WO2010058749A1 - Mcfc発電システムとその運転方法 - Google Patents

Mcfc発電システムとその運転方法 Download PDF

Info

Publication number
WO2010058749A1
WO2010058749A1 PCT/JP2009/069429 JP2009069429W WO2010058749A1 WO 2010058749 A1 WO2010058749 A1 WO 2010058749A1 JP 2009069429 W JP2009069429 W JP 2009069429W WO 2010058749 A1 WO2010058749 A1 WO 2010058749A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
power generation
cathode
temperature
fuel
Prior art date
Application number
PCT/JP2009/069429
Other languages
English (en)
French (fr)
Inventor
上松 宏吉
昭心 渡部
亀山 寛達
Original Assignee
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京瓦斯株式会社 filed Critical 東京瓦斯株式会社
Priority to KR1020117011593A priority Critical patent/KR101352219B1/ko
Priority to US13/129,801 priority patent/US20110223500A1/en
Priority to EP09827530.8A priority patent/EP2360764A4/en
Priority to JP2010539222A priority patent/JP5331819B2/ja
Publication of WO2010058749A1 publication Critical patent/WO2010058749A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention belongs to the field of energy conversion devices, and relates to a fuel cell that directly converts chemical energy of a fuel gas into electricity.
  • the present invention relates to an MCFC-gas turbine hybrid system that contributes to the effective use of energy resources and the improvement of the global environment and its operation method.
  • the MCFC-gas turbine hybrid system is simply referred to as “MCFC power generation system”.
  • FIG. 3 is an overall configuration diagram of a conventional MCFC power generation system (MCFC-gas turbine hybrid system).
  • the fuel gas FG such as city gas is desulfurized by the desulfurizing agent 2 in the desulfurizer 1 and then guided to the fuel humidifier 41.
  • the treated water PW is sprayed and evaporated while the fuel gas is heated by the cathode exhaust of the MCFC 12, and the preheated mixed gas of fuel gas and water vapor is then led to the pre-converter 9.
  • the treated water used at this time is obtained by treating the feed water W with the water treatment device 4 and supplying the fuel humidifier 41 with the pump 6 via the treated water tank 5.
  • the pre-converter 9 is a kind of reformer, and a reforming catalyst 10 is disposed inside, but there is no heating source, and heavy components more than ethane are reformed mainly by sensible heat of the gas that it has. Methane is hardly reformed.
  • the gas exiting the preconverter 9 is heated to near the operating temperature of the fuel cell by the fuel heater 11 and supplied to the MCFC 12.
  • the MCFC 12 is an internal reforming type, and an internal reformer 38 is incorporated in the fuel cell.
  • the anode A In the anode A, about 70% of the total of H 2 and CO produced by reforming is used for the power generation reaction (H 2 + CO 3 2 ⁇ ⁇ H 2 O + CO 2 + 2e ⁇ ), but the rest is catalytic combustion as anode exhaust Guided to vessel 14.
  • the anode exhaust is mixed with the air that is the exhaust of the gas turbine, the combustible components in the anode exhaust are combusted by the combustion catalyst 15, and the combustion gas whose temperature has risen is heat-exchanged with the compressed air CA by the high-temperature heat exchanger 16.
  • the combustion gas whose temperature has decreased is supplied to the cathode C.
  • the cathode C At the cathode C, a part of CO 2 and oxygen are consumed and discharged from the cathode C by a power generation reaction (CO 2 + 1 / 2O 2 + 2e ⁇ ⁇ CO 3 2 ⁇ ).
  • the cathode exhaust is heated to the fuel side by the fuel heater 11 and then led to the low-temperature regeneration heat exchanger 32 to preheat the compressed air, and then the fuel humidifier 41 is used to heat the fuel side, To be released.
  • the gas turbine generator 27 has a configuration in which a compressor 28, a turbine 29, and a generator 30 are connected to one shaft, and the air AIR is compressed by the compressor 28 via a filter 31, and the compressed air CA is subjected to low-temperature regenerative heat exchange.
  • the vessel 32 Preheated by the vessel 32, then heated to a predetermined temperature by the high temperature heat exchanger 16 and led to the turbine 29.
  • the turbine 29 works in the process of expanding to near atmospheric pressure, and the exhaust gas is supplied to the cathode via the catalytic combustor 14 and the high temperature heat exchanger 16.
  • the shaft output obtained by subtracting the power of the compressor 28 and the mechanical loss from the output of the turbine 29 is transmitted to the generator 30, whereby an AC output is obtained using the exhaust heat of the fuel cell.
  • FIG. 4 is a configuration diagram of an apparatus for separating and recovering CO 2 from combustion exhaust gas.
  • the combustion exhaust gas CG comes into contact with the absorption liquid LAB in the process from entering the lower part of the absorption tower 42 to being discharged from the upper part, and CO 2 in the combustion exhaust gas is absorbed into the absorption liquid LAB.
  • the absorption liquid RAB that has absorbed CO 2 is pressurized by the pump 43, preheated by the heat exchanger 44, then supplied from the upper part of the regeneration tower 45, and comes into contact with the high-temperature gas rising from the lower part in the process of dropping. To release the absorbed CO 2 .
  • a reboiler 46 is provided at the lower part of the regeneration tower 45, and the absorption liquid is heated by the heat medium HM, CO 2 and water vapor flow from the lower part to the upper part of the regeneration tower, and finally, CO 2 gas from the top of the tower. CO 2 G is recovered.
  • the absorption liquid LAB from which CO 2 has been released is pressurized by a pump 47, cooled by a heat exchanger 44 and a cooler 48, and supplied again from the upper part of the absorption tower. If the above-described CO 2 separation and recovery apparatus is used, CO 2 contained in the combustion exhaust gas can be separated and recovered, but energy consumption such as a reboiler heat source and pump power is large, and the equipment cost is also expensive.
  • Patent Documents 1 and 2 have already been disclosed.
  • FIG. 1 is a third diagram disclosed in Patent Document 1.
  • the combustion gas becomes CO 2 and H 2 O, which is cooled, It has been shown that CO 2 can be easily recovered by separating 2 O. Therefore, it is already disclosed in Patent Document 1 that CO 2 can be recovered by burning the anode exhaust of the fuel cell with oxygen and then cooling to separate the water.
  • SOFC solid oxide fuel cell
  • the fuel cell is a fuel gas oxidation process
  • the anode exhaust is a state in which the fuel gas is partially oxidized. If the fuel gas supplied to the fuel cell is a hydrocarbon fuel or a fuel gas derived therefrom, the anode exhaust is a partially oxidized hydrocarbon fuel. If this is burned with oxygen and cooled to remove water, CO 2 can be recovered.
  • SOFC is used as the fuel cell. Since the SOFC electrolyte has oxygen ion conductivity, even if air is supplied to the air electrode (cathode), only the oxygen in the air moves to the fuel electrode (anode) and reacts with hydrogen at the anode to generate electricity. Therefore, N 2 is not included in the anode exhaust. Therefore, since air can be supplied to the cathode instead of oxygen, oxygen is only needed to burn the anode exhaust with oxygen, and the consumption of oxygen can be reduced.
  • SOFC is used as the fuel cell
  • preheated air 130 obtained by preheating air 120 with the air preheater 110 is supplied to the cathode, and the heat source of the air preheater is cathode exhaust.
  • Gas is supplied to anode A.
  • the supplied fuel gas undergoes an internal reforming reaction in the fuel cell, and a power generation reaction occurs due to the generated H 2 or CO.
  • oxygen is introduced from the outside into the gas discharged from the anode A, which is led to the combustor 360, and the combustion gas is led to the heat exchanger 200, where the water 220 is evaporated, and the steam is converted into the fuel. Used as quality steam. Further, the combustion gas cooled by the heat exchanger 200 is then introduced into a condenser 230, where water is separated and recovered remaining gas as CO 2. The recovered water is used to generate water vapor.
  • FIG. 2 corresponds to FIG. 14 disclosed in Patent Document 2 and is a hybrid system of MCFC, gas turbine, and steam turbine.
  • Oxidizing agent is not air, is a system that enables the CO 2 recovery by using the oxygen.
  • the fuel cell of this system is an MCFC.
  • Methanol is supplied to the anode 407 from a tank, mixed with the recycle gas of the anode exhaust, and supplied to the anode.
  • the cathode 406 is supplied with a mixture of combustion gas obtained by burning anode exhaust with oxygen and gas turbine exhaust.
