WO2010073597A1 - 入力装置 - Google Patents

入力装置 Download PDF

Info

Publication number
WO2010073597A1
WO2010073597A1 PCT/JP2009/007080 JP2009007080W WO2010073597A1 WO 2010073597 A1 WO2010073597 A1 WO 2010073597A1 JP 2009007080 W JP2009007080 W JP 2009007080W WO 2010073597 A1 WO2010073597 A1 WO 2010073597A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
load
touch panel
pressing
unit
Prior art date
Application number
PCT/JP2009/007080
Other languages
English (en)
French (fr)
Inventor
智剛 青野
雄太 塩川
郁 田代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020117014259A priority Critical patent/KR101322373B1/ko
Priority to US13/001,591 priority patent/US9904363B2/en
Priority to CN200980151955.4A priority patent/CN102265247B/zh
Priority to EP09834408A priority patent/EP2369449A4/en
Publication of WO2010073597A1 publication Critical patent/WO2010073597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04142Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position the force sensing means being located peripherally, e.g. disposed at the corners or at the side of a touch sensing plate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present invention relates to an input device including an input unit that receives an input by pressing.
  • input devices that include a plate-like input unit that receives an input by pressing a touch panel, a touch switch, or the like as an input unit that receives an input operation by a user.
  • input units such as a resistive film type and a capacitance type.
  • any of these input units accepts input by pressing with a finger or a stylus pen, and the input unit itself is not displaced like a push button switch even when pressed.
  • a press input is received and a sound is produced, or a display color of an input object such as an input button displayed on the display unit corresponding to the press area is displayed.
  • an input operation can be confirmed by hearing or vision by changing the display mode such as changing.
  • Patent Documents 1 and 2 simply generate a tactile sensation by vibration at the fingertip of the operator.
  • the operator's fingertip touching the touch panel presents a tactile sensation such as “bull bull”.
  • a “click” that is felt when operating a push button switch having a metal dome. It does not present a realistic click sensation.
  • an input key of an information device such as a portable terminal such as a mobile phone, a calculator, a ticket vending machine, an input key of an operation unit in a home appliance such as a microwave oven or a television is configured with a touch panel, and the touch panel
  • a portable terminal such as a mobile phone, a calculator, a ticket vending machine
  • an input key of an operation unit in a home appliance such as a microwave oven or a television
  • a certain load threshold is set, and the touch panel is displayed when the load threshold is reached while increasing the pressing load detected when the touch panel is pressed with a finger.
  • An apparatus that not only vibrates but also vibrates the touch panel when the load threshold is reached while the pressing load detected when the finger is released from the touch panel decreases.
  • the touch panel can be vibrated in accordance with each of the operation of pressing by the operator and the operation of releasing, the operation feeling suitable for the operator can be presented.
  • the pressing load when the touch panel is pressed does not exceed the load threshold and is only detected to a value equal to the load threshold, the touch panel vibrates only when pressed and does not vibrate when released. Will feel uncomfortable.
  • the touch panel vibrates only when pressed in one input operation, and the touch panel vibrates both when pressed and released in the next input operation. In some cases, the operator feels uncomfortable.
  • an object of the present invention made in view of such a point is that when an operator operates a push-type input unit, a realistic click feeling similar to that when a push button switch is operated can be presented. Is to provide an input device capable of performing a continuous input operation (repetitive hitting) without a sense of incongruity.
  • An input device for receiving an input by pressing; A load detection unit for detecting a pressing load on the input unit; A vibrating section for vibrating the input section; When the pressing load detected by the load detecting unit satisfies a predetermined standard for receiving an input to the input unit, the click load is presented to the pressing object pressing the input unit.
  • a control unit for controlling the driving of the vibration unit so as to present a click feeling to the pressed object It is characterized by providing.
  • the input unit vibrates, and then the pressing load on the input unit satisfies a lower standard than the predetermined standard for receiving an input. Then, the input unit vibrates.
  • a realistic click tactile sensation similar to that when the push button switch is operated is presented to the operator, and the operator can perform a continuous input operation (continuous hitting) without a sense of incongruity.
  • FIG. 5 It is a figure which shows the general load characteristic of a pushbutton switch. It is a figure which shows the sensory evaluation result at the time of operating the various pushbutton switches from which pressing load differs. It is a figure which shows the sensory evaluation result at the time of operating the various pushbutton switches from which a stroke differs. It is a figure which shows an example of the measurement result of the vibration which arises in a pushbutton when a pushbutton switch is operated. It is a block diagram which shows schematic structure of the input device which concerns on 1st Embodiment of this invention. It is a figure which shows an example of the mounting structure of the input device shown in FIG. 6 is a flowchart illustrating an operation of the input device illustrated in FIG. 5.
  • FIG. 5 It is a figure which shows the general load characteristic of a pushbutton switch. It is a figure which shows the sensory evaluation result at the time of operating the various pushbutton switches from which pressing load differs. It is a figure which shows the sensory evaluation result at the time of operating
  • FIG. 6 is a diagram for explaining an example of a tactile sensation presentation when the reference load at the time of pressing and at the time of release is set to be the same in the input device shown in FIG. 5.
  • FIG. 6 is a diagram for explaining an example of a click tactile sensation when the reference load at the time of release is set smaller than the reference load at the time of pressing in the input device shown in FIG. 5.
  • It is a block diagram which shows schematic structure of the input device which concerns on 2nd Embodiment of this invention. It is a front view of the input device shown in FIG. It is a figure which shows the sensory evaluation result of a click feeling when changing the frequency of the drive signal which drives the vibration part shown in FIG.
  • tactile sensations are detected as pressure-sensitive nerves that feel the tactile sensation of hardness and softness due to the load transmitted to bones and muscles when touching the object, and vibrations transmitted to the skin surface when touching the object And there are tactile nerves that feel the touch of things. That is, the pressure sense detects a load, and the tactile sense detects vibration. In general, tactile sensation is a sense in which pressure sense and tactile sense are combined. Therefore, if the stimulation to “pressure sense” and “tactile sense” when the push button switch is operated is reproduced in the same manner on a touch panel, for example, it becomes possible to present a click tactile sensation to the operator.
  • a metal dome switch, an emboss switch, a rubber switch, a tactile switch, and the like are widely known as push button switches used in information equipment and home appliances.
  • the load characteristics of these general push button switches generally have the characteristics shown in FIG. 1 although there are differences in the stroke of the push button and the applied load (pressing force) depending on the type of switch.
  • the period from point A to point B is a period in which the load increases almost in proportion to the pressing from the start of pressing the push button.
  • the period from the point B to the point C is a period in which a convex elastic member such as a metal dome buckles due to the push button being pressed and the load is rapidly reduced.
  • the period from the point C to the point D is a period in which the load increases substantially in proportion to the push-in when the contact of the switch is closed.
  • the load characteristics at the time of release of the push button have some hysteresis but follow the opposite change from that at the time of push. That is, the period from the point D to the point E is a period in which the load decreases almost in proportion to the start of the release, and the switch contact is maintained in the closed state.
  • the period from the point E to the point F is a period in which the elastic member returns from the buckled state to the convex shape due to the release of the push button and the load increases rapidly, and the contact of the switch is opened at the start of this period.
  • the period from the point F to the point G is a period from the return of the elastic member to the release of the finger from the push button, and a period in which the load decreases approximately in proportion.
  • the maximum stroke of the push button is, for example, 1 mm or less in the case of a metal dome switch, an emboss switch, and a tactile switch, and is as small as 3 mm or less in the case of a rubber switch.
  • the load at point B is, for example, around 1N to around 6N in the case of a metal dome switch, emboss switch, and tactile switch, and is around 0.5N in the case of a rubber switch, for example. Then, regardless of which push button switch is operated, the operator can feel the click feeling.
  • the present inventors examined how the push button switch moves to obtain a click tactile sensation produced by “pressure sensation” and “tactile sensation”. First, it was examined whether the click feeling was due to a change in stroke or a change in pressing load.
  • FIG. 2 is a diagram showing sensory evaluation results showing how the operator feels when various push button switches with different pressing loads are operated.
  • the horizontal axis indicates the actual pressing load, and the vertical axis indicates whether the push button switch feels heavy or light, on a 7-point scale.
  • the test subjects are five people who are used to using the mobile terminal.
  • the push load can be recognized as heavy for a push button switch with a high push load, and can be recognized as light for a push button switch with a low push load.
  • FIG. 3 is a diagram showing sensory evaluation results showing how the operator feels when operating various push button switches with different strokes.
  • the horizontal axis indicates the actual stroke, and the vertical axis indicates whether the push button switch is felt long or short on a 7-point scale.
  • the test subjects are five people who are accustomed to using the portable terminal as in the case of FIG. As is apparent from FIG. 3, it can be understood that long and short strokes are not clearly recognized with respect to minute strokes.
  • the present inventors paid attention to the change in the pressing load. That is, if the human cannot recognize the difference in stroke, the click tactile sensation can be improved by changing the pressing load change on the plane such as the touch panel, that is, the stimulus to the pressure sense as the ABC point shown in FIG. I examined how it feels. Therefore, an experimental apparatus having a plate that can be displaced in the vertical direction is created, and the plate is pressed from point A to point B shown in FIG. 1, and when the load at point B is reached, the plate is instantaneously moved downward. The load change between the BC points was reproduced with a small displacement.
  • the present inventors examined not only “pressure sense” but also “tactile sense” which is another sensory nerve. Therefore, the present inventors have measured the vibration generated in the push button when the push button is operated for various portable terminals equipped with the input device having the push button switch of the metal dome switch. As a result, it was found that the push button vibrates at a frequency of approximately 100 Hz to 200 Hz when the push load reaches point B in FIG. 1, that is, when the metal dome starts buckling.
  • FIG. 4 is a diagram showing an example of the measurement result in that case.
  • the horizontal axis indicates the elapsed time of pressing, and the vertical axis indicates the vibration amplitude.
  • the push button switch vibrates at a point B in FIG. 1 as indicated by a solid line in FIG.
  • a human receives a vibration stimulus having a period of about 6 ms (frequency is about 170 Hz) for about one period when pressed.
  • this push button switch vibrates when the pressing load reaches the point F in FIG. 1 at the time of release, that is, when the metal dome returns from the buckled state, as shown by a one-dot chain line in FIG. To do.
  • humans receive vibration stimulation of about one cycle for a period of about 8 ms (frequency: about 125 Hz) at the time of release.
  • the input device stimulates a pressure sense until a pressing load satisfies a predetermined standard for accepting an input to the input unit when pressing a plate-shaped pressing type input unit.
  • a predetermined standard is satisfied, the input unit is vibrated with a predetermined drive signal, that is, a constant frequency, a period (wavelength) that is a drive time, a waveform, and an amplitude to stimulate the sense of touch.
  • a click tactile sensation (hereinafter, the click tactile at the time of release is also referred to as a release tactile sense as appropriate) is presented to the operator even at the time of release. This presents the operator with a realistic click feel similar to when the push button switch is pressed.
