WO2010073881A1 - 貯液槽、液中観察器具及び光学フィルム - Google Patents

貯液槽、液中観察器具及び光学フィルム Download PDF

Info

Publication number
WO2010073881A1
WO2010073881A1 PCT/JP2009/070198 JP2009070198W WO2010073881A1 WO 2010073881 A1 WO2010073881 A1 WO 2010073881A1 JP 2009070198 W JP2009070198 W JP 2009070198W WO 2010073881 A1 WO2010073881 A1 WO 2010073881A1
Authority
WO
WIPO (PCT)
Prior art keywords
moth
refractive index
eye
liquid
layer
Prior art date
Application number
PCT/JP2009/070198
Other languages
English (en)
French (fr)
Inventor
山田信明
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI0924893-5A priority Critical patent/BRPI0924893A2/pt
Priority to JP2010516713A priority patent/JPWO2010073881A1/ja
Priority to US12/864,072 priority patent/US20100290118A1/en
Priority to EP09834685.1A priority patent/EP2305026B1/en
Priority to CN2009801041415A priority patent/CN101938899B/zh
Publication of WO2010073881A1 publication Critical patent/WO2010073881A1/ja
Priority to US13/200,945 priority patent/US8465160B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/003Aquaria; Terraria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/02Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by gauge glasses or other apparatus involving a window or transparent tube for directly observing the level to be measured or the level of a liquid column in free communication with the main body of the liquid
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a liquid storage tank, an in-liquid observation instrument, and an optical film. More specifically, a storage tank suitable for a container whose interior is viewed or observed through a transparent wall, such as an aquarium tank, a tank with a liquid meter, etc., a submerged observation instrument suitable for an underwater observation instrument, and use thereof
  • the present invention relates to an optical film.
  • Examples of the liquid storage tank include an ornamental or observation container.
  • a water tank for the purpose of breeding and breeding fish and the like is widely used.
  • such a water tank is normally formed with a transparent material.
  • external light is reflected on the outer surface (outer surface) and inner surface (inner surface) of the transparent body (transparent wall 11) on the viewer side.
  • the strobe light is reflected in the photo shoot, making it difficult to shoot.
  • a device that prevents reflection of external light on the outer surface (hereinafter also referred to as outer surface reflection) and attempts to vividly view an ornament in the aquarium is generally known.
  • a water tank is constructed as a technique for preventing reflection (hereinafter also referred to as inner surface reflection) at the boundary between the contents of the water tank and the inner surface of the transparent wall (inside the water tank).
  • inner surface reflection a technique for preventing reflection
  • transparent walls a water tank in which at least both surfaces of the transparent wall arranged on the viewer side have an antireflection function is disclosed (for example, see Patent Document 1).
  • the tank provided with the window (observation window) for observing the contents as a liquid meter is mentioned.
  • the outer surface reflection and the inner surface reflection occur in the observation window, and there is a problem that it is difficult to accurately observe the amount of contents as in the case of the water tank.
  • a transparent resin film is provided with an adhesive layer having transparency and water resistance on one side, a release sheet or paper is provided on the surface, and a release stripping means is provided on at least one end of the release sheet or paper.
  • An affixed film in a water tank is disclosed (for example, see Patent Document 2).
  • a “moth eye structure” which is a kind of nanostructure is known in optical materials.
  • the moth-eye structure include a structure in which a large number of nanometer-sized cone-shaped protrusions are formed on the surface of a transparent substrate. According to such a moth-eye structure, since the refractive index continuously changes from the air layer to the transparent substrate, incident light is not recognized as an optical surface, and reflected light can be significantly reduced (for example, (See Patent Documents 3 to 6.)
  • JP 2003-319733 A Japanese Patent Laid-Open No. 9-322673 JP 2003-43203 A JP 2005-156695 A International Publication No. 2006/059686 Pamphlet JP 2001-264520 A
  • a multilayer antireflection film usually has poor durability.
  • a multilayer antireflection film when used to prevent surface reflection, it is possible to further improve visibility and reduce durability by reducing the reflectance while suppressing the occurrence of coloring. There is room for improvement in terms of realization.
  • the multilayer antireflection film has a complicated manufacturing process and is an expensive material. Therefore, it is a problem whether it is suitable for a wide range of applications.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a liquid storage tank, an in-liquid observation instrument, and an optical film that are excellent in visibility and durability and easy to clean. .
  • the inventors of the present invention have made various studies on a liquid storage tank that is excellent in visibility and durability and can be easily cleaned, and has focused on the moth-eye structure. And by providing a protective layer covering not only the moth-eye structure but also the moth-eye structure on the inner surface of the transparent wall constituting the liquid storage tank, surface reflection, particularly inner surface reflection, can be significantly reduced while suppressing the occurrence of coloring.
  • the inventors have found that the inner surface of the liquid storage tank can be improved in durability, and that the inner surface of the liquid storage tank can be easily cleaned, and that the above problems can be solved brilliantly, and the present invention has been achieved. Is.
  • the present invention is a liquid storage tank having a transparent wall, and the liquid storage tank covers a first moth-eye layer having a moth-eye structure on the inner surface of the transparent wall, and a moth-eye structure of the first moth-eye layer. It is a liquid storage tank provided with the protective layer to be performed in this order from the transparent wall side. Thereby, the liquid storage tank which is excellent in visibility and durability and can be easily cleaned can be realized. In addition, the liquid storage tank can be manufactured at a much lower price than when an antireflection film such as a multilayer antireflection film is used.
  • liquid storage tank of the present invention As a configuration of the liquid storage tank of the present invention, as long as such a component is formed as essential, it may or may not include other components, and is not particularly limited. Absent.
  • the preferable form in the liquid storage tank of this invention is demonstrated in detail below. In addition, the following forms may be combined as appropriate.
  • the liquid storage tank includes a second moth-eye layer having a moth-eye structure on the outer surface of the transparent wall, and the second moth-eye layer includes It is preferable to be provided in a region facing the first moth-eye layer.
  • the protective layer preferably contains a fluorine-containing resin.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, by this, the liquid storage tank of the present invention can be suitably used as a water storage tank.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid stored in the liquid storage tank.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the liquid storage tank of this invention can be utilized suitably as a water storage tank.
  • the refractive index of the protective layer is preferably smaller than the refractive indexes of the transparent wall and the first moth-eye layer. Thereby, it is possible to easily align the refractive index of the liquid stored in the liquid storage tank and the refractive index of the protective layer while forming the transparent wall and the first moth-eye layer with the optimum material.
  • the protective layer preferably has a refractive index of 1.28 to 1.38.
  • the liquid storage tank of this invention can be utilized suitably as a water storage tank.
  • the present invention is also an optical film attached to the inner surface of a liquid storage tank having a transparent wall, the optical film comprising a moth-eye layer having a moth-eye structure and a protective layer covering the moth-eye structure.
  • first optical film of the present invention By sticking the first optical film of the present invention to the inner surface of the transparent wall of the liquid storage tank, the liquid storage tank of the present invention can be realized easily and inexpensively.
  • the 1st optical film of this invention As a structure of the 1st optical film of this invention, as long as such a component is formed essential, it may not contain other components and it is not specifically limited. It is not a thing.
  • the preferable form in the 1st optical film of this invention is demonstrated in detail below. In addition, the following forms may be combined as appropriate.
  • the protective layer preferably contains a fluorine-containing resin.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, by this, the liquid storage tank to which the first optical film of the present invention is attached can be suitably used as the water storage tank.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid stored in the liquid storage tank.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the liquid storage tank with which the 1st optical film of this invention was affixed can be utilized suitably as a water storage tank.
  • the refractive index of the protective layer is preferably smaller than the refractive indexes of the transparent wall and the moth-eye layer.
  • the protective layer preferably has a refractive index of 1.28 to 1.38.
  • the liquid storage tank with which the 1st optical film of this invention was affixed can be utilized suitably as a water storage tank.
  • the present invention is also a submerged observation instrument having a transparent window, wherein the submerged observation instrument includes a first moth-eye layer having a moth-eye structure and a moth-eye structure of the first moth-eye layer on an outer surface of the transparent window. It is also an in-liquid observation instrument provided with a protective layer to be coated in this order from the transparent window side. Thereby, the in-liquid observation instrument which is excellent in visibility and durability and easy to clean can be realized. In addition, an in-liquid observation instrument can be manufactured at a much lower price than when an antireflection film such as a multilayer antireflection film is used.
  • the configuration of the in-liquid observation device of the present invention is not particularly limited as long as such components are formed as essential, and other components may or may not be included. is not.
  • the preferable form in the in-liquid observation instrument of this invention is demonstrated in detail below. In addition, the following forms may be combined as appropriate.
  • the in-liquid observation instrument includes a second moth-eye layer having a moth-eye structure on the inner surface of the transparent window.
  • the second moth-eye layer is preferably provided in a region facing the first moth-eye layer.
  • the protective layer preferably contains a fluorine-containing resin.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, by this, the in-liquid observation instrument of the present invention can be suitably used as an underwater observation instrument.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid in contact with the in-liquid observation instrument.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the in-liquid observation instrument of this invention can be utilized suitably as an underwater observation instrument.
  • the refractive index of the protective layer is preferably smaller than the refractive indexes of the transparent window and the first moth-eye layer. Thereby, it is possible to easily align the refractive index of the liquid in contact with the in-liquid observation instrument and the refractive index of the protective layer while forming the transparent window and the first moth-eye layer with the optimum material.
  • the protective layer preferably has a refractive index of 1.28 to 1.38.
  • the in-liquid observation instrument of this invention can be utilized suitably as an underwater observation instrument.
  • the present invention is also an optical film that is attached to an outer surface of an in-liquid observation instrument having a transparent window, and the optical film includes a moth-eye layer having a moth-eye structure and a protective layer that covers the moth-eye structure. It is also a film (hereinafter also referred to as “second optical film of the present invention”). By sticking the second optical film of the present invention to the outer surface of the transparent window of the submerged observation instrument, the submerged observation instrument of the present invention can be realized easily and inexpensively.
  • the 2nd optical film of this invention As a structure of the 2nd optical film of this invention, as long as such a component is formed essential, it may not contain other components and it is not specifically limited. It is not a thing.
  • the preferable form in the 2nd optical film of this invention is demonstrated in detail below. In addition, the following forms may be combined as appropriate.
  • the protective layer preferably contains a fluorine-containing resin.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, by this, the submerged observation instrument to which the second optical film of the present invention is attached can be suitably used as the underwater observation instrument.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid in contact with the in-liquid observation instrument.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the refractive index of the protective layer is preferably smaller than the refractive indexes of the transparent window and the moth-eye layer.
  • the protective layer preferably has a refractive index of 1.28 to 1.38.
  • the liquid storage tank of the present invention and the first optical film of the present invention it is possible to realize a liquid storage tank that is excellent in visibility and durability and easy to clean. More specifically, the occurrence of coloring can be remarkably suppressed, the durability of the inner surface of the liquid storage tank can be improved, and the inner surface of the liquid storage tank can be easily cleaned.
  • the refractive index of the protective layer and the refractive index of the liquid stored in the liquid storage tank can be easily aligned, the surface reflection of the liquid storage tank, particularly the inner surface reflection can be significantly reduced. Further, since the refractive index of the protective layer and the refractive index of the air layer are usually different, the position of the liquid level in the liquid storage tank can be easily confirmed from the outside through the transparent wall.
  • the submerged observation instrument of the present invention and the second optical film of the present invention it is possible to realize a submerged observation instrument that is excellent in visibility and durability and easy to clean. More specifically, the occurrence of coloring can be remarkably suppressed, the durability of the outer surface of the submerged observation instrument can be improved, and the outer surface of the submerged observation instrument can be easily cleaned.
  • the refractive index of the protective layer and the refractive index of the liquid in contact with the in-liquid observation instrument can be easily aligned, the reflection of the surface of the observation instrument in liquid, particularly the reflection of external light on the outer surface of the transparent window, can be achieved. It can be significantly reduced.
  • FIG. 3 is a schematic cross-sectional view showing a moth-eye layer in the liquid storage tank of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a moth-eye layer and a protective layer in the liquid storage tank of Example 1.
  • FIG. It is a figure for demonstrating the refractive index change in the liquid storage tank of Example 1, (a) is side surface sectional drawing of a liquid storage tank, (b) is a refractive index change in the side surface of a liquid storage tank. It is a graph to show.
  • FIG. 6 is a schematic perspective view showing a liquid storage tank of Example 3.
  • FIG. It is a figure for demonstrating the refractive index change in the liquid storage tank of Example 3, (a) is sectional drawing of the liquid meter part of a liquid storage tank, (b) is the liquid quantity of a liquid storage tank. It is a graph which shows the refractive index change in a total part.
  • FIG. 10 is a schematic cross-sectional view showing a modification of the in-liquid observation instrument of Example 4.
  • FIG. 10 is a schematic cross-sectional view showing a modification of the in-liquid observation instrument of Example 4.
  • FIG. 6 is a schematic cross-sectional view showing an in-liquid observation instrument of Example 5.
  • the fact that the refractive indexes of two members are aligned means that the refractive indexes of the two members are within the range where the effects of the present invention can be obtained, and the refractive indexes of the two members are completely the same. It may be present or substantially the same.
  • a refractive index is the value measured at room temperature (25 degreeC) and the measurement wavelength 589nm (D line).
  • the liquid storage tank of Embodiment 1 is a liquid storage tank having a transparent wall, and the liquid storage tank has a first moth-eye layer having a moth-eye structure on the inner surface of the transparent wall, and a moth-eye of the first moth-eye layer. A protective layer covering the structure is provided in this order from the transparent wall side.
  • the liquid storage tank of the present embodiment contents containing at least a liquid are stored.
  • the observer views or observes the contents in the tank from the outside through the transparent wall, for example, things in the liquid (for example, organisms), the liquid surface, the liquid itself, and the like. become.
  • the liquid storage tank of this embodiment is suitable for viewing or observation containers such as water tanks and tanks with observation windows.
  • the refractive index of the transparent wall and the refractive index of the liquid stored in the liquid storage tank (hereinafter also referred to as “content liquid”) are usually different.
  • a material having a refractive index equal to the refractive index of the transparent wall can be selected as appropriate, and as the material of the protective layer, the refractive index is equal to the refractive index of the content liquid. The materials can be selected as appropriate.
  • compatibility of the refractive index with the transparent wall can be achieved by the first moth-eye layer, and compatibility of the refractive index with the content liquid can be achieved by the protective layer.
  • the refractive index can be continuously changed from the content liquid to the transparent wall, the internal surface reflection in the liquid-filled region is significantly reduced (for example, the reflectance is 0.1% or less). Can do.
  • Patent Document 6 is composed of a transparent layer made of a cured product of an ionizing radiation curable resin composition, and the surface on one side of the transparent layer has innumerable fine irregularities with a pitch equal to or less than the wavelength of light.
  • the antireflection mechanism using the moth-eye structure does not use the ⁇ / 4 condition unlike the multilayer antireflection film, the occurrence of coloring can be greatly suppressed to a level that is almost absent. .
  • the protective layer covering the moth-eye structure is provided, a material excellent in durability can be appropriately selected as the material of the protective layer. Therefore, durability of the inner surface of the liquid storage tank can be improved.
  • the moth-eye structure is covered with the protective layer, it is possible to prevent dirt from adhering to the moth-eye structure that is difficult to clean. Furthermore, since the shape of the portion (surface) in contact with the content liquid of the protective layer is not particularly limited, the surface can be flattened as compared with the moth-eye structure. Therefore, even if dirt adheres to the protective layer, the dirt can be easily washed.
  • the refractive index of the protective layer that matches the refractive index of the content liquid and the refractive index of air usually differ. Therefore, the refractive index of each member is uniform in the region where the content liquid (liquid) is present, but in the region where the content liquid (liquid) is not contained (usually an air layer), the refractive index of each member is usually set. Will not match and internal surface reflection will occur. Therefore, the presence or absence of internal surface reflection occurs between the region with the content liquid and the region without the content liquid, so that the position of the content liquid (liquid level) can be easily confirmed from the outside through the transparent wall.
  • the moth-eye structure of the present invention is, for example, subjected to ultraviolet curing through a process of applying an ultraviolet curable resin to the surface of the base film or the mold, pressing the base film against the mold, and then curing the ultraviolet through the base film.
