WO2010071195A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2010071195A1
WO2010071195A1 PCT/JP2009/071110 JP2009071110W WO2010071195A1 WO 2010071195 A1 WO2010071195 A1 WO 2010071195A1 JP 2009071110 W JP2009071110 W JP 2009071110W WO 2010071195 A1 WO2010071195 A1 WO 2010071195A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
emitting layer
wavelength
Prior art date
Application number
PCT/JP2009/071110
Other languages
English (en)
French (fr)
Inventor
正人 山名
将啓 中村
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/140,593 priority Critical patent/US8569750B2/en
Priority to EP09833497A priority patent/EP2360753A4/en
Priority to CN200980151116.2A priority patent/CN102257649B/zh
Publication of WO2010071195A1 publication Critical patent/WO2010071195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic electroluminescence element that can be used for an illumination light source, a backlight for a liquid crystal display, a flat panel display, and the like. More specifically, the present invention relates to an organic electroluminescence element that exhibits particularly good light emission characteristics when an optical scattering region is provided on the outer surface of a light-transmitting substrate that constitutes the organic electroluminescence element, by an appropriate optical design.
  • FIG. 6 shows an example of the configuration of the organic electroluminescence element.
  • This organic electroluminescence device has a light-transmitting substrate 6, a light-transmitting electrode 1 serving as an anode, a hole transport layer 8, a light-emitting layer 3, an electron transport layer 9, and a light-reflecting electrode 2 serving as a cathode.
  • the light transmissive electrode 1, the hole transport layer 8, the light emitting layer 3, the electron transport layer 9, and the light reflective electrode 2 are sequentially formed on the upper surface of the light transmissive substrate 6.
  • By applying a voltage between the electrodes 1 and 2 electrons are injected into the light emitting layer 3 through the electron transport layer 9, and the light emitting layer 3 holes are formed through the hole transport layer 8. Injected.
  • the electrons and holes recombine in the light emitting layer 3 to emit light. Light emitted from the light emitting layer 3 is extracted through the light transmissive electrode 1 and the light transmissive substrate 6.
  • Such an organic electroluminescence element has a feature of emitting self-luminescence. Further, such an organic electroluminescence element has a relatively high efficiency light emission characteristic. Furthermore, such an organic electroluminescence element has a feature of emitting light in various colors.
  • This organic electroluminescence element is expected to be used as a light emitter such as a display device, for example, a flat panel display, or as a light source, for example, a backlight or illumination for a liquid crystal display. .
  • organic electroluminescence elements are thin film devices with a thickness on the order of optical wavelength, and since there is a close correlation between the element thickness and the light emission characteristics, a suitable film based on both electrical design and optical design. It is necessary to set a device structure that can achieve both thickness designs.
  • an organic electroluminescence element it is known that light generated in the light emitting layer 3 is confined by total reflection in the light emitting layer 3, the organic layer 4, the electrode, or the substrate 6. According to a simple estimate, of the light generated in the light emitting layer 3, about 50% of the light confined in the light emitting layer 3, the organic layer 4 or the light transmissive electrode 1 is about 30%, and the light confined in the substrate 6 is about 30%. Therefore, the light emitted into the atmosphere is only about 20% of the light generated in the light emitting layer 3.
  • the organic electroluminescence element in which the light scattering region 7 is provided between the light transmissive electrode 1 and the substrate 6 is more preferable than the organic electroluminescence element in which the light scattering region 7 is provided on the outer surface of the substrate 6. A lot of light is emitted to the outside of the organic electroluminescence device.
  • the distance from the light emitting point to the light transmitting electrode 1 is designed to be approximately equal to an even multiple of 1/4 of the wavelength, and the light reflecting property from the light emitting point.
  • the distance to the electrode 2 is set to be approximately equal to an odd multiple of 1/4 of the wavelength.
  • Patent Document 2 discloses that the distance between the electrodes of the organic electroluminescence element is set in consideration of the phase shift of light.
  • Patent Document 3 the distance from the light-transmissive electrode 1 to the light-reflective electrode 2 of the organic electroluminescence element is set within a certain range in consideration of the phase shift of light at the light-reflective electrode 2. It is disclosed. Patent Documents 4 and 5 disclose that the distance between the electrodes is set to a predetermined value in the organic electroluminescence element in which the light scattering region 7 is provided on the substrate 6.
  • Patent Document 1 does not consider the phase shift of light in the light reflective electrode 2.
  • the half-value width of the target spectrum is limited to 50 nm or less.
  • Patent Document 3 only the distance between the electrodes is defined.
  • Patent Document 3 there is no particular provision regarding the distance between the light emitting point and the light reflective electrode 2.
  • Patent Documents 1 to 3 describe only optical design in the case where the light scattering region 7 is not provided on a substrate or other member used for the organic electroluminescence element.
  • Patent Documents 4 and 5 describe an organic electroluminescence element including a light scattering region 7.
  • the applicant of the present invention provides a certain amount of space between the light-emitting layer 3 and the light-reflecting electrode 2 with respect to an arbitrary emission spectrum when the light scattering region 7 is provided on the outer surface of the substrate 6 as shown in FIG.
  • the appropriate distance between the light emitting point and the light-reflecting electrode 2 was clarified when a distance of 2 mm was required.
  • the organic electroluminescence element in which the light scattering region 7 is formed between the light-transmissive electrode 3 and the substrate 6 as compared with the organic electroluminescence element in which the light scattering region 7 is formed on the outer surface of the substrate 6 as described above. More light is taken out.
  • the organic electroluminescence device having such a configuration the light emitting point and the light reflection when a certain distance is required between the light emitting layer 3 and the light reflective electrode 2 for an arbitrary emission spectrum.
  • the design policy of an appropriate distance from the sex electrode 2 has not been clarified.
  • the organic electroluminescence device includes a plurality of light-emitting layers 3 and electric charges such as a transparent electrode, an organic semiconductor, an inorganic semiconductor, a charge generation layer made of an electron-accepting substance and an electron-donating substance provided between the light-emitting layers 3.
  • a supply layer 10 is disposed.
  • the several light emitting layer 3 is laminated
  • the present invention has been made in view of the above points.
  • the objective of this invention is providing the organic electroluminescent element which has a favorable luminescent property.
  • a light scattering region is formed between a light transmissive electrode and a light transmissive substrate based on an appropriate optical design.
  • the organic electroluminescence device of the present invention has a light-transmitting electrode, a light-reflecting electrode, an organic light-emitting layer, a light-scattering layer, and a light-transmitting substrate.
  • the organic light emitting layer has a light emitting layer containing a light emitting material.
  • the organic light emitting layer has a first surface and a second surface located on the opposite side of the first surface.
  • the light reflective electrode is provided on the first surface.
  • the light transmissive electrode is provided on the second surface.
  • the light scattering layer is provided on the light transmissive electrode.
  • the translucent substrate is provided on the light scattering layer.
  • the light reflective electrode is separated from the light emitting point in the light emitting layer by a distance d.
  • the distance d is defined by the following formula (1).
  • is a wavelength of specific light emitted from the light emitting layer.
  • n is a refractive index in light having a wavelength ⁇ of a layer located between a light emitting point in the light emitting layer and the light reflective electrode.
  • n 1 is a refractive index of light having a wavelength ⁇ of a layer located between the light emitting point in the light emitting layer and the light reflective electrode and in contact with the light reflective electrode.
  • k 1 is an extinction coefficient of light having a wavelength ⁇ of a layer located between the light emitting point in the light emitting layer and the light reflective electrode and in contact with the light reflective electrode.
  • n 2 is a refractive index in light having a wavelength ⁇ of the light-reflecting electrode.
  • k 2 is an extinction coefficient in light having a wavelength ⁇ of the light-reflecting electrode.
  • m is 0 or 1.
  • a satisfies the following formula when m is 0. ⁇ 1.17 ⁇ n org / n EML + 1.94 ⁇ a ⁇ ⁇ 0.16 ⁇ n org / n EML +2.33
  • a satisfies the following formula when m is 1, 0.28 ⁇ n org / n EML + 0.75 ⁇ a ⁇ 2.85 ⁇ n org / n EML ⁇ 1.23
  • n org is the refractive index in light having the wavelength ⁇ of the layer in contact with the light-emitting layer on the light-reflecting electrode side .
  • n EML is the refractive index at the wavelength ⁇ of the light emitting layer.
  • is preferably the wavelength of light when the product of the spectral radiant flux of the photoluminescence spectrum of the specific light and the CIE standard visibility becomes a maximum.
  • the light flux emitted from the organic electroluminescence element can be increased.
  • is preferably the wavelength of light when the quotient obtained by dividing the spectral radiant flux of the photoluminescence spectrum of the specific light by the photon energy at each wavelength is maximized.
  • the number of photons emitted from the organic electroluminescence element can be increased.
  • the organic layer preferably has two light emitting layers. Accordingly, the distance between the light emitting point of each light emitting layer and the first electrode is defined by d.
  • the number of light beams or photons emitted from the organic electroluminescence element can be particularly increased.
  • FIG. 1 It is a schematic sectional drawing which shows an example of a structure of an organic electroluminescent element. It is general
  • FIG. 1 shows an example of the configuration of an organic electroluminescence element.
  • This organic electroluminescence element has a light transmissive substrate 6, a light scattering layer 7, a light transmissive electrode 1, an organic light emitting layer 5, and a light reflective electrode 2.
  • a light scattering layer 7 is provided on a light transmissive substrate 6.
  • An organic light emitting layer 5 is provided on the light transmissive electrode 1.
  • a light reflective electrode 2 is provided on the organic light emitting layer 5. Therefore, the light reflective electrode 2 is provided on the lower surface (first surface) of the organic light emitting layer 5.
  • a light transmissive electrode 1 is provided on the upper surface (second surface) of the organic light emitting layer 5.
  • a light scattering layer 7, a light transmissive electrode 1, an organic light emitting layer 5, and a light reflective electrode 2 are sequentially laminated on the light transmissive substrate 6 in this order.
  • the organic light emitting layer 5 has a light emitting layer 3 containing a light emitting material.
  • the organic light-emitting layer is formed by laminating appropriate organic layers 4 such as an electron injection layer, an electron transport layer 9, a hole blocking layer, a hole injection layer, and a hole transport layer 8 as necessary. Is formed.
  • the electron transport layer 9 is interposed between the light reflective electrode 2 and the light emitting layer 3.
  • the hole transport layer 8 is interposed between the light transmissive electrode 1 and the light emitting layer 3.
  • the light emitting layer 3 in which a plurality of light emitting layers 3 are stacked can also be employed as the above-described light emitting layer. And when a voltage is applied to the organic light emitting layer 5, the light emitting layer emits light.
  • the light reflective electrode 2 is configured to reflect the light emitted from the organic light emitting layer 5.
  • the light transmissive electrode 1 is configured to transmit light emitted from the organic light emitting layer 5.
  • the light transmissive electrode 1 is also configured to transmit light emitted from the organic light emitting layer 5 and reflected by the light reflective electrode 2.
  • the light transmitted through the light transmissive electrode 1 is scattered by the light scattering layer 7.
  • the light transmissive substrate 6 is configured to transmit light scattered by the light scattering layer 7. In this way, light is emitted from the organic electroluminescent element.
  • FIG. 2 shows an example of an organic electroluminescence element having two light emitting layers 3.
  • the light scattering layer 7 is formed on the light transmissive substrate 6.
  • a light transmissive electrode 1 is formed on the light scattering layer 7.
  • a first organic light emitting layer 5 is formed on the light transmissive electrode 1.
  • a charge supply layer 10 is formed on the first organic light emitting layer 5.
  • a second organic light emitting layer 5 is formed on the charge supply layer 10. On the second organic light emitting layer 5, a light reflective electrode 2 is formed.
  • each organic light emitting layer 5 has the light emitting layer 3 containing a light emitting material similarly to the above.
  • each organic light emitting layer 5 is laminated with an appropriate organic layer 4 such as an electron injection layer, an electron transport layer 9, a hole blocking layer, a hole injection layer, and a hole transport layer 8 as necessary. Has been formed. Therefore, the organic electroluminescent element of FIG. 2 can be handled as having one organic light emitting layer having a plurality of light emitting layers.
  • an electron transport layer 9 is provided on the light reflective electrode 2 side
  • a hole transport layer 8 is provided on the light transmissive electrode 1 side.
  • the organic electroluminescence element may further include a plurality of light emitting layers 3.
  • the plurality of charge supply layers 10 are provided between the light transmissive electrode 1 and the light reflective electrode 2.
  • the organic light emitting layer 5 is provided between the light transmissive electrode 1 and the charge supply layer 10.
  • the organic light emitting layer is provided between the charge supply layer 10 and the light reflective electrode 2.
  • a plurality of light emitting layers 3 may be stacked in one organic light emitting layer 5.