  • the input device is, for example, a so-called continuous hitting in which the same input object that is frequently performed when inputting a telephone number, mail, or the like is continuously input in an input device used for a portable terminal.
  • the release tactile sensation presentation standard is appropriately set with respect to the click tactile sensation presentation standard at the time of pressing so that the operator can present a realistic click tactile sensation without any sense of incongruity.
  • FIG. 5 is a block diagram showing a schematic configuration of the input device according to the first embodiment of the present invention.
  • the input device includes a display panel 11, a touch panel 12, a load detection unit 13, a vibration unit 14, and a control unit 15 that controls the overall operation.
  • the display panel 11 constitutes a display unit that displays an input object such as an input button, and is configured using, for example, a liquid crystal display panel, an organic EL display panel, or the like.
  • the touch panel 12 constitutes an input unit that accepts an input by pressing on the display panel 11, and is configured by using, for example, a known device such as a resistance film method or a capacitance method.
  • the load detection unit 13 detects a pressing load on the touch panel 12, and is configured using, for example, a strain gauge sensor.
  • the vibration part 14 vibrates the touch panel 12, for example, is comprised using a piezoelectric vibration element.
  • FIG. 6 shows an example of the mounting structure of the input device shown in FIG. 5, FIG. 6 (a) is a sectional view of the principal part, and FIG. 6 (b) is a plan view of the principal part.
  • the display panel 11 is housed and held in the housing 21.
  • a touch panel 12 is held on the display panel 11 via an insulator 22 made of an elastic member.
  • the display panel 11 and the touch panel 12 are rectangular in a plan view, and the touch panel 12 is displaced from the display area A of the display panel 11 indicated by a virtual line in FIG. It is held on the display panel 11 via insulators 22 arranged at the four corners.
  • the casing 21 is provided with an upper cover 23 so as to cover the surface area of the touch panel 12 outside the display area of the display panel 11, and an insulator made of an elastic member is provided between the upper cover 23 and the touch panel 12. 24 is arranged.
  • the touch panel 12 has, for example, a surface, that is, an operation surface made of a transparent film, a back surface made of glass, and when the operation surface is pressed, the surface transparent film bends (distorts) in a small amount according to the pressing force. ) Structures can be used.
  • a strain gauge sensor 31 for detecting a load (pressing force) applied to the touch panel 12 is provided in the vicinity of each side covered with the upper cover 23 by adhesion or the like.
  • piezoelectric vibrators 32 for vibrating the touch panel 12 are provided by adhesion or the like in the vicinity of two opposing sides. That is, in the input device shown in FIG. 6, the load detection unit 13 shown in FIG. 5 is configured using four strain gauge sensors 31, and the vibration unit 14 is configured using two piezoelectric vibrators 32.
  • FIG. 6B the casing 21, the upper cover 23, and the insulator 24 shown in FIG. 6A are not shown.
  • FIG. 7 is a flowchart showing the operation of the input device according to the present embodiment.
  • the control unit 15 monitors an input to the touch panel 12 and monitors a load detected by the load detection unit 13.
  • the input to the touch panel 12 is an input to the input object displayed on the display panel 11 and a predetermined load that receives the input while the pressing load detected by the load detection unit 13 is increased by pressing the touch panel 12. It is detected that the standard is satisfied (step S81).
  • the control unit 15 receives an input to the touch panel 12 at the time of detection, and drives the vibration unit 14 with a predetermined drive signal to vibrate the touch panel 12 with a predetermined vibration pattern set in advance ( Step S82).
  • the operator is presented with a click tactile sensation via a finger pressing the touch panel 12 or a stylus pen pressing object, thereby recognizing that the input operation has been completed.
  • the load detection unit 13 detects the load from the average value of the outputs of the four strain gauge sensors 31, for example.
  • the vibration unit 14 drives, for example, two piezoelectric vibrators 32 in the same phase.
  • the predetermined reference detected in step S81 is, for example, the load at point B shown in FIG. Therefore, the predetermined reference may be set as appropriate according to the load characteristic when the push button switch to be expressed is pressed. For example, in the case of application to a portable terminal, the user can freely set so that an elderly user can be set heavy and a user who frequently sends mail can be set lightly.
  • the predetermined drive signal for driving the vibration unit 14 in step S82 that is, the constant frequency, period (wavelength), waveform, and amplitude for stimulating the sense of touch may be appropriately set according to the click tactile sensation to be presented.
  • a predetermined load for example, a sine wave having a constant frequency of 170 Hz.
  • the vibration unit 14 is driven by a drive signal for one cycle, and the touch panel 12 is vibrated by about 15 ⁇ m with a predetermined load applied.
  • a real click tactile sensation can be presented to the operator.
  • control unit 15 detects that the load detected by the load detection unit 13 satisfies a predetermined standard (step S83), the control unit 15 drives the vibration unit 14 with a predetermined drive signal in the same manner as when pressing. Then, the touch panel 12 is vibrated with a predetermined vibration pattern (step S84).
  • the predetermined reference load detected at the time of release of step S83 is a load lower than the load detected at the time of pressing detected at step S81, preferably 50 as the load at the time of pressing as described later.
  • the drive signal for driving the vibration unit 14 can be the same as or different from the drive signal at the time of pressing in step S82.
  • the frequency of the drive signal at the time of pressing to accept the input to the touch panel 12 can be 170 Hz
  • the frequency of the drive signal at the time of release can be 125 Hz, for example, as shown in FIG.
  • the input device stimulates the pressure sense until the load applied to the touch panel 12 detected by the load detection unit 13 satisfies a predetermined criterion for accepting an input to the touch panel 12,
  • the vibration unit 14 is driven with a predetermined drive signal, and the touch panel 12 is vibrated with a predetermined vibration pattern to stimulate the sense of touch.
  • a tactile sensation is presented to the operator to recognize that the input operation has been completed. Therefore, the operator can perform an input operation while obtaining a realistic click feeling similar to that when the push button switch is operated on the touch panel 12, and thus does not feel uncomfortable.
  • the operator can perform an input operation in conjunction with the consciousness of “pressing” the touch panel 12, an input error due to a simple press can be prevented.
  • the input device according to the present embodiment when the input device according to the present embodiment satisfies a criterion lower than a predetermined criterion for accepting a press input at the time of release after accepting the press input, the input device according to the present embodiment performs the predetermined operation as in the case of the press.
  • the touch panel 12 is vibrated with a predetermined vibration pattern set in advance. Thereby, a release tactile sensation can be presented to the operator.
  • the reference load for driving the vibration unit 14 when the reference load for driving the vibration unit 14 is set to be the same during pressing and during release, if the maximum load during pressing exceeds the reference load, as shown in FIG. A tactile sensation can be presented at the time of release and at the time of release. Therefore, it is possible to present to the operator a click feel closer to the push button switch. However, if the pressed object is turned back with a reference load at the time of pressing, the vibration part 14 is not driven at the time of release, or if the operator tries to hold the pressing load with the reference load, an unexpected release tactile sensation may occur. It is assumed that the operator feels uncomfortable by being presented.
  • the input device sets the reference load for driving the vibration unit 14 at the time of release to a lower load than the reference at the time of release, so The release tactile sensation can be presented, and the click tactile sensation closer to the push button switch can be presented to the operator more reliably.
  • the predetermined reference load for driving the vibration unit 14 at the time of release is set to a value in the range of 50% to 80% with respect to the predetermined reference load for driving the vibration unit 14 at the time of pressing.
  • the touch panel 12 is set.
  • a smooth continuous input operation can be performed while obtaining a realistic click feeling.
  • “Cut” and “Chip” express the click feeling that humans receive.
  • FIG. 10 and 11 show an input device according to a second embodiment of the present invention.
  • FIG. 10 is a block diagram showing a schematic configuration
  • FIG. 11 is a front view.
  • This input device is mounted on, for example, a portable terminal.
  • a touch panel 41 that is an input unit that receives an input by pressing
  • a position detection unit 42 that detects an input position with respect to the touch panel 41
  • a display panel 43 that displays information based on the input position detected by the position detection unit 42
  • a load detection unit 44 that detects a pressing load on the touch panel 41
  • a vibration unit 45 that vibrates the touch panel 41, and the overall operation
  • a control unit 46 controls the overall operation.
  • a plurality of input objects 41a such as numeric keys are formed in advance by printing or pasting.
  • Each input object 41a sets an effective pressing area for receiving input narrower than the formation area of the input object 41a in order to prevent erroneous input due to pressing across a plurality of adjacent input objects 41a.
  • the load detection unit 44 and the vibration unit 45 are configured using a strain gauge sensor and a piezoelectric vibrator, respectively, as in the case of the input device illustrated in FIG. 6.
  • the control unit 46 monitors an input to the touch panel 41 and a load detected by the load detection unit 44, and also monitors an input position to the touch panel 41 detected by the position detection unit 42. Then, the input position of the effective pressing area of the input object is detected by the position detecting unit 42, and a predetermined reference for receiving input while the pressing load detected by the load detecting unit 44 is increased by pressing of the touch panel 41. When satisfied, the vibration unit 45 is driven with a predetermined drive signal to vibrate the touch panel 41 with a predetermined vibration pattern.
  • the control unit 46 increases the load on the touch panel 41 as in the input device according to the first embodiment.
  • the vibration unit 45 is driven by a drive signal for one cycle including a sine wave having a constant frequency of 170 Hz.
  • the touch panel 41 is vibrated by about 15 ⁇ m with a predetermined load applied.
  • the control unit 46 receives the input detected by the touch panel 41, and thereby displays the display panel 43 according to the input.
  • control unit 46 satisfies a predetermined criterion at the time of release in which the load detected by the load detecting unit 44 is lower than the predetermined criterion for accepting the input of the touch panel 41 as in the case of the first embodiment.
  • the vibration unit 45 is driven with a predetermined drive signal to vibrate the touch panel 41 with a predetermined vibration pattern set in advance.
  • the operator obtains the same click feeling as when the touch button 41 is operated on the touch panel 41. , Because the input operation can be performed, there is no sense of incongruity. Further, since the input operation is performed in conjunction with the consciousness of “pressing” the touch panel 41, an input error due to simple pressing can be prevented.
  • the vibration unit 45 is similar to that at the time of the press. Is driven by a predetermined drive signal, and the touch panel 41 is vibrated with a predetermined vibration pattern set in advance. Thereby, a release tactile sensation can be surely presented. Therefore, according to the input device according to the present embodiment, it is possible to present to the operator a click tactile sensation closer to a push button switch in combination with a click tactile sensation at the time of pressing.
  • the predetermined reference load for driving the vibration part 45 at the time of release is set to a value in the range of 50% to 80% with respect to the predetermined reference load for driving the vibration part 45 at the time of pressing, it is realistic. Smooth continuous input operation is possible while obtaining a click feeling.
  • FIGS. 12 to 15 Examples of these evaluation results are shown in FIGS. 12 to 15, the test subjects are the same five people who performed the sensory evaluation of FIGS. 2 and 3.
  • the evaluation items are three items of “feeling click feel”, “good touch”, and “similar to mobile terminal”. In the evaluation item “feeling click feeling”, “not feeling” is 1 point and “feeling strongly” is 7 points. In the evaluation item “good for touch”, “bad” is 1 point and “good” is 7 points. In the evaluation item “similar to mobile terminal”, “not similar” is 1 point, and “very similar” is 7 points.