  • the moth-eye structure can be formed by curing the functional resin. Therefore, compared to the case of using an antireflection film such as a multilayer film (multilayer antireflection film) produced through an expensive process such as multiple times of application and multiple times of vapor deposition, the liquid storage tank is much cheaper. Can be produced.
  • the liquid storage tank includes a second moth-eye layer having a moth-eye structure on an outer surface of the transparent wall, and the second moth-eye layer is provided in a region facing the first moth-eye layer.
  • the external surface reflection can be remarkably reduced (for example, the reflectance is 0.1% or less) by the second moth-eye layer. Therefore, reflection can be further reduced in the region where the first moth-eye layer and the second moth-eye layer overlap.
  • the second moth-eye layer and the first moth-eye layer may be arranged in a range that can be seen overlapping when viewed from the observation direction, and the shape, size, and location of the second moth-eye layer and the first moth-eye layer are respectively They may or may not match, but preferably match.
  • first moth-eye layer, the second moth-eye layer, and the protective layer are provided is not particularly limited as long as it is a place visually recognized by an observer, and may be a side surface of a liquid storage tank or an upper surface. Alternatively, it may be the bottom surface.
  • first moth-eye layer, the second moth-eye layer, and the protective layer may be provided on the whole (entire surface) of the transparent wall, or may be provided on a part of the transparent wall. It is preferable to be provided in a portion to be obtained.
  • the observation is performed without providing the first moth-eye layer, the second moth-eye layer, and the protective layer on all the transparent walls.
  • These members may be provided only for a specific transparent wall that is present on the side on which the person appreciates or observes.
  • the film thickness of the first moth-eye layer and the second moth-eye layer is not particularly limited, but is usually about 1 to 30 ⁇ m.
  • FIG. 8 is a diagram for explaining the moth-eye structure (a diagram for explaining the principle that the refractive index is continuous from the surface and the reflection is extremely reduced at the interface), and (a) is a schematic diagram of a cross-section of the moth-eye structure. (B) shows the change in the refractive index in the moth-eye structure.
  • FIG. 8 illustrates a case where the layer in contact with the moth-eye structure is an air layer.
  • a film having a moth-eye structure normally, as shown in FIG.
  • the projection 19 smaller than the wavelength length of visible light (380 to 780 nm) is present, so that the film shown in FIG.
  • the refractive index of the constituent material of the film when resin is used as the film having a moth-eye structure
  • it can be regarded as gradually increasing until it becomes equal to about 1.5).
  • there is substantially no refractive index interface and the reflectance at the film interface is extremely reduced.
  • the moth-eye structure can be formed using, for example, a nanoimprint method (UV nanoimprint method or thermal imprint method).
  • a nanoimprint method UV nanoimprint method or thermal imprint method.
  • a method of using an aluminum substrate having a nanometer-sized hole formed on the surface by anodic oxidation as a mold is preferable. More specifically, after the outer peripheral surface of a columnar or cylindrical aluminum tube produced by extrusion is cut and polished, the aluminum anode is applied to the smooth aluminum surface (outer peripheral surface) of the obtained polished aluminum tube.
  • a nanometer-sized hole is formed by repeatedly performing oxidation and etching several times, for example, three times.
  • the material constituting the first moth-eye layer and the second moth-eye layer is not particularly limited, but the first moth-eye layer and the second moth-eye layer preferably have the same refractive index as that of the transparent wall. More specifically, the difference between these refractive indexes is preferably 0.05 (more preferably 0.03) or less, whereby reflection at both interfaces can be hardly visually recognized.
  • first moth-eye layer and the second moth-eye layer are not particularly limited and may be the same as those of a general moth-eye film, but to the extent that an observer can visually observe an observation or an ornament. It is preferably transparent, and more specifically, the light transmittance is preferably 90% (more preferably 95%) or more, and the haze is 10% (more preferably 1%) or less.
  • the refractive index is preferably 1.45 to 1.55 (more preferably 1.47 to 1.53).
  • the material of the first moth-eye layer and the second moth-eye layer includes, for example, an electromagnetic wave such as ultraviolet light and visible light. Resins that are cured by energy rays and thermosetting resins are suitable.
  • Each of the first moth-eye layer and the second moth-eye layer may be (1) a form provided on a transparent wall via a base film, or (2) a form provided directly on a transparent wall. May be.
  • an optical film having a layer having a moth-eye structure, a protective layer covering the moth-eye structure, and an optical film having a layer having a moth-eye structure can be suitably used. That is, for example, since an optical film mass-produced by the nanoimprint method can be used, the productivity of the liquid storage tank of this embodiment can be improved.
  • the optical film of the present embodiment is an optical film (film for affixing in a tank) that is affixed to the inner surface of the liquid storage tank of the first embodiment, that is, a liquid storage tank having a transparent wall, and the optical film of the present embodiment.
  • a moth-eye layer having the moth-eye structure (the first moth-eye layer)
  • a protective layer covering the moth-eye structure (the moth-eye structure of the first moth-eye layer).
  • the base film is a base material for holding a material (for example, an ultraviolet curable resin or a thermosetting resin) of the moth eye layer (the first moth eye layer and / or the second moth eye layer) in the production stage.
  • a film having water resistance and solvent resistance (liquid resistance) is preferred.
  • the base film preferably has the same refractive index as the first moth-eye layer, the second moth-eye layer, and the transparent wall. More specifically, the difference in refractive index is preferably 0.05 or less (more preferably, 0.03 or less), whereby reflection at each interface can be hardly visually recognized. . From the same viewpoint, the difference in refractive index between adjacent members among these members is preferably 0.05 or less (more preferably 0.03 or less).
  • the base film is not particularly limited, and may be the same as those used for a general optical film substrate, but to the extent that an observer can visually observe the observation or ornament in the reservoir. It is preferably transparent, and more specifically, the light transmittance is preferably 90% (more preferably 95%) or more, and the haze is 10% (more preferably 1%) or less.
  • the refractive index is preferably 1.55 to 1.45 (more preferably 1.53 to 1.47).
  • the optical film of this embodiment it is preferable that it is a transparent film with transparency, water resistance, waterproofness, and solvent resistance (liquid resistance). Furthermore, the optical properties of the entire optical film of the present embodiment are not particularly limited, but are preferably transparent to the extent that an observer can visually observe the observation or ornament in the liquid storage tank.
  • the transmittance is preferably 90% (more preferably 95%) or more, and the haze is preferably 10% (more preferably 1%) or less.
  • the base film examples include ZEONOR manufactured by Nippon Zeon, Arton manufactured by JSR, COC manufactured by Mitsui Chemicals, and TPX manufactured by Mitsui Chemicals. It is preferable to use an olefin film as the base film.
  • the film thickness of the base film is not particularly limited, but is usually about 30 to 100 ⁇ m.
  • the optical film of the present embodiment may have a paste material on the surface of the base film on which the moth-eye layer (first moth-eye layer or second moth-eye layer) is not provided.
  • the paste material adheresive
  • the paste material is for easily mounting the optical film of the present embodiment in the liquid storage tank, and preferably has transparency and water resistance.
  • the paste material can be provided by, for example, coating an acrylic adhesive or the like on one side of the base film by a known method, and the film thickness can be adjusted as appropriate.
  • the optical film of the present embodiment may further have a laminate film that can be easily peeled on the paste material.
  • the form of the above (2) since members such as a base film and a paste material can be omitted, the cost of the liquid storage tank of this embodiment can be reduced. In addition, since the reduction in reflection and light transmittance due to the base film and the paste material can be eliminated, the visibility of the liquid storage tank can be further improved.
  • the form of (2) for example, after applying an ultraviolet curable resin or a thermosetting resin directly on a transparent wall, the moth-eye structure is transferred by the nanoimprint method using a flexible mold. Can be produced.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid (content liquid) stored in the liquid storage tank.
  • the difference between the refractive index of the protective layer and the refractive index of the content liquid is preferably 0.05 (more preferably 0.03) or less, so that at the interface between the two. The reflection can be made almost invisible.
  • the refractive index of the protective layer is preferably within the refractive index ⁇ 0.05 (more preferably ⁇ 0.03) of the liquid (content liquid) stored in the liquid storage tank.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the liquid storage tank of this embodiment can be utilized suitably as a tank which stores water, ie, a water storage tank.
  • the difference between the refractive index of the protective layer and the refractive index of water is preferably 0.05 (more preferably 0.03) or less, whereby reflection at the interface between the two is performed. Can be made almost invisible.
  • the refractive index of water is about 1.33
  • the refractive index of the protective layer is 1.28 to 1.38 from the viewpoint of suitably using the liquid storage tank of this embodiment as a water storage tank. (More preferably, 1.3 to 1.36).
  • a transparent member having a refractive index of about 1.5 such as glass or transparent resin
  • a transparent resin is used as a material for the first moth-eye layer.
  • a transparent member having a refractive index of about 1.5 or the like can be suitably used. Therefore, the refractive index of these transparent members is usually larger than the refractive index of the content liquid (for example, the refractive index of water is 1.33).
  • the refractive index of the protective layer is the transparent
  • the refractive index is preferably smaller than the refractive index of the wall and the first moth-eye layer.
  • the other optical characteristics of the protective layer are not particularly limited, but are preferably transparent to the extent that an observer can visually observe the observation or ornament in the liquid storage tank, and more specifically, the light transmittance is 90. % (More preferably 95%) or more, and haze is preferably 10% (more preferably 1%) or less.
  • the protective layer preferably contains a fluorine-containing resin.
  • a fluorine-containing resin since the moth-eye structure which is generally not very excellent in durability can be protected more strongly, the durability of the liquid storage tank of Embodiment 1 can be further improved.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, by this, the liquid storage tank of this embodiment can be suitably used as a water storage tank.
  • the protective layer may be appropriately dried after applying the protective layer material on the first moth-eye layer by a general application method (for example, spray method, spin coat method, die coater, slit coater, etc.). Can be formed.
  • the fluorine-containing resin is a resin having a carbon-fluorine bond, and the resin itself has water repellency.
  • a specific example of the fluorine-containing resin material is Cytop CTX809A manufactured by Asahi Glass Co., Ltd.
  • the film thickness of the protective layer is not particularly limited, but it may be usually about 1 to 5 ⁇ m.
  • the flatness of the surface of the protective layer is not particularly limited as long as it is flatter than the moth-eye structure of the first moth-eye layer, but the adhered dirt is generally removed using a general cleaning member (for example, cloth or brush). It is preferably flat enough to be cleaned by a simple cleaning method (for example, a wiping method or a rubbing method). In addition, there is a particular problem even with flatness that can be achieved when a protective layer is formed by a general coating method (for example, spray method, spin coat method, die coater, slit coater, etc.) using a resin material. Absent.
  • a general coating method for example, spray method, spin coat method, die coater, slit coater, etc.
  • the transparent wall only needs to be a transparent member so that an observer can visually observe the observation or ornament in the liquid storage tank, and a general water tank or an observation window can be used.
  • the light transmittance is preferably 90% (more preferably 95%) or more, and the haze is preferably 10% (more preferably 1%) or less.
  • the refractive index of the transparent wall is not particularly limited, but it is preferable to match the refractive index of the moth-eye layer base film (base film) or the resin for forming the moth-eye structure. Can be demonstrated.
  • the material for the transparent wall is not particularly limited, and examples thereof include various glass materials and transparent resin (for example, acrylic resin) materials, and such materials are widely used as components for water tanks and observation windows. Things.
  • the said transparent wall may comprise the whole liquid storage tank of this embodiment, and may comprise a part.
  • the transparent wall may be a transparent window.
  • liquid storage tank is not particularly limited as long as the contents can be viewed or observed from the outside (viewing or observation container), but, among others, a water tank or liquid for the purpose of breeding and breeding fish and the like
  • a tank provided with a window (observation window) for observing the contents as a quantity meter is suitable.
  • the liquid (content liquid) stored in the liquid storage tank is preferably in contact with at least a part of the protective layer.
  • the type and refractive index of the content liquid are not particularly limited, and may be appropriately selected according to the use of the liquid storage tank, but water is preferable.
  • the contents stored in the liquid storage tank are not limited to liquids, and may include organisms such as fish, microorganisms, and objects.
  • the submerged observation instrument of Embodiment 2 is a submerged observation instrument having a transparent window, and the submerged observation instrument includes a first moth-eye layer having a moth-eye structure on the outer surface of the transparent window, and the first moth-eye.
  • a protective layer covering the moth-eye structure of the layer is provided in this order from the transparent window side.
  • the outer surface of the transparent window is the surface opposite to the observer of the transparent window.
  • Embodiment 2 is a form in which the first moth-eye layer and the protective layer described in Embodiment 1 are applied to an in-liquid observation instrument. Therefore, below, the form and effect different from Embodiment 1 are mainly demonstrated, and the content which overlaps with Embodiment 1 is abbreviate
  • the in-liquid observation instrument of this embodiment is used in a state where the transparent window is in contact with at least the liquid. Then, the observer views or observes the liquid through the transparent window.
  • the reflection at the interface between the first moth-eye layer and the protective layer is significantly (for example, reflectance 0.1% or less). To) can be reduced.
  • the refractive index of the transparent window and the refractive index of the liquid in contact with the in-liquid observation instrument (transparent window) usually differ.
  • the material of the first moth-eye layer a material having the same refractive index as the refractive index of the transparent window can be selected as appropriate, and as the material of the protective layer, the refractive index is adjusted to the refractive index of the liquid. The material can be selected as appropriate.
  • compatibility of the refractive index with the transparent window can be achieved by the first moth-eye layer, and compatibility of the refractive index with the liquid can be achieved by the protective layer.
  • the refractive index can be continuously changed from the liquid to the transparent window, reflection of outside light on the outer surface of the transparent window is remarkably reduced (for example, the reflectance is 0.1% or less). Can do.
  • the occurrence of coloring can be greatly suppressed to a level that almost never occurs.
  • the durability of the outer surface of the transparent window can be improved.
  • the surface can be flattened as compared with the moth-eye structure. Therefore, even if dirt adheres to the protective layer, the dirt can be easily washed.
  • the liquid storage tank can be made much cheaper than when an antireflection film such as a multilayer film (multilayer antireflection film) is used.
  • an antireflection film such as a multilayer film (multilayer antireflection film) is used.
  • the in-liquid observation instrument includes a second moth-eye layer having a moth-eye structure on the inner surface of the transparent window, and the second moth-eye layer is provided in a region facing the first moth-eye layer.
  • the inner surface of the transparent window is the surface on the viewer side of the transparent window.
  • the second moth-eye layer and the first moth-eye layer may be arranged in a range that can be seen overlapping when viewed from the observation direction, and the shape, size, and location of the second moth-eye layer and the first moth-eye layer are respectively They may or may not match, but preferably match.
  • first moth-eye layer, the second moth-eye layer, and the protective layer are provided is not particularly limited as long as it is a place visually recognized by an observer.
  • the first moth-eye layer, the second moth-eye layer, and the protective layer may be provided on the entire (entire surface) of the transparent window, or may be provided on a part of the transparent window. It is preferable to be provided on the member to be obtained. From the viewpoint of improving visibility in the widest possible range, the first moth-eye layer, the second moth-eye layer, and the protective layer are preferably provided on the entire (entire surface) of the transparent window.
  • the material constituting the first moth-eye layer and the second moth-eye layer is not particularly limited, but the first moth-eye layer and the second moth-eye layer preferably have the same refractive index as that of the transparent window. More specifically, the difference between these refractive indexes is preferably 0.05 (more preferably 0.03) or less, whereby reflection at both interfaces can be hardly visually recognized.
  • first moth-eye layer and the second moth-eye layer are not particularly limited and may be the same as those of a general moth-eye film, but are transparent to the extent that an observer can visually observe an observation or an ornament. More specifically, the light transmittance is preferably 90% (more preferably 95%) or more, and the haze is preferably 10% (more preferably 1%) or less.
  • the refractive index is preferably 1.45 to 1.55 (more preferably 1.47 to 1.53).
  • the first moth-eye layer and the second moth-eye layer may each be (1) a form provided on a transparent window via a base film, or (2) The form provided directly on the transparent window may be sufficient.
  • optical film of the present embodiment is an optical film that is attached to the outer surface of the submerged observation instrument of Embodiment 2, that is, the submerged observation instrument having a transparent window, and the optical film of the present embodiment has a moth-eye structure.
  • a moth eye layer (the first moth eye layer) and a protective layer covering the moth eye structure (the moth eye structure of the first moth eye layer) are provided.
  • the base film is preferably transparent to the extent that an observer can visually observe or observe an ornament, and more specifically, the light transmittance is 90% (more preferably 95%) or more.
  • the haze is preferably 10% (more preferably 1%) or less, and the refractive index is preferably 1.55 to 1.45 (more preferably 1.53 to 1.47). .
  • the optical film of this embodiment it is preferable that it is a transparent film with transparency, water resistance, waterproofness, and solvent resistance (liquid resistance).
  • the optical properties of the entire optical film of the present embodiment are not particularly limited, but are preferably transparent to the extent that an observer can visually observe or observe an ornament, and more specifically, the light transmittance. Is preferably 90% (more preferably 95%) or more, and the haze is preferably 10% (more preferably 1%) or less.