  • the cathode exhaust is guided to a steam generator 408, and after steam is generated, it is guided to a cooler 410 to separate moisture.
  • the steam generated by the steam generator is guided to the steam turbine 409 to drive the steam turbine and generate electric power.
  • the cathode exhaust from which moisture is separated by the cooler 410 that is, the mixed gas of CO 2 and O 2 is guided to the compressor 411 of the gas turbine, and the compressed gas is heated by the heat exchanger 413, and the combustor Guided to 403.
  • Methanol and oxygen are supplied to the combustor 403, and the combustion gas is supplied to the gas turbine, which works in the process of expanding in the gas turbine and generates power.
  • the exhaust of the gas turbine is supplied to the cathode.
  • the anode exhaust is guided to the combustor 412, oxygen is supplied to the combustor, and combustible components in the anode exhaust are combusted.
  • This combustion gas gives heat to the compressed gas in the heat exchanger 413, and then is divided into two systems. In one system, moisture is separated by the cooler 414, and CO 2 gas is recovered. The other system is supplied to the cathode.
  • Patent Document 2 is a very complex system consisting of a combination of MCFC, gas turbine, and steam turbine, and the subsystems affect each other, making it difficult to operate and control. It is not possible to change the composition freely.
  • problems that are not solved by the system of Patent Document 2 will be described in detail.
  • the power generation reaction of MCFC is as follows. About half of the reaction heat of hydrogen is changed to electricity, and the rest is heat. Cathode reaction: CO 2 + 1 / 2O 2 + 2e ⁇ ⁇ CO 3 2 ⁇ Anode reaction: H 2 + CO 3 2 ⁇ ⁇ H 2 O + CO 2 + 2e ⁇ Overall reaction: H 2 + 1 / 2O 2 ⁇ H 2 O Therefore, the fuel cell needs to be cooled according to the heat generated by the power generation reaction. In the case of the external reforming type MCFC, it is cooled by sensible heat of the cathode gas and the anode gas, and in the case of the internal reforming type, the cathode gas and the anode are cooled.
  • the cathode In addition to the sensible heat of the gas, it is also cooled by a reforming reaction. Therefore, the flow rate of the gas flowing through the cathode and the temperatures of the inlet and outlet are determined by the heat balance of the fuel cell.
  • the cathode is supplied with exhaust from a gas turbine, and after the cathode exhaust has separated moisture, it is supplied to a compressor of the gas turbine, methanol and oxygen are added, and the combustion gas is supplied to the gas turbine. That is, the cathode and the gas turbine are integrated and cannot be freely adjusted individually. It is quite difficult to maintain the fuel cell thermal balance between the amount of gas flowing through the cathode and the cathode inlet and outlet temperatures.
  • the amount corresponding to the amount of CO 2 and O 2 consumed by the power generation reaction of the cathode must be replenished from the outside.
  • CO 2 is replenished from methanol and by recycling the gas from the anode exhaust burned with oxygen, but this amount must exactly match the power generation reaction. Since the amounts of methanol and oxygen determine the temperature at the cathode inlet and at the same time determine the CO 2 balance, it is quite difficult to satisfy this condition.
  • the amount of CO 2 produced from methanol cannot exceed the amount of power generation reaction, and oxygen cannot enter more than is consumed in the power generation reaction.
  • the sum of the CO 2 and O 2 coming from the anode exhaust combustion gas and the CO 2 and O 2 coming from the methanol combustor must always closely match the amount consumed by the power generation reaction.
  • the gas turbine outlet temperature which is determined by the combustion of methanol, also determines the gas turbine outlet temperature, that is, the cathode inlet temperature. Therefore, there is a factor that determines the methanol flow rate separately from the CO 2 balance. Both fuel cells and gas turbines can only be operated under conditions that satisfy these conditions.
  • the power generation load is lowered from 100% of the rated value to, for example, 50%
  • the heat generation in the fuel cell is reduced to less than half
  • the cathode inlet and outlet temperatures are kept constant
  • the flow rate through the gas turbine is less than half.
  • the pressure ratio of the gas turbine also changes depending on the flow rate, in order to maintain the cathode inlet temperature constant, the amount of methanol, that is, the combustion temperature must be changed in accordance with the flow rate.
  • the amount of CO 2 consumed by the power generation reaction is less than half, the amount of methanol must be less than half.
  • both the gas turbine and the fuel cell are operated while satisfying the cathode gas circulation amount, the cathode inlet / outlet temperature, and the CO 2 balance that influence the thermal balance of the fuel cell, and the load It is very difficult to change freely.
  • Nickel short-circuiting means that nickel oxide constituting the cathode dissolves in the form of ions in the electrolyte (NiO + CO 2 ⁇ Ni 2+ + CO 3 2 ⁇ ), and is reduced by hydrogen. This is a phenomenon in which nickel is deposited (Ni 2+ + H 2 + CO 3 2 ⁇ ⁇ Ni + H 2 O + CO 2 ). When the amount of nickel deposited increases, the anode and cathode of the electrolyte plate, which must be an insulator, become conductive. This is a fatal problem for fuel cells.
  • methanol is supplied to the anode as fuel, but no steam necessary for reforming is supplied from the outside, and all is provided by recycling of the anode exhaust.
  • the anode exhaust includes the CO 2 mass besides H 2 O, since CO 2 is also recycled, lower the anodes of hydrogen partial pressure, whereby the voltage of the fuel cell decreases, the power generation efficiency decreases .
  • the fuel methanol is a system that cannot be operated unless it is supplied not only for the MCFC but also for the gas turbine, and its power generation efficiency is lower than a system that supplies fuel only to the MCFC having the highest power generation efficiency.
  • an oxygen plant is required to supply oxygen, and the oxygen consumption of both the methanol for the fuel cell and the methanol for the gas turbine.
  • the amount of combustion is required, and the power consumption becomes very large, which is a major factor for reducing power generation efficiency.
  • MCFC has a factor that can improve power generation efficiency by using oxygen, but gas turbine is determined by the flow rate flowing through the gas turbine, inlet temperature and pressure ratio, so there is no particular merit of using oxygen, so it corresponds to gas turbine use
  • the power consumed by the oxygen plant is a factor that reduces power generation efficiency.
  • the system disclosed in FIG. 2 does not recover heat at all and tries to convert as much of the energy of fuel as possible into electric power, which is used as a large-scale commercial power generation facility.
  • it is not suitable for small and medium distributed power sources that require both heat and power.
  • the distributed power supply requires a load change, and the required ratio of heat and electricity is not constant, and so-called thermoelectric variable operation is also required.
  • the entire system is integrated, and it seems that the flexibility of the system for performing load change, thermoelectric variable operation, adjustment of cathode gas composition, and the like is lacking.
  • the present invention has been developed to solve the above-described conventional problems. That is, the object of the present invention is to minimize the equipment added to the normal power generation equipment, greatly reduce or not substantially release CO 2 into the atmosphere, and at the same time provide high power generation efficiency and heat recovery efficiency. It is to provide an MCFC power generation system capable of obtaining the above and a method for operating the same. That is, an object of the present invention is to provide an MCFC power generation system having substantially no generation of CO 2 into the atmosphere and having high power generation efficiency and heat recovery efficiency, and an operation method thereof.
  • an object of the present invention is to adjust the gas composition of the cathode so that the voltage and output of the fuel cell can be adjusted within a certain range, and the ratio of heat to electricity can be greatly changed, so-called thermoelectric variable operation. It is to provide an MCFC power generation system that can be operated and an operation method thereof.
  • the present invention has a fuel gas supply system for supplying fuel gas to a molten carbonate fuel cell
  • the fuel gas supply system has a fuel heater connected to the anode outlet, anode exhaust at the fuel heater outlet divided into two systems, one system connected to the anode exhaust circulation blower, and the blower outlet gas connected to the fuel cell Is mixed with the fuel gas supplied from the outside, then mixed with the reforming steam, and then introduced into the catalyst layer of the pre-converter, and after pre-processing the mixed gas, the temperature is raised by the fuel heater to the fuel cell.
  • An MCFC power generation system is provided.
  • the mixing temperature of the outlet gas of the anode exhaust circulation blower, the fuel gas supplied from the outside, and the reforming steam is in the range of 250 to 400 ° C.
  • the anode recycle amount was controlled, thereby increasing the methane concentration of the preconverter outlet gas.
  • the present invention has a cathode gas circulation system for circulating the cathode gas of a molten carbonate fuel cell
  • the cathode gas circulation system has a closed circulation loop in which the suction side of the cathode gas circulation blower is connected to the cathode outlet and the discharge side is connected to the cathode inlet.