  • the evaluation score of each item showed the average score of 5 persons.
  • FIG. 12 shows the evaluation results when the frequency is changed.
  • the cycle (wavelength) of the drive signal that drives the vibration unit 14, that is, the drive time is one cycle
  • the waveform is a sine wave
  • the frequency is changed in the range of 50 Hz to 250 Hz.
  • the amplitude of the drive signal is a signal amplitude with which a vibration amplitude of 15 ⁇ m is obtained on the touch panel 12 with a predetermined reference load applied.
  • the highest evaluation was obtained when the frequency was 170 Hz. However, if the frequency was 140 Hz or higher, it was confirmed that a human could obtain a click feeling similar to that of a mobile terminal.
  • FIG. 13 shows an evaluation result when the amplitude of the drive signal is changed.
  • the frequency of the drive signal for driving the drive unit 14 was 170 Hz
  • the cycle was 1 cycle
  • the waveform was a Sin wave.
  • the signal amplitude was changed so that the touch panel 12 vibrates with a predetermined amplitude within 1 ⁇ m to 35 ⁇ m in a no-load state where the touch panel 12 is not pressed.
  • the drive unit 14 was driven when a load of 1.5 N was applied to the touch panel 12 under vibration amplitude conditions at each no load, and each evaluation item was evaluated. Note that the horizontal axis of FIG.
  • FIG. 14 shows the evaluation results when the period (wavelength), which is the driving time, is changed.
  • the waveform of the drive signal that drives the vibration unit 14 is a Sin wave
  • the signal amplitude is an amplitude and a frequency of 170 Hz with a vibration amplitude of about 15 ⁇ m with a predetermined reference load applied to the touch panel 12.
  • the cycle was changed in the range of 1/4 cycle to 3 cycles.
  • the vibration displacement in the touch panel 12 is substantially equal to that in the other period, that is, the signal amplitude that can obtain the vibration amplitude of about 15 ⁇ m.
  • the highest evaluation was obtained when the period (wavelength) was one period.
  • a favorable result was obtained in general even when the period was 5/4 or less than one period, it was confirmed that when the period became 3/2 or more, the touch feeling of the mobile terminal was deviated.
  • FIG. 15 shows the evaluation results when the waveform of the drive signal is changed.
  • the waveform of the drive signal which drives the vibration part 14 was made into the Sin wave, the rectangular wave, and the triangular wave was evaluated.
  • the frequency of each signal was 170 Hz
  • the signal amplitude was an amplitude with a vibration amplitude of about 15 ⁇ m with a predetermined reference load applied to the touch panel 12, and the cycle was one cycle.
  • the highest evaluation was obtained in the case of the Sin wave.
  • the Sin wave drive signal (input voltage of the drive unit 14) is not limited to one cycle in which the voltage increases and decreases from the phase 0 degree as shown by the one-dot chain line in FIG. It is possible to obtain a voltage of one cycle from an arbitrary phase, such as decreasing and increasing.
  • FIG. 16 shows the vibration amplitude waveform (dashed line) of the touch panel 12 when there is no load when the drive unit 14 is driven with the input voltage indicated by the alternate long and short dash line, and the touch panel 12 when pressed with 1.5N.
  • the vibration amplitude waveform (solid line) is also shown.
  • the present inventors performed a sensory evaluation of the tactile sensation of clicking when the vibrating unit 14 is driven only when pressed as described above and when driven when pressed and released. The results will be described below.
  • FIG. 17 is a diagram illustrating an example of an evaluation result in this case.
  • the left side shows the evaluation result when the vibration unit 14 is driven only when pressed, that is, “no release feel”, and the right side is when driven both when pressed and released, that is, “release”.
  • the sensory evaluation results in the case of “with tactile sensation” are shown.
  • the test subjects are the same five people who performed the sensory evaluation in FIGS. 2 and 3.
  • the evaluation items are four items obtained by adding the item “may be feedback (easy to recognize)” to the three items in FIGS.
  • the evaluation score for each item was an average of 5 people, with a maximum of 7 points. It should be noted that “bad” is 1 point and “good” is 7 points in the evaluation item “may be feedback”.
  • a predetermined reference load for driving the vibration unit 14 is made the same at the time of pressing and releasing, and the drive signal is also made the same.
  • the predetermined reference load is 1.5N.
  • the drive signal made the touch panel 12 vibrate about 15 micrometers in the press state of 1.5N for the Sin wave of frequency 170Hz for 1 period.
  • the present inventors performed a sensory evaluation of the click feeling when continuous input is performed in the case where the click feeling at the time of pressing and the release feeling at the time of release are presented as described above. The results will be described below.
  • FIG. 18 shows a case where the pressing load of the third input is turned back with the reference load in four consecutive inputs.
  • FIG. 19 shows a case where the third input is performed before the release load in the second input reaches the release reference in the fourth continuous input.
  • the predetermined reference load at the time of release is too low, it takes time to return to the predetermined reference.
  • the operator feels uncomfortable with the tactile sensation that is presented, and despite the desire to perform continuous input, it takes time until the next input, and quick continuous input cannot be performed. There is a concern that the operability of the system will deteriorate.
  • the predetermined reference load for driving the vibration unit 14 at the time of release is set to a value close to the load for driving the vibration unit 14 at the time of pressing, continuous input can be performed more quickly.
  • it is attempted to hold the pressed state in the middle of continuous input it is assumed that an unexpected release tactile sensation may be presented and the operator may feel uncomfortable. That is, when the pressing state is held in the middle of continuous input, even if the operator intends to keep the pressing load constant, there is a slight load fluctuation. For this reason, for example, as shown in FIG. 20, when the load width between the reference at the time of pressing and the reference at the time of release is narrower than the width of the load fluctuation in the hold state, the operator is holding. Even if you intend to do so, you will be presented with a tactile sensation at the time of release and will feel uncomfortable.
  • the present inventors performed a sensory evaluation of the tactile sensation of click feeling by variously changing the load for driving the vibration part 14 at the time of release with respect to the load for driving the vibration part 14 at the time of pressing.
  • FIG. 21 to 23 are diagrams showing examples of evaluation results in this case.
  • the number of subjects is the same as those who performed the sensory evaluation of FIG.
  • the evaluation items are five items obtained by adding the item “easy to hit repeatedly” to the four items in FIG. 17.
  • the evaluation score for each item was an average of 5 people, with a maximum of 7 points.
  • “difficult” is 1 point
  • “easy to input continuously” is 7 points.
  • the drive signal which drives a vibration part also at the time of a press and a release made the sine wave of frequency 170Hz one period, and when the predetermined reference
  • FIG. 21 shows the evaluation results when the predetermined standard at the time of pressing is 1N and the predetermined standard at the time of release is 0N, 0.5N, and 1N.
  • the predetermined reference load for starting vibration at the time of pressing is 1N
  • the highest value for all evaluation items is obtained when the predetermined reference load for starting vibration at the time of release is 0.5N. High evaluation was obtained.
  • FIG. 22 shows the evaluation results when the predetermined reference at the time of pressing is 2N and the predetermined reference at the time of release is 0N, 0.5N, 1N, 1.5N, 2N.
  • the predetermined reference load for starting vibration at the time of pressing is 2N
  • high evaluation is obtained when the predetermined reference load for starting vibration at the time of release is 1N and 1.5N. It was. In particular, in the case of 1.5N, the highest evaluation was obtained in all the evaluation items.
  • FIG. 23 shows the evaluation results when the predetermined reference at the time of pressing is 3N and the predetermined reference at the time of release is 0N, 0.5N, 1N, 1.5N, 2N, 2.5N, 3N.
  • the predetermined reference load that starts vibration at the time of pressing is 3N
  • it is high when the predetermined reference load that starts vibration at the time of release is 1.5N, 2N, and 2.5N. Evaluation was obtained. In particular, in the case of 2N, the highest evaluation was obtained for all the evaluation items.
  • the predetermined reference load for driving the vibration part at the time of release is set to a value in the range of 50% to 80% with respect to the predetermined reference load for driving the vibration part at the time of pressing.
  • the predetermined reference load at the time of release is set to be smaller than the predetermined reference load at the time of pressing and 50% or more of the predetermined reference load at the time of pressing.
  • the operativity at the time of continuous input can be improved significantly without giving a sense of incongruity.
  • the predetermined reference load at the time of release is set to 80% or less of the predetermined reference load at the time of pressing. Thereby, it is possible to cope with a minute load change in the hold state at the time of continuous input.
  • the predetermined reference at the time of pressing when the predetermined reference at the time of pressing is set to 1N, the predetermined reference at the time of release is set to an arbitrary value of 0.5N to 0.8N. Further, when the predetermined reference at the time of pressing is a high load, the range of the load fluctuation in the hold state is wider than when the reference is a low load. Even in such a case, the predetermined reference load at the time of release is set in the range of 50% to 80% of the predetermined reference load at the time of pressing. For example, when the predetermined reference at the time of pressing is set as high as 6N, the predetermined reference at the time of release is set to 3N to 4.8N.
  • the predetermined reference load at the time of pressing and the predetermined reference load at the time of release may be fixedly set or may be appropriately selected and set by the user.
  • the load detection unit can be configured using an arbitrary number of strain gauge sensors.
  • a load detection part can be comprised according to the input detection system in a touch panel.
  • the vibration unit is configured by using an arbitrary number of piezoelectric vibrators, is configured by providing a transparent piezoelectric element on the entire operation surface of the touch panel, or rotates the eccentric motor once in one cycle of the drive signal. Can also be configured.
  • the control unit inverts the display color of the corresponding input object on the display panel when the input from the touch panel is received. It can also be controlled to change the display mode. Furthermore, the control unit can be configured to change the click feeling presented by changing the drive signal for driving the vibration unit in accordance with the input position detected by the touch panel.
  • the present invention can also be effectively applied to an input device whose input unit functions as a single switch. Furthermore, the input device according to the present invention presents a click tactile sensation sequentially with different standards (loads) in the middle of pressing of the input unit, and a multi-stage switch such as a two-stage switch (pressed and then pushed further). A tactile sensation can also be presented. Thereby, for example, when applied to a release button of a camera, it is possible to present a tactile sensation between focus lock (pressed one step) and release (pressed two steps). When combined with the display unit, the display of the menu screen or the like can be variously changed according to the number of push-in steps. Furthermore, when presenting the tactile sensation of the multistage switch in this way, it is also possible to change the drive signal that causes the input unit to vibrate at each stage and present different click sensations at each stage.
  • the vibration unit when the pressing load detected by the load detection unit satisfies a predetermined standard for receiving an input, the vibration unit is driven.
  • the pressing load detected by the load detection unit satisfies a predetermined criterion for receiving an input, even when the pressing load detected by the load detection unit reaches a predetermined value for receiving an input It may be when the pressing load detected by the load detection unit exceeds a predetermined value for receiving an input, or when a predetermined value for receiving an input is detected by the load detection unit.
  • control unit drives the vibration unit to vibrate the input unit (touch panel) with a predetermined vibration pattern when the pressing load detected by the load detection unit satisfies a predetermined reference.
  • the predetermined vibration pattern may be a vibration pattern indicated by a solid line in FIG. 4 when pressed.
  • the predetermined vibration pattern may be a vibration pattern indicated by a one-dot chain line in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Push-Button Switches (AREA)