  • the optical film of the present embodiment is not provided with the moth-eye layer (first moth-eye layer or second moth-eye layer) of the base film from the same viewpoint as in the first embodiment. It is preferable to have a paste material on the side surface.
  • the paste material adheresive is for easily attaching the optical film of the present embodiment to the in-liquid observation instrument, and preferably has transparency and water resistance.
  • the refractive index of the protective layer is preferably aligned with the refractive index of the liquid in contact with the in-liquid observation instrument.
  • the difference between the refractive index of the protective layer and the refractive index of the liquid is preferably 0.05 (more preferably 0.03) or less, thereby reflecting at the interface between the two. Can be made almost invisible.
  • the refractive index of the protective layer is preferably within the refractive index ⁇ 0.05 (more preferably ⁇ 0.03) of the liquid in contact with the in-liquid observation instrument.
  • the refractive index of the protective layer is aligned with the refractive index of water.
  • the in-liquid observation instrument of this embodiment can be suitably used as an instrument for observing underwater, that is, an underwater observation instrument.
  • the difference between the refractive index of the protective layer and the refractive index of water is preferably 0.05 (more preferably 0.03) or less, whereby reflection at the interface between the two is performed. Can be made almost invisible.
  • the refractive index of water is about 1.33
  • the refractive index of the protective layer is 1.28 to 1 from the viewpoint of suitably using the in-liquid observation device of this embodiment as an underwater observation device. .38 (more preferably 1.3 to 1.36).
  • a transparent member having a refractive index of about 1.5 such as glass and transparent resin
  • a transparent resin is used as a material for the first moth-eye layer.
  • a transparent member having a refractive index of about 1.5 or the like can be suitably used. Therefore, the refractive index of these transparent members is usually larger than the refractive index of liquid (for example, the refractive index of water is 1.33).
  • the refractive index of the protective layer is determined by the transparent window. It is preferable that the refractive index is smaller than the refractive index of the first moth-eye layer.
  • the other optical characteristics of the protective layer are not particularly limited, but are preferably transparent so that an observer can visually observe or observe an ornament, and more specifically, the light transmittance is 90% ( More preferably 95%) or more, and haze is preferably 10% (more preferably 1%) or less.
  • the protective layer preferably contains a fluorine-containing resin.
  • a fluorine-containing resin since the moth-eye structure that is generally not very excellent in durability can be protected more strongly, the durability of the in-liquid observation instrument of Embodiment 2 can be further improved.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4, the refractive index of the protective layer can be easily changed to the refractive index of water by including the fluorine-containing resin in the protective layer. Can be aligned. That is, this makes it possible to suitably use the in-liquid observation instrument of the present embodiment as an underwater observation instrument.
  • the transparent window may be a member that is transparent to the extent that an observer can view observations or ornaments in the liquid, and lenses and transparent plates that are commonly used for general underwater glasses and box glasses can be used. More specifically, the light transmittance is preferably 90% (more preferably 95%) or more, and the haze is preferably 10% (more preferably 1%) or less.
  • the refractive index of the transparent window is not particularly limited, but it is preferable to match the refractive index of the moth-eye layer base film (base film) or the resin for forming the moth-eye structure. Can be demonstrated.
  • the material of the transparent window is not particularly limited, and examples thereof include various glass materials and transparent resin (for example, acrylic resin) materials, and such materials are widely used as components for underwater glasses and box glasses. Things.
  • the said transparent window may comprise the whole in-liquid observation instrument of this embodiment, and may comprise a part.
  • the use of the in-liquid observation instrument is not particularly limited as long as an observer observes or observes the liquid through a transparent window.
  • the instrument and underwater glasses used for observing the liquid from outside the liquid Is preferred.
  • box glasses are suitable.
  • the transparent window may be a transparent plate, and in the latter case, the transparent window may be a transparent lens.
  • the in-liquid observation instrument may be an underwater observation window or wall provided in a ship, an underwater facility or the like.
  • the type and refractive index of the liquid are not particularly limited, and may be appropriately selected according to the use of the in-liquid observation instrument. Examples thereof include water, seawater, and a solvent.
  • FIG. 1 is a schematic diagram showing a liquid storage tank of Example 1, (a) is a sectional view of the whole, and (b) is an area (side surface) surrounded by a broken line in (a). It is an enlarged view.
  • 2 is a schematic cross-sectional view showing a moth-eye layer in the liquid storage tank of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a moth eye layer and a protective layer in the liquid storage tank of Example 1.
  • the liquid storage tank of the present invention is applied to a water tank. As shown in FIG.
  • the water tank of the present embodiment has a vessel-shaped transparent wall 11 that stores water 21 as a content liquid, and an outer surface (hereinafter also referred to as A surface) of the transparent wall 11 on the side of the observer 23.
  • the transparent wall 11 is made of transparent glass.
  • the moth eye layer 12 has a moth eye structure.
  • the moth-eye layer 13 has a moth-eye structure and faces the moth-eye layer 12.
  • the protective layer 14 is made of a fluorine-containing resin (F-based resin).
  • the transparent wall 11 has a refractive index of approximately 1.5
  • the protective layer 14 has a refractive index of 1.28 to 1.38
  • the water 21 has a refractive index of 1.33.
  • the matching of the refractive index is successful.
  • the moth-eye structure has very good biocompatibility on the surface, it is easy for organisms to adhere to it or it is difficult to remove it when it becomes dirty.
  • a material having a refractive index substantially equal to the refractive index of the water 21 on the moth-eye layer 13 on the B surface the refractive index of the water 21 and the refractive index of the transparent wall 11 made of glass can be obtained.
  • the adhesion of dirt such as living things can be reduced, and once attached, the dirt can be easily wiped with a commercially available cloth or the like.
  • the refractive index of the fluorine-containing resin is usually about 1.3 to 1.4
  • the refractive index of the protective layer 14 is made to be the refractive index of the water 21 by forming the protective layer 14 using the fluorine-containing resin. It can be easily aligned to the rate.
  • the moth-eye structure 16 included in the moth-eye layers 12 and 13 includes a plurality of protrusions.
  • the pitch of the protrusions is preferably 50 to 300 nm, and the height of the protrusions is preferably 50 to 300 nm.
  • the material constituting the moth-eye layers 12 and 13 is preferably a material in which the refractive index and refractive index of the material of the transparent wall 11 made of a glass material or a resin material are equal.
  • Cytop CTX809A (Asahi Glass Co., Ltd.) is used as the fluorine-containing resin (F-based coating material) that is the material of the protective layer 14, and is applied on the moth-eye layer 13 with a thickness of 0.5 ⁇ m.
  • the refractive index of CYTOP CTX809A is 1.34, which substantially matches the refractive index of water 1.33. Only the moth-eye layer 13 easily causes dirt to adhere to the inner wall of the water tank. However, since the inner wall of the water tank is coated with the fluorine-containing resin, it is difficult to get dirt, and even if dirt is attached, it becomes easy to remove.
  • the moth-eye layer 13 is formed of a polymer material and the fluorine-containing resin is applied onto the polymer material, sufficient adhesion may not be obtained. Therefore, it is preferable to perform primer treatment before coating.
  • a dedicated primer for Cytop CTX809A (Asahi Glass Co., Ltd. CT-P10) can be used.
  • the base film 15 and the paste material 17 provided on the main surface of the base film 15 on the transparent wall 11 side are provided in this order on the transparent wall 11 side of the moth-eye layers 12 and 13. ing.
  • the moth-eye layers 12 and 13 are formed on the base film 15 by the nanoimprint method using an ultraviolet curable resin or the like, and are attached to the transparent wall 11 by the paste material 17.
  • the moth-eye structure 16 is coated with a protective layer 14 made of a fluorine-containing resin (F-based resin).
  • an optical film (film for affixing in a tank) made of the protective layer 14, the moth eye layer 13, the base film 15, and the paste material 17 is attached to the inner surface of the transparent wall 11, and is attached to the outer surface of the transparent wall 11. Is attached with an optical film (film for attaching outside the tank) composed of the moth-eye layer 12, the base film 15 and the paste material 17.
  • the moth-eye layer 13 located inside the water tank is left in an environment where a solvent (solution) such as water is present. It is preferable to use an excellent material.
  • the base film 15 a film having transparency, water resistance and solvent resistance (liquid resistance) is preferable.
  • an olefin film such as the above-mentioned commercial product is preferable.
  • the refractive index of the base film 15 is preferably set so as to match the refractive index of the transparent wall 11.
  • FIG. 4 is a diagram for explaining a change in refractive index in the liquid storage tank of Example 1, (a) is a side sectional view of the liquid storage tank, and (b) is a side view of the liquid storage tank. It is a graph which shows a refractive index change.
  • the surface A and the surface B of the transparent wall 11 located on the viewer side are provided to match the refractive index in use.
  • the wavelength dispersion characteristic of the reflected light generated in this portion is very flat, and the reflected color of the reflected light is a reflected color with little coloring.
  • the moth-eye structure does not use the ⁇ / 4 condition unlike the multilayer film, and the refractive index continuously changes from the surface of the moth-eye structure to the inside of the moth-eye structure. Almost no coloring occurs. Further, since it can be considered that there is no refractive index interface on the surface of the moth-eye structure, the reflectance can be extremely reduced.
  • the refractive index of this resin is equal to the refractive index of the solvent (in the case of water, 1.33)
  • the nanostructure of the moth-eye structure is used. It is possible to reduce the ease of soiling of organisms by the body (nano-sized protrusions) and the difficulty of removing the soil, and the durability can be greatly increased.
  • FIG. 5 is a schematic view showing a liquid storage tank of Example 2, (a) is a sectional view of the whole, and (b) is a region (side surface) surrounded by a broken line in (a). It is an enlarged view.
  • the present embodiment uses the principle of the first embodiment as it is.
  • the film for affixing inside the tank and the film for affixing outside the tank of Example 1 are patterned and affixed to a part of the water tank. That is, as shown in FIG. 5, the moth-eye layer 12 on the A-side, the moth-eye layer 13 and the protective layer 14 on the B-side are patterned to the same planar shape, and the base film and the paste material are interposed. Affixed to the transparent wall 11.
  • the part of the pattern looks as if there is no transparent wall 11, the observer 23 can be depressed with the illusion of entering the water tank. Therefore, a display effect can be obtained.
  • the shape of the pattern is not particularly limited, and may be a circle or a rectangle in consideration of the window frame, or may be a character, a logo, or the like for an advertising effect.
  • the character pattern When the character pattern is formed, it appears that there is no interface in the character pattern portion, while reflected light is generated in the peripheral portion of the character pattern, and a large display effect can be exhibited by comparing both.
  • FIG. 6 is a schematic perspective view illustrating a liquid storage tank according to the third embodiment.
  • FIG. 7 is a view for explaining a refractive index change in the liquid storage tank of Example 3, (a) is a cross-sectional view of a liquid meter portion of the liquid storage tank, and (b) is a liquid storage tank. It is a graph which shows the refractive index change in the liquid meter part of a tank.
  • the present embodiment is an example in which the liquid storage tank of the present invention is applied to a tank provided with an observation window (a window for observing how far the liquid has entered) as a liquid meter.
  • the liquid meter 18 is provided in a part of the tank as shown in FIG.
  • the tank adhesive film and the tank external adhesive film are affixed to the liquid meter part of the tank of the present embodiment, as in Example 1. More specifically, as shown in FIG. 7A, the liquid meter portion of the tank of this embodiment is attached to the transparent wall 11 and the outer surface (A surface) of the transparent wall 11, and has a moth-eye structure. A moth-eye layer 12 having a moth-eye layer 13; a moth-eye layer 13 which is attached to the inner surface (B surface) of the transparent wall 11 and faces the moth-eye layer 12; and the moth-eye layer 13 is coated; And a protective layer 14 to be laminated.
  • FIG. 7 shows a state in which a liquid (here, water 21) is contained in the tank up to the middle of the liquid meter 18 as the content liquid.
  • the refractive index is matched in the area B where the liquid (water 21) is contained, while the area where there is no liquid (water 21), that is, the air 22 In the layer, the refractive index will not be matched. That is, reflection is suppressed in a region where the refractive index is matched (region where the liquid is present), and reflection occurs in a region where the refractive index is mismatched (region where there is no liquid). Therefore, the position of the liquid surface is very easy to see depending on the presence or absence of reflection. Further, since the moth-eye structure is also provided on the A surface, the outer surface reflection can be almost eliminated and the position of the liquid surface can be more easily confirmed.
  • the protective layer 14 when the protective layer 14 is not provided on the moth-eye layer 13, the moth-eye structure is exposed in a region in contact with the air layer. Therefore, even in this region, the refractive index continuously changes and the reflected light becomes small. As a result, the inner surface reflection is suppressed in both the liquid-containing region and the liquid-free region, and it becomes difficult to know where the interface between the liquid and the air layer is.
  • the protective layer 14 by providing the protective layer 14 on the moth-eye layer 13, reflected light is generated at the interface between the air 22 and the protective layer 14 in an area where there is no liquid, and the liquid level is clearly visible as described above. Can do.
  • the refractive index is matched using the moth-eye structure and the low refractive index resin in the side surface portion of the transparent wall of the liquid storage tank. Therefore, the reflected light can be made as small as possible, and objects (aquarium fish, liquid surface, etc.) inside the liquid storage tank can be clearly observed.
  • FIG. 11 is a schematic cross-sectional view showing the in-liquid observation instrument of Example 4.
  • FIG. 12 is a diagram for explaining a refractive index change in the submerged observation instrument of Example 4, (a) is a cross-sectional view of the submerged observation instrument, and (b) is a submerged observation instrument. It is a graph which shows a refractive index change.
  • 13 and 14 are schematic cross-sectional views showing modifications of the in-liquid observation instrument of Example 4.
  • FIG. This embodiment is an example in which the in-liquid observation instrument of the present invention is applied to an instrument used for observing the inside of a liquid from outside the liquid.
  • the instrument of the present embodiment includes a transparent plate-like base material (transparent window) 24, a moth-eye layer 12 attached to the air layer side surface (upper surface) of the base material 24 and having a moth-eye structure, and a base material
  • the moth-eye layer 13 is attached to a surface (lower surface) of 24 liquid (here, water 21) and is opposed to the moth-eye layer 12, and the moth-eye layer 13 is coated, and is made of a fluorine-containing resin (F-based resin).
  • the protective layer 14 has a laminated structure.
  • the base material 24 consists of glass, resin, etc., and the refractive index of the base material 24 is about 1.5.
  • each member of the present embodiment is preferably formed of a material that is lighter than the specific gravity of the liquid.
  • the F-type resin is used as the protective layer 14, it is possible to prevent the device of this example from being contaminated with liquid, and at the same time, the refractive index match on the lower surface Ching can be performed.
  • the float 25 whose specific gravity is smaller than a liquid may be provided in the peripheral part (for example, circumference
  • members, such as the base material 24, can be formed with a material heavier than the specific gravity of the liquid.
  • the instrument of the present embodiment has a light-shielding cylindrical body 26 and may be used as box glasses.
  • the translucent part such as the base material 24 is attached so as to close one opening of the cylindrical body 26. Thereby, since it can suppress that external light injects into a translucent part, it can see through the liquid more clearly.
  • the member such as the base material 24 can be formed of a material larger than the specific gravity of the liquid.
  • this example is not particularly limited, and for example, it may be used for observing water or seawater, may be used for observing an indicator in a device filled with a solvent, It may be used to observe the operation of the filled device.
  • FIG. 15 is a schematic cross-sectional view showing the in-liquid observation instrument of Example 5.
  • FIG. 16 is a view for explaining a refractive index change in the submerged observation instrument of Example 5, (a) is a cross-sectional view of the submerged observation instrument, and (b) is a submerged observation instrument. It is a graph which shows a refractive index change.
  • the in-liquid observation device of the present invention is applied to underwater glasses.
  • the lens portion of the underwater glasses of the present embodiment includes a transparent base material (transparent window) 27, a moth eye layer 12 attached to the inner surface of the base material 27 (the surface on the user 27 side) and having a moth eye structure,
  • the moth-eye layer 13 that is attached to the liquid (here, water 21) side surface (outer surface) of the base material 27 and that opposes the moth-eye layer 12, the moth-eye layer 13 is coated, and a fluorine-containing resin (F-based resin)
  • the protective layer 14 is made of a laminated structure.
  • the base material 27 consists of glass, resin, etc., and the refractive index of the base material 27 is about 1.5.
  • the underwater glasses of this embodiment are used in a state where the protective layer 14 is in contact with the liquid and the moth-eye layer 12 is in contact with the air.
  • the above effect can be achieved even if the surface of the moth-eye layer 12 is untreated, but water-repellent treatment may be performed to such an extent that the unevenness of the moth-eye structure is not completely filled. Thereby, even if the inside of a lens part gets wet with water, it can wipe off easily.
  • hydrophilicity may be imparted to the surface of the moth-eye layer 12.
  • the base film and the main surface of the base film 24 or 27 side of the base film are on the base 24 or 27 side of the moth eye layers 12 and 13.
  • the adhesive material provided above is provided in this order.
  • the protective film 14, the moth-eye layer 13, the base film, and the optical film made of the paste material are attached to the lower surface of the base material 24 or the outer surface of the base material 27, and the upper surface of the base material 24 or the base material 27.
  • An optical film made of a moth eye layer 12, a base film, and a paste material is attached to the inner surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Fluid Mechanics (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本発明は、視認性及び耐久性に優れ、かつ洗浄が容易な貯液槽、液中観察器具及び光学フィルムを提供する。本発明は、透明壁を有する貯液槽であって、前記貯液槽は、前記透明壁の内面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明壁側からこの順に備える貯液槽であり、好適には、前記貯液槽は、前記透明壁の外面に、モスアイ構造を有する第二モスアイ層を備えるとともに、前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられる。