  • the cathode outlet side is divided into two systems, and one system has a flow control valve.
  • the other system is connected to a check valve, and an oxygen supply line having a flow control valve and a CO 2 supply line having a flow control valve are connected downstream of the check valve.
  • a featured MCFC power generation system is provided.
  • the CO 2 supply line is provided with a heat exchanger having a temperature adjustment function, and the CO 2 supply temperature is adjusted, whereby the cathode that has passed through the check valve.
  • the cathode inlet temperature can be adjusted only by supplying and mixing oxygen and CO 2 to the outlet gas.
  • the energy recovery system recovers energy from the anode exhaust of the molten carbonate fuel cell
  • the energy recovery system guides at least part of the anode exhaust to a mixer, while the mixer is connected to an oxygen supply line and a combustion gas recycle line, and the mixed gas at the outlet of the mixer is guided to a catalytic oxidizer and oxidized.
  • the combustible component in the anode exhaust gas is burned with oxygen by the catalyst, and the combustion gas exiting the catalytic oxidizer first heats the compressed air of the gas turbine using the separately provided air as the working medium, and then recycles CO 2.
  • An exhaust heat recovery boiler where steam is generated, and the combustion gas exiting the evaporation section of the exhaust heat recovery boiler is divided into two systems, and one system is connected to a combustion gas recycling blower and cooled.
  • An MCFC power generation system is provided that recycles the generated combustion gas into a mixer and supplies the other system to the feed water heating section of the exhaust heat recovery boiler. Is done.
  • a gas turbine that uses air that receives heat from the high-temperature combustion gas from the catalytic oxidizer via an air heater as a working medium, and the air that is the working medium is a gas turbine. And is not mixed with any other fluid.
  • the thermal energy of the turbine exhaust it is configured so that the compressed air is first heated by the regenerative heat exchanger and then steam is generated by the exhaust heat recovery boiler.
  • the outlet temperature of the regenerative heat exchanger was controlled so that the necessary steam could be generated.
  • the rotational speed of the combustion gas recycle blower was controlled so that the outlet temperature of the catalyst oxidizer was made constant according to the set value.
  • it has a damper that can switch the combustion gas recycling position from the low temperature part to the high temperature part.
  • the combustion gas recycling position is switched from the low temperature portion to the high temperature portion, thereby increasing the flow rate of the combustion gas passing through the air heater and increasing the amount of heat given to the compressed air.
  • the circulating flow rate of the combustion gas recycle blower is gradually increased by gradually decreasing the set value of the outlet temperature of the catalyst oxidizer.
  • the outlet temperature is lowered, the amount of heat given to the compressed air through the air heater is reduced, and as a result, the output of the gas turbine is reduced, and conversely, the generated steam amount of the exhaust heat recovery boiler is increased.
  • the reforming steam supply is switched from the exhaust heat recovery boiler on the gas turbine side to the exhaust heat recovery boiler on the combustion gas side. Stop and maximize the amount of steam generated in the exhaust heat recovery boiler.
  • the CO 2 and O 2 concentrations in the cathode circulation system are increased by the amount corresponding to the voltage deterioration in response to the voltage deterioration with time of the fuel cell, so that the voltage of the fuel cell is increased.
  • a method for operating the MCFC power generation system is provided, characterized in that the power consumption of the MCFC is maintained substantially constant during the lifetime.
  • the cathode gas circulation system is provided, the cathode gas is circulated by the cathode gas circulation blower, forms a closed loop, and oxygen consumed by the power generation reaction is supplied from the oxygen supply plant. Since it is replenished and CO 2 is replenished with recycled CO 2 , the amount and composition of the cathode circulation gas can be maintained in a necessary state, and basically there is no exhaust from the cathode gas circulation system. Therefore, it can be said that it is a power generation facility that does not substantially release CO 2 into the atmosphere or a power generation facility that is extremely reduced.
  • the amount of fuel gas supplied from the outside can be reduced.
  • the temperature of the fuel gas and reforming water vapor can be raised to the operating temperature of the pre-converter by mixing with a part of the high-temperature anode exhaust, so that a fuel humidifier is not required.
  • the anode exhaust contains water vapor generated by the power generation reaction of the anode, the amount of reforming water vapor to be newly supplied can be significantly reduced.
  • the MCFC of the present invention is an internal reforming type, in which a part of anode exhaust and a fuel gas such as city gas supplied from the outside are mixed, and reforming steam is added to form one reforming catalyst layer.
  • a part of anode exhaust and a fuel gas such as city gas supplied from the outside are mixed, and reforming steam is added to form one reforming catalyst layer.
  • the medium of the gas turbine is air and does not pollute the atmosphere by exhaust. Further, when the gas turbine is operated, the electric output increases, but when the gas turbine is stopped, the exhaust heat recovery becomes large, so that the thermoelectric ratio variable operation becomes possible. (7) When oxygen is supplied instead of air as an oxidant supplied to the MCFC cathode, not only CO 2 can be recovered, but the fuel cell voltage can be increased by increasing the CO 2 and O 2 concentration of the cathode. Can be increased. As a result, the output of the fuel cell can be increased and the power generation efficiency can be improved.
  • FIG. 1 is a configuration diagram of a power generation system disclosed in Patent Document 1.
  • FIG. It is a block diagram of the electric power generation system disclosed by patent document 2.
  • FIG. It is a whole block diagram of a conventional MCFC power generation system.
  • It is a schematic diagram of an apparatus for separating and recovering CO 2 from flue gas.
  • 1 is an overall configuration diagram of an MCFC power generation system of the present invention.
  • FIG. 6 is a detailed view of the cathode gas circulation system of FIG. 5.
  • FIG. 6 is a detailed view of the fuel gas supply system of FIG. 5.
  • FIG. 6 is a detailed view of the energy recovery system of FIG. 5.
  • It is a relationship diagram of the combustion gas recycle amount, the inlet temperature of the gas turbine, and the output. It is data at the time of constant voltage operation.
  • FIG. 5 is an overall configuration diagram of the MCFC power generation system of the present invention.
  • the fuel gas FG such as city gas supplied from the outside is desulfurized by the desulfurizing agent 2 in the desulfurization apparatus 1 and supplied to the pre-converter 9 through the filter 3. Mixed in state.
  • the city gas supplied from the outside At the same time as the heavy component of ethane or higher contained in the fuel gas is reformed, H 2 , CO, and CO 2 in the anode exhaust gas to be recycled cause a methanation reaction.
  • the order of mixing fuel gas such as city gas supplied from the outside and part of the anode exhaust and reforming steam is as shown in FIG. 5 or after mixing part of the anode exhaust and reforming steam.
  • fuel gas such as city gas supplied from the outside and part of the anode exhaust and reforming steam
  • FIG. 5 shows only one example.
  • the gas exiting the preconverter is guided to the fuel heater 11, heated to a temperature slightly lower than the operating temperature of the fuel cell by the anode exhaust, and supplied to the fuel cell 12.
  • the fuel cell 12 is an internal reforming type MCFC, and a reformer 38 is incorporated in the fuel cell.
  • the fuel gas is reformed in the fuel cell, and H 2 and CO serving as fuel for the MCFC are generated.
  • part of H 2 and CO in the fuel gas is consumed by the power generation reaction, and the rest is discharged from the fuel cell as anode exhaust. Since direct current electricity is generated in the fuel cell, it is converted into alternating current by the inverter 37 and output.
  • the anode exhaust is heated by the fuel heater 11 to the pre-converter outlet gas, and then a part of the anode exhaust is pressurized by the anode exhaust circulation blower 8 and mixed with fuel gas such as city gas supplied from the outside. The remainder is mixed with oxygen and the recycle combustion gas RCG by the mixer 13 and led to the catalytic combustor 14.
  • the catalytic combustor 14 is provided with a combustion catalyst layer 15 so that combustible components in the anode exhaust are combusted.
  • the combustion gas leaving the catalytic combustor 14 is guided to the high temperature heat exchanger 16 to heat the compressed air CA to the turbine inlet temperature.
  • the CO 2 heater 17 heats the RCO 2 that is the recycled CO 2 , and the heat is guided to the exhaust heat recovery boiler 18.
  • the exhaust heat recovery boiler 18 is composed of an evaporation unit EVA and a feed water heating unit ECO, and the heat source is the same combustion gas, but the recycled combustion gas RCG is branched from the outlet of the evaporation unit of the exhaust heat recovery boiler 18, The flow rate of the combustion gas is different between the evaporation unit and the feed water heating unit.