  • the number of stacked layers is not particularly limited. However, as the number of light emitting layers 3 increases, the difficulty of designing optical and electrical elements increases. Therefore, the number of light emitting layers 3 is preferably five or less. The number of light emitting layers 3 is more preferably three or less.
  • the light scattering layer 7 of such an organic electroluminescence element only needs to have a characteristic of efficiently disturbing the transmission angle of light at an angle greater than or equal to the total reflection angle to the transmission angle equal to or smaller than the total reflection angle. Thereby, the light-scattering layer 7 enables the organic electroluminescence element to emit guided light inside the element to the outside of the organic electroluminescence element.
  • a light scattering layer 7 is composed of, for example, a layer having an uneven surface.
  • Such a light scattering layer 7 is composed of a layer having a light reflective interface.
  • Such a light scattering layer 7 is formed of a layer having an interface with which a medium having a different refractive index contacts.
  • a layer including particles and voids, a layer formed by mixing a plurality of materials, and the like function as the light scattering layer 7.
  • the light scattering layer 7 is formed on the substrate 6.
  • corrugated shape is also employable.
  • the surface of the substrate having an uneven shape functions as the light scattering layer 7.
  • the light-scattering layer 7 can utilize arbitrary methods, unless it is contrary to the meaning of this invention.
  • a transparent binder resin such as a polyester resin, an epoxy resin, a polyurethane resin, a silicone resin, an acrylic resin, and silica particles that are dispersed and distributed in the binder resin and have a refractive index different from that in the transparent material.
  • the light scattering layer 7 can be formed of a scattering particle layer composed of particles such as titania particles, zirconia particles, plastic particles, and liquid crystal particles, and bubbles.
  • the light scattering layer 7 composed of the scattering particle layer and the planarization layer may be formed by laminating the scattering particle layer and forming a planarization layer with a transparent resin such as an imide resin. Good.
  • the transparent resin for forming the flattened layer may be mixed with fine particles having a smaller particle diameter than the particles in the scattering particle layer, if necessary.
  • the planarizing layer is laminated on the light scattering layer 7 to form the light transmissive electrode 1, the light transmissive electrode 1 is smoothed by smoothing the light scattering layer 7.
  • the material constituting the planarization layer preferably has a refractive index equivalent to that of the light transmissive electrode 1.
  • the equivalent means that the refractive index difference is within a range of ⁇ 0.1.
  • the light transmittance of the light scattering layer 7 is preferably at least 50% or more, more preferably 80% or more.
  • the degree of change in the directivity of light by the light scattering layer 7 is not particularly limited. However, it is preferable to employ a light scattering layer 7 that is designed so that incident light passes through the light scattering layer 7 without being totally reflected.
  • organic electroluminescence element such as the light-transmitting substrate 6 holding the stacked elements, the anode, the cathode, the light emitting layer 3, the electron transport layer 9, the charge supply layer 10, etc. Conventionally used ones can be used as they are.
  • the light-transmitting substrate 6 is, for example, a transparent glass plate such as soda lime glass or non-alkali glass, a plastic film prepared by an arbitrary method from a resin such as polyester, polyolefin, polyamide, or epoxy, or a fluorine resin.
  • a plastic plate or the like can be used.
  • the anode is an electrode for injecting holes into the light emitting layer 3.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function.
  • an anode having a work function of 4 eV or more examples include metals such as gold, CuI, ITO (indium-tin oxide), SnO 2 , ZnO, IZO (indium-zinc oxide), PEDOT, polyaniline, and the like.
  • Examples thereof include conductive light-transmitting materials such as conductive polymers doped with molecules and arbitrary acceptors, and carbon nanotubes.
  • the anode can be produced, for example, by forming these electrode materials into a thin film on the surface of the light scattering layer 7 by a method such as vacuum vapor deposition, sputtering, or coating.
  • the anode is the light transmissive electrode 1
  • the light transmittance of the anode is 70% or more.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less, particularly preferably 100 ⁇ / ⁇ or less.
  • the film thickness of the anode varies depending on the material in order to control the characteristics such as light transmittance and sheet resistance of the anode as described above.
  • the film thickness of the anode is set to 500 nm or less, preferably in the range of 10 to 200 nm.
  • the cathode is an electrode for injecting electrons into the light emitting layer 3. It is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a low work function for the cathode. It is particularly preferable that the cathode has a work function of 5 eV or less.
  • Such cathode electrode materials include alkali metals, alkali metal halides, alkali metal oxides, alkaline earth metals and the like, and alloys thereof with other metals such as sodium, sodium-potassium alloys, lithium Examples thereof include magnesium, a magnesium-silver mixture, a magnesium-indium mixture, an aluminum-lithium alloy, and an Al / LiF mixture.
  • a cathode is constituted by an underlayer made of an alkali metal oxide, an alkali metal halide, or a metal oxide, and one or more metal layers such as a metal provided on the underlayer.
  • a cathode include an alkali metal / Al laminate, an alkali metal halide / alkaline earth metal / Al laminate, and an alkali metal oxide / Al laminate.
  • the light reflective electrode 2 may be configured by a combination of a transparent electrode and a light reflective layer.
  • the cathode when the cathode is formed as the light transmissive electrode 1, it may be formed of a transparent electrode typified by ITO, IZO or the like. In this case, the cathode is formed on the substrate 6.
  • the organic layer at the cathode interface may be doped with an alkali metal such as lithium, sodium, cesium, or calcium, or an alkaline earth metal.
  • the cathode can be produced, for example, by forming these electrode materials into a thin film by a method such as vacuum deposition or sputtering.
  • the cathode is the light-reflective electrode 2
  • the light transmittance is 10% or less.
  • the light transmittance of the cathode is preferably 70% or more.
  • the film thickness of the cathode in this case varies depending on the material in order to control the characteristics such as light transmittance of the cathode, but is usually 500 nm or less, preferably 100 to 200 nm.
  • the electron transport layer 9 can be formed of a material composed of a group of chemicals having electron transport properties. Examples of this type of compound include metal complexes known as electron transporting materials such as Alq3, and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, and oxadiazole derivatives.
  • the chemical substance of the electron transport layer 9 is not limited to this. As the chemical of the electron transport layer 9, any generally known electron transport material can be used. It is particularly preferable to use a material having a high charge transporting property.
  • the hole transport layer 8 is formed of a material selected from a group of compounds having hole transport properties, for example.
  • this type of compound include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1 , 1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) , 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB, and the like, triarylamine compounds, amine compounds containing carbazole groups And an amine compound containing a fluorene derivative, etc.
  • any generally known include 4,4′-bis [N
  • any material known as a material for an organic electroluminescence element can be used.
  • the material used for the light emitting layer 3 is not limited to these. Moreover, it is also preferable to mix and use the light emitting material selected from these compounds suitably. Further, not only a compound that emits fluorescence, typified by the above-described compound, but also a material system that emits light from a spin multiplet, for example, a phosphorescent material that emits phosphorescence, and a part thereof are included in a part of the molecule. A compound can also be used suitably.
  • the organic layer 4 made of these materials may be formed by a dry process such as vapor deposition or transfer, or may be formed by a wet process such as spin coating, spray coating, die coating, or gravure printing. Good.
  • Examples of the charge supply layer 10 include metal thin films such as Ag, Au, and Al, metal oxides such as vanadium oxide, molybdenum oxide, rhenium oxide, and tungsten oxide, ITO, IZO, AZO, GZO, ATO, and SnO 2.
  • Transparent conductive film so-called stack of n-type semiconductor and p-type semiconductor, metal thin film or stack of transparent conductive film and n-type semiconductor and / or p-type semiconductor, mixture of n-type semiconductor and p-type semiconductor, n-type Examples thereof include a semiconductor and / or a mixture of a p-type semiconductor and a metal.
  • the n-type semiconductor or p-type semiconductor may be an inorganic material or an organic material.
  • the charge supply layer 10 can be selected and used as needed without being particularly limited to the above-described materials.
  • the organic light emitting layer 5 including the light emitting layer 3 is provided between the light transmissive electrode 1 and the light reflective electrode 2.
  • a light scattering layer 7 is provided on the light transmissive electrode 1.
  • a light transmissive substrate 6 is provided on the light scattering layer 7.
  • the increase in the luminous flux emitted from the organic electroluminescence element will be described.
  • the distance d between the light emitting point of at least one light emitting layer 3 included in the organic light emitting layer 5 and the light reflective electrode 2 is set to be a distance represented by the following formula (1). Has been. Thereby, the light beam emitted from the organic electroluminescence element provided with the light scattering layer 7 can be increased.
  • the light emitting point is a position in the film thickness direction in which the light emission intensity is highest in the light emitting layer 3. It is difficult to experimentally directly determine the position of the light emitting point.
  • the position of the light emission point can be estimated by optical calculation based on a conventional method from the film thickness dependence of the emission spectrum, for example.
  • the position of the light emitting point can also be determined empirically from the carrier mobility and energy ranking of the organic layer 4 such as the light emitting layer 3, the hole transport layer 8, and the electron transport layer 9.
  • the light emitting sites may be distributed in the film thickness direction in the light emitting layer 3. In this case, a portion considered to have the highest light emission intensity can be approximated as a representative point and regarded as a light emission point.
  • ⁇ 1 is a wavelength at which the product of the spectral radiant flux of the light emitted from the light-emitting layer 3 and the CIE standard relative luminous sensitivity has a maximum value.
  • the expression (1) derives a condition for increasing the luminous flux of the light emitted from the organic electroluminescence element on the basis of the wavelength that most influences the luminous flux when the organic electroluminescence element emits light. is there.
  • ⁇ in equation (1) is the phase shift of light. This phase shift of light reflects light between the light reflective electrode 2 and the layer located between the light emitting point and the light reflective electrode 2 and in contact with the light reflective electrode 2. Occurs in some cases. This ⁇ is expressed by the following equation.
  • n 1 is a refractive index at a wavelength ⁇ 1 of a layer located between the light emitting point and the light reflective electrode 2 and in contact with the light reflective electrode 2.
  • k 1 is an extinction coefficient at a wavelength ⁇ 1 of a layer located between the light emitting point and the light reflective electrode 2 and in contact with the light reflective electrode 2.
  • n 2 is the refractive index of the light reflective electrode 2 at the wavelength ⁇ 1 .
  • k 2 is the extinction coefficient at the wavelength ⁇ 1 of the light reflective electrode 2.
  • N in the formula (1) is the refractive index of the film located between the light emitting point and the light reflective electrode 2 at the wavelength ⁇ 1 .
  • nd is an optical distance from the light emitting point at the wavelength ⁇ 1 to the light reflective electrode 2.
  • na, nb Mean the respective refractive indexes of the layers located between the light emitting point and the light reflective electrode 2.
  • da, db mean the thickness of each layer located between the light emitting point and the light reflective electrode 2.
  • a combination of values of a plurality of da, db... Is appropriately selected and determined so as to satisfy the above formula (1).
  • n in the formula (1) is 0 or 1. Further, when m is 0, a satisfies the relationship of ⁇ 1.17 ⁇ n org / n EML + 1.94 ⁇ a ⁇ ⁇ 0.16 ⁇ n org / n EML +2.33. a is a number satisfying the relationship of 0.28 ⁇ n org / n EML + 0.75 ⁇ a ⁇ 2.85 ⁇ n org / n EML ⁇ 1.23 when m is 1. n org is the refractive index at the wavelength ⁇ 1 of the layer contacting the light emitting layer 3 on the light reflective electrode 2 side, and n EML is the refractive index at the wavelength ⁇ 1 of the light emitting layer 3. This range of a is derived from the analysis based on the actual measurement values for the condition that the value of the luminous flux takes the maximum value or a value in the vicinity thereof.
  • the photoluminescence spectrum of the light emitting layer 3 can be measured, for example, by the following method.
  • Third, the light emitted from the thin film is measured using an integrating sphere. In this way, the photoluminescence spectrum is measured.
  • the refractive index of the material constituting the organic electroluminescence element can be measured by, for example, a normal incidence type reflection / refractometer.
  • the extinction coefficient of the material which comprises an organic electroluminescent element can be measured with an ellipsometer, for example. In this case, it can be measured including the wavelength dependence of the refractive index and extinction coefficient.
  • the film thickness of the organic electroluminescence element is mainly the film thickness and refraction of the layer located between the light-emitting layer 3 and the light-reflective electrode 2, such as the light-emitting layer 3, the hole blocking layer, the electron transport layer 9, and the electron injection layer. By adjusting the rate, it is set to the value shown in equation (1).
  • the layers other than the light emitting layer 3 closest to the light reflective electrode 2 are a hole transport layer 8, a hole injection layer, and the like that are closer to the light emitting layer 3 located on the light reflective electrode 2 side than the light emitting layer.
  • the film thickness of the organic electroluminescence element it is also preferable to set the film thickness of the organic electroluminescence element by adjusting the film thickness or refractive index of the charge supply layer 10.
  • the electrical balance in the element may be lost.
  • the electrical balance in the device can be adjusted by changing the film thickness ratio of the hole injection layer and the hole transport layer 8, for example.
  • the electrical balance in the device can be adjusted by changing the film thickness ratio between the electron transport layer 9 and the electron injection layer.
  • the electrical balance in the device can be adjusted by an arbitrary method such as changing the material constituting each layer or adding a material for adjusting the charge transport property to each layer.
  • an organic electroluminescence element having a reverse laminated structure in which a cathode is formed on the substrate 6 as the light transmissive electrode 1 and the light reflective electrode 2 is used as the anode.
  • the layer located between the light emitting layer 3 and the light reflective electrode 2 is the hole transport layer 8. Therefore, the film thickness of the organic electroluminescent element is adjusted by adjusting the film thickness of the hole transport layer 8.
  • the film thickness can be adjusted in any layer.
  • the organic electroluminescence element includes the organic light emitting layer 5 having a plurality of light emitting layers, it is sufficient that at least one light emitting layer 3 satisfies the above formula (1). This increases the amount of light emitted from the organic electroluminescence device.
  • each of the two light emitting layers 3 satisfies the above formula (1).
  • the light flux emitted from the organic electroluminescence element is remarkably increased.
  • the light emitting layer that emits light having a wavelength at which the product of the spectral radiant flux of the photoluminescence spectrum and the CIE standard relative luminous efficiency is maximum is close to the light reflective electrode 2. It is preferable to be located on the side. In this case, the two light emitting layers 3 can be easily designed so as to satisfy the relationship of the formula (1).
  • the distance d between the light emitting point of at least one light emitting layer 3 included in the organic light emitting layer 5 and the light reflective electrode 2 is set to a distance represented by the following formula (2). .
  • the number of photons emitted from the organic electroluminescence element provided with the light scattering layer 7 can be increased.
  • ⁇ 2 in the formula (2) is a wavelength at which the quotient obtained by dividing the spectral radiant flux of the photoluminescence spectrum of the light emitted from the light emitting layer 3 by the photon energy at each wavelength shows a maximum value. That is, in the formula (2), a condition for increasing the number of photons of light emitted from the organic electroluminescence element is derived on the basis of the wavelength that most influences the number of photons when the organic electroluminescence element emits light. Is.
  • represents a layer located between the light emitting point in the light emitting layer 3 and the light reflective electrode 2 and in contact with the light reflective electrode 2, and the light reflective electrode 2. Phase shift that occurs when light is reflected between the two. This phase shift is expressed by the following equation.
  • n 1 is a refractive index at a wavelength ⁇ 2 of a layer located between the light emitting point of the light emitting layer 3 and the light reflective electrode 2 and in contact with the light reflective electrode 2.
  • k 1 is an extinction coefficient at a wavelength ⁇ 2 of a layer located between the light emitting point in the light emitting layer 3 and the light reflective electrode 2 and in contact with the light reflective electrode 2.
  • N 2 is the refractive index of the light reflective electrode 2 at the wavelength ⁇ 2 .
  • k 2 is the extinction coefficient at the wavelength ⁇ 2 of the light reflective electrode 2.
  • n in the formula (2) is a refractive index of a film located between the light emitting point 2 and the light reflective electrode 2 at the wavelength ⁇ 2 .
  • nd is an optical distance between the light-emitting point 2 at the wavelength ⁇ 2 and the light-reflecting electrode 2.
  • na, na Mean the respective refractive indexes of the layers located between the light emitting point and the light reflective electrode 2.
  • da, db mean the thickness of each layer located between the light emitting point and the light reflective electrode 2.
  • a combination of values of a plurality of da, db... Is appropriately selected and determined so as to satisfy the above formula (2).
  • n in Formula (2) is 0 or 1.
  • a is a number that satisfies the relationship of ⁇ 1.17 ⁇ n org / n EML + 1.94 ⁇ a ⁇ ⁇ 0.16 ⁇ n org / n EML +2.33.
  • n org is the refractive index at the wavelength ⁇ 2 of the layer in contact with the light emitting layer 3 on the light reflective electrode 2 side.
  • n EML is the refractive index of the light emitting layer 3 at the wavelength ⁇ 2 .
  • This range of a is derived by analysis based on actual measurement values for the condition that the value of the number of photons takes a maximum value or a value in the vicinity thereof.
  • the photoluminescence spectrum of the light emitting layer 3 can be measured by the following method in the same manner as described above.
  • Third, the light emitted from the thin film is measured using an integrating sphere. In this way, the photoluminescence spectrum is measured.
  • the refractive index of the material constituting the organic electroluminescence element can be measured by, for example, a normal incidence type reflection / refractometer.
  • the extinction coefficient of the material which comprises an organic electroluminescent element can be measured with an ellipsometer, for example. In this case, it can be measured including the wavelength dependence of the refractive index and extinction coefficient.
  • the film thickness of the organic electroluminescence element is mainly the film thickness and refraction of the layer located between the light-emitting layer 3 and the light-reflective electrode 2, such as the light-emitting layer 3, the hole blocking layer, the electron transport layer 9, and the electron injection layer.
  • the value is set to the value represented by Expression (2).
  • the layers other than the light emitting layer 3 closest to the light reflective electrode 2 are a hole transport layer 8, a hole injection layer, and the like that are closer to the light emitting layer 3 located on the light reflective electrode 2 side than the light emitting layer.
  • the film thickness of the organic electroluminescence element it is also preferable to set the film thickness of the organic electroluminescence element by adjusting the film thickness or refractive index of the charge supply layer 10.
  • the electrical balance in the element may be lost.
  • the electrical balance in the device can be adjusted by changing the film thickness ratio of the hole injection layer and the hole transport layer 8, for example.
  • the electrical balance in the device can be adjusted by changing the film thickness ratio between the electron transport layer 9 and the electron injection layer.
  • the electrical balance in the device can be adjusted by an arbitrary method such as changing the material constituting each layer or adding a material for adjusting the charge transport property to each layer.
  • an organic electroluminescence element having a reverse laminated structure in which a cathode is employed as the light transmissive electrode 1 on the substrate 6 and the light reflective electrode 2 is used as an anode.
  • the layer located between the light emitting layer 3 and the light reflective electrode 2 is the hole transport layer 8. Therefore, the film thickness of the organic electroluminescent element is adjusted by adjusting the film thickness of the hole transport layer 8.
  • the film thickness can be adjusted in any layer.
  • the organic electroluminescence element includes the organic light emitting layer 5 having a plurality of light emitting layers, it is sufficient that at least one light emitting layer 3 satisfies the above formula (2). This increases the amount of light emitted from the organic electroluminescence device.
  • each of the two light emitting layers 3 satisfies the above formula (2).
  • a light emitting layer that emits light having a wavelength at which the quotient obtained by dividing the spectral radiant flux of the photoluminescence spectrum by the photon energy at each wavelength is maximized is used as the light reflective electrode 2. It is preferable to be located on the near side. In this case, the two light emitting layers 3 can be easily designed so as to satisfy the relationship of the formula (2).
  • the organic electroluminescence element formed so as to increase the number of luminous fluxes or photons emitted in this way, the organic electroluminescence element does not increase the brightness of the light emitted in the front direction of the organic electroluminescence element. It is possible to increase the total amount of light emitted from the light source, and it is particularly suitable for organic electroluminescence elements used for applications requiring a light amount, such as light sources, backlights, and illumination.
  • the total amount of light introduced from the light emitting layer 3 of the organic electroluminescence element into the light transmissive electrode 1 and the substrate 6 (contained in the light transmissive electrode 1 when the light scattering layer 7 is not provided).
  • the total amount of light to be confined in the substrate 6, light confined in the substrate 6, and light that can be taken out through the substrate 6 is increased, and therefore the organic light-emitting layer 5 of the light-transmissive electrode 1 is
  • the light scattering layer 7 and the light-transmitting substrate 6 are laminated in this order on the opposite side, it is possible to achieve very high light extraction efficiency.
  • the organic light emitting layer of the light transmissive electrode 1 is increased.
  • the light scattering layer 7 and the light transmissive substrate 6 are laminated in this order on the opposite side to 5 and another light scattering layer 7 is provided on the outer surface side of the light transmissive substrate 6, Even when the light scattering layer 7 is provided only on the outer surface side of the substrate 6, it is possible to achieve very high light extraction efficiency.
  • the amount of light can be increased in a range where the distance between the light emitting layer 3 and the light reflective electrode 2 is not too small. This can be suitably used when considering the problem of short circuit occurrence. Further, in the range not departing from the gist of the present invention, for example, the thickness of the hole transport layer formed on the light-transmitting electrode 1 is increased, or the coating type hole injection known to have a high foreign matter coverage. By using a layer, reliability can be further improved.
  • Example 1 The light transmissive substrate 6 provided with the light scattering layer 7 was produced as follows. First, 803.5 g of isopropyl alcohol is added to 86.8 g of tetraethoxysilane, and 34.7 g of ⁇ -methacryloxypropyltrimethoxysilane and 75 g of 0.1N nitric acid are added, and the solution is mixed well by using a disper. Obtained. The obtained solution was stirred in a constant temperature bath at 40 ° C. for 2 hours to obtain a 5% by mass solution of a silicone resin having a weight average molecular weight of 1050 as a binder forming material.
  • methylsilicone particles (average particle size 2 ⁇ m, manufactured by GE Toshiba Silicone, “Tospearl 120”) are 80/20 based on the solid content mass of methylsilicone particles / silicone resin (condensed compound equivalent).
  • the resultant was added and dispersed with a homogenizer to obtain a methyl silicone particle-dispersed silicone resin solution.
  • the “condensation compound conversion” means the mass of this silicone resin when the silicone resin is completely hydrolyzed and condensation polymerized. In the case of tetraalkoxysilane, the mass converted to Si 2 in the resin as SiO 2 , In the case of alkoxysilane, it is the mass converted from Si in the resin as SiO 1.5 .
  • the methylsilicone particle-dispersed silicone resin solution was applied to the surface of the substrate 6 with a spin coater at 1000 rpm, Dried. After this coating and drying was repeated 6 times, the formed coating film was heat-treated by baking at 200 ° C. for 30 minutes to form a scattering particle layer.
  • an imide-based resin (“HRI1783”, refractive index 1.78, concentration 18% by mass, manufactured by OPTMATE, Inc.) is applied to the surface of the scattering particle layer with a spin coater at 2000 rpm, and then dried and applied.
  • a film was formed and heat-treated by baking the coating film at 200 ° C. for 30 minutes to form a flattened layer having a thickness of 4 ⁇ m. Thereby, the area
  • HRI1783 refractive index 1.78, concentration 18% by mass, manufactured by OPTMATE, Inc.
  • an ITO film having a thickness of 150 nm is formed on the surface of the region 7 by sputtering, and this ITO film is heated at 200 ° C. for 1 hour in an Ar atmosphere. Thus, annealing treatment was performed.
  • the sheet resistance of the ITO film after the treatment was 18 ⁇ / ⁇ .
  • the anode (light-transmitting electrode 1) having the dimensions shown in FIG. 3 composed of the remainder of the ITO film is formed, and the substrate 6 has the dimensions shown in FIG. Was cut as follows.
  • the laminate of the substrate 6, the region 7 and the electrode 1 was sequentially ultrasonically cleaned with pure water, acetone and isopropyl alcohol for 10 minutes each, then steam cleaned with isopropyl alcohol vapor for 2 minutes, dried, and then UV ozone for another 10 minutes. Washed.
  • the laminate was set in a vacuum deposition apparatus, and 4,4′-bis [N- (N) was used under a reduced pressure of 5 ⁇ 10 ⁇ 5 Pa using a mask 43 provided with an opening 42 having the dimensions shown in FIG. Naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD) was deposited on electrode 1 to a thickness of 40 nm to form a hole transport layer 8.
  • the light emitting layer 3 having a thickness of 30 nm made of Alq3 doped with 6% by mass of rubrene was formed on the hole transport layer 8.
  • TpPyPhB represented by the following [Chemical Formula 1] was deposited to a thickness of 65 nm as the electron transport layer 9.
  • LiF is used as an electron injection layer to a thickness of 1 nm and Al is used as a cathode (light reflective electrode 2) to a thickness of 80 nm. Film formation was performed to obtain an organic electroluminescence element.
  • Example 2 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that the thickness of the electron transport layer 9 was 235 nm.
  • Example 3 An organic electroluminescent element was obtained under the same conditions as in Example 1 except that the thickness of the electron transport layer 9 was 350 nm.
  • Example 2 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that the thickness of the electron transport layer 9 was 435 nm.
  • Example 4 Under the same conditions as in Example 1, a region 7, an electrode 1, a hole transport layer 8, and a light emitting layer 3 (first light emitting layer 3) were sequentially formed on the substrate 6. Next, TpPyPhB was deposited to a thickness of 50 nm as the electron transport layer 9. Next, as the charge supply layer 10, a layer obtained by doping TmPyPhB shown in [Chemical Formula 2] below with Li in a molar ratio of 1: 0.3 was formed to a thickness of 10 nm, and a molybdenum oxide layer was formed to a thickness of 10 nm.
  • ⁇ -NPD is 110 nm thick as the hole transport layer 8
  • a TBPDN doped with TBP shown in the following [Chemical 4] is doped as the second light-emitting layer 3 with a thickness of 30 nm
  • the electron transport layer 9 As a result, TpPyPhB was formed to a thickness of 50 nm, LiF was formed to a thickness of 1 nm as an electron injection layer, and Al was formed to a thickness of 80 nm as a cathode to obtain an organic electroluminescence device having two light emitting layers 3.
  • Example 3 Under the same conditions as in Example 4, a region 7, an electrode 1, a hole transport layer 8, a light emitting layer 3, an electron transport layer 9, a charge supply layer 10, and a molybdenum oxide layer were sequentially formed on the substrate 6. Next, ⁇ -NPD was formed to a thickness of 200 nm as the hole transport layer 8. Next, after the second light emitting layer 3 was formed under the same conditions as in Example 4, TpPyPhB was deposited to a thickness of 150 nm as the electron transport layer 9. Furthermore, an electron injection layer and a cathode were formed under the same conditions as in Example 4 to obtain an organic electroluminescence device having two light emitting layers 3.
  • Example 5 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that TmPyPhB was deposited to a thickness of 70 nm as the electron transport layer 9.
  • Example 4 An organic electroluminescent element was obtained under the same conditions as in Example 1 except that TmPyPhB was deposited to a thickness of 170 nm as the electron transport layer 9.
  • Example 6 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that TmPyPhB was formed to a thickness of 230 nm as the electron transport layer 9.
  • Example 5 An organic electroluminescent element was obtained under the same conditions as in Example 1 except that TmPyPhB was deposited to a thickness of 345 nm as the electron transport layer 9.
  • Example 7 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that DPB was deposited to a thickness of 85 nm as the electron transport layer 9.
  • Example 8 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that DPB was deposited to a thickness of 275 nm as the electron transport layer 9.
  • Example 7 An organic electroluminescence element was obtained under the same conditions as in Example 1 except that DPB was formed to a thickness of 380 nm as the electron transport layer 9.
  • the wavelength ⁇ 1 at which the product of the spectral radiant flux and the CIE standard relative luminous efficiency has a maximum value is 559 nm
  • the wavelength ⁇ 2 at which the quotient obtained by dividing the spectral radiant flux by the photon energy at each wavelength is 561 nm. It was.
  • the refractive index n and extinction coefficient k at each wavelength are set for the following TpPyPhB, which is an electron transport material, and the refractive index n is set for other materials ( ⁇ -NPD, Alq3, TBADN, MoO 3 ).
  • TpPyPhB which is an electron transport material
  • n is set for other materials ( ⁇ -NPD, Alq3, TBADN, MoO 3 ).
  • Alq3 was mixed with 6% by mass and 4% by mass of rubrene as a dopant
  • TBADN was mixed with 6% by mass of TBP.
  • the optical properties of each layer were the values of Alq3 and TBADN single layers, respectively. It was.
  • the refractive index of the layer obtained by doping Li into TpPyPhB used as the charge supply layer was made equal to that of TpPyPhB alone.
  • Table 3 shows the result of calculating the current efficiency (unit: lm / A) of the luminous flux based on this measurement result. Further, Table 3, optical distance nd of between emission point and the light reflective electrode 2 in each of the organic electroluminescent device, the wavelength lambda 1, the phase shift ⁇ in the wavelength lambda 1, the optical distance nd and phase shift ⁇ The value a derived from the above formula (1) based on the above and the range of a for satisfying the formula (1) are also shown.
  • the portion of the light emitting layer 3 that is in contact with the hole transport layer 8 can be regarded as the light emitting point, so the product of the refractive index of the light emitting layer 3 and its film thickness, This is represented by the sum of the refractive index of the electron transport layer 9 and the product of its film thickness.
  • Table 4 shows the result of deriving the quantum efficiency of the emitted light proportional to the number of photons based on the measurement result.
  • Table 4 shows the optical distance nd between the light emitting point and the light-reflective electrode 2 in each organic electroluminescence element, the wavelength ⁇ 2, the phase shift ⁇ at the wavelength ⁇ 2 , and the optical distance nd and the phase shift ⁇ .
  • the value a derived from the above formula (2) based on the above and the range of a for satisfying the formula (2) are also shown.
  • the portion of the light emitting layer 3 that is in contact with the hole transport layer 8 can be regarded as the light emitting point. This is expressed as the sum of the product and the product of the refractive index of the electron transport layer 9 and its film thickness.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の有機エレクトロルミネッセンス素子は、光反射性電極は、発光層の発光点から下記式(1)で規定される距離dで離間している。 λは、前記発光層から放射される特定の光が有する波長。nは、発光層における発光点と前記光反射性の電極との間に位置する層の波長λにおける屈折率。n1及びk1は、前記光反射性の電極に接する層の波長λを有する光の屈折率及び消衰係数。 n2及びk2は、前記光反射性の電極の波長λにおける屈折率及び消衰係数。mは0または1。aは、mが0または1の場合に、次の式を満足する。 -1.17×norg/nEML+1.94≦a≦-0.16×norg/nEML+2.33 0.28×norg/nEML+0.75≦a≦2.85×norg/nEML-1.23 norgは、発光層に光反射性の電極側で接する層の波長λにおける屈折率。nEMLは発光層の波長λにおける屈折率。

Description

有機エレクトロルミネッセンス素子
 本発明は、照明光源や液晶表示器用バックライト、フラットパネルディスプレイ等に用いることのできる有機エレクトロルミネッセンス素子に関する。詳しくは、適切な光学設計によって、特に有機エレクトロルミネッセンス素子を構成する光透過性の基板の外面に光散乱領域を設けた際に特に良好な発光特性を発揮する有機エレクトロルミネッセンス素子に関するものである。
 図6は有機エレクトロルミネッセンス素子の構成の一例を示すものである。この有機エレクトロルミネッセンス素子は、光透過性の基板6、陽極となる光透過性の電極1、ホール輸送層8、発光層3、電子輸送層9、陰極となる光反射性の電極2を有する。光透過性の電極1、ホール輸送層8、発光層3、電子輸送層9、光反射性の電極2は、光透過性基板6の上面に、順次形成されている。このような有機エレクトロルミネッセンス素子において、電極1,2間に電圧を印加することによって、電子輸送層9を介して発光層3に電子が注入され、ホール輸送層8を介して発光層3ホールが注入される。電子とホールとが、発光層3内で再結合して発光が起こる。発光層3で発光した光は、光透過性の電極1及び光透過性の基板6を通して取り出される。
 このような有機エレクトロルミネッセンス素子は、自発光を発する特徴を有する。また、このような有機エレクトロルミネッセンス素子は、比較的高い効率の発光特性を有している。さらに、このような有機エレクトロルミネッセンス素子は、各種の色調で発光する特徴を有している。この有機エレクトロルミネッセンス素子は、表示装置、例えばフラットパネルディスプレイ等の発光体として、あるいは光源、例えば液晶表示機用バックライトや照明としての活用が期待されており、一部では既に実用化されている。
 しかし、有機エレクトロルミネッセンス素子は、光学波長オーダー程度の厚みの薄膜デバイスであり素子膜厚とその発光特性には密接な相関があるために、電気的設計と光学的設計の両者に基づく好適な膜厚設計を両立可能なデバイス構造を設定する必要がある。
 一般に有機エレクトロルミネッセンス素子では、発光層3内で発生した光が、発光層3、有機層4や電極内、あるいは基板6内に全反射によって閉じこめられる現象が生じることが知られている。簡易な見積りによると、発光層3で発生した光のうち、発光層3、有機層4又は光透過性の電極1内に閉じこめられる光は約50%、基板6内に閉じこめられる光は約30%となり、従って大気中に出射される光は発光層3内で発生した光の約20%に過ぎないとされている。
 また、図7のように基板6の外面に光散乱領域7を設けることが知られている。この光散乱領域7によって基板6内に閉じ込められる光の一部は、有機エレクトロルミネッセンス素子の外部に取り出される。これにより、発光量を増大させることができる。
 更に、図1のように光透過性の電極1と基板6の間に光散乱領域7を設けることも知られている。この場合、発光層3、有機層4、光透過性の電極1内に閉じこめられた光の一部を有機エレクトロルミネッセンス素子の外部に取り出すことができる。前述のように発光層3、有機層4又は光透過性の電極1内に閉じこめられる光の量は、基板6内に閉じ込められる光の量より多い。したがって、基板6の外面に光散乱領域7が設けられた有機エレクトロルミネッセンス素子よりも、光透過性電極1と基板6との間に光散乱領域7が設けられた有機エレクトロルミネッセンス素子のほうが、より多くの光を有機エレクトロルミネッセンス素子の外部に放出する。
 また、このような有機エレクトロルミネッセンス素子について、大気中に出射される光の量を増大させるための、発光層3における発光点と光反射性の電極2等との距離の設計に関する報告もこれまでにいくつかなされている。例えば、特許文献1の有機エレクトロルミネッセンス素子において、発光点から光透過性の電極1までの距離は、波長の1/4の偶数倍と概ね等しく設計されており、また、発光点から光反射性の電極2までの距離は、波長の1/4の奇数倍と概ね等しく設定されている。特許文献2には、有機エレクトロルミネッセンス素子の電極間の距離を光の位相シフトを考慮して設定することが開示されている。特許文献3には、有機エレクトロルミネッセンス素子の光透過性の電極1から光反射性の電極2までの距離を、光反射性の電極2での光の位相シフトを考慮してある範囲に設定することが開示されている。また、特許文献4および5には、基板6に光散乱領域7を設けた有機エレクトロルミネッセンス素子において、電極間の距離を所定の値に設定することが開示されている。
 これらの特許文献は、有機エレクトロルミネッセンス素子の発光効率がそれを構成する光透過性の膜の膜厚に大きく依存することを開示している。そして、これらの特許文献は、特に発光波長に対して例えば(2m+1)/4(mは0以上の整数)倍など、限定された光学膜厚を有する膜が発光点と光反射性の電極2間に設けられている時に良好な効率を示すことを開示している。
 しかしながら、特許文献1では、光反射性の電極2における光の位相シフトは考慮されていない。また特許文献2では対象とするスペクトルの半値幅が50nm以下に限定されている。特許文献3は、電極間の距離のみが規定されている。一方、特許文献3は、発光点と光反射性の電極2との間の距離に関する規定は特にない。更に特許文献1~3では、有機エレクトロルミネッセンス素子に用いられる基板やその他の部材に光散乱領域7を設けない場合の光学設計についてのみしか記述されていない。
 一方、特許文献4及び5では、光散乱領域7を含む有機エレクトロルミネッセンス素子に関して記述されている。しかしながら、特許文献4及び5は、前記式においてm=0の場合に関する事項のみが記述されている。したがって、発光層が二層設けられるなど発光層3と光反射性の電極2との間にある程度の距離が必要とされる場合には対応できない。これは、特許文献2も同様である。
 そこで、本出願人は、図7のように基板6の外面に光散乱領域7を設けた場合において、任意の発光スペクトルに対して、発光層3と光反射性の電極2との間にある程度の距離が必要とされる場合の、発光点と光反射性の電極2との適切な距離を明らかにした。
 しかし、前述のように基板6の外面に光散乱領域7が形成された有機エレクトロルミネッセンス素子よりも、光透過性の電極3と基板6の間に光散乱領域7が形成された有機エレクトロルミネッセンス素子のほうが、光が多く取り出される。このような構成を有する有機エレクトロルミネッセンス素子に関しては、任意の発光スペクトルに対して、発光層3と光反射性の電極2との間にある程度の距離が必要とされる場合の発光点と光反射性の電極2との適切な距離の設計方針は、明確になっていなかった。
 また、近年、図2に示すような、新たな有機エレクトロルミネッセンス素子が開示されている。この有機エレクトロルミネッセンス素子は、複数の発光層3と、この発光層3の間に設けられる、透明電極や有機半導体、無機半導体、電子受容性物質と電子供与性物質からなる電荷発生層などの電荷供給層10が配置されている。複数の発光層3は、有機エレクトロルミネッセンス素子の、厚み方向に積層されている。この種の有機エレクトロルミネッセンス素子は、高輝度かつ長寿命を実現可能であり、今後の展開が強く期待されるが、それに対する光学設計指針は未だ明確にはなっていない。更にこの種の有機エレクトロルミネッセンス素子に光の反射・屈折角を乱れさせる領域7を、光透過性の電極1と基板6の間に設けることに関して言及のある報告もない。
特開2000-243573号公報 特開2004-165154号公報 特開2006-253015号公報 特開2004-296423号公報 特開2004-296429号公報
 本発明は上記の点に鑑みてなされたものである。本発明の目的は、良好な発光特性を有する有機エレクトロルミネッセンス素子を提供することである。この有機エレクトロルミネッセンスは、適切な光学設計に基づいて、光透過性の電極と光透過性の基板の間に光散乱領域が形成されている。
 上記課題を解決するために、本発明の有機エレクトロルミネッセンス素子は、光透過性の電極と、光反射性の電極と、有機発光層と、光散乱層と、透光性基板とを有する。有機発光層は、発光材料を含有する発光層を有している。有機発光層は、第1面及び当該第1面と反対側に位置する第2面を有している。光反射性の電極は、前記第1面上に設けられている。光透過性の電極は、前記第2面上に設けられている。光散乱層は、前記光透過性の電極の上に設けられている。透光性基板は、前記光散乱層の上に設けられている。光反射性電極は、前記発光層における発光点から距離dで離間している。距離dは、下記式(1)で規定される。
Figure JPOXMLDOC01-appb-M000002
 ここで、λは、前記発光層から放射される特定の光が有する波長である。nは、発光層における発光点と前記光反射性の電極との間に位置する層の波長λを有する光における屈折率である。n1は、発光層における発光点と前記光反射性の電極との間に位置し、且つ前記光反射性の電極に接する層の波長λを有する光の屈折率である。k1は、発光層における発光点と前記光反射性の電極との間に位置し、且つ前記光反射性の電極に接する層の波長λを有する光の消衰係数である。n2は、前記光反射性の電極の波長λを有する光における屈折率である。k2は、前記光反射性の電極の波長λを有する光における消衰係数である。mは0または1である。aは、mが0の場合に、次の式を満足する。-1.17×norg/nEML+1.94≦a≦-0.16×norg/nEML+2.33 aは、mが1の場合に、次の式を満足する 0.28×norg/nEML+0.75≦a≦2.85×norg/nEML-1.23 norgは、発光層に光反射性の電極側で接する層の波長λを有する光における屈折率である。nEMLは発光層の波長λにおける屈折率である。
 前記λは、前記特定の光のフォトルミネッセンススペクトルの分光放射束とCIE標準視感度との積が極大となるときの光の波長であることが好ましい。
 この場合、有機エレクトロルミネッセンス素子から出射される光束を増大させることができる。
 前記λは、前記特定の光のフォトルミネッセンススペクトルの分光放射束を各波長におけるフォトンエネルギーで除した商が極大となるときの光の波長であることが好ましい。
 この場合、有機エレクトロルミネッセンス素子から出射される光子数を増大させることができる。
 前記有機層は、2つの前記発光層を有していることが好ましい。これに伴い、前記各発光層の前記発光点と前記第1電極との間の距離は前記dで定義される。
 この場合、有機エレクトロルミネッセンス素子から出射される光束または光子数を特に増大させることができる。
有機エレクトロルミネッセンス素子の構成の一例を示す概略の断面図である。 有機エレクトロルミネッセンス素子の構成の他例を示す概略の断面図である。 実施例で用いたエッチング後のITO付きガラス基板を示す平面図である。 実施例で用いたホール輸送層、発光層及び電子輸送層を形成するためのマスクを示す平面図である。 実施例で用いた電子注入層及び光反射性の電極を形成するためのマスクを示す平面図である。 従来技術の一例を示す概略の断面図である。 従来技術の他例を示す概略の断面図である。
 以下、本発明を実施するための最良の形態を説明する。
 図1に有機エレクトロルミネッセンス素子の構成の一例を示す。この有機エレクトロルミネッセンス素子は、光透過性の基板6と、光散乱層7と、光透過性の電極1と、有機発光層5と、光反射性の電極2とを有する。光透過性の基板6の上に光散乱層7が設けられている。光散乱層7の上に、光透過性の電極1が設けられている。光透過性の電極1の上に、有機発光層5が設けられている。有機発光層5の上に、光反射性の電極2が設けられている。したがって、有機発光層5の下面(第1面)には、光反射性の電極2が設けられている。有機発光層5の上面(第2面)には、光透過性の電極1が設けられている。そして、光透過性の基板6の上に、光散乱層7、光透過性の電極1、有機発光層5、光反射性の電極2が、この順に順次積層形成されている。有機発光層5は、発光材料を含む発光層3を有する。また、有機発光層は、発光層3に加えて、必要に応じて電子注入層、電子輸送層9、ホールブロック層、ホール注入層、ホール輸送層8などの適宜の有機層4が積層して形成されている。図示の例では、電子輸送層9は、光反射性の電極2と発光層3との間に介在している。ホール輸送層8は、光透過性の電極1と発光層3との間に介在している。なお、複数の発光層3が積層された発光層3も、上述の発光層として採用することができる。そして、有機発光層5に電圧が印加されたときに、発光層は光を放出する。
 光反射性の電極2は、有機発光層5から放出された光を反射するように構成されている。一方、光透過性の電極1は、有機発光層5から放出された光を透過するように構成されている。また、光透過性電極1は、有機発光層5から放出されて光反射性の電極2に反射された光も透過するように構成されている。光透過性電極1を透過した光は、光散乱層7によって散乱される。光透過性の基板6は、光散乱層7によって散乱された光を透過するように構成されている。このようにして、光は、有機エレクトロルミネッセンス素子から放出される。
 また、図2は、二層の発光層3を有する有機エレクトロルミネッセンス素子の一例を示している。図示の例では、光透過性基板6の上に、光散乱層7が形成されている。光散乱層7の上に、光透過性の電極1が形成されている。光透過性の電極1の上に、第1の有機発光層5が形成されている。第1の有機発光層5の上に、電荷供給層10が形成されている。電荷供給層10の上に、第2の有機発光層5が形成されている。第2の有機発光層5の上に、光反射性の電極2が形成されている。したがって、光透過性の基板6の上に、光散乱層7、光透過性の電極1、第一の有機発光層5、電荷供給層10、第二の有機発光層5、光反射性の電極2が、この順に順次積層成形されている。各有機発光層5は、上記と同様に発光材料を含む発光層3を有する。そして、各有機発光層5は、発光層3に加えて、必要に応じて電子注入層、電子輸送層9、ホールブロック層、ホール注入層、ホール輸送層8などの適宜の有機層4が積層されて形成されている。したがって、図2の有機エレクトロルミネッセンス素子は、複数の発光層を有する一つの有機発光層を有するものとして扱うことができる。図示の例では、光反射性の電極2側に電子輸送層9を、光透過性の電極1側にホール輸送層8をそれぞれ設けている。
 また、有機エレクトロルミネッセンス素子は、更に複数の発光層3を有していても良い。この場合、複数の電荷供給層10は、光透過性の電極1と光反射性の電極2との間に設けられる。さらに、有機発光層5は、光透過性の電極1と電荷供給層10との間に設けられる。さらに、有機発光層は、電荷供給層10と光反射性の電極2との間に設けられる。このようにして、有機エレクトロルミネッセンス素子が構成される。また、一つの有機発光層5において複数の発光層3を積層して設けても良い。発光層3を複数設ける場合には、その積層数は特に制限されない。しかしながら、発光層3の層数が増大するに伴って、光学的及び電気的な素子設計の難易度が増大する。したがって、発光層3の層数は、五層以下とすることが好ましい。また、発光層3の層数は、三層以下がより好ましい。
 このような有機エレクトロルミネッセンス素子の光散乱層7は、全反射角以上の角度にある光の伝送角を、効率よく全反射角以下の伝送角に乱す特性を有することがのみが必要である。これにより、光散乱層7は、有機エレクトロルミネッセンス素子は、この素子内部の導波光を有機エレクトロルミネッセンス素子の外部に放出することを可能にする。このような光散乱層7は、例えば表面が凹凸形状を有する層で構成される。また、このような光散乱層7は、光反射性の界面を有する層で構成される。また、このような光散乱層7は、屈折率の異なる媒体が接触する界面を有する層などで形成される。粒子や空隙を含む層や、複数の材料が混合されて形成されている層などが、光散乱層7として機能する。この光散乱層7は、基板6の上に形成される。また、表面が凹凸形状を有するように形成された基板6も採用することができる。この場合、凹凸形状を有する基板の表面が、光散乱層7として機能する。また、光散乱層7は、本発明の趣旨に反しない限り、任意の方法が活用しうる。例えば、ポリエステル系樹脂、エポキシ樹脂、ポリウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂等の透明なバインダー樹脂と、このバインダー樹脂中に分散分布すると共にこの透明材料中とは異なる屈折率を有するシリカ粒子、チタニア粒子、ジルコニア粒子、プラスチック粒子、液晶粒子等の粒子や気泡などで構成される散乱粒子層で、光散乱層7を形成することができる。また、この散乱粒子層に積層して、イミド系樹脂等の透明樹脂にて平坦化層を形成することで、散乱粒子層と平坦化層とで構成される光散乱層7を形成してもよい。平坦化層を形成するための透明樹脂には、必要に応じて散乱粒子層中の粒子よりも粒径の小さい微細粒子が混入されていてもよい。前記平坦化層は、光散乱層7に積層して光透過性の電極1が形成される場合に、前記光散乱層7を平滑化することで、光透過性の電極1を平滑に形成するために設けられる。平坦化層を構成する材料は、光透過性の電極1と同等の屈折率を有することが好ましい。ここで、同等とは屈折率差が±0.1の範囲内であることを意味する。
 この光散乱層7の光透過率は、少なくとも50%以上であることが好ましく、光透過率が80%以上であれば更に好ましい。この光散乱層7による光の指向性の変更度合いも特に限定はしない。しかしながら、入射した光が全反射されずに光散乱層7を通過するような設計がなされた光散乱層7を採用することが好ましい。
 また、有機エレクトロルミネッセンス素子を構成する他の部材である、積層された素子を保持する光透過性の基板6や陽極、陰極、発光層3、電子輸送層9、電荷供給層10などには、従来から使用されているものをそのまま使用することができる。
 光透過性の基板6は、例えば、ソーダライムガラスや無アルカリガラスなどの透明ガラス板や、ポリエステル、ポリオレフィン、ポリアミド、エポキシ等の樹脂、フッ素系樹脂等から任意の方法によって作製されたプラスチックフィルムやプラスチック板などを用いることができる。
 陽極は、発光層3にホールを注入するための電極である。陽極は、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましい。陽極は、特に仕事関数が4eV以上のものを用いるのがよい。このような陽極の材料としては、例えば、金などの金属、CuI、ITO(インジウム-スズ酸化物)、SnO2、ZnO、IZO(インジウム-亜鉛酸化物)等、PEDOT、ポリアニリン等の導電性高分子及び任意のアクセプタ等でドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料を挙げることができる。陽極は、例えば、これらの電極材料を、光散乱層7の表面に真空蒸着法やスパッタリング法、塗布等の方法により薄膜に形成することによって作製することができる。
 また、陽極が光透過性の電極1である場合は、この陽極の光透過率が70%以上となるようにすることが好ましい。
 また、陽極のシート抵抗は数百Ω/□以下とすることが好ましく、特に好ましくは100Ω/□以下とするものである。ここで、陽極の膜厚は、陽極の光透過率、シート抵抗等の特性を上記のように制御するために、材料により異なる。しかしながら、陽極の膜厚は、500nm以下、好ましくは10~200nmの範囲に設定するのがよい。
