WO2010073446A1 - 走行車システム - Google Patents

走行車システム Download PDF

Info

Publication number
WO2010073446A1
WO2010073446A1 PCT/JP2009/005344 JP2009005344W WO2010073446A1 WO 2010073446 A1 WO2010073446 A1 WO 2010073446A1 JP 2009005344 W JP2009005344 W JP 2009005344W WO 2010073446 A1 WO2010073446 A1 WO 2010073446A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling vehicle
escape
traveling
circuit
point
Prior art date
Application number
PCT/JP2009/005344
Other languages
English (en)
French (fr)
Inventor
原崎一見
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to US13/141,322 priority Critical patent/US8521406B2/en
Priority to JP2010543766A priority patent/JP5088418B2/ja
Priority to SG2011046463A priority patent/SG172371A1/en
Priority to CN2009801525023A priority patent/CN102265230B/zh
Publication of WO2010073446A1 publication Critical patent/WO2010073446A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0289Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling with means for avoiding collisions between vehicles

Definitions

  • the present invention relates to a traveling vehicle system including a plurality of traveling vehicles that convey articles.
  • traveling vehicle system that is a system that transports articles using traveling vehicles such as overhead traveling vehicles.
  • each manufacturing process is divided into areas called bays.
  • Each bay is provided with a circuit around which a plurality of overhead traveling vehicles circulate in one direction.
  • each of a plurality of traveling vehicles transports a wafer or the like, which is a material of a semiconductor element, between manufacturing apparatuses in the bay.
  • peripheral circuits of each bay are connected by a connection path.
  • a product that has undergone one process in a certain bay is picked up by an overhead traveling vehicle in the bay and is transported to the bay of the next process via a connection path.
  • Such a traveling vehicle system including a plurality of peripheral circuits, connection paths connecting the plurality of peripheral circuits, and a plurality of overhead traveling vehicles is required to efficiently convey articles.
  • a controller that controls a plurality of overhead traveling vehicles grasps the traffic congestion on the traveling road and notifies each overhead traveling vehicle. Thereby, each overhead traveling vehicle can determine a travel route according to a traffic jam situation.
  • each of the plurality of bays is connected by the connection path as described above, and the traveling vehicle moves between the bays. Therefore, a situation may occur in which the number of traveling vehicles for each bay is not balanced with respect to the required work amount in each bay, for example.
  • a plurality of escape points at which the traveling vehicle escapes to the connection path and a plurality of entry points at which the traveling vehicle enters the circuit from the connection path are separately provided in the peripheral circuit of each bay. ing.
  • the traveling vehicle moves along a route connecting the exit point of one circuit and the entry point of another circuit.
  • connection path when a failure occurs in a part of the connection path, when another traveling vehicle stops on the connection path due to a failure, or when a part of the travel path is prohibited for maintenance, etc. Even if the traveling vehicle moves according to the combination, the traveling vehicle may not reach the destination bay.
  • the present invention is a traveling vehicle system including a plurality of peripheral circuits and a connection path that connects the peripheral circuits, in order to efficiently move the traveling vehicle between the plurality of peripheral circuits.
  • An object of the present invention is to provide a traveling vehicle system.
  • a traveling vehicle system of the present invention includes a plurality of peripheral circuits, a connection path that connects the plurality of peripheral circuits, a traveling vehicle that travels through the plurality of peripheral circuits and the connection path, and
  • Each of the plurality of peripheral circuits and the connection path is a one-way street, and each of the plurality of peripheral circuits is a plurality of escape points at which the travel vehicle can escape to the connection path.
  • a plurality of entry points through which the traveling vehicle can enter from the connection path, and the traveling vehicle system is a path that the traveling vehicle can move between the plurality of peripheral circuits and is shortest.
  • a storage unit that stores entry / exit information indicating a combination of an exit point and an entry point that are a start point and an end point of the route, and the traveling vehicle includes a circuit from one circuit among the plurality of circuit circuits. other When moving in a circumferential circuit, the shown in exit-entrance information stored in the storage unit, to move through the exit point and the entrance point of the other frequency divider of the one divider.
  • the storage unit stores the entry / exit information indicating the combination of the exit point and the entry point that form the shortest path between the plurality of peripheral circuits.
  • the escape point for moving the traveling vehicle when the traveling vehicle moves from one of the plurality of peripheral circuits to another peripheral circuit, the escape point for moving the traveling vehicle most efficiently by referring to this entry / exit information
  • the entry point can be easily identified.
  • the traveling vehicle system further includes a generation unit that generates the escape information using information indicating an escape point and an entry point of each of the plurality of peripheral circuits, the plurality of peripheral circuits, and the connection path. Whether or not it is difficult or impossible for the traveling vehicle to pass either the escape point or the entry point of each of the plurality of peripheral circuits by monitoring a travel environment within a predetermined range of the travel path A monitoring unit that determines whether or not the generation unit is difficult or impossible for the traveling vehicle to pass either one of an escape point or an entry point of each of the plurality of peripheral circuits. If it is determined that there is, the exit information and entry points that are determined to be difficult or impossible to pass are excluded, and the exit information is updated. It may be.
  • This configuration allows the entry / exit information to be always kept up-to-date in consideration of the situation even when an obstruction factor that deteriorates the driving environment such as a traffic jam occurs.
  • the escape point and the entry point for the most efficient traveling vehicle under the circumstances are specified. That is, even when the traveling environment is deteriorated for some reason, the route selection that can always reach the destination at that time and can move at the shortest distance is performed. Therefore, according to the present invention, efficient movement of the traveling vehicle according to the traveling environment is realized.
  • the traveling vehicle system further includes a plurality of traveling vehicles including the traveling vehicle, and a controller that controls each of the plurality of traveling vehicles.
  • the controller includes the storage unit and the plurality of traveling vehicles.
  • This configuration allows the controller located above the traveling vehicle in the instruction system to centrally manage the entry / exit information. Therefore, even when another traveling vehicle participates in the traveling vehicle system, the controller can give an appropriate instruction to the other traveling vehicle by referring to the entry / exit information.
  • the movement instruction unit moves one of the plurality of traveling vehicles from the one circuit to the other circuit, the upstream side of the escape point indicated by the escape information. It is also possible to identify a traveling vehicle that is located at the nearest to the escape point and give the instruction to the identified traveling vehicle.
  • the present invention can also be realized as a traveling vehicle movement control method including characteristic operation steps in the traveling vehicle system of the present invention. Moreover, it can also be implemented as a control program that causes a controller, which is a control device, to execute these steps.
  • a combination of an escape point and an entry point which is the shortest path when moving the traveling vehicle from one of the two peripheral circuits to the other, is stored.
  • the traveling vehicle when the traveling vehicle moves from one of the two circumference circuits to the other, the traveling vehicle may move via the escape point and the entry point indicated in the entry / exit information. That is, the traveling vehicle can efficiently move from one to the other in a short time and with a light load without performing a complicated route search or the like.
  • the storage unit may be included in the traveling vehicle or a controller that controls the traveling vehicle.
  • the controller efficiently moves the traveling vehicle from one to the other in a short time and with a light load without performing a complicated route search or the like. be able to.
  • the present invention can provide a traveling vehicle system for efficiently moving a traveling vehicle between a plurality of peripheral circuits.
  • FIG. 1 is a diagram showing an outline of a hardware configuration of a traveling vehicle system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an appearance of the traveling vehicle in the embodiment.
  • FIG. 3 is a diagram showing a functional configuration of the traveling vehicle system according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a data configuration example of an escape point table and an entry point table in the embodiment.
  • FIG. 5 is a diagram for explaining a vehicle allocation process in the traveling vehicle system of the embodiment.
  • FIG. 6 is a flowchart illustrating an outline of a process flow for dispatching by the system controller according to the embodiment.
  • FIG. 7 is a diagram for explaining a method of identifying one vehicle as a target for dispatch from a plurality of traveling vehicles.
  • FIG. 1 is a diagram showing an outline of a hardware configuration of a traveling vehicle system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an appearance of the traveling vehicle in the embodiment.
  • FIG. 8 is a diagram illustrating a state in which traffic congestion has occurred near the entry point in the traveling vehicle system of the embodiment.
  • FIG. 9 is a diagram illustrating a state in which a route down occurs in the traveling vehicle system according to the embodiment.
  • FIG. 10 is a diagram illustrating a processing flow of the system controller when the generation unit in the embodiment updates the escape table and the entry table.
  • FIG. 11 is a diagram illustrating a data configuration example of the escape table and the entry table updated by the generation unit.
  • FIG. 12 is a diagram illustrating an example of a flow of processes and operations of the traveling vehicle and the system controller when an article is transported between bays by a specific traveling vehicle.
  • FIG. 1 is a diagram showing an outline of a hardware configuration of a traveling vehicle system 100 according to an embodiment of the present invention.
  • the traveling vehicle system 100 includes a system controller 110, a first bay controller 121, a second bay controller 122, a first circuit 131, a second circuit 132, and a first connection path. 141, a second connection path 142, and a plurality of traveling vehicles 200.
  • the traveling vehicle 200 is an overhead traveling vehicle that moves along a traveling path such as the first circuit 131 disposed on the ceiling.
  • a traveling vehicle system 100 shown in FIG. 1 is provided, for example, in a factory that manufactures semiconductor elements.
  • the first circuit 131 is disposed in the first bay, and the second circuit 132 is disposed in the second bay.
  • the traveling vehicle 200 in the first bay that is, the traveling vehicle 200 belonging to the first circuit 131 is controlled by a radio signal from the first bay controller 121.
  • the traveling vehicle 200 in the second bay that is, the traveling vehicle 200 belonging to the second circuit 132 is controlled by a radio signal from the second bay controller 122.
  • the first bay controller 121 and the second bay controller 122 control each traveling vehicle 200 in accordance with an instruction from the system controller 110. That is, each of the plurality of traveling vehicles 200 is controlled by the system controller 110 via the first bay controller 121 or the second bay controller 122.
  • the first connection path 141 and the second connection path 142 are the travel paths that are shaded in FIG. 1, and are the travel paths that connect the first circuit 131 and the second circuit 132.
  • the traveling vehicle 200 can move from one of the first circuit 131 and the second circuit 132 to the other by traveling on the first connection path 141 or the second connection path 142.
