WO2010070730A1 - 亜鉛めっき鋼板用表面処理剤 - Google Patents

亜鉛めっき鋼板用表面処理剤 Download PDF

Info

Publication number
WO2010070730A1
WO2010070730A1 PCT/JP2008/072841 JP2008072841W WO2010070730A1 WO 2010070730 A1 WO2010070730 A1 WO 2010070730A1 JP 2008072841 W JP2008072841 W JP 2008072841W WO 2010070730 A1 WO2010070730 A1 WO 2010070730A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanized steel
steel sheet
compound
group
mass
Prior art date
Application number
PCT/JP2008/072841
Other languages
English (en)
French (fr)
Inventor
淳一 内田
賢輔 水野
▲偉▼ 李
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN200880132360XA priority Critical patent/CN102245807A/zh
Priority to JP2010542766A priority patent/JP5555179B2/ja
Priority to PCT/JP2008/072841 priority patent/WO2010070730A1/ja
Priority to TW098139697A priority patent/TWI444504B/zh
Publication of WO2010070730A1 publication Critical patent/WO2010070730A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a surface treatment agent for galvanized steel sheet, a surface treatment method using the surface treatment agent for galvanized steel sheet, and a surface-treated galvanized steel sheet.
  • steel plates are often galvanized from the viewpoint of ensuring corrosion resistance.
  • alloyed galvanized steel sheets with various metals added are also used to further improve corrosion resistance and paint.
  • these various zinc-based plated steel sheets may have insufficient corrosion resistance (white rust resistance) and may have insufficient adhesion to the paint when used as a coated steel sheet.
  • a treatment containing hexavalent chromium called a temporary rust-proof chromate treatment has been performed on the surface of the galvanized steel sheet.
  • the chromate treatment liquid mainly composed of chromic acid (hexavalent chromium) is sprayed or showered on the steel plate.
  • a method of adjusting the coating amount with a roll or an air squeeze, and further drying with an oven or the like referred to as spray ringer or shower ringer).
  • the surface treatment film is a thin film but has excellent corrosion resistance.
  • these films have a problem of containing a large amount of harmful hexavalent chromium.
  • the chromate treatment is being abolished. That is, it is desired to switch to a chromium-free surface treatment method that uses not only harmful hexavalent chromium but also trivalent chromium.
  • Patent Document 1 discloses zinc-based coated steel obtained by applying and drying a composition containing an aqueous resin, water, and sulfide ions.
  • Patent Document 2 discloses a galvanized steel sheet coated with a water-dispersed metal surface treatment composition containing a compound having a specific bond, silica, and a resin emulsion.
  • Patent Document 3 discloses a metal surface treatment material in which a film is formed using an aqueous treatment agent containing a specific aqueous dispersion resin, silica particles, and an organic inhibitor.
  • Patent Document 4 discloses a surface-treated metal plate obtained by treating a metal material with a surface treatment composition containing a nonionic aqueous resin dispersion, hydrolyzable titanium, an organic phosphate compound, and a vanadium compound.
  • Patent Document 5 discloses a water-dispersed rust preventive coating composition containing an ionomer resin and a water-soluble zirconium and / or water-soluble titanium compound that reacts with a carboxyl group.
  • Patent Document 6 a surface-treated metal obtained by treating a metal material with a metal surface treatment composition containing hydrolyzable titanium, an organic phosphoric acid compound, a nonionic aqueous resin dispersion, a vanadium compound, and a zirconium compound. A plate is disclosed.
  • Patent Documents 1 to 6 a method of directly coating the surface of the zinc-based plating layer with a chromium-free organic film (resin film) is proposed.
  • Patent Document 7 discloses a metal plate having a film containing titanium and / or zircon, a phosphate compound, and a guanidine compound.
  • Patent Document 8 discloses a galvanized steel sheet surface-treated with a treatment agent containing a water-soluble phosphate compound, a chelating agent, and a corrosion inhibitor.
  • Patent Document 9 discloses a surface-treated metal material having a film formed by a metal surface treatment agent containing a vanadium compound and a metal compound such as zirconium.
  • Patent Document 10 proposes a steel sheet having a coating composed of tetravalent vanadium, Si, and a phosphate compound.
  • a metal material is coated with a chromium-free film mainly composed of an inorganic component. In these techniques, it has been reported that the corrosion resistance is further improved by using a water-based resin in combination.
  • Patent Documents 1 to 10 described above, particularly the method of coating with an organic film, cannot be said to have sufficient adhesion of the organic film to the zinc-based plating layer. There was a problem that the organic film easily peeled off at the interface with the plating layer.
  • the galvanized steel sheet is required to have not only corrosion resistance but also grounding and heat resistance.
  • the conventional zinc-based plated steel sheet on which a resin film is formed often requires a resin film amount of 1 g / m 2 or more in order to obtain corrosion resistance. For this reason, if the amount of the coating is increased in order to obtain corrosion resistance, there is a problem that the grounding property cannot be obtained.
  • any heat resistance was inadequate.
  • Patent Document 11 discloses a steel sheet having a film obtained using a composition containing phosphoric acid, titanium composed of four or more fluorine atoms, zirconium, a silane coupling agent, and the like.
  • Patent Document 12 discloses a steel sheet having a film obtained by using a silane coupling agent having an amino group, a silane coupling agent having a glycidyl group, a treatment agent containing titanium hydrofluoric acid, and the like.
  • Patent Document 13 proposes a steel sheet having a coating made of a silica sol binder, phosphate ions, fluoride ions, and the like.
  • these steel sheets described in Patent Documents 11 to 13 have good corrosion resistance and heat resistance, but have a problem in grounding property and adhesion because they form a film having a lot of acid components.
  • the temporary rust-proof chromate treatment is carried out by spraying the chromate treatment solution onto the galvanized steel sheet by spraying or showering, adjusting the coating amount with a roll or air squeeze, and drying in an oven. It is common.
  • This surface treatment method is very simple and has high productivity.
  • the treatment agent that has been used may be aqueous, and the active ingredient concentration (or dry solid content) of the composition may be 20 to 30 at most. % By mass.
  • a coating amount of 4 to 5 g / m 2 is necessary as a coating amount of the treatment liquid.
  • a coating method particularly, a method called reverse coating, which is a method of applying a liquid by rotating a roll in the direction opposite to the sheet passing direction. Therefore, the conventional manufacturing equipment cannot be used, and a new capital investment is required for the galvanizing production line (CGL, EGL).
  • the roll at the edge of the steel plate is particularly shaved during coating, and a through-plate (muscle) scratch according to the plate width is generated on the roll. Since these scratches affect the appearance of the coating, a new problem arises in that it is unavoidable to produce products in the order of wide plate to narrow product, and the productivity in continuous production is sacrificed.
  • JP-A-8-67834 Japanese Patent Laid-Open No. 9-221595 JP 20022411956 JP 2004-238638 A JP-A-2005-15514 JP 2006-009121 A JP 2004-2950 A JP 2002-155375 A JP 2002-30460 A JP 2005-48199 A JP 2006-213958 A JP 2007-51365 A JP 2007-177314 A
  • the present invention is excellent in various properties such as corrosion resistance and corrosion resistance after alkaline degreasing, and in particular, the formed film has a good balance of corrosion resistance, appearance, and grounding properties, as well as condensation resistance and paintability (coating properties).
  • An object of the present invention is to provide a surface treatment agent for galvanized steel sheet, which can provide a surface-treated galvanized steel sheet exhibiting excellent properties in a well-balanced (film adhesion). Furthermore, it aims at providing the surface treatment galvanized steel plate which can be manufactured also with the processing method (shower ringer, spray ringer) conventionally used in the manufacturing apparatus of a galvanized steel plate.
  • the present inventors have used a compound having a predetermined functional group containing a silicon atom and a treating agent containing ammonium zirconium carbonate, organic phosphonic acid, and the like. The present inventors have found that the above problems can be solved and have solved the present invention.
  • ammonium zirconium carbonate (A) In one molecule, it is represented by —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or a hydroxyl group).
  • a surface treatment agent for galvanized steel sheet comprising water and having a pH of 6 to 11.
  • Mass ratio (A / B) of the mass when Zr in the zirconium ammonium carbonate (A) is converted to ZrO 2 and the mass when Si in the compound (B) is converted to SiO 2 Is 0.01 to 6.0
  • the mass ratio (C / B) between the mass of the organic phosphonic acid (C) and the mass when Si in the compound (B) is converted to SiO 2 is 0.01 to 5.0
  • the mass ratio (D / B) between the mass of the metal element in the metal compound (D) and the mass when Si in the compound (B) is converted to SiO 2 is 0.01 to 4.0.
  • the compound (B) is obtained by reacting a silane coupling agent having a reactive functional group (b1) with a compound having a functional group (b2) capable of reacting with the reactive functional group (b1).
  • the surface treating agent for galvanized steel sheets according to any one of the above.
  • the mass ratio (E / B) of the mass when Si in the compound (B) is converted to SiO 2 and the mass of the metal element contained in the metal alkoxide (E) is 0.01 to The surface treating agent for galvanized steel sheet according to (4), which is 2.0.
  • the mass ratio (F / B) of the mass when the Si in the compound (B) is converted to SiO 2 and the mass of the compound (F) is 0.01 to 30, (6)
  • the surface treatment agent for galvanized steel sheet according to any one of (1) to (7) is applied on the surface of the galvanized steel sheet and dried by heating to form a film having a coating amount of 25 to 1000 mg / m 2.
  • the formed film has a good balance of corrosion resistance, appearance, and grounding properties, as well as condensation resistance and paintability (coating properties).
  • a surface treatment agent for a galvanized steel sheet that can provide a surface-treated galvanized steel sheet that exhibits excellent properties in a well-balanced manner (film adhesion) can also be provided.
  • a surface-treated galvanized steel sheet that can be manufactured by a conventionally used processing method (shower ringer, spray ringer) in a galvanized steel sheet manufacturing facility.
  • the surface treatment agent for a galvanized steel sheet according to the present invention comprises zirconium ammonium carbonate (A) and —SiR 1 R 2 R 3 in one molecule (wherein R 1 , R 2 and R 3 are each independently , Which represents two or more functional groups (a) represented by an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxyl group), and the molecular weight (average molecular weight / functional group number) per functional group (a).
  • the organic phosphonic acid (C) represented by the general formula (1), Zr, Ti, Co, Fe, V, Ce, Mo, Mn, Mg, Al
  • a treatment agent comprising a metal compound (D) containing at least one metal element selected from the group consisting of Ni, Ca, W, Nb, Cr, and Zn, and water, and having a pH of 6 to 11. is there.
  • a metal compound (D) containing at least one metal element selected from the group consisting of Ni, Ca, W, Nb, Cr, and Zn, and water, and having a pH of 6 to 11.
  • the surface treating agent for galvanized steel sheet according to the present invention contains ammonium zirconium carbonate (A).
  • Zirconium ammonium carbonate mainly imparts effects such as corrosion resistance of the film obtained, corrosion resistance after alkali degreasing, heat resistance, weldability, continuous workability, and condensation resistance to the film. More specifically, carbonic acid and ammonium in ammonium zirconium carbonate are volatilized by drying, and the remaining zirconium is polymerized to form a hardly soluble film.
  • the content of ammonium zirconium carbonate in the surface treatment agent for galvanized steel sheet is not particularly limited, but from the viewpoint of better corrosion resistance, corrosion resistance after alkali degreasing, and dew condensation resistance, the total solid content in the treatment agent Is preferably 0.1 to 70% by mass, and more preferably 1 to 50% by mass.
  • the total solid content means a solid component constituting a film described later, and does not include a solvent.
  • ⁇ Compound (B)> In the surface treating agent for galvanized steel sheet of the present invention, -SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are each independently alkyl having 1 to 4 carbon atoms) in one molecule. 2 or more, and the molecular weight (average molecular weight / number of functional groups) per functional group (a) is in the range of 100 to 5,000. Certain compounds (B) are included.
  • Compound (B) undergoes a crosslinking reaction with zirconium produced from the above-described ammonium zirconium carbonate to form a film having a three-dimensional crosslinked structure, so that the resulting film has corrosion resistance, corrosion resistance after alkaline degreasing, heat resistance, weldability, It is estimated that continuous processability and condensation resistance have improved. Moreover, since the functional group (a) of the compound (B) has good adhesion to the base material to be described later, it is presumed that the appearance of the resulting film and the paintability (coating adhesion) are improved. .
  • the molecular weight (average molecular weight / functional group number) per functional group (a) is in the range of 100 to 5,000, it is presumed that the grounding property and fingerprint resistance of the film are improved.
  • various performance improves by using together a compound (B) and the above-mentioned ammonium zirconium carbonate.
  • Compound (B) contains —SiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxyl group) It has two or more functional groups (a) represented by: Of these, 2 to 8 are more preferred. In addition, when only one functional group (a) is contained in one molecule, adhesion to the surface of the galvanized steel sheet is lowered, which is not preferable. R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or a hydroxyl group. Of these, an alkoxy group and a hydroxyl group are preferable.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, and a methyl group and an ethyl group are preferable.
  • Preferred examples of the alkoxy group include an alkoxy group having 1 to 3 carbon atoms.
  • the compound (B) preferably has a molecular weight (average molecular weight / functional group number) per functional group (a) in the range of 100 to 5000, more preferably in the range of 120 to 4000, and particularly preferably 150. It is in the range of ⁇ 3000.
  • the molecular weight per functional group (a) is less than 100, the synthesis of the compound is difficult, and the corrosion resistance and adhesion of the resulting film are inferior.
  • it exceeds 5000 since the adhesiveness with respect to the galvanized steel plate surface which is the characteristics of a functional group (a) falls, it is unpreferable.
  • the skeleton of the compound (B) is not particularly limited, but preferably has a bond such as an ester bond, an ether bond, an acid amide bond, an amide bond, a urethane bond, a urea bond, or a vinyl bond.
  • the method for producing the compound (B) is not particularly limited.
  • (4) a method of modifying the hydrophilic group in the polyfunctional silane coupling agent are not particularly limited.
  • (1) a method of reacting a compound having two or more active hydrogen-containing functional groups with chlorosilane, and (2) a silane coupling agent having a vinyl group (3) reacting a silane coupling agent having a specific reactive functional group with a compound having a functional group capable of reacting with the reactive functional group
  • (4) a method of modifying the hydrophilic group in the polyfunctional silane coupling agent are preferable, and (3) is most preferable.
  • One preferred embodiment of the compound (B) is a compound (reaction product) obtained by reaction (polymerization) of a silane coupling agent having a vinyl group and a copolymerizable vinyl compound.
  • This method corresponds to the manufacturing method (2) above.
  • the silane coupling agent having a vinyl group is not particularly limited as long as it has a vinyl group, and examples thereof include ⁇ -methacryloxypropyltriethoxysilane, vinyltrichlorosilane, and vinyltrimethoxycinlane.
  • the copolymerizable vinyl compound is not particularly limited, and examples thereof include acrylic acid, butyl acrylate, methyl acrylate, and 2-hydroxyethyl methacrylate.
  • the reaction form using the above-mentioned compound is not particularly limited, and examples thereof include anionic polymerization, cationic polymerization, and radical polymerization. Of these, radical polymerization is preferred.
  • a well-known polymerization initiator etc. suitably.
  • a solvent may be appropriately used, and examples thereof include methanol, ethanol, propanol, isopropyl alcohol, acetone, methyl ethyl ketone, diacetyl alcohol, and water.
  • a compound having a silane coupling agent having a reactive functional group (b1) and a functional group (b2) capable of reacting with the reactive functional group (b1) And a compound (reaction product) obtained by the reaction is not particularly limited as long as it is a group that reacts with other functional groups to form a bond.
  • the reactive functional group (b1) is not particularly limited as long as it is a group that reacts with other functional groups to form a bond.
  • a functional group selected from the group consisting of a nate group and a vinyl group is preferred. Of these, an epoxy group and an amino group are preferable.
  • silane coupling agent having a reactive functional group (b1) is a compound represented by the general formula (2).
  • X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, an acryloxy group, a ureido group, an isocyanate group, and a vinyl group.
  • L represents a divalent linking group or a simple bond.
  • Y independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxyl group.
  • X represents any functional group selected from the group consisting of an epoxy group, an amino group, a mercapto group, an acryloxy group, a ureido group, an isocyanate group, and a vinyl group.
  • an epoxy group and an amino group are preferable.
  • L represents a divalent linking group or a simple bond.
  • the linking group represented by L include an alkylene group (preferably having 1 to 20 carbon atoms), —O—, —S—, an arylene group, —CO—, —NH—, —SO 2 —, —COO. -, -CONH-, or a combination thereof. Of these, an alkylene group is preferable.
  • a simple bond it means that X in the general formula (2) is directly connected to Si (silicon atom).
  • each Y independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a hydroxyl group. Of these, an alkoxy group having 1 to 3 carbon atoms and a hydroxyl group are preferable.
  • silane coupling agent having a reactive functional group (b1) examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Epoxysilanes such as trimethoxysilane, aminosilanes such as N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (aminoethyl) 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane;
  • Mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, isocyanate silanes such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, vinyltriethoxysilane, p-styryltrimethoxy Vinyl group-containing silane such as silane.
  • the functional group (b2) in the compound having the functional group (b2) is not particularly limited as long as it can react with the reactive functional group (b1).
  • a functional group different from the reactive functional group (b1) is preferably exemplified.
  • Examples of the compound having the functional group (b2) include the silane coupling agents exemplified as the silane coupling agent having the reactive functional group (b1), amine compounds such as ethylenediamine and aminopropanethiol, and trimethylolpropane poly. Examples thereof include ether compounds such as glycidyl ether and pentaerythritol polyglycidyl ether.
  • the silane coupling agent illustrated with the silane coupling agent which has a reactive functional group (b1) is preferable. That is, the compound (B) is a reaction product of a silane coupling agent having a reactive functional group (b1) and a silane coupling agent having a functional group (b2) capable of reacting with the functional group (b1). preferable.
  • the reaction conditions optimum conditions are appropriately selected depending on the compounds used. Moreover, you may use a solvent (for example, alcohol etc.) etc. in the case of reaction.
  • the content of the compound (B) in the surface treatment agent for galvanized steel sheet is not particularly limited, but in the treatment agent from the viewpoint that the corrosion resistance, fingerprint resistance, appearance, grounding property and paintability of the resulting film are more excellent.
  • the total solid content is preferably 0.1 to 70% by mass, more preferably 1 to 50% by mass.
  • the surface treatment agent for galvanized steel sheet of the present invention contains an organic phosphonic acid represented by the general formula (1). Since these compounds react with the galvanized steel sheet to form a hardly soluble salt, it is presumed that the corrosion resistance and paintability (coating film adhesion) of the film were improved. In addition, the organic phosphonic acid is necessary for stably dissolving the metal compound (D) described later in the aqueous treatment liquid, and contributes to the improvement of the storage stability of the surface treating agent for galvanized steel sheet.
  • the content of the organic phosphonic acid (C) in the surface treatment agent for galvanized steel sheet is not particularly limited, but from the viewpoint that the corrosion resistance of the resulting film, the corrosion resistance after alkaline degreasing, the grounding property, and the condensation resistance are more excellent.
  • the amount is preferably 0.05 to 50% by mass, more preferably 0.1 to 30% by mass, based on the total solid content in the treatment agent.
  • the surface treatment agent for galvanized steel sheet of the present invention is selected from the group consisting of Zr, Ti, Co, Fe, V, Ce, Mo, Mn, Mg, Al, Ni, Ca, W, Nb, Cr, and Zn. And a metal compound (D) containing at least one metal element.
  • the metal compound (D) forms a hardly soluble salt with the above-described organic phosphonic acid (C). Therefore, it is estimated that the organic phosphonic acid (C) is fixed in the film, and the condensation resistance and paintability (coating film adhesion) of the film are improved.
  • the metal compound (D) is not particularly limited as long as it contains the metal element, and examples thereof include nitrates, sulfates, acetates, phosphates, ammonium salts, and fluorides containing the metal. More specifically, examples of the metal compound containing Zr include zirconium nitrate, zirconium oxynitrate, zirconyl acetate, zircon ammonium fluoride, zirconyl sulfate, zircon hydrofluoric acid, and zirconia sol. Moreover, the zirconic acid and its salt which are produced by ion-exchange and alkali neutralizing the aqueous solution of a water-soluble zirconium salt are also mentioned.
  • Examples of the metal compound containing Ti include titanyl sulfate, titanyl nitrate, titanium nitrate, titanyl chloride, titanium chloride, titania sol, titanium oxide, ammonium titanium fluoride, potassium oxalate titanate, titanium lactate, titanium acetylacetonate, and diisopropyl titanium. Examples thereof include bisacetylacetone. Further, metatitanic acid obtained by hydrolyzing an aqueous solution of titanyl sulfate, orthotitanic acid obtained by alkali neutralization, and salts thereof are also included.
  • Examples of the metal compound containing Co include cobalt sulfate, cobalt nitrate, cobalt carbonate, cobalt phosphate, cobalt chloride, cobalt oxide, and cobalt hydroxide.
  • Examples of the metal compound containing Fe include iron sulfate, iron nitrate, iron chloride, iron phosphate, iron oxide, iron hydroxide, and iron powder.
  • Examples of the metal compound containing V include vanadium pentoxide, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride, vanadium trioxide, vanadium dioxide, vanadium oxysulfate, vanadium oxyacetylacetonate, vanadium acetylacetonate, 3 Examples thereof include vanadium chloride, phosphovanadomolybthenic acid, and vanadium sulfate.
  • Examples of the metal compound containing Ce include cerium nitrate, cerium acetate, cerium chloride, and cerium sol.
  • Examples of the metal compound containing Mo include ammonium molybdate, sodium molybdate, potassium molybdate, ammonium molybdate, and natriun molybdate.
  • metal compounds containing Mn include potassium permanganate, ammonium permanganate, sodium permanganate, permanganate, manganese sulfate, manganese nitrate, manganese oxide, manganese carbonate, manganese chloride, manganese phosphate, and the like. Is mentioned.
  • Examples of the metal compound containing Mg include magnesium sulfate, magnesium nitrate, magnesium carbonate, magnesium phosphate, magnesium chloride, magnesium oxide, and magnesium hydroxide.