  • the position where the combustion gas is recycled is used as the outlet of the evaporation section of the exhaust heat recovery boiler.
  • it can be used as the outlet of the CO 2 heater 17 or the outlet of the high-temperature heat exchanger 16, and the recycling position is high.
  • the power generation efficiency becomes, the power generation efficiency increases, but the exhaust heat recovery efficiency decreases, and each has its own characteristics.
  • the recycled combustion gas is pressurized by the combustion gas recycling blower 19 and sent to the mixer 13.
  • FIG. 5 it is described in FIG. 5 that mixing is performed on the oxygen line, there is a method of mixing the anode exhaust, oxygen, and recycle combustion gas in the mixer 13 and other methods, and FIG. 5 is drawn in a specific sense. is not.
  • the combustion gas exiting the feed water heating section of the exhaust heat recovery boiler 18 is cooled by the cooler 20, and the condensed water is separated by the KO drum 21.
  • the dehumidifying system 22 includes a refrigerator 23, a heat exchanger 24, and a KO drum 25.
  • the CO 2 gas exiting the KO drum 25 has a CO 2 concentration increased to about 95%.
  • a part of the pressure is increased by the CO 2 recycle blower 26, preheated by the CO 2 heater 17, and then supplied to the cathode gas circulation system.
  • the remaining CO 2 gas is recovered by the high-concentration CO 2 recovery device 70 in a high-concentration state, and is almost never released to the atmosphere.
  • the cathode gas circulation system forms a closed cycle that is circulated by the cathode gas circulation blower 36, and oxygen consumed by the power generation reaction (CO 2 + 1 / 2O 2 + 2e ⁇ ⁇ CO 3 2 ⁇ ) of the cathode is oxygen.
  • the oxygen supply plant 33 is composed of an air compressor 34 and a separation device 35.
  • the oxygen supply plant has several types such as PSA (Pressure Swing Adsorber) and liquefaction separation, and the present invention is an oxygen supply plant. It does not specify the details.
  • the CO 2 consumed by the power generation reaction is replenished to the cathode gas circulation system after the anode exhaust gas is burned with oxygen, and the cooled and dehumidified recycled CO 2 is preheated.
  • the temperature of the cathode gas becomes higher at the outlet than the inlet due to the heat generated by the power generation reaction in the fuel cell, but it can be adjusted to the inlet by mixing oxygen near normal temperature and recycled CO 2 preheated to 250 to 450 ° C. it can.
  • This temperature control is performed by controlling the outlet temperature of the CO 2 heater 17.
  • the above is the basic configuration of the MCFC power generation equipment portion of the present invention.
  • a gas turbine generator using air as a working medium is added thereto.
  • the air is guided to the compressor 28 of the gas turbine generator 27 through the filter 31, and the compressed air CA is first heated by the exhaust of the turbine 29 in the regenerative heat exchanger 32, and then the anode by the high temperature heat exchanger 16.
  • the compressed air that is heat-exchanged with the combustion gas CG of the exhaust gas and heated to the turbine inlet temperature is guided to the turbine 29.
  • Work is performed in the process of expanding to a pressure close to atmospheric pressure by the turbine 29, and the AC power is taken out by the generator 30 as AC output.
  • the turbine exhaust is led to the regenerative heat exchanger 32 where heat is supplied to the compressed air, and then to the exhaust heat recovery boiler 7.
  • the exhaust heat recovery boiler 7 generates low-pressure steam necessary for reforming, and the turbine exhaust discharged from the exhaust heat recovery boiler is released to the atmosphere.
  • the MCFC power generation system of the present invention described above has the following effects.
  • Cathode gas is circulated by a cathode gas circulation blower to form a closed loop.
  • Oxygen consumed by the power generation reaction (CO 2 + 1 / 2O 2 + 2e ⁇ ⁇ CO 3 2 ⁇ ) is replenished from the oxygen supply plant, and CO 2 is replenished with recycled CO 2.
  • the composition can also be maintained as required and there is essentially no exhaust from the cathode gas circulation system.
  • oxygen or CO 2 to be replenished contains impurities, a certain purge is required.
  • the amount of nitrogen contained in oxygen and the amount of H 2 O contained in CO 2 is small, a part of this CO 2 is recycled to the cathode, and the rest is almost recovered as high-concentration CO 2 gas. Almost no CO 2 emissions from the atmosphere.
  • carbonate ions (CO 3 2 ⁇ ) generated at the cathode pass through the electrolyte to the anode, and are generated by the power generation reaction (H 2 + CO 3 2 ⁇ ⁇ H 2 O + CO 2 + 2e ⁇ ) of the anode.
  • the anode exhaust contains CH 4 , H 2 , CO, CO 2 , H 2 O, but when combustible components are burned with oxygen, it becomes CO 2 and H 2 O, and if water is removed by cooling. Only CO 2 will remain. However, if the oxygen includes nitrogen contains nitrogen traces in the CO 2, if the oxygen has been excessively charged also includes a small amount of oxygen.
  • CO 2 cannot be completely removed by cooling to remove moisture, CO 2 contains a small amount of nitrogen, oxygen, water vapor, etc., but this impurity is recycled. The recovery is not particularly harmful. Since a portion of this CO 2 is recovered and the rest is recycled to the cathode, the atmospheric release of CO 2 from the anode is zero.
  • the fuel humidifier becomes unnecessary. Furthermore, since the anode exhaust contains water vapor generated by the power generation reaction of the anode, the amount of reforming water vapor to be newly supplied can be significantly reduced. A decrease in the amount of fuel gas such as city gas supplied from the outside is also a factor that can reduce the supply amount of reforming steam.
  • the MCFC of the present invention is an internal reforming type, and utilizes a reforming reaction (CH 4 + H 2 O ⁇ CO + 3H 2 ) that is an endothermic reaction for cooling the fuel cell. Therefore, it is preferable that the methane concentration in the fuel gas supplied to the fuel cell is high. However, the main components in the anode exhaust are H 2 , CO, CO 2 , H 2 O, and almost no methane is contained. Therefore, it is necessary to proceed with the methanation reaction (CO 2 + 4H 2 ⁇ CH 4 + 2H 2 O) which is the reverse reaction of the reforming reaction. This reaction can be achieved by adjusting the temperature with the same reforming catalyst.
  • a reforming reaction CH 4 + H 2 O ⁇ CO + 3H 2
  • the methanation reaction is an exothermic reaction, and when a part of the anode exhaust is methanated alone, the temperature rises too much and the methane concentration does not increase in equilibrium. If the temperature becomes too high, the catalyst will be deteriorated.
  • fuel gas such as city gas supplied from the outside contains ethane, propane, butane, etc. in addition to methane.
  • the reforming temperature is low, heavy components above ethane are almost reformed. Methane is hardly reformed. This reforming reaction is an endothermic reaction and needs to be preheated in advance to proceed alone.
  • the reforming reaction and the methanation reaction proceed simultaneously by mixing a part of the anode exhaust and a fuel gas such as city gas supplied from the outside, adding reforming steam and passing through one reforming catalyst layer.
  • a fuel gas such as city gas supplied from the outside
  • the temperature change is moderated and the reaction temperature can be easily maintained at the target temperature.
  • operations such as gas preheating and reactor cooling are unnecessary.
  • Fuel gas such as city gas supplied from the outside is at room temperature, and when this is mixed with saturated steam, drainage is generated. Therefore, after mixing fuel gas with a part of the hot anode exhaust, is steam mixed? Alternatively, after mixing a portion of the high-temperature anode exhaust gas and water vapor, mixing can be performed without generating drainage by mixing the fuel gas.
  • the medium of the gas turbine is air, does not pollute the atmosphere by exhaust, and only receives heat from the MCFC power generation system via the heat exchanger, so even if the gas turbine stops, the MCFC power generation system Can continue. Accordingly, the electric output increases when the gas turbine is operated, but the exhaust heat recovery increases when the gas turbine is stopped, so that the thermoelectric ratio variable operation becomes possible. As a process of this change, increase the amount of combustion gas recycled and lower the catalyst oxidizer outlet temperature to reduce the amount of heat exchanged in the high-temperature heat exchanger, lower the output of the gas turbine and at the same time generate steam in the exhaust heat recovery boiler The amount can be increased and the final form is a gas turbine shutdown. Details thereof will be described in Examples.