  • the layout of the 1st circuit 131, the 2nd circuit 132, the 1st connection path 141, and the 2nd connection path 142 which are shown in FIG. 1 is a layout at the time of seeing these from the upper direction. Each is one-way clockwise in FIG.
  • an escape point where the traveling vehicle 200 escapes to the first connection path 141 and the second connection path 142, and the traveling vehicle 200 are connected to the first circuit 131 and the second circuit 132, respectively.
  • An entry point that is a position entering from each of the road 141 and the second connection path 142 is set.
  • Out1-1 that is an escape point to the first connection path 141 and Out1-2 that is an escape point to the second connection path 142 are set.
  • In1-1 that is an entry point from the first connection path 141 and In1-2 that is an entry point from the second connection path 142 are set.
  • Out2-1 that is an escape point to the first connection path 141 and Out2-2 that is an exit point to the second connection path 142 are set.
  • In2-1 that is an entry point from the first connection path 141 and In2-2 that is an entry point from the second connection path 142 are set.
  • the traveling vehicle 200 moves from one of the first circuit 131 and the second circuit 132 to the other, the traveling vehicle 200 is connected to the first connection path 141 or the second from the escape point of any of the movement circuit. It is necessary to escape to the connection path 142 and enter the peripheral circuit from any entry point of the destination peripheral circuit.
  • the traveling vehicle 200 must travel according to the one-way rule of each of the first circuit 131, the second circuit 132, the first connection path 141, and the second connection path 142.
  • first peripheral circuit 131 and the second peripheral circuit 132 are shown as peripheral circuits included in the traveling vehicle system 100 in order to clearly explain the present invention. Further, only two of the first connection path 141 and the second connection path 142 are shown as connection paths for connecting these peripheral circuits.
  • peripheral circuits and connection paths included in the traveling vehicle system 100 is not limited to two, but may include three or more peripheral circuits and connection paths.
  • each peripheral circuit is provided with a plurality of escape points and a plurality of entry points for connection to at least one connection path.
  • FIG. 2 is a perspective view showing an appearance of the traveling vehicle 200 in the embodiment.
  • traveling vehicle 200 which belongs to the 1st circuit 131 is illustrated, the other traveling vehicles 200 are also the same external appearance.
  • the traveling vehicle 200 is an overhead traveling vehicle that moves along rails that form a traveling path such as the first circuit 131.
  • the traveling vehicle 200 includes a holding unit 240 that holds an article.
  • the traveling vehicle 200 moves to a certain point on the first circuit 131 in accordance with an instruction from the system controller 110 and descends to the transfer port where the article to be transported is placed. Further, the article placed in the transfer port is held and raised by the holding unit 240 and moved to the next transfer port in accordance with an instruction from the system controller 110. When the traveling vehicle 200 moves to the next transfer port, the traveling vehicle 200 moves down and moves up after placing the article held by the holding unit 240.
  • traveling vehicle 200 moves between the first bay and the second bay, materials and the like are transferred between the first bay and the second bay.
  • the first circuit 131 is provided with a plurality of mounting tables 300 on which articles to be transported to the traveling vehicle 200 are temporarily mounted.
  • a plurality of such mounting tables 300 are also provided in the second circuit 132.
  • FIG. 3 is a diagram showing a functional configuration in the traveling vehicle system 100 according to the embodiment of the present invention.
  • the system controller 110 includes a generation unit 111, a storage unit 112, a movement instruction unit 115, and a monitoring unit 116 as main functional configurations.
  • the generation unit 111 is a processing unit that generates an escape point table 113 and an entry point table 114.
  • the generation unit 111 acquires point information indicating an escape point and an entry point for each of the plurality of peripheral circuits. Further, based on the acquired point information, a movement distance between the plurality of peripheral circuits is calculated. That is, the travel distance is calculated for all combinations of escape points and entry points to which the traveling vehicle 200 can move.
  • the generation unit 111 obtains a combination of an escape point and an entry point that is the shortest path between a plurality of peripheral circuits from the calculation result.
  • the generation unit 111 further generates an escape point table 113 and an entry point table 114 that indicate combinations of these escape points and entry points.
  • the generated escape point table 113 and the entry point table 114 are stored in the storage unit 112. In addition, it is updated when the layout of the travel route is updated after generation and when a change in the travel environment such as traffic congestion occurs.
  • the movement instruction unit 115 is a processing unit that gives a movement instruction to each of the plurality of traveling vehicles 200.
  • the movement instruction unit 115 is indicated in the escape point table 113 and the entry point table 114 stored in the storage unit 112.
  • the traveling vehicle 200 is instructed to move via the escape point of the first circuit 131 and the entry point of the second circuit 132.
  • the movement instruction by the movement instruction unit 115 is given to the traveling vehicle 200 to be moved via the first bay controller 121 or the second bay controller 122.
  • the monitoring unit 116 monitors a traveling environment within a predetermined range of a traveling path constituted by a plurality of peripheral circuits and connection paths, so that the traveling vehicle 200 is one of an escape point and an entry point of each of the plurality of peripheral circuits. Is a processing unit that determines whether or not it is difficult or impossible to pass.
  • the monitoring unit 116 becomes unable to travel from each of the first bay controller 121 and the second bay controller 122 due to information indicating the occurrence and position of traffic jams on the traveling road, rail failure or maintenance, and the like. Get information that shows where you are. The monitoring unit 116 further performs the above determination based on the acquired information.
  • FIG. 4 is a diagram illustrating a data configuration example of the escape point table 113 and the entry point table 114 in the embodiment.
  • the escape point table 113 and the entry point table 114 include the escapes that are the start and end points of the shortest route that is a movable route of the traveling vehicle 200 between a plurality of peripheral circuits. Points and entry points are shown.
  • the escape point is found to be “Out1-2” by referring to the escape point table 113.
  • the entry point in this case is found by referring to the entry point table 114, and the entry point is “In2-2”.
  • the traveling vehicle 200 belonging to the first circuit 131 exits from the “Out1-2” of the first circuit 131 to the second connection path 142 and passes through “In2-2” to the second circuit 132. By entering, the movement from the first circuit 131 to the second circuit 132 is completed most efficiently.
  • the information group comprised from the escape point table 113 and the approach point table 114 is an example of the escape information in the traveling vehicle system of this invention.
  • FIG. 5 is a diagram for explaining a vehicle allocation process in the traveling vehicle system 100 according to the embodiment.
  • the system controller 110 gives an instruction to move to the second circuit 132 to one traveling vehicle 200 belonging to the first circuit 131 via the first bay controller 121.
  • FIG. 6 is a flowchart showing an outline of a process flow for dispatching by the system controller 110 according to the embodiment.
  • the system controller 110 acquires the number of traveling vehicles 200 in each bay (S10).
  • the monitoring unit 116 acquires the number of traveling vehicles 200 in each of the first bay and the second bay from the first bay controller 121 and the second bay controller 122.
  • acquisition of such a number is performed for every predetermined period, for example.
  • system controller 110 determines whether or not dispatch is necessary (S11).
  • the movement instruction unit 115 compares “1” that is the number of actual traveling vehicles 200 in the second bay with “2 to 4” that is the reference number for the second bay. Also, “6”, which is the actual number of traveling vehicles 200 in the first bay, is compared with “3-5”, which is the reference number for the first bay.
  • standard number for every bay is memorize
  • N is an integer greater than or equal to 1
  • M is an integer greater than N
  • a rule of moving 200 may be used.
  • the movement instruction unit 115 refers to the escape point table 113 and the entry point table 114 stored in the storage unit 112 (S12).
  • the movement instruction unit 115 refers to the escape point table 113 and the entry point table 114 to identify the escape point and the entry point that are the start and end points of the movement route from the first circuit 131 to the second circuit 132. (S13).
  • the movement instruction unit 115 further specifies the traveling vehicle 200 to be moved (S14).
  • the movement instruction unit 115 identifies the traveling vehicle 200 that is located upstream of Out1-2 that is the escape point and is closest to Out1-2.
  • FIG. 7 is a diagram for explaining a method of identifying one vehicle as a target of dispatch from a plurality of traveling vehicles 200.
  • the traveling vehicle a As shown in FIG. 7, for example, at the time when the movement instructing unit 115 determines that dispatch is necessary, there are three traveling vehicles 200 (the traveling vehicle a, the traveling vehicle b, and the traveling vehicle c) near the Out 1-2. Assume that it exists.
  • the vehicle b is closest to Out1-2.
  • the first circuit 131 is clockwise one-way, and the traveling vehicle b is downstream of Out1-2 in the one-way. That is, the traveling vehicle b is not in a position where it can immediately reach Out1-2.
  • the traveling vehicle b it is not the traveling vehicle b but the traveling vehicle 200 that is located upstream of Out1-2 and is closest to Out1-2, that is, the traveling vehicle 200 that has the shortest necessary travel distance to reach Out1-2.
  • the traveling vehicle a is specified.
  • the movement instruction unit 115 gives an instruction to the traveling vehicle a identified in this way to move from the first circuit 131 to the second circuit 132 (S15).
  • the movement instruction unit 115 uses the first bay controller 121 to travel the information indicating “Out1-2” and “In2-2” acquired from the escape point table 113 and the entry point table 114. Send to car a.
  • the traveling vehicle “a” refers to the layout data of the traveling route of the traveling vehicle “a”, specifies the route that exits the first circuit 131 from “Out1-2” and enters the second circuit 132 from “In2-2”. .
  • the traveling vehicle a further enters the second circuit 132 by traveling on the specified route.
  • the system controller 110 that performs the series of processes described above is realized by a computer system that includes, for example, a microprocessor, a ROM, a RAM, a hard disk unit, a program for performing the series of processes, and the like.
  • the traveling vehicle system 100 of the present embodiment includes the system controller 110 that controls each of the traveling vehicles 200.
  • the system controller 110 stores an escape point table 113 and an entry point table 114 in the storage unit 112.
  • the escape point table 113 and the entry point table 114 represent a combination of an exit point and an entry point that are the start and end points of the shortest route that is a movable route of the traveling vehicle 200 between a plurality of peripheral circuits. Information.
  • the traveling vehicle system 100 of the present embodiment efficiently moves the traveling vehicle 200 in a short time and with a light processing load without searching for a moving route that is the shortest distance from a large number of candidates, for example. It is possible to specify the movement route for the
  • system controller 110 identifies the traveling vehicle 200 having the shortest necessary travel distance to reach the identified escape point as the traveling vehicle 200 to be moved among the plurality of traveling vehicles 200 belonging to the movement source circuit. .
  • the system controller 110 can specify the single traveling vehicle 200 that is most suitable for the vehicle allocation when the vehicle is allocated from one of the two peripheral circuits to the other. Thereby, the efficiency of dispatch can be improved.
  • the timing at which the generation unit 111 generates (including update) the escape point table 113 and the entry point table 114 is, for example, when the traveling vehicle system 100 is activated and when the layout of the traveling path is updated.