  • Examples of the metal compound containing Al include aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum phosphate, and aluminum chloride.
  • Examples of the metal compound containing Ni include nickel oxide, nickel hydroxide, nickel sulfate, nickel nitrate, nickel phosphate and nickel chloride.
  • Examples of the metal compound containing Ca include calcium oxide, calcium hydroxide, calcium sulfate, calcium nitrate, calcium phosphate, and calcium chloride.
  • Examples of the metal compound containing W include ammonium metatungstate, sodium metatungstate, potassium metatungstate, paratungstic acid, ammonium paratungstate, and sodium paratungstate.
  • Examples of the metal compound containing Nb include niobium oxalate, niobium oxide, and niobium sol.
  • Examples of the metal compound containing Cr include trivalent chromium, such as chromium sulfate, chromium nitrate, chromium chloride, chromium hydroxide, chromium oxide, and chromium phosphate.
  • trivalent chromium such as chromium sulfate, chromium nitrate, chromium chloride, chromium hydroxide, chromium oxide, and chromium phosphate.
  • metal compound containing Zn examples include zinc oxide, zinc hydroxide, zinc sulfate, zinc nitrate, zinc chloride, zinc phosphate, and acetyl zinc.
  • zinc is an amphoteric metal, alkali side And sodium zincate and potassium zincate produced in Of these, metal compounds containing V, Mg, Al, or Zn, and salts thereof are more preferable in that the effect of improving corrosion resistance is high.
  • the content of the metal compound (D) in the surface treatment agent for galvanized steel sheet is not particularly limited, but the corrosion resistance of the resulting film, corrosion resistance after alkali degreasing, weldability, continuous workability, appearance, and condensation resistance are more. From the viewpoint of superiority, it is preferably 0.01 to 40% by mass, more preferably 0.1 to 30% by mass, based on the total solid content in the treatment agent.
  • the surface treatment agent for galvanized steel sheet of the present invention contains water as a solvent.
  • the content of water in the surface treatment agent for galvanized steel sheet is not particularly limited, but is preferably 30 to 99% by mass with respect to the total amount of the treatment agent from the viewpoint of easier handling of the treatment agent, 95 mass% is more preferable.
  • the pH of the surface treating agent for galvanized steel sheet according to the present invention is preferably 6 to 11, and more preferably 7 to 10.
  • the pH is less than 6, ammonium zirconium carbonate cannot be stably dissolved, and the stability of the surface treatment agent for galvanized steel sheet becomes poor.
  • the pH exceeds 11, the odor of ammonia becomes extremely inferior in workability, and the obtained film performance is also inferior.
  • Ammonia, carbonic acid, acetic acid, nitric acid and the like are preferably used for pH adjustment. Further, by adjusting the pH to 6 to 11, it is presumed that excessive etching of the galvanized steel sheet by the treatment agent was suppressed and the grounding property of the surface-treated galvanized steel sheet was improved.
  • the mass ratio (A / B) to the mass is preferably from 0.01 to 6.0, more preferably from 0.1 to 4.0. If it is less than 0.01, the amount of easily dissolved components increases, and the corrosion resistance and dew condensation resistance of the film after alkaline degreasing may decrease. On the other hand, if it exceeds 6.0, the film becomes hard and paintability (paint adhesion) may be lowered.
  • the mass ratio (C / B) between the mass of the organic phosphonic acid (C) described above in the treating agent and the mass when Si in the compound (B) is converted to SiO 2 is 0.01 to 5. It is preferably 0, more preferably 0.05 to 4.0, and still more preferably 0.05 to 3.0. If it is less than 0.01, the corrosion resistance of the film may be inferior, and if it exceeds 5.0, the corrosion resistance and dew condensation resistance of the film after alkaline degreasing may be inferior.
  • the mass ratio (D / B) between the mass of the metal element in the metal compound (D) and the mass when Si in the compound (B) is converted to SiO 2 is 0.01 to It is preferably 4.0, more preferably 0.05 to 3.0. If it is less than 0.01, the effect of improving the corrosion resistance of the film may not be obtained. If it exceeds 4.0, the amount of dissolved components increases, and the corrosion resistance of the film may be reduced.
  • the surface treating agent for galvanized steel sheet of the present invention contains at least one compound (F) selected from the group consisting of the following metal alkoxides (E), water-soluble polymers and aqueous emulsion resins. You may do it. Below, each component is demonstrated.
  • the surface treating agent for galvanized steel sheet of the present invention may contain a metal alkoxide (E). More specifically, it may contain a metal alkoxide (E) containing at least one metal element selected from the group consisting of B, Nb, Si, Ta, Ti, V, W, and Zr.
  • the surface treating agent for galvanized steel sheet according to the present invention can provide a film that is more excellent in corrosion resistance (particularly the processed portion). It is presumed that the metal alkoxide (E) promotes the crosslinking reaction of the compound (B) described above and enables formation of a film having a denser network structure. The reason is not clear, but Si and Ti are preferably selected from the viewpoint of improving the corrosion resistance.
  • the metal alkoxide (E) is not particularly limited as long as it has an alkoxy group directly bonded to a metal, and conventionally known ones can be appropriately selected and used.
  • the metal alkoxide may be a hydroxyl group in which an alkoxy group directly bonded to a metal is hydrolyzed.
  • the general formula Me (OR) n (wherein R independently represents an alkyl group or a hydrogen atom, and at least one represents an alkyl group. N represents a valence of the metal) Me represents the above metal).
  • the alkyl group represented by R is preferably an alkyl group having 1 to 4 carbon atoms.
  • Examples of the metal alkoxide (E) include titanium tetraisopropoxide, titanium tetraethoxide, titanium butoxide dimer, titanium tetra-2-ethylhexoside, vanadium oxytriethoxide, vanadium triisopropoxide, zirconium ethoxide, zirconium tetra Ethoxide, zirconium tetrapropoxide, niobium tetramethoxysilane, tetramethoxysilane, tetraethoxysilane, tetranormal propoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, Cyclohexylmethyldimethoxysilane, n-hexyltrimethoxysilane, diphenyldimethoxysilane, diphen
  • an alkoxysilane containing Si element (silicon element) is preferable from the viewpoint that the corrosion resistance of the resulting film and the corrosion resistance after alkaline degreasing are more preferable.
  • ) 4 R represents an alkyl group
  • the content of the metal alkoxide (E) in the surface treatment agent for galvanized steel sheet is not particularly limited, but is 0.01% with respect to the total solid content in the treatment agent from the viewpoint of better corrosion resistance of the resulting film. Is preferably 50 to 50% by mass, more preferably 0.1 to 30% by mass.
  • the mass ratio (E / B) between the mass of the metal element contained in the metal alkoxide (E) and the mass when Si in the compound (B) is converted to SiO 2 in the treatment agent is 0. It is preferably 01 to 2.0, more preferably 0.5 to 1.5. If it is less than 0.01, the effect of improving the corrosion resistance of the film may not be obtained, and if it exceeds 2.0, the amount of dissolved components in the film increases, and the corrosion resistance may decrease.
  • the surface treating agent for galvanized steel sheet of the present invention may contain at least one compound (F) selected from the group consisting of a water-soluble polymer and an aqueous emulsion resin.
  • the water-soluble polymer and / or water-based emulsion resin is not particularly limited, and examples thereof include water-soluble polymers such as polyacrylic acid, polymethacrylic acid, polyacrylamide, and polyvinyl alcohol, acrylic resin in a form dispersed in water, and urethane. Examples thereof include resins, epoxy resins, polyester resins, polyamide resins, polyolefin resins, ethylene-acrylic resins, polybutyral resins, polyacetal resins, and fluorine resins.
  • the total content of the compound (F) in the surface treatment agent for galvanized steel sheet is not particularly limited, but from the viewpoint of better corrosion resistance, fingerprint resistance, condensation resistance, and paintability of the resulting film,
  • the content is preferably 0.1 to 90% by mass, more preferably 1 to 70% by mass, based on the total solid content.
  • the mass ratio (F / B) between the mass of the compound (F) in the treating agent and the mass when Si in the compound (B) is converted to SiO 2 is 0.01 to 30. Preferably, it is 0.1-20. If it is less than 0.01, the fingerprint resistance and lubricity of the film may not be improved, and if it exceeds 30, the corrosion resistance and heat resistance in the film may decrease.
  • the surface treating agent for galvanized steel sheet of the present invention may contain a fluorine compound as necessary.
  • adding a fluorine compound to increase the etching property of the treatment agent increases the reaction layer (non-conductive layer) with the surface of the material. Expected to improve corrosion resistance.
  • the etching property is increased, and therefore the grounding property may be lowered due to dissolution other than the surface oxide film.
  • the amount of Zn and Fe mixed in the aqueous treatment liquid may increase, and the stability of the surface treatment agent for galvanized steel sheets may decrease.
  • the range in consideration of these.
  • content of the fluorine compound in the surface treating agent for galvanized steel sheets of the present invention is not particularly limited, it is preferable to set 50 g as an upper limit in 1 kg of the treating agent.
  • the fluorine compound include ammonium fluoride, ammonium silicofluoride, ammonium titanium fluoride, and zircon ammonium fluoride.
  • the surface treating agent for galvanized steel sheet of the present invention may contain an antifoaming agent (G) as necessary.
  • the surface treatment agent for galvanized steel sheet containing this defoaming agent is sprayed or showered on the galvanized steel sheet, the amount of application is adjusted with a roll or air squeeze, and then dried at a maximum plate temperature of 50 to 250 ° C. It is preferable to form a film on the surface of the zinc-based plated steel sheet.
  • G antifoaming agent
  • the thing which stably emulsified mineral oil, the fatty acid, silicone, etc., and the thing of a water-soluble activator type can be used. Both may be used in combination.
  • the content of the antifoaming agent in the surface treatment agent for galvanized steel sheet according to the present invention is appropriately selected depending on the type used, but is 0.1 to 3.0 g per kg of the treatment liquid. Is preferred. If the content of the antifoaming agent is too small, the defoaming property cannot be obtained, and if it is too much, the coating property is inferior.
  • the surface treatment agent for galvanized steel sheet of the present invention may contain an additive (lubricant) for improving lubricity, if necessary.
  • the lubricant is effective in improving the lubricity of the surface treatment film to prevent scratches and reducing damage to the galvanized steel sheet during processing.
  • the lubricant include solid lubricants such as polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, carnauba wax, paraffin wax, montan wax, and Teflon (registered trademark). Among these solid lubricants, 1 Species or two or more may be used.
  • the content of the lubricant in the surface treatment agent for galvanized steel sheet of the present invention is not particularly limited, but is preferably up to 50 g per kg of the treatment liquid. If it exceeds this, not only can it not be stably added, but the original purpose may be impaired.
  • the surface treatment agent for galvanized steel sheet according to the present invention may contain a solvent (for example, alcohol) other than the water as necessary.
  • the method for preparing the surface treating agent for galvanized steel sheet of the present invention is not particularly limited. For example, by thoroughly mixing ammonium zirconium carbonate (A), compound (B), organic phosphonic acid (C), metal compound (D), other additives, and water using a stirrer such as a mixing mixer. Can be manufactured.
  • the surface treatment method using the surface treatment agent for galvanized steel sheet of the present invention is not particularly limited, but the above-mentioned surface treatment agent for galvanized steel sheet is applied on the surface of the galvanized steel sheet, dried, and the coating amount is 25 to 25%.
  • a surface treatment method for forming a 1000 mg / m 2 film on the surface of the galvanized steel sheet is preferred. The surface treatment method will be described below.
  • the galvanized steel sheet may be pretreated for the purpose of removing oil and dirt on the surface of the galvanized steel sheet, if necessary.
  • Galvanized steel sheets are often coated with rust-preventing oil for the purpose of rust prevention. Moreover, even when not coated with rust preventive oil, there are oil and dirt adhered during the work.
  • the pretreatment process is not particularly necessary.
  • the pretreatment method is not particularly limited, and examples thereof include hot water washing, solvent washing, and alkaline degreasing washing.
  • the galvanized steel sheet used is a hot dip galvanized steel sheet (GI), an alloyed hot dip galvanized steel sheet (GA) alloyed with the galvanized steel sheet, a hot dip zinc Zn-5% Al alloy plated steel sheet (GF), or hot dip zinc.
  • GI hot dip galvanized steel sheet
  • GA alloyed hot dip galvanized steel sheet
  • GF hot dip zinc Zn-5% Al alloy plated steel sheet
  • hot dip zinc -55% aluminum alloy plated steel sheet (GL), electrogalvanized steel sheet (EG), electrozinc-Ni alloy plated steel sheet (Zn-Ni), and the like.
  • the method of applying the treatment agent of the present invention to the galvanized steel sheet is not particularly limited as long as the treatment agent can be uniformly applied to the surface of the galvanized steel sheet, and examples thereof include a roll coating method, a dipping method, and a spray coating method.
  • the treatment (application) temperature and the treatment (application) time are not particularly limited, but in general, the treatment (application) temperature is preferably 10 to 40 ° C., and the treatment (application) time is 0.1 to 10 seconds. Preferably there is.
  • the heating temperature for drying the coating film formed on the surface of the galvanized steel sheet is preferably 50 to 250 ° C, more preferably 60 to 180 ° C.
  • the heating and drying method is not particularly limited, and the treatment agent may be dried by heating with hot air, an induction heater, infrared rays, near infrared rays, or the like.
  • the heating time is appropriately selected according to the type of compound in the surface treatment agent for galvanized steel sheet used. Among these, from the viewpoint of productivity and the like, 0.1 to 60 seconds is preferable, and 1 to 30 seconds is more preferable.
  • the amount of film formed on the galvanized steel sheet surface is preferably 25 ⁇ 1000mg / m 2, more preferably 50 ⁇ 800mg / m 2, particularly preferably 100 ⁇ 600mg / m 2. If it is less than 25 mg / m 2 , the surface treatment agent for galvanized steel sheet cannot be uniformly applied to the surface of the steel sheet, and various target properties such as workability, corrosion resistance, and paintability cannot be exhibited in a well-balanced manner. When it exceeds 1000 mg / m 2 , the appearance is lowered and the paintability is inferior. In addition, the grounding property and the weldability deteriorate. Furthermore, in the press working, the amount of peeling of the film increases, which not only hinders press molding, but also increases the manufacturing cost. In addition, said film
  • an organic polymer film is formed so that the film thickness after drying becomes 0.1 to 3.0 ⁇ m, and further higher corrosion resistance, fingerprint resistance and lubricity Can be granted.
  • a known resin emulsion such as acrylic, urethane, epoxy, and the like, to which silica, a rust preventive agent, a lubricant, an ultraviolet absorber, a pigment and the like are added can be used.
  • the surface of the galvanized steel sheet has corrosion resistance, heat resistance, weldability, continuous workability, grounding property, fingerprint resistance, It is possible to form a surface-treated film that has good corrosion resistance and appearance of the formed film, and can exhibit excellent properties in a well-balanced manner in condensation resistance and paintability (coating film adhesion).
  • the coating amount in the spray or shower ringer method is usually about 1 to 3 g / m 2 .
  • a treatment liquid in which the solid content concentration of the surface treatment agent is adjusted to 10 to 20% by mass is often used.
  • the surface treatment agent can be adjusted to a solid content concentration of 10 to 20% by mass, and when applied by these methods, a film of 100 to 600 mg / m 2 can be obtained. Is enough. That is, since the desired performance can be obtained with this small amount of film, the surface-treated galvanized steel sheet of the present invention can be produced by these methods. This makes it possible to manufacture a desired steel sheet without requiring new production equipment and without reducing the productivity of actual production lines (CGL, EGL).
  • the present invention has corrosion resistance, heat resistance, weldability, continuous workability, grounding properties, and fingerprint resistance, and in particular, the formed film has good corrosion resistance and appearance, and is resistant to condensation.
  • a surface-treated zinc-based plated steel sheet that can exhibit excellent properties in a well-balanced formability and paintability (coating film adhesion) can be realized.
  • Such a steel plate is effective as a material used in various fields such as architecture, electricity, and automobiles.
  • the galvanizing production line (CGL) since it can be produced with the same processing equipment as the conventional temporary antirust chromate treatment, the actual productivity is high and more effective.
  • Test material material The following commercially available materials were used as test materials.
  • Electrogalvanized steel sheet (EG): thickness 0.8 mm, basis weight 20/20 (g / m 2 )
  • Hot-dip galvanized steel sheet (GI): thickness 0.8 mm, basis weight 60/60 (g / m 2 )
  • Alloyed hot-dip galvanized steel sheet (GA): thickness 0.8 mm, basis weight 40/40 (g / m 2 )
  • the basis weight indicates the basis weight on the main surface of each steel plate. For example, in the case of an electrogalvanized steel sheet, it is 20/20 (g / m 2 ), which means that each surface of the steel sheet has a plating of 20 g / m 2 .
  • Pretreatment (cleaning) As a method for preparing the test plate, first, the surface of the above-mentioned test material was treated with Palclean N364S manufactured by Nihon Parkerizing to remove oil and dirt on the surface. Next, after rinsing with tap water and confirming that the surface of the galvanized steel sheet was 100% wet with water, pure water was further poured, and water removed from the oven in a 100 ° C. atmosphere was used as a test plate.
  • the compounding quantity of the component (B) in Table 1 represents mass (g) when Si (Si mass) in the compound (B) is converted to SiO 2 .
  • the amount of component (D) in Table 1 represents the mass (g) of the metal element in the metal compound (D).
  • the compounding quantity of the metal alkoxide (E) in Table 1 represents the mass (g) of the metal element contained in the metal alkoxide (E).
  • the mass ratio A / B in Table 1, and the mass when converted mass when converted to Zr in zirconium ammonium carbonate (A) to ZrO 2, the Si in the compound (B) to SiO 2 Represents the mass ratio.
  • the mass ratio C / B represents a mass ratio between the mass of the organic phosphonic acid (C) and the mass when Si in the compound (B) is converted to SiO 2 .
  • the mass ratio D / B represents a mass ratio between the mass of the metal element in the metal compound (D) and the mass when Si in the compound (B) is converted to SiO 2 .
  • the mass ratio E / B represents a mass ratio between the mass of the metal element contained in the metal alkoxide (E) and the mass when Si in the compound (B) is converted to SiO 2 .
  • the mass ratio F / B represents a mass ratio between the mass of the compound (F) and the mass when Si in the compound (B) is converted to SiO 2 .
  • a product was obtained by emulsion polymerization of 1 mol of acrylic acid, 5 mol of butyl acrylate, 5 mol of methyl methacrylate and 3 mol of ⁇ -methacryloxypropyltriethoxysilane in deionized water. Then, deionized water was added and diluted to a solid content concentration of 5% by mass. In addition, the number of functional groups (a) in one molecule of the obtained product was 3, and the molecular weight (average molecular weight / functional group number) per functional group (a) was about 694.
  • Aqueous urethane resin having tertiary and quaternary amino groups (registered trademark: Adekabon titer HUX-760, manufactured by Asahi Denka Kogyo Co., Ltd.) 200 masses per 100 mass parts of bis (trimethoxysilylpropyl) amine
  • the resulting mixture was further diluted with deionized water to a solid content concentration of 5% by mass.
  • the number of functional groups (a) in one molecule of the obtained compound is 2, the molecular weight per functional group (a) (average molecular weight / number of functional groups) is about 171 and bis (trimethoxysilylpropyl).
  • the solid content weight ratio (A) / (B) of the amine (A) and the urethane resin (B) was 1/2.
  • B6 emulsion polymerization of 50 moles of acrylic acid, 100 moles of butyl acrylate, 100 moles of methyl methacrylate, 100 moles of 2-hydroxyethyl methacrylate, and 1 mole of ⁇ -methacryloxypropyltriethoxysilane in deionized water. Obtained. Then, deionized water was added and diluted to a solid content concentration of 5% by mass. In addition, the number of functional groups (a) in one molecule of the obtained product is one, the molecular weight per functional group (a) is about 40,000, and the range of the functional group equivalent of the component (B) component It was outside.
  • B7 Diluted with deionized water to a concentration of 5% by mass with respect to ⁇ -mercaptopropyltrimethoxysilane.
  • the number of functional groups (a) in one molecule of the compound was 1, which was outside the scope of the present invention.
  • the above-mentioned surface treatment agent for galvanized steel sheet is coated on each test plate by the bar coat coating method or the spray & ringer coating method, and then placed in an oven without being washed with water.
  • the film was dried at the drying temperature shown in the table to form a film having the film amount shown in Table 2.
  • the coating amount refers to the coating amount per one side of the steel plate.
  • the drying temperature was adjusted by the atmospheric temperature in the oven and the time in the oven. The drying temperature indicates the temperature reached on the test plate surface. Specific methods of bar coating and spray & ringer painting are as follows.
  • Bar coat coating The treatment agent was dropped onto the test plate and painted with a # 3-5 bar coater. It adjusted so that it might become a predetermined
  • Spray & Ringer coating The treatment agent was poured on the surface of the test plate to wet the entire surface, and then the excess liquid was cut off with a roll composed of two flat rubber rolls to adjust the coating amount. It adjusted so that it might become the predetermined
  • the evaluation criteria regarding GA are shown below. ⁇ : 48% or more until white rust 5% occurrence ⁇ : 24 hours or more until white rust occurrence 5%, less than 48 hours ⁇ : 12% or more until white rust occurrence 5%, less than 24 hours ⁇ : 12% until white rust occurrence 5% Less than an hour
  • the interlayer resistance of the obtained surface-treated galvanized steel sheet was measured with an interlayer resistance measuring machine. Evaluation was made according to the following criteria. ⁇ : Less than 1 ⁇ ⁇ : 1 ⁇ or more, less than 2 ⁇ ⁇ : 2 ⁇ or more, less than 3 ⁇ ⁇ : 3 ⁇ or more
  • the surface-treated galvanized steel sheet treated with a treating agent using various components specified in the present invention at a predetermined ratio has good corrosion resistance and corrosion resistance after alkali degreasing, and appearance, It was found that excellent characteristics were exhibited in a well-balanced manner in terms of dew condensation, paintability (coating adhesion), and grounding properties. It was also found that an excellent surface-treated galvanized steel sheet can be produced by the spray and ringer method. In particular, it has been found that a treating agent containing a predetermined amount of components (A) to (F) exhibits excellent performance in all the above items.
  • Example 3 Component B obtained by reacting silane coupling agents among components (B) exhibits better performance. Moreover, it was found from the comparison between Example 37 and Example 49 that when the alkoxysilane was used as the metal alkoxide, the obtained film properties (corrosion resistance) were more excellent.
  • Comparative Examples 50 to 56 containing no component B were inferior in corrosion resistance and grounding property.
  • Comparative Example 59 containing no component A was also inferior in corrosion resistance and grounding property.