Description

貯液槽、液中観察器具及び光学フィルム
本発明は、貯液槽、液中観察器具及び光学フィルムに関する。より詳しくは、観賞用水槽、液量計付きタンク等、透明壁を通して内部が観賞又は観察される容器に好適な貯液槽、水中観察用器具に好適な液中観察器具、及び、これらに利用される光学フィルムに関するものである。
貯液槽としては、観賞又は観察用容器が挙げられ、なかでも、魚類等の飼育繁殖を目的とした水槽が汎用されている。また、このような水槽は、通常、透明な材料で形成される。しかしながら、例えば、図9に示すような水21の入った観賞用の水槽では、観察者側の透明体(透明壁11)の外面(外表面)及び内面(内表面)において外光が反射し、観察者が見にくい状況になるとともに、写真撮影でストロボの光が映りこみ、撮影を困難にしている。したがって、魚類等の飼育繁殖を目的とした水槽においては、観賞用又は食用の魚類等を外部から明瞭に観察できるようにするため、観察窓や水槽の透明壁等の水槽自体についての改良のほか、設置するエアーポンプや清掃用品等のメンテナンスに関する用具についても種々の改良がなされてきている。
例えば、ガラスやアクリル樹脂等の透明性樹脂からなる水槽の透明壁の外表面に反射防止機能を有する薄膜を塗布したり、反射防止機能を有するフィルムを貼着したりすることにより、透明壁の外表面での外光の反射(以下、外表面反射ともいう。)を防止し、水槽内の観賞物を鮮やかに見ようとする工夫は、一般的に知られているところである。
また、外表面反射のみならず、水槽の内容物と透明壁の内表面(水槽の内側)との境界における反射(以下、内表面反射ともいう。)を防止するための技術として、水槽を構成する透明壁のうち、少なくとも観察者側に配置される透明壁の両面が反射防止機能を有する水槽が開示されている(例えば、特許文献1参照。)。
また、貯液槽としては、液量計として内容物を観察するための窓(観察用窓)が設けられたタンクが挙げられる。しかしながら、観察用窓において外表面反射及び内表面反射が発生し、水槽と同様に、内容物の量を正確に観察しづらいといった課題があった。
更に、魚類等の飼育繁殖を目的とした水槽においては、壁面の美化や飼育魚類の健康維持のために、藻類が壁面に付着しないようにするか、又は抑制することが求められている。そのための技術として、透明樹脂フィルムの片面に透明性及び耐水性を有する粘着層を備え、その表面に剥離シート又は紙を備え、前記剥離シート又は紙の少なくとも一端に剥離用剥ぎ取り手段を具備してなる水槽内貼りフィルムが開示されている(例えば、特許文献2参照。)。
また、貯液槽と同様に、水中メガネ、箱メガネ等の液中観察器具においても、水中を正確に観察しづらいといった課題があった。例えば、水中メガネのレンズ部において、表面反射が発生することがあった。
ところで、表面反射を防止する技術として、光学材料において、ナノ構造体の一種である「モスアイ構造」が知られている。モスアイ構造としては、例えば、透明基板の表面にナノメートルサイズのコーン状の突起を多数形成したものが挙げられる。このようなモスアイ構造によれば、空気層から透明基板にかけて屈折率が連続的に変化するために、入射光は光学的な表面と認識しなくなり、反射光を著しく減少させることができる(例えば、特許文献3~6参照。)。
特開2003-319733号公報 特開平9-322674号公報 特開2003-43203号公報 特開2005-156695号公報 国際公開第2006/059686号パンフレット 特開2001-264520号公報
しかしながら、モスアイ構造等のナノ構造体を表面に持つ光学フィルムを水槽中等の液中に入れると、微生物や藻類等の生物が表面に付着しやすくなり、透過率を損ねたり、汚れに見えたり、見栄えが悪くなったりする。また、図10に示すように、モスアイ構造16を用いた場合、細部(モスアイ構造16部分)に生物等の汚れ31が入り込んで付着してしまうと、この汚れを落とすために例えば布を用いて洗浄したとしても、布の繊維32は通常、モスアイ構造16に比べて非常に大きいため、モスアイ構造16の隙間に入り込んだ汚れ31は非常に取れにくくなってしまう。また、上記光学フィルムを観察用窓が設けられたタンク、又は、液中観察器具に利用した場合も、やはり汚れが付きやすく、取れにくくなってしまう。この汚れ対策として、特許文献2に記載の技術を利用したとしても、モスアイ構造上に剥離シート又は紙を配置することになり、モスアイ構造による反射防止機能が発揮されなくなってしまう。また、水と剥離シート又は紙との間に屈折率界面ができ、外光が反射されてしまうため、観察性や鑑賞性を著しく阻害してしまう。したがって、観賞又は観察用容器の表面反射を防止するためにモスアイ構造等のナノ構造体を用いた場合には、表面反射を防止しつつ、容器の内容物に起因する汚れの発生を抑制するとともに該汚れを洗浄しやすくするという点で改善の余地がある。また、液中観察器具の表面反射を防止するためにモスアイ構造等のナノ構造体を用いた場合にも、表面反射を防止しつつ、液中観察器具の透明窓に汚れが発生するのを抑制するとともに、該汚れを洗浄しやすくするという点で改善の余地がある。
他方、特許文献1に記載の技術によれば、ナノ構造体を用いずに多層の反射防止膜を用いることから、このようなナノ構造体特有の汚れの問題は発生しない。しかしながら、多層の反射防止膜を用いることによって反射防止膜の波長分散特性が悪くなり、反射光に色付きが発生してしまう。また、多層の反射防止膜では、モスアイ構造のように表面反射がほとんどなくなるレベルにまで反射率を落とし込むことができない。更に、例えば、透明壁の内面又は透明窓の外面に多層の反射防止膜を設けた場合、魚等が壁又は窓にぶつかってしまうと多層の反射防止膜では傷が入りやすい。すなわち、多層の反射防止膜は、通常、耐久性に乏しい。このように、表面反射を防止するために多層の反射防止膜を用いた場合には、色付き発生を抑制しつつ反射率を低下することによる更なる視認性の向上と、耐久性の向上とを実現するという点で工夫の余地がある。更に、多層の反射防止膜は、製造工程が複雑であり、高価な材料であるため、広範囲な用途に適しているかが問題である。
本発明は、上記現状に鑑みてなされたものであり、視認性及び耐久性に優れ、かつ洗浄が容易な貯液槽、液中観察器具及び光学フィルムを提供することを目的とするものである。
本発明者らは、視認性及び耐久性に優れ、かつ洗浄が容易な貯液槽について種々検討したところ、モスアイ構造に着目した。そして、貯液槽を構成する透明壁の内面に、モスアイ構造のみならず、モスアイ構造を被覆する保護層を設けることにより、色付き発生を抑制しつつ表面反射、特に内表面反射を著しく減少することができるとともに、貯液槽の内面の耐久性を向上でき、更に、貯液槽の内面を容易に洗浄できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明は、透明壁を有する貯液槽であって、前記貯液槽は、前記透明壁の内面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明壁側からこの順に備える貯液槽である。これにより、視認性及び耐久性に優れ、かつ洗浄が容易な貯液槽を実現することができる。また、多層の反射防止膜等の反射防止膜を利用した場合と比較して、貯液槽を格段に安く作製することができる。
本発明の貯液槽の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の貯液槽における好ましい形態について以下に詳しく説明する。なお、以下の形態は、適宜組み合わされてもよい。
外表面反射を著しく減少し、視認性を更に向上する観点からは、前記貯液槽は、前記透明壁の外面に、モスアイ構造を有する第二モスアイ層を備え、前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることが好ましい。
耐久性を更に向上する観点からは、前記保護層は、含フッ素樹脂を含むことが好ましい。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本発明の貯液槽を貯水槽として好適に利用することができる。
前記保護層の屈折率は、前記貯液槽に貯められる液体の屈折率に揃えられていることが好ましい。これにより、本発明の効果をより確実に奏することができる。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本発明の貯液槽を貯水槽として好適に利用することができる。
前記保護層の屈折率は、前記透明壁及び前記第一モスアイ層の屈折率よりも小さいことが好ましい。これにより、透明壁及び第一モスアイ層を最適材料により形成しつつ、貯液槽に貯められる液体の屈折率と、保護層の屈折率とを容易に揃えることができる。
前記保護層の屈折率は、1.28~1.38であることが好ましい。これにより、本発明の貯液槽を貯水槽として好適に利用することができる。
本発明はまた、透明壁を有する貯液槽の内面に貼り付けられる光学フィルムであって、前記光学フィルムは、モスアイ構造を有するモスアイ層と、前記モスアイ構造を被覆する保護層とを備える光学フィルム(以下、「本発明の第一の光学フィルム」とも言う。)でもある。このような本発明の第一の光学フィルムを、貯液槽の透明壁の内面に貼り付けることによって、本発明の貯液槽を容易かつ安価に実現することができる。
本発明の第一の光学フィルムの構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の第一の光学フィルムにおける好ましい形態について以下に詳しく説明する。なお、以下の形態は、適宜組み合わされてもよい。
耐久性を更に向上する観点からは、前記保護層は、含フッ素樹脂を含むことが好ましい。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本発明の第一の光学フィルムが貼り付けられた貯液槽を貯水槽として好適に利用することができる。
前記保護層の屈折率は、前記貯液槽に貯められる液体の屈折率に揃えられていることが好ましい。これにより、本発明の効果をより確実に奏することができる。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本発明の第一の光学フィルムが貼り付けられた貯液槽を貯水槽として好適に利用することができる。
前記保護層の屈折率は、前記透明壁及び前記モスアイ層の屈折率よりも小さいことが好ましい。これにより、透明壁及びモスアイ層を最適材料により形成しつつ、本発明の第一の光学フィルムが貼り付けられた貯液槽に貯められる液体の屈折率と、保護層の屈折率とを容易に揃えることができる。
前記保護層の屈折率は、1.28~1.38であることが好ましい。これにより、本発明の第一の光学フィルムが貼り付けられた貯液槽を貯水槽として好適に利用することができる。
本発明はまた、透明窓を有する液中観察器具であって、前記液中観察器具は、前記透明窓の外面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明窓側からこの順に備える液中観察器具でもある。これにより、視認性及び耐久性に優れ、かつ洗浄が容易な液中観察器具を実現することができる。また、多層の反射防止膜等の反射防止膜を利用した場合と比較して、液中観察器具を格段に安く作製することができる。
本発明の液中観察器具の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の液中観察器具における好ましい形態について以下に詳しく説明する。なお、以下の形態は、適宜組み合わされてもよい。
透明窓の内表面での外光の反射を著しく減少し、視認性を更に向上する観点からは、前記液中観察器具は、前記透明窓の内面に、モスアイ構造を有する第二モスアイ層を備え、前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることが好ましい。
耐久性を更に向上する観点からは、前記保護層は、含フッ素樹脂を含むことが好ましい。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本発明の液中観察器具を水中観察器具として好適に利用することができる。
前記保護層の屈折率は、前記液中観察器具に接する液体の屈折率に揃えられていることが好ましい。これにより、本発明の効果をより確実に奏することができる。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本発明の液中観察器具を水中観察器具として好適に利用することができる。
前記保護層の屈折率は、前記透明窓及び前記第一モスアイ層の屈折率よりも小さいことが好ましい。これにより、透明窓及び第一モスアイ層を最適材料により形成しつつ、液中観察器具に接する液体の屈折率と、保護層の屈折率とを容易に揃えることができる。
前記保護層の屈折率は、1.28~1.38であることが好ましい。これにより、本発明の液中観察器具を水中観察器具として好適に利用することができる。
本発明はまた、透明窓を有する液中観察器具の外面に貼り付けられる光学フィルムであって、前記光学フィルムは、モスアイ構造を有するモスアイ層と、前記モスアイ構造を被覆する保護層とを備える光学フィルム(以下、「本発明の第二の光学フィルム」とも言う。)でもある。このような本発明の第二の光学フィルムを、液中観察器具の透明窓の外面に貼り付けることによって、本発明の液中観察器具を容易かつ安価に実現することができる。
本発明の第二の光学フィルムの構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素を含んでいても含んでいなくてもよく、特に限定されるものではない。
本発明の第二の光学フィルムにおける好ましい形態について以下に詳しく説明する。なお、以下の形態は、適宜組み合わされてもよい。
耐久性を更に向上する観点からは、前記保護層は、含フッ素樹脂を含むことが好ましい。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本発明の第二の光学フィルムが貼り付けられた液中観察器具を水中観察器具として好適に利用することができる。
前記保護層の屈折率は、前記液中観察器具に接する液体の屈折率に揃えられていることが好ましい。これにより、本発明の効果をより確実に奏することができる。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本発明の第二の光学フィルムが貼り付けられた液中観察器具を水中観察器具として好適に利用することができる。
前記保護層の屈折率は、前記透明窓及び前記モスアイ層の屈折率よりも小さいことが好ましい。これにより、透明窓及びモスアイ層を最適材料により形成しつつ、本発明の第二の光学フィルムが貼り付けられた液中観察器具に接する液体の屈折率と、保護層の屈折率とを容易に揃えることができる。
前記保護層の屈折率は、1.28~1.38であることが好ましい。これにより、本発明の第二の光学フィルムが貼り付けられた液中観察器具を水中観察器具として好適に利用することができる。
本発明の貯液槽及び本発明の第一の光学フィルムによれば、視認性及び耐久性に優れ、かつ洗浄が容易な貯液槽を実現することができる。より詳細には、色付きの発生を著しく抑制できるとともに、貯液槽の内面の耐久性を向上でき、更に、貯液槽の内面を容易に洗浄できる。また、保護層の屈折率と、貯液槽に貯められる液体の屈折率とを容易に揃えることができるため、貯液槽の表面反射、特に内表面反射を著しく減少することができる。更に、保護層の屈折率と空気層の屈折率とは、通常、異なることになるので、外から透明壁を通して貯液槽内の液面の位置を容易に確認することができる。
本発明の液中観察器具及び本発明の第二の光学フィルムによれば、視認性及び耐久性に優れ、かつ洗浄が容易な液中観察器具を実現することができる。より詳細には、色付きの発生を著しく抑制できるとともに、液中観察器具の外面の耐久性を向上でき、更に、液中観察器具の外面を容易に洗浄できる。また、保護層の屈折率と、液中観察器具に接する液体の屈折率とを容易に揃えることができるため、液中観察器具の表面反射、特に透明窓の外表面での外光の反射を著しく減少することができる。
実施例1の貯液槽を示す模式図であり、(a)は、全体の断面図であり、(b)は、(a)中の破線で囲まれた領域(側面)の拡大図である。 実施例1の貯液槽におけるモスアイ層を示す断面模式図である。 実施例1の貯液槽におけるモスアイ層及び保護層を示す断面模式図である。 実施例1の貯液槽における屈折率変化を説明するための図であり、(a)は、貯液槽の側面断面図であり、(b)は、貯液槽の側面における屈折率変化を示すグラフである。 実施例2の貯液槽を示す模式図であり、(a)は、全体の断面図であり、(b)は、(a)中の破線で囲まれた領域(側面)の拡大図である。 実施例3の貯液槽を示す斜視模式図である。 実施例3の貯液槽における屈折率変化を説明するための図であり、(a)は、貯液槽の液量計部分の断面図であり、(b)は、貯液槽の液量計部分における屈折率変化を示すグラフである。 モスアイ構造を説明する図(屈折率が表面から連続的に変化し、界面で反射が極端に減少する原理を説明する図)であり、(a)は、モスアイ構造の断面の模式図を示し、(b)は、モスアイ構造における屈折率の変化を示す。 従来の観賞用の水槽を示す断面模式図である。 従来のモスアイ構造上に汚れが付着した状態を示す断面模式図である。 実施例4の液中観察器具を示す断面模式図である。 実施例4の液中観察器具における屈折率変化を説明するための図であり、(a)は、液中観察器具の断面図であり、(b)は、液中観察器具における屈折率変化を示すグラフである。 実施例4の液中観察器具の変形例を示す断面模式図である。 実施例4の液中観察器具の変形例を示す断面模式図である。 実施例5の液中観察器具を示す断面模式図である。 実施例5の液中観察器具における屈折率変化を説明するための図であり、(a)は、液中観察器具の断面図であり、(b)は、液中観察器具における屈折率変化を示すグラフである。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
なお、本明細書で、ある2つの部材の屈折率が揃えられているとは、本発明の効果を奏する範囲内に両者の屈折率があればよく、両者の屈折率は、完全に同じであってもよいし、実質的に同じであってもよい。
また、本明細書で、屈折率は、室温(25℃)、測定波長589nm(D線)で測定した値である。
(実施形態1)
実施形態1の貯液槽は、透明壁を有する貯液槽であって、前記貯液槽は、前記透明壁の内面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明壁側からこの順に備える。
本実施形態の貯液槽内には、少なくとも液体を含む内容物が貯められる。そして、本実施形態の貯液槽において、観察者は、外から透明壁を通して槽内の内容物、例えば、液体中の物(例えば、生物)や液面、液体自身等を観賞又は観察することになる。このように、本実施形態の貯液槽は、水槽、観察用窓付きタンク等の観賞又は観察用容器に好適である。
本実施形態の貯液槽によれば、モスアイ構造を有する第一モスアイ層を備えることから、第一モスアイ層と、保護層との界面における反射を著しく(例えば、反射率0.1%以下に)減少することができる。また、透明壁の屈折率と貯液槽に貯められる液体(以下、「内容液」とも言う。)の屈折率とは、通常、異なることになる。しかしながら、第一モスアイ層の材料としては、透明壁の屈折率に屈折率が揃えられた材料を適宜選択することができ、保護層の材料としては、内容液の屈折率に屈折率が揃えられた材料を適宜選択することができる。すなわち、透明壁との屈折率の適合性を第一モスアイ層によって取るとともに、内容液との屈折率の適合性を保護層によって取ることができる。その結果、内容液から透明壁にかけて、屈折率を連続的に変化させることができるので、液体の満たされた領域における内表面反射を著しく(例えば、反射率0.1%以下に)減少することができる。
他方、特許文献6には、電離放射線硬化性樹脂組成物の硬化物からなる透明層で構成され、前記透明層の一方の側の面には、光の波長以下のピッチの無数の微細凹凸が形成された凹凸部を有し、前記透明層よりは光の屈折率が低い樹脂組成物からなる層(表面層4)が、前記凹凸上に積層されている反射防止フィルムが開示されている。また、表面層4の材料として、屈折率が1.3~1.4の材料を用いることが開示されている。しかしながら、表面層4があると、空気との界面ができてしまい、例えば表面層4の屈折率を1.35とした場合、空気(屈折率=1)と表面層4(屈折率=1.35)との間で略2%の反射が起こるため、不要な反射を低減する効果は少ない。
また、モスアイ構造による反射防止機構は、多層の反射防止膜のようにλ/4条件を使用していないため、色付き発生についても大幅に、ほとんど無いと言っていいレベルにまで抑制することができる。
また、第一モスアイ層とは別に、モスアイ構造を被覆する保護層を備えることから、保護層の材料として耐久性に優れた材料を適宜選択することができる。したがって、貯液槽の内面の耐久性を向上することができる。
また、モスアイ構造が保護層によって被覆されていることから、洗浄が困難であるモスアイ構造に汚れが付着するのを防止することができる。更に、保護層の、内容液に接する部分(表面)の形状については特に限定されないことから、該表面をモスアイ構造に比べて平坦にすることができる。そのため、例え保護層に汚れが付着したとしても、容易に汚れを洗浄することができる。