  • the generation unit 111 updates the escape point table 113 and the entry point table 114 in consideration of the obstruction factor.
  • Such obstruction factors include, for example, traffic congestion near an escape point or entry point, a road stop (route down) caused by a stop or maintenance due to a failure of the traveling vehicle 200, or the like.
  • FIG. 8 is a diagram illustrating a state in which a traffic jam has occurred near the entry point in the traveling vehicle system 100 according to the embodiment.
  • the monitoring unit 116 monitors the traveling environment within a predetermined range from each escape point and each entry point.
  • the traveling environment is, for example, the number of passing vehicles per unit time within a predetermined range.
  • the first bay controller 121 includes the number of traveling vehicles 200 that enter a predetermined range from upstream to downstream of In1-1 of the first circuit 131, and the number of traveling vehicles 200 that exit from the range. Are counted every predetermined period and notified to the system controller 110.
  • the monitoring unit 116 of the system controller 110 receives this number notification, and when the difference between the number entering the range and the number coming out of the range exceeds the threshold, a traffic jam has occurred near In1-1. Judge. That is, the monitoring unit 116 determines that it is difficult for the traveling vehicle 200 to enter In1-1.
  • FIG. 9 is a diagram illustrating a state in which a route down occurs in the traveling vehicle system 100 according to the embodiment.
  • the route is due to the traveling vehicle 200 being stopped due to a failure. Assume that a down occurs.
  • no traveling vehicle 200 can enter In1-1 of the first circuit 131.
  • the monitoring unit 116 determines the occurrence of a route down and its position from the traveling environment within a predetermined range on the traveling path, similarly to the case where the occurrence of the traffic jam is detected.
  • the second bay controller 122 is notified of the fact that it cannot move and its position.
  • the second bay controller 122 transmits to the system controller 110 information indicating that the traveling vehicle 200 has become unmovable and its position.
  • the monitoring unit 116 of the system controller 110 receives the information and specifies the position where the route down has occurred and the movement route including the position. Thus, an escape point and an entry point that are substantially impassable are specified.
  • the monitoring unit 116 determines that In1-1 and Out2-1 cannot pass.
  • the generation unit 111 determines that the escape point and entry point are determined to be difficult or impossible to pass. And the escape point table 113 and the entry point table 114 are updated.
  • FIG. 10 is a diagram illustrating a processing flow of the system controller 110 when the generation unit 111 according to the embodiment updates the escape point table 113 and the entry point table 114.
  • the monitoring unit 116 monitors the traveling environment as described above (S20). When the monitoring unit 116 determines that any escape point or entry point is difficult or impossible to pass due to an obstacle or traffic jam on the road (Yes in S21), the generation unit 111 uses the escape point table 113 and the entry point. The point table 114 is updated (S22).
  • FIG. 11 is a diagram illustrating a data configuration example of the escape point table 113 and the entry point table 114 updated by the generation unit 111.
  • FIG. 11 shows a data configuration example of the escape point table 113 and the entry point table 114 that are updated corresponding to the traffic jam shown in FIG.
  • the fields surrounded by a thick frame are the places changed by the update (see FIG. 4).
  • the generation unit 111 updates the exit point table 113 and the entry point table 114, excluding In1-1.
  • the method for obtaining the movement route is the same as the above-described method. That is, the generation unit 111 identifies a route having the shortest distance from all combinations of escape points and entry points that are not excluded. Further, the escape point and the entry point which are both ends of the specified route are recorded in the escape point table 113 and the entry point table 114.
  • the traveling vehicle 200 when the traveling vehicle 200 is moved from one of the two peripheral circuits to the other after this update, the traveling vehicle 200 can reach the destination most efficiently under the situation at that time. Also, since escape points and entry points that are substantially impassable are excluded, the traveling vehicle 200 can always reach the destination.
  • the escape point table 113 and the entry point table 114 indicating the efficient movement route of the traveling vehicle 200 are updated when the traveling vehicle system 100 is activated. Updated at the time of occurrence of a factor that deteriorates the driving environment such as a traffic jam.
  • the movement instruction unit 115 can refer to the latest escape point table 113 and the entry point table 114 at any time.
  • the traveling vehicle 200 can be efficiently moved not only when the vehicle is allocated, but also when the specific traveling vehicle 200 transports the article between the bays.
  • FIG. 12 is a diagram illustrating an example of a flow of processes and operations of the traveling vehicle 200 and the system controller 110 when an article is transported between bays by a specific traveling vehicle 200.
  • system controller 110 and the traveling vehicle 200 exchange information via the first bay controller 121 or the second bay controller 122. However, since these are not related to the substantial processing contents, they are omitted in the description of the processing flow.
  • the movement instruction unit 115 of the system controller 110 identifies one traveling vehicle 200 (traveling vehicle a) that is near and upstream of the position where the material ⁇ is present.
  • the movement instructing unit 115 further transmits a conveyance instruction to the traveling vehicle a so as to convey the material ⁇ to a predetermined position in the second bay (S40).
  • the traveling vehicle a receives this conveyance instruction (S41).
  • a point instruction request is transmitted to the system controller 110 (S42).
  • the generation unit 111 refers to the escape point table 113 and the entry point table 114 stored in the storage unit 112 (S44).
  • the storage unit 112 stores the escape point table 113 and the entry point table 114 shown in FIG.
  • the generation unit 111 refers to the escape point table 113 and the entry point table 114, and the “Out1-2” of the first circuit 131, which is the exit point and the entry point in the movement path from the first bay to the second bay, ”And“ In2-2 ”of the second circuit 132 are specified (S45).
  • the generation unit 111 transmits information indicating the specified “Out1-2” and “In2-2” to the traveling vehicle a as point instruction information (S46).
  • the traveling vehicle a receives this point instruction information (S47).
  • the traveling vehicle a further exits the first circuit 131 from Out1-2 indicated by the point instruction information (S48).
  • the traveling vehicle a travels toward the second circuit 132 and enters the second circuit 132 from In2-2 indicated by the point instruction information (S49).
  • system controller 110 can also transmit point instruction information indicating an escape point and an entry point to the traveling vehicle 200 in response to a request from the traveling vehicle 200.
  • the point instruction information transmitted at this time is information obtained from the escape point table 113 and the entry point table 114 stored in the storage unit 112 at that time.
  • the point instruction information transmitted to the traveling vehicle 200 is generated based on information in consideration of the traffic jam occurring at that time, the obstacle of the traveling path, and the like. Therefore, both ends of the route that is most efficient at that time and can always reach the destination are shown.
  • the material ⁇ may be in a position corresponding to the vicinity and downstream of Out1-2, and the travel distance required for the traveling vehicle a holding the material ⁇ to reach Out1-2 may be relatively long. Conceivable.
  • the system controller 110 uses the escape point table 113 and the entry point table 114 that are kept up-to-date and the entry point and the entry point. Instruct.
  • the traveling vehicle 200 travels on a route that is most efficient under the circumstances and can always reach the circuit around the destination.
  • the traveling vehicle system 100 is a traveling vehicle system 100 that includes a plurality of peripheral circuits and a connection path that connects these peripheral circuits.
  • the traveling vehicle can be moved efficiently.
  • the escape point table 113 and the entry point table 114 are stored in the storage unit 112 of the system controller 110 that controls the traveling vehicle 200.
  • the traveling vehicle 200 may store the escape point table 113 and the entry point table 114 and refer to them when moving between the peripheral circuits.
  • the traveling vehicle 200 does not need to search for the shortest route every time the circuit travels, and can determine a route that can be efficiently moved by simply referring to these tables.
  • the traveling vehicle 200 may include a generation unit 111 and a monitoring unit 116. That is, the traveling vehicle 200 may monitor the traveling environment within a predetermined range of the traveling path and update the escape point table 113 and the entry point table 114 in response to occurrence of traffic jams or the like.
  • the traveling vehicle 200 can easily determine a route that allows efficient movement. it can.
  • the traveling vehicle 200 when the traveling vehicle 200 is instructed from the system controller 110 to the escape point and the entry point, the traveling vehicle 200 is determined by referring to the layout data of the traveling vehicle 200.
  • the system controller 110 may determine the travel route of the traveling vehicle 200. That is, the traveling vehicle 200 only needs to be able to move via the escape point and the entry point shown in the escape point table 113 and the entry point table 114, and the movement route including these points is instructed by a device other than the traveling vehicle 200. May be.
  • generation part 111 acquires the point information which shows the escape point and entry point of each of several circumference circuit, and moves about all the combinations of the escape point and entry point which the traveling vehicle 200 can move. The distance was calculated.
  • the generation unit 111 does not have to calculate these movement distances.
  • the generation unit 111 may acquire these movement distances calculated by other devices and generate the escape point table 113 and the entry point table 114 using these acquired movement distances.
  • the plurality of traveling vehicles 200 included in the traveling vehicle system 100 are overhead traveling vehicles.
  • the traveling vehicle system 100 may include a plurality of other types of traveling vehicles instead of the overhead traveling vehicle, and these traveling vehicles may be subject to movement control.
  • an automatic guided vehicle that travels on the floor inside a warehouse or a factory and transports articles may be the target of movement control.
  • an efficient automatic transfer of the automated guided vehicle can be realized, for example, when dispatching from one of the two areas to the other.
  • the system controller 110 performs substantial control of the plurality of traveling vehicles 200, and the first bay controller 121 and the second bay controller 122 are substantially in movement control of the traveling vehicle 200. It was assumed that it was not involved in the processing content.
  • system controller 110 the first bay controller 121, and the second bay controller 122 may share roles and control each of the plurality of traveling vehicles 200 in cooperation.
  • the controller in the traveling vehicle system of the present invention may be a device for controlling the traveling vehicle that is positioned above the plurality of traveling vehicles in the instruction system, and the device configuration and the like are not limited to a specific one.
  • the traveling vehicle system of the present invention since efficient traveling of the traveling vehicle is realized, the traveling vehicle system can be used as a system for transporting various types of articles within a predetermined area using the traveling vehicle. In particular, it is useful as a traveling vehicle system or the like in a factory where a plurality of peripheral circuits divided for each manufacturing process exist.
  • traveling vehicle system 110 system controller 111 generation unit 112 storage unit 113 escape point table 114 entry point table 115 movement instruction unit 116 monitoring unit 121 first bay controller 122 second bay controller 131 first circumference circuit 132 second circumference circuit 141 first One connection path 142 Second connection path 200 Traveling vehicle 240 Holding section 300 Mounting table