 また上記陰極は、発光層3に電子を注入するための電極である。陰極は、仕事関数の小さい金属、合金、電気伝導性化合物及びこれらの混合物からなる電極材料を用いることが好ましい。陰極は、仕事関数が5eV以下のものであることが特に好ましい。このような陰極の電極材料としては、アルカリ金属、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属等、およびこれらと他の金属との合金、例えばナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/LiF混合物を例として挙げることができる。またアルミニウム、Al/Al23混合物なども使用可能である。さらに、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、あるいは金属酸化物からなる下地層と、当該下地層の上に設けられており金属などの一層以上の金属層によっても、陰極を構成することができる。このような陰極は、例えば、アルカリ金属/Alの積層、アルカリ金属のハロゲン化物/アルカリ土類金属/Alの積層、アルカリ金属の酸化物/Alの積層などが挙げられる。又は透明電極と光反射性の層との組み合わせによって光反射性の電極2を構成しても良い。また、陰極を光透過性の電極1として形成する場合には、ITO、IZOなどに代表される透明電極にて形成しても良く、この場合には、陰極が基板6上に形成される。また陰極の界面の有機物層にリチウム、ナトリウム、セシウム、カルシウム等のアルカリ金属、アルカリ土類金属をドープしても良い。
 また上記陰極は、例えば、これらの電極材料を真空蒸着法やスパッタリング法等の方法により、薄膜に形成することによって作製することができる。陰極が光反射性の電極2である場合には光透過率が10%以下となるようにすることが好ましい。また陰極が光透過性の電極1である場合には、陰極の光透過率を70%以上にすることが好ましい。この場合の陰極の膜厚は、陰極の光透過率等の特性を制御するために、材料により異なるが、通常500nm以下、好ましくは100~200nmの範囲とするのがよい。
 電子輸送層9は、電子輸送性を有する化学物の群からなる材料から形成することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体等のヘテロ環を有する化合物などが挙げられる。しかしながら、電子輸送層9の化学物はこの限りではない。電子輸送層9の化学物は、一般に知られる任意の電子輸送材料を用いることが可能である。特に電荷輸送性の高いものを用いることが好ましい。
 また、ホール輸送層8は、例えばホール輸送性を有する化合物の群から選択される材料で形成される。この種の化合物としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、トリアリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物などを挙げることができる。しかしながら、ホール輸送層8の化合物は、一般に知られる任意のホール輸送材料を用いることが可能である。
 また、発光層3に使用できる材料としては、有機エレクトロルミネッセンス素子用の材料として知られる任意の材料が使用可能である。例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体(Alq3)、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体及び各種蛍光色素等、前述の材料系およびその誘導体を始めとするものが挙げられる。しかしながら、発光層3に使用される材料は、これらに限定するものではない。またこれらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、前記化合物に代表される蛍光発光を生じる化合物のみならず、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。また、これらの材料からなる有機層4は、蒸着、転写等乾式プロセスによって成膜しても良いし、スピンコート、スプレーコート、ダイコート、グラビア印刷等、湿式プロセスによって成膜するものであってもよい。
 また、電荷供給層10としては、例えばAg、Au、Al等の金属薄膜、酸化バナジウム、酸化モリブデン、酸化レニウム、酸化タングステン等の金属酸化物、ITO、IZO、AZO、GZO、ATO、SnO2等の透明導電膜、いわゆるn型半導体とp型半導体の積層体、金属薄膜もしくは透明導電膜とn型半導体及び/又はp型半導体との積層体、n型半導体とp型半導体の混合物、n型半導体及び/又はp型半導体と金属との混合物、などを挙げることができる。n型半導体やp型半導体としては、無機材料であっても、有機材料であってもよい。また、有機材料と金属との混合物や、有機材料と金属酸化物や、有機材料と有機系アクセプタ/ドナー材料や、無機系アクセプタ/ドナー材料等の組合せによって得られるものであってもよい。即ち、電荷供給層10は、上述の材料に特に制限されることなく必要に応じて選定して使用することができる。
 そして、このような有機エレクトロルミネッセンス素子において、発光層3を含む有機発光層5は、光透過性の電極1と光反射性の電極2との間に設けられている。そして、光透過性の電極1の上に、光散乱層7が設けられている。光散乱層7の上に、光透過性の基板6が設けられている。この有機エレクトロルミネッセンス素子は、放出される光束または光子数が増大されるように設計されている。
 まず有機エレクトロルミネッセンス素子から放出される光束の増大化について説明する。有機エレクトロルミネッセンス素子において、有機発光層5に含まれる少なくとも一つの発光層3の発光点と、光反射性の電極2との距離dが、下記式(1)で示される距離であるように設定されている。これにより、光散乱層7が設けられている有機エレクトロルミネッセンス素子から放出される光束を増大させることができる。
 ここで、上記の発光点とは、発光層3の中で最も発光強度が高い膜厚方向の位置である。発光点の位置を直接実験的に求めることは困難である。しかしながら、発光点の位置は、例えば発光スペクトルの膜厚依存性から定法に基づく光学計算によって見積もることができる。また、発光点の位置は、或いは発光層3やホール輸送層8、電子輸送層9等の有機層4のキャリア移動度及びエネルギー順位から経験的に決定することも可能である。また、発光部位は発光層3内で膜厚方向に分布していることもある。この場合、最も発光強度が高いと考えられる部位を代表点として近似して発光点とみなすことができる。
Figure JPOXMLDOC01-appb-M000003
 式(1)中のλ1は、発光層3が放射する光のフォトルミネッセンススペクトルの分光放射束とCIE標準比視感度との積が極大値を示す波長である。すなわち式(1)では、有機エレクトロルミネッセンス素子を発光させた場合の光束に最も影響を与える波長を基準にして、この有機エレクトロルミネッセンス素子から出射される光の光束が増大する条件を導出するものである。
 また、式(1)中のφは、光の位相シフトである。この光の位相シフトは、光が、発光点と光反射性の電極2の間に位置し且つ光反射性の電極2に接する層と、光反射性の電極2との間で光が反射する場合に生じる。このφは、下記式で表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、n1は、発光点と光反射性の電極2との間に位置し、且つ光反射性の電極2に接する層の、波長λ1における屈折率である。k1は、発光点と光反射性の電極2との間に位置し、且つ光反射性の電極2に接する層の、波長λ1における消衰係数である。n2は、光反射性の電極2の、波長λ1における屈折率である。k2は、光反射性の電極2の、波長λ1における消衰係数である。
 式(1)中のnは、上記波長λ1における、発光点から光反射性の電極2の間に位置する膜の屈折率である。ndは、波長λ1における発光点から光反射性の電極2までの光学的距離である。このとき、発光点から光反射性の電極2の間に位置する膜が複数層からなる場合、各層の厚みと屈折率とを用いて、次の式に基づいた計算を行うことができる。
 nd=na×da+nb×db+…
 このとき、na、nb…は、発光点から光反射性の電極2の間に位置する層のそれぞれの屈折率を意味する。da、db…は、発光点から光反射性の電極2の間に位置する層のそれぞれの厚みを意味する。複数のda、db…の値の組み合わせは、上記式(1)を満たすように適宜選択して決定される。
 また、式(1)中のmは0又は1である。更に、aは、mが0の場合に-1.17×norg/nEML+1.94≦a≦-0.16×norg/nEML+2.33の関係を満たす。aは、mが1の場合に0.28×norg/nEML+0.75≦a≦2.85×norg/nEML-1.23の関係を満たす数である。norgは、発光層3に光反射性の電極2側で接する層の、波長λ1における屈折率であり、またnEMLは、発光層3の波長λ1における屈折率である。このaの範囲は、光束の値が極大値又はその近傍の値をとるための条件を、実測値に基づく解析により導出したものである。
 ここで、発光層3のフォトルミネッセンススペクトルは、例えば、以下の方法によって測定することができる。第1に、発光層3と同一の混合比で成膜されたホストとドーパントとからなる薄膜を基板6上に形成する。第2に、薄膜に紫外線を照射する。紫外線が照射されたときに、薄膜から光が放出される。第3に、薄膜から放出された光を、積分球を用いて測定する。このようにして、フォトルミネッセンススペクトルを測定する。
 また、有機エレクトロルミネッセンス素子を構成する材料の屈折率は、例えば垂直入射式反射・屈折率計で計測することができる。また、有機エレクトロルミネッセンス素子を構成する材料の消衰係数は、例えば、エリプソメータで計測することができる。この場合、屈折率や消衰係数の波長依存性も含めて計測することができる。
 有機エレクトロルミネッセンス素子の膜厚は、主として発光層3、ホールブロック層、電子輸送層9、電子注入層など、発光層3と光反射性の電極2との間に位置する層の膜厚及び屈折率を調整することによって、式(1)に示す値に設定される。また、電荷供給層10を介して複数の発光層3を内部に有する有機エレクトロルミネッセンス素子もある。この場合、光反射性の電極2に最も近い発光層3以外の層は、当該発光層よりも光反射性の電極2側に位置する発光層3に近接するホール輸送層8、ホール注入層などや電荷供給層10の膜厚或いは屈折率を調整することにより、有機エレクトロルミネッセンス素子の膜厚を設定することも好ましい。上述の調整によって、有機エレクトロルミネッセンス素子の膜厚を所定の膜厚に設定する場合、素子内での電気的なバランスが崩れることがある。しかしながら、例えばホール注入層とホール輸送層8の膜厚比の変更によって、素子内での電気的なバランスを調整することができる。同様に、電子輸送層9と電子注入層の膜厚比を変更することによっても、素子内での電気的なバランスを調整することができる。さらに、各層を構成する材料を変更することや、電荷輸送性を調整する材料を各層へ添加することなどの任意の方法によって、素子内での電気的なバランスを調整することができる。
 なお、基板6上に光透過性の電極1として陰極が形成され、光反射性の電極2を陽極として用いた逆積層の構造を有する有機エレクトロルミネッセンス素子も存在する。この逆積層の構造を有する有機エレクトロルミネッセンス素子の場合、発光層3と光反射性の電極2との間に位置する層は、ホール輸送層8である。したがって、ホール輸送層8の膜厚を調整することにより、有機エレクトロルミネッセンス素子の膜厚は調整される。しかしながら、本発明の趣旨に反するものでない限り、任意の層での膜厚調整が可能である。
 また、有機エレクトロルミネッセンス素子が、複数の発光層を有する有機発光層5を備える場合、少なくとも一つの発光層3が上記式(1)を満たしていればよい。これにより、有機エレクトロルミネッセンス素子から放出される光の量は増大される。
 また、特に二つの発光層を有する有機エレクトロルミネッセンス素子の場合、二つの発光層3それぞれが、上記式(1)を満たすことがより好ましい。これにより、有機エレクトロルミネッセンス素子から放出される光束は、著しく増大される。ここで、二つの発光層3のうち、フォトルミネッセンススペクトルの分光放射束とCIE標準比視感度との積が極大を示す波長を有する光を放出する発光層を、光反射性の電極2に近い側に位置させることが好ましい。この場合、二つの発光層3が共に式(1)の関係を満たすように容易に設計することができる。
 次に、有機エレクトロルミネッセンス素子から出射される光子数の増大化について説明する。有機エレクトロルミネッセンス素子において、有機発光層5に含まれる少なくとも一つの発光層3の発光点と、光反射性の電極2との距離dが、下記式(2)で示される距離であるようにする。これにより、光散乱層7が設けられている有機エレクトロルミネッセンス素子から出射される光子数を増大させることができる。
Figure JPOXMLDOC01-appb-M000005
 式(2)中のλ2は、発光層3の発する光のフォトルミネッセンススペクトルの分光放射束を各波長におけるフォトンエネルギーで除した商が極大値を示す波長である。すなわち式(2)では、有機エレクトロルミネッセンス素子を発光させた場合の光子数に最も影響を与える波長を基準にして、この有機エレクトロルミネッセンス素子から出射される光の光子数が増大する条件を導出するものである。
 また、式(2)中のφは、発光層3における発光点と光反射性の電極2との間に位置し、且つ光反射性の電極2に接する層と、光反射性の電極2との間で光が反射する場合に生じる位相シフトである。この位相シフトは、下記式で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、n1は、発光層3の発光点と光反射性の電極2との間に位置し、且つ光反射性の電極2に接する層の、波長λ2における屈折率である。k1は、発光層3における発光点と光反射性の電極2との間に位置し、且つ光反射性の電極2に接する層の波長λ2における消衰係数である。また、n2は、光反射性電極2の、波長λ2における屈折率である。k2は、光反射性の電極2の、波長λ2における消衰係数である。
 また、式(2)中のnは上記波長λ2における発光点から光反射性の電極2の間に位置する膜の屈折率である。ndは、波長λ2における発光点から光反射性の電極2間での光学的距離である。このとき、発光点から光反射性の電極2の間に位置する膜が複数層からなる場合、各層の厚みと屈折率を用いて次の式に基づいた計算を行うことができる。
 nd=na×da+na×db+…
 このとき、na、na…は発光点から光反射性の電極2の間に位置する層のそれぞれの屈折率を意味する。da、db…は、発光点から光反射性の電極2の間に位置する層のそれぞれの厚みを意味する。複数のda、db…の値の組み合わせは、上記式(2)を満たすように適宜選択して決定される。
 また、式(2)中のmは0又は1である。さらに、aはmが0の場合に-1.17×norg/nEML+1.94≦a≦-0.16×norg/nEML+2.33の関係を満たす数である。mが1の場合に0.28×norg/nEML+0.75≦a≦2.85×norg/nEML-1.23の関係を満たす数である。norgは、発光層3に光反射性の電極2側で接する層の、波長λ2における屈折率である。nEMLは、発光層3の波長λ2における屈折率である。このaの範囲は、光子数の値が極大値又はその近傍の値をとるための条件を、実測値に基づく解析により導出したものである。
 ここで、発光層3のフォトルミネッセンススペクトルは、上述の方法と同様に、以下の方法によって測定することができる。第1に、発光層3と同一の混合比で成膜されたホストとドーパントとからなる薄膜を基板6上に形成する。第2に、薄膜に紫外線を照射する。紫外線が照射されたときに、薄膜から光が放出される。第3に、薄膜から放出された光を、積分球を用いて測定する。このようにして、フォトルミネッセンススペクトルを測定する。
 また、有機エレクトロルミネッセンス素子を構成する材料の屈折率は、例えば垂直入射式反射・屈折率計で計測することができる。また、有機エレクトロルミネッセンス素子を構成する材料の消衰係数は、例えば、エリプソメータで計測することができる。この場合、屈折率や消衰係数の波長依存性も含めて計測することができる。
 有機エレクトロルミネッセンス素子の膜厚は、主として発光層3、ホールブロック層、電子輸送層9、電子注入層など、発光層3と光反射性の電極2との間に位置する層の膜厚及び屈折率を調整することによって、式(2)で表される値に設定される。また、電荷供給層10を介して複数の発光層3を内部に有する有機エレクトロルミネッセンス素子もある。この場合、光反射性の電極2に最も近い発光層3以外の層は、当該発光層よりも光反射性の電極2側に位置する発光層3に近接するホール輸送層8、ホール注入層などや電荷供給層10の膜厚或いは屈折率を調整することにより、有機エレクトロルミネッセンス素子の膜厚を設定することも好ましい。上述の調整によって、有機エレクトロルミネッセンス素子の膜厚を所定の膜厚に設定する場合、素子内での電気的なバランスが崩れることがある。しかしながら、例えばホール注入層とホール輸送層8の膜厚比の変更によって、素子内での電気的なバランスを調整することができる。同様に、電子輸送層9と電子注入層の膜厚比を変更することによっても、素子内での電気的なバランスを調整することができる。さらに、各層を構成する材料を変更することや、電荷輸送性を調整する材料を各層へ添加することなどの任意の方法によって、素子内での電気的なバランスを調整することができる。