Abstract

 本発明は、耐食性、アルカリ脱脂後の耐食性などの諸特性に優れ、特に、形成された皮膜の耐食性、外観、およびアース性のバランスが良好であると共に、耐結露性や塗装性(塗膜密着性)においてもバランス良く優れた特性を示す表面処理亜鉛系めっき鋼板を得ることができる、亜鉛めっき鋼板用表面処理剤を提供することを目的とする。本発明の亜鉛めっき鋼板用表面処理剤は、炭酸ジルコニウムアンモニウム(A)と、1分子中に-SiRで示される官能基(a)を2個以上有し、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にある化合物(B)と、有機ホスホン酸(C)と、Zr、Ti、Co、Fe、V、Ce、Mo、Mn、Mg、Al、Ni、Ca、W、Nb、Cr、およびZnからなる群から選ばれる少なくとも1種以上の金属元素を含む金属化合物(D)と、水とを含み、pHが6~11である。

Description

亜鉛めっき鋼板用表面処理剤
 本発明は、亜鉛めっき鋼板用表面処理剤、その亜鉛めっき鋼板用表面処理剤を用いた表面処理方法、および表面処理亜鉛めっき鋼板に関する。
 現在、鋼板には、耐食性を確保するという観点から、鋼板表面に亜鉛めっきを施すことが多い。また、更なる耐食性の向上や塗装を改善する為に、各種金属を添加した合金化亜鉛めっき鋼板も使われている。
 特に、工業地域のように酸性雨、煤煙の影響を受ける場所や、沿岸地域のように海塩飛来粒子の影響を受ける場所などは、鋼板の腐食が進行しやすい非常に厳しい環境であるため、そのような環境下でも使用できるより耐食性に優れた亜鉛系めっき鋼板が望まれている。そのような要望に応じて、亜鉛系めっき鋼板の耐食性がさらに向上した、溶融Zn-5%Al合金めっき鋼板、溶融亜鉛-Al-Mg合金めっき鋼板、溶融亜鉛-55%Al合金めっき鋼板などが提案されている。
 しかしながら、こうした各種亜鉛系めっき鋼板においても、その耐食性(耐白錆性)が不十分な場合があると共に、塗装鋼板として使用する際に、塗料との密着性が不十分な場合があった。その対策として、亜鉛めっき鋼板表面上に一時防錆クロメート処理と呼ばれる6価クロムを含有した処理が施されていた。そして、この一時防錆クロメート処理を用いた溶融亜鉛系めっき鋼板の生産ライン(CGL:Continuous Galvanizing Line)では、クロム酸(6価クロム)を主成分としたクロメート処理液をスプレーまたはシャワーで鋼板上に流し掛け、ロールやエアー絞りで塗布量を調整し、さらに、オーブン等で乾燥する方法が主に実施されていた(スプレーリンガー、シャワーリンガーと呼ばれる)。
 クロメート処理の場合、表面処理皮膜が薄膜であるが、耐食性に優れている。しかし、これらの皮膜には、有害な6価クロムが多量に含まれるという問題があった。特に、最近は環境問題への意識の高まりに伴い、クロメート処理を廃止する方向にある。つまり、有害な6価クロムはもちろんのこと、3価クロムも用いない、クロムフリーの表面処理法への転換が望まれている。
 こうした状況の下で、6価クロムを用いない表面処理法についても多くの改良研究が進められている。例えば、特許文献1では、水性樹脂と水と硫化物イオンとを含有する組成物を、塗布、乾燥して得られる亜鉛系被覆鋼が開示されている。特許文献2では、特定の結合を有する化合物、シリカおよび樹脂エマルションを含有する水分散型金属表面処理組成物で被覆された亜鉛系めっき鋼板が開示されている。特許文献3では、特定の水性分散樹脂、シリカ粒子、および有機インヒビターを含有する水系処理剤を用いて、皮膜を形成した金属表面処理材料が開示されている。さらには、特許文献4では、ノニオン性水性樹脂分散液、加水分解性チタン、有機リン酸化合物およびバナジウム化合物を含む表面処理組成物を用いて、金属素材を処理した表面処理金属板が開示されている。特許文献5では、アイオノマー樹脂と、カルボキシル基と反応する水溶性ジルコニウムおよび/または水溶性チタン化合物とを含有する水分散型防錆塗料組成物が開示されている。更に、特許文献6では、加水分解性チタン、有機リン酸化合物、ノニオン性水性樹脂分散液、バナジウム化合物、およびジルコニウム化合物を含有する金属表面処理組成物を用いて、金属素材を処理した表面処理金属板が開示されている。
 これら特許文献1~6においては、亜鉛系めっき層表面をクロム未含有の有機皮膜(樹脂皮膜)で直接被覆する方法が提案されている。
 一方、特許文献7では、チタンおよび/またはジルコン、リン酸化合物、およびグアニジン化合物を含有する皮膜を有した金属板が開示されている。特許文献8では、水溶性のリン酸塩化合物、キレート剤、および腐食抑制剤を含む処理剤で表面処理された亜鉛めっき鋼板が開示されている。また、特許文献9では、バナジウム化合物とジルコニウムなどの金属化合物とを含有する金属表面処理剤により形成された皮膜を有する表面処理金属材料が開示されている。さらに、特許文献10では、4価のバナジウムとSiとリン酸化合物とで構成された皮膜を有する鋼板が提案されている。
 これら特許文献7~10は、無機成分を主体としたクロム未含有の皮膜で金属材料を被覆したものである。また、これらの技術においては、水系の樹脂を併用することにより、耐食性がより向上することが報告されている。
 しかしながら、上記した特許文献1~10の従来技術、特に有機皮膜で被覆した方法では、亜鉛系めっき層に対する有機皮膜の密着性が十分であるとは言えず、塗装下地処理として採用したときに、有機皮膜がめっき層との界面で剥離し易いという問題があった。
 さらに、亜鉛系めっき鋼板では、溶接性を確保することも必要とされる。また、亜鉛系めっき鋼板を家電製品などに適用する観点からは、アース性が発揮される必要がある。つまり、上記亜鉛系めっき鋼板は、耐食性のみならず、アース性や耐熱性を有することも必要とされる。
 しかしながら、従来までの樹脂皮膜を形成した亜鉛系めっき鋼板では耐食性を得るために、1g/m以上の樹脂皮膜の皮膜量を必要とする場合が多かった。そのため、耐食性を得るために皮膜量を多くすると、アース性が得られなくなるという問題があった。さらには、樹脂皮膜の場合は、高温環境下にて分解してしまうため、耐熱性は何れのものも不十分であった。
 このような背景から、有機成分に代わって、無機成分を主体としたクロム未含有の皮膜で鋼板を被覆したものも提案されている。例えば、特許文献11には、リン酸、4個以上のフッ素原子からなるチタン、ジルコニウム、シランカップリング剤などを含む組成物を用いて、得られる皮膜を有する鋼板が開示されている。また、特許文献12では、アミノ基を有するシランカップリング剤、グリシジル基を有するシランカップリング剤、チタンフッ化水素酸などを含む処理剤を用いて得られる、皮膜を有する鋼板が開示されている。さらには、特許文献13では、シリカゾルバインダーとリン酸イオン、フッ化物イオンなどからなる皮膜を有する鋼板が提案されている。
 しかしながら、これらの特許文献11~13に記載される鋼板は、耐食性、および耐熱性は良好であるものの、酸成分の多い皮膜を形成するため、アース性、および密着性に問題があった。
 また、表面が美麗な溶融亜鉛めっきの場合、これらの技術では無機成分の多い皮膜が形成され、皮膜に微細なクラックが生じ皮膜外観が白っぽく(白化)見える、または、虹色の干渉色が見えるという問題があった。特にこの白化が起こると、亜鉛めっき表面に生じた白錆と見間違いを起こし、商品価値が下がるという問題があった。
 また、亜鉛系めっき鋼板を保管している時に、結露により鋼板表面に水滴が発生することがしばしばあった。この水滴が乾燥した際には、その水滴痕が残り、鋼板の商品価値が低下するという問題が生じており、従来技術では、これらの問題を解決する方法は提案されていなかった。
 さらに、前述したように一時防錆クロメート処理は、クロメート処理液をスプレーまたはシャワーで亜鉛系めっき鋼板に流し掛け、ロールやエアー絞りにより、塗布量を調整し、オーブンで乾燥する方法にて実施されるのが一般的である。この表面処理方法は非常に簡便であり、生産性が高い。
 しかし、これまで提案されてきたクロムを用いない従来技術では、使用されてきた処理剤が水系ということもあり、その組成物の有効成分濃度(あるいは乾燥固形分)は濃くてもせいぜい20~30質量%である。つまり、これを塗布乾燥して1g/m(約1μm)の皮膜量を得るためには、処理液の塗布量として4~5g/mが必要であり、これを制御するためにはロールコート法(特に、リバースコートと呼ばれる方法で通板方向とは逆にロールを回転させて液を塗布する方法)による処理方法に限られてしまう傾向にある。そのため、従来の製造設備が使用できず、亜鉛めっきの製造ライン(CGL、EGL)に新たな設備投資が必要となる。さらに、リバースコートの場合、塗工時に特に鋼板エッジ部のロールが削られ、ロールに板幅に準じた通板(筋)傷を生じてしまう。この傷が塗布外観に影響するため、板幅の広いものから狭い物の順に生産せざるを得なくなり、連続生産での生産性が犠牲になるという問題が新たに生じる。
 以上のように、いずれの方法でもクロメート皮膜を代替した表面処理鋼板は得られておらず、皮膜の耐食性、外観性、アース性、耐結露性、塗装性(塗膜密着性)などの諸特性を総合的に満足し、かつ従来の処理設備にも適用可能な表面処理剤の開発が強く要求されている。
特開平8-67834号公報 特開平9-221595号公報 特開2002-241956公報 特開2004-238638公報 特開2005-15514公報 特開2006-009121公報 特開2004-2950公報 特開2002-155375公報 特開2002-30460公報 特開2005-48199公報 特開2006-213958公報 特開2007-51365公報 特開2007-177314公報
 そこで、本発明は、耐食性、アルカリ脱脂後の耐食性などの諸特性に優れ、特に、形成された皮膜の耐食性、外観、およびアース性のバランスが良好であると共に、耐結露性や塗装性(塗膜密着性)においてもバランス良く優れた特性を示す表面処理亜鉛系めっき鋼板を得ることができる、亜鉛めっき鋼板用表面処理剤を提供することを目的とする。更には、亜鉛めっき鋼板の製造設備において、従来、使用されてきた処理方法(シャワーリンガー、スプレーリンガー)でも製造できる表面処理亜鉛めっき鋼板を提供することを目的とする。
 本発明者らは、これらの問題を解決すべく鋭意検討を重ねた結果、ケイ素原子を含む所定の官能基を有する化合物と、炭酸ジルコニウムアンモニウム、有機ホスホン酸などを含む処理剤を使用することにより、上記問題点を解決できることを見出し、本発明を解決するに至った。
 即ち、本発明は、以下の(1)~(9)を提供する。
(1) 炭酸ジルコニウムアンモニウム(A)と、
 1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。)で示される官能基(a)を2個以上有し、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にある化合物(B)と、
 一般式(1)で表わされる有機ホスホン酸(C)と、
 Zr、Ti、Co、Fe、V、Ce、Mo、Mn、Mg、Al、Ni、Ca、W、Nb、Cr、およびZnからなる群から選ばれる少なくとも1種以上の金属元素を含む金属化合物(D)と、
 水とを含み、pHが6~11である、亜鉛めっき鋼板用表面処理剤。
Figure JPOXMLDOC01-appb-C000002

