WO2013054392A1 - 有機発光素子 - Google Patents

有機発光素子 Download PDF

Info

Publication number
WO2013054392A1
WO2013054392A1 PCT/JP2011/073327 JP2011073327W WO2013054392A1 WO 2013054392 A1 WO2013054392 A1 WO 2013054392A1 JP 2011073327 W JP2011073327 W JP 2011073327W WO 2013054392 A1 WO2013054392 A1 WO 2013054392A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
light emitting
refractive index
layer
conductive film
Prior art date
Application number
PCT/JP2011/073327
Other languages
English (en)
French (fr)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012517960A priority Critical patent/JP5020423B1/ja
Priority to PCT/JP2011/073327 priority patent/WO2013054392A1/ja
Publication of WO2013054392A1 publication Critical patent/WO2013054392A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic light emitting device such as an organic EL (Electro Luminescence) device.
  • organic EL Electro Luminescence
  • An illuminating device using an organic EL (Electro Luminescence) element as a light source has been proposed.
  • An organic EL element illumination device (organic EL illumination device) has a feature that there is no restriction in shape due to surface emission, and such a feature cannot be obtained by other illumination devices such as an LED (light emitting diode) illumination device. Therefore, further development for future practical use is expected.
  • an organic EL element as a light emitting source is an organic multilayer structure sandwiched between an anode made of a transparent conductive film such as ITO formed on a transparent substrate, a cathode made of a metal such as Al, and the anode and the cathode. And an organic light emitting functional layer.
  • the organic light emitting functional layer is made of an organic material, and is composed of, for example, a hole injection / transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the anode side. Can be formed.
  • the light generated in the organic light emitting functional layer is emitted from the organic light emitting functional layer through the anode and the transparent substrate to the outside. However, a part of the light that has passed through the anode is reflected by the transparent substrate surface, and a part is reflected by the interface between the anode and the transparent substrate. There is also light emitted from the organic light emitting functional layer to the cathode side and reflected at the interface between the organic light emitting functional layer and the cathode.
  • the refractive index difference between the anode and the transparent substrate is large, and therefore, it is not extracted from the substrate surface of the organic light emitting device by reflecting at the interface between the anode and the transparent function, and thus is effectively used out of the generated light. There is not much light. That is, only a part of the light generated in the organic light emitting functional layer is extracted by reflection between the respective layers in the organic light emitting element, and efficient light extraction is not performed.
  • Patent Document 1 a configuration in which an antireflection film is formed between the anode and the transparent substrate to prevent reflection of light generated in the organic light emitting functional layer in the organic light emitting element has been proposed.
  • Patent Document 1 the number of manufacturing steps is increased in order to form an antireflection film between the anode and the transparent substrate. Therefore, the organic light emitting functional layer is formed without forming the antireflection film. It is desired to extract the light from the substrate surface more efficiently.
  • the problem to be solved by the present invention is to provide an organic light-emitting device capable of efficiently extracting light generated in the organic light-emitting functional layer from the substrate surface. Is the purpose.
  • the organic light emitting device of the invention according to claim 1 is a transparent substrate, a transparent conductive film formed on the transparent substrate, an organic light emitting functional layer formed on the transparent conductive film, and the organic light emitting function.
  • the transparent conductive film has a refractive index that increases from one surface on the transparent substrate side toward the other surface on the organic light emitting functional layer side.
  • the multi-reflection effect in the film is enhanced, so that the light generated in the organic light emitting functional layer can be efficiently extracted from the surface of the transparent substrate without forming an antireflection film between the anode and the transparent substrate as in the past. Can do.
  • FIG. 1 shows a cross section of an organic EL device according to an embodiment of the present invention
  • FIG. 2 shows a flowchart showing a manufacturing method thereof.
  • the organic EL element is formed by forming an anode (transparent conductive film) 12 on a glass substrate (transparent substrate) 11 (step S1), laser annealing treatment for the anode 12 (step S2), The organic light emitting functional layer 13 is manufactured (step S3) and the cathode (reflective metal film) 14 is formed (step S4) in this order.
  • a transparent anode 12 is formed on a transparent (including translucent) glass substrate 11.
  • the thickness of the glass substrate 11 is 0.7 mm, for example.
  • the anode 12 is formed by adhering and forming a transparent conductive film on the glass substrate 11 with a light-transmitting material such as ITO and patterning using a photolithography technique.
  • the anode 12 formed on the glass substrate 11 is subjected to laser annealing in step S2, and as a result, the chemical composition of the anode 12 is thermally changed.
  • the anode 12 has a refractive index that increases (increases) from one surface on the glass substrate 11 side toward the other surface on the opposite side.
  • the laser specifications used for laser annealing are laser model number: LS-2132U, Pulsed Nd: YAG laser, wavelength (variable): 1064nm, 532nm, 355nm, 266nm, laser output (variable): 1-180mj, laser annealing
  • the treatment was carried out with a laser power of about 10 mj.
  • An organic light emitting functional layer 13 is formed on the anode 12 after the laser annealing treatment.
  • the organic light emitting functional layer 13 has a multilayered structure of a hole transport layer, a light emitting layer, and an electron transport layer in order from the anode 12 side, and can be formed by a dry method such as a vacuum deposition method, as well as an ink jet method or a printing method. It can also be formed by a wet method such as.
  • the hole transport layer is made of NPB and has a thickness of 40 nm.
  • host CBP and dopant Ir (phq) 2 tpy can be used in the red light emitting layer
  • host CBP and dopant HexIr (phq) 3 can be used in the orange light emitting layer