Abstract

押圧による人力を受け付けるタッチパネル12と、タッチパネル12に対する押圧荷重を検出する荷重検出部13と、タッチパネル12を振動させる振動部14と、荷重検出部13により検出される押圧荷重が、タッチパネル12への入力を受け付ける所定の基準を満たした際に、タッチパネル12を押圧している押圧物に対してクリック触感を呈示するように振動部14の駆動を制御し、タッチパネル12への人力を受け付けた後、荷重検出部13により検出される押圧荷重がタッチパネル12への人力を受け付ける所定の基準より低い基準を満たした際に、押圧物に対してクリック触感を呈示するように振動部14の駆動を制御する制御部15と、を備える。これにより、操作者が押圧式のタッチパネルを操作した際に、押しボタンスイッチを操作した場合と同様のリアルなクリック触感を呈示して、違和感のない連続人力操作を可能とする。

Description

入力装置 関連出願の相互参照
 本出願は、2008年12月22日に出願された日本国特許出願2008-326297号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、押圧による入力を受け付ける入力部を備える入力装置に関するものである。
 近年、情報機器や家電製品等には、ユーザによる入力操作を受け付ける入力部として、タッチパネルやタッチスイッチ等の押圧による入力を受け付けるプレート状の入力部を備える入力装置が広く使用されている。このような入力部には、抵抗膜方式や静電容量方式等の種々の方式がある。しかし、これらの入力部は、いずれも、指やスタイラスペンによる押圧による入力を受け付けるものであって、入力部自体は、押圧されても、押しボタンスイッチのようには変位しない。
 このため、操作者は、押圧による入力が受け付けられた際にフィードバックを得ることができない。その結果、例えば、タッチパネルを備える入力装置においては、同じ位置を何度も押圧する等の誤操作による入力ミスが生じ易く、操作者にストレスを与える場合がある。
 このような入力ミスを防止するものとして、例えば、押圧入力を受け付けて、音を鳴らしたり、当該押圧領域に対応して表示部に画像表示されている入力ボタン等の入力用オブジェクトの表示色を変更する等の表示態様を変更したりして、聴覚や視覚により入力操作を確認できるようにしたものが知られている。
 しかし、聴覚に働きかけるフィードバック方法の場合は、騒音環境下での確認が困難になるとともに、使用機器がマナーモード等で消音状態にある場合は、対応できないことになる。また、視覚に働きかけるフィードバック方法の場合は、表示部に表示されている入力用オブジェクトのサイズが小さいと、特に指入力の場合は、指の下に入力用オブジェクトが隠れて表示態様の変化が確認できない場合がある。
 また、聴覚や視覚によらず、タッチパネルが入力を受け付けると、タッチパネルを振動させて、操作者の指先に触覚を発生させるようにしたフィードバック方法も提案されている(例えば、特許文献1,2参照)。
特開2003-288158号公報 特開2008-130055号公報
 しかしながら、上記特許文献1,2に開示の技術は、単に、操作者の指先に振動による触覚を発生させるものである。すなわち、タッチパネルを振動させることにより、タッチパネルに接触している操作者の指先に、「ブルブル」といった触感を呈示するもので、例えば、メタルドームを有する押しボタンスイッチを操作した際に感じられる「カッチッ」というような、リアルなクリック触感を呈示するものではない。
 このため、例えば、携帯電話等の携帯端末、電卓、券売機等の情報機器の入力キーや、電子レンジやテレビ等の家電製品における操作部の入力キー等をタッチパネルで構成して、該タッチパネルに上記のフィードバック技術を適用した場合、操作者は違和感を覚えることになる。
 また、操作者の指先に好適なフィードバックを呈示するものとして、ある荷重閾値が設定され、タッチパネルを指で押圧した際に検出される押圧荷重が増加しながら当該荷重閾値に達した場合にタッチパネルを振動させるだけでなく、タッチパネルから指をリリースする際に検出される押圧荷重が減少しながら当該荷重閾値に達した場合にもタッチパネルを振動させる装置が考えられる。この装置では、操作者の押すという動作と、離すという動作のそれぞれに対応させてタッチパネルを振動させることができるため、操作者に好適な操作感を呈示することができる。しかしながら、タッチパネルの押圧時おける押圧荷重が、当該荷重閾値を上回ることなく、当該荷重閾値と等しい値までしか検出されなかった場合は、押下時のみタッチパネルが振動し、リリース時では振動しないため、操作者は違和感を覚えることになる。特に、タッチパネルの同一の入力用オブジェクトに対して連続して入力操作を行う場合は、ある入力操作では押圧時のみタッチパネルが振動し、次の入力操作では押圧時およびリリース時の双方でタッチパネルが振動することが生じる場合があるため、操作者に対する違和感が顕著となる。
 したがって、かかる点に鑑みてなされた本発明の目的は、操作者が押圧式の入力部を操作した際に、押しボタンスイッチを操作した場合と同様のリアルなクリック触感を呈示でき、かつ操作者が違和感なく連続入力操作(連打)を行うことができる入力装置を提供することにある。
 上記目的を達成する本発明に係る入力装置は、
 押圧による入力を受け付ける入力部と、
 前記入力部に対する押圧荷重を検出する荷重検出部と、
 前記入力部を振動させる振動部と、
 前記荷重検出部により検出される押圧荷重が、前記入力部への入力を受け付ける所定の基準を満たした際に、前記入力部を押圧している押圧物に対してクリック触感を呈示するように前記振動部の駆動を制御し、前記入力部への入力を受け付けた後、前記荷重検出部により検出される押圧荷重が前記入力部への入力を受け付ける前記所定の基準より低い基準を満たした際に、前記押圧物に対してクリック触感を呈示するように前記振動部の駆動を制御する制御部と、
 を備えることを特徴とするものである。
 本発明によれば、入力部への押圧荷重が、入力を受け付ける所定の基準を満たすと、入力部が振動し、その後、入力部への押圧荷重が入力を受け付ける所定の基準より低い基準を満たすと、入力部が振動する。これにより、操作者に対して押しボタンスイッチを操作した場合と同様のリアルなクリック触感が呈示され、操作者は違和感なく連続入力操作(連打)を行うことが可能となる。
押しボタンスイッチの一般的な荷重特性を示す図である。 押下荷重が異なる種々の押しボタンスイッチを操作した際の官能評価結果を示す図である。 ストロークが異なる種々の押しボタンスイッチを操作した際の官能評価結果を示す図である。 押しボタンスイッチを操作した際に押しボタンに生じる振動の測定結果の一例を示す図である。 本発明の第1実施の形態に係る入力装置の概略構成を示すブロック図である。 図5に示した入力装置の実装構造の一例を示す図である。 図5に示した入力装置の動作を示すフローチャートである。 図5に示した入力装置において、押圧時とリリース時との基準の荷重を同じに設定した場合のクリック触感呈示の一例を説明するための図である。 図5に示した入力装置において、リリース時の基準の荷重を押圧時の基準の荷重よりも小さく設定した場合のクリック触感呈示の一例を説明するための図である。 本発明の第2実施の形態に係る入力装置の概略構成を示すブロック図である。 図10に示した入力装置の正面図である。 図5に示した振動部を駆動する駆動信号の周波数を変化させた場合のクリック触感の官能評価結果を示す図である。 図5に示したタッチパネルの振動振幅を変化させた場合のクリック触感の官能評価結果を示す図である。 図5に示した振動部を駆動する駆動信号の周期を変化させた場合のクリック触感の官能評価結果を示す図である。 図5に示した振動部を駆動する駆動信号の波形を変化させた場合のクリック触感の官能評価結果を示す図である。 図5に示した振動部を駆動する駆動信号の波形と実際のタッチパネルの振動振幅波形とを示す図である。 図5に示した入力装置によるクリック触感の官能評価結果の一例をリリース触感なしの場合と比較して示す図である。 押圧時とリリース時との基準の荷重が同じに設定された場合の連続入力時における触感提示の一例を説明するための図である。 リリース時の基準の荷重が押圧時の基準の荷重に対して低すぎる値に設定された場合の連続入力時における触感呈示の一例を説明するための図である。 リリース時の基準の荷重が押圧時の基準の荷重に近い値に設定された場合の連続入力時における触感呈示の一例を説明するための図である。 押圧時の基準の荷重を1Nに設定した場合の触感呈示の官能評価結果例を示す図である。 押圧時の基準の荷重を2Nに設定した場合の触感呈示の官能評価結果例を示す図である。 押圧時の基準の荷重を3Nに設定した場合の触感呈示の官能評価結果例を示す図である。
 先ず、本発明の実施の形態の説明に先立って、本発明に係る入力装置によるクリック触感呈示方法の原理について説明する。
 ヒトが触感として感じる要素には、対象物に触れたときに骨や筋に伝わる荷重により硬さや柔らかさ等の触感を感じる圧覚神経と、対象物に触れた際の皮膚表面に伝わる振動を検知して物の手触り等を感じる触覚神経とがある。つまり、圧覚は荷重を検知し、触覚は振動を検出する。そして、一般に触感とは、圧覚と触覚とが複合した感覚である。したがって、押しボタンスイッチを操作した際の「圧覚」および「触覚」への刺激を、例えばタッチパネル上で同じように再現すれば、操作者にクリック触感を呈示することが可能となる。
 一方、情報機器や家電製品に使用されている押しボタンスイッチには、例えば、メタルドームスイッチ、エンボススイッチ、ラバースイッチ、タクタイルスイッチ等が広く知られている。これらの一般的な押しボタンスイッチにおける荷重特性は、スイッチの種類によって、押しボタンのストロークや、加える荷重(押下力)に差はあるものの、概ね、図1に示すような特性を有する。
 図1の押下時の荷重特性において、A点からB点までの期間は、押しボタンの押し込み開始から押し込みにほぼ比例して荷重が増加する期間である。B点からC点までの期間は、押しボタンの押し込みによりメタルドーム等の凸型形状の弾性部材が座屈して荷重が急激に減少する期間である。C点からD点までの期間は、スイッチの接点が閉成して、押し込みにほぼ比例して荷重が増加する期間である。
 また、押しボタンのリリース時における荷重特性は、多少のヒシテリシスを有するが、押下時とは逆の変化を辿る。すなわち、D点からE点までの期間は、リリースの開始からほぼ比例して荷重が減少する期間で、スイッチの接点が閉状態を維持する期間である。E点からF点までの期間は、押しボタンのリリースにより弾性部材が座屈状態から凸型形状に復帰して荷重が急激に増加する期間で、この期間の開始によりスイッチの接点が開成する。F点からG点までの期間は、弾性部材の復帰後、押しボタンから指を離すまでの期間で、ほぼ比例して荷重が減少する期間である。
 なお、図1に示した荷重特性において、押しボタンの最大ストロークは、例えば、メタルドームスイッチ、エンボススイッチ、タクタイルスイッチの場合で、1mm以下であり、ラバースイッチの場合でも、3mm以下と微少である。また、B点における荷重は、メタルドームスイッチ、エンボススイッチ、タクタイルスイッチの場合で、例えば、1N前後から6N前後であり、ラバースイッチの場合で、例えば、0.5N前後である。そして、何れの押しボタンスイッチを操作した場合でも、操作者は、クリック触感が得られる。
 そこで、本発明者らは、押しボタンスイッチがどのような動きをした時に、「圧覚」および「触覚」が生むクリック触感が得られるのかを検討した。先ず、クリック触感は、ストローク変化によるものなのか、押下荷重変化によるものなのかを検討した。
 図2は、押下荷重が異なる種々の押しボタンスイッチを操作した際に、操作者がどのように感じるかを示した官能評価結果を示す図である。横軸は、実際の押下荷重を示し、縦軸は押しボタンスイッチに関して重いと感じたか軽いと感じたかを7点満点で示す。被験者は、携帯端末の使用に慣れている5人である。図2から明らかなように、押下荷重については、押下荷重の高い押しボタンスイッチに関しては、重いと認識でき、押下荷重の低い押しボタンスイッチに関しては、軽いと認識できていることが解る。
 図3は、ストロークが異なる種々の押しボタンスイッチを操作した際に、操作者がどのように感じるかを示した官能評価結果を示す図である。横軸は、実際のストロークを示し、縦軸は、押しボタンスイッチに関して長いと感じたか、短いと感じたかを7点満点で示す。被験者は、図2の場合と同じ、携帯端末の使用に慣れている5人である。図3から明らかなように、微小なストロークに関しては、長い短いを明確に認識できていないことが解る。
 以上の官能評価結果から、人は、荷重の違いは認識できるが、微小なストロークの違いは認識できないことが解る。
 そこで、本発明者らは、押下荷重の変化に着目した。すなわち、ヒトがストロークの違いを認識できないならば、タッチパネルのような平面上での押下荷重変化、つまり圧覚への刺激を、図1に示したABC点のように変化させれば、クリック触感が感じられるかを検討した。そのため、垂直方向に変位可能なプレートを有する実験装置を作成して、プレートを図1に示したA点からB点にかけて押下し、B点の荷重に達した時点で瞬時にプレートを下方に微少量変位させてBC点間の荷重変化を再現した。
 その結果、押しボタンスイッチを「押した」と言う「押下感」は得られたものの、例えばメタルドームスイッチを操作した場合に得られる「カッチッ」というような、リアルなクリック触感は得られなかった。つまり、リアルなクリック触感を得るには、ストロークと荷重との関係では判明できない他の要素があることが判明した。
 そこで、本発明者らは、次に「圧覚」だけでなく、もう一つの感覚神経である「触覚」に着目して検討した。そのため、本発明者らは、メタルドームスイッチの押しボタンスイッチを有する入力装置が搭載された種々の携帯端末について、押しボタンを操作した際に押しボタンに生じる振動を測定した。その結果、押しボタンは、押下荷重が図1のB点に達した時点おいて、すなわちメタルドームが座屈を開始した時点において、おおよそ100Hz~200Hzの周波数で振動することが判明した。
 図4は、その場合の測定結果の一例を示す図である。横軸は押下経過時間を示し、縦軸は振動振幅を示す。この押しボタンスイッチは、図1のB点において、図4に実線で示すように振動する。これにより、この押しボタンスイッチの場合、ヒトは、押下時に、周期約6ms(周波数で約170Hz)の振動刺激を、約1周期分受けていることが判明した。また、この押しボタンスイッチは、リリース時に押下荷重が図1のF点に達した時点、すなわちメタルドームが座屈状態から復帰した時点で、押しボタンが、図4に一点鎖線で示すように振動する。これにより、この押しボタンスイッチの場合、ヒトは、リリース時に、周期約8ms(周波数で約125Hz)の振動刺激を、約1周期分受けていることが判明した。