また、内容液の屈折率に揃えられる保護層の屈折率と、空気の屈折率とは、通常、異なることになる。したがって、内容液(液体)のある領域では、各部材の屈折率が揃えられることとなるが、内容液(液体)が入っていない領域(通常、空気層)では、通常、各部材の屈折率がマッチングせず、内表面反射が発生することになる。そのため、内容液のある領域と内容液のない領域とで、内表面反射の有無が発生するので、外から透明壁を通して内容液(液面)の位置を容易に確認することができる。
また、本発明のモスアイ構造は、例えば、ベースフィルム又は金型の表面に紫外線硬化性樹脂を塗布する工程を経て、金型にベースフィルムを押し付けた後、ベースフィルム越しの紫外線硬化により、紫外線硬化性樹脂を硬化させてモスアイ構造を形成することができる。したがって、複数回の塗布や複数回の蒸着等、高価な工程を経て作られる多層フィルム(多層の反射防止膜)等の反射防止膜を利用した場合と比較して、貯液槽を格段に安く作製することができる。
前記貯液槽は、前記透明壁の外面に、モスアイ構造を有する第二モスアイ層を備え、前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることが好ましい。これにより、第二モスアイ層により外表面反射を著しく(例えば、反射率0.1%以下に)減少することができる。したがって、第一モスアイ層及び第二モスアイ層が重複する領域において、反射を更に減少することができる。なお、第二モスアイ層及び第一モスアイ層は、観察方向から見たときに重なって見える範囲に配置されればよく、第二モスアイ層及び第一モスアイ層の形状、サイズ及び配置場所はそれぞれ、一致していてもよいし、一致していなくてもよいが、一致していることが好ましい。
前記第一モスアイ層、第二モスアイ層及び保護層が設けられる場所は、観察者に視認される場所であれば特に限定されず、貯液槽の側面であってもよいし、上面であってもよいし、底面であってもよい。また、前記第一モスアイ層、第二モスアイ層及び保護層は、透明壁の全部(全面)に設けられてもよいし、一部に設けられてもよいが、少なくとも観察者が観賞又は観察し得る部分に設けられることが好ましい。すなわち、観賞又は観察方向が予め定まっている用途に本実施形態の貯液槽を使用する場合には、全ての透明壁に第一モスアイ層、第二モスアイ層及び保護層を設けずとも、観察者が観賞又は観察する側に存在する特定の透明壁についてのみ、これらの部材を設ければよい。
前記モスアイ構造は、ナノメートルサイズの突起が多数形成されたものであれば特に限定されない。すなわち、前記モスアイ構造は、高さ(深さ)が1nm以上、1μm(=1000nm)未満の突起を多数有するものであれば特に限定されないが、より具体的には、ピッチ(突起の頂点間の距離)及び高さが可視光の波長の長さ(380~780nm)よりも小さい突起を有することが好ましく、ピッチが50~300nm、高さが50~300nmの略円錐形状(コーン形状)の突起を有することがより好ましい。なお、前記第一モスアイ層及び第二モスアイ層の膜厚は特に限定されないが、通常、1~30μm程度とすればよい。
このような表面構造は、一般に「モスアイ(蛾の目)構造」と呼ばれ、モスアイ構造を有する膜は、可視光の反射率を例えば0.1%以下にすることができる超低反射膜として知られている。図8は、モスアイ構造を説明する図(屈折率が表面から連続的になり、界面で反射が極端に減少する原理を説明する図)であり、(a)は、モスアイ構造の断面の模式図を示し、(b)は、モスアイ構造における屈折率の変化を示す。なお、図8ではモスアイ構造に接する層が空気層の場合を図示している。モスアイ構造を有する膜においては、通常、図8(a)に示すように、可視光の波長の長さ(380~780nm)よりも小さな突起19が存在することにより、図8(b)に示すように、界面の屈折率が、膜の表面上の媒質(空気)の屈折率(空気=1.0)から、膜の構成材料の屈折率(モスアイ構造を有する膜として樹脂を用いた場合は、通常、1.5程度)と同等になるまで連続的に徐々に大きくなっているとみなすことができる。その結果、実質的には屈折率界面が存在せず、膜の界面での反射率が極端に減少する。
なお、モスアイ構造は、例えばナノインプリント法(UVナノインプリント法や熱インプリント法)の手法を用いて形成することができる。なかでも、陽極酸化により表面にナノメートルサイズの穴を形成したアルミニウム基板を金型として用いる方法が好適である。より具体的には、押出加工により作製された円柱状又は円筒状のアルミニウム管の外周面を切削研磨した後、得られた研磨アルミニウム管の平滑なアルミニウム表面(外周面)に対し、アルミニウムの陽極酸化とエッチングとを数回、例えば3回繰り返し実施することによりナノメートルサイズの穴を作製する。この陽極酸化を用いる方法によれば、ナノメートルサイズの窪みを表面に、ランダムに、ほぼ均一に形成することが可能であり、円柱状又は円筒状の金型ロールの表面に、連続生産に必要な継ぎ目のない(シームレスな)ナノ構造を形成することができる。したがって、転写膜(例えば、紫外線硬化性樹脂や熱硬化性樹脂)に対し、継ぎ目のないナノ構造を連続的に転写することができる。
前記第一モスアイ層及び第二モスアイ層を構成する材料としては特に限定されないが、前記第一モスアイ層及び第二モスアイ層は、前記透明壁と屈折率が揃えられていることが好ましい。より具体的には、これらの屈折率の差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両界面における反射をほとんど視認されなくすることができる。
前記第一モスアイ層及び第二モスアイ層のその他の光学特性については特に限定されず、一般的なモスアイ膜と同様でよいが、観察者が貯液槽内の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましく、屈折率が1.45~1.55(より好適には1.47~1.53)であることが好ましい。
また、前記第一モスアイ層及び第二モスアイ層を上述のナノインプリント法によって容易に作製する観点からは、前記第一モスアイ層及び第二モスアイ層の材料としては、紫外線、可視光等の電磁波等のエネルギー線により硬化する樹脂や熱硬化性樹脂が好適である。
前記第一モスアイ層及び第二モスアイ層はそれぞれ、(1)透明壁上にベースフィルムを介して設けられた形態であってもよいし、(2)透明壁上に直接設けられた形態であってもよい。
上記(1)の形態によれば、モスアイ構造を有する層と、該モスアイ構造を被覆する保護層とを有する光学フィルム、及び、モスアイ構造を有する層を有する光学フィルムを好適に利用することができる。すなわち、例えばナノインプリント法により量産された光学フィルムを利用できるので、本実施形態の貯液槽の生産性を向上することができる。
そして、このような光学フィルムもまた本実施形態の一つである。本実施形態の光学フィルムは、実施形態1の貯液槽、すなわち透明壁を有する貯液槽の内面に貼り付けられる光学フィルム(槽内貼り付け用フィルム)であって、本実施形態の光学フィルムは、モスアイ構造を有するモスアイ層(前記第一モスアイ層)と、前記モスアイ構造(前記第一モスアイ層のモスアイ構造)を被覆する保護層とを備える。
ベースフィルムは、製造段階においてモスアイ層(第一モスアイ層及び/又は第二モスアイ層)の材料(例えば、紫外線硬化性樹脂や熱硬化性樹脂)を保持するための基材であり、透明性、耐水性及び耐溶剤性(耐液性)のあるフィルムであることが好ましい。また、ベースフィルムは、第一モスアイ層、第二モスアイ層及び透明壁と屈折率が揃えられていることが好ましい。より具体的には、これらの屈折率の差は、0.05以下(より好適には、0.03以下)であることが好ましく、これにより各界面における反射をほとんど視認されなくすることができる。また、同様の観点から、これらの部材の内で互い隣接する部材間の屈折率の差は、0.05以下(より好適には、0.03以下)であることが好ましい。
ベースフィルムのその他の光学特性については特に限定されず、一般的な光学フィルムの基材に利用されるものと同様でよいが、観察者が貯液槽内の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましく、屈折率が1.55~1.45(より好適には1.53~1.47)であることが好ましい。
また、本実施形態の光学フィルムについては、透明性、耐水性、防水性及び耐溶剤性(耐液性)のある透明フィルムであることが好ましい。更に、本実施形態の光学フィルム全体の光学特性についても特に限定されないが、観察者が貯液槽内の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。
ベースフィルムの具体例としては、日本ゼオン社製ゼオノア、JSR社製アートン、三井化学社製COC、三井化学社製TPX等が挙げられ、ベースフィルムとしては、オレフィン系フィルムを用いることが好ましい。なお、ベースフィルムの膜厚は特に限定されないが、通常、30~100μm程度とすればよい。
また、上記(1)の形態において、本実施形態の光学フィルムは、ベースフィルムのモスアイ層(第一モスアイ層又は第二モスアイ層)が設けられていない側の面上に糊材料を有することが好ましい。糊材料(接着剤)は、本実施形態の光学フィルムを容易に貯液槽内に取り付けるためのものであり、透明性及び耐水性を有することが好ましい。糊材料は、具体的には、例えばアクリル系接着剤等をベースフィルムの片面に公知の方法で塗設することにより設けることができ、その膜厚は適宜調整することができる。なお、上記(1)の形態において、本実施形態の光学フィルムは、糊材料上に、容易に剥離可能なラミネートフィルムを更に有してもよい。
一方、上記(2)の形態によれば、ベースフィルムや糊材料等の部材を省略することができるので、本実施形態の貯液槽のコストを削減することができる。また、ベースフィルムや糊材料に起因する反射や光透過率の減少を無くすことができるので、貯液槽の視認性を更に向上することができる。なお、上記(2)の形態は、例えば、透明壁上に、直接、紫外線硬化性樹脂や熱硬化性樹脂を塗布した後、柔軟な型を用いて上述のナノインプリント法によりモスアイ構造を転写することによって作製することができる。
前記保護層の屈折率は、前記貯液槽に貯められる液体(内容液)の屈折率に揃えられていることが好ましい。これにより、本実施形態の効果をより確実に奏することができる。より具体的には、前記保護層の屈折率と内容液の屈折率との差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両者間の界面における反射をほとんど視認されなくすることができる。このように、前記保護層の屈折率は、前記貯液槽に貯められる液体(内容液)の屈折率±0.05(より好適には、±0.03)以内であることが好ましい。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本実施形態の貯液槽を、水を貯める槽、すなわち貯水槽として好適に利用することができる。より具体的には、前記保護層の屈折率と水の屈折率との差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両者間の界面における反射をほとんど視認されなくすることができる。
また、水の屈折率は、1.33程度であるから、本実施形態の貯液槽を貯水槽として好適に利用する観点からは、前記保護層の屈折率は、1.28~1.38(より好適には、1.3~1.36)であることが好ましい。
本実施形態において、透明壁の材料としては、ガラス、透明樹脂等の屈折率が1.5程度の透明部材を好適に利用することができ、また、第一モスアイ層の材料としては、透明樹脂等の屈折率が1.5程度の透明部材を好適に利用することができる。したがって、これらの透明部材の屈折率は、通常、内容液(例えば、水の屈折率は1.33)の屈折率よりも大きい。このように、透明壁及び第一モスアイ層を最適材料により形成しつつ、内容液の屈折率と、保護層の屈折率とを容易に揃える観点からは、前記保護層の屈折率は、前記透明壁及び前記第一モスアイ層の屈折率よりも小さいことが好ましい。
前記保護層のその他の光学特性については特に限定されないが、観察者が貯液槽内の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。
前記保護層は、含フッ素樹脂を含むことが好ましい。これにより、一般的に耐久性にあまり優れないモスアイ構造をより強力に保護することができるので、実施形態1の貯液槽の耐久性をより向上することができる。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本実施形態の貯液槽を貯水槽として好適に利用することができる。なお、保護層は、第一モスアイ層上に一般的な塗布方法(例えば、スプレー法、スピンコート法、ダイコーター、スリットコーター等)により保護層材料を塗布した後、適宜、乾燥処理を行うことによって形成することができる。
前記含フッ素樹脂は、炭素-フッ素結合を備えた樹脂であり、樹脂自身が撥水性を備えている。含フッ素樹脂材料の具体例としては、旭硝子社製サイトップCTX809Aが挙げられる。なお、保護層の膜厚は特に限定されないが、通常、1~5μm程度とすればよい。
第一モスアイ層の材料として樹脂材料(高分子材料)用い、この第一モスアイ層上に保護層材料として含フッ素樹脂材料(フッ素系の樹脂材料)を塗布した場合、保護層の密着力が弱くなってしまう場合がある。そこで、この場合、保護層材料の塗布前に、プライマー(下塗り剤)処理を行うことが好ましい。
前記保護層の表面の平坦性については、第一モスアイ層のモスアイ構造よりも平坦であれば特に限定されないが、付着した汚れを一般的な清掃部材(例えば、布やブラシ)を用いて一般的な洗浄方法(例えば、拭く方法や擦る方法)により洗浄可能な程度に平坦であることが好ましい。また、樹脂材料を用いて一般的な塗布方法(例えば、スプレー法、スピンコート法、ダイコーター、スリットコーター等)により保護層を形成した場合に達成できる程度の平坦性であっても特に問題はない。
前記透明壁は、観察者が貯液槽内の観察又は観賞物を視認できる程度に透明な部材であればよく、一般的な水槽や観察用窓に汎用されているものを利用できるが、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。一方、前記透明壁の屈折率は特に限定されないが、モスアイ層の基材フィルム(ベースフィルム)やモスアイ構造形成用の樹脂の屈折率に揃えられることが好ましく、これにより本実施形態の効果を充分に発揮することができる。
前記透明壁の材料としては特に限定されず、各種ガラス材料や透明樹脂(例えば、アクリル樹脂)材料が挙げられ、このような材料としては、水槽や観察用窓を構成するものとして汎用されているものが挙げられる。
なお、前記透明壁は、本実施形態の貯液槽の全部を構成してもよいし、一部を構成してもよい。このように、前記透明壁は、透明窓であってもよい。
前記貯液槽は、内容物が外から観賞又は観察されるもの(観賞又は観察用容器)であればその用途は特に限定されないが、なかでも、魚類等の飼育繁殖を目的とした水槽、液量計として内容物を観察するための窓(観察用窓)が設けられたタンクが好適である。
前記貯液槽に貯められる液体(内容液)は、保護層の少なくとも一部に接することが好ましい。また、内容液の種類や屈折率は特に限定されず、前記貯液槽の用途に合わせて適宜選択すればよいが、水が好適である。なお、前記貯液槽に入れられる内容物としては、液体に限定されず、魚類等の生物、微生物、オブジェ等が含まれてもよい。
(実施形態2)
実施形態2の液中観察器具は、透明窓を有する液中観察器具であって、前記液中観察器具は、前記透明窓の外面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明窓側からこの順に備える。
なお、透明窓の外面は、透明窓の観察者とは反対側の面である。
このように、実施形態2は、実施形態1で説明した第一モスアイ層及び保護層を液中観察器具に適用した形態である。したがって、以下では、実施形態1と異なる形態や効果について主に説明し、実施形態1と重複する内容については省略する。
本実施形態の液中観察器具は、透明窓が少なくとも液体に接した状態で使用される。そして、観察者は、透明窓を通して、液中を観賞又は観察することになる。
本実施形態の液中観察器具によれば、モスアイ構造を有する第一モスアイ層を備えることから、第一モスアイ層と、保護層との界面における反射を著しく(例えば、反射率0.1%以下に)減少することができる。また、透明窓の屈折率と液中観察器具(透明窓)に接する液体(以下、単に「液体」とも言う。)の屈折率とは、通常、異なることになる。しかしながら、第一モスアイ層の材料としては、透明窓の屈折率に屈折率が揃えられた材料を適宜選択することができ、保護層の材料としては、液体の屈折率に屈折率が揃えられた材料を適宜選択することができる。すなわち、透明窓との屈折率の適合性を第一モスアイ層によって取るとともに、液体との屈折率の適合性を保護層によって取ることができる。その結果、液体から透明窓にかけて、屈折率を連続的に変化させることができるので、透明窓の外表面での外光の反射を著しく(例えば、反射率0.1%以下に)減少することができる。
また、実施形態1と同様の理由から、以下の効果を奏することができる。
色付きの発生を大幅に、ほとんど無いと言っていいレベルにまで抑制することができる。
また、透明窓の外面の耐久性を向上することができる。
また、モスアイ構造に汚れが付着するのを防止することができる。更に、保護層の、液体に接する部分(表面)の形状については特に限定されないことから、該表面をモスアイ構造に比べて平坦にすることができる。そのため、例え保護層に汚れが付着したとしても、容易に汚れを洗浄することができる。
また、多層フィルム(多層の反射防止膜)等の反射防止膜を利用した場合と比較して、貯液槽を格段に安く作製することができる。
前記液中観察器具は、前記透明窓の内面に、モスアイ構造を有する第二モスアイ層を備え、前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることが好ましい。
なお、透明窓の内面は、透明窓の観察者側の面である。
これにより、第二モスアイ層により、透明窓の内表面での外光の反射を著しく(例えば、反射率0.1%以下に)減少することができる。したがって、第一モスアイ層及び第二モスアイ層が重複する領域において、反射を更に減少することができる。なお、第二モスアイ層及び第一モスアイ層は、観察方向から見たときに重なって見える範囲に配置されればよく、第二モスアイ層及び第一モスアイ層の形状、サイズ及び配置場所はそれぞれ、一致していてもよいし、一致していなくてもよいが、一致していることが好ましい。
前記第一モスアイ層、第二モスアイ層及び保護層が設けられる場所は、観察者に視認される場所であれば特に限定されない。また、前記第一モスアイ層、第二モスアイ層及び保護層は、透明窓の全部(全面)に設けられてもよいし、一部に設けられてもよいが、少なくとも観察者が観賞又は観察し得る部材に設けられることが好ましい。できるだけ広い範囲で視認性を向上する観点からは、前記第一モスアイ層、第二モスアイ層及び保護層は、透明窓の全部(全面)に設けられることが好ましい。
前記第一モスアイ層及び第二モスアイ層を構成する材料としては特に限定されないが、前記第一モスアイ層及び第二モスアイ層は、前記透明窓と屈折率が揃えられていることが好ましい。より具体的には、これらの屈折率の差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両界面における反射をほとんど視認されなくすることができる。
前記第一モスアイ層及び第二モスアイ層のその他の光学特性については特に限定されず、一般的なモスアイ膜と同様でよいが、観察者が液中の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましく、屈折率が1.45~1.55(より好適には1.47~1.53)であることが好ましい。
前記第一モスアイ層及び第二モスアイ層はそれぞれ、実施形態1の場合と同様の観点から、(1)透明窓上にベースフィルムを介して設けられた形態であってもよいし、(2)透明窓上に直接設けられた形態であってもよい。
そして、このような光学フィルムもまた本実施形態の一つである。本実施形態の光学フィルムは、実施形態2の液中観察器具、すなわち透明窓を有する液中観察器具の外面に貼り付けられる光学フィルムであって、本実施形態の光学フィルムは、モスアイ構造を有するモスアイ層(前記第一モスアイ層)と、前記モスアイ構造(前記第一モスアイ層のモスアイ構造)を被覆する保護層とを備える。
ベースフィルムは、観察者が液中の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましく、屈折率が1.55~1.45(より好適には1.53~1.47)であることが好ましい。
また、本実施形態の光学フィルムについては、透明性、耐水性、防水性及び耐溶剤性(耐液性)のある透明フィルムであることが好ましい。更に、本実施形態の光学フィルム全体の光学特性についても特に限定されないが、観察者が液中の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。
また、上記(1)の形態において、本実施形態の光学フィルムは、実施形態1の場合と同様の観点から、ベースフィルムのモスアイ層(第一モスアイ層又は第二モスアイ層)が設けられていない側の面上に糊材料を有することが好ましい。糊材料(接着剤)は、本実施形態の光学フィルムを容易に液中観察器具に取り付けるためのものであり、透明性及び耐水性を有することが好ましい。