(2) 前記炭酸ジルコニウムアンモニウム(A)中のZrをZrOに換算したときの質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(A/B)が0.01~6.0であり、
 前記有機ホスホン酸(C)の質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(C/B)が0.01~5.0であり、
 前記金属化合物(D)中の金属元素の質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(D/B)が0.01~4.0である、(1)に記載の亜鉛めっき鋼板用表面処理剤。
(3) 化合物(B)が、反応性官能基(b1)を有するシランカップリング剤と、前記反応性官能基(b1)と反応可能な官能基(b2)を有する化合物とを反応させて得られる化合物であり、前記反応性官能基(b1)および前記官能基(b2)のいずれか一方が、アミノ基またはエポキシ基である、(1)または(2)に記載の亜鉛めっき鋼板用表面処理剤。
(4) さらに、B、Nb、Si、Ta、Ti、V、W、およびZrからなる群から選ばれる少なくとも1種の金属元素を含む金属アルコキシド(E)を有する、(1)~(3)のいずれかに記載の亜鉛めっき鋼板用表面処理剤。
(5) 前記化合物(B)中のSiをSiOに換算したときの質量と、前記金属アルコキシド(E)中に含まれる金属元素の質量との質量比(E/B)が0.01~2.0である、(4)に記載の亜鉛めっき鋼板用表面処理剤。
(6) さらに、水溶性高分子および水系エマルション樹脂からなる群から選ばれる少なくとも1種の化合物(F)を含有する、(1)~(5)のいずれかに記載の亜鉛めっき鋼板用表面処理剤。
(7) 前記化合物(B)中のSiをSiOに換算したときの質量と、前記化合物(F)の質量との質量比(F/B)が0.01~30である、(6)に記載の亜鉛めっき鋼板用表面処理剤。
(8) (1)~(7)のいずれかに記載の亜鉛めっき鋼板用表面処理剤を亜鉛めっき鋼板表面上に塗布し、加熱乾燥し、皮膜量が25~1000mg/mの皮膜を前記亜鉛めっき鋼板表面上に形成する、亜鉛めっき鋼板の表面処理方法。
(9) (8)に記載の亜鉛めっき鋼板の表面処理方法により得られる、皮膜を有する亜鉛めっき鋼板。
 本発明によれば、耐食性、アルカリ脱脂後の耐食性などの諸特性に優れ、特に、形成された皮膜の耐食性、外観、およびアース性のバランスが良好であると共に、耐結露性や塗装性(塗膜密着性)においてもバランス良く優れた特性を示す表面処理亜鉛系めっき鋼板を得ることができる、亜鉛めっき鋼板用表面処理剤を提供することができる。更には、亜鉛めっき鋼板の製造設備において、従来、使用されてきた処理方法(シャワーリンガー、スプレーリンガー)でも製造できる表面処理亜鉛めっき鋼板を提供することができる。
 以下に、本発明に係る亜鉛めっき鋼板用表面処理剤、およびその処理剤を使用した表面処理方法、さらにはその表面処理方法により得られる皮膜を有する亜鉛めっき鋼板について説明する。
 まず、亜鉛めっき鋼板用表面処理剤について説明する。
<亜鉛めっき鋼板用表面処理剤>
 本発明に係る亜鉛めっき鋼板用表面処理剤は、炭酸ジルコニウムアンモニウム(A)と、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。)で示される官能基(a)を2個以上有し、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にある化合物(B)と、一般式(1)で表わされる有機ホスホン酸(C)と、Zr、Ti、Co、Fe、V、Ce、Mo、Mn、Mg、Al、Ni、Ca、W、Nb、Cr、およびZnからなる群から選ばれる少なくとも1種以上の金属元素を含む金属化合物(D)と、水とを含み、pHが6~11である処理剤である。
 以下に、亜鉛めっき鋼板用表面処理剤に含まれる各成分について説明する。
Figure JPOXMLDOC01-appb-C000003
<炭酸ジルコニウムアンモニウム(A)>
 本発明の亜鉛めっき鋼板用表面処理剤には、炭酸ジルコニウムアンモニウム(A)が含まれる。炭酸ジルコニウムアンモニウムは、主に得られる皮膜の耐食性、アルカリ脱脂後の耐食性、耐熱性、溶接性、連続加工性、耐結露性などの効果を皮膜に付与する。
 より詳細には、炭酸ジルコニウムアンモニウム中の炭酸とアンモニウムが乾燥により揮発して、残ったジルコニウムが高分子化して、難溶性の皮膜が形成される。
 亜鉛めっき鋼板用表面処理剤中における炭酸ジルコニウムアンモニウムの含有量は、特に限定されないが、得られる皮膜の耐食性、アルカリ脱脂後の耐食性、耐結露性がより優れる観点から、処理剤中の全固形分に対して、0.1~70質量%が好ましく、1~50質量%がより好ましい。なお、全固形分とは、後述する皮膜を構成する固形成分を意味し、溶媒などは含まれない。
<化合物(B)>
 本発明の亜鉛めっき鋼板用表面処理剤には、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。)で示される官能基(a)を2個以上有し、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にある化合物(B)が含まれる。
 化合物(B)は、上述した炭酸ジルコニウムアンモニウムから生じるジルコニウムと架橋反応をおこし、三次元架橋構造を有する皮膜を形成するため、得られる皮膜の耐食性、アルカリ脱脂後の耐食性、耐熱性、溶接性、連続加工性および耐結露性が向上したと推測される。また、上記化合物(B)の官能基(a)は後述する基材との密着性が良好であるため、得られる皮膜の外観、および塗装性(塗膜密着性)が向上したと推測される。さらに、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にあることより、皮膜のアース性、および耐指紋性が向上したと推測される。
 このように化合物(B)と上述の炭酸ジルコニウムアンモニウムとを併用することにより、各種性能が向上する。特に、それぞれの単独物質の使用では得られない、優れた耐食性およびアース性を示す皮膜を製造することができる。
 化合物(B)は、1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。)で表される官能基(a)を2個以上有する。なかでも、2~8個がより好ましい。なお、一分子中に官能基(a)を1個しか含まない場合は、亜鉛めっき鋼板表面に対する密着性が低下するため好ましくない。
 R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。なかでも、アルコキシ基、および水酸基が好ましい。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などが挙げられ、好ましくはメチル基、およびエチル基である。
 アルコキシ基としては、例えば、炭素数1~3のアルコキシ基が好ましく挙げられる。
 化合物(B)は、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にあることが好ましく、より好ましくは120~4000の範囲であり、特に好ましくは150~3000の範囲である。官能基(a)1個あたりの分子量が100未満の場合は、化合物の合成が難しく、得られる皮膜の耐食性、および密着性が劣るため好ましくない。一方、5000を超える場合は、官能基(a)の特徴である亜鉛めっき鋼板表面に対する密着性が低下するため好ましくない。
 なお、上記分子量の測定方法としては、ゲル・パーミッション・クロマトグラフィー(GPC)やNMRを用いて測定することができる。
 また、化合物(B)の骨格としては、特に限定されないが、エステル結合、エーテル結合、酸アミド結合、アミド結合、ウレタン結合、ウレア結合、ビニル結合などの結合を有していることが好ましい。
 化合物(B)の製造方法は、特に限定されないが、例えば、(1)2つ以上の活性水素含有官能基を有する化合物とクロロシランとを反応させる方法、(2)ビニル基を有するシランカップリング剤と共重合可能なビニル化合物とを反応(重合)させる方法、(3)特定の反応性官能基を有するシランカップリング剤と、その反応性官能基と反応しえる官能基を有する化合物とを反応させる方法、(4)多官能シランカップリング剤に親水基を修飾する方法などが挙げられる。
 なかでも、(2)または(3)が好ましく、(3)が最も好ましい。以下にそれぞれの製造方法について説明する。
 化合物(B)の好ましい実施形態の一つとして、ビニル基を有するシランカップリング剤と、共重合可能なビニル化合物との反応(重合)により得られる化合物(反応生成物)が挙げられる。なお、この方法は上記の(2)の製造方法に該当する。
 ビニル基を有するシランカップリング剤としては、ビニル基を有していれば特に限定されないが、例えば、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシンランなどが挙げられる。
 また、共重合可能なビニル化合物としては、特に限定されないが、例えば、アクリル酸、ブチルアクリレート、メチルアクリレート、2-ヒドロキシエチルメタクリレートなどが挙げられる。
 上述の化合物を使用した反応形式は特に限定されず、例えば、アニオン重合、カチオン重合、ラジカル重合などが挙げられる。なかでも、ラジカル重合が好ましい。なお、選択される反応形式に応じて、公知の重合開始剤などを適宜使用してもよい。
 また、反応の際には適宜溶媒を使用してもよく、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、アセトン、メチルエチルケトン、ジアセチルアルコール、水などが挙げられる。
 化合物(B)の他の好ましい実施形態の一つとして、反応性官能基(b1)を有するシランカップリング剤と、その反応性官能基(b1)と反応しえる官能基(b2)を有する化合物との反応により得られる化合物(反応生成物)が挙げられる。
 反応性官能基(b1)としては、他の官能基と反応して結合を形成する基であれば、特に限定されないが、例えば、エポキシ基、アミノ基、メルカプト基、アクリロキシ基、ウレイド基、イソシアナート基、およびビニル基からなる群から選択される官能基が好ましい。なかでも、エポキシ基、アミノ基が好ましい。
 反応性官能基(b1)を有するシランカップリング剤の好ましい実施態様の一つとして、一般式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Xは、エポキシ基、アミノ基、メルカプト基、アクリロキシ基、ウレイド基、イソシアナート基、およびビニル基からなる群から選択されるいずれかの官能基を表す。Lは、2価の連結基、または単なる結合手を表す。Yは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。
 一般式(2)中、Xは、エポキシ基、アミノ基、メルカプト基、アクリロキシ基、ウレイド基、イソシアナート基、およびビニル基からなる群から選択されるいずれかの官能基を表す。なかでも、エポキシ基、アミノ基が好ましい。
 一般式(2)中、Lは、2価の連結基、または単なる結合手を表す。
 Lで表される連結基としては、例えば、アルキレン基(炭素数1~20が好ましい)、-O-、-S-、アリーレン基、-CO-、-NH-、-SO2-、-COO-、-CONH-、またはこれらを組み合わせた基が挙げられる。なかでも、アルキレン基が好ましい。単なる結合手の場合、一般式(2)のXがSi(ケイ素原子)と直接連結することをさす。
 一般式(2)中、Yは、それぞれ独立に、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す。なかでも、炭素数1~3のアルコキシ基、および水酸基が好ましい。
 反応性官能基(b1)を有するシランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、および2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(アミノエチル)3-アミノプロピルトリメトキシシラン、および3-アミノプロピルトリエトキシシランなどのアミノシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシランなどのビニル基含有シランなどが挙げられる。
 官能基(b2)を有する化合物中における官能基(b2)は、上記の反応性官能基(b1)と反応可能であれば、特に限定されず、エポキシ基、アミノ基、メルカプト基、アクリロキシ基、ウレイド基、イソシアナート基、およびビニル基などが挙げられ、エポキシ基またはアミノ基が好ましい。なかでも、上記の反応性官能基(b1)と異なる官能基が好ましく挙げられる。
 官能基(b2)を有する化合物としては、上記の、反応性官能基(b1)を有するシランカップリング剤で例示したシランカップリング剤や、エチレンジアミン、アミノプロパンチオールなどのアミン化合物、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどのエーテル化合物などが挙げられる。
 なかでも、反応性官能基(b1)を有するシランカップリング剤で例示したシランカップリング剤が好ましい。つまり、化合物(B)は、反応性官能基(b1)を有するシランカップリング剤と官能基(b1)と反応可能な官能基(b2)を有するシランカップリング剤の反応生成物であることが好ましい。
 反応性官能基(b1)を有するシランカップリング剤と、官能基(b2)を有する化合物との反応比は、特に制限されないが、シランカップリング剤:化合物(モル比)=9:1~1:9が好ましく、7:3~3:7がより好ましい。
 反応条件は、使用される化合物によって適宜最適な条件が選択される。また、反応の際に、溶媒(例えば、アルコールなど)などを使用してもよい。
 亜鉛めっき鋼板用表面処理剤中における化合物(B)の含有量は、特に限定されないが、得られる皮膜の耐食性、耐指紋性、外観、アース性、塗装性がより優れるという観点から、処理剤中の全固形分に対して、0.1~70質量%が好ましく、1~50質量%がより好ましい。
<有機ホスホン酸(C)>
 本発明の亜鉛めっき鋼板用表面処理剤には、一般式(1)で表わされる有機ホスホン酸が含まれる。これらの化合物が亜鉛めっき鋼板と反応し、難溶性の塩を形成するため、皮膜の耐食性、および塗装性(塗膜密着性)が向上したと推測される。また、有機ホスホン酸は、後述する金属化合物(D)を水系処理液に安定に溶解させるのに必要であり、亜鉛めっき鋼板用表面処理剤の貯蔵安定性の向上に寄与している。
Figure JPOXMLDOC01-appb-C000005
 亜鉛めっき鋼板用表面処理剤中における有機ホスホン酸(C)の含有量は、特に限定されないが、得られる皮膜の耐食性、アルカリ脱脂後の耐食性、アース性、耐結露性がより優れるという観点から、処理剤中の全固形分に対して、0.05~50質量%が好ましく、0.1~30質量%がより好ましい。
<金属化合物(D)>
 本発明の亜鉛めっき鋼板用表面処理剤には、Zr、Ti、Co、Fe、V、Ce、Mo、Mn、Mg、Al、Ni、Ca、W、Nb、Cr、およびZnからなる群から選ばれる少なくとも1種以上の金属元素を含む金属化合物(D)が含まれる。金属化合物(D)は、上述した有機ホスホン酸(C)と難溶性の塩を形成する。そのため、皮膜中に有機ホスホン酸(C)を固定化され、皮膜の耐結露性や塗装性(塗膜密着性)が向上すると推測される。
 金属化合物(D)は、上記金属元素を含んでいれば特に限定されないが、例えば、上記金属を含む硝酸塩、硫酸塩、酢酸塩、リン酸塩、アンモニウム塩、フッ化物などが挙げられる。
 より具体的には、Zrを含む金属化合物としては、炭酸ジルコニウムアンモニウムを除く、例えば、硝酸ジルコニウム、オキシ硝酸ジルコニウム、酢酸ジルコニル、ジルコンフッ化アンモニウム、硫酸ジルコニル、ジルコンフッ酸、およびジルコニアゾルなどが挙げられる。また、水溶性ジルコニウム塩の水溶液を、イオン交換やアルカリ中和して作られるジルコン酸およびその塩も挙げられる。