  • host CBP in the green light emitting layer
  • the dopant Ir (ppy) 3 can be used
  • the host PAND and the dopant DPAV can be used in the blue light emitting layer.
  • NBphen doped with CsxMoOx can be used as the electron transport layer.
  • the cathode 14 is formed on the organic light emitting functional layer 13.
  • the cathode 14 can be formed by a vacuum deposition method, and it is preferable to use a light reflective metal such as Al or Ag as the metal material.
  • FIG. 3 shows the organic EL of each of the emission colors R (red), O (orange), G (green), and B (blue) when ITO is used as the anode 12 and the thicknesses are 70 nm and 155 nm.
  • the luminance of the element on the surface of the glass substrate 11 is shown when the laser annealing process is not performed on the ITO and when the laser annealing process is performed.
  • the thickness of the hole transport layer of the organic light emitting functional layer 13 is 40 nm
  • the thickness of the electron transport layer is 30 nm
  • the blue light emitting layer is 40 nm thick. Except for having a thickness of 60 nm.
  • the cathode 14 is formed to 5 to 10 nm at a deposition rate of 0.1 to 0.5 nm / sec, and further formed to 65 to 100 nm at a deposition rate of 0.5 nm / sec.
  • the film formation was performed at
  • the vapor deposition rate is preferably a rate that does not oxidize the cathode material with oxygen in the vapor deposition chamber (for example, 0.5 to 1 nm / sec).
  • the thickness of the cathode 14 is preferably 50 nm or more in order to obtain sufficient reflection.
  • the laser annealing treatment time is the same time (for example, 1 hour).
  • the laminated portions 12 to 14 on the glass substrate 11 are made of a metal or glass containing a desiccant (not shown) in a glove box in an inert gas atmosphere from a vacuum evaporation machine. Sealing with a sealing can (not shown) was performed.
  • the organic light emitting functional layer 13 does not include the case where a hole injection layer is included in the organic light emitting functional layer 13 of the organic EL element of the emission color R (red) in each of two cases where the thickness is 70 nm and 155 nm using ITO as the anode 12.
  • the brightness on the surface of the glass substrate 11 is shown for the case without laser annealing and with laser annealing.
  • the organic light emitting functional layer 13 has a laminated structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer in this order from the anode 12 side. .
  • the hole injection layer is made of MoOx, which is a molybdenum oxide, with a thickness of 5 nm.
  • the hole transport layer has a thickness of 40 nm, the electron transport layer has a thickness of 30 nm, and the red light emitting layer has a thickness of 60 nm.
  • the cathode 14 is formed to 5 to 10 nm at a deposition rate of 0.1 to 0.5 nm / sec, and further formed to 65 to 100 nm at a deposition rate of 0.5 nm / sec.
  • the film was formed in In the case of laser annealing treatment, the laser annealing treatment time is the same time (for example, 1 hour).
  • the laminated portions 12 to 14 on the glass substrate 11 are made of a metal or glass containing a desiccant (not shown) in a glove box in an inert gas atmosphere from a vacuum evaporation machine. Sealing with a sealing can (not shown) was performed. In the luminance measurement, a driving current of 2.5 mA / cm 2 was passed between the anode 12 and the cathode 14 to cause the organic EL element to emit light.
  • the luminance was improved by including a hole injection layer having a high refractive index of 2.3 in the organic light emitting functional layer 13.
  • the ITO anode 12 has a thickness of 1.12 times and 1.11 times at a thickness of 70 nm. Increased brightness.
  • FIG. 5 shows the surface of the glass substrate 11 for each of the organic EL elements of the emission color R (red), in which the time length of the laser annealing treatment is 0 (no laser annealing treatment), 10, 30, 60, 120, 180, 240 minutes. The brightness is shown.
  • ITO is used as the anode 12 and the thickness thereof is 155 nm.
  • the thickness of the hole transport layer of the organic light emitting functional layer 13 is 40 nm.
  • the thickness is 30 nm, and the red light emitting layer has a thickness of 60 nm.
  • the cathode 14 is formed to 5 to 10 nm at a deposition rate of 0.1 to 0.5 nm / sec, and further formed to 65 to 100 nm at a deposition rate of 0.5 nm / sec.
  • the film formation was performed at
  • the laminated portions 12 to 14 on the glass substrate 11 are made of a metal or glass containing a desiccant (not shown) in a glove box in an inert gas atmosphere from a vacuum evaporation machine. Sealing with a sealing can (not shown) was performed.
  • FIG. 6 shows the transmittance of the glass substrate 11 including the anode 12 made of ITO with and without the laser annealing treatment.
  • the transmittance in the wavelength range of 250 to 900 nm is measured. From the measurement results shown in FIG. 4, it was confirmed that the anode 12 was reduced by about 3% by laser annealing. This is considered that oxygen injected into ITO is deficient by laser annealing.
  • FIG. 7 and 8 show X-ray diffraction measurement results (XRD: RU-200R (rotary counter cathode type) manufactured by Rigaku Corporation) of the glass substrate 11 including the anode 12 made of ITO with and without the laser annealing treatment. ing. Irrespective of the treatment, ITO diffraction peaks showing a diffraction pattern similar to In 2 O 3 were observed. In addition, amorphous scattering, which seems to be a glass substrate, was observed. Amorphous ITO showed diffuse scattering near a diffraction angle of 30 °, but no scattering that was considered to be amorphous ITO was detected in the two samples measured this time (FIG. 7).
  • XRD RU-200R (rotary counter cathode type) manufactured by Rigaku Corporation
  • the diffraction pattern of ITO is substantially the same, the relative intensity of a few 400 peaks is strong by laser annealing treatment. Therefore, it is considered that the laser annealing treatment has a slightly stronger orientation of 400 compared to the case without the treatment. There is no significant difference in the half width of the diffraction peak. Therefore, although there is no great difference in the crystallite size, the crystallite size is slightly increased and the crystallinity is high by laser annealing treatment (FIG. 8). The crystallite size was calculated using the following formula.
  • FIG. 9 shows XRD peak data without laser annealing treatment
  • FIG. 10 shows XRD peak data with laser annealing treatment. Note that hkl is a lattice plane, d is a surface interval, and cps is an abbreviation for count per second.
  • FIGS. 11 to 14 show the results of measuring the refractive index n and extinction coefficient k of ITO as the anode 12 using a high-speed spectroscopic ellipsometer M-2000 (manufactured by J.A. Woollam Co., Ltd.).