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

 走行車システム(100)であって、第一周回路(131)および第二周回路(132)のそれぞれは、複数の脱出ポイントと複数の進入ポイントとを有し、走行車システム(100)は、脱出ポイントテーブル(113)および進入ポイントテーブル(114)を記憶している記憶部(112)を備え、走行車(200)は、第一周回路(131)から第二周回路(132)に移動する場合、記憶部(112)に記憶されている脱出ポイントテーブル(113)および進入ポイントテーブル(114)に示される、第一周回路(131)の脱出ポイントおよび第二周回路(132)の進入ポイントを経由して移動する。

Description

走行車システム
 本発明は、物品を搬送する複数の走行車を備える走行車システムに関する。
 従来、天井走行車等の走行車を用いて物品を搬送するシステムである走行車システムがある。
 例えば、半導体素子を製造する半導体工場内では、製造工程ごとに、ベイと呼ばれる領域に分けられる。各ベイには複数の天井走行車が一方向に周回する周回路が配置される。
 各周回路では、複数の走行車のそれぞれが半導体素子の材料であるウェハ等を当該ベイ内の製造装置間で搬送する。
 また、それぞれのベイの周回路間は接続路で接続されている。あるベイにおいて一つの工程を経た製造物は、当該ベイ内の天井走行車にピックアップされ接続路を経由して次工程のベイに搬送される。
 このような複数の周回路、複数の周回路を接続する接続路、および複数の天井走行車を備える走行車システムには、効率よく物品の搬送を行うことが求められる。
 そこで、このような走行車システムにおける走行車の移動を効率よく行うための技術も開示されている。
 例えば、特許文献1に記載された技術では、複数の天井走行車を制御するコントローラが走行路の渋滞状況を把握し、各天井走行車に通知する。これにより、各天井走行車は渋滞状況に応じて走行経路を決定することができる。
特開2006-195859号公報
 しかしながら、上記従来の技術のように、複数の走行車を備える走行車システムにおいて、それぞれの走行車が走行経路を決定する場合、ベイの数の増加に比例して、経路の選択肢は増加する。そのため、それぞれの走行車が経路決定に要する処理負荷が増大することになる。
 また、複数のベイのそれぞれの間は上述のように接続路で接続されており、各ベイ間で走行車が移動する。そのため、ベイごとの走行車の数が、例えば、各ベイでの必要作業量に対してバランスが取れていない状況が発生する場合がある。
 そのため、各ベイに属する走行車の数を調整すること(以下、「配車」という。)が必要となる。
 また、従来、各ベイの周回路には、走行車が接続路に脱出する複数の脱出ポイントと、走行車が接続路から当該周回路に進入してくる複数の進入ポイントとが別々に設けられている。
 つまり、配車の際には、一の周回路の脱出ポイントと他の周回路の進入ポイントとを結ぶ経路で走行車が移動することになる。
 従って、効率のよい配車を実現するためには、走行車システム内の複数のベイ間(周回路間)のそれぞれにおける、脱出ポイントと進入ポイントとの組み合わせを考慮する必要がある。
 従って、ベイの数が増加すると、これらベイの脱出ポイントおよび進入ポイントの組み合わせ数が増大するため、配車時の経路決定における選択肢の数が増大する。
 また、例えば、接続路の一部に障害が発生した場合、接続路上で他の走行車が故障により停止した場合、またはメンテナンスで走行路の一部の通行が禁止された場合などにおいて、設定された組み合わせに従って走行車が移動したとしても、配車先のベイに当該走行車が到達できない場合もある。
 本発明は上記従来の課題を考慮し、複数の周回路とこれら周回路を接続する接続路とを備える走行車システムであって、複数の周回路の相互間で走行車を効率よく移動させるための走行車システムを提供することを目的とする。
 上記従来の課題を解決するため、本発明の走行車システムは、複数の周回路と、前記複数の周回路を接続する接続路と、前記複数の周回路および前記接続路を走行する走行車とを備える走行車システムであって、前記複数の周回路および前記接続路のそれぞれは一方通行であり、前記複数の周回路のそれぞれは、前記走行車が前記接続路に脱出可能な複数の脱出ポイントと、前記走行車が前記接続路から進入可能な複数の進入ポイントとを有し、前記走行車システムは、前記複数の周回路の相互間における前記走行車の移動可能な経路でありかつ最短となる経路の、始端および終端である脱出ポイントと進入ポイントとの組み合わせを示す脱入情報を記憶している記憶部を備え、前記走行車は、前記複数の周回路のうちの一の周回路から他の周回路に移動する場合、前記記憶部に記憶されている脱入情報に示される、前記一の周回路の脱出ポイントおよび前記他の周回路の進入ポイントを経由して移動する。
 この構成によれば、複数の周回路の相互間における最短経路を構成する脱出ポイントと進入ポイントとの組み合わせを示す脱入情報が記憶部に記憶されている。
 従って、走行車が複数の周回路のうちの一の周回路から他の周回路に移動する場合、この脱入情報を参照することで、当該走行車を最も効率よく移動させるための脱出ポイントと進入ポイントとを容易に特定できる。
 つまり、多数の候補の中から一つの経路を検索するような処理は不要であり、容易に走行車の効率的な移動が実現できる。
 また、前記走行車システムはさらに、前記複数の周回路それぞれの脱出ポイントおよび進入ポイントを示す情報を用いて、前記脱入情報を生成する生成部と、前記複数の周回路および前記接続路で構成される走行路の所定の範囲内における走行環境を監視することで、前記走行車が、前記複数の周回路それぞれの脱出ポイントおよび進入ポイントのいずれかを通過することが困難または不可であるか否かを判断する監視部とを有し、前記生成部は、前記監視部により、前記走行車が、前記複数の周回路それぞれの脱出ポイントおよび進入ポイントのいずれかを通過することが困難または不可であると判断された場合、通過することが困難または不可であると判断された脱出ポイントおよび進入ポイントを除外して、前記脱入情報を更新するとしてもよい。
 この構成により、渋滞等の走行環境を悪化させる阻害要因が発生した場合であっても、脱入情報を、常にその状況が考慮された最新の状態に保持しておくことができる。
 そのため、渋滞等が発生した場合に、その状況下で最も効率のよい走行車の移動のための脱出ポイントおよび進入ポイントが特定される。つまり、何らかの要因で走行環境を悪化した場合であっても、その時点で移動先へ必ず到達可能でありかつ最短距離で移動できる経路選択が行われる。従って、本発明により、走行環境に応じた効率的な走行車の移動が実現される。
 また、前記走行車システムはさらに、前記走行車を含む複数の走行車と、前記複数の走行車のそれぞれを制御するコントローラとを備え、前記コントローラは、前記記憶部と、前記複数の走行車のうちの1台の走行車を前記複数の周回路のうちの一の周回路から他の周回路に移動させる場合、前記記憶部に記憶されている脱入情報に示される、前記一の周回路の脱出ポイントおよび前記他の周回路の進入ポイントを経由して移動する指示を前記1台の走行車に与える移動指示部とを有するとしてもよい。
 この構成により、指示系統において走行車の上位に位置するコントローラが脱入情報を一元管理できる。そのため、他の走行車が当該走行車システムに参加する場合であっても、コントローラは、脱入情報を参照することで、当該他の走行車に適切な指示を与えることができる。
 また、前記移動指示部は、前記複数の走行車のうち1台の走行車を前記一の周回路から前記他の周回路に移動させる場合、前記脱入情報に示される前記脱出ポイントの上流側に位置し、かつ、前記脱出ポイントに最も近い走行車を特定し、特定した走行車に前記指示を与えるとしてもよい。
 この構成により、例えば複数の周回路間で走行車の台数調整を行う作業である配車を行う場合、移動元の周回路に属する複数の走行車のうち、当該周回路を脱出するまでの必要時間が最も短い走行車が移動させるべき走行車として特定される。従って、本発明により効率のよい配車が実現される。
 さらに、本発明は、本発明の走行車システムにおける特徴的な動作ステップを含む、走行車の移動制御方法等して実現することもできる。また、それら各ステップを制御装置であるコントローラに実行させる制御プログラムとして実現することもできる。
 本発明の走行車システムによれば、2つの周回路の一方から他方へ走行車を移動させる際の最短経路となる脱出ポイントと進入ポイントとの組み合わせを記憶している。
 そのため、走行車が、2つの周回路の一方から他方へと移動する場合、走行車は、脱入情報に示される脱出ポイントと進入ポイントを経由して移動すればよい。つまり、複雑な経路検索等を行うことなく、短時間かつ負荷の軽い処理で、当該走行車は効率的に一方から他方へと移動することができる。
 また、記憶部は、走行車が備えてもよく、走行車を制御するコントローラが備えてもよい。例えば、コントローラが記憶部を備える場合であっても、コントローラは、複雑な経路検索等を行うことなく、短時間かつ負荷の軽い処理で、当該走行車を効率的に一方から他方へと移動させることができる。
 つまり、本発明は、複数の周回路の相互間で走行車を効率よく移動させるための走行車システムを提供することができる。
図1は、本発明の実施の形態の走行車システムのハードウェア構成の概要を示す図である。 図2は、実施の形態における走行車の外観を示す斜視図である。 図3は、本発明の実施の形態の走行車システムの機能的な構成を示す図である。 図4は、実施の形態における脱出ポイントテーブルおよび進入ポイントテーブルのデータ構成例を示す図である。 図5は、実施の形態の走行車システムにおける配車処理を説明するための図である。 図6は、実施の形態のシステムコントローラによる配車のための処理の流れの概要を示すフロー図である。 図7は、複数の走行車の中から配車の対象として1台を特定する手法を説明するための図である。 図8は、実施の形態の走行車システムにおいて進入ポイント付近に渋滞が発生した様子を示す図である。 図9は、実施の形態の走行車システムにおいてルートダウンが発生した様子を示す図である。 図10は、実施の形態における生成部が脱出テーブルおよび進入テーブルを更新する際のシステムコントローラの処理の流れを示す図である。 図11は、生成部により更新された脱出テーブルおよび進入テーブルのデータ構成例を示す図である。 図12は、特定の走行車にベイ間で物品を搬送させる場合の、走行車およびシステムコントローラの処理および動作の流れの一例を示す図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 まず、実施の形態の走行車システム100の構成について図1~図4を用いて説明する。