 Tiを含む金属化合物としては、例えば、硫酸チタニル、硝酸チタニル、硝酸チタン、塩化チタニル、塩化チタン、チタニアゾル、酸化チタン、チタンフッ化アンモニウム、しゅう酸チタン酸カリウム、チタンラクテート、チタンアセチルアセトネート、ジイソプロピルチタニウムビスアセチルアセトンなどが挙げられる。また、硫酸チタニルの水溶液を熱加水分解させて得られるメタチタン酸や、アルカリ中和で得られるオルソチタン酸およびこれらの塩も挙げられる。
 Coを含む金属化合物としては、例えば、硫酸コバルト、硝酸コバルト、炭酸コバルト、リン酸コバルト、塩化コバルト、酸化コバルト、水酸化コバルトなどが挙げられる。
 Feを含む金属化合物としては、例えば、硫酸鉄、硝酸鉄、塩化鉄、リン酸鉄、酸化鉄、水酸化鉄、鉄粉などが挙げられる。
 Vを含む金属化合物としては、例えば、五酸化バナジウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ3塩化バナジウム、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、3塩化バナジウム、リンバナドモリブテン酸、硫酸バナジウムなどが挙げられる。
 Ceを含む金属化合物としては、例えば、硝酸セリウム、酢酸セリウム、塩化セリウム、セリウムゾルなどが挙げられる。
 Moを含む金属化合物としては、例えば、モリブテン酸アンモニウム、モリブテン酸ナトリウム、モリブテン酸カリウム、モリブドリン酸アンモニウム、モリブドリン酸ナトリウンなどが挙げられる。
 Mnを含む金属化合物としては、例えば、過マンガン酸カリウム、過マンガン酸アンモニウム、過マンガン酸ナトリウム、過マンガン酸塩や、硫酸マンガン、硝酸マンガン、酸化マンガン、炭酸マンガン、塩化マンガン、リン酸マンガンなどが挙げられる。
 Mgを含む金属化合物としては、例えば、硫酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、リン酸マグネシウム、塩化マグネシウム、酸化マグネシウム、水酸化マグネシウムなどが挙げられる。
 Alを含む金属化合物としては、例えば、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、リン酸アルミニウム、塩化アルミニウムなどが挙げられる。
 Niを含む金属化合物としては、例えば、酸化ニッケル、水酸化ニッケル、硫酸ニッケル、硝酸ニッケル、リン酸ニッケル、塩化ニッケルなどが挙げられる。
 Caを含む金属化合物としては、例えば、酸化カルシウム、水酸化カルシウム、硫酸カルシウム、硝酸カルシウム、リン酸カルシウム、塩化カルシウムなどが挙げられる。
 Wを含む金属化合物としては、例えば、メタタングステン酸アンモニウム、メタタングステン酸ナトリウム、メタタングステン酸カリウム、パラタングステン酸、パラタングステン酸アンモニウム、パラタングステン酸ナトリウムなどが挙げられる。
 Nbを含む金属化合物としては、例えば、シュウ酸ニオブ、酸化ニオブ、ニオブゾルなどが挙げられる。
 Crを含む金属化合物としては、例えば、3価のクロムが挙げられ、硫酸クロム、硝酸クロム、塩化クロム、水酸化クロム、酸化クロム、リン酸クロムなどが挙げられる。
 Znを含む金属化合物としては、例えば、酸化亜鉛、水酸化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、リン酸亜鉛、アセチル亜鉛などが挙げられ、その他には、亜鉛は両性金属であるためアルカリサイドで生成する亜鉛酸ナトリウム、亜鉛酸カリウムなどが挙げられる。
 これらのうち、耐食性向上の効果が高い点で、V、Mg、Al、またはZnを含む金属化合物、およびこれらの塩がより好ましい。
 亜鉛めっき鋼板用表面処理剤中における金属化合物(D)の含有量は、特に限定されないが、得られる皮膜の耐食性、アルカリ脱脂後の耐食性、溶接性、連続加工性、外観、耐結露性がより優れるという観点から、処理剤中の全固形分に対して、0.01~40質量%が好ましく、0.1~30質量%がより好ましい。
<水>
 本発明の亜鉛めっき鋼板用表面処理剤には、溶媒として水が含まれる。
 亜鉛めっき鋼板用表面処理剤中における水の含有量は、特に限定されないが、処理剤の取り扱いがより容易であるという観点から、処理剤全量に対して、30~99質量%が好ましく、40~95質量%がより好ましい。
<pH>
 本発明の亜鉛めっき鋼板用表面処理剤のpHは、6~11が好ましく、7~10がより好ましい。pHが6未満となると、炭酸ジルコニウムアンモニウムが安定に溶解できず、亜鉛めっき鋼板用表面処理剤の安定性が劣るようになる。pHが11を超えると、アンモニア臭が著しく作業性に劣るようになり、かつ、得られる皮膜性能も劣る。
 pHの調整にはアンモニア、炭酸、酢酸、硝酸などを用いることが好ましい。また、pH6~11に調整することにより、処理剤による亜鉛めっき鋼板の過剰なエッチングが抑制され、表面処理亜鉛めっき鋼板のアース性が向上したと推測される。
 処理剤中における、上述した炭酸ジルコニウムアンモニウム(A)中のZr(Zr質量)をZrOに換算したときの質量と、化合物(B)中のSi(Si質量)をSiOに換算したときの質量との質量比(A/B)は、0.01~6.0であることが好ましく、より好ましくは0.1~4.0である。0.01未満であると、溶解しやすい成分が多くなり、アルカリ脱脂後の皮膜の耐食性や耐結露性が低下する場合がある。一方、6.0を超えると、皮膜が硬くなり、塗装性(塗装密着性)が低下する場合がある。
 処理剤中における、上述した有機ホスホン酸(C)の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比(C/B)は、0.01~5.0であることが好ましく、より好ましくは0.05~4.0であり、さらに好ましくは0.05~3.0である。0.01未満であると、皮膜の耐食性が劣る場合があり、5.0を超えるとアルカリ脱脂後の皮膜の耐食性や耐結露性に劣る場合がある。
 処理剤中における、上記金属化合物(D)中の金属元素の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比(D/B)は、0.01~4.0であることが好ましく、より好ましくは0.05~3.0である。0.01未満であると、皮膜の耐食性向上効果が得られない場合があり、4.0を超えると溶解成分が多くなり、逆に皮膜の耐食性を低下させてしまう場合がある。
 上述した化合物以外に、本発明の亜鉛めっき鋼板用表面処理剤は、以下の金属アルコキシド(E)、水溶性高分子および水系エマルション樹脂からなる群から選ばれる少なくとも1種の化合物(F)を含有していてもよい。
 以下に、それぞれの成分について説明する。
<金属アルコキシド(E)>
 本発明の亜鉛めっき鋼板用表面処理剤は、金属アルコキシド(E)を含有していてもよい。より具体的には、B、Nb、Si、Ta、Ti、V、W、およびZrからなる群から選ばれる少なくとも1種の金属元素を含む金属アルコキシド(E)を含有していてもよい。
 本発明の亜鉛めっき鋼板用表面処理剤は、金属アルコキシド(E)を含有することにより、耐食性(特に加工部)により優れる皮膜を提供することができる。金属アルコキシド(E)は、上述した化合物(B)の架橋反応を促進させ、より緻密な網目構造を有する皮膜の形成が可能になると推察される。理由は明らかではないが、特に耐食性が向上する点から、Si、Tiから選ばれることが好ましい。
 金属アルコキシド(E)としては、金属に直接結合するアルコキシ基を有するものであれば、特に限定されず、従来から公知のものを適宜選択して使用できる。上記金属アルコキシドは金属に直接結合するアルコキシ基が加水分解された水酸基であっても構わない。
 なかでも、好ましくは、一般式Me(OR)n(式中、Rは、それぞれ独立に、アルキル基、または水素原子を表し、少なくとも1つはアルキル基を表す。nは金属の価数を示す。Meは、上記金属を表す。)で表される化合物である。
 Rで表わされるアルキル基としては、炭素数1~4のアルキル基が好ましい。
 金属アルコキシド(E)としては、例えば、チタンテトライソプロポキシド、チタンテトラエトキシド、チタンブトキシドダイマー、チタンテトラ-2-エチルヘキソシド、バナジウムオキシトリエトキシド、バナジウムトリイソプロポキシド、ジルコニウムエトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ニオブテトラメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラノルマルプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-ヘキシルトリメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、イソブチルトリメトキシシラン挙げられる。
 金属アルコキシド(E)の好適な実施態様としては、得られる皮膜の耐食性、アルカリ脱脂後の耐食性がより優れるという点から、Si元素(ケイ素元素)を含むアルコキシシランが好ましく、特に、式Si(OR)(Rは、アルキル基を表す)で表わされるテトラアルコキシシランが好ましい。
 亜鉛めっき鋼板用表面処理剤中における金属アルコキシド(E)の含有量は、特に限定されないが、得られる皮膜の耐食性などがより優れる観点から、処理剤中の全固形分に対して、0.01~50質量%が好ましく、0.1~30質量%がより好ましい。
 処理剤中における、金属アルコキシド(E)中に含まれる金属元素の質量と、上記化合物(B)中のSiをSiOに換算したときの質量との質量比(E/B)は、0.01~2.0であることが好ましく、より好ましくは0.5~1.5である。0.01未満であると、皮膜の耐食性向上効果が得られない場合があり、2.0を超えると、皮膜中の溶解成分が多くなり、逆に耐食性が低下する場合がある。
<水溶性高分子および/または水系エマルジョン樹脂>
 本発明の亜鉛めっき鋼板用表面処理剤は、水溶性高分子および水系エマルション樹脂からなる群から選ばれる少なくとも1種の化合物(F)を含有していてもよい。これらの成分の添加により、皮膜の耐指紋性、耐食性、および潤滑性が向上する。
 水溶性高分子および/または水系エマルジョン樹脂としては、特に限定されないが、例えば、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリビニルアルコールなどの水溶性高分子、水に分散した形態のアクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、エチレン-アクリル樹脂、ポリブチラール樹脂、ポリアセタール樹脂、フッ素樹脂などが挙げられる。
 亜鉛めっき鋼板用表面処理剤中における化合物(F)の合計含有量は、特に限定されないが、得られる皮膜の耐食性、耐指紋性、耐結露性、塗装性がより優れる観点から、処理剤中の全固形分に対して、0.1~90質量%が好ましく、1~70質量%がより好ましい。
 処理剤中における、化合物(F)の質量と、上記化合物(B)中のSiをSiOに換算したときの質量との質量比(F/B)は、0.01~30であることが好ましく、より好ましくは0.1~20である。0.01未満であると、皮膜の耐指紋性や潤滑性の向上が見られない場合があり、30を超えると、皮膜中の耐食性、耐熱性が低下する場合がある。
<フッ素化合物>
 本発明の亜鉛めっき鋼板用表面処理剤は、必要に応じて、フッ素化合物を含有していてもよい。特に、表面酸化膜が厚いとされる溶融亜鉛系めっき鋼板では、フッ素化合物を添加して処理剤のエッチング性を高めると、素材表面との反応層(不導体層)が厚くなり、より一層の耐食性向上効果が期待できる。但し、フッ素化合物を処理剤に添加する場合は、エッチング性が高まるため、表面酸化膜以外の溶解により、アース性が低下する場合がある。また、水系処理液中へのZnやFeの混入量が多くなって、亜鉛めっき鋼板用表面処理剤の安定性が低下する場合があり、更には、液の廃棄においてフッ素対策が必要になるなどの問題が生じるため、これらを考慮した範囲にすることが好ましい。
 本発明の亜鉛めっき鋼板用表面処理剤におけるフッ素化合物の含有量は、特に限定されないが、処理剤1kg中にフッ素として50gを上限とすることが好ましい。
 また、フッ素化合物としては、例えば、フッ化アンモニウム、珪フッ化アンモニウム、チタンフッ化アンモニウム、ジルコンフッ化アンモニウムなどが挙げられる。
<消泡剤>
 本発明の亜鉛めっき鋼板用表面処理剤は、必要に応じて、消泡剤(G)を含有していてもよい。この消泡剤を含む亜鉛めっき鋼板用表面処理剤を、亜鉛系めっき鋼板にスプレーまたはシャワーで流し掛け、ロールまたはエアー絞りで塗布量を調整後、最高到達板温度として50~250℃で乾燥して亜鉛系めっき鋼板の表面に皮膜を形成することが好ましい。
 消泡剤としては、特に限定されないが、鉱油、脂肪酸、シリコーン等を安定に乳化したタイプや、水溶性の活性剤タイプのものを使用できる。両者を併用して使用してもよい。 本発明の亜鉛めっき鋼板用表面処理剤中における消泡剤の含有量は、その使用する種類により適宜最適な量が選択されるが、処理液1kg当たりに0.1~3.0gであることが好ましい。消泡剤の含有量が、少なすぎると消泡性が得られず、多すぎると塗装性が劣る。
<潤滑剤>
 本発明の亜鉛めっき鋼板用表面処理剤は、必要に応じて、潤滑性を向上させる為の添加剤(潤滑剤)を含有していてもよい。潤滑剤は、表面処理皮膜の潤滑性を改善して傷付きを防止し、加工時に亜鉛めっき鋼板の損傷を低減するのに有効である。
 潤滑剤としては、例えば、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス、カルナバワックス、パラフィンワックス、モンタンワックス、テフロン(登録商標)等の固体潤滑剤が挙げられ、これらの固体潤滑剤の中から1種または2種以上を使用してもよい。
 本発明の亜鉛めっき鋼板用表面処理剤中における潤滑剤の含有量は、特に限定されないが、処理液1kgあたり50gまでとすることが好ましい。これを超えると、安定に添加できないばかりか、本来の目的を阻害する場合もある。
 本発明の亜鉛めっき鋼板用表面処理剤は、必要に応じて、上記水以外の溶媒(例えば、アルコールなど)を含んでいてもよい。
 本発明の亜鉛めっき鋼板用表面処理剤の調製方法は、特に限定されない。例えば、炭酸ジルコニウムアンモニウム(A)、化合物(B)、有機ホスホン酸(C)、金属化合物(D)、その他添加剤、水とを、混合ミキサーなどのかくはん機を用いて十分に混合することによって製造することができる。
<表面処理方法>
 本発明の亜鉛めっき鋼板用表面処理剤を用いた表面処理方法は、特に限定されないが、上記の亜鉛めっき鋼板用表面処理剤を亜鉛めっき鋼板表面上に塗布し、乾燥し、皮膜量が25~1000mg/mの皮膜を亜鉛めっき鋼板表面上に形成する表面処理方法が好ましい。
 以下に、その表面処理方法について説明する。
 塗布の前に、必要に応じて、亜鉛めっき鋼板表面上の油分や汚れを除去する目的で、亜鉛めっき鋼板に前処理を施してもよい。亜鉛めっき鋼板は、防錆目的で防錆油が塗られている場合が多い。また、防錆油で塗油されていない場合でも、作業中に付着した油分や汚れなどがある。前処理を施すことにより、亜鉛めっき鋼板表面上を清浄して、本発明の亜鉛めっき鋼板用表面処理剤によって亜鉛めっき鋼板表面が均一に濡れやすくなる。なお、油分や汚れなどがなく、本発明の亜鉛めっき鋼板用表面処理剤で材料表面を均一に濡れる場合は、前処理行程は特に必要はない。
 なお、前処理の方法としては、特に限定されず、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。
 使用される亜鉛めっき鋼板としては、溶融亜鉛めっき鋼板(GI)、これを合金化した合金化溶融亜鉛めっき鋼板(GA)、更には溶融亜鉛Zn-5%Al合金めっき鋼板(GF)、溶融亜鉛-55%アルミ合金めっき鋼板(GL)、電気亜鉛めっき鋼板(EG)、電気亜鉛-Ni合金めっき鋼板(Zn-Ni)などが挙げられる。また、めっきを施していない鉄板にも適用は可能である。
 本発明の処理剤の亜鉛めっき鋼板への塗布の方法としては、均一に亜鉛めっき鋼板表面に処理剤を塗布できれば特に制限されず、ロールコート法、浸漬法、スプレー塗布法などが挙げられる。
 また、処理(塗布)温度、処理(塗布)時間についても特に制限されないが、一般に処理(塗布)温度は10~40℃であることが好ましく、処理(塗布)時間は0.1~10秒であることが好ましい。