  • FIG. 11 shows the wavelength dependence of the refractive index n and the extinction coefficient k without laser annealing
  • FIG. 12 shows the wavelength dependence of the refractive index n and the extinction coefficient k with laser annealing.
  • FIG. 13 shows the dependence of the refractive index n and extinction coefficient k without laser annealing on the depth direction (film thickness direction) from the interface with the glass substrate
  • FIG. 14 shows the refractive index with laser annealing.
  • n and extinction coefficient k The dependence of n and extinction coefficient k on the depth direction from the interface with the glass substrate is shown.
  • incident angles were 60 degrees, 65 degrees, 70 degrees, and 75 degrees
  • measurement wavelengths were 195 nm to 1680 nm
  • WVASE32 was used as analysis software.
  • the back surface of the sample was roughed and the back surface reflection was eliminated as much as possible.
  • the optical constants of the glass substrate were calculated from a reference only for the glass substrate.
  • the ITO layer assumed a change in dielectric constant in the depth direction
  • the sample with laser annealing treatment assumed two ITO layers and assumed a dielectric constant distribution only on the surface side.
  • the sample without laser annealing treatment is a layered structure of a rough surface layer, ITO layer (assuming a linear change in dielectric constant in the film thickness direction) and glass substrate, and the sample with laser annealing treatment is rough surface
  • ITO layer assuming a linear change in dielectric constant in the film thickness direction
  • glass substrate glass substrate
  • the spectrum of ⁇ (phase difference) and ⁇ (amplitude reflectance) measured in the sample is compared with ( ⁇ , ⁇ ) calculated from the calculation model, and the measured value ( Fitting was performed by changing the dielectric function so as to approach ( ⁇ , ⁇ ).
  • the fitting result shown here is the result of the best fit (mean square error converges to the minimum) between the measured value and the theoretical value.
  • both the wavelength dependence and the depth direction dependence have little change in the refractive index n.
  • the refractive index n at the interface between the glass substrate and ITO is not different between the laser annealing treatment and the laser annealing treatment.
  • Refractive index n is increased by processing on the surface of ITO opposite to the glass substrate side surface.
  • the refractive index n increases with a gradient of 0.1 with respect to the depth direction of 85 nm, and changes linearly. This means that the refractive index decreases in the depth direction (glass substrate side direction) from the ITO surface.
  • the anode 12 has a refractive index that increases from one surface (interface) on the glass substrate 11 side toward the other surface on the organic light emitting functional layer 13 side.
  • the multiple reflection effect in the anode 12 is enhanced, whereby the light generated by the organic light emitting functional layer 13 can be efficiently extracted from the surface of the glass substrate 11.
  • the film manufacturing process can be reduced by that much.
  • each refractive index from the glass substrate 11 to the organic light emitting functional layer 13 may be increased from the surface of the glass substrate 11 toward the interface between the organic light emitting functional layer 13 and the cathode 14. That is, the refractive index of the glass substrate 11 may be lower than the refractive index of the anode 12, and the refractive index of the organic light emitting functional layer 13 may be higher than the refractive index of the anode 12.
  • the refractive index of the glass substrate 11 is between 1.4 and 1.5
  • the refractive index of the anode 12 varies between 1.7 and 2.3
  • the organic light emitting functional layer 13 has a low refractive index of 1
  • a layer portion (hole injection transport layer portion) of .5 to 1.8 and a layer portion (electron injection transport layer portion) of a high refractive index of 1.8 to 2.3 can be formed. By doing so, the multiple reflection effect in the element is enhanced, so that it can be efficiently taken out from the surface of the glass substrate 11.
  • the layer part (electron injection transport layer part) with a high refractive index of the organic light emitting functional layer 13 may raise a refractive index more, a metal acid salt compound may be mixed.
  • the low refractive index layer portion of the organic light emitting functional layer 13 has a thickness of 1 to 180 nm, for example, and the high refractive index layer portion has a thickness of 1 to 70 nm, for example.
  • the layer portion having a high refractive index is formed to have a thickness that prevents an increase in the waveguide mode of the organic layer and does not cause a light emission loss.
  • the hole injection / transport layer is a hole injection layer and / or a hole transport layer
  • the electron injection / transport layer is an electron injection layer and / or an electron transport layer.
  • the molybdenum oxide layer 21 may be formed between the anode 12 and the organic light emitting functional layer 13 by, for example, vacuum deposition.
  • the molybdenum oxide layer 21 is conductive and has a refractive index higher than that of the anode 12, for example, 2.2. By including the molybdenum oxide layer 21 in this way, the light generated in the organic light emitting functional layer 13 can be extracted from the surface of the glass substrate 11 more efficiently.
  • the molybdenum oxide layer 21 may be provided as a hole injection layer of the organic light emitting functional layer 13 as described above.
  • other conductive inorganic oxide layers such as titanium oxide may be used.
  • the transparent substrate is not limited to the glass substrate 11 shown in the embodiment, and a resin substrate may be used.
  • the anode 12 which is a transparent conductive film is not limited to ITO, and IZO may be used.
  • the structure and material of the organic light emitting functional layer 13 are not limited to the above-described embodiments.
  • the laser annealing process is performed on the anode 12 in step S2.
  • the chemical composition of the anode 12 is thermally changed, but the chemical composition of the anode 12 is thermally changed. If it is a technique, the process of step S2 is not limited to the laser annealing process.
  • the organic light emitting device of the present invention can be used for an organic light emitting panel for a lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 透明基板上に形成された透明導電性膜と、透明導電性膜上に形成された有機発光機能層と、有機発光機能層上に形成された反射性金属膜とを含む有機発光素子であり、透明導電性膜は透明導電性膜の透明基板側の一方の面から有機発光機能層側の他方の面に向けて高くなる屈折率を有する。