 図1は、本発明の実施の形態の走行車システム100のハードウェア構成の概要を示す図である。
 図1に示すように、走行車システム100は、システムコントローラ110と、第一ベイコントローラ121と、第二ベイコントローラ122と、第一周回路131と、第二周回路132と、第一接続路141と、第二接続路142と、複数の走行車200とを備える。
 なお、本実施の形態において走行車200は天井に配置された第一周回路131等の走行路に沿って移動する天井走行車である。
 図1に示す走行車システム100は、例えば半導体素子を製造する工場に備えられている。また、第一周回路131は第一ベイに配置され、第二周回路132は第二ベイに配置されている。
 第一ベイの走行車200、つまり、第一周回路131に属する走行車200は、第一ベイコントローラ121からの無線信号により制御される。また、第二ベイの走行車200、つまり、第二周回路132に属する走行車200は、第二ベイコントローラ122からの無線信号により制御される。
 第一ベイコントローラ121および第二ベイコントローラ122は、システムコントローラ110からの指示に従い、各走行車200を制御する。つまり、複数の走行車200のそれぞれは、第一ベイコントローラ121または第二ベイコントローラ122を介して、システムコントローラ110により制御される。
 第一接続路141および第二接続路142は、図1において斜線が付された部分の走行路であり、第一周回路131と第二周回路132とを接続する走行路である。
 走行車200は、第一接続路141または第二接続路142を走行することで第一周回路131および第二周回路132の一方から他方へ移動することができる。
 なお、図1に示す第一周回路131、第二周回路132、第一接続路141および第二接続路142のレイアウトは、これらを上方から眺めた場合のレイアウトになっている。また、それぞれ、図1において時計回りの一方通行である。
 第一周回路131および第二周回路132のそれぞれには、走行車200が第一接続路141および第二接続路142のそれぞれへ脱出する位置である脱出ポイントおよび、走行車200が第一接続路141および第二接続路142のそれぞれから進入する位置である進入ポイントが設定されている。
 具体的には、第一周回路131には、第一接続路141への脱出ポイントであるOut1-1と、第二接続路142への脱出ポイントであるOut1-2とが設定されている。また、第一周回路131には、第一接続路141からの進入ポイントであるIn1-1と、第二接続路142からの進入ポイントであるIn1-2とが設定されている。
 また、第二周回路132には、第一接続路141への脱出ポイントであるOut2-1と、第二接続路142への脱出ポイントであるOut2-2とが設定されている。また、第二周回路132には、第一接続路141からの進入ポイントであるIn2-1と、第二接続路142からの進入ポイントであるIn2-2とが設定されている。
 走行車200が、第一周回路131および第二周回路132の一方から他方へ移動する場合、走行車200は、移動元の周回路のいずれかの脱出ポイントから第一接続路141または第二接続路142に脱出し、移動先の周回路のいずれかの進入ポイントから当該周回路に進入する必要がある。
 また、この移動の際、走行車200は、第一周回路131、第二周回路132、第一接続路141および第二接続路142のそれぞれの一方通行のルールに従って走行しなければならない。
 なお、図1においては、本発明を明確に説明するために、走行車システム100が備える周回路として、第一周回路131および第二周回路132の2つのみを図示している。また、これら周回路を接続する接続路として第一接続路141および第二接続路142の2つのみを図示している。
 しかし、走行車システム100が備える周回路および接続路の数はそれぞれ2に限定されるものではなく、3以上の周回路および接続路を備えてもよい。
 走行車システム100が3以上の周回路および接続路を備えた場合においても、各周回路には、少なくとも1つの接続路と接続するための複数の脱出ポイントおよび複数の進入ポイントが設けられる。
 図2は、実施の形態における走行車200の外観を示す斜視図である。
 なお、図2では、第一周回路131に属する走行車200の外観を図示しているが、他の走行車200も同様の外観である。
 図2に示すように、走行車200は、第一周回路131等の走行路を形成するレールに沿って移動する天井走行車である。また、走行車200は、物品を保持する保持部240を有する。
 例えば、走行車200は、システムコントローラ110からの指示に従い、第一周回路131上のある地点まで移動し、搬送対象の物品が置かれた移載ポートまで降下する。さらに、当該移載ポートに置かれた物品を保持部240により保持して上昇し、システムコントローラ110からの指示に従い、次の移載ポートまで移動する。走行車200は、当該次の移載ポートまで移動すると、降下し、保持部240が保持している物品を載置した後に上昇する。
 走行車200が、このような動作を繰り返すことにより、第一ベイ内の各製造装置間で材料等の移送が行われる。第二ベイ内においても同様に走行車200による各製造装置間での材料等の移送が行われる。
 また、第一ベイおよび第二ベイの間で走行車200が移動することにより、第一ベイおよび第二ベイの相互間で材料等の移送が行われる。
 また、第一周回路131には、走行車200に搬送される物品が一時的に載置される載置台300が複数備えられている。このような載置台300は第二周回路132にも複数備えられている。
 図3は、本発明の実施の形態の走行車システム100における機能的な構成を示す図である。
 図3に示すように、システムコントローラ110は、主要な機能構成として、生成部111と、記憶部112と、移動指示部115と、監視部116とを備える。
 生成部111は、脱出ポイントテーブル113と、進入ポイントテーブル114とを生成する処理部である。
 具体的には、生成部111は、複数の周回路それぞれの脱出ポイントおよび進入ポイントを示すポイント情報を取得する。さらに、取得したポイント情報に基づいて、複数の周回路の相互間における移動距離を算出する。つまり、走行車200が移動可能な脱出ポイントおよび進入ポイントの組み合わせの全てについて移動距離を算出する。
 生成部111は、この算出結果から、複数の周回路の相互間における最短経路となる脱出ポイントと進入ポイントとの組み合わせを求める。生成部111はさらに、これら脱出ポイントと進入ポイントとの組み合わせを示す脱出ポイントテーブル113および進入ポイントテーブル114を生成する。
 生成された脱出ポイントテーブル113および進入ポイントテーブル114は、記憶部112に記憶される。また、生成した後に走行路のレイアウトが更新された場合、および、渋滞等の走行環境の変化が発生した場合には更新される。
 脱出ポイントテーブル113および進入ポイントテーブル114のデータ構成については、図4を用いて後述する。
 移動指示部115は、複数の走行車200のそれぞれに移動指示を与える処理部である。
 移動指示部115は、例えば、ある走行車200を、第一周回路131から第二周回路132に移動させる場合、記憶部112に記憶されている脱出ポイントテーブル113および進入ポイントテーブル114に示される、第一周回路131の脱出ポイントおよび第二周回路132の進入ポイントを経由して移動する指示を当該走行車200に与える。
 移動指示部115による移動指示は、第一ベイコントローラ121または第二ベイコントローラ122を介して、移動させる走行車200に与えられる。
 監視部116は、複数の周回路および接続路で構成される走行路の所定の範囲内における走行環境を監視することで、走行車200が複数の周回路それぞれの脱出ポイントおよび進入ポイントのいずれかを通過することが困難または不可能であるか否かを判断する処理部である。
 監視部116は、具体的には、第一ベイコントローラ121および第二ベイコントローラ122それぞれから、走行路上の渋滞の発生および位置を示す情報、および、レールの障害またはメンテナンス等により走行不能となっている箇所を示す情報などを取得する。監視部116はさらに取得した情報に基づいて上記の判断を行う。
 図4は、実施の形態における脱出ポイントテーブル113および進入ポイントテーブル114のデータ構成例を示す図である。
 図4に示すように、脱出ポイントテーブル113および進入ポイントテーブル114には、複数の周回路の相互間における走行車200の移動可能な経路でありかつ最短となる経路の、始端および終端である脱出ポイントと進入ポイントとが示される。
 例えば、第一ベイから第二ベイに走行車200が移動する場合、脱出ポイントテーブル113を参照することで、脱出ポイントは“Out1-2”であることが分かる。
 また、この場合の進入ポイントは、進入ポイントテーブル114を参照することで、進入ポイントは“In2-2”であることが分かる。
 つまり、第一周回路131に属する走行車200は、第一周回路131の“Out1-2”から第二接続路142に脱出し、“In2-2”を経由して第二周回路132に進入することで、最も効率的に第一周回路131から第二周回路132への移動が完了する。
 なお、脱出ポイントテーブル113および進入ポイントテーブル114から構成される情報群は、本発明の走行車システムにおける脱入情報の一例である。
 以上のように構成された走行車システム100の動作を図5~図12を用いて説明する。
 まず、図5~図7を用いて、走行車システム100における配車処理の流れを説明する。
 図5は、実施の形態の走行車システム100における配車処理を説明するための図である。
 図5に示すように、ある時点において第一ベイに6台の走行車200が存在し、第二ベイに1台の走行車200が存在している場合を想定する。また、第二ベイに対応する製造工程には、少なくとも2台の走行車200で必要である場合を想定する。
 この場合、システムコントローラ110は、第一ベイコントローラ121を介し、第一周回路131に属する1台の走行車200に、第二周回路132へ移動する指示を与える。
 図6は、実施の形態のシステムコントローラ110による配車のための処理の流れの概要を示すフロー図である。