  • the amount of circulating gas at the cathode can be easily increased or decreased by changing the rotation speed of the blower. Even considering the heat balance of the battery, the CO 2 and O 2 concentrations of the cathode gas can be easily and accurately adjusted in consideration of a nickel short circuit. This will be described in detail in the embodiments.
  • FIG. 6 shows only the portion of the cathode gas circulation system of FIG. 5 and describes it in detail. It is necessary to replenish CO 2 and O 2 consumed by the cathode power generation reaction (CO 2 + 1 / 2O 2 + 2e ⁇ ⁇ CO 3 2 ⁇ ) and purge.
  • the reaction amount can be calculated from the direct current of the fuel cell, and the purge amount can be confirmed by the flow control valve 53.
  • O 2 is controlled by a flow rate control valve 51 from an oxygen plant provided outside the MCFC power plant, and is supplied at a temperature near room temperature.
  • CO 2 combusts the anode exhaust with oxygen, recycling the CO 2 dropped water was cooled (RCO 2) to control the flow rate at a flow rate regulating valve 52, a temperature regulating valve 40 provided in the CO 2 heater 36
  • RCO 2 the cathode gas circulation system
  • the cathode gas circulation system is replenished. Since the gas passing through the cathode has a higher temperature at the outlet than the inlet due to heat generated by the power generation reaction, the gas is controlled to return to the inlet temperature by replenishment and mixing of CO 2 and O 2 .
  • the replenishment temperature of the recycled CO 2 is adjusted with a CO 2 heater so that the temperature after adiabatic compression of the mixed gas with the cathode gas circulation blower becomes the cathode inlet temperature.
  • the cathode gas circulation blower controls the circulation amount so that the cathode outlet gas temperature becomes constant.
  • the cathode outlet of the cathode circulation system is divided into two systems, and one system is equipped with a flow control valve 53.
  • the system is connected to the purge line, the other system is connected to the check valve 54, and the CO 2 and O 2 supply lines are connected downstream of the check valve 54.
  • the cathode gas circulation system of the present invention can freely change the gas composition of the cathode, and can freely increase or decrease the amount of circulation according to the degree of heat generation of the fuel cell. In addition, it does not affect other subsystems.
  • Table 1 shows the plant performance when the cathode gas composition of the present invention is changed.
  • the CO 2 and O 2 concentrations in Table 1 do not mean the highest concentrations, but are concentrations that take into account the influence of nickel short-circuiting, and the power generation efficiency is still improved by 5%.
  • the operation at a high concentration may be performed only when it is desired to increase the power generation efficiency, and it can be easily returned to the standard operation condition.
  • the lifetime of the fuel cell is defined as when the cell voltage has deteriorated by 10%. Assuming that the operating time for one year is 8000 hours and the life of the fuel cell is 5 years and 40000 hours, it will deteriorate by 1% every six months.
  • the output of the fuel cell is proportional to the voltage of the fuel cell. However, the power generation efficiency will decrease by 1% every six months.
  • the CO 2 and O 2 concentrations of the cathode can be gradually increased in accordance with the deterioration of the fuel cell, whereby the voltage of the fuel cell can always be kept constant.
  • FIG. 10 shows data at a constant voltage operation.
  • This figure shows an example of changes in the CO 2 and O 2 concentrations of the cathode to maintain the same performance as standard operating conditions for 5 years.
  • the output of the fuel cell and the power generation efficiency can be improved by an average of 5%.
  • this operating method the period during which the partial pressure of CO 2 at the cathode is very high is short, and the accumulated amount of metallic nickel leading to a nickel short circuit can be suppressed. Therefore, this operation method is one operating method that increases power generation efficiency while suppressing the nickel short circuit.
  • FIG. 7 is a detailed view showing only the fuel gas supply system of FIG. 5.
  • the anode outlet is connected to the fuel heater 11, and the outlet gas of the pre-converter 9 is made close to the operating temperature of the fuel cell using the anode exhaust as a heat source. Heat.
  • the anode exhaust whose temperature has dropped is divided into two systems, one system is connected to the anode exhaust circulation blower, and the blower outlet gas is mixed with fuel gas such as city gas supplied from the outside.
  • a fuel gas such as city gas is supplied with its flow rate adjusted by a flow rate control valve 56.
  • the city gas and the like are mixed with steam for reforming.
  • the steam is supplied with its flow rate adjusted by a flow control valve 57.
  • This mixed gas is then guided to the reforming catalyst layer 10 of the pre-converter 9.
  • lighter components than ethane in the city gas are reformed, and CO, CO 2 and H 2 O in the anode recycle gas cause a methanation reaction.
  • the reforming reaction is an endothermic reaction
  • the methanation reaction is an exothermic reaction
  • the two reactions occur at the same time, which has the effect of suppressing temperature changes between each other, and maintains the operating temperature of the preconverter at the desired temperature. It becomes easy.
  • the preconverter outlet gas has a methane concentration.
  • a reforming reaction CH 4 + H 2 O ⁇ CO + 3H 2
  • the temperature controller 58 equipped with anode exhaust circulation blower according to the flow rate of city gas etc. and the flow rate of reforming steam by the temperature controller 58 so that the catalyst layer outlet temperature of the pre-converter is in the range of 250-450 ° C
  • the recycle amount is controlled by the speed controller 39.
  • the constituent elements of the fuel supply system of the present invention are that the anode outlet and the fuel heater are connected, the temperature of the anode exhaust is lowered, the anode exhaust line whose temperature is lowered is divided into two systems, and the one system is anode exhausted.
  • the circulation blower By connecting to the circulation blower, mixing the outlet gas of the anode exhaust circulation blower, fuel gas such as city gas, and reforming water vapor, the temperature can be adjusted without using a heat exchanger up to the supply gas temperature to the pre-converter.
  • the mixed gas is guided to the reforming catalyst layer of the pre-converter having no heat source, and the pre-converter operating temperature is in the range of 250 to 450 ° C. so that the methane concentration of the pre-converter outlet gas is increased.
  • the recycling rate of the anode exhaust is in the range of about 20-40%.
  • Table 2 shows a comparison of performance with and without recycling of the anode exhaust.
  • the power generation efficiency does not change, but the heat recovery rate is greatly improved.
  • the power generation efficiency of the entire plant does not change greatly, but individual factors have changed in various ways.
  • Increasing the anode recycling rate reduces the amount of city gas supplied, the amount of reforming steam supplied decreases, the fuel cell voltage decreases, and therefore the output of the fuel cell also decreases, the output of the gas turbine decreases, and the in-house power also decreases. Go down. These fluctuation factors have the effect of changing the operating conditions of the plant.
  • the fuel cell heat balance is maintained while maintaining the power generation efficiency by lowering the fuel cell voltage by increasing the anode recycling rate and reducing the city gas supply amount instead. Can take. In addition, it is effective in adjusting the specifications of the component devices.
  • FIG. 8 is a diagram showing the details of an energy recovery system that effectively burns the anode exhaust in FIG. 5 with oxygen and uses the heat of combustion through various heat exchangers.
  • the anode exhaust AEG is mixed with oxygen OXG and recycle combustion gas RCG in the mixer 13.
  • the amount of the combustible component in the anode exhaust can be calculated from the fuel supply amount, the fuel utilization rate, the direct current of the fuel cell, etc., so that the required oxygen amount is calculated based on that, and is controlled and supplied by the flow control valve 59 Is done.
  • the combustion gas RCG is recycled to the mixer by the combustion gas recycling blower. If the anode exhaust gas is simply burned with oxygen, the temperature becomes too high. Therefore, it is considered that the outlet temperature of the catalytic combustor can be adjusted by recycling the low-temperature combustion gas.
  • the combustible gas in the anode exhaust is burned by the combustion catalyst of the catalytic combustor 14 as the mixed gas of the anode exhaust, oxygen, and recycled combustion gas, and the temperature rises.
  • the speed controller 61 of the combustion gas recycle blower controls the flow rate so that the outlet temperature of the catalyst combustor matches the set value. This set value is changed as necessary.
  • the combustion gas exiting the catalytic combustor 14 first heats the compressed air by the high-temperature heat exchanger 16, then heats the recycled CO 2 by the CO 2 heater, and then generates steam by the exhaust heat recovery boiler 18. .
  • the combustion gas is recycled when it leaves the evaporation section EVA of the exhaust heat recovery boiler.
  • the remaining combustion gas is sent to the feed water heating unit ECO of the exhaust heat recovery boiler.