 以上のことから、タッチパネルのようなプレート状の押圧式の入力部を押圧する際、図1に示すA点からB点までの荷重では、入力部を振動させずに、操作者に自発的に押下させて圧覚を刺激し、その状態で、B点において、例えば、周波数170Hzで入力部を約1周期分振動させて触覚を刺激すれば、操作者に対して図4の測定結果に係る押しボタンスイッチを操作した場合と同様のクリック触感を呈示することが可能となる。
 本発明に係る入力装置は、以上の原理に基づいて、プレート状の押圧式の入力部を押圧する場合に、押圧荷重が入力部への入力を受け付ける所定の基準を満たすまでは圧覚を刺激し、所定の基準を満たした際に、入力部を所定の駆動信号、すなわち一定周波数、駆動時間である周期(波長)、波形、振幅、で振動させて触覚を刺激する。
 また、ヒトが押しボタンスイッチを操作すると、押下時のみならず、リリース時においても、図4に示したように、指に押しボタンスイッチからの触感刺激が与えられる。そこで、本発明に係る入力装置においては、リリース時にも操作者にクリック触感(以下、リリース時のクリック触感を、適宜、リリース触感とも言う)を呈示する。これにより、操作者に、押しボタンスイッチを押下した場合と同様のリアルなクリック触感を呈示するものである。
 さらに、本発明に係る入力装置は、例えば、携帯端末に使用される入力装置において、電話番号やメール等の入力の際に頻繁に行なわれる同一の入力用オブジェクトを連続して入力する、いわゆる連打においても、操作者に違和感のないリアルなクリック触感を呈示できるように、押圧時のクリック触感の呈示基準に対するリリース触感の呈示基準を適切に設定する。
以下、本発明の実施の形態について、図を参照して説明する。
(第1実施の形態)
 図5は、本発明の第1実施の形態に係る入力装置の概略構成を示すブロック図である。この入力装置は、表示パネル11、タッチパネル12、荷重検出部13、振動部14、および、全体の動作を制御する制御部15を有する。表示パネル11は、入力ボタン等の入力用オブジェクトを表示する表示部を構成するもので、例えば、液晶表示パネルや有機EL表示パネル等を用いて構成される。タッチパネル12は、表示パネル11に対する押圧による入力を受け付ける入力部を構成するもので、例えば、抵抗膜方式や静電容量方式等の公知のものを用いて構成される。荷重検出部13は、タッチパネル12に対する押圧荷重を検出するもので、例えば、歪みゲージセンサを用いて構成される。また、振動部14は、タッチパネル12を振動させるもので、例えば、圧電振動素子を用いて構成される。
 図6は、図5に示した入力装置の実装構造の一例を示すもので、図6(a)は要部断面図、図6(b)は要部平面図である。表示パネル11は、筐体21内に収納保持される。表示パネル11上には、弾性部材からなるインシュレータ22を介して、タッチパネル12が保持される。なお、本実施の形態に係る入力装置は、表示パネル11およびタッチパネル12を、平面視で矩形状として、タッチパネル12を、図6(b)に仮想線で示す表示パネル11の表示領域Aからはずれた4隅に配設したインシュレータ22を介して表示パネル11上に保持する。
 また、筐体21には、表示パネル11の表示領域から外れたタッチパネル12の表面領域を覆うようにアッパカバー23が設けられ、このアッパカバー23とタッチパネル12との間に、弾性部材からなるインシュレータ24が配設される。
 なお、タッチパネル12は、例えば、表面すなわち操作面が透明フィルムで構成され、裏面がガラスで構成され、操作面が押圧されると、押圧力に応じて表面の透明フィルムが微少量撓む(歪む)構造のものが使用可能である。
 タッチパネル12の表面の透明フィルム上には、アッパカバー23で覆われる各辺の近傍に、タッチパネル12に加わる荷重(押圧力)を検出するための歪みゲージセンサ31がそれぞれ接着等により設けられている。また、タッチパネル12の裏面のガラス面上には、対向する2つの辺の近傍に、タッチパネル12を振動させるための圧電振動子32がそれぞれ接着等により設けられている。すなわち、図6に示す入力装置は、図5に示した荷重検出部13を4つの歪みゲージセンサ31を用いて構成し、振動部14を2つの圧電振動子32を用いて構成する。なお、図6(b)は、図6(a)に示した筐体21、アッパカバー23およびインシュレータ24の図示を省略している。
 図7は、本実施の形態に係る入力装置の動作を示すフローチャートである。制御部15は、タッチパネル12への入力を監視するとともに、荷重検出部13で検出される荷重を監視する。そして、タッチパネル12への入力が表示パネル11に表示された入力用オブジェクトに対する入力で、かつ、荷重検出部13により検出される押圧荷重が、タッチパネル12の押圧によって増加しながら当該入力を受け付ける所定の基準を満たしたのを検知する(ステップS81)。これを検知すると、制御部15は、その検知時点のタッチパネル12への入力を受け付けるとともに、振動部14を所定の駆動信号で駆動して、タッチパネル12を予め設定した所定の振動パターンで振動させる(ステップS82)。これにより、タッチパネル12を押圧している指もしくはスタイラスペンの押圧物を介して、操作者にクリック触感を呈示して、入力操作が完了したことを認識させる。なお、荷重検出部13は、例えば、4つの歪みゲージセンサ31の出力の平均値から荷重を検出する。また、振動部14は、例えば、2つの圧電振動子32を同相で駆動する。
 ここで、ステップS81で検知する所定の基準は、例えば、図1に示したB点の荷重である。したがって、この所定の基準は、表現したい押しボタンスイッチの押下時の荷重特性に応じて適宜設定すればよい。例えば、携帯端末に適用する場合においては、年配のユーザは重めに、頻繁にメールをするユーザは軽めに設定できるように、ユーザが自由に設定できるようにする。また、ステップS82で振動部14を駆動する所定の駆動信号、すなわち触覚を刺激する一定周波数、周期(波長)、波形、振幅は、呈示するクリック触感に応じて適宜設定すればよい。例えば、携帯端末に使用されているメタルドームスイッチに代表されるクリック触感を呈示する場合は、後述するように、タッチパネル12に所定の荷重が加わった時点で、例えば、170Hzの一定周波数のSin波からなる1周期分の駆動信号により振動部14を駆動して、タッチパネル12を、所定の荷重が加わった状態で、約15μm振動させる。これにより、操作者にリアルなクリック触感を呈示することができる。
 その後、制御部15は、荷重検出部13で検出される荷重が、所定の基準を満たしたのを検知すると(ステップS83)、押圧時と同様に、振動部14を、所定の駆動信号で駆動して、タッチパネル12を予め設定した所定の振動パターンで振動させる(ステップS84)。
 ここで、ステップS83のリリース時、すなわち押圧入力の受け付け後に検知する所定の基準の荷重は、ステップS81で検知する押圧時における荷重より低い荷重、好ましくは、後述するように押圧時における荷重の50%~80%の任意の値に設定する。また、ステップS84のリリース時において、振動部14を駆動する駆動信号は、ステップS82の押圧時における駆動信号と同じとすることもできるし、異ならせることもできる。例えば、タッチパネル12への入力を受け付ける押圧時における駆動信号の周波数は170Hzとし、リリース時における駆動信号の周波数は、例えば図4に示したように、125Hzとすることができる。
 このように、本実施の形態に係る入力装置は、荷重検出部13で検出されるタッチパネル12に加わる荷重が、タッチパネル12への入力を受け付ける所定の基準を満たすまでは圧覚を刺激するようにし、所定の基準を満たすと、振動部14を所定の駆動信号で駆動してタッチパネル12を所定の振動パターンで振動させて触覚を刺激する。これにより、操作者に対してクリック触感を呈示して、当該入力操作が完了したことを認識させる。したがって、操作者は、タッチパネル12を、押しボタンスイッチを操作した場合と同様のリアルなクリック触感を得ながら、入力操作を行うことができるので、違和感を覚えることがない。また、操作者は、タッチパネル12を「押した」と言う意識との連動で入力操作を行うことができるので、単なる押圧による入力ミスも防止することができる。
 また、本実施の形態に係る入力装置は、押圧入力を受け付けた後のリリース時に、押圧入力を受け付ける所定の基準よりも低い基準を満たした際に、押圧時と同様に、振動部14を所定の駆動信号で駆動して、タッチパネル12を予め設定した所定の振動パターンで振動させる。これにより、操作者に対してリリース触感を呈示することができる。
 例えば、押圧時とリリース時とで、振動部14を駆動する基準の荷重を同じに設定した場合は、押圧時の最大荷重が基準の荷重を超えていれば、図8に示すように、押圧時とリリース時とでクリック触感を呈示することができる。したがって、押しボタンスイッチにより近いクリック触感を操作者に呈示することができる。しかし、押圧時の基準の荷重で押圧物を引き返した場合は、リリース時に振動部14が駆動されなかったり、操作者が押圧荷重を基準の荷重で保持しようとした場合、予期せぬリリース触感が呈示されたりして、操作者に違和感を与える場合が想定される。
 これに対し、本実施の形態に係る入力装置は、図9に示すように、リリース時に振動部14を駆動する基準の荷重を、押圧時の基準よりも低い荷重に設定するので、リリース時に確実にリリース触感を提示でき、より押しボタンスイッチに近いクリック触感を、より確実に、操作者に呈示することができる。特に、リリース時に振動部14を駆動する所定の基準の荷重を、押圧時に振動部14を駆動する所定の基準の荷重に対して、50%~80%の範囲の値に設定すれば、タッチパネル12の同一の入力用オブジェクトを連続して入力する際に、リアルなクリック触感を得ながらスムーズな連続入力操作可能となる。なお、図8、図9および他の図において、「カッ」および「チッ」は、ヒトが受けるクリック触感を表現したものである。
(第2実施の形態)
 図10および図11は、本発明の第2実施の形態に係る入力装置を示すもので、図10は概略構成を示すブロック図、図11は正面図である。この入力装置は、例えば、携帯端末に実装されるもので、図10に示すように、押圧による入力を受け付ける入力部であるタッチパネル41と、タッチパネル41に対する入力位置を検出する位置検出部42と、位置検出部42で検出された入力位置に基づく情報を表示する表示パネル43と、タッチパネル41に対する押圧荷重を検出する荷重検出部44と、タッチパネル41を振動させる振動部45と、全体の動作を制御する制御部46とを有する。
 タッチパネル41には、図11に示すように、予め印刷や貼り付け等により、テンキー等の複数の入力用オブジェクト41aが形成されている。各入力用オブジェクト41aは、隣接する複数の入力用オブジェクト41aに跨る押圧による誤入力を防止するため、入力を受け付ける有効押圧領域を、当該入力用オブジェクト41aの形成領域よりも狭く設定する。なお、図10において、荷重検出部44および振動部45は、図6に示した入力装置の場合と同様に、それぞれ歪みゲージセンサおよび圧電振動子を用いて構成される。
 制御部46は、タッチパネル41への入力、および、荷重検出部44で検出される荷重を、それぞれ監視するとともに、位置検出部42で検出されるタッチパネル41に対する入力位置を監視する。そして、位置検出部42により入力用オブジェクトの有効押圧領域の入力位置が検出され、かつ、荷重検出部44により検出される押圧荷重が、タッチパネル41の押圧により増加しながら入力を受け付ける所定の基準を満たした際に、振動部45を所定の駆動信号で駆動してタッチパネル41を予め設定した所定の振動パターンで振動させる。
 すなわち、制御部46は、位置検出部42により入力用オブジェクトの有効押圧領域の入力位置が検出された場合は、第1実施の形態に係る入力装置と同様に、タッチパネル41への荷重が増加しながら所定の基準を満たした時点で、例えば、170Hzの一定周波数のSin波からなる1周期分の駆動信号により振動部45を駆動する。そして、タッチパネル41を、所定の荷重が加わった状態で、約15μm振動させる。これにより、操作者に対しクリック触感を呈示して、その入力操作が完了したことを認識させる。また、制御部46は、タッチパネル41で検出された入力を受け付けることにより、表示パネル43に対して入力に応じた表示を行う。
 その後、制御部46は、荷重検出部44により検出される荷重が、第1実施の形態の場合と同様に、タッチパネル41の入力を受け付ける所定の基準よりも低いリリース時の所定の基準を満たしたのを検知すると、同様に、振動部45を、所定の駆動信号で駆動して、タッチパネル41を予め設定した所定の振動パターンで振動させる。
 したがって、本実施の形態に係る入力装置によれば、第1実施の形態の場合と同様に、操作者は、タッチパネル41を、押しボタンスイッチを操作した場合と同様のリアルなクリック触感を得ながら、入力操作を行うことができるので、違和感を覚えることがない。また、タッチパネル41を「押した」と言う意識との連動で入力操作が行われるので、単なる押圧による入力ミスも防止することができる。
 また、本実施の形態に係る入力装置は、押圧入力を受け付けた後のリリース時に、押圧入力を受け付ける所定の基準よりも低い所定の基準を満たした際に、押圧時と同様に、振動部45を所定の駆動信号で駆動して、タッチパネル41を予め設定した所定の振動パターンで振動させる。これにより、リリース触感を確実に呈示することができる。したがって、本実施の形態に係る入力装置によれば、押圧時のクリック触感と相俟って、より押しボタンスイッチに近いクリック触感を操作者に呈示することができる。特に、リリース時に振動部45を駆動する所定の基準の荷重を、押圧時に振動部45を駆動する所定の基準の荷重に対して、50%~80%の範囲の値に設定すれば、リアルなクリック触感を得ながらスムーズな連続入力操作可能となる。
 以下、上記各実施の形態に係る入力装置において、本発明者らが検証したクリック触感の官能評価結果について説明する。
 市販の携帯端末に広く使用されているメタルドームスイッチは、本発明者らによる測定によると、端末の機種によるバラツキはあるものの、概ね6N以下、一般には3N以下の所定の荷重が加わると、急激に荷重が減少する荷重特性を有している。そこで、本発明者らは、図5および図6に示した構成の入力装置において、先ず、振動部14を押圧時のみ駆動する場合のクリック触感の官能評価を行った。この官能評価では、押圧時に振動部14の駆動を開始するタッチパネル12の荷重(図1のB点の荷重)を1.5Nとし、駆動信号の周波数、周期(波長)、波形をパラメータとした。
 これらの評価結果例を、図12~図15に示す。図12~図15において、被験者は、図2および図3の官能評価を行った者と同じ5人である。評価項目は、「クリック触感と感じる」、「触感として良い」、および、触感が「携帯端末と似ている」の3項目である。評価点は、「クリック触感と感じる」の評価項目では、「感じない」が1点、「強く感じる」が7点である。「触感として良い」の評価項目では、「悪い」が1点、「良い」が7点である。「携帯端末と似ている」の評価項目では、「似ていない」が1点、「非常に似ている」が7点である。各項目の評価得点は、それぞれ5人の平均点を示した。