 システムコントローラ110は、各ベイの走行車200の台数を取得する(S10)。例えば、監視部116が、第一ベイコントローラ121および第二ベイコントローラ122から、第一ベイおよび第二ベイそれぞれの走行車200の台数を取得する。なお、このような台数の取得は、例えば所定の期間ごとに行われる。
 さらに、システムコントローラ110は、配車が必要か否かを判断する(S11)。
 例えば、移動指示部115は、第二ベイの実際の走行車200の台数である“1”と、第二ベイに対する基準台数である“2~4”とを比較する。また、第一ベイの実際の走行車200の台数である“6”と、第一ベイに対する基準台数である“3~5”とを比較する。なお、ベイごとの基準台数は例えば記憶部112に記憶されている。
 この比較の結果、例えば第一ベイに存在する6台の走行車200のうちの1台を第二ベイに移動させると判断する(S11でYes)。
 なお、配車が必要か否かの判断ルールは、上記以外でもよい。例えば、走行車200の台数がN(Nは1以上の整数)になったベイに、M(MはNより大きな整数)台以上の走行車200が存在するベイから、1台以上の走行車200を移動させるというルールでもよい。
 移動指示部115は、記憶部112に記憶されている脱出ポイントテーブル113および進入ポイントテーブル114を参照する(S12)。
 移動指示部115は、脱出ポイントテーブル113および進入ポイントテーブル114を参照することで、第一周回路131から第二周回路132への移動経路の始端および終端となる脱出ポイントと進入ポイントとを特定する(S13)。
 具体的には、第一周回路131の脱出ポイントである“Out1-2”と、第二周回路132の進入ポイントである“In2-2”とが特定される(図4参照)。
 移動指示部115はさらに、移動させるべき走行車200を特定する(S14)。
 具体的には、移動指示部115は、当該脱出ポイントであるOut1-2の上流側に位置し、かつ、Out1-2に最も近い走行車200を特定する。
 図7は、複数の走行車200の中から配車の対象として1台を特定する手法を説明するための図である。
 図7に示すように、例えば、移動指示部115が配車要の判断をした時点において、Out1-2の近くに3台の走行車200(走行車a、走行車b、および走行車c)が存在している場合を想定する。
 この場合、Out1-2に最も近いのは走行車bである。しかし、第一周回路131は時計回りの一方通行であり、走行車bは、当該一方通行においてOut1-2の下流側である。つまり、走行車bは、Out1-2に即座に到達できる位置にいない。
 従って、走行車bではなく、Out1-2の上流側に位置し、かつ、Out1-2に最も近い走行車200、つまり、Out1-2に至るための必要移動距離が最短の走行車200である走行車aを特定する。
 移動指示部115は、このように特定した走行車aに、第一周回路131から第二周回路132へ移動するよう指示を与える(S15)。
 具体的には、移動指示部115は、脱出ポイントテーブル113および進入ポイントテーブル114から取得した、“Out1-2”および“In2-2”を示す情報を、第一ベイコントローラ121を介して、走行車aに送信する。
 走行車aは、自身が有する走行路のレイアウトデータを参照し、“Out1-2”から第一周回路131を脱出し、“In2-2”から第二周回路132へ進入する経路を特定する。走行車aはさらに、特定した経路を走行することで第二周回路132へ進入する。
 なお、以上説明した一連の処理を行うシステムコントローラ110は、例えば、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、および、上記一連の処理を行うためのプログラムなどから構成されるコンピュータシステムにより実現される。
 このように、本実施の形態の走行車システム100は、複数の走行車200のそれぞれを制御するシステムコントローラ110を備える。
 システムコントローラ110は、記憶部112に、脱出ポイントテーブル113および進入ポイントテーブル114を記憶している。脱出ポイントテーブル113および進入ポイントテーブル114は、複数の周回路の相互間における走行車200の移動可能な経路でありかつ最短となる経路の始端および終端である脱出ポイントと進入ポイントとの組み合わせを示す情報である。
 これにより、走行車200を複数の周回路のうちの一の周回路から他の周回路に移動させる場合、走行車200を最も効率よく移動させることのできる脱出ポイントと進入ポイントとの組み合わせを、容易に特定することができる。
 つまり、本実施の形態の走行車システム100は、例えば多数の候補の中から最短距離となる移動経路の検索等を行うことなく、短時間かつ軽い処理負荷で、走行車200を効率的に移動させるための移動経路の特定を行うことができる。
 また、システムコントローラ110は、移動元の周回路に属する複数の走行車200のうち、特定した脱出ポイントに至るための必要移動距離が最も短い走行車200を、移動させるべき走行車200として特定する。
 すなわち、システムコントローラ110は、例えば2つの周回路のうちの一方から他方への配車を行う場合、当該配車に最適な1台の走行車200を特定することができる。これにより、配車の効率性を向上させることができる。
 なお、生成部111が脱出ポイントテーブル113および進入ポイントテーブル114を生成(更新を含む)するタイミングは、例えば、走行車システム100の起動時、および、走行路のレイアウトの更新時などである。
 また、これら以外に、走行車システム100内における走行環境を悪化させる何らかの阻害要因が発生した場合、生成部111は、この阻害要因を考慮して脱出ポイントテーブル113および進入ポイントテーブル114を更新する。
 このような阻害要因として、例えば脱出ポイントまたは進入ポイント付近の渋滞、走行車200の故障による停止またはメンテナンスなどを要因とする走行路の途絶(ルートダウン)等がある。
 図8は、実施の形態の走行車システム100において進入ポイント付近に渋滞が発生した様子を示す図である。
 図8に示すように、第一周回路131の進入ポイントであるIn1-1の付近に複数の走行車200が存在し、例えばそれぞれが物品の積み下ろし等により停止している場合を想定する。この場合、走行車200のIn1-1の通過は困難であるといえる。
 走行車システム100ではこのような状況に対応するために、監視部116が、各脱出ポイントおよび各進入ポイントから所定の範囲内の走行環境を監視する。
 走行環境とは、例えば、所定の範囲内における単位時間あたりの通過台数である。例えば、第一ベイコントローラ121は、第一周回路131のIn1-1の上流から下流にかけての所定の範囲内に入った走行車200の台数と、当該範囲内から出た走行車200の台数とを所定の期間ごとにカウントし、システムコントローラ110に通知する。
 システムコントローラ110の監視部116は、この台数通知を受け取り、当該範囲内に入った台数と当該範囲内から出た台数との差分が閾値を越えた場合、In1-1の付近で渋滞が発生したと判断する。つまり、監視部116は、In1-1への走行車200の進入が困難であると判断する。
 また、ルートダウンにより、脱出ポイントまたは進入ポイントの通過が不可能になる場合も存在する。
 図9は、実施の形態の走行車システム100においてルートダウンが発生した様子を示す図である。
 図9に示すように、第一接続路141の第一ベイと第二ベイとの中間付近(図9においてドットを付した矩形の付近)で、例えば走行車200が故障により停止したことでルートダウンが発生した場合を想定する。
 この場合、第二周回路132のOut2-1から走行車200が脱出した場合、その走行車200は、どこにも行けない状態となる。
 また、第一周回路131のIn1-1へは、どの走行車200も進入することができなくなる。
 このように、走行車システム100内の走行路においてルートダウンが発生した場合、実質的に通過不可となる脱出ポイントおよび進入ポイントが発生することになる。
 監視部116は、上記の渋滞の発生を検知する場合と同じく、走行路上の所定の範囲内の走行環境からルートダウンの発生およびその位置を判断する。
 例えば、ある走行車200が第二ベイから第一ベイに向かう途中で、故障により停止した場合、移動不能となった旨およびその位置を第二ベイコントローラ122に通知する。
 第二ベイコントローラ122は、当該走行車200が移動不能となった旨およびその位置を示す情報をシステムコントローラ110に送信する。
 システムコントローラ110の監視部116は、当該情報を受け取り、ルートダウンが発生した位置およびその位置を含む移動経路を特定する。これにより、実質的に通過不可となる脱出ポイントおよび進入ポイントを特定する。
 例えば、図9に示す例であれば、監視部116は、In1-1とOut2-1とは通過不可であると判断する。
 このように、監視部116により、いずれかの脱出ポイントまたは進入ポイントが通過困難または不可であると判断された場合、生成部111は、通過困難または不可であると判断された脱出ポイントおよび進入ポイントを除外して、脱出ポイントテーブル113および進入ポイントテーブル114を更新する。
 図10は、実施の形態における生成部111が脱出ポイントテーブル113および進入ポイントテーブル114を更新する際のシステムコントローラ110の処理の流れを示す図である。
 監視部116は、上述のように走行環境の監視を行う(S20)。監視部116が、走行路の障害または渋滞などにより、いずれかの脱出ポイントまたは進入ポイントが通過困難または不可であると判断した場合(S21でYes)、生成部111は、脱出ポイントテーブル113および進入ポイントテーブル114を更新する(S22)。
 図11は、生成部111により更新された脱出ポイントテーブル113および進入ポイントテーブル114のデータ構成例を示す図である。
 なお、図11は、図8に示される渋滞に対応して更新された脱出ポイントテーブル113および進入ポイントテーブル114のデータ構成例を示している。また、図11に示す脱出ポイントテーブル113および進入ポイントテーブル114において太枠で囲まれた欄が、当該更新により変更された箇所である(図4参照)。
 走行車システム100において図8に示す渋滞が発生した場合、上述のようにIn1-1を走行車200が通過することは困難である。