前記保護層の屈折率は、前記液中観察器具に接する液体の屈折率に揃えられていることが好ましい。これにより、本実施形態の効果をより確実に奏することができる。より具体的には、前記保護層の屈折率と液体の屈折率との差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両者間の界面における反射をほとんど視認されなくすることができる。このように、前記保護層の屈折率は、前記液中観察器具に接する液体の屈折率±0.05(より好適には、±0.03)以内であることが好ましい。
前記保護層の屈折率は、水の屈折率に揃えられていることが好ましい。これにより、本実施形態の液中観察器具を、水中を観察する器具、すなわち水中観察器具として好適に利用することができる。より具体的には、前記保護層の屈折率と水の屈折率との差は、0.05(より好適には、0.03)以下であることが好ましく、これにより両者間の界面における反射をほとんど視認されなくすることができる。
また、水の屈折率は、1.33程度であるから、本実施形態の液中観察器具を水中観察器具として好適に利用する観点からは、前記保護層の屈折率は、1.28~1.38(より好適には、1.3~1.36)であることが好ましい。
本実施形態において、透明窓の材料としては、ガラス、透明樹脂等の屈折率が1.5程度の透明部材を好適に利用することができ、また、第一モスアイ層の材料としては、透明樹脂等の屈折率が1.5程度の透明部材を好適に利用することができる。したがって、これらの透明部材の屈折率は、通常、液体(例えば、水の屈折率は1.33)の屈折率よりも大きい。このように、透明窓及び第一モスアイ層を最適材料により形成しつつ、液体の屈折率と、保護層の屈折率とを容易に揃える観点からは、前記保護層の屈折率は、前記透明窓及び前記第一モスアイ層の屈折率よりも小さいことが好ましい。
前記保護層のその他の光学特性については特に限定されないが、観察者が液中の観察又は観賞物を視認できる程度に透明であることが好ましく、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。
前記保護層は、含フッ素樹脂を含むことが好ましい。これにより、一般的に耐久性にあまり優れないモスアイ構造をより強力に保護することができるので、実施形態2の液中観察器具の耐久性をより向上することができる。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、前記保護層が含フッ素樹脂を含むことにより、前記保護層の屈折率を水の屈折率に容易に揃えることができる。すなわち、これにより、本実施形態の液中観察器具を水中観察器具として好適に利用することができる。
前記透明窓は、観察者が液中の観察又は観賞物を視認できる程度に透明な部材であればよく、一般的な水中メガネや箱メガネに汎用されているレンズや透明板を利用できるが、より具体的には、光透過率が90%(より好適には95%)以上であることが好ましく、ヘイズが10%(より好適には1%)以下であることが好ましい。一方、前記透明窓の屈折率は特に限定されないが、モスアイ層の基材フィルム(ベースフィルム)やモスアイ構造形成用の樹脂の屈折率に揃えられることが好ましく、これにより本実施形態の効果を充分に発揮することができる。
前記透明窓の材料としては特に限定されず、各種ガラス材料や透明樹脂(例えば、アクリル樹脂)材料が挙げられ、このような材料としては、水中メガネや箱メガネを構成するものとして汎用されているものが挙げられる。
なお、前記透明窓は、本実施形態の液中観察器具の全部を構成してもよいし、一部を構成してもよい。
前記液中観察器具は、観察者が透明窓を通して液中を観賞又は観察するものであればその用途は特に限定されないが、なかでも、液外から液中を観察するために用いる器具及び水中メガネが好適である。前者としては、箱メガネが好適である。また、前者の場合、透明窓は、透明板であってもよく、後者の場合、透明窓は、透明レンズであってもよい。更に、前記液中観察器具は、船舶、水中施設等に設けられる水中観察用の窓又は壁であってもよい。
液体の種類や屈折率は特に限定されず、前記液中観察器具の用途に合わせて適宜選択すればよく、例えば、水、海水、溶剤等が挙げられる。
(実施例1)
図1は、実施例1の貯液槽を示す模式図であり、(a)は、全体の断面図であり、(b)は、(a)中の破線で囲まれた領域(側面)の拡大図である。図2は、実施例1の貯液槽におけるモスアイ層を示す断面模式図である。図3は、実施例1の貯液槽におけるモスアイ層及び保護層を示す断面模式図である。
本実施例は、本発明の貯液槽を水槽に適応した場合の実施例である。本実施例の水槽は、図1に示すように、内容液である水21を貯める器状の透明壁11と、透明壁11の観察者23側の外面(以下、A面ともいう。)に貼り付けられたモスアイ層(モスアイ膜)12と、透明壁11の内面(以下、B面ともいう。)に貼り付けられたモスアイ層(モスアイ膜)13と、モスアイ層13をコーティングする保護層14とが積層された構造を有する。透明壁11は、透明なガラスからなる。モスアイ層12は、モスアイ構造を有する。モスアイ層13は、モスアイ構造を有し、また、モスアイ層12に対向する。保護層14は、含フッ素樹脂(F系樹脂)からなる。透明壁11の屈折率は、略1.5であり、保護層14の屈折率は、1.28~1.38であり、水21の屈折率は、1.33である。
このように、モスアイ層12が設けられることから、水槽の外の空気(屈折率=1)と透明壁11との間における屈折率のミスマッチを防止することができる。また、透明壁11の内側についても、水21と透明壁11との間の界面における屈折率のミスマッチを解消することができる。このことにより、観察者23は、あたかも水槽の壁がないように感じ、自分自身が水槽内部と一体化した感動を覚えることができる。また、ストロボを使用して水槽内を写真撮影した場合においても、ストロボ光が屈折率界面で光ることが無い。したがって、カメラを水槽に近づける等の対策を施すことなく、撮影することができる。このように、B面にモスアイ構造を使用した場合、屈折率のマッチングはうまくいく。しかしながら、モスアイ構造は、表面での生体適合性が非常にいいために、生物が付着しやすかったり、汚れが付いた場合に取り難かったりする。これに対しては、水21の屈折率とほぼ同等の屈折率を有する材料をB面のモスアイ層13上に塗布することで、水21の屈折率とガラスからなる透明壁11の屈折率とのマッチングは取りつつ、生物等の汚れの付着を少なくできるとともに、またいったん付いたとしても、市販の布等で容易に汚れを拭うことができる。更に、耐久性の面で弱いモスアイ層13の表面(モスアイ構造)を含フッ素樹脂で保護することで、耐久性も併せ持った観賞又は観賞用の水槽とすることができる。また、含フッ素樹脂の屈折率は、通常、1.3~1.4程度であるから、含フッ素樹脂を用いて保護層14を形成することにより、保護層14の屈折率を水21の屈折率に容易に揃えることができる。
モスアイ層12、13に含まれるモスアイ構造16は、複数の突起を含む。突起のピッチは、50~300nmであることが好ましく、突起の高さは、50~300nmであることが好ましい。モスアイ層12、13を構成する材料としては、ガラス材料や樹脂材料からなる透明壁11の材料の屈折率と屈折率が揃えられた材料が好ましい。
本実施例では、保護層14の材料である含フッ素樹脂(F系のコーティング材料)として特に、サイトップCTX809A(旭硝子社製)を使用し、モスアイ層13上に、0.5μmの厚みで塗布する。サイトップCTX809Aの屈折率は、1.34であり、水の屈折率1.33とほぼマッチングする。モスアイ層13だけでは、水槽の内壁に汚れが付着しやすいが、水槽の内壁が含フッ素樹脂でコーティングされていることで、汚れが付きにくく、かつ汚れが付いたとしても取れやすくなる。なお、モスアイ層13を高分子材料により形成し、含フッ素樹脂を高分子材料上に塗布する場合、密着力が充分に得られない場合がある。したがって、塗布前に、プライマー処理を行なうことが好ましい。本実施例では、サイトップCTX809Aの専用のプライマー(旭硝子社製CT-P10)を使用することができる。
図2に示すように、モスアイ層12、13の透明壁11側には、ベースフィルム15と、ベースフィルム15の透明壁11側の主面上に設けられた糊材料17とがこの順に設けられている。このように、モスアイ層12、13は、ベースフィルム15上に紫外線硬化樹脂等を用いてナノインプリント法により形成され、そして、糊材料17により透明壁11に貼り付けられる。更に、モスアイ層13については、図3に示すように、モスアイ構造16が含フッ素樹脂(F系樹脂)からなる保護層14によりコーティングされている。このように、透明壁11の内面には、保護層14、モスアイ層13、ベースフィルム15及び糊材料17からなる光学フィルム(槽内貼り付け用フィルム)が貼り付けられ、透明壁11の外面には、モスアイ層12、ベースフィルム15及び糊材料17からなる光学フィルム(槽外貼り付け用フィルム)が貼り付けられている。モスアイ層をB面側に使用する場合、水槽の内側に位置するモスアイ層13は、水等の溶剤(溶液)が存在する環境で放置されるので、モスアイ層13の材料については、溶剤耐性の優れた材料を用いることが好ましい。ベースフィルム15としては、透明性、耐水性及び耐溶剤性(耐液性)のあるフィルムが好ましい。具体的には、上記市販品等のオレフィン系フィルムが好ましい。また、ベースフィルム15の屈折率は、透明壁11の屈折率と揃えるように設定することが好ましい。
図4は、実施例1の貯液槽における屈折率変化を説明するための図であり、(a)は、貯液槽の側面断面図であり、(b)は、貯液槽の側面における屈折率変化を示すグラフである。
溶液(ここでは、水21)の入った本実施例の水槽においては、図4(a)、(b)に示すように、透明壁11の観察者側に位置する部分のA面及びB面に対してモスアイ層12、13を設けることによって使用状態での屈折率のマッチングを取っている。特に、B面に対しては、透明壁11の屈折率と溶液(水21)の屈折率とを合わせるために、保護槽14の材料として、屈折率の低い含フッ素樹脂材料を使用している。したがって、水と樹脂と間の界面での屈折率のミスマッチを最小限にとどめながら、保護層14を塗布することに成功している。そして、溶液(水21)との屈折率マッチング処理及びモスアイ構造によって、図4(b)に示すように、空気22(屈折率=1)から水21(屈折率=1.33)まで、屈折率が連続的に変化し、透明壁11の観察者側に位置する部分は、あたかも界面が存在しないように振舞う。また、この部分で発生する反射光の波長分散特性は、非常にフラットであり、更に、この反射光の反射色は、色付きの少ない反射色となる。このように、モスアイ構造は、多層膜のようにλ/4条件を使用しておらず、また、屈折率は、モスアイ構造の表面からモスアイ構造の内部まで連続的に変化しているために、色付きがほとんど発生しない。また、モスアイ構造の表面には、屈折率界面が無いようにみなすことができるので、反射率も極端に低下させることができる。更に、B面側の表面に対しては、含フッ素樹脂(この樹脂の屈折率は、溶剤の屈折率(水の場合、1.33)に揃える)を使用することで、モスアイ構造のナノ構造体(ナノサイズの突起)による生物等の汚れの付きやすさと汚れの取りにくさとを軽減することができ、耐久性を飛躍的に伸ばすことができる。
(実施例2)
図5は、実施例2の貯液槽を示す模式図であり、(a)は、全体の断面図であり、(b)は、(a)中の破線で囲まれた領域(側面)の拡大図である。
本実施例は、実施例1の原理をそのまま使用している。ただし、実施例1の槽内貼り付け用フィルム及び槽外貼り付け用フィルムが水槽の一部分にパターニングして貼り付けられている。すなわち、図5に示すように、A面側のモスアイ層12と、B面側のモスアイ層13及び保護層14とが同じ平面形状に合わせてパターニングされるとともに、ベースフィルム及び糊材料を介して透明壁11に貼り付けられている。これにより、パターンの部分がまるで透明壁11がないように見えるため、観察者23を水槽に入り込めるような錯覚に落ち入らせることができる。またそのため、ディスプレイ効果が得られる。
パターンの形状としては特に限定されず、窓枠を意識して円形や方形でもいいし、広告効果を狙って文字やロゴ等であってもよい。文字パターンを形成した場合は、文字パターン部分で界面が無いように見え、一方、文字パターン周辺部分には反射光が発生し、両者の対比により大きなディスプレイ効果を発現することができる。
(実施例3)
図6は、実施例3の貯液槽を示す斜視模式図である。図7は、実施例3の貯液槽における屈折率変化を説明するための図であり、(a)は、貯液槽の液量計部分の断面図であり、(b)は、貯液槽の液量計部分における屈折率変化を示すグラフである。
本実施例は、本発明の貯液槽を、液量計として観察用窓(液体がどこまで入っているか観察するための窓)が設けられたタンクに適応した例である。液量計18は、図6に示すように、タンクの一部に設けられている。また、本実施例のタンクの液量計部分には、実施例1と同様に、槽内貼り付け用フィルム及び槽外貼り付け用フィルムが貼り付けられている。より具体的には、本実施例のタンクの液量計部分は、図7(a)に示すように、透明壁11と、透明壁11の外面(A面)に貼り付けられ、かつモスアイ構造を有するモスアイ層12と、透明壁11の内面(B面)に貼り付けられ、かつモスアイ層12に対向するモスアイ層13と、モスアイ層13をコーティングし、かつ含フッ素樹脂(F系樹脂)からなる保護層14とが積層された構造を有する。なお、図7では、タンク内に、液量計18の途中まで、内容液として液体(ここでは、水21)が入っている状態を図示している。
これにより、図7(b)に示すように、B面において、液体(水21)の入っているところでは、屈折率がマッチングされ、一方、液体(水21)がない領域、すなわち空気22の層では、屈折率がマッチングされないことになる。すなわち、屈折率がマッチングした領域(液体のある領域)では反射が抑制され、屈折率がミスマッチングした領域(液体のない領域)では反射が発生することになる。したがって、反射の有無によって液面の位置が非常に見やすくなる。また、A面についてもモスアイ構造が設けられているので、外表面反射をほぼなくすことができ、より液面の位置が確認しやすくなる。
他方、モスアイ層13上に保護層14を設けなかった場合は、空気層に接する領域でモスアイ構造がむき出しになる。そのため、この領域でも屈折率が連続的に変化して反射光が小さくなってしまう。その結果、液体のある領域、及び、液体のない領域のどちらにおいても内表面反射が抑制されてしまい、液体及び空気層の間の界面がどこにあるのかがわからなくなってしまう。それに対して、モスアイ層13上に保護層14を設けることによって、液体のない領域では空気22と保護層14との界面で反射光が発生し、上述のように液面を明確に視認することができる。
また、液量計に槽内貼り付け用フィルム及び槽外貼り付け用フィルムを設けなかった場合は、液体がある領域と液体のない領域との両方で、屈折率のミスマッチが発生する。両領域における屈折率のミスマッチの程度は異なるため、両領域における反射率に差ができる。したがって、この場合は、液面の位置を確認できないことはないが、実施例3の液量計に比べると、液面を非常に観察しづらい。
以上、実施例1~3では、貯液槽の透明壁の側面部分において、モスアイ構造と低屈折率の樹脂とを用いて屈折率のマッチングを取っている。そのため、反射光を極力小さくすることができ、貯液槽内部の物体(観賞魚や液面等)をクリアに観察することができる。
(実施例4)
図11は、実施例4の液中観察器具を示す断面模式図である。図12は、実施例4の液中観察器具における屈折率変化を説明するための図であり、(a)は、液中観察器具の断面図であり、(b)は、液中観察器具における屈折率変化を示すグラフである。図13及び14は、実施例4の液中観察器具の変形例を示す断面模式図である。
本実施例は、本発明の液中観察器具を、液外から液中を観察するために用いる器具に適応した例である。本実施例の器具は、透明な板状の基材(透明窓)24と、基材24の空気層側の面(上面)に貼り付けられ、かつモスアイ構造を有するモスアイ層12と、基材24の液体(ここでは水21)側の面(下面)に貼り付けられ、かつモスアイ層12に対向するモスアイ層13と、モスアイ層13をコーティングし、かつ含フッ素樹脂(F系樹脂)からなる保護層14とが積層された構造を有する。基材24は、ガラス、樹脂等からなり、基材24の屈折率は、略1.5である。また、本実施例の器具は、保護層14が液体に接し、モスアイ層12が大気に接した状態で使用される。したがって、本実施例の各部材は、液体の比重より軽い材料により形成されることが好ましい。
本実施例では、基材24の両面にモスアイ膜を貼り付け、液体側に低屈折率の樹脂からなる保護層14を設けている。したがって、本実施例の器具を液面に浮かせると、図12に示すように、両面において、屈折率がマッチングされ、空気(屈折率=1)から水21(屈折率=1.33)まで、屈折率が連続的に変化する。すなわち、液面での屈折率のミスマッチを解消することができる。そのため、液面の上方から、液中を鮮明に観察できるようになる。また、実施例1~3と同様に、保護層14としてF系樹脂を用いているため、本実施例の器具が液体によって汚染されるのを抑制できるのと同時に、下面での屈折率のマッチチングを行うことができる。
なお、本実施例の器具の周辺部(例えば、基材24の周囲)には、図13に示すように、液体よりも比重が小さい浮き25が設けられてもよい。これにより、基材24等の部材を液体の比重より重たい材料により形成することができる。
また、本実施例の器具は、図14に示すように、遮光性の筒状体26を有し、箱メガネとして利用されてもよい。なお、基材24等の透光部は、筒状体26の一方の開口を塞ぐように取り付けられている。これにより、外光が透光部に入射するのを抑制することができるので、よりクリアに液中を見通すことができる。また、筒状体26の比重を液体の比重よりも小さくすることで、基材24等の部材を液体の比重より大きい材料により形成することができる。
本実施例の用途は特に限定されず、例えば、水中又は海水中を観察するために用いていもよいし、溶剤が満たされた装置内のインジケータを観察するために用いてもよいし、溶剤が満たされた装置の動作を観察するために用いてもよい。
(実施例5)
図15は、実施例5の液中観察器具を示す断面模式図である。図16は、実施例5の液中観察器具における屈折率変化を説明するための図であり、(a)は、液中観察器具の断面図であり、(b)は、液中観察器具における屈折率変化を示すグラフである。
本実施例は、本発明の液中観察器具を、水中メガネに適応した例である。本実施例の水中メガネのレンズ部は、透明な基材(透明窓)27と、基材27の内面(使用者27側の面)に貼り付けられ、かつモスアイ構造を有するモスアイ層12と、基材27の液体(ここでは水21)側の面(外面)に貼り付けられ、かつモスアイ層12に対向するモスアイ層13と、モスアイ層13をコーティングし、かつ含フッ素樹脂(F系樹脂)からなる保護層14とが積層された構造を有する。基材27は、ガラス、樹脂等からなり、基材27の屈折率は、略1.5である。また、本実施例の水中メガネは、保護層14が液体に接し、モスアイ層12が空気に接した状態で使用される。
本実施例では、基材27の両面にモスアイ膜を貼り付け、液体側に低屈折率の樹脂からなる保護層14を設けている。したがって、本実施例の水中メガネを装着して水中に入ると、図16に示すように、両面において、屈折率がマッチングされ、水21(屈折率=1.33)から空気(屈折率=1)、最終的には使用者(観察者)の目の直前まで屈折率を連続的に変化させることができる。そのため、魚が水中をみるがごとく、水中を自然、かつクリアに見ることができる。
なお、モスアイ層12の表面は未処理でも上記効果を奏することができるが、モスアイ構造の凹凸を完全に埋めない程度に、撥水処理を施してもよい。これにより、レンズ部内が水で濡れてしまっても、容易に拭き取ることができる。
一方、モスアイ層12の表面には親水性が付与されてもよい。これにより、レンズ部内に水が浸入し、モスアイ層12上に水滴が付着した場合でも、水滴をモスアイ層12表面上に広げ、モスアイ層12上に水の膜を形成することができる。その結果、水中メガネが曇ってしまうのを抑制することができる。
なお、本実施例の用途は特に限定されず、競技用でもよいし、趣味用途でもよいし、水産業用でもよい。
また、実施例4及び5においても、実施例1~3と同様に、モスアイ層12及び13の基材24又は27側には、ベースフィルムと、ベースフィルムの基材24又は27側の主面上に設けられた糊材料とがこの順に設けられている。このように、基材24の下面又は基材27の外面には、保護層14、モスアイ層13、ベースフィルム及び糊材料からなる光学フィルムが貼り付けられ、基材24の上面又は基材27の内面には、モスアイ層12、ベースフィルム及び糊材料からなる光学フィルムが貼り付けられている。
本願は、2008年12月25日に出願された日本国特許出願2008-329996号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
11:透明壁
12:モスアイ層
13:モスアイ層
14:保護層
15:ベースフィルム
16:モスアイ構造
17:糊材料
18:液量計
19:突起
21:水
22:空気
23:観察者
24、27:基材
25:浮き
26:筒状体
27:使用者
31:汚れ
32:繊維