 図12は、周波数を変化させた場合の評価結果を示す。この官能評価においては、振動部14を駆動する駆動信号の周期(波長)すなわち駆動時間を1周期、波形をSin波として、周波数を50Hz~250Hzの範囲で変化させた。なお、駆動信号の振幅は、タッチパネル12において、所定の基準の荷重が加わった状態で、15μmの振動振幅が得られる信号振幅とした。その結果、図12から明らかなように、周波数は、170Hzの場合が最も評価が高いが、140Hz以上であれば、ヒトは携帯端末と似たクリック触感が得られることが確認できた。
 図13は、駆動信号の振幅を変化させた場合の評価結果を示す。この官能評価においては、駆動部14を駆動する駆動信号の周波数を170Hz、周期を1周期、波形をSin波とした。また、信号振幅は、タッチパネル12が押圧されていない無負荷状態で、タッチパネル12が1μm~35μm内の所定の振幅で振動するように変化させた。そして、各無負荷時の振動振幅条件で、タッチパネル12に1.5Nの荷重が加わった際に駆動部14を駆動して、各評価項目を評価した。なお、図13の横軸には、タッチパネル12の無負荷時の振動振幅に対応して、1.5Nの荷重が加わった状態での振動振幅を示す。その結果、図13から明らかなように、1.5Nの荷重が加わった状態では、振動振幅が15μm以上であれば、ヒトはクリック触感を十分に感じることが確認できた。つまり、タッチパネル12に1.5Nの押圧荷重が加わった状態で、170Hzの一定周波数で、タッチパネル12を15μm以上の振動振幅で、わずかに1周期分振動させることで、ヒトはクリック触感を感じるということが確認できた。
 図14は、駆動時間である周期(波長)を変化させた場合の評価結果を示す。この官能評価においては、振動部14を駆動する駆動信号の波形をSin波、信号振幅をタッチパネル12における所定の基準の荷重が加わった状態での振動振幅が約15μmとなる振幅、周波数を170Hzとして、周期を1/4周期~3周期の範囲で変化させた。なお、1/4周期および1/2周期では、他の周期とタッチパネル12における振動変位がほぼ等しくなる、すなわち約15μmの振動振幅が得られる信号振幅とした。その結果、図14から明らかなように、周期(波長)が1周期の場合に最も高い評価が得られた。また、5/4周期や、1周期未満でも、概ね良好な結果が得られたが、3/2周期以上になると、携帯端末のクリック触感からはずれることが確認できた。
 図15は、駆動信号の波形を変化させた場合の評価結果を示す。この官能評価においては、振動部14を駆動する駆動信号の波形をSin波、矩形波、三角波とした場合のそれぞれについて評価した。なお、各信号の周波数は170Hz、信号振幅はタッチパネル12における所定の基準の荷重が加わった状態での振動振幅が約15μmとなる振幅、周期は1周期とした。その結果、図15から明らかなように、Sin波の場合に最も高い評価が得られた。
 ここで、Sin波の駆動信号(駆動部14の入力電圧)は、図16に一点鎖線で示すように、位相0度から電圧が増加して減少する1周期に限らず、位相180度から電圧が減少して増加する等、任意の位相からの1周期の電圧とすることができる。なお、図16には、一点鎖線で示した入力電圧で駆動部14を駆動した際の、無負荷時におけるタッチパネル12の振動振幅波形(破線)と、1.5Nでの押圧時におけるタッチパネル12の振動振幅波形(実線)とを合わせて示す。
 以上の評価結果例から、図5および図6に示した構成の入力装置を携帯端末に適用する場合は、タッチパネル12の押圧時に所定の基準を満たす荷重が加わった時点で、例えば、周波数140Hz以上、好適には170Hzの一定周波数で、5/4周期以下、好適には1周期のSin波の駆動信号により、タッチパネル12を約15μm以上振動させれば、操作者にリアルなクリック触感を呈示可能であることが確認できた。なお、図10および図11に示した構成の入力装置においても、同様の結果が得られることが確認できた。
 次に、本発明者らは、上記のように振動部14を押圧時のみ駆動する場合と、押圧時およびリリース時の双方で駆動する場合とのクリック触感の官能評価を行った。以下、その結果について説明する。
 図17は、この場合の評価結果例を示す図である。図17において、左側は、振動部14を押圧時のみ駆動する場合、すなわち「リリース触感なし」の場合の評価結果を示し、右側は、押圧時およびリリース時の双方で駆動する場合、すなわち「リリース触感あり」の場合の官能評価結果を示す。被験者は、図2および図3の官能評価を行った者と同じ5人である。評価項目は、図12~図15における3項目に、「フィードバックとしてよい(認識し易い)」の項目を加えた4項目である。各項目の評価点は、7点を満点として、5人の平均点を示した。なお、「フィードバックとしてよい」の評価項目では、「悪い」が1点、「良い」が7点である。また、押圧時およびリリース時とも、振動部14を駆動する所定の基準の荷重を同じにするとともに、駆動信号も同じとする。ここでは、所定の基準の荷重は、1.5Nとした。また、駆動信号は、周波数170HzのSin波を1周期分として、タッチパネル12を1.5Nの押圧状態で約15μm振動させた。
 図17の評価結果から明らかなように、リリース時にもタッチパネル12を振動させてリリース触感を呈示した方が、携帯端末のクリック触感により類似し、かつ、フィードバック(認識)も良好であることが確認できた。なお、図10および図11に示した構成の入力装置においても、同様の結果が得られることが確認できた。
 さらに、本発明者らは、上記のように押圧時のクリック触感とリリース時のリリース触感とを呈示する場合において、連続入力を行った場合のクリック触感の官能評価を行った。以下に、その結果について説明する。
 例えば、ヒトが連続入力を素早く行う場合、一般に、押圧荷重は「0」まで下がりきらずに次の入力が開始されるため、押圧時の最大荷重にバラツキが生じる。この際、振動部14を駆動する所定の基準の荷重が、押圧時とリリース時とで同じに設定されている場合は、図18に示すような現象が生じることが想定される。すなわち、連打入力の途中で、押圧荷重が基準の荷重で引き返されると、当該入力においては、リリース時に振動部14が駆動されなかったり、操作者がリリースした意識よりも先に触感が呈示されたりする。その結果、入力動作と触感が合わず、操作者に違和感を与える場合があることが想定される。なお、図18は、4回の連続入力において、3回目の入力の押圧荷重が基準の荷重で引き返された場合を示す。
 一方、リリース時に振動部14を駆動する所定の基準の荷重が、押圧時に振動部14を駆動する荷重と比較して低すぎる値に設定されている場合は、図19に示すような現象が生じることが想定される。すなわち、連打入力の途中で、荷重がリリース時の基準まで戻らずに、次の入力動作が行われると、触感呈示にずれが生じる。その結果、操作者に違和感を与える場合があることが想定される。なお、図19は、4回の連打入力において、2回目の入力におけるリリース時の荷重が、リリース時の基準まで達しないうちに、3回目の入力が行われた場合を示す。また、このように、リリース時における所定の基準の荷重が低すぎると、当該所定の基準に戻るまでに時間がかかる。その結果、操作者は呈示される触感に違和感を覚えることなく、連続入力を行いたいにも拘らず、次の入力までの時間がかかり、素早い連続入力が行えなくなって、連続入力(連打)時の操作性が低下することが懸念される。
 これに対し、リリース時に振動部14を駆動する所定の基準の荷重が、押圧時に振動部14を駆動する荷重に近い値に設定されている場合は、より素早く連続入力が可能になる。その反面、連続入力の途中で押圧状態を保持(ホールド)しようとした場合は、予期せぬリリース触感が呈示されて操作者に違和感を与える場合があることが想定される。すなわち、連続入力の途中で押圧状態をホールドする場合、操作者は、押圧荷重を一定に保持しているつもりでも、微小な荷重変動がある。このため、例えば、図20に示すように、押圧時における基準とリリース時における基準との荷重幅が、上記のホールド状態での荷重変動の幅よりも狭いと、操作者は、ホールドしているつもりでも、リリース時の触感が呈示されて違和感を覚えることになる。
 そこで、本発明者らは、押圧時に振動部14を駆動する荷重に対して、リリース時に振動部14を駆動する荷重を種々変更して、クリック触感の官能評価を行った。
 図21~図23は、この場合の評価結果例を示す図である。図21~図23において、被験者は、図17の官能評価を行った者と同じ5人である。評価項目は、図17における4項目に「連打しやすい」の項目を加えた5項目である。各項目の評価点は、7点を満点として、5人の平均点を示した。なお、「連打しやすい」の評価項目では、「やりずらい」が1点、「連続入力しやすい」が7点である。また、押圧時およびリリース時とも、振動部を駆動する駆動信号は、周波数170HzのSin波を1周期分として、それぞれ所定の基準を満たした際に、タッチパネルを約15μm振動させた。
 図21は、押圧時の所定の基準が1Nで、リリース時の所定の基準が0N、0.5N、1Nの場合の評価結果を示す。図21から明らかなように、押圧時に振動を開始する所定の基準の荷重が1Nの場合は、リリース時に振動を開始する所定の基準の荷重が0.5Nの場合に、全ての評価項目で最も高い評価が得られた。
 図22は、押圧時の所定の基準が2Nで、リリース時の所定の基準が0N、0.5N、1N、1.5N、2Nの場合の評価結果を示す。図22から明らかなように、押圧時に振動を開始する所定の基準の荷重が2Nの場合は、リリース時に振動を開始する所定の基準の荷重が1Nおよび1.5Nの場合に高い評価が得られた。特に1.5Nの場合は、全ての評価項目で最も高い評価が得られた。
 図23は、押圧時の所定の基準が3Nで、リリース時の所定の基準が0N、0.5N、1N、1.5N、2N、2.5N、3Nの場合の評価結果を示す。図23から明らかなように、押圧時に振動を開始する所定の基準の荷重が3Nの場合は、リリース時に振動を開始する所定の基準の荷重が1.5N、2Nおよび2.5Nの場合に高い評価が得られた。特に2Nの場合は、全ての評価項目で最も高い評価が得られた。
 以上の評価結果例から、リリース時に振動部を駆動する所定の基準の荷重は、押圧時に振動部を駆動する所定の基準の荷重に対して、50%~80%の範囲の値に設定すれば、連続入力(連打)において、順次の入力と触感呈示タイミングとが合致し、違和感のないリアルなクリック触感を呈示できることが確認できた。すなわち、リリース時の所定の基準の荷重を、押圧時の所定の基準の荷重よりも小さく、かつ、押圧時の所定の基準の荷重の50%以上とする。これにより、違和感を与えることなく、連続入力時の操作性を格段に向上することができる。また、リリース時の所定の基準の荷重を、押圧時の所定の基準の荷重の80%以下とする。これにより、連続入力時のホールド状態での微小な荷重変化にも対応することができる。
 したがって、例えば、押圧時の所定の基準を1Nに設定した場合は、リリース時の所定の基準は0.5N~0.8Nの任意の値に設定する。また、押圧時の所定の基準が高い荷重の場合は、当該基準が低い荷重の場合よりも、ホールド状態での荷重変動の幅も広くなる。このような場合でも、リリース時の所定の基準の荷重を、押圧時の所定の基準の荷重の50%~80%の範囲に設定する。例えば、押圧時の所定の基準を6Nと高く設定した場合は、リリース時の所定の基準を3N~4.8Nに設定する。これにより、予期せぬリリース触感を呈示することなく、連続入力に応じた違和感のないリアルなクリック触感を呈示することができる。これら、押圧時の所定の基準の荷重、および、リリース時の所定の基準の荷重は、固定的に設定してもよく、ユーザにおいて適宜選択して設定できるようにしてもよい。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、荷重検出部は、任意の個数の歪みゲージセンサを用いて構成することができる。また、荷重検出部は、タッチパネルにおける入力検出方式に応じて構成することができる。例えば、抵抗膜方式の場合には、接触面積による抵抗変化に基づく出力信号の変化から、あるいは静電容量方式の場合には、静電容量の変化に基づく出力信号の変化から、荷重が検出できれば、歪みゲージセンサを用いることなく構成することができる。また、振動部は、任意の個数の圧電振動子を用いて構成したり、タッチパネルの操作面の全面に透明圧電素子を設けて構成したり、偏心モータを駆動信号の1周期で1回転させるようにして構成したり、することもできる。
 また、制御部は、図5および図6に示したように、入力装置が表示パネルを有する場合は、タッチパネルによる入力を受け付けた時点で、表示パネルの対応する入力用オブジェクトの表示色を反転する等の表示態様を変更するように制御することもできる。さらに、制御部は、タッチパネルで検出される入力位置に応じて、振動部を駆動する駆動信号を変更して呈示するクリック触感を変更するように構成することもできる。
 また、本発明は、入力部が一つのスイッチとして機能する入力装置にも有効に適用することができる。さらに、本発明に係る入力装置は、入力部の押圧の途中で、異なる基準(荷重)で順次にクリック触感を呈示して、2段階スイッチ(押し込んだ後、さらに押し込む)などの多段階スイッチの触感を呈示することもできる。これにより、例えば、カメラのレリーズボタンに適用した場合は、フォーカスロック(1段押し)とレリーズ(2段押し)との触感を呈示することが可能となる。また、表示部と組み合わせた場合は、押し込みの段数に応じてメニュー画面等の表示を種々変更することが可能となる。さらに、このように、多段階スイッチの触感を呈示する場合は、各段階で振動部により入力部を振動させる駆動信号を変更して、各段階において異なるクリック触感を呈示することも可能である。
 また、本発明は、荷重検出部により検出される押圧荷重が、入力を受け付ける所定の基準を満たした際に、振動部を駆動させる。ここで、上記荷重検出部により検出される押圧荷重が入力を受け付ける所定の基準を満たした際とは、荷重検出部により検出される押圧荷重が入力を受け付ける所定値に達した際であってもよいし、荷重検出部により検出される押圧荷重が入力を受け付ける所定値を超えた際でもよいし、荷重検出部により入力を受け付ける所定値が検出された際でもよい。
 また、制御部は、荷重検出部により検出される押圧荷重が、所定の基準を満たした際に、振動部を駆動して、入力部(タッチパネル)を予め設定した所定の振動パターンで振動させるが、前記所定の振動パターンは、押圧時の場合、図4の実線が示す振動パターンであってもよい。また、前記所定の振動パターンは、リリース時の場合、図4の一点鎖線が示す振動パターンであってもよい。このように入力部を振動させることによって、操作者に対して、押しボタンスイッチを操作した場合と同様のクリック触感(振動刺激)を呈示することが可能となる。
 11 表示パネル
 12 タッチパネル
 13 荷重検出部
 14 振動部
 15 制御部
 21 筐体
 22 インシュレータ
 23 アッパカバー
 24 インシュレータ
 31 歪みゲージセンサ
 32 超音波振動子
 41 タッチパネル
 41a 入力用オブジェクト
 42 位置検出部
 43 表示パネル
 44 荷重検出部
 45 振動部
 46 制御部