 従って、生成部111は、In1-1を除外して、脱出ポイントテーブル113および進入ポイントテーブル114を更新する。
 これにより、更新後の脱出ポイントテーブル113では、例えば、第二ベイから第一ベイへの移動経路における脱出ポイントとして“Out2-2”が記録されている。また、脱出ポイントが“Out2-2”となったことにより、進入ポイントテーブル114には、第二ベイから第一ベイへの移動経路における進入ポイントとして“In1-2”が記録されている。
 つまり、渋滞の発生という走行環境が悪化した状況下で通過困難または通過不可となる脱出ポイントおよび進入ポイントを除外することで、当該状況下において最も効率のよい移動経路が求められる。
 なお、この場合の移動経路の求め方も、上述の求め方と同じである。つまり、生成部111は、除外しなかった脱出ポイントおよび進入ポイントの全ての組み合わせの中から最短距離となる経路を特定する。さらに特定した経路の両端である脱出ポイントおよび進入ポイントを、脱出ポイントテーブル113および進入ポイントテーブル114に記録する。
 これにより、この更新の後に2つの周回路の一方から他方に走行車200を移動させる場合、当該走行車200を、その時点での状況下において最も効率よく移動先に到達させることができる。また、実質的に通過不可である脱出ポイントおよび進入ポイントは除外されるため、当該走行車200を必ず移動先に到達させることができる。
 このように、実施の形態の走行車システム100では、走行車200の効率的な移動経路を示す脱出ポイントテーブル113および進入ポイントテーブル114は、走行車システム100の起動時、走行路のレイアウトの更新時、および、渋滞等の走行環境を悪化させる要因の発生時などに更新される。
 また、更新後の脱出ポイントテーブル113および進入ポイントテーブル114は記憶部112に記憶されるため、移動指示部115は、いつでも最新の状態の脱出ポイントテーブル113および進入ポイントテーブル114を参照できる。
 これにより、配車を行う場合のみならず、特定の走行車200にベイ間で物品を搬送させる場合にも、当該走行車200の効率的な移動が可能となる。
 図12は、特定の走行車200にベイ間で物品を搬送させる場合の、走行車200およびシステムコントローラ110の処理および動作の流れの一例を示す図である。
 なお、システムコントローラ110と走行車200とは、第一ベイコントローラ121または第二ベイコントローラ122を介して情報のやり取りを行う。しかし、これらは実質的な処理内容に関与しないため処理の流れの説明においては省略する。
 ここで、例えば、第一ベイ内の所定の位置にある材料αを、第二ベイの所定の装置まで搬送させる必要がある場合を想定する。この場合、システムコントローラ110の移動指示部115は、材料αが存在する位置の近傍かつ上流にある1台の走行車200(走行車a)を特定する。移動指示部115はさらに、走行車aに、材料αを第二ベイの所定の位置まで搬送するよう搬送指示を送信する(S40)。
 走行車aは、この搬送指示を受信すると(S41)。システムコントローラ110にポイント指示要求を送信する(S42)。
 システムコントローラ110は、このポイント指示要求を受信すると(S43)、生成部111が、記憶部112に記憶されている脱出ポイントテーブル113および進入ポイントテーブル114を参照する(S44)。
 なお、このとき、記憶部112には、図4に示す脱出ポイントテーブル113および進入ポイントテーブル114が記憶部112に記憶されているとする。
 生成部111は、脱出ポイントテーブル113および進入ポイントテーブル114を参照することで、第一ベイから第二ベイへの移動経路における脱出ポイントおよび進入ポイントである、第一周回路131の“Out1-2”と、第二周回路132の“In2-2”とを特定する(S45)。
 生成部111は、特定した“Out1-2”および“In2-2”を示す情報をポイント指示情報として走行車aに送信する(S46)。
 走行車aは、このポイント指示情報を受信する(S47)。走行車aはさらに、第一周回路131を、当該ポイント指示情報に示されるOut1-2から脱出する(S48)。走行車aは第一周回路131を脱出すると、第二周回路132へ向かって走行し、当該ポイント指示情報に示されるIn2-2から第二周回路132に進入する(S49)。
 システムコントローラ110は、このように、走行車200からの要求に応じて脱出ポイントおよび進入ポイントを示すポイント指示情報を当該走行車200に送信することもできる。
 また、このとき送信されるポイント指示情報は、その時点で記憶部112に記憶されている脱出ポイントテーブル113および進入ポイントテーブル114から得られる情報である。
 つまり、走行車200に送信されるポイント指示情報は、その時点で発生している渋滞および走行路の障害等が考慮された情報に基づいて生成されている。そのため、その時点で最も効率がよく、かつ、必ず移動先に到達可能な経路の両端が示されることになる。
 なお、上記例において、例えば材料αがOut1-2の近傍かつ下流に該当する位置にあり、材料αを保持した走行車aがOut1-2に到達するための必要移動距離が比較的長い場合も考えられる。
 そのため、Out1-2以外の脱出ポイントから走行車aを脱出させたほうが効率がよいとも考えられる。
 しかしながら、上述のように、渋滞等の阻害要因の発生により、移動先に到達困難または到達不可である状況が発生することが考えられる。
 そこで、ある特定の走行車200が2つの周回路の一方から他方に移動する場合、システムコントローラ110は、最新の状態に保たれた脱出ポイントテーブル113および進入ポイントテーブル114に基づく脱出ポイントおよび進入ポイントを指示する。
 これにより、渋滞等が発生した場合であっても、当該走行車200は、その状況下で最も効率がよく、かつ、必ず移動先の周回路に到達できる経路を走行することになる。
 以上説明したように、本発明の実施の形態の走行車システム100は、複数の周回路とこれら周回路を接続する接続路とを備える走行車システム100であって、複数の周回路の相互間で走行車を効率よく移動させることができる。
 なお、本実施の形態において、脱出ポイントテーブル113および進入ポイントテーブル114は、走行車200を制御するシステムコントローラ110の記憶部112に記憶されているとした。
 しかしながら、走行車200が脱出ポイントテーブル113および進入ポイントテーブル114を記憶し、周回路間の移動の際に参照してもよい。
 この場合であっても、走行車200は、周回路間の移動のたびに最短の経路を検索する必要はなく、これらテーブルを参照するだけで、効率よく移動できる経路を決定することができる。
 また、走行車200は、生成部111および監視部116を備えてもよい。つまり、走行車200が、走行路の所定の範囲内における走行環境を監視し、渋滞等の発生に応じて脱出ポイントテーブル113および進入ポイントテーブル114の更新を行ってもよい。
 これにより、例えば、通信環境の悪化により走行車200とシステムコントローラ110との通信が途絶えた場合であっても、走行車200は、効率的な移動が可能な経路の決定を容易に行うことができる。
 また、本実施の形態において、走行車200は、システムコントローラ110から脱出ポイントおよび進入ポイントを指示されると、自身が有するレイアウトデータを参照し、移動経路を決定するとした。
 しかしながら、システムコントローラ110が走行車200の移動経路を決定してもよい。つまり、走行車200は、脱出ポイントテーブル113および進入ポイントテーブル114に示される脱出ポイントと進入ポイントとを経由して移動できればよく、それらポイントを含む移動経路は、走行車200以外の装置から指示されてもよい。
 また、本実施の形態において、生成部111は、複数の周回路それぞれの脱出ポイントおよび進入ポイントを示すポイント情報を取得し、走行車200が移動可能な脱出ポイントおよび進入ポイントの組み合わせの全てについて移動距離を算出するとした。
 しかしながら、これら移動距離の算出は生成部111が行なわなくもよい。例えば、生成部111は、他の装置により算出されたこれら移動距離を取得し、取得したこれら移動距離を用いて脱出ポイントテーブル113および進入ポイントテーブル114を生成してもよい。
 また、本実施の形態において、走行車システム100が備える複数の走行車200は天井走行車であるとした。
 しかしながら、走行車システム100は、天井走行車ではなく他の種類の走行車を複数備え、これら走行車を移動制御の対象としてもよい。
 例えば、走行車システム100は、倉庫または工場等の内部で床上を走行し物品の搬送を行う無人搬送車を、移動制御の対象としてもよい。
 例えば、工場内に、電子部品または電子機器の製造工程ごとに区切られた領域が存在し、それら領域に1以上の出口と1以上の入口とがある場合を想定する。
 この場合、走行車システム100であれば、2つの領域の一方から他方へ配車を行う場合などに、効率のよい無人搬送車の移動が実現される。
 また、本実施の形態においては、システムコントローラ110が、複数の走行車200の実体的な制御を行い、第一ベイコントローラ121および第二ベイコントローラ122は、走行車200の移動制御における実質的な処理内容に関与しないとした。
 しかしながら、例えば、システムコントローラ110、第一ベイコントローラ121および第二ベイコントローラ122が役割分担をし、協調しながら複数の走行車200のそれぞれを制御してもよい。
 つまり、本発明の走行車システムにおけるコントローラは、指示系統において複数の走行車の上位に位置する、走行車の制御のための装置であればよく、その装置構成等は特定のものに限定されない。
 本発明の走行車システムでは、効率のよい走行車の移動が実現されるため、走行車を用いて様々な種類の物品を所定の領域内で搬送するシステムとして利用できる。特に、製造工程ごとに分けられた複数の周回路が存在する工場における走行車システム等として有用である。
  100  走行車システム
  110  システムコントローラ
  111  生成部
  112  記憶部
  113  脱出ポイントテーブル
  114  進入ポイントテーブル
  115  移動指示部
  116  監視部
  121  第一ベイコントローラ
  122  第二ベイコントローラ
  131  第一周回路
  132  第二周回路
  141  第一接続路
  142  第二接続路
  200  走行車
  240  保持部
  300  載置台