Claims (26)

  1. 透明壁を有する貯液槽であって、
    前記貯液槽は、前記透明壁の内面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明壁側からこの順に備えることを特徴とする貯液槽。
  2. 前記貯液槽は、前記透明壁の外面に、モスアイ構造を有する第二モスアイ層を備え、
    前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることを特徴とする請求項1記載の貯液槽。
  3. 前記保護層は、含フッ素樹脂を含むことを特徴とする請求項1又は2記載の貯液槽。
  4. 前記保護層の屈折率は、前記貯液槽に貯められる液体の屈折率に揃えられていることを特徴とする請求項1~3のいずれかに記載の貯液槽。
  5. 前記保護層の屈折率は、水の屈折率に揃えられていることを特徴とする請求項1~4のいずれかに記載の貯液槽。
  6. 前記保護層の屈折率は、前記透明壁及び前記第一モスアイ層の屈折率よりも小さいことを特徴とする請求項1~5のいずれかに記載の貯液槽。
  7. 前記保護層の屈折率は、1.28~1.38であることを特徴とする請求項1~6のいずれかに記載の貯液槽。
  8. 透明壁を有する貯液槽の内面に貼り付けられる光学フィルムであって、
    前記光学フィルムは、モスアイ構造を有するモスアイ層と、前記モスアイ構造を被覆する保護層とを備えることを特徴とする光学フィルム。
  9. 前記保護層は、含フッ素樹脂を含むことを特徴とする請求項8記載の光学フィルム。
  10. 前記保護層の屈折率は、前記貯液槽に貯められる液体の屈折率に揃えられていることを特徴とする請求項8又は9記載の光学フィルム。
  11. 前記保護層の屈折率は、水の屈折率に揃えられていることを特徴とする請求項8~10のいずれかに記載の光学フィルム。
  12. 前記保護層の屈折率は、前記透明壁及び前記モスアイ層の屈折率よりも小さいことを特徴とする請求項8~11のいずれかに記載の光学フィルム。
  13. 前記保護層の屈折率は、1.28~1.38であることを特徴とする請求項8~12のいずれかに記載の光学フィルム。
  14. 透明窓を有する液中観察器具であって、
    前記液中観察器具は、前記透明窓の外面に、モスアイ構造を有する第一モスアイ層と、前記第一モスアイ層のモスアイ構造を被覆する保護層とを前記透明窓側からこの順に備えることを特徴とする液中観察器具。
  15. 前記液中観察器具は、前記透明窓の内面に、モスアイ構造を有する第二モスアイ層を備え、
    前記第二モスアイ層は、前記第一モスアイ層に対向する領域に設けられることを特徴とする請求項14記載の液中観察器具。
  16. 前記保護層は、含フッ素樹脂を含むことを特徴とする請求項14又は15記載の液中観察器具。
  17. 前記保護層の屈折率は、前記液中観察器具に接する液体の屈折率に揃えられていることを特徴とする請求項14~16のいずれかに記載の液中観察器具。
  18. 前記保護層の屈折率は、水の屈折率に揃えられていることを特徴とする請求項14~17のいずれかに記載の液中観察器具。
  19. 前記保護層の屈折率は、前記透明窓及び前記第一モスアイ層の屈折率よりも小さいことを特徴とする請求項14~18のいずれかに記載の液中観察器具。
  20. 前記保護層の屈折率は、1.28~1.38であることを特徴とする請求項14~19のいずれかに記載の液中観察器具。
  21. 透明窓を有する液中観察器具の外面に貼り付けられる光学フィルムであって、
    前記光学フィルムは、モスアイ構造を有するモスアイ層と、前記モスアイ構造を被覆する保護層とを備えることを特徴とする光学フィルム。
  22. 前記保護層は、含フッ素樹脂を含むことを特徴とする請求項21記載の光学フィルム。
  23. 前記保護層の屈折率は、前記液中観察器に接する液体の屈折率に揃えられていることを特徴とする請求項21又は22記載の光学フィルム。
  24. 前記保護層の屈折率は、水の屈折率に揃えられていることを特徴とする請求項21~23のいずれかに記載の光学フィルム。
  25. 前記保護層の屈折率は、前記透明窓及び前記モスアイ層の屈折率よりも小さいことを特徴とする請求項21~24のいずれかに記載の光学フィルム。
  26. 前記保護層の屈折率は、1.28~1.38であることを特徴とする請求項21~25のいずれかに記載の光学フィルム。
     