Claims (1)

  1.  押圧による入力を受け付ける入力部と、
     前記入力部に対する押圧荷重を検出する荷重検出部と、
     前記入力部を振動させる振動部と、
     前記荷重検出部により検出される押圧荷重が、前記入力部への入力を受け付ける所定の基準を満たした際に、前記入力部を押圧している押圧物に対してクリック触感を呈示するように前記振動部の駆動を制御し、前記入力部への入力を受け付けた後、前記荷重検出部により検出される押圧荷重が前記入力部への入力を受け付ける前記所定の基準より低い基準を満たした際に、前記押圧物に対してクリック触感を呈示するように前記振動部の駆動を制御する制御部と、
     を備えることを特徴とする入力装置。
PCT/JP2009/007080 2008-12-22 2009-12-21 入力装置 WO2010073597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117014259A KR101322373B1 (ko) 2008-12-22 2009-12-21 입력장치
US13/001,591 US9904363B2 (en) 2008-12-22 2009-12-21 Input apparatus for generating tactile sensations and control method of input apparatus
CN200980151955.4A CN102265247B (zh) 2008-12-22 2009-12-21 输入设备
EP09834408A EP2369449A4 (en) 2008-12-22 2009-12-21 INPUT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-326297 2008-12-22
JP2008326297A JP4633166B2 (ja) 2008-12-22 2008-12-22 入力装置および入力装置の制御方法

Publications (1)

Publication Number Publication Date
WO2010073597A1 true WO2010073597A1 (ja) 2010-07-01