  • the combustion gas is recycled from the outlet of the high temperature heat exchanger 16. This switching is performed by gradually switching the opening degree of the damper 62 from the low temperature side to the high temperature side.
  • the flow rate of the combustion gas recycle blower increases so as to maintain the catalyst combustor outlet temperature at the set value. Accordingly, the amount of combustion gas passing through the high temperature heat exchanger 16 increases, and the amount of heat given to the compressed air increases.
  • the amount of air in the gas turbine is increased by the speed controller 64 of the gas turbine generator.
  • the output of the gas turbine is increased, but the amount of heat that goes to the exhaust heat recovery boiler is reduced accordingly, so the amount of steam generated is reduced.
  • Table 3 shows a comparison between standard operating conditions and high-power operating modes.
  • the power generation efficiency is improved by 2 points, but the heat recovery rate is reduced by 6 points. What mode of operation is desirable depends on the balance of heat demand and power demand at that time.
  • This gas turbine recovers the exhaust heat of the fuel cell and generates power, and the amount of exhaust heat changes depending on the load on the MCFC side. Therefore, the generator is a motor / generator and the rotation speed is variable. Consideration is given so that the air flow rate can be changed according to the operating conditions.
  • thermoelectric operation is possible by using the energy recovery system in Fig. 8.
  • the condition for maximizing the electrical output is the operation mode in which the recycle position of the combustion gas is switched to the high temperature heat exchanger outlet.
  • the operation method for maximizing heat recovery is as described below.
  • the recycle position of the combustion gas is set to the place where the evaporation part of the exhaust heat recovery boiler is left, and the set value of the outlet temperature of the catalytic oxidizer is gradually lowered in that state. This increases the flow rate of the combustion gas recycle blower.
  • the outlet temperature of the catalytic oxidizer decreases, the amount of heat given to the compressed air via the high-temperature heat exchanger 16 decreases, and the gas turbine inlet temperature decreases. As a result, the gas turbine output decreases.
  • no change is the amount of heat for heating the recycled CO 2 in the process in a CO 2 heater, the amount of evaporation in the heat recovery steam by the amount of reduced heat to be applied to the gas turbine increases.
  • Fig. 9 shows the relationship between the combustion gas recycle amount and the gas turbine inlet temperature and output.
  • the catalyst combustor outlet temperature falls below a certain temperature, the output of the gas turbine becomes zero.
  • the supply of reforming steam is switched from the exhaust heat recovery boiler on the gas turbine side to the exhaust heat recovery boiler on the combustion gas side, and the gas turbine is stopped.
  • the gas turbine is stopped, all the heat that entered the gas turbine during standard operation enters the exhaust gas heat recovery boiler on the combustion gas side, so the heat recovery amount is maximized.
  • Table 4 shows a comparison between standard operation and maximum heat recovery.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】通常の発電設備に対して付加する設備を最小にして、COの大気放出を大幅に削減するか又は実質的に放出せず、同時に高い発電効率及び熱回収効率を得ることができ、カソードのガス組成を調整することで、燃料電池の電圧及び出力をある範囲で調整することができ、熱と電気の割合も大きく変えることができ、熱電可変運転が可能なMCFC発電システムとその運転方法を提供する。 【解決手段】カソードガス循環系統を有し、カソードガスはカソードガスリサイクルブロワで循環されており、閉ループを形成し、発電反応によって消費される酸素は酸素供給プラントから補給され、COはリサイクルCOで補給される。またアノード排気中の可燃成分を酸素で燃焼し冷却して水を除去する。さらに、アノード排気中の燃料ガスをリサイクル使用する。

Description

MCFC発電システムとその運転方法
 本発明はエネルギー変換装置の分野に属し、燃料ガスが持つ化学エネルギーを直接電気に変換する燃料電池に関するものである。特に、溶融炭酸塩形燃料電池(MCFC)の発電効率を高め、かつ、COの回収を容易にし、更に、熱電可変等の運転を可能にし、カソードガスの組成を自由に調整できるようにシステムに柔軟性を持たせ、それによってエネルギー資源の有効利用や地球環境の改善に貢献するMCFC-ガスタービンハイブリッドシステムとその運転方法に関する。
 以下、本出願において、MCFC-ガスタービンハイブリッドシステムを単に「MCFC発電システム」と呼ぶ。
 図3は、従来型のMCFC発電システム(MCFC-ガスタービンハイブリッドシステム)の全体構成図である。
 都市ガス等の燃料ガスFGは脱硫器1の中の脱硫剤2で脱硫された後、燃料加湿器41に導かれる。ここで燃料ガスはMCFC12のカソード排気で加熱される過程で処理水PWが噴霧・蒸発され、予熱された燃料ガスと水蒸気の混合ガスは次にプレコンバータ9に導かれる。この時使われる処理水は供給水Wを水処理装置4で処理し、処理水タンク5を介してポンプ6で燃料加湿器41に供給される。