Description

有機発光素子
 本発明は、有機EL(Electro Luminescence)素子等の有機発光素子に関する。
 発光源として有機EL(Electro Luminescence)素子を用いた照明装置が提案されている。有機EL素子の照明装置(有機EL照明装置)には、面発光で形状に制約がないという特徴があり、そのような特徴はLED(発光ダイオード)照明装置等の他の照明装置では得られないので、今後の実用化に向けた更なる開発が期待されている。
 一般に、発光源としての有機EL素子は透明基板上に形成されたITO等の透明導電膜からなる陽極と、Al等の金属からなる陰極と、陽極と陰極との間に挟まれた有機多層構造の有機発光機能層とを有している。有機発光機能層は有機材料からなり、陽極側から順に例えば、ホール注入・輸送層、発光層、電子輸送層、及び電子注入層の積層からなり、例えば、真空蒸着法又はインクジェット法を用いて積層形成することができる。
 有機発光機能層で生成した光は、有機発光機能層から陽極、そして透明基板を通過して外部に放出される。しかしながら、陽極を通過した光の一部は透明基板表面で反射し、また一部は陽極と透明基板との界面で反射する。また、有機発光機能層から陰極側へ放射され、有機発光機能層と陰極との界面で反射される光もある。特に、陽極と透明基板との屈折率差は大きく、このため、陽極と透明機能との界面で反射することにより、有機発光素子の基板表面から取り出せず、従って生成した光のうち有効利用されてない光量が多い。すなわち、有機発光素子内の各層間の反射により、有機発光機能層で生成された光のうちの一部しか取り出されておらず、効率の良い光の取り出しが行われていない。
 これに対処するために、従来、陽極と透明基板との間に反射防止膜を形成して有機発光機能層で生成された光の有機発光素子内での反射を防止した構成が提案されている(特許文献1)。
特表2006-12726号公報
 しかしながら、特許文献1に示された従来構成では陽極と透明基板との間に反射防止膜を形成するためには製造工程が増えるので、反射防止膜を形成することなく有機発光機能層で生成された光をより効率良く基板表面から取り出すことが望まれている。
 そこで、本発明が解決しようとする課題は、上記の欠点が一例として挙げられ、有機発光機能層で生成された光を効率よく基板表面から取り出すことができる有機発光素子を提供することが本発明の目的である。
 請求項1に係る発明の有機発光素子は、透明基板と、前記透明基板上に形成された透明導電性膜と、前記透明導電性膜上に形成された有機発光機能層と、前記有機発光機能層上に形成された反射性金属膜と、を含む有機発光素子であって、前記透明導電性膜は前記透明導電性膜の前記透明基板側の一方の面から前記有機発光機能層側の他方の面に向けて高くなる屈折率を有することを特徴としている。
 請求項1に係る発明の有機発光素子によれば、透明導電性膜は透明基板側の一方の面から有機発光機能層側の他方の面に向けて高くなる屈折率を有するので、透明導電性膜内の多重反射効果が高まり、これにより従来のように陽極と透明基板との間に反射防止膜を形成することなく有機発光機能層で生成された光を効率よく透明基板の表面から取り出すことができる。
本発明の実施例として有機EL素子の構造を示す断面図である。 図1の有機EL素子の製造工程を示すフローチャートである。 発光色R(赤)、O(橙)、G(緑)、及びB(青)各々の有機EL素子についてガラス基板の表面での輝度をレーザアニール処理なしの場合とレーザアニール処理ありの場合とで示す図である。 発光色R(赤)の有機EL素子の有機発光機能層にホール注入層を含む場合と含まない場合とについてガラス基板の表面での輝度をレーザアニール処理なしの場合とレーザアニール処理ありの場合とで示す図である。 発光色R(赤)の有機EL素子でレーザアニール処理の各時間長についてのガラス基板の表面での輝度を示す図である。 レーザアニール処理のあり及びなしの場合について陽極を含むガラス基板の透過率を示す図である。 レーザアニール処理あり及びなしの場合についてITOからなる陽極を含むガラス基板のX線回折(XRD)測定結果として広角X線回折パターンと標準データとの対比を示す図である。 レーザアニール処理あり及びなしの場合についてITOからなる陽極を含むガラス基板のX線回折測定結果として結晶子サイズを示す図である。 レーザアニール処理なしの場合のXRDピークデータを示す図である。 レーザアニール処理ありの場合のXRDピークデータを示す図である。 レーザアニール処理なしの場合の屈折率n及び消衰係数kの波長依存性を示す図である。 レーザアニール処理ありの場合の屈折率n及び消衰係数kの波長依存性を示す図である。 レーザアニール処理なしの場合の屈折率n及び消衰係数kのガラス基板との界面から深さ方向(膜厚方向)依存性を示す図である。 レーザアニール処理ありの場合の屈折率n及び消衰係数kのガラス基板との界面から深さ方向依存性を示す図である。 モリブデン酸化物層を陽極と有機発光機能層との間に有する有機EL素子の断面図である。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は本発明の実施例である有機EL素子の断面を示し、図2はその製造方法を示すフローチャートを示している。