Family

ID=42287247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007080 WO2010073597A1 (ja) 2008-12-22 2009-12-21 入力装置

Country Status (6)

Country Link
US (1) US9904363B2 (ja)
EP (1) EP2369449A4 (ja)
JP (1) JP4633166B2 (ja)
KR (1) KR101322373B1 (ja)
CN (1) CN102265247B (ja)
WO (1) WO2010073597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068976A (ja) * 2010-09-24 2012-04-05 Kyocera Corp 電子情報機器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265246B (zh) * 2008-12-22 2015-05-27 京瓷株式会社 输入设备
JP4633184B1 (ja) 2009-07-29 2011-02-23 京セラ株式会社 入力装置および入力装置の制御方法
JP2012014375A (ja) 2010-06-30 2012-01-19 Kyocera Corp 触感呈示装置および触感呈示装置の制御方法
EP2461236B1 (en) * 2009-07-29 2015-12-16 Kyocera Corporation Input apparatus and control method of input apparatus
JP4633183B1 (ja) * 2009-07-29 2011-02-23 京セラ株式会社 入力装置および入力装置の制御方法
JP5197521B2 (ja) * 2009-07-29 2013-05-15 京セラ株式会社 入力装置
EP2472365B1 (en) 2009-08-27 2016-10-12 Kyocera Corporation Tactile sensation imparting device and control method of tactile sensation imparting device
WO2012137946A1 (ja) * 2011-04-06 2012-10-11 京セラ株式会社 電子機器、操作制御方法および操作制御プログラム
JP5610096B2 (ja) * 2011-12-27 2014-10-22 株式会社村田製作所 触覚提示装置
JP5849033B2 (ja) 2012-08-31 2016-01-27 株式会社日本自動車部品総合研究所 操作入力装置
JP6143179B2 (ja) * 2013-06-26 2017-06-07 株式会社Soken 操作入力装置
JP5815612B2 (ja) * 2013-07-29 2015-11-17 京セラ株式会社 電子機器
US20180329444A1 (en) * 2015-10-23 2018-11-15 Behr-Hella Thermocontrol Gmbh Operating unit for a vehicle component, in particular for a heating, ventilation and/or air conditioning system
JP7032048B2 (ja) 2017-02-03 2022-03-08 株式会社デンソーテン 制御装置、入力システムおよび制御方法
JP7141927B2 (ja) 2018-11-26 2022-09-26 ホシデン株式会社 振動付与装置及び振動制御方法
EP3913652B1 (en) * 2019-02-27 2024-08-21 Huawei Technologies Co., Ltd. Input apparatus, and electronic device comprising input apparatus
JP7352721B2 (ja) * 2020-03-04 2023-09-28 アルプスアルパイン株式会社 入力装置
JPWO2023276300A1 (ja) * 2021-06-29 2023-01-05

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293644A (ja) * 1997-04-18 1998-11-04 Idec Izumi Corp タッチパネル付表示装置
JP2003288158A (ja) 2002-01-28 2003-10-10 Sony Corp タクタイル・フィードバック機能を持つ携帯型機器
JP2005332063A (ja) * 2004-05-18 2005-12-02 Sony Corp 触覚機能付き入力装置、情報入力方法及び電子機器
JP2008130055A (ja) 2006-11-27 2008-06-05 Sony Corp タッチパネルディスプレイ装置および駆動方法並びに電子機器

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1967290A (en) * 1924-06-02 1934-07-24 American Cyanamid Co Fumigating compound and method of fumigating
JPS61140009A (ja) 1984-12-12 1986-06-27 信越ポリマ−株式会社 押釦スイツチ
US5880411A (en) * 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US7084859B1 (en) * 1992-09-18 2006-08-01 Pryor Timothy R Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
JPH08221173A (ja) * 1995-02-09 1996-08-30 Hitachi Ltd 入力装置
DE19638015A1 (de) * 1996-09-18 1998-03-26 Mannesmann Vdo Ag Verfahren zur Erzeugung von haptischen Markierungen auf einer Eingabefläche und Anordnung zur Durchführung des Verfahrens
US6118435A (en) * 1997-04-10 2000-09-12 Idec Izumi Corporation Display unit with touch panel
US5977867A (en) * 1998-05-29 1999-11-02 Nortel Networks Corporation Touch pad panel with tactile feedback
US6337678B1 (en) * 1999-07-21 2002-01-08 Tactiva Incorporated Force feedback computer input and output device with coordinated haptic elements
US6822635B2 (en) * 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
JP3949912B2 (ja) * 2000-08-08 2007-07-25 株式会社エヌ・ティ・ティ・ドコモ 携帯型電子機器、電子機器、振動発生器、振動による報知方法および報知制御方法
JP3798287B2 (ja) * 2001-10-10 2006-07-19 Smk株式会社 タッチパネル入力装置
KR101289110B1 (ko) * 2001-11-01 2013-08-07 임머숀 코퍼레이션 촉각을 제공하기 위한 방법 및 장치
JP2004070920A (ja) 2002-06-11 2004-03-04 Sony Computer Entertainment Inc 情報処理プログラム、情報処理プログラムを記録したコンピュータ読み取り可能な記録媒体、情報処理方法、及び情報処理装置
JP3880888B2 (ja) * 2002-06-18 2007-02-14 Smk株式会社 タブレット装置
US7075025B2 (en) * 2002-08-09 2006-07-11 Fujikura Ltd. Switch sheet and switch
JP3937982B2 (ja) 2002-08-29 2007-06-27 ソニー株式会社 入出力装置および入出力装置を有する電子機器
JP3871991B2 (ja) * 2002-09-30 2007-01-24 Smk株式会社 タッチパネル
US7685538B2 (en) * 2003-01-31 2010-03-23 Wacom Co., Ltd. Method of triggering functions in a computer application using a digitizer having a stylus and a digitizer system
JP4177142B2 (ja) 2003-03-10 2008-11-05 富士通コンポーネント株式会社 座標入力装置及び駆動装置
JP4213539B2 (ja) * 2003-08-12 2009-01-21 富士通コンポーネント株式会社 座標入力装置
US7218313B2 (en) 2003-10-31 2007-05-15 Zeetoo, Inc. Human interface system
US7728819B2 (en) 2003-11-17 2010-06-01 Sony Corporation Input device, information processing device, remote control device, and input device control method
JP4478436B2 (ja) * 2003-11-17 2010-06-09 ソニー株式会社 入力装置、情報処理装置、リモートコントロール装置および入力装置の制御方法
JP4279171B2 (ja) * 2004-02-13 2009-06-17 富士通コンポーネント株式会社 平面板振動装置及びこれを用いたスイッチ
JP2005258666A (ja) 2004-03-10 2005-09-22 Sony Corp 入力装置および電子機器並びに電子機器の感触フィードバック入力方法
JP3857278B2 (ja) 2004-04-06 2006-12-13 Smk株式会社 タッチパネル入力装置
JP2006079136A (ja) * 2004-09-06 2006-03-23 Fujitsu Component Ltd 触覚提示装置
US8232969B2 (en) 2004-10-08 2012-07-31 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
BRPI0419165A8 (pt) * 2004-11-09 2017-12-19 Telecom Italia Spa Processo para planejar uma rede de comunicações, e, meio de armazenamento legível por computador
JP2007094493A (ja) 2005-09-27 2007-04-12 Matsushita Electric Works Ltd アクセス制御システム及びアクセス制御方法
US20080084384A1 (en) * 2006-10-05 2008-04-10 Immersion Corporation Multiple Mode Haptic Feedback System
US7468573B2 (en) * 2006-10-30 2008-12-23 Motorola, Inc. Method of providing tactile feedback
JP4968515B2 (ja) * 2006-11-15 2012-07-04 ソニー株式会社 基板支持振動構造、触覚機能付きの入力装置及び電子機器
JP2008225690A (ja) * 2007-03-09 2008-09-25 Sony Corp 振動体、触覚機能付きの入力装置及び電子機器
GB2453911A (en) 2007-03-26 2009-04-29 Nokia Corp An input pad having an array of resistive sensing pads disposed under a top surface layer
WO2008125130A1 (en) 2007-04-12 2008-10-23 Nokia Corporation Keypad
JP4897596B2 (ja) 2007-07-12 2012-03-14 ソニー株式会社 入力装置、記憶媒体、情報入力方法及び電子機器
JP2009053857A (ja) 2007-08-24 2009-03-12 Citizen Electronics Co Ltd 感圧式振動発生装置を備えたパネルモジュール
US8135432B2 (en) * 2007-12-18 2012-03-13 Motorola Solutions, Inc. Method and system for managing a communication link in a communication network
KR100952699B1 (ko) * 2008-03-10 2010-04-13 한국표준과학연구원 촉각센서를 이용한 터치스크린장치의 풀브라우징 표시방법
US8786555B2 (en) * 2008-03-21 2014-07-22 Sprint Communications Company L.P. Feedback-providing keypad for touchscreen devices
CN102265246B (zh) 2008-12-22 2015-05-27 京瓷株式会社 输入设备
JP4633183B1 (ja) 2009-07-29 2011-02-23 京セラ株式会社 入力装置および入力装置の制御方法
JP4633184B1 (ja) 2009-07-29 2011-02-23 京セラ株式会社 入力装置および入力装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293644A (ja) * 1997-04-18 1998-11-04 Idec Izumi Corp タッチパネル付表示装置
JP2003288158A (ja) 2002-01-28 2003-10-10 Sony Corp タクタイル・フィードバック機能を持つ携帯型機器
JP2005332063A (ja) * 2004-05-18 2005-12-02 Sony Corp 触覚機能付き入力装置、情報入力方法及び電子機器
JP2008130055A (ja) 2006-11-27 2008-06-05 Sony Corp タッチパネルディスプレイ装置および駆動方法並びに電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2369449A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068976A (ja) * 2010-09-24 2012-04-05 Kyocera Corp 電子情報機器

Also Published As

Publication number Publication date
CN102265247B (zh) 2017-06-13
JP4633166B2 (ja) 2011-02-16
EP2369449A1 (en) 2011-09-28
JP2010146510A (ja) 2010-07-01
KR101322373B1 (ko) 2013-10-28
CN102265247A (zh) 2011-11-30
US9904363B2 (en) 2018-02-27
KR20110088587A (ko) 2011-08-03
EP2369449A4 (en) 2012-06-20
US20110102358A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP4975722B2 (ja) 入力装置および入力装置の制御方法
JP4633166B2 (ja) 入力装置および入力装置の制御方法
WO2010073596A1 (ja) 入力装置
JP4633167B2 (ja) 入力装置および入力装置の制御方法
JP4633183B1 (ja) 入力装置および入力装置の制御方法
JP4633184B1 (ja) 入力装置および入力装置の制御方法
WO2011013370A1 (ja) 入力装置および入力装置の制御方法
WO2011013372A1 (ja) 入力装置および入力装置の制御方法
WO2012001859A1 (ja) 触感呈示装置および触感呈示装置の制御方法
JP2010146513A (ja) 入力装置
JP2011060333A (ja) 入力装置および入力装置の制御方法
JP4975789B2 (ja) 入力装置および入力装置の制御方法
JP5369087B2 (ja) 入力装置および入力装置の制御方法
JP2011060335A (ja) 入力装置および入力装置の制御方法
JP2016018545A (ja) 電子機器
JP2011100477A (ja) 入力装置および入力装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151955.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13001591

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009834408

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117014259

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE