関10の点火と燃料噴射のうちの少なくともいずれかを制御して前記内燃機関の回転数NEの上昇を防止する回転数上昇防止手段を備える如く構成したので(ECU74。S48,S500~S516)、ISCバルブ22に異常が生じたときのエンジン回転数NEの不要な上昇(吹き上がり)を効果的に防止することができる。
 また、前記所定回転数NEcは前記目標アイドル回転数NEaである如く構成したので(S504)、エンジン10の回転が吹き上がり易い運転状態のときに限って前記した回転数の上昇を防止する制御を実行することができる。
 また、前記回転数上昇防止手段は、前記内燃機関10の点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行して前記内燃機関10の回転数NEの上昇を防止する如く構成したので(S48,S500~S516)、ISCバルブ22に異常が生じたときのエンジン回転数NEの不要な上昇を確実に防止することができる。
 また、前記回転数上昇防止手段は、前記内燃機関10の回転数NEと前記所定回転数NEcの偏差DNEXISCに応じて前記点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行する如く構成したので(S506~S510,S516)、エンジン10の運転状態(具体的には、エンジン回転数NE)に応じた点火時期の遅角制御と燃料噴射の減量制御を実行でき、よってエンジン回転数NEの不要な上昇をより一層効果的に防止することができる。
 また、前記フィードバック制御手段は、前記フィードバック制御の実行中に、前記アイドル回転数制御バルブ22が開方向または閉方向に連続して所定ステップ数(所定ステップ数)ISCSTEPref駆動されると共に、前記内燃機関の回転数の変化量DNEFBが所定値DNEFBref未満のとき、前記フィードバック制御を中止する如く構成したので(ECU74。S24,S30,S32,S300~S332)、フィードバック制御を実行する必要がない運転状態のときにフィードバック制御を中止でき、よってエンジン10のストールを防止することができる。
 また、前記フィードバック制御手段は、前記フィードバック制御を中止してから所定の中止時間経過した後(フィードバック再開ディレイタイマの値が0になるとき)、前記フィードバック制御を再開する如く構成したので(ECU74。S58,S28)、中止していたフィードバック制御を効果的なタイミングで再開させることが可能となる。
 尚、上記において、ISC目標ステップ位置と目標アイドル回転数NEaをエンジン温度TWに基づいて算出するように構成したが、それに限られるものではなく、エンジン温度TWに加えて例えば吸入空気の温度TAや吸気路内絶対圧PBA、図示しないエアコンやラジエータファンなどの電気負荷の変化量などを考慮して算出するようにしても良い。
 また、エンジン回転数上昇防止処理において、点火時期を遅角させると共に、燃料噴射量を減量するように構成したが、それに限られるものではなく、点火カットや燃料カットなどを行ってエンジン回転数NEの上昇を防止するようにしても良い。その意味から、請求項5において「内燃機関の点火と燃料噴射のうちの少なくともいずれかを制御して前記内燃機関の回転数の上昇を防止する」と記載した。
 また、所定範囲NEb、所定時間Tc、所定ディレイタイマ値やエンジン10の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。
 また、車両の例として二輪自動車を挙げたが、それに限られるものではなく、例えばスクータやATV(All Terrain Vehicle)など、運転者がシート(サドル)に跨って乗る型の、いわゆる鞍乗り型車両であれば良く、さらには他の車両(例えば四輪自動車)であっても良い。
 この発明によれば、内燃機関の制御装置において、スロットルバルブがアイドル開度にあるときに内燃機関が始動されると共に、始動された後も依然としてアイドル開度にあると判定されるとき、内燃機関の回転数が目標アイドル回転数に応じて設定された所定範囲にあるか否か判定すると共に、内燃機関の回転数が所定範囲にないと判定されるとき、内燃機関の回転数が目標アイドル回転数に一致するように、ステッピングモータを介してアイドル回転数制御バルブの開度をフィードバック制御し、フィードバック制御を実行してから所定時間経過した後、内燃機関の回転数が所定範囲内に収束しないとき、アイドル回転数制御バルブに異常が生じたと判定するように構成したので、簡易な構成でありながら、具体的には従来技術のように内燃機関の無負荷状態を検出する装置(例えば車速センサなど)を必要とすることなく、アイドル回転数制御バルブの異常を検出(検知)することができると共に、コスト的にも有利にすることができる。
 10 エンジン(内燃機関)、12 吸気路、14 スロットルバルブ、20 バイパス路、22 ISCバルブ(アイドル回転数制御バルブ)、24 ステッピングモータ、62 水温センサ(温度検出手段)、74 ECU(電子制御ユニット)

Claims (10)

  1.  内燃機関の吸気路に配置されるスロットルバルブと、前記吸気路に接続されて前記スロットルバルブをバイパスするバイパス路と、前記バイパス路の空気量を調整して前記内燃機関のアイドル回転数を調整するアイドル回転数制御バルブと、前記アイドル回転数制御バルブを駆動するステッピングモータとを備えた内燃機関の制御装置において、前記スロットルバルブがアイドル開度にあるときに前記内燃機関が始動されると共に、始動された後も依然として前記アイドル開度にあるか否か判定するアイドル開度始動状態判定手段と、前記アイドル開度始動状態と判定されるとき、前記内燃機関の回転数が目標アイドル回転数に応じて設定された所定範囲にあるか否か判定する回転数範囲判定手段と、前記内燃機関の回転数が前記所定範囲にないと判定されるとき、前記内燃機関の回転数が前記目標アイドル回転数に一致するように、前記ステッピングモータを介して前記アイドル回転数制御バルブの開度をフィードバック制御するフィードバック制御手段と、前記フィードバック制御を実行してから所定時間経過した後、前記内燃機関の回転数が前記所定範囲内に収束しないとき、前記アイドル回転数制御バルブに異常が生じたと判定する異常判定手段とを備えることを特徴とする内燃機関の制御装置。
  2.  前記フィードバック制御手段は、前記内燃機関の回転数が前記所定範囲にないと判定されてから既定時間が経過するとき、前記アイドル回転数制御バルブの開度をフィードバック制御することを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記内燃機関の温度を検出する温度検出手段と、前記検出された内燃機関の温度に基づいて前記ステッピングモータの目標ステップ位置を算出する目標ステップ位置算出手段と、前記検出された内燃機関の温度に基づき、前記フィードバック制御の実行中に、前記内燃機関の回転数と前記目標アイドル回転数の差が既定値以下となるときの前記ステッピングモータの位置を前記目標ステップ位置のステップ値に置き換える置き換え手段とを備えることを特徴とする請求項1または2記載の内燃機関の制御装置。
  4.  前記目標ステップ位置算出手段は、前記検出された内燃機関の温度が上昇するに連れて前記アイドル回転数制御バルブが低開度となるように前記ステッピングモータの目標ステップ位置を算出することを特徴とする請求項3記載の内燃機関の制御装置。
  5.  前記アイドル回転数制御バルブに異常が生じたと判定されると共に、前記内燃機関の回転数が所定回転数以上となるとき、前記内燃機関の点火と燃料噴射のうちの少なくともいずれかを制御して前記内燃機関の回転数の上昇を防止する回転数上昇防止手段を備えることを特徴とする請求項1から4のいずれかに記載の内燃機関の制御装置。
  6.  前記所定回転数は前記目標アイドル回転数であることを特徴とする請求項5記載の内燃機関の制御装置。
  7.  前記回転数上昇防止手段は、前記内燃機関の点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行して前記内燃機関の回転数の上昇を防止することを特徴とする請求項5または6記載の内燃機関の制御装置。
  8.  前記回転数上昇防止手段は、前記内燃機関の回転数と前記所定回転数の偏差に応じて前記点火時期の遅角制御と前記燃料噴射の減量制御のうちの少なくともいずれかを実行することを特徴とする請求項7記載の内燃機関の制御装置。
  9.  前記フィードバック制御手段は、前記フィードバック制御の実行中に、前記アイドル回転数制御バルブが開方向または閉方向に連続して所定ステップ数駆動されると共に、前記内燃機関の回転数の変化量が所定値未満のとき、前記フィードバック制御を中止することを特徴とする請求項1から8のいずれかに記載の内燃機関の制御装置。
  10.  前記フィードバック制御手段は、前記フィードバック制御を中止してから所定の中止時間経過した後、前記フィードバック制御を再開することを特徴とする請求項9記載の内燃機関の制御装置。
PCT/JP2009/071562 2008-12-26 2009-12-25 内燃機関の制御装置 WO2010074214A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008334995A JP5220583B2 (ja) 2008-12-26 2008-12-26 内燃機関の制御装置
JP2008-334995 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010074214A1 true WO2010074214A1 (ja) 2010-07-01

Family

ID=42287819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071562 WO2010074214A1 (ja) 2008-12-26 2009-12-25 内燃機関の制御装置

Country Status (2)

Country Link
JP (1) JP5220583B2 (ja)
WO (1) WO2010074214A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861454B2 (ja) 2011-01-07 2016-02-16 スズキ株式会社 エンジン制御装置及び方法
EP2610467B1 (en) * 2011-12-28 2017-02-22 Suzuki Motor Corporation Engine control device and engine control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469754A (en) * 1987-09-10 1989-03-15 Japan Electronic Control Syst Auxiliary air controller for internal combustion engine
JPH06280656A (ja) * 1993-03-31 1994-10-04 Fujitsu Ten Ltd 車両の退避走行装置
JPH0777093A (ja) * 1993-09-08 1995-03-20 Mitsubishi Motors Corp アイドルスピードコントロールシステムの診断方法および同診断装置
JPH07166941A (ja) * 1993-12-17 1995-06-27 Nippondenso Co Ltd 内燃機関のアイドル回転数制御装置
JPH09203340A (ja) * 1996-01-26 1997-08-05 Denso Corp 内燃機関の制御装置
JPH10103140A (ja) * 1996-09-30 1998-04-21 Nissan Motor Co Ltd 内燃機関の吸気制御装置の故障診断装置
JP2000345897A (ja) * 1999-06-03 2000-12-12 Toyota Motor Corp 内燃機関の回転数制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116372A (ja) * 2002-09-25 2004-04-15 Fuji Heavy Ind Ltd エンジンの点火時期制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469754A (en) * 1987-09-10 1989-03-15 Japan Electronic Control Syst Auxiliary air controller for internal combustion engine
JPH06280656A (ja) * 1993-03-31 1994-10-04 Fujitsu Ten Ltd 車両の退避走行装置
JPH0777093A (ja) * 1993-09-08 1995-03-20 Mitsubishi Motors Corp アイドルスピードコントロールシステムの診断方法および同診断装置
JPH07166941A (ja) * 1993-12-17 1995-06-27 Nippondenso Co Ltd 内燃機関のアイドル回転数制御装置
JPH09203340A (ja) * 1996-01-26 1997-08-05 Denso Corp 内燃機関の制御装置
JPH10103140A (ja) * 1996-09-30 1998-04-21 Nissan Motor Co Ltd 内燃機関の吸気制御装置の故障診断装置
JP2000345897A (ja) * 1999-06-03 2000-12-12 Toyota Motor Corp 内燃機関の回転数制御装置

Also Published As

Publication number Publication date
JP5220583B2 (ja) 2013-06-26
JP2010156268A (ja) 2010-07-15

Similar Documents

Publication Publication Date Title
JP3876609B2 (ja) 内燃機関のアイドル回転制御装置
US8423262B2 (en) Vehicle control apparatus
WO2012173177A1 (ja) エンジンの制御装置
JP2010024991A (ja) 内燃機関の制御装置
JP4539211B2 (ja) 内燃機関の制御装置
JP2011094561A (ja) エンジンの制御装置
JPH0821290A (ja) 内燃機関の電子制御システムのセンサ異常処理装置
JP5220583B2 (ja) 内燃機関の制御装置
JP4522339B2 (ja) 内燃機関の空燃比制御装置
US8573179B2 (en) Engine ignition control apparatus
JP2005201120A (ja) 内燃機関の制御装置
JP5027792B2 (ja) 内燃機関の制御装置
JP5245910B2 (ja) 内燃機関のアイドル回転速度制御装置
JP2775676B2 (ja) 内燃機関の燃料供給制御装置
JP2009115005A (ja) 内燃機関の制御装置
JP4843597B2 (ja) 内燃機関の制御装置
JP4956382B2 (ja) 内燃機関の制御装置
JP2008018752A (ja) 車両の制御装置
JP4861296B2 (ja) 内燃機関の制御装置
JP2022092135A (ja) 内燃機関の制御装置
JP2004100530A (ja) 内燃機関のアイドル回転数制御装置
JP4484744B2 (ja) 内燃機関の吸入空気量制御方法
JPH05149166A (ja) 内燃エンジンのアイドリング時燃料供給制御装置
JP2006348812A (ja) 内燃機関の2次空気供給装置
JP2024104230A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5257/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09835010

Country of ref document: EP

Kind code of ref document: A1