Claims (4)

  1.  複数の周回路と、前記複数の周回路を接続する接続路と、前記複数の周回路および前記接続路を走行する走行車とを備える走行車システムであって、
     前記複数の周回路および前記接続路のそれぞれは一方通行であり、
     前記複数の周回路のそれぞれは、前記走行車が前記接続路に脱出可能な複数の脱出ポイントと、前記走行車が前記接続路から進入可能な複数の進入ポイントとを有し、
     前記走行車システムは、
     前記複数の周回路の相互間における前記走行車の移動可能な経路でありかつ最短となる経路の、始端および終端である脱出ポイントと進入ポイントとの組み合わせを示す脱入情報を記憶している記憶部を備え、
     前記走行車は、前記複数の周回路のうちの一の周回路から他の周回路に移動する場合、前記記憶部に記憶されている脱入情報に示される、前記一の周回路の脱出ポイントおよび前記他の周回路の進入ポイントを経由して移動する
     走行車システム。
  2.  前記走行車システムはさらに、
     前記複数の周回路それぞれの脱出ポイントおよび進入ポイントを示す情報を用いて、前記脱入情報を生成する生成部と、
     前記複数の周回路および前記接続路で構成される走行路の所定の範囲内における走行環境を監視することで、前記走行車が、前記複数の周回路それぞれの脱出ポイントおよび進入ポイントのいずれかを通過することが困難または不可であるか否かを判断する監視部とを有し、
     前記生成部は、前記監視部により、前記走行車が、前記複数の周回路それぞれの脱出ポイントおよび進入ポイントのいずれかを通過することが困難または不可であると判断された場合、通過することが困難または不可であると判断された脱出ポイントおよび進入ポイントを除外して、前記脱入情報を更新する
     請求項1記載の走行車システム。
  3.  前記走行車システムはさらに、前記走行車を含む複数の走行車と、前記複数の走行車のそれぞれを制御するコントローラとを備え、
     前記コントローラは、
     前記記憶部と、
     前記複数の走行車のうちの1台の走行車を前記複数の周回路のうちの一の周回路から他の周回路に移動させる場合、前記記憶部に記憶されている脱入情報に示される、前記一の周回路の脱出ポイントおよび前記他の周回路の進入ポイントを経由して移動する指示を前記1台の走行車に与える移動指示部とを有する
     請求項1記載の走行車システム。
  4.  前記移動指示部は、前記複数の走行車のうち1台の走行車を前記一の周回路から前記他の周回路に移動させる場合、前記脱入情報に示される前記脱出ポイントの上流側に位置し、かつ、前記脱出ポイントに最も近い走行車を特定し、特定した走行車に前記指示を与える
     請求項3記載の走行車システム。
PCT/JP2009/005344 2008-12-26 2009-10-14 走行車システム WO2010073446A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/141,322 US8521406B2 (en) 2008-12-26 2009-10-14 Traveling vehicle system
JP2010543766A JP5088418B2 (ja) 2008-12-26 2009-10-14 走行車システム
SG2011046463A SG172371A1 (en) 2008-12-26 2009-10-14 Traveling vehicle system
CN2009801525023A CN102265230B (zh) 2008-12-26 2009-10-14 行走车系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008334045 2008-12-26
JP2008-334045 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073446A1 true WO2010073446A1 (ja) 2010-07-01

Family

ID=42287110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005344 WO2010073446A1 (ja) 2008-12-26 2009-10-14 走行車システム

Country Status (7)

Country Link
US (1) US8521406B2 (ja)
JP (1) JP5088418B2 (ja)
KR (1) KR20110091020A (ja)
CN (1) CN102265230B (ja)
SG (1) SG172371A1 (ja)
TW (1) TWI489238B (ja)
WO (1) WO2010073446A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678915A (zh) * 2013-11-28 2015-06-03 中国科学院沈阳自动化研究所 一种面向半导体生产线搬运系统多天车协调调度方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341324B (zh) * 2009-03-03 2013-07-10 村田机械株式会社 搬送系统
JP5928402B2 (ja) * 2013-04-19 2016-06-01 株式会社ダイフク 走行車制御システム
GB201409883D0 (en) 2014-06-03 2014-07-16 Ocado Ltd Methods, systems, and apparatus for controlling movement of transporting devices
US11449039B2 (en) * 2017-10-16 2022-09-20 Nec Corporation Transportation operation control device, transportation operation control method, and recording medium in which transportation operation control program is stored
CN111489067B (zh) * 2020-03-27 2022-10-18 北京科技大学 一种基于动态区域分配的炼钢车间天车调度方法
KR102563281B1 (ko) * 2020-08-18 2023-08-02 세메스 주식회사 제조 공장 내 물품 반송 시스템에서 차량 제어 장치 및 동작 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225614A (ja) * 1994-02-08 1995-08-22 Mitsubishi Electric Corp 搬送装置、搬送装置の制御装置及び搬送車
JP2003029837A (ja) * 2001-07-16 2003-01-31 Murata Mach Ltd 無人搬送車システム
WO2007132651A1 (ja) * 2006-05-12 2007-11-22 Murata Kikai Kabushiki Kaisha 搬送システムと搬送方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08211937A (ja) 1995-01-31 1996-08-20 Tsubakimoto Chain Co 移動体の運行管理方法
JP3212028B2 (ja) 1997-09-09 2001-09-25 村田機械株式会社 無人搬送車システム
US6941200B2 (en) * 2000-10-16 2005-09-06 Matsushita Electric Industrial Co., Ltd. Automated guided vehicle, operation control system and method for the same, and automotive vehicle
JP2004252631A (ja) 2003-02-19 2004-09-09 Mitsubishi Heavy Ind Ltd Agv運行制御方法、agv運行制御装置、及びagvを利用した物流システム
JP4135715B2 (ja) 2005-01-17 2008-08-20 村田機械株式会社 搬送車システム
JP4720267B2 (ja) * 2005-04-14 2011-07-13 村田機械株式会社 天井走行車システム
JP2007132651A (ja) 2005-10-13 2007-05-31 Kankyo Setsubi Keikaku:Kk 空調設備
JP2007257154A (ja) * 2006-03-22 2007-10-04 Asyst Shinko Inc 搬送車管理装置、搬送車管理システム、搬送車管理方法及び搬送車管理プログラム
JP5099454B2 (ja) * 2009-03-27 2012-12-19 株式会社ダイフク 交差部切換設備
JP5482320B2 (ja) * 2010-03-11 2014-05-07 株式会社デンソー 車両用運転支援装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225614A (ja) * 1994-02-08 1995-08-22 Mitsubishi Electric Corp 搬送装置、搬送装置の制御装置及び搬送車
JP2003029837A (ja) * 2001-07-16 2003-01-31 Murata Mach Ltd 無人搬送車システム
WO2007132651A1 (ja) * 2006-05-12 2007-11-22 Murata Kikai Kabushiki Kaisha 搬送システムと搬送方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678915A (zh) * 2013-11-28 2015-06-03 中国科学院沈阳自动化研究所 一种面向半导体生产线搬运系统多天车协调调度方法

Also Published As

Publication number Publication date
US8521406B2 (en) 2013-08-27
TWI489238B (zh) 2015-06-21
TW201027289A (en) 2010-07-16
SG172371A1 (en) 2011-07-28
JPWO2010073446A1 (ja) 2012-05-31
CN102265230B (zh) 2013-08-28
JP5088418B2 (ja) 2012-12-05
CN102265230A (zh) 2011-11-30
KR20110091020A (ko) 2011-08-10
US20120136516A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5088418B2 (ja) 走行車システム
EP3489785B1 (en) Running vehicle system and control method for running vehicle system
US9845192B2 (en) Transport vehicle system and transport method
JP4746674B2 (ja) 搬送システムと搬送方法
JP4438095B2 (ja) 搬送システム
JP2011102166A (ja) 搬送経路決定方法及び自動搬送システム
CN114379972A (zh) 输送系统
EP1843307A1 (en) Transportation system and transportation method
KR20180123979A (ko) 물품 반송 설비
KR20200131283A (ko) 주행차 컨트롤러 및 주행차 시스템
JP6652083B2 (ja) 物品搬送設備
JP2009087138A (ja) 搬送システム、搬送車管理装置、および搬送制御方法
US9298185B2 (en) Traveling vehicle system
WO2023132101A1 (ja) 搬送システム
JP2010160696A (ja) 搬送車システム
KR102534375B1 (ko) 비히클의 경로 탐색 방법
KR20110108953A (ko) 경로추적을 이용한 자율 주행 장치의 트래픽 제어 방법
WO2023079797A1 (ja) 搬送システム
JP2010282567A (ja) 搬送車システム
JP2005173779A (ja) 台車制御装置及び制御方法
EP4219263A1 (en) Traveling vehicle system and method for controlling traveling vehicle
JP2010218380A (ja) 搬送車システム
KR20230038275A (ko) 주행차 시스템
JP2024063523A (ja) 物品搬送設備
JP2010152605A (ja) 台車のモニタリングシステムとモニタリング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152502.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010543766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13141322

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117014668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834263

Country of ref document: EP

Kind code of ref document: A1