 この有機EL素子は、例えば、図2に示すように、陽極(透明導電性膜)12のガラス基板(透明基板)11上における形成(ステップS1)、陽極12に対するレーザアニール処理(ステップS2)、有機発光機能層13の形成(ステップS3)、陰極(反射性金属膜)14の形成(ステップS4)の順に製造される。
 この有機EL素子においては、透明(半透明を含む)なガラス基板11上には透明な陽極12が形成されている。ガラス基板11の厚さは、例えば、0.7mmである。陽極12は、ITO等の光透過性を有する材料で透明導電膜をガラス基板11上に付着形成し、フォトリソグラフィ技術を利用してパターニングすることにより形成される。
 また、ガラス基板11上に形成された陽極12にはステップS2においてレーザアニール処理が施され、その結果、陽極12の化学組成が熱的に変化する。このレーザアニール処理により陽極12はガラス基板11側の一方の面からその反対側の他方の面に向けて高くなる(大きくなる)屈折率を有することになる。なお、レーザアニール処理に用いるレーザ仕様はレーザ型番:LS-2132U、Pulsed Nd:YAGレーザ、波長(可変):1064nm, 532nm, 355nm, 266nm、レーザ出力(可変):1-180mjであり、レーザアニール処理は約10mjのレーザ出力で実施された。
 レーザアニール処理後の陽極12上には有機発光機能層13が形成される。有機発光機能層13は陽極12側から順にホール輸送層、発光層、及び電子輸送層の多層の積層構造を有し、真空蒸着法等のドライ方式で形成することができる他、インクジェット法や印刷等のウェット方式で形成することもできる。ホール輸送層の材料としてはNPBを用いて厚さ40nmである。発光層の材料として赤発光層ではホストCBP、ドーパントIr(phq)tpyを用いることができ、橙発光層ではホストCBP、ドーパントHexIr(phq)を用いることができ、緑発光層ではホストCBP、ドーパントIr(ppy)を用いることができ、青発光層ではホストPAND、ドーパントDPAVを用いることができる。電子輸送層の材料としてはCsxMoOxをドープしたNBphenを用いることができる。
 有機発光機能層13上には陰極14が形成される。陰極14は真空蒸着法により形成することができ、金属材料としてはAlやAg等の光反射性金属を用いることが好ましい。
 図3は、陽極12としてITOを用いてその厚さが70nmと155nmとの2つの場合における発光色R(赤)、O(橙)、G(緑)、及びB(青)各々の有機EL素子についてガラス基板11の表面での輝度をITOに対するレーザアニール処理なしの場合とレーザアニール処理ありの場合とで示している。なお、図3に示した測定に用いた有機EL素子では、有機発光機能層13のホール輸送層の厚さは40nm、電子輸送層の厚さは30nm、発光層は青発光層が厚さ40nmである以外は60nmの厚さを有する。陰極14については蒸着速度0.1~0.5nm/secで5~10nmまでを形成し、更に、蒸着速度0.5nm/secで65~100nmまでを形成し、全厚さ70~100nmをAlで成膜することが行われた。なお、蒸着速度は蒸着用のチャンバー内で酸素で陰極材が酸化しない程度の速度(例えば、0.5~1nm/sec)であることが好ましい。また、陰極14の厚さは十分の反射を得るために50nm以上であることが好ましい。
 レーザアニール処理ありの場合にそのレーザアニール処理の時間は同一時間(例えば、1時間)である。また、上記した有機EL素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中でガラス基板11上の積層部分12~14を乾燥剤(図示せず)を含んで金属製又はガラス製の封止缶(図示せず)で封止することが行われた。
 輝度測定では陽極12と陰極14との間に駆動電流2.5mA/cm(青発光層を有する素子では7.5mA/cm)を流して有機EL素子を発光させることが行われた。この図3に示した測定結果からは陽極12の厚さ70nmの場合には厚さ155nmの場合より輝度が向上することが分かる。これは厚さ70nmの場合には膜厚による光学干渉の影響を受けやすいためと考えられる。
 図4は陽極12としてITOを用いてその厚さが70nmと155nmとの2つの場合各々における発光色R(赤)の有機EL素子の有機発光機能層13にホール注入層を含む場合と含まない場合とについてガラス基板11の表面での輝度をレーザアニール処理なしの場合とレーザアニール処理ありの場合とで示している。なお、図4に示した測定に用いた有機EL素子では、有機発光機能層13は陽極12側から順にホール注入層、ホール輸送層、発光層、電子輸送層からなる積層構造を有している。ホール注入層はモリブデン酸化物であるMoOxを5nmの厚さで形成したものである。また、ホール輸送層の厚さは40nm、電子輸送層の厚さは30nm、赤発光層は60nmの厚さを有する。陰極14については蒸着速度0.1~0.5nm/secで5~10nmまでを形成し、更に、蒸着速度0.5nm/secで65~100nmまでを形成し、全厚さ70~100nmをAlで成膜することが行われた。レーザアニール処理ありの場合にそのレーザアニール処理の時間は同一時間(例えば、1時間)である。また、上記した有機EL素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中でガラス基板11上の積層部分12~14を乾燥剤(図示せず)を含んで金属製又はガラス製の封止缶(図示せず)で封止することが行われた。輝度測定では陽極12と陰極14との間に駆動電流2.5mA/cmを流して有機EL素子を発光させることが行われた。
 この図4に示した測定結果からは有機発光機能層13に屈折率が2.3と高いホール注入層を含むことにより輝度が向上することが確認された。レーザアニール処理あり及びホール注入層ありの場合にはレーザアニール処理なし及びホール注入層なしの場合に比べ、ITOの陽極12の厚さ155nmでは1.12倍、厚さ70nmでは1.11倍も輝度が向上した。
 図5は発光色R(赤)の有機EL素子でレーザアニール処理の時間長が0(レーザアニール処理なし),10,30,60,120,180,240分各々についてのガラス基板11の表面での輝度を示している。なお、図5に示した測定に用いた有機EL素子では、陽極12としてITOを用いてその厚さが155nmであり、有機発光機能層13のホール輸送層の厚さは40nm、電子輸送層の厚さは30nm、赤発光層は60nmの厚さを有する。陰極14については蒸着速度0.1~0.5nm/secで5~10nmまでを形成し、更に、蒸着速度0.5nm/secで65~100nmまでを形成し、全厚さ70~100nmをAlで成膜することが行われた。また、上記した有機EL素子作製後、真空蒸着機から不活性ガス雰囲気のグローブボックス中でガラス基板11上の積層部分12~14を乾燥剤(図示せず)を含んで金属製又はガラス製の封止缶(図示せず)で封止することが行われた。
 輝度測定では陽極12と陰極14との間に駆動電流2.5mA/cmを流して有機EL素子を発光させることが行われた。この図5に示した測定結果からはレーザアニール処理が10分以上であれば輝度に特に変化がないことが分かる。
 図6はレーザアニール処理のあり及びなしの場合についてITOからなる陽極12を含むガラス基板11の透過率を示している。波長250~900nmの範囲の透過率が測定されている。この図4に示した測定結果からは陽極12に対してレーザアニール処理することにより約3%減少することが確認された。このことはITOに注入された酸素がレーザアニール処理により欠損していると考えられる。
 図7及び図8はレーザアニール処理あり及びなしの場合についてITOからなる陽極12を含むガラス基板11のX線回折(XRD:理学電機社製 RU-200R(回転対陰極型))測定結果を示している。処理有無に関わらず、Inと類似の回折パターンを示すITOの回折ピークが観察された。他にガラス基板と思われる非晶質の散乱が観察された。非晶質のITOは、回折角30°付近に散漫な散乱を示すが、今回測定した2つの試料ともに非晶質ITOと思われる散乱は検出できなかった(図7)。また、ITOの回折パターンは、ほぼ同じであるが、レーザアニール処理により若干400ピークの相対強度が強い。したがって、レーザアニール処理は処理なしと比べて、若干400の配向が強くなっていると考えられる。回折ピークの半値幅は大きな違いは無い。従って、結晶子サイズにも大きな差はないが、僅かにレーザアニール処理により結晶子サイズは大きく、結晶性は高い(図8)。結晶子サイズは、以下の式を用いて算出した。
Figure JPOXMLDOC01-appb-M000001
ここで、λ(0.15418 nm)、βe:回折ピークの半値幅、βo:半値幅の補正値(0.12°)である。
図9はレーザアニール処理なしの場合のXRDピークデータを示しており、図10はレーザアニール処理ありの場合のXRDピークデータを示している。なお、hklは格子面であり、dは面間隔であり、cpsはcount per secondの略である。
 図11~図14は高速分光エリプソメーターM-2000(J.A.Woollam 社製)を用いて陽極12としてのITOの屈折率nと消衰係数kを測定した結果を示している。図11はレーザアニール処理なしの場合の屈折率n及び消衰係数kの波長依存性を示し、図12はレーザアニール処理ありの場合の屈折率n及び消衰係数kの波長依存性を示している。図13はレーザアニール処理なしの場合の屈折率n及び消衰係数kのガラス基板との界面から深さ方向(膜厚方向)依存性を示し、図14はレーザアニール処理ありの場合の屈折率n及び消衰係数kのガラス基板との界面から深さ方向依存性を示している。測定条件としては、入射角が60度、65度、70度、75度であり、測定波長が195nm~1680nmであり、解析ソフトはWVASE32を使用した。また、測定ではサンプル裏面を荒らして、極力裏面反射を無くして実施した。
 測定結果から屈折率n及び消衰係数kを算出するに当たってはガラス基板の光学定数は、ガラス基板のみのリファレンスより算出した。また、ITO層には深さ方向に誘電率変化を仮定し、レーザアニール処理ありのサンプルはITO層を2層として、表面側のみ誘電率分布を仮定した。
 レーザアニール処理なしの場合のサンプルは表面粗い層、ITO層(膜厚方向に直線的な誘電率変化を仮定)及びガラス基板の積層構造のものとし、レーザアニール処理ありの場合のサンプルは表面粗い層、ITO層(膜厚方向に直線的な誘電率変化を仮定)、ITO層及びガラス基板の積層構造のものとした。
 屈折率n及び消衰係数kの計算では、サンプルで測定されたΔ(位相差)とψ(振幅反射率)のスペクトルを計算モデルから算出された(Δ、ψ)と比較し、測定値(Δ、ψ)に近づくように誘電関数を変化させてフィッティングしていくことが行われた。ここで示されたフィッティング結果は、測定値と理論値がベストフィット(平均二乗誤差が最小に収束)した結果である。
 レーザアニール処理なしの場合には図11及び図13から分かるように、波長依存性及び深さ方向依存性共に屈折率nの変化が少ない。一方、レーザアニール処理ありの場合には図12及び図14から分かるように、ガラス基板とITOとの界面における屈折率nはレーザアニール処理あり及びレーザアニール処理なしにおいて違いはないが、ITO表面(ITOのガラス基板側の面とは反対側の面)上は処理することで屈折率nが高くなる。屈折率nは深さ方向85nmに対して0.1の勾配で高くなり、かつリニア(直線的)に変化している。このことはITO表面から深さ方向(ガラス基板側方向)に屈折率が減少していること意味する。このため、図4について説明した屈折率が2.3と高いホール注入層を挿入した際には、更に出力が向上する結果が得られたと推測される。消衰係数kは屈折率nの増減に反した傾向にある。しかしながら、その消衰係数kの変化は小さい。
 これらの解析より、レーザアニール処理を陽極であるITOに施すことによりITO表面上の酸素が欠損し、ITO表面の屈折率nが向上し、ITO層内の多重反射効果を高めてそれにより輝度が向上したと考えられる。
 このように本発明の実施例の有機EL素子においては、陽極12はガラス基板11側の一方の面(界面)から有機発光機能層13側の他方の面に向けて高くなる屈折率を有するので、陽極12内の多重反射効果が高まり、これにより有機発光機能層13で生成された光を効率よくガラス基板11の表面から取り出すことができる。また、従来のように陽極と透明基板との間に反射防止膜を形成する必要がないので、その分だけ膜製造工程を少なくさせることができる。
 上記した実施例において、ガラス基板11から有機発光機能層13までの各屈折率がガラス基板11の表面から有機発光機能層13と陰極14との界面に向けて高くなるようにしても良い。すなわち、ガラス基板11の屈折率が陽極12の屈折率より低く、有機発光機能層13の屈折率が陽極12の屈折率より高くされても良い。例えば、ガラス基板11では屈折率が1.4~1.5の間の値とされ、陽極12の屈折率が1.7~2.3で変化し、有機発光機能層13では低屈折率1.5~1.8の層部分(ホール注入輸送層部分)と高屈折率1.8~2.3の層部分(電子注入輸送層部分)とで構成することができる。このようにすることにより素子内の多重反射効果が高まるので効率よくガラス基板11の表面から取り出すことができる。なお、有機発光機能層13の屈折率の高い層部分(電子注入輸送層部分)はより屈折率を高めるため、金属酸塩化合物が混合されても良い。また、有機発光機能層13の低屈折率の層部分は例えば、1~180nmの厚さとされ、高屈折率の層部分は例えば、1~70nmの厚さとされる。高屈折率の層部分は有機層の導波モードが高くなることを防止して発光ロスを生じない厚さにされる。なお、ホール注入輸送層はホール注入層及び/又はホール輸送層であり、電子注入輸送層は電子注入層及び/又は電子輸送層である。
 更に、図15に示すように、モリブデン酸化物層21を陽極12と有機発光機能層13との間に例えば、真空蒸着により形成しても良い。モリブデン酸化物層21は導電性を有し、陽極12の屈折率より高い屈折率、例えば、2.2を有する。このようにモリブデン酸化物層21を含むことにより、有機発光機能層13で生成された光を更に効率よくガラス基板11の表面から取り出すことができる。なお、モリブデン酸化物層21は上記したように有機発光機能層13のホール注入層として設けても良い。また、モリブデン酸化物層21に限らず、酸化チタン等の他の導電性無機酸化物層を用いても良い。
 また、透明基板として実施例で示したガラス基板11に限らず、樹脂基板を用いても良い。透明導電性膜である陽極12としてITOに限らずIZOを用いても良い。更に、有機発光機能層13の構造及び材料についても上記した実施例に限らないことは勿論である。
 更に、上記した実施例においては、ステップS2で陽極12に対するレーザアニール処理が施され、その結果、陽極12の化学組成に熱的変化が生じたが、陽極12の化学組成が熱的に変化する手法であれば、ステップS2の処理はレーザアニール処理に限定されない。
 本発明の有機発光素子は照明装置用の有機発光パネルに利用することができる。
11 ガラス基板
12 陽極
13 有機発光機能層
14 陰極
21 モリブデン酸化物層