 亜鉛めっき鋼板表面上に形成された塗膜を乾燥する際の加熱温度としては、50~250℃が好ましく、60~180℃がより好ましい。加熱乾燥方法は、特に限定されず、熱風やインダクションヒーター、赤外線、近赤外線などにより加熱して、処理剤を乾燥すればよい。
 また、加熱時間は、使用される亜鉛めっき鋼板用表面処理剤中の化合物の種類などによって適宜最適な条件が選択される。なかでも、生産性などの点から、0.1~60秒が好ましく、1~30秒がより好ましい。
 亜鉛めっき鋼板表面上に形成される皮膜の量は、25~1000mg/m2が好ましく、50~800mg/mがより好ましく、100~600mg/mが特に好ましい。25mg/m未満では亜鉛めっき鋼板用表面処理剤を鋼板表面に均一に塗布することができず、加工性、耐食性、塗装性等、目的とする各種特性をバランス良く発揮させることができなくなる。1000mg/mを超えると、外観性が低下し、塗装性が劣るようになる。また、アース性および溶接性が劣化する。さらには、プレス加工において、皮膜の剥離量が多くなって、プレス成形に支障が生じるばかりか、製造コストも高くなる。
 なお、上記の皮膜量は鋼板の片面上における皮膜量を意味する。
 上述の表面処理方法により形成された皮膜上に、乾燥後の膜厚が0.1~3.0μmになるように有機高分子膜を形成して、更に高度な耐食性や耐指紋性、潤滑性を付与することができる。このような有機高分子膜は既に公知のアクリル、ウレタン、エポキシ等樹脂エマルションや、これにシリカ、防錆剤、潤滑剤、紫外線吸収剤、顔料等が添加されたものを使用できる。
 本発明の亜鉛めっき鋼板用表面処理剤を用いて表面処理を行うことによって、亜鉛めっき鋼板表面に、耐食性、耐熱性、溶接性、連続加工性、アース性、耐指紋性を有し、特に、形成された皮膜の耐食性および外観が良好であると共に、耐結露性や塗装性(塗膜密着性)においてもバランス良く優れた特性を示すことができる表面処理皮膜を形成することができる。
 スプレーやシャワーリンガー法における塗布量は、通常1~3g/m程度である。また、操業性の観点(均一に塗布させる)から、表面処理剤の固形分濃度を10~20質量%に調整した処理液を使用することが多い。上記表面処理剤は固形分濃度10~20質量%に調整可能であり、これらの方法で塗布した場合、100~600mg/m2の皮膜を得ることが可能であり、乾燥も水分を揮発させる程度で十分である。つまり、この少ない皮膜量で目的の性能が得られることにより、本発明の表面処理亜鉛系めっき鋼板をこれらの方法で製造することを可能としたのである。これにより、新たな生産設備を必要とせず、実生産ライン(CGL、EGL)の生産性を低下させることなく、所望の鋼板を製造することを可能にしたのである。
 以上のように、本発明によって、耐食性、耐熱性、溶接性、連続加工性、アース性、耐指紋性を有し、特に、形成された皮膜が、耐食性および外観が良好であると共に、耐結露性や塗装性(塗膜密着性)においてもバランス良く優れた特性を示すことができる表面処理亜鉛系めっき鋼板が実現できる。
 こうした鋼板は、建築、電気、自動車等の各種分野で使用される素材として効を奏する。更に、亜鉛めっき製造ライン(CGL)において、従来の一時防錆クロメート処理と同様な処理設備で生産できるため、実生産性が高く、更に有効である。
 以下、実施例によって本発明の作用効果を具体的に示すが、下記実施例は本発明を限定するものではなく、条件の変化に伴って設計を変更することは本発明の技術的範囲に含まれるものである。
(1)供試材(素材)
以下の市販材料を供試材として使用した。
(i)電気亜鉛めっき鋼板(EG):板厚0.8mm、目付量=20/20(g/m2
(ii)溶融亜鉛めっき鋼板(GI):板厚0.8mm、目付量=60/60(g/m2
(iii)合金化溶融亜鉛めっき鋼板(GA):板厚0.8mm、目付け量=40/40(g/m2
 尚、目付量はそれぞれの鋼板の主面上への目付量を示している。例えば、電気亜鉛めっき鋼板の場合は、20/20(g/m)であり、鋼板の両面のそれぞれに20g/mのめっきを有することを意味する。
(2)前処理(洗浄)
 試験板の作製方法としては、まず上記の供試材の表面を、日本パーカライジング製パルクリーンN364Sを用いて処理し、表面上の油分や汚れを取り除いた。次に、水道水で水洗して亜鉛めっき鋼板表面が水で100%濡れることを確認したあと、更に純水を流しかけ、100℃雰囲気のオーブンで水分を除去したものを試験板として使用した。
(3)亜鉛めっき鋼板用処理剤の調製
 各成分を表1(実施例1~49および比較例50~65)に示す配合量にて水中で混合し、処理液を得た。
 なお、表1中の成分(A)~(F)の配合量は、亜鉛めっき鋼板用表面処理液1kg中に配合される量(g)を表す。また、各処理剤に含まれる成分(A)~(F)以外の成分は、主に水である。
 なお、表1中の成分(A)の配合量は、炭酸ジルコニウムアンモニウム(A)中のZr(Zr質量)をZrOに換算したときの質量(g)を表す。表1中の成分(B)の配合量は、化合物(B)中のSi(Si質量)をSiOに換算したときの質量(g)を表す。表1中の成分(D)の配合量は、金属化合物(D)中の金属元素の質量(g)を表す。表1中の金属アルコキシド(E)の配合量は、金属アルコキシド(E)中に含まれる金属元素の質量(g)を表す。
 また、表1中の質量比A/Bは、炭酸ジルコニウムアンモニウム(A)中のZrをZrOに換算したときの質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比を表す。質量比C/Bは、有機ホスホン酸(C)の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比を表す。質量比D/Bは、金属化合物(D)中の金属元素の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比を表す。質量比E/Bは、金属アルコキシド(E)中に含まれる金属元素の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比を表す。質量比F/Bは、化合物(F)の質量と、化合物(B)中のSiをSiOに換算したときの質量との質量比を表す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 以下に、表1で使用された化合物について説明する。
<炭酸ジルコニウムアンモニウム(A)>
 A1:炭酸ジルコニウムアンモニウム
<化合物(B)>
 B1:ヘキサメチレンジアミン1モルとγ-グリシドキシプロピルトリメトキシシラン2モルとを、エタノール中で反応させ、生成物を得た。その後、脱イオン水を添加し、固形分濃度5質量%になるように希釈した。
 なお、得られた生成物の1分子中における官能基(a)数は2個で、官能基(a)1個あたりの分子量(平均分子量/官能基数)は約294であった。
 B2:#828タイプのビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製)1モルと、γ-アミノプロピルトリエトキシシラン2モルとをN-メチル-2-ピロリドン中で反応させ、生成物を得た。その後、脱イオン水を添加し、固形分濃度5質量%になるように希釈した。
 なお、得られた生成物の1分子中における官能基(a)数は2個で、官能基(a)1個あたりの分子量(平均分子量/官能基数)は約411であった。
 B3:アクリル酸1モル、ブチルアクリレート5モル、メチルメタクリレート5モルおよびγ-メタクリロキシプロピルトリエトキシシラン3モルを、脱イオン水中で乳化重合することにより、生成物を得た。その後、脱イオン水を添加し、固形分濃度5質量%になるように希釈した。
 なお、得られた生成物の1分子中における官能基(a)数は3個で、官能基(a)1個あたりの分子量(平均分子量/官能基数)は約694であった。
 B4:アミノプロピルトリエトキシシラン1モルとγ-グリシドキシプロピルトリメトキシシラン2モルとを、エタノール中で反応させ、生成物を得た。その後、脱イオン水を添加し、固形分濃度5質量%になるように脱イオン水で希釈した。
 なお、得られた生成物の1分子中における官能基(a)数は2個で、官能基(a)1個あたりの分子量(平均分子量/官能基数)は約894であった。
 B5:ビス(トリメトキシシリルプロピル)アミン100質量部に対して、3級および4級アミノ基を持つ水系ウレタン樹脂(登録商標:アデカボンタイターHUX-760、旭電化工業(株)製)200質量部を配合し、さらに、固形分濃度5質量%になるように脱イオン水で希釈した。
 なお、得られた化合物の1分子中における官能基(a)数は2個で、官能基(a)1個あたりの分子量(平均分子量/官能基数)は約171で、ビス(トリメトキシシリルプロピル)アミン(A)とウレタン樹脂(B)の固形分重量比(A)/(B)は1/2であった。
 B6:アクリル酸50モル、ブチルアクリレート100モル、メチルメタクリレート100モル、2-ヒドロキシエチルメタクリレート100モル、およびγ-メタクリロキシプロピルトリエトキシシラン1モルを脱イオン水中で乳化重合することにより、生成物を得た。その後、脱イオン水を添加し、固形分濃度5質量%になるように希釈した。
 なお、得られた生成物の1分子中における官能基(a)数は1個で、官能基(a)1個あたりの分子量は約40000であり、化合物(B)成分の官能基当量の範囲外であった。
 B7:γ-メルカプトプロピルトリメトキシシランに対して、濃度5質量%になるように脱イオン水で希釈した。
 なお、化合物の1分子中における官能基(a)数は1個であり、本発明の範囲外であった。
<有機ホスホン酸(C)>
C1:1-ヒドロキシエチリデン-1、1-ジホスホン酸
<金属化合物(D)>
D1:メタバナジン酸アンモニウム
D2:硝酸マグネシウム
D3:硝酸アルミニウム
D4:酸化亜鉛
<金属アルコキシド(E)>
E1:チタンイソプロポキシド
E2:テトラエトキシシラン
<化合物(F)>
F1:アクリル樹脂(昭和高分子(株)製、ポリゾールAM-2386)
(4)処理方法
 バーコート塗装方法またはスプレー&リンガー塗装方法にて上記の亜鉛めっき鋼板用表面処理剤を各試験板上に塗装し、その後、水洗することなく、そのままオーブンに入れて、第2表に示される乾燥温度で乾燥させ、第2表に示される皮膜量の皮膜を形成させた。なお、皮膜量は、鋼板の片面当たりの皮膜量を指す。
 乾燥温度は、オーブン中の雰囲気温度とオーブンに入れている時間とで調節した。なお、乾燥温度は試験板表面の到達温度を示す。バーコートおよびスプレー&リンガー塗装の具体的な方法は以下のとおりである。
バーコート塗装:処理剤を試験板に滴下して、#3~5バーコーターで塗装した。使用したバーコーターの番手と処理液の濃度とにより、所定の皮膜量となるように調整した。
スプレー&リンガー塗装:処理剤を試験板の表面に流し掛け、表面全体を濡らし、次いで、2本のフラットなゴムロール組み合わせたロールで余分な液を切り、塗布量を調整した。ロールによる水切り量と処理液の濃度とにより、所定の皮膜量となるように調整した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(5)評価試験の方法
(5-1)耐食性(およびアルカリ脱脂後耐食性)
 得られた表面処理亜鉛系めっき鋼板を70×150mmサイズに切り出し、裏側と端部をセロハンテープでシールした試験片について、JIS Z2371に規定された塩水噴霧試験を実施し、白錆が5%(面積率)発生するまでの時間を評価した。
 また、アルカリ脱脂剤(日本パーカライジング(株)製、パルクリーンN364S)20g/L、60℃、2分スプレー後、水洗した表面処理亜鉛系めっき鋼板についても同様に評価し、アルカリ脱脂後の耐食性とした。このときの評価基準を以下に示す。
◎:白錆5%発生まで120時間以上
○:白錆5%発生まで48時間以上、120時間未満
△:白錆5%発生まで24時間以上、48時間未満
×:白錆5%発生まで24時間未満
 一方、GAに関する評価基準は、以下に示す。
◎:白錆5%発生まで48時間以上
○:白錆5%発生まで24時間以上、48時間未満
△:白錆5%発生まで12時間以上、24時間未満
×:白錆5%発生まで12時間未満
(5-2)外観
 得られた表面処理亜鉛系めっき鋼板の表面外観を評価した。この時の評価基準を以下に示す。
◎:白化、干渉色なし
○:極薄く白化、干渉色あり
△:白化、干渉色あり
×:著しく白化、干渉色あり
(5-3)耐結露性
 得られた表面処理亜鉛系めっき鋼板を-5℃の冷凍庫に1時間放置し、次いで高温恒湿槽(50℃、湿度95%)に2時間放置した。高温恒湿層に表面処理亜鉛系めっき鋼板を入れる時、表面処理亜鉛系めっき鋼板の表面に水滴(結露)が発生したことを確認した(確認できなかった場合は再度冷凍庫に1時間入れた)。高温恒湿槽より取り出して、表面処理亜鉛系めっき鋼板の表面が乾いていることを確認した(乾いていない時は、そのまま放置して、表面が乾くまで放置した)。
 表面処理亜鉛系めっき鋼板表面の水滴(結露)痕を目視にて評価した。この時の評価基準を以下に示す。
◎:滴下痕が見えない
○:滴下痕が極わずかに見える
△:見える
×:著しく見える
(5-4)塗装性
 表面処理亜鉛系めっき鋼板に、メラミン系塗料[「アミラック#1000」関西ペイント社製]を塗布後、160℃で焼き付けた後の塗膜厚さが20μmとなるようにした。塗装後に沸騰水中に1時間浸漬した後、塗膜に1mm角の碁盤目を100マス入れ、エリクセン押し出し機により5mm押し出した後、テープ剥離をして、マスの残存率を評価した。このときの評価基準を以下に示す。
◎:残存率91~100%
○:残存率71~90%
△:残存率51~70%
×:残存率0~50%
(5-5)アース性
 層間抵抗測定機により、得られた表面処理亜鉛系めっき鋼板の層間抵抗を測定した。以下の基準で評価した。
◎:1Ω未満
○:1Ω以上、2Ω未満
△:2Ω以上、3Ω未満
×:3Ω以上
(5-6)耐黒変性
 得られた表面処理亜鉛系めっき鋼板の試験対象面同士を合わせ、片面をビニールコートしたクラフト紙で包み、これを50℃湿度98%の恒温恒湿器に入れた。この時、表面処理亜鉛系めっき鋼板の固定および密着のため、梱包した試験片の上に1kgの錘をおいた。10日間この状態を保ち、取り出して表面処理亜鉛系めっき鋼板の外観を以下の基準に準じて目視にて評価した。
 ◎:外観変化なし
 ○:極僅かに変色が見られる
 △:全体に薄い黒変、あるいは局部的な黒変が見られる
 ×:明らかに黒変が見られる
 実施例1~49、および比較例50~65に記載の亜鉛めっき鋼板用表面処理剤を用いて得られた表面処理亜鉛めっき鋼板に関して、上記の(5-1)~(5-6)の評価を行った結果を、表3に示す。
 なお、実用上の観点から、上記評価項目において「×」がないことが必要とされる。
 また、比較例64においては、処理液が不安定で皮膜を形成することができず、各種測定を行うことができなかった。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表3に示すように、本発明で規定する各種成分を所定の割合で使用した処理剤で処理された表面処理亜鉛系めっき鋼板は、耐食性およびアルカリ脱脂後の耐食性が良好であると共に外観、耐結露性、塗装性(塗膜密着性)やアース性等においてバランス良く優れた特性を示していることが分かった。また、スプレー&リンガー法においても、優れた表面処理亜鉛系めっき鋼板を作製できることが分かった。
 特に、成分(A)~(F)を所定量含む処理剤では、上記すべての項目において優れた性能を示すことが分かった。また、実施例3と実施例31との比較から分かるように、成分(B)の中でもシランカップリング剤同士を反応させて得られた成分Bがより優れた性能を示す。また、実施例37と実施例49との比較から、金属アルコキシドとしてアルコキシシランを使用した場合に、得られる皮膜特性(耐食性)がより優れることが分かった。
 比較例においては、諸特性を総合的に満足する表面処理亜鉛系めっき鋼板は得られなかった。例えば、成分Bが含まれていない比較例50~56においては、耐食性およびアース性に劣っていた。また、成分Aが含まれていない比較例59でも同様に、耐食性およびアース性に劣っていた。一方、成分A~Dを含み、成分Aと成分Bとを併用する本発明においては、耐食性およびアース性にも優れた皮膜が得られることが分かった。

Claims (9)

  1.  炭酸ジルコニウムアンモニウム(A)と、
     1分子中に-SiR(式中、R、RおよびRは、それぞれ独立して、炭素数1~4のアルキル基、アルコキシ基、または水酸基を表す)で示される官能基(a)を2個以上有し、官能基(a)1個あたりの分子量(平均分子量/官能基数)が100~5000の範囲にある化合物(B)と、
     一般式(1)で表わされる有機ホスホン酸(C)と、
     Zr、Ti、Co、Fe、V、Ce、Mo、Mn、Mg、Al、Ni、Ca、W、Nb、Cr、およびZnからなる群から選ばれる少なくとも1種以上の金属元素を含む金属化合物(D)と、
     水とを含み、pHが6~11である、亜鉛めっき鋼板用表面処理剤。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記炭酸ジルコニウムアンモニウム(A)中のZrをZrOに換算したときの質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(A/B)が0.01~6.0であり、
     前記有機ホスホン酸(C)の質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(C/B)が0.01~5.0であり、
     前記金属化合物(D)中の金属元素の質量と、前記化合物(B)中のSiをSiOに換算したときの質量との質量比(D/B)が0.01~4.0である、請求項1に記載の亜鉛めっき鋼板用表面処理剤。
  3.  前記化合物(B)が、反応性官能基(b1)を有するシランカップリング剤と、前記反応性官能基(b1)と反応可能な官能基(b2)を有する化合物とを反応させて得られる化合物であり、前記反応性官能基(b1)および前記官能基(b2)のいずれか一方が、アミノ基またはエポキシ基である、請求項1または2に記載の亜鉛めっき鋼板用表面処理剤。
  4.  さらに、B、Nb、Si、Ta、Ti、V、W、およびZrからなる群から選ばれる少なくとも1種の金属元素を含む金属アルコキシド(E)を有する、請求項1~3のいずれかに記載の亜鉛めっき鋼板用表面処理剤。
  5.  前記化合物(B)中のSiをSiOに換算したときの質量と、前記金属アルコキシド(E)中に含まれる金属元素の質量との質量比(E/B)が0.01~2.0である、請求項4に記載の亜鉛めっき鋼板用表面処理剤。
  6.  さらに、水溶性高分子および水系エマルション樹脂からなる群から選ばれる少なくとも1種の化合物(F)を含有する、請求項1~5のいずれかに記載の亜鉛めっき鋼板用表面処理剤。
  7.  前記化合物(B)中のSiをSiOに換算したときの質量と、前記化合物(F)の質量との質量比(F/B)が0.01~30である、請求項6に記載の亜鉛めっき鋼板用表面処理剤。
  8.  請求項1~7のいずれかに記載の亜鉛めっき鋼板用表面処理剤を亜鉛めっき鋼板表面上に塗布し、加熱乾燥し、皮膜量が25~1000mg/mの皮膜を前記亜鉛めっき鋼板表面上に形成する、亜鉛めっき鋼板の表面処理方法。
  9.  請求項8に記載の亜鉛めっき鋼板の表面処理方法により得られる、皮膜を有する亜鉛めっき鋼板。
PCT/JP2008/072841 2008-12-16 2008-12-16 亜鉛めっき鋼板用表面処理剤 WO2010070730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880132360XA CN102245807A (zh) 2008-12-16 2008-12-16 镀锌钢板用表面处理剂
JP2010542766A JP5555179B2 (ja) 2008-12-16 2008-12-16 亜鉛めっき鋼板用表面処理剤、亜鉛めっき鋼板の表面処理方法および亜鉛めっき鋼板
PCT/JP2008/072841 WO2010070730A1 (ja) 2008-12-16 2008-12-16 亜鉛めっき鋼板用表面処理剤
TW098139697A TWI444504B (zh) 2008-12-16 2009-11-23 鍍鋅鋼板用表面處理劑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072841 WO2010070730A1 (ja) 2008-12-16 2008-12-16 亜鉛めっき鋼板用表面処理剤