 なお、基板6上に光透過性の電極1として陰極が採用され、光反射性の電極2を陽極として用いられた逆積層の構造を有する有機エレクトロルミネッセンス素子も存在する。この逆積層の構造を有する有機エレクトロルミネッセンス素子の場合、発光層3と光反射性の電極2との間に位置する層は、ホール輸送層8とである。したがって、ホール輸送層8の膜厚を調整することにより、有機エレクトロルミネッセンス素子の膜厚は調整される。しかしながら、本発明の趣旨に反するものでない限り、任意の層での膜厚調整が可能である。
 また、有機エレクトロルミネッセンス素子が、複数の発光層を有する有機発光層5を備える場合、少なくとも一つの発光層3が上記式(2)を満たしていればよい。これにより、有機エレクトロルミネッセンス素子から放出される光の量は増大される。
 また、特に二つの発光層を有する有機エレクトロルミネッセンス素子の場合、二つの発光層3それぞれが、上記式(2)を満たすことがより好ましい。これにより、有機エレクトロルミネッセンス素子から放出される光子数は、著しく増大される。ここで、二つの発光層3のうち、フォトルミネッセンススペクトルの分光放射束を各波長におけるフォトンエネルギーで除した商が極大を示す波長を有する光を放出する発光層を、光反射性の電極2に近い側に位置させることが好ましい。この場合、二つの発光層3が共に式(2)の関係を満たすように容易に設計することができる。
 このようにして出射される光束或いは光子数を増大させるように形成された有機エレクトロルミネッセンス素子では、この有機エレクトロルミネッセンス素子の正面方向に出射される光の輝度を高めるのではなく、有機エレクトロルミネッセンス素子から出射される光の総量を高めることが可能であり、光量を要求される用途、例えば光源、バックライト、照明などに用いられる有機エレクトロルミネッセンス素子に特に好適である。
 また、有機エレクトロルミネッセンス素子の発光層3から光透過性の電極1内と基板6内に導入される光の総量(光散乱層7を設けていない場合に、光透過性の電極1内に閉じ込められる光と、基板6内に閉じ込められる光と、基板6を透過して外部に取り出すことができる光との総量)が高められているため、光透過性の電極1の有機発光層5とは反対側に光散乱層7、及び光透過性の基板6をこの順に積層した場合に非常に高い光取り出し効率を実現することが可能である。
 尚、前記のように有機エレクトロルミネッセンス素子の発光層3から光透過性の電極1内と基板6内に導入される光の総量が高められているため、光透過性の電極1の有機発光層5とは反対側に光散乱層7、及び光透過性の基板6をこの順に積層し、かつ光透過性の基板6の外面側に更に別の光散乱層7を設ける場合や、光透過性の基板6の外面側にのみ光散乱層7を設ける場合であっても、非常に高い光取出し効率を実現することが可能である。
 またこのような有機エレクトロルミネッセンス素子では、発光層3と光反射性の電極2の間の距離が小さくなり過ぎないような範囲において光量を増大させることが可能であるため、例えば膜厚が薄くなることによるショート発生の問題を考慮する場合に好適に採用することができる。また、本発明の趣旨に反しない範囲で、更に例えば光透過性の電極1上に形成されるホール輸送層の厚みを増大させたり、或いは異物のカバー率が高いことで知られる塗布型ホール注入層を用いたりすることで、より信頼性を高めることができる。
 以上のようにして、基板6に光散乱層7を設けた有機エレクトロルミネッセンス素子について、高い光取り出し効率を実現し、高効率の有機エレクトロルミネッセンス素子を実現することが可能である。
[実施例]
 以下、本発明の具体的な実施例を示す。但し、本発明は下記の実施例の構成に限定されるものではない。
 (実施例1)
 光散乱層7が設けられた光透過性基板6を、次のようにして作製した。まず、テトラエトキシシラン86.8gにイソプロピルアルコール803.5gを加え、更にγ-メタクリロキシプロピルトリメトキシシラン34.7g及び0.1N-硝酸75gを加え、ディスパーを用いてよく混合することによって溶液を得た。得られた溶液を40℃恒温槽中で2時間攪拌し、バインダー形成材料として重量平均分子量が1050のシリコーンレジン5質量%溶液を得た。
 このシリコーンレジン溶液に、メチルシリコーン粒子(平均粒子径2μm、GE東芝シリコーン製、「トスパール120」)をメチルシリコーン粒子/シリコーンレジン(縮合化合物換算)の固形分質量基準で80/20となるように添加して、ホモジナイザーで分散させ、メチルシリコーン粒子分散シリコーンレジン溶液を得た。尚、「縮合化合物換算」とは、シリコーンレジンが完全に加水分解縮重合した場合の、このシリコーンレジンの質量をいい、テトラアルコキシシランの場合はレジン中のSiをSiO2として換算した質量、トリアルコキシシランの場合はレジン中のSiをSiO1.5として換算した質量である。
 基板6として厚み0.7mmの無アルカリガラス板(No.1737、コーニング社製)を用い、この基板6の表面に上記メチルシリコーン粒子分散シリコーンレジン溶液をスピンコーターによって1000rpmの条件で塗布した後、乾燥した。この塗布・乾燥を6回繰り返した後に、形成された塗膜を200℃で30分間焼成することによって熱処理し、散乱粒子層を形成した。
 次に、上記散乱粒子層の表面に、イミド系樹脂(OPTMATE社製、「HRI1783」、屈折率1.78、濃度18質量%)をスピンコーターによって2000rpmの条件で塗布した後、乾燥して塗膜を形成し、塗膜を200℃で30分間焼成することによって熱処理することで、厚み4μmの平坦化層を形成した。これにより、基材6の表面に、散乱粒子層と平坦化層で構成される領域7を形成した。
 次にITO(スズドープ酸化インジウム)からなるターゲット(東ソー製)を使用して、上記領域7の表面にスパッタリングにより厚み150nmのITO膜を形成し、このITO膜をAr雰囲気下200℃で1時間加熱することによりアニール処理を施した。処理後の、ITO膜のシート抵抗は18Ω/□であった。
 このITO膜にエッチング処理を施すことで、ITO膜の残部からなる図3に示す寸法の陽極(光透過性の電極1)を形成すると共に、基板6を領域7ごと図3に示す寸法となるように切断した。この基板6、領域7及び電極1の積層物を純水、アセトン、イソプロピルアルコールで順次各10分間超音波洗浄した後、イソプロピルアルコール蒸気で2分間蒸気洗浄し、乾燥した後、更に10分間UVオゾン洗浄した。
 続いて上記積層物を真空蒸着装置にセットし、図4の寸法の開口部42を設けたマスク43を用いて、5×10-5Paの減圧下、4,4′-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)を電極1の上に厚み40nmとなるように蒸着して、ホール輸送層8を形成した。次いでホール輸送層8の上に、ルブレンが6質量%ドープされたAlq3からなる厚み30nmの発光層3を形成した。更に電子輸送層9として下記[化1]に示されるTpPyPhBを厚み65nmに成膜した。
Figure JPOXMLDOC01-appb-C000007
 次に、上記マスク43を、開口45を有する図5に示す寸法のマスク44に交換してから、電子注入層としてLiFを厚み1nm、陰極(光反射性の電極2)としてAlを厚み80nmに成膜して、有機エレクトロルミネッセンス素子を得た。
 (比較例1)
 電子輸送層9の厚みを155nmとしたこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例2)
 電子輸送層9の厚みを235nmとしたこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例3)
 電子輸送層9の厚みを350nmとしたこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (比較例2)
 電子輸送層9の厚みを435nmとしたこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例4)
 実施例1と同じ条件で、基板6上に領域7、電極1、ホール輸送層8、発光層3(第一の発光層3)を順次形成した。次に、電子輸送層9としてTpPyPhBを厚み50nmに成膜した。次いで電荷供給層10として、下記[化2]に示すTmPyPhBにLiをモル比1:0.3でドープした層を厚み10nmに形成すると共に酸化モリブデン層を厚み10nmに形成した。更にホール輸送層8としてα-NPDを厚み110nm、第二の発光層3として下記[化3]に示すTBADNに下記[化4]に示すTBPをドープした層を厚み30nmに、電子輸送層9として、TpPyPhBを厚み50nmに成膜し、更に電子注入層としてLiFを厚み1nm、陰極としてAlを厚み80nmに成膜して、二つの発光層3を有する有機エレクトロルミネッセンス素子を得た。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 (比較例3)
 実施例4と同じ条件で、基板6上に領域7、電極1、ホール輸送層8、発光層3、電子輸送層9、電荷供給層10、酸化モリブデン層を、順次形成した。次にホール輸送層8としてα-NPDを厚み200nm成膜した。次に、実施例4と同じ条件で第二の発光層3を形成した後、電子輸送層9としてTpPyPhBを厚み150nmに成膜した。更に実施例4と同じ条件で電子注入層及び陰極を形成して、二つの発光層3を有する有機エレクトロルミネッセンス素子を得た。
 (実施例5)
 電子輸送層9としてTmPyPhBを厚み70nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (比較例4)
 電子輸送層9としてTmPyPhBを厚み170nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例6)
 電子輸送層9としてTmPyPhBを厚み230nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (比較例5)
 電子輸送層9としてTmPyPhBを厚み345nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例7)
 電子輸送層9としてDPBを厚み85nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (比較例6)
 電子輸送層9としてDPBを厚み185nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (実施例8)
 電子輸送層9としてDPBを厚み275nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (比較例7)
 電子輸送層9としてDPBを厚み380nmに成膜したこと以外は、実施例1と同じ条件で有機エレクトロルミネッセンス素子を得た。
 (発光層3の発光材料のフォトルミネッセンススペクトル)
 (1)ルブレン
 ホストとして用いるAlq3に発光ドーパントとして用いるルブレンを6質量%ドープした共蒸着膜をガラス基板上に蒸着し、フォトルミネッセンススペクトルを計測した結果、その極大値をとる波長は559nmであった。
 また、分光放射束とCIE標準比視感度との積が極大値を示す波長λ1は559nm、分光放射束を各波長におけるフォトンエネルギーで除した商が極大値を示す波長λ2は561nmであった。
 (2)TBP
 ホストとして用いるTBADNに発光ドーパントとして用いるTBPを4質量%ドープした共蒸着膜をガラス基板上に蒸着し、ルブレンの場合と同様にフォトルミネッセンススペクトルを測定したところ、極大値をとる波長λ1は462nm、分光放射束とCIE標準比視感度との積が極大値を示す波長は504nm、分光放射束を各波長におけるフォトンエネルギーで除した商が極大値を示す波長λ2は464nmであった。
 (材料の屈折率、消衰係数及び位相シフト)
 各実施例、比較例で有機エレクトロルミネッセンス素子を作製するのに用いた材料に関し、ルブレン、TBPの上記波長λ1、λ2ごとの、屈折率、消衰係数などを下表にまとめる。ここで、ルブレンの上記波長λ1、λ2については表1に、TBPの上記波長λ1、λ2については表2に示している。
 このとき、電子輸送材料である下記TpPyPhBについては各波長における屈折率nと消衰係数kの値を、他の材料(α-NPD、Alq3、TBADN、MoO3)については屈折率nの値を示した。なお、Alq3にはドーパントとしてルブレンを、TBADNにはドーパントとしてTBPをそれぞれ6質量%、4質量%混合したが、混合量が少ないため、各層の光学特性はそれぞれAlq3、TBADN単独層の値を用いた。また電荷供給層として用いたTpPyPhBにLiをドープした層の屈折率はTpPyPhB単独と同等とした。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 (評価試験)
 各実施例および比較例にて得られた有機エレクトロルミネッセンス素子において、電極間に電流密度が10mA/cm2となるように電流を流し、出射光を積分球によって計測した。
 この計測結果に基づいて光束の電流効率(単位:lm/A)を算出した結果を表3に示す。また、表3には、各有機エレクトロルミネッセンス素子における発光点と光反射性の電極2との間の光学距離nd、波長λ1、波長λ1における位相シフトφ、この光学距離ndと位相シフトφとに基づいて上記式(1)から導かれる値a、並びに式(1)を満たすためのaの範囲も、併せて示す。尚、前記光学距離ndについては、本実施例及び比較例においては、発光層3のホール輸送層8と接する部位を発光点とみなせるので、発光層3の屈折率とその膜厚の積と、電子輸送層9の屈折率とその膜厚の積との和で表している。
Figure JPOXMLDOC01-appb-T000013
 また、上記計測結果に基づいて、光子数に比例する出射光の量子効率を導出した結果を表4に示す。また、表4には、各有機エレクトロルミネッセンス素子における発光点と光反射性の電極2との間の光学距離nd、波長λ2、波長λ2における位相シフトφ、この光学距離ndと位相シフトφとに基づいて上記式(2)から導かれる値a、並びに式(2)を満たすためのaの範囲も、併せて示した。尚、前記光学距離ndについては、本実施例及び比較例においては、発光層3のホール輸送層8と接する部位が発光点とみなすことができるので、発光層3の屈折率とその膜厚の積と、電子輸送層9の屈折率とその膜厚の積との和で表している。
Figure JPOXMLDOC01-appb-T000014

Claims (4)

  1.  光透過性の電極と、光反射性の電極と、有機発光層と、光散乱層と、透光性基板とを有する有機エレクトロルミネッセンス素子であって、
     前記有機発光層は、発光材料を含有する発光層を有しており、第1面及び当該第1面と反対側に位置する第2面を有しており、
     前記光反射性の電極は、前記第1面上に設けられており、
     前記光透過性の電極は、前記第2面上に設けられており、
     前記光散乱層は、前記光透過性の電極の上に設けられており、
     前記透光性基板は、前記光散乱層の上に設けられており、
     前記光反射性電極は、前記発光層における発光点から距離dで離間しており、この距離dは、下記式(1)で規定されることを特徴とする有機エレクトロルミネッセンス素子;
    Figure JPOXMLDOC01-appb-I000001
     λは、前記発光層から放射される特定の光が有する波長であり、
     nは、発光層における発光点と前記光反射性の電極との間に位置する層の波長λを有する光の屈折率であり、
     n1は、発光層における発光点と前記光反射性の電極との間に位置し、且つ前記光反射性の電極に接する層の波長λを有する光の屈折率であり、
     k1は、発光層における発光点と前記光反射性の電極との間に位置し、且つ前記光反射性の電極に接する層の波長λを有する光の消衰係数であり、
     n2は、前記光反射性の電極の波長λを有する光の屈折率であり、
     k2は、前記光反射性の電極の波長λを有する光の消衰係数であり、
     mは0または1であり、
     aは、mが0の場合に、次の式を満足し、
    -1.17×norg/nEML+1.94≦a≦-0.16×norg/nEML+2.33
     aは、mが1の場合に、次の式を満足し、
    0.28×norg/nEML+0.75≦a≦2.85×norg/nEML-1.23