 プレコンバータ9は1種の改質器であり、内部に改質触媒10が配置されているが加熱源はなく、自らが持つガスの顕熱で主にエタン以上の重質成分が改質され、メタンはほとんど改質されない。プレコンバータ9を出たガスは燃料加熱器11で燃料電池の運転温度近くまで加熱され、MCFC12に供給される。MCFC12は内部改質型で内部改質器38が燃料電池に組み込まれている。
 アノードAでは改質されて生成されたHとCOの合計の約70%が発電反応(H+CO 2-→HO+CO+2e)に使われるが、残りはアノード排気として触媒燃焼器14に導かれる。ここでアノード排気はガスタービンの排気である空気と混合され、燃焼触媒15によってアノード排気中の可燃成分が燃焼され、温度が上昇した燃焼ガスは高温熱交換器16で圧縮空気CAと熱交換され、温度が下がった燃焼ガスはカソードCに供給される。
 カソードCでは発電反応(CO+1/2O+2e→CO 2-)によって一部のCOと酸素が消費されカソードCから排出される。カソード排気は燃料加熱器11で燃料側に熱を与えた後、低温再生熱交換器32に導かれ、圧縮空気の予熱を行い、次いで、燃料加湿器41で燃料側に熱を与えて、大気に放出される。
 一方、ガスタービン発電機27は圧縮機28とタービン29と発電機30が一軸に繋がれた構成で、空気AIRはフィルター31を介して圧縮機28で圧縮され、圧縮空気CAは低温再生熱交換器32で予熱され、次いで高温熱交換器16で所定の温度まで加熱されてタービン29に導かれる。タービン29では大気圧近くまで膨張する過程で仕事をし、排気は触媒燃焼器14及び高温熱交換器16を介してカソードへ供給される。ガスタービン発電機27ではタービン29の出力から圧縮機28の動力と機械損失を差し引いた軸出力が発電機30に伝えられることで、燃料電池の排熱を利用して交流出力が得られる。
 このシステムは発電効率が高く、その分、COの大気放出量は低減されるが、外部から供給される都市ガス等の燃料ガスから生成されるCOは最終的にすべてカソード排気中に含まれ、大気に放出される。また、MCFC12の排熱をガスタービン発電機27で回収しているため、カソード排気の温度は最終的に低くなるので、そこから蒸気を回収する等のことはできない。
 図4は、燃焼排ガスからCOを分離回収する装置の構成図である。
 燃焼排ガスCGは吸収塔42の下部から入り上部から排出されるまでの過程で吸収液LABと接触し、燃焼排ガス中のCOは吸収液LAB中に吸収される。COを吸収した吸収液RABはポンプ43で昇圧され、熱交換器44で予熱された後、再生塔45の上部より供給され、落下する過程で下部から上昇してくる高温のガスと接触することによって加熱され、吸収していたCOを放出する。再生塔45の下部にはリボイラ46が装備されており、熱媒体HMによって吸収液が加熱され、COや水蒸気が再生塔の下部から上部に向かって流れ、最終的に塔頂からCOガスCOGが回収される。COを放出した吸収液LABはポンプ47で昇圧され、熱交換器44及び冷却器48で冷却され、再び吸収塔上部から供給される。
 上述したCO分離回収装置を使えば燃焼排ガス中に含まれるCOを分離・回収することができるが、リボイラの熱源やポンプの動力等エネルギー消費が大きく、設備費も高価である。
 また、本発明に関連する先行技術として、例えば特許文献1、2が既に開示されている。
 図1は特許文献1に開示された第3図である。この図において、固体酸化物形燃料電池(SOFC)のアノード排気中に含まれる可燃成分を酸素で燃焼すれば燃焼ガスがCOとHOになることを利用し、それを冷却し、HOを分離すれば容易にCOを回収できることが示されている。従って、燃料電池のアノード排気を酸素で燃焼した後、冷却して水分を分離すればCOを回収できるということは、この特許文献1により既に公開されている。
 一方、すべての炭化水素は酸素で燃焼すれば生成物は理論的にはCOとHOになることは化学の原理として知られている。燃料電池は燃料ガスの酸化プロセスであり、アノード排気は燃料ガスが部分酸化された状態である。燃料電池に供給する燃料ガスが炭化水素燃料か、または、それから導出された燃料ガスであれば、アノード排気は炭化水素燃料を部分酸化したものである。これを酸素で燃焼して、冷却して水を除去すればCOが回収できる。
 図1の場合、燃料電池としてSOFCを用いている。SOFCの電解質は酸素イオン導電性を持っているので、空気極(カソード)に空気を供給してもその中の酸素だけが燃料極(アノード)に移動し、アノードで水素と反応して電気を発生するため、アノード排気中にはNが含まれることはない。従って、カソードには酸素でなく空気を供給することができるため、酸素が必要なのはアノード排気を酸素で燃焼するためだけであり、酸素の消費量を少なくすることができる。しかし、水素イオン導電性を持つリン酸形燃料電池(PAFC)や固体高分子形燃料電池(PEFC)でも、カソードに空気を供給してもアノード排気中に窒素は含まれず、アノード排気を酸素で燃焼すれば生成するのはCOとHOであり、冷却して水分を除去することでCOを回収することができる。
 すなわち、図1の場合、燃料電池としてはSOFCを使い、そのカソードには、空気120を空気予熱器110で予熱した予熱空気130を供給し、空気予熱器の熱源はカソード排気である。また、燃料は石炭340と酸素350を石炭ガス化炉310でガス化し、脱硫器320で脱硫した後、メタノール合成触媒層330を通し、その入口及び出口で水蒸気を添加し、触媒層を出たガスをアノードAに供給する。供給された燃料ガスは燃料電池内で内部改質反応を起こし、生成されたHやCOによって発電反応が起こる。その結果としてアノードAから排出されるガスに外部から酸素を投入し、それを燃焼器360に導き、その燃焼ガスを熱交換器200に導き、そこで水220を蒸発させ、その蒸気を燃料の改質用蒸気として使う。更に、熱交換器200で冷却された燃焼ガスは次に冷却器230に導き、そこで水を分離し、残ったガスをCOとして回収する。また、回収した水は水蒸気を発生させるために利用する。
 上述した特許文献1では燃料電池としてSOFCだけが対象であり、MCFCについては一切触れていない。これはMCFCでは発電原理が異なり、同じプロセスが使えないからである。
 一方、図2は、特許文献2に開示された図14に相当し、MCFCとガスタービンと蒸気タービンのハイブリッドシステムである。酸化剤は空気でなく、酸素を使うことでCO回収を可能にしたシステムである。
 このシステムの燃料電池はMCFCであり、アノード407にはメタノールをタンクから供給し、アノード排気のリサイクルガスと混合してアノードに供給している。また、カソード406には、アノード排気を酸素で燃焼した燃焼ガスとガスタービンの排気が混合されて供給される。カソード排気は蒸気発生器408に導かれ、蒸気を発生した後冷却器410に導かれ、水分を分離される。蒸気発生器で発生した蒸気は蒸気タービン409に導かれ蒸気タービンを駆動し、発電する。また、冷却器410で水分を分離されたカソード排気、すなわち、COとOの混合ガスはガスタービンの圧縮機411に導かれ、圧縮されたガスは熱交換器413で加熱され、燃焼器403に導かれる。燃焼器403にはメタノールと酸素が供給され、燃焼ガスはガスタービンに供給され、ガスタービンで膨張する過程で仕事をし、発電する。ガスタービンの排気はカソードに供給される。一方、アノード排気は燃焼器412に導かれ、燃焼器には酸素が供給され、アノード排気中の可燃成分が燃焼される。この燃焼ガスは熱交換器413で圧縮ガスに熱を与えた後、2系統に分かれ、1系統は冷却器414で水分を分離され、COガスが回収される。もう1系統はカソードに供給される。
特開平4-108号公報、「燃焼装置」 特開平11-26004号公報、「発電システム」
 特許文献2に開示されたシステムはMCFCとガスタービンと蒸気タービンの組合せで非常に複雑なシステムであり、かつ、サブシステムが相互に影響を与えており、運転や制御が難しく、特にカソードのガス組成を自由に変えるというようなことはできない。
 以下、特許文献2のシステムで解決されていない問題点を詳述する。
(1) MCFCの発電反応は以下の通りであり、水素の反応熱の半分前後が電気に変わり、残りが熱となる。
  カソード反応:CO+1/2O+2e- → CO 2-
  アノード反応:H+CO 2-      → HO+CO+2e
  全体反応  :H+1/2O     → H
 従って、燃料電池は発電反応に伴う発熱に見合った冷却が必要であり、外部改質型MCFCの場合はカソードガスとアノードガスの顕熱で冷却し、内部改質型の場合はカソードガス、アノードガスの顕熱に加え改質反応によっても冷却している。
 従って、カソードを流れるガスの流量と入口、出口の温度は燃料電池の熱バランスから決まってしまう。カソードにはガスタービンの排気が供給され、カソード排気は水分を分離した後、ガスタービンの圧縮機に供給され、メタノールと酸素が添加され、燃焼ガスはガスタービンに供給される。すなわち、カソードとガスタービンは一体的であり、個別に自由な調整をすることはできない。カソードを流れるガスの量とカソードの入口、出口の温度を燃料電池の熱バランスが取れるように維持することはかなり難しい。
 一方、カソードの発電反応によって消費されるCOとOの量に一致する量が外部から補給されなければならない。COはメタノールからとアノード排気を酸素で燃焼したガスのリサイクルによって補給されているが、この量は厳密に発電反応量に一致しなければならない。メタノールと酸素の量はカソード入口の温度を決めると同時にCOバランスも決めることになるので、この条件を満足させることはかなり難しい。
 更にカソードガス循環系にはパージラインがないので、メタノールから生成されるCOの量が発電反応量を超えることはできないし、酸素も発電反応で消費される以上の量を入れることはできないし、アノード排気の燃焼ガスから入るCO及びOの量とメタノールの燃焼器から来るCO及びOの合計が常に発電反応によって消費される量と厳密に一致していなければならない。
 一方、メタノールの燃焼によって決まるガスタービンの入口温度でガスタービンの出口温度、すなわち、カソード入口温度も決まるので、COバランスとは別にメタノール流量を決める要因が存在する。これらの条件が満足される条件でしか燃料電池とガスタービンの両方を運転することはできない。