Claims (8)

  1.  透明基板と、
     前記透明基板上に形成された透明導電性膜と、
     前記透明導電性膜上に形成された有機発光機能層と、
     前記有機発光機能層上に形成された反射性金属膜と、を含む有機発光素子であって、
     前記透明導電性膜は前記透明導電性膜の前記透明基板側の一方の面から前記有機発光機能層側の他方の面に向けて高くなる屈折率を有することを特徴とする有機発光素子。
    ことを特徴とする有機発光素子。
  2.  前記透明基板の屈折率は前記透明導電性膜の屈折率より低く、前記有機発光機能層の屈折率は前記透明導電性膜の屈折率より高いことを特徴とする請求項1記載の有機発光素子。
  3.  前記有機発光機能層は前記透明導電性膜側から順にホール注入輸送層、発光層、及び電子注入輸送層を有し、前記ホール注入輸送層の屈折率は前記電子注入輸送層の屈折率より低いことを特徴とする請求項2記載の有機発光素子。
  4.  前記透明導電性膜の屈折率は直線的に変化することを特徴とする請求項1~3のいずれか1記載の有機発光素子。
  5.  前記透明導電性膜の屈折率は前記透明導電性膜の膜厚85nmに対して0.1の勾配で高くなることを特徴とする請求項1~4のいずれか1記載の有機発光素子。
  6.  前記透明導電性膜と前記有機発光機能層との間に前記透明導電性膜の屈折率より大きな屈折率を有する導電性の無機酸化物層を形成したことを特徴とする請求項1~5のいずれか1記載の有機発光素子。
  7.  前記無機酸化物層は前記有機発光機能層のホール注入層として作用することを特徴とする請求項6記載の有機発光素子。
  8.  前記無機酸化物層はモリブデン酸化物からなることを特徴とする請求項6又は7記載の有機発光素子。
PCT/JP2011/073327 2011-10-11 2011-10-11 有機発光素子 WO2013054392A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012517960A JP5020423B1 (ja) 2011-10-11 2011-10-11 有機発光素子
PCT/JP2011/073327 WO2013054392A1 (ja) 2011-10-11 2011-10-11 有機発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073327 WO2013054392A1 (ja) 2011-10-11 2011-10-11 有機発光素子

Publications (1)

Publication Number Publication Date
WO2013054392A1 true WO2013054392A1 (ja) 2013-04-18

Family

ID=46980495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073327 WO2013054392A1 (ja) 2011-10-11 2011-10-11 有機発光素子

Country Status (2)

Country Link
JP (1) JP5020423B1 (ja)
WO (1) WO2013054392A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276950A (ja) * 1999-03-19 2000-10-06 Toyota Central Res & Dev Lab Inc 透明導電薄膜
WO2002017689A1 (fr) * 2000-08-23 2002-02-28 Idemitsu Kosan Co., Ltd. Afficheur electroluminescent organique
JP2007288074A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2009186929A (ja) * 2008-02-08 2009-08-20 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子及びそれを用いた表示装置
WO2010032721A1 (ja) * 2008-09-19 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141736A (ja) * 2005-11-21 2007-06-07 Fujifilm Corp 有機電界発光素子
JP2007242927A (ja) * 2006-03-09 2007-09-20 Seiko Epson Corp 発光装置及び発光装置の製造方法
JP5314410B2 (ja) * 2008-12-17 2013-10-16 住友化学株式会社 有機エレクトロルミネッセンス素子
JP5390850B2 (ja) * 2008-12-19 2014-01-15 パナソニック株式会社 有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276950A (ja) * 1999-03-19 2000-10-06 Toyota Central Res & Dev Lab Inc 透明導電薄膜
WO2002017689A1 (fr) * 2000-08-23 2002-02-28 Idemitsu Kosan Co., Ltd. Afficheur electroluminescent organique
JP2007288074A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子およびその製造方法
JP2009186929A (ja) * 2008-02-08 2009-08-20 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子及びそれを用いた表示装置
WO2010032721A1 (ja) * 2008-09-19 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JP5020423B1 (ja) 2012-09-05
JPWO2013054392A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
JP4588603B2 (ja) 電界発光装置
JP5073842B2 (ja) El装置
JP5131717B2 (ja) 光学共振効果を利用した有機電界発光素子
US9825258B2 (en) Layered structure for OLED device, method for manufacturing the same, and OLED device having the same
JP4732991B2 (ja) El装置
JP2003123987A (ja) 光共振器
TWI455361B (zh) 三族氮化物半導體發光元件之製造方法
US20100237335A1 (en) Multicolor display apparatus
TWI506836B (zh) 透明導電膜及包含其之有機發光裝置
WO2007004476A1 (en) Multi-color display apparatus
JP6340674B2 (ja) 有機発光素子用の光取出し基板、その製造方法、及びこれを含む有機発光素子
JP5020423B1 (ja) 有機発光素子
JP2013084555A (ja) 有機発光素子及びその製造方法
JP2007273243A (ja) 有機el装置の製造方法
WO2010143430A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2006110926A2 (en) Perforated-electrode organic light-emitting diodes
JP2018537825A (ja) 有機発光ダイオードにおける改善された発光
JP4975699B2 (ja) エレクトロルミネッセンス素子およびその製造方法
KR102054528B1 (ko) 투명 도전성막 및 이를 포함하는 유기 발광 소자
Sano et al. Transparent organic light-emitting diodes with top electrode using ion-plating method
KR101275828B1 (ko) 유기 발광 다이오드용 기판, 이의 제조방법 및 이를 구비한 유기 발광 다이오드
TW201409677A (zh) 有機發光二極體面板及其電子裝置
JP2010086702A (ja) 有機el素子の製造方法及び製造装置
JP2013012378A (ja) 発光装置
JP2012164600A (ja) 発光素子、および発光素子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012517960

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874035

Country of ref document: EP

Kind code of ref document: A1