     norgは、発光層に光反射性の電極側で接する層の波長λを有する光の屈折率であり、
     nEMLは発光層の波長λを有する光の屈折率である。
  2.  前記λは、前記特定の光のフォトルミネッセンススペクトルの分光放射束とCIE標準視感度との積が極大となるときの光の波長であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記λは、前記特定の光のフォトルミネッセンススペクトルの分光放射束を各波長におけるフォトンエネルギーで除した商が極大となるときの光の波長であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  4.  前記有機発光層は、2つの前記発光層を有しており、
     前記各発光層の前記発光点と前記第1電極との間の距離は前記dで定義されることを特徴とする請求項1から3のいずれかに記載の有機エレクトロルミネッセンス素子。
PCT/JP2009/071110 2008-12-19 2009-12-18 有機エレクトロルミネッセンス素子 WO2010071195A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/140,593 US8569750B2 (en) 2008-12-19 2009-12-18 Organic electroluminescence element
EP09833497A EP2360753A4 (en) 2008-12-19 2009-12-18 ORGANIC ELECTROLUMINESCENT ELEMENT
CN200980151116.2A CN102257649B (zh) 2008-12-19 2009-12-18 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-324555 2008-12-19
JP2008324555A JP5390850B2 (ja) 2008-12-19 2008-12-19 有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2010071195A1 true WO2010071195A1 (ja) 2010-06-24

Family

ID=42268862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071110 WO2010071195A1 (ja) 2008-12-19 2009-12-18 有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
US (1) US8569750B2 (ja)
EP (1) EP2360753A4 (ja)
JP (1) JP5390850B2 (ja)
KR (1) KR20110104045A (ja)
CN (1) CN102257649B (ja)
WO (1) WO2010071195A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141611A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
WO2014141623A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011105918A1 (de) 2010-06-29 2012-01-05 Sumitomo Chemical Company, Limited Übergangsmetallverbindung und Katalysator zur Olefinpolymerisation
JP2012186107A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 有機電界発光素子及び照明装置
WO2013054392A1 (ja) * 2011-10-11 2013-04-18 パイオニア株式会社 有機発光素子
KR101575139B1 (ko) * 2011-12-09 2015-12-08 삼성전자주식회사 백라이트 유닛 및 이를 포함하는 액정 디스플레이 장치
KR20130111154A (ko) * 2012-03-30 2013-10-10 주식회사 엘지화학 유기전자소자용 기판
CN103367645A (zh) * 2012-04-11 2013-10-23 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
US8476624B1 (en) * 2012-06-01 2013-07-02 Au Optronics Corporation Organic light emitting diode (OLED) device
EP2882006B1 (en) * 2012-07-31 2021-05-19 LG Chem, Ltd. Substrate for organic electronic device
TWI527211B (zh) 2012-12-28 2016-03-21 Lg顯示器股份有限公司 有機發光顯示裝置及其製造方法
CN104051644A (zh) * 2013-03-12 2014-09-17 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104143608B (zh) 2014-07-25 2017-09-26 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置
JP6439194B2 (ja) * 2014-12-03 2018-12-19 株式会社Joled 有機発光デバイス
CN106098742A (zh) * 2016-08-18 2016-11-09 信利(惠州)智能显示有限公司 有机发光显示装置及制造方法
WO2019043501A1 (ja) * 2017-09-01 2019-03-07 株式会社半導体エネルギー研究所 電子デバイス、発光素子、太陽電池、発光装置、電子機器及び照明装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243573A (ja) 1999-02-18 2000-09-08 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子とその製造方法
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2004165154A (ja) 2002-10-24 2004-06-10 Toray Ind Inc 有機電界発光素子
JP2004296429A (ja) 2003-03-07 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子とこの素子を用いた面光源および表示装置
JP2004296423A (ja) 2002-11-26 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子、面光源および表示装置
JP2006244713A (ja) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
JP2006253015A (ja) 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンスカラー発光装置
JP2007012370A (ja) * 2005-06-29 2007-01-18 Sony Corp 有機発光素子および有機発光装置
JP2007043097A (ja) * 2005-06-30 2007-02-15 Canon Inc 多色表示装置
JP2007066883A (ja) * 2005-08-04 2007-03-15 Canon Inc 発光素子アレイ及び表示装置
JP2007123249A (ja) * 2005-09-29 2007-05-17 Canon Inc 表示装置
JP2007234253A (ja) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2008135373A (ja) * 2006-10-24 2008-06-12 Canon Inc 有機発光装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936961B2 (en) * 2003-05-13 2005-08-30 Eastman Kodak Company Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers
KR20050066970A (ko) 2003-12-26 2005-06-30 닛토덴코 가부시키가이샤 전자발광 장치, 이를 사용하는 면광원 및 디스플레이
TW200642524A (en) 2005-02-28 2006-12-01 Sanyo Electric Co Organic electro-luminescence device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243573A (ja) 1999-02-18 2000-09-08 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子とその製造方法
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2004165154A (ja) 2002-10-24 2004-06-10 Toray Ind Inc 有機電界発光素子
JP2004296423A (ja) 2002-11-26 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子、面光源および表示装置
JP2004296429A (ja) 2003-03-07 2004-10-21 Nitto Denko Corp 有機エレクトロルミネッセンス素子とこの素子を用いた面光源および表示装置
JP2006244713A (ja) * 2005-02-28 2006-09-14 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
JP2006253015A (ja) 2005-03-11 2006-09-21 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンスカラー発光装置
JP2007012370A (ja) * 2005-06-29 2007-01-18 Sony Corp 有機発光素子および有機発光装置
JP2007043097A (ja) * 2005-06-30 2007-02-15 Canon Inc 多色表示装置
JP2007066883A (ja) * 2005-08-04 2007-03-15 Canon Inc 発光素子アレイ及び表示装置
JP2007123249A (ja) * 2005-09-29 2007-05-17 Canon Inc 表示装置
JP2007234253A (ja) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2008135373A (ja) * 2006-10-24 2008-06-12 Canon Inc 有機発光装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360753A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141611A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
WO2014141623A1 (ja) * 2013-03-13 2014-09-18 パナソニック株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
JP5830194B2 (ja) * 2013-03-13 2015-12-09 パナソニック株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
JP5866552B2 (ja) * 2013-03-13 2016-02-17 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
US9379359B2 (en) 2013-03-13 2016-06-28 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescence element and lighting device using same
US9577206B2 (en) 2013-03-13 2017-02-21 Panasonic Corporation Organic electroluminescence element and lighting device using same

Also Published As

Publication number Publication date
EP2360753A4 (en) 2013-02-27
US8569750B2 (en) 2013-10-29
JP2010147338A (ja) 2010-07-01
US20110248253A1 (en) 2011-10-13
CN102257649A (zh) 2011-11-23
JP5390850B2 (ja) 2014-01-15
EP2360753A1 (en) 2011-08-24
KR20110104045A (ko) 2011-09-21
CN102257649B (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5390850B2 (ja) 有機エレクトロルミネッセンス素子
CN101843172B (zh) 有机电致发光器件
JP5476061B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
US8716736B2 (en) Surface light emitting device
KR100848347B1 (ko) 유기 발광 소자
JP5824678B2 (ja) 有機エレクトロルミネッセンス素子
US9112174B2 (en) Organic electroluminescent element
JP6573160B2 (ja) 発光素子
KR20130111156A (ko) 유기전자소자용 기판
JP2010033780A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の発光色調整方法
JP4310995B2 (ja) 有機電界発光素子
JPWO2015004811A1 (ja) 有機el素子及びそれを用いた有機el照明装置
JP4726411B2 (ja) 発光素子基板およびそれを用いた発光素子
JP2004146121A (ja) 有機エレクトロルミネッセンス素子
JP4423103B2 (ja) 有機エレクトロルミネッセンス発光装置
JP4103531B2 (ja) 有機電界発光素子
JP2010198907A (ja) 有機電界発光表示装置
JP2013030585A (ja) 有機エレクトロルミネッセンス素子
JP2012119524A (ja) 有機エレクトロルミネッセンス素子
JP2011048999A (ja) 有機エレクトロルミネッセンス素子
JP2011204646A (ja) 有機エレクトロルミネッセンス素子
JP2018195512A (ja) 有機el素子
JP2004199985A (ja) 光源および平行光照明装置、これを用いた画像投影装置
WO2014087462A1 (ja) 有機エレクトロルミネッセンス発光装置及びこれに用いる有機エレクトロルミネッセンス素子並びにこれらに用いる光取出しシート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151116.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13140593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009833497

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016381

Country of ref document: KR

Kind code of ref document: A