Publications (1)

Publication Number Publication Date
WO2010070730A1 true WO2010070730A1 (ja) 2010-06-24

Family

ID=42268421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072841 WO2010070730A1 (ja) 2008-12-16 2008-12-16 亜鉛めっき鋼板用表面処理剤

Country Status (4)

Country Link
JP (1) JP5555179B2 (ja)
CN (1) CN102245807A (ja)
TW (1) TWI444504B (ja)
WO (1) WO2010070730A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017507A (ja) * 2010-07-09 2012-01-26 Nippon Parkerizing Co Ltd 金属表面処理剤、表面処理金属材料、および金属表面処理方法
JP2012017506A (ja) * 2010-07-09 2012-01-26 Nippon Parkerizing Co Ltd 金属表面処理剤、表面処理金属材料、および金属表面処理方法
CN102785160A (zh) * 2012-08-23 2012-11-21 浙江荣成辊轴有限公司 一种离型纸用压花辊及其制备方法
CN102799065A (zh) * 2012-08-23 2012-11-28 浙江荣成辊轴有限公司 一种离型纸用花纹辊及其制备方法
JP2013170312A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2013170313A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2015175003A (ja) * 2014-03-13 2015-10-05 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに表面処理亜鉛系めっき鋼板およびその製造方法
WO2019006612A1 (zh) * 2017-07-03 2019-01-10 深圳市宏昌发科技有限公司 钝化剂、金属镀件钝化处理方法和金属工件
WO2019087475A1 (ja) * 2017-10-31 2019-05-09 日本パーカライジング株式会社 前処理剤および化成処理剤
JP2019173045A (ja) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 無機系化成処理液および無機系化成処理鋼板
US20210198522A1 (en) * 2019-12-31 2021-07-01 Industrial Technology Research Institute Water-based coating material and method for manufacturing the same
CN115233106A (zh) * 2022-07-28 2022-10-25 武汉钢铁有限公司 防模具粘粉用电镀锌耐指纹涂层钢板及其制造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478588B2 (ja) * 2011-11-18 2014-04-23 株式会社神戸製鋼所 耐食性及び導電性に優れた表面処理金属板
JP6151907B2 (ja) * 2012-10-12 2017-06-21 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料
CN105723016B (zh) * 2013-11-14 2017-10-31 日新制钢株式会社 化学转化处理液及化学转化处理钢板
CN103866307A (zh) * 2014-03-13 2014-06-18 沈阳市环东电镀厂 环保型一剂双色镀锌三价铬钝化剂及其制备和使用方法
CN104099018A (zh) * 2014-06-19 2014-10-15 锐展(铜陵)科技有限公司 一种双组份铝合金表面处理剂
CN104231913A (zh) * 2014-09-16 2014-12-24 天津千鑫有色金属制品有限公司 一种环保型铝合金压铸件表面处理剂及制备方法
JP6263278B2 (ja) * 2014-12-10 2018-01-17 新日鐵住金株式会社 亜鉛めっき鋼板用表面処理剤
JP6658878B2 (ja) * 2016-05-24 2020-03-04 日本製鉄株式会社 容器用鋼板
CN107488847B (zh) * 2016-06-12 2019-10-25 宝山钢铁股份有限公司 一种表面处理剂、涂覆有该表面处理剂的搪瓷用钢和零件
CN105949837A (zh) * 2016-07-19 2016-09-21 董芬芳 一种金属用磷锌防锈涂料
CN108663833A (zh) * 2018-05-14 2018-10-16 合肥奇呗数字科技有限公司 一种自清洁的室外液晶显示屏
JP7090507B2 (ja) * 2018-08-17 2022-06-24 日本製鉄株式会社 化成処理被膜を有する塗装鋼材、及びその製造方法
CN110616422B (zh) * 2019-10-08 2022-03-22 鞍钢股份有限公司 一种镀锌板无铬环保钝化剂及制备使用方法
KR102357081B1 (ko) * 2019-12-12 2022-01-28 주식회사 포스코 내열성 및 테이프 부착성이 우수한 전기아연도금 강판용 코팅 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
WO2021207950A1 (en) * 2020-04-15 2021-10-21 Henkel Ag & Co. Kgaa Anti-blackening coating composition
CN114316801B (zh) * 2021-12-06 2023-01-20 首钢集团有限公司 一种用于镀层钢板的表面处理液、制备方法及使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022370A (ja) * 2004-07-07 2006-01-26 Kansai Paint Co Ltd 表面処理鋼板
WO2007020762A2 (ja) * 2005-08-17 2007-02-22 Nihon Parkerizing Co., Ltd. 金属材料用水系表面処理剤及び表面被覆金属材料
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022370A (ja) * 2004-07-07 2006-01-26 Kansai Paint Co Ltd 表面処理鋼板
WO2007020762A2 (ja) * 2005-08-17 2007-02-22 Nihon Parkerizing Co., Ltd. 金属材料用水系表面処理剤及び表面被覆金属材料
WO2007069783A1 (ja) * 2005-12-15 2007-06-21 Nihon Parkerizing Co., Ltd. 金属材料用表面処理剤、表面処理方法及び表面処理金属材料

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017507A (ja) * 2010-07-09 2012-01-26 Nippon Parkerizing Co Ltd 金属表面処理剤、表面処理金属材料、および金属表面処理方法
JP2012017506A (ja) * 2010-07-09 2012-01-26 Nippon Parkerizing Co Ltd 金属表面処理剤、表面処理金属材料、および金属表面処理方法
JP2013170312A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
JP2013170313A (ja) * 2012-02-23 2013-09-02 Kansai Paint Co Ltd 金属表面処理剤用水性バインダ組成物
CN102785160A (zh) * 2012-08-23 2012-11-21 浙江荣成辊轴有限公司 一种离型纸用压花辊及其制备方法
CN102799065A (zh) * 2012-08-23 2012-11-28 浙江荣成辊轴有限公司 一种离型纸用花纹辊及其制备方法
CN102799065B (zh) * 2012-08-23 2013-09-11 浙江荣成辊轴有限公司 一种离型纸用花纹辊及其制备方法
JP2015175003A (ja) * 2014-03-13 2015-10-05 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに表面処理亜鉛系めっき鋼板およびその製造方法
WO2019006612A1 (zh) * 2017-07-03 2019-01-10 深圳市宏昌发科技有限公司 钝化剂、金属镀件钝化处理方法和金属工件
WO2019087475A1 (ja) * 2017-10-31 2019-05-09 日本パーカライジング株式会社 前処理剤および化成処理剤
JPWO2019087475A1 (ja) * 2017-10-31 2021-03-25 日本パーカライジング株式会社 前処理剤および化成処理剤
US11965247B2 (en) 2017-10-31 2024-04-23 Nihon Parkerizing Co., Ltd. Pretreatment agent and chemical conversion treatment agent
JP2019173045A (ja) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 無機系化成処理液および無機系化成処理鋼板
US20210198522A1 (en) * 2019-12-31 2021-07-01 Industrial Technology Research Institute Water-based coating material and method for manufacturing the same
CN115233106A (zh) * 2022-07-28 2022-10-25 武汉钢铁有限公司 防模具粘粉用电镀锌耐指纹涂层钢板及其制造方法
CN115233106B (zh) * 2022-07-28 2024-04-02 武汉钢铁有限公司 防模具粘粉用电镀锌耐指纹涂层钢板及其制造方法

Also Published As

Publication number Publication date
CN102245807A (zh) 2011-11-16
JPWO2010070730A1 (ja) 2012-05-24
TWI444504B (zh) 2014-07-11
JP5555179B2 (ja) 2014-07-23
TW201024462A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5555179B2 (ja) 亜鉛めっき鋼板用表面処理剤、亜鉛めっき鋼板の表面処理方法および亜鉛めっき鋼板
JP5555178B2 (ja) 金属材料用表面処理剤、およびそれを用いた金属材料の表面処理方法、表面処理金属材料
JP5555177B2 (ja) 金属材料用表面処理剤
JP4683582B2 (ja) 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP5712980B2 (ja) 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法
JP2006213958A (ja) 金属材料表面処理用組成物及び処理方法
JP6206373B2 (ja) 有機ケイ素化合物の製造方法及び金属表面処理剤
KR20130051997A (ko) 아연계 도금 강판용의 표면 처리액 그리고 아연계 도금 강판 및 그의 제조 방법
WO2006137663A1 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
JP5343570B2 (ja) 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法
JP6523253B2 (ja) 亜鉛めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JP2011068996A (ja) 金属材料表面処理用組成物及び処理方法
JP2012111983A (ja) 金属表面処理剤及びこれを用いた金属表面処理方法
JP5673642B2 (ja) 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法
JP5314547B2 (ja) 金属材料用表面処理剤、表面処理方法、および表面処理金属材料
WO2017078105A1 (ja) 亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用水系表面処理剤、被覆方法及び被覆鋼材
JP3923418B2 (ja) ノンクロム処理亜鉛系めっき鋼板とその製造方法
TW201839170A (zh) 鋅系鍍覆鋼板用表面處理劑
JP2013060646A (ja) スプレー塗布表面処理用組成物、表面処理溶融亜鉛めっき鋼板の製造方法、および表面処理溶融亜鉛めっき鋼板
JP5673643B2 (ja) 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法
JP6092591B2 (ja) スプレー塗布表面処理用組成物、表面処理亜鉛めっき鋼板の製造方法、および表面処理亜鉛めっき鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132360.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878898

Country of ref document: EP

Kind code of ref document: A1