PCT/JP2009/070198 2008-12-25 2009-12-01 貯液槽、液中観察器具及び光学フィルム WO2010073881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0924893-5A BRPI0924893A2 (pt) 2008-12-25 2009-12-01 Tanque de líquido, dispositivo de visualização para observação sob o líquido e película ótica
JP2010516713A JPWO2010073881A1 (ja) 2008-12-25 2009-12-01 貯液槽、液中観察器具及び光学フィルム
US12/864,072 US20100290118A1 (en) 2008-12-25 2009-12-01 Liquid tank, viewing device for under-liquid observation, and optical film
EP09834685.1A EP2305026B1 (en) 2008-12-25 2009-12-01 Aquarium
CN2009801041415A CN101938899B (zh) 2008-12-25 2009-12-01 贮液槽、液中观察器具及光学膜
US13/200,945 US8465160B2 (en) 2008-12-25 2011-10-05 Liquid tank, viewing device for under-liquid observation, and optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329996 2008-12-25
JP2008329996 2008-12-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/864,072 A-371-Of-International US20100290118A1 (en) 2008-12-25 2009-12-01 Liquid tank, viewing device for under-liquid observation, and optical film
US13/200,945 Continuation US8465160B2 (en) 2008-12-25 2011-10-05 Liquid tank, viewing device for under-liquid observation, and optical film

Publications (1)

Publication Number Publication Date
WO2010073881A1 true WO2010073881A1 (ja) 2010-07-01

Family

ID=42287499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070198 WO2010073881A1 (ja) 2008-12-25 2009-12-01 貯液槽、液中観察器具及び光学フィルム

Country Status (7)

Country Link
US (2) US20100290118A1 (ja)
EP (2) EP2305026B1 (ja)
JP (1) JPWO2010073881A1 (ja)
CN (1) CN101938899B (ja)
BR (1) BRPI0924893A2 (ja)
RU (1) RU2444769C1 (ja)
WO (1) WO2010073881A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008297A (ja) * 2010-06-24 2012-01-12 Nikon Corp 光学素子および光学装置
JP2012242803A (ja) * 2011-05-24 2012-12-10 Dainippon Printing Co Ltd 光学部材積層体の製造方法および光学的機能を有する部材の製造方法
WO2014112555A1 (ja) * 2013-01-17 2014-07-24 デクセリアルズ株式会社 顔面保護用光学素子
JP2014139667A (ja) * 2012-12-20 2014-07-31 Dainippon Printing Co Ltd 透明体及び建具
WO2015019529A1 (ja) * 2013-08-09 2015-02-12 デクセリアルズ株式会社 透明積層体、及びそれを用いた保護具
JP2015055777A (ja) * 2013-09-12 2015-03-23 大日本印刷株式会社 光学部材、及びその製造方法
WO2016060198A1 (ja) * 2014-10-16 2016-04-21 富士フイルム株式会社 カメラモジュール及び電子機器
JPWO2013191091A1 (ja) * 2012-06-22 2016-05-26 シャープ株式会社 反射防止構造体、転写用型、これらの製造方法、及び、表示装置
US9995852B2 (en) 2012-03-09 2018-06-12 Nippon Electric Glass Co., Ltd. Cover member for exhibit item or display
JP2019113838A (ja) * 2017-12-21 2019-07-11 信越化学工業株式会社 反射防止膜、反射防止膜の製造方法、及び眼鏡型ディスプレイ
JP2019123246A (ja) * 2013-08-09 2019-07-25 デクセリアルズ株式会社 透明積層体、及びそれを用いた保護具

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720178B2 (en) * 2011-03-16 2017-08-01 International Business Machines Corporation Electromagnetic wave resonator with effective refractive index gradient
CA2849740A1 (en) * 2011-09-30 2013-04-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tailored interfaces between optical materials
WO2014145826A2 (en) 2013-03-15 2014-09-18 Nanonex Corporation System and methods of mold/substrate separation for imprint lithography
WO2014145360A1 (en) * 2013-03-15 2014-09-18 Nanonex Corporation Imprint lithography system and method for manufacturing
TWI560477B (en) * 2014-12-12 2016-12-01 Wistron Corp Display module
WO2020157741A1 (en) * 2019-01-28 2020-08-06 B.G. Negev Technologies & Applications Ltd., At Ben-Gurion University Structure for a waveguide facet
US11195321B2 (en) * 2019-04-24 2021-12-07 Canon Kabushiki Kaisha Information processing apparatus, information processing system, information processing method, and storage medium
DE102020211884A1 (de) 2020-09-23 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Trägerplatte für eine mikrofluidische Analysekartusche, Analysekartusche mit Trägerplatte und Verfahren zum Herstellen einer Trägerplatte
JP2022137896A (ja) * 2021-03-09 2022-09-22 本田技研工業株式会社 カメラを有する車体構造

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322674A (ja) 1996-05-31 1997-12-16 Matsushita Electric Ind Co Ltd 水槽内貼りフィルムとこれを用いた水槽及び水槽内面塗装用抗菌剤含有塗料組成物とこれを用いた水槽
JP2001264520A (ja) 2000-03-16 2001-09-26 Dainippon Printing Co Ltd 反射防止フィルム、偏光素子、および表示装置、ならびに反射防止フィルムの製造方法
JP2003043203A (ja) 2001-08-01 2003-02-13 Hitachi Maxell Ltd 反射防止膜、その製造方法、反射防止膜製造用スタンパ、その製造方法、スタンパ製造用鋳型及びその製造方法
JP2003319733A (ja) 2002-05-07 2003-11-11 Konica Minolta Holdings Inc 観賞用水槽
JP2005156695A (ja) 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
JP2005249982A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 反射防止膜及びそれを有する画像表示装置,光記録媒体,太陽発電モジュール並びに反射防止膜形成方法
WO2006059686A1 (ja) 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145783A (en) * 1977-08-18 1979-03-27 Rhodes Ronald J Water window
US4951607A (en) * 1989-04-10 1990-08-28 Lapeyre James M Aquariums
US5191364A (en) * 1989-09-11 1993-03-02 Kopfer Rudolph J Protective eyewear for use in sports and the like
DE19536194A1 (de) * 1995-09-28 1997-04-03 Glasbau Gmbh As Schaubehälter zur Aufnahme einer Flüssigkeit für Pflanzen und Tiere
RU2110174C1 (ru) * 1996-12-27 1998-05-10 Молохина Лариса Аркадьевна Устройство аквариумного типа с особым оптическим эффектом
US6591814B2 (en) * 1999-11-01 2003-07-15 Siemens Vdo Automotive Corporation Matrix injector driver circuit
DE10020877C1 (de) 2000-04-28 2001-10-25 Alcove Surfaces Gmbh Prägewerkzeug, Verfahren zum Herstellen desselben, Verfahren zur Strukturierung einer Oberfläche eines Werkstücks und Verwendung einer anodisch oxidierten Oberflächenschicht
US7066234B2 (en) * 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
AU2001284825A1 (en) * 2000-08-15 2002-02-25 Reflexite Corporation A light polarizer
US6460994B1 (en) * 2000-08-24 2002-10-08 Philip Nolan Plano-convex lens system for underwater diving mask
DE10226118A1 (de) * 2001-06-18 2003-02-20 Brent Sheldon Augenbekleidung mit polarisierter Linse für Wassersport
JP2005181740A (ja) * 2003-12-19 2005-07-07 Matsushita Electric Ind Co Ltd 反射防止構造体
US7475435B2 (en) * 2004-02-23 2009-01-13 Nike, Inc. Swim goggles
US8088475B2 (en) * 2004-03-03 2012-01-03 Hitachi, Ltd. Anti-reflecting membrane, and display apparatus, optical storage medium and solar energy converting device having the same, and production method of the membrane
JP4830290B2 (ja) 2004-11-30 2011-12-07 信越半導体株式会社 直接接合ウェーハの製造方法
JP2007199522A (ja) 2006-01-27 2007-08-09 Nippon Zeon Co Ltd 光学積層体の製造方法
US7443608B2 (en) * 2006-08-07 2008-10-28 Dillon Stephen M Uniform diffuse omni-directional reflecting lens
WO2008069162A1 (en) * 2006-12-05 2008-06-12 Semiconductor Energy Laboratory Co., Ltd. Anti-reflection film and display device
DE102007009512A1 (de) * 2007-02-27 2008-08-28 Friedrich-Schiller-Universität Jena Optisches Element mit einer Antibeschlagsschicht und Verfahren zu dessen Herstellung
UA35241U (uk) * 2008-04-04 2008-09-10 Володимир Борисович Альохін Спосіб декорування стінок акваріума

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322674A (ja) 1996-05-31 1997-12-16 Matsushita Electric Ind Co Ltd 水槽内貼りフィルムとこれを用いた水槽及び水槽内面塗装用抗菌剤含有塗料組成物とこれを用いた水槽
JP2001264520A (ja) 2000-03-16 2001-09-26 Dainippon Printing Co Ltd 反射防止フィルム、偏光素子、および表示装置、ならびに反射防止フィルムの製造方法
JP2003043203A (ja) 2001-08-01 2003-02-13 Hitachi Maxell Ltd 反射防止膜、その製造方法、反射防止膜製造用スタンパ、その製造方法、スタンパ製造用鋳型及びその製造方法
JP2003319733A (ja) 2002-05-07 2003-11-11 Konica Minolta Holdings Inc 観賞用水槽
JP2005156695A (ja) 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol 反射防止膜及びその製造方法、並びに反射防止膜作製用スタンパ及びその製造方法
JP2005249982A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 反射防止膜及びそれを有する画像表示装置,光記録媒体,太陽発電モジュール並びに反射防止膜形成方法
WO2006059686A1 (ja) 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha 反射防止材、光学素子、および表示装置ならびにスタンパの製造方法およびスタンパを用いた反射防止材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2305026A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008297A (ja) * 2010-06-24 2012-01-12 Nikon Corp 光学素子および光学装置
JP2012242803A (ja) * 2011-05-24 2012-12-10 Dainippon Printing Co Ltd 光学部材積層体の製造方法および光学的機能を有する部材の製造方法
US9995852B2 (en) 2012-03-09 2018-06-12 Nippon Electric Glass Co., Ltd. Cover member for exhibit item or display
JPWO2013191091A1 (ja) * 2012-06-22 2016-05-26 シャープ株式会社 反射防止構造体、転写用型、これらの製造方法、及び、表示装置
JP2014139667A (ja) * 2012-12-20 2014-07-31 Dainippon Printing Co Ltd 透明体及び建具
WO2014112555A1 (ja) * 2013-01-17 2014-07-24 デクセリアルズ株式会社 顔面保護用光学素子
US10175390B2 (en) 2013-01-17 2019-01-08 Dexerials Corporation Face protective optical element
WO2015019529A1 (ja) * 2013-08-09 2015-02-12 デクセリアルズ株式会社 透明積層体、及びそれを用いた保護具
JP2015057317A (ja) * 2013-08-09 2015-03-26 デクセリアルズ株式会社 透明積層体、及びそれを用いた保護具
US10000037B2 (en) 2013-08-09 2018-06-19 Dexerials Corporation Transparent laminate and protective tool including the same
JP2019123246A (ja) * 2013-08-09 2019-07-25 デクセリアルズ株式会社 透明積層体、及びそれを用いた保護具
JP2015055777A (ja) * 2013-09-12 2015-03-23 大日本印刷株式会社 光学部材、及びその製造方法
JP2016080865A (ja) * 2014-10-16 2016-05-16 富士フイルム株式会社 カメラモジュール及び電子機器
WO2016060198A1 (ja) * 2014-10-16 2016-04-21 富士フイルム株式会社 カメラモジュール及び電子機器
JP2019113838A (ja) * 2017-12-21 2019-07-11 信越化学工業株式会社 反射防止膜、反射防止膜の製造方法、及び眼鏡型ディスプレイ
JP7182438B2 (ja) 2017-12-21 2022-12-02 信越化学工業株式会社 反射防止膜、反射防止膜の製造方法、及び眼鏡型ディスプレイ

Also Published As

Publication number Publication date
BRPI0924893A2 (pt) 2015-07-07
US20100290118A1 (en) 2010-11-18
US20120019921A1 (en) 2012-01-26
US8465160B2 (en) 2013-06-18
EP2305026B1 (en) 2014-01-22
EP2315057B1 (en) 2014-03-05
RU2444769C1 (ru) 2012-03-10
CN101938899B (zh) 2013-04-10
EP2305026A1 (en) 2011-04-06
CN101938899A (zh) 2011-01-05
EP2305026A4 (en) 2011-06-08
JPWO2010073881A1 (ja) 2012-06-14
EP2315057A1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2010073881A1 (ja) 貯液槽、液中観察器具及び光学フィルム
JP5075234B2 (ja) 光学素子、および表示装置
JP5476843B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6049979B2 (ja) 光学素子、および表示装置
JP5821205B2 (ja) 光学素子およびその製造方法、表示装置、情報入力装置、ならびに写真
EP2693238A1 (en) Optical element, display device, and input device
JP5449375B2 (ja) 観察窓付き構造物
US10928667B2 (en) Transparent substrate having light blocking region and display device
JPWO2010143503A1 (ja) 反射防止膜、表示装置及び透光部材
TW201636645A (zh) 防霧防污層積體、及其製造方法、物品及其製造方法、以及防污方法
JP2009042714A (ja) 撥水性反射防止構造及びその製造方法
CN107229086B (zh) 光学构件及其制造方法
JP6081753B2 (ja) 光学素子
JP2017047597A (ja) 加飾シート、加飾成形品、および加飾成形品の製造方法
JP5943311B2 (ja) 印刷物、及びその製造方法
JP2005062674A (ja) 板状光学部品
JP2012208526A (ja) 光学素子、および表示装置
JP2017129827A (ja) 印刷層付き板および表示装置
JP2013063656A (ja) 低反射透明板及びそれを用いた展示用ケース
JP2017047595A (ja) 加飾シート、加飾成形品、および加飾成形品の製造方法
JP2013156373A (ja) 反射スクリーンの製造方法
KR20110107073A (ko) 입체이미지 필름 및 그 제조방법
JP4945846B2 (ja) 表示装置
KR101807910B1 (ko) 반사 방지 필름 및 이의 제조방법.
CN104395783B (zh) 防反射结构体和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104141.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010516713

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2423/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12864072

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010139900

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2009834685

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924893

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924893

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110621