 更に、発電負荷を定格の100%から例えば50%に下げようとすると、燃料電池での発熱は半分以下に下がり、カソードの入口、出口の温度を一定とすればガスタービンを流れる流量は半分以下にしなければならない。また、流量によってガスタービンの圧力比も変化してしまうので、カソード入口温度を一定に維持するためにはメタノールの量、すなわち、燃焼温度を流量に応じて変えなければならない。一方、発電反応によって消費されるCOの量は半分以下になるので、メタノールの量も半分以下にしなければならない。
 以上の通り、燃料電池の熱バランスを左右するカソードガスの循環量、カソードの入口、出口の温度及びCOバランスを共に満足させながら、ガスタービンと燃料電池の両方を運転し、しかも、その負荷を自由に変えるということは非常に難しい。
(2) また、カソードの酸化剤として酸素を使う場合は、単にCOが回収できるというだけではなく、カソードのCOやOの分圧を高めることで、燃料電池の電圧を高めることができ、その結果、燃料電池の出力が大きくなり、発電効率も向上する。このメリットは活かされなければならない。しかし、一方ではMCFCではニッケル短絡という問題があり、カソードのCO分圧を高くすると燃料電池の寿命が短くなるという問題がある。
 ニッケル短絡とは、カソードを構成している酸化ニッケルが電解質の中にイオンの形で溶け出し(NiO+CO → Ni2++CO 2-)、それが水素で還元される結果、電解質板の中で金属ニッケルが析出する現象で(Ni2++H+CO 2- → Ni+HO+CO)、ニッケルの析出量が増えると絶縁体でなければならない電解質板のアノード、カソード間が導通してしまうことで、燃料電池としては致命的な問題である。
 このニッケル短絡を防ぎながら、燃料電池の電圧を少しでも高めるためにはカソードのガス組成を自由にコントロールできる必要があるが、図2に開示されたシステムでは燃料電池の熱バランスとCOバランスを満足させながら、カソードのCO及びO濃度を自由に変えるということは実質的に不可能であると考える。
(3) また、アノードには燃料としてメタノールを供給しているが、改質に必要な蒸気は外部から全く供給しておらず、すべてをアノード排気のリサイクルによって賄っている。アノード排気にはHO以外に大量のCOが含まれており、COもリサイクルされるので、アノードの水素分圧が下がり、それによって燃料電池の電圧が下がるので、発電効率が低下する。更に、燃料のメタノールはMCFC用だけではなく、ガスタービン用としても供給しなければ運転できないシステムであり、最も発電効率の高いMCFCだけに燃料を供給するシステムと較べて発電効率が低くなる。
 特に、図2に開示されたシステムには記載がないが、酸素を供給するためには酸素プラントが必要であり、しかもその酸素消費量は燃料電池用のメタノールとガスタービン用のメタノールの両方を燃焼する量が必要となり、消費動力が非常に大きくなることが発電効率を下げる大きな要因となる。
 MCFCは酸素を使うことで発電効率を高められる要因もあるが、ガスタービンはガスタービンを流れる流量と入口温度と圧力比で決まるので、酸素を使うメリットは特にないので、ガスタービン用に相当する酸素プラントの消費動力は発電効率を下げる要因となる。
(4) また、図2に開示されたシステムでは全く熱を回収しておらず、燃料の持つエネルギーのうち、そのできるだけ多くを電力に変換しようとしており、これは大型の商用発電設備としての用途を考慮したものと思われるが、熱と電力の両方を要求する中小型分散電源には向いていない。
 さらに、分散電源では負荷変化も要求されるし、必要とする熱と電気の割合は一定ではなく、いわゆる熱電可変運転も要求される。しかし、図2はシステム全体が一体的であり、負荷変化、熱電可変運転、カソードガス組成の調整等を行うためのシステムの柔軟性に欠けていると思われる。
 本発明は上述した従来の問題点を解決するために創案されたものである。すなわち、本発明の目的は、通常の発電設備に対して付加する設備を最小にして、COの大気放出を大幅に削減するか又は実質的に放出せず、同時に高い発電効率及び熱回収効率を得ることができるMCFC発電システムとその運転方法を提供することにある。すなわち、本発明の目的は、実質的にCOの大気放出がなく、発電効率及び熱回収効率の高いMCFC発電システムとその運転方法を提供することにある。さらに、本発明の目的は、カソードのガス組成を調整することで、燃料電池の電圧及び出力をある範囲で調整することができ、熱と電気の割合も大きく変えることができ、いわゆる熱電可変運転が可能なMCFC発電システムとその運転方法を提供することにある。
 本発明によれば、溶融炭酸塩形の燃料電池に燃料ガスを供給する燃料ガス供給系統を有し、
 該燃料ガス供給系統は、アノード出口に燃料加熱器を接続し、燃料加熱器出口のアノード排気を2系統に分け、その1系統をアノード排気循環ブロワに接続し、当該ブロワ出口ガスを前記燃料電池に外部から供給する燃料ガスと混合し、次いで、改質用水蒸気と混合した後プレコンバータの触媒層に導き、当該混合ガスを前処理した後、燃料加熱器で温度を上げて前記燃料電池に供給する、ことを特徴とするMCFC発電システムが提供される。
 本発明の好ましい実施形態によれば、前記燃料ガス供給系統において、アノード排気循環ブロワの出口ガスと外部から供給する燃料ガスと改質用水蒸気の混合温度が250~400℃の範囲となるようにアノードリサイクル量を制御し、それによってプレコンバータ出口ガスのメタン濃度を高くするようにした。
 また本発明によれば、溶融炭酸塩形の燃料電池のカソードガスを循環するカソードガス循環系統を有し、
 該カソードガス循環系統は、カソードガス循環ブロワの吸入側がカソード出口に接続され、吐出側がカソード入口に接続される閉循環ループにおいて、カソード出口側が2系統に分かれ、1系統が流量調節弁を有するパージラインに接続され、もう1系統が逆止弁に接続され、その逆止弁の下流には流量調節弁を持つ酸素補給ラインと流量調節弁を有するCO補給ラインが接続されている、ことを特徴とするMCFC発電システムが提供される。
 本発明の好ましい実施形態によれば、前記カソードガス循環系統において、CO補給ラインに温度調節機能を有する熱交換器を設け、CO供給温度を調節することで、逆止弁を通過したカソード出口ガスに酸素とCOを補給・混合することだけでカソード入口温度を調節できるようにした。
 また本発明によれば、溶融炭酸塩形の燃料電池のアノード排気からエネルギーを回収するエネルギー回収システムを有し、
 該エネルギー回収システムは、アノード排気の少なくとも一部をミキサーに導き、一方、当該ミキサーには酸素供給ライン及び燃焼ガスリサイクルラインが接続されており、ミキサー出口の混合ガスは触媒酸化器に導かれ酸化触媒でアノード排気中の可燃成分が酸素で燃焼され、触媒酸化器を出た燃焼ガスは、先ず、別途設けられた空気を作動媒体とするガスタービンの圧縮空気を加熱し、次いで、リサイクルCOを加熱した後、排熱回収ボイラに導かれそこで蒸気を発生し、また、排熱回収ボイラの蒸発部を出た燃焼ガスを2系統に分け、1系統を燃焼ガスリサイクルブロワに接続し、冷却された燃焼ガスをミキサーにリサイクルし、もう1系統を排熱回収ボイラの給水加熱部に供給する、ことを特徴とするMCFC発電システムが提供される。
 本発明の好ましい実施形態によれば、前記触媒酸化器からの高温燃焼ガスから空気加熱器を介して熱を受け取る空気を作動媒体とするガスタービンを併設し、前記作動媒体である空気はガスタービン用に独立しており他の如何なる流体とも混合しない。
 また、タービン排気の持つ熱エネルギーを回収する手段として、先ず再生熱交換器で圧縮空気を加熱し、次いで、排熱回収ボイラで蒸気を発生するように構成し、排熱回収ボイラでは常に改質に必要な蒸気が発生できるように、再生熱交換器の出口温度を制御するようにした。
 また、設定値によって触媒酸化器の出口温度を一定にするように燃焼ガスリサイクルブロワの回転数を制御するようにした。
 また、燃焼ガスのリサイクルの位置を低温部から高温部に切り換えることのできるダンパーを有する。
 また本発明によれば、上記のMCFC発電システムにおいて、燃焼ガスのリサイクル位置を低温部から高温部に切換え、それによって空気加熱器を通過する燃焼ガス流量を増大させ、圧縮空気に与える熱量を増大させることでガスタービンの出力を増大させ、逆に、排熱回収ボイラでの蒸気発生量を低減させる、ことを特徴とするMCFC発電システムの運転方法が提供される。
 また本発明によれば、上記のMCFC発電システムにおいて、触媒酸化器の出口温度の設定値を徐々に低下させることで、燃焼ガスリサイクルブロワの循環流量を徐々に増大させ、それによって触媒酸化器の出口温度を下げ、空気加熱器を通じて圧縮空気に与えられる熱量を低減させ、その結果、ガスタービンの出力を低減させ、逆に、排熱回収ボイラの発生蒸気量を増大させる、ことを特徴とするMCFC発電システムの運転方法が提供される。
 本発明の好ましい実施形態によれば、ガスタービン出力がゼロ付近において、改質用水蒸気の供給をガスタービン側の排熱回収ボイラから燃焼ガス側の排熱回収ボイラに切換え、次いで、ガスタービンを停止し、排熱回収ボイラの発生蒸気量を最大にする。
 また本発明によれば、上記のMCFC発電システムにおいて、燃料電池の経時的な電圧劣化に対応して、カソード循環系統のCO及びO濃度を電圧劣化分だけ高めることで、燃料電池の電圧をその寿命の期間ほぼ一定に維持するようにした、ことを特徴とするMCFC発電システムの運転方法が提供される。
(1) 上記本発明の構成によれば、カソードガス循環系統を有し、カソードガスはカソードガス循環ブロワで循環されており、閉ループを形成し、発電反応によって消費される酸素は酸素供給プラントから補給され、COはリサイクルCOで補給されているので、カソード循環ガスはその量も組成も必要な状態に維持することができ、基本的にカソードガス循環系からは排気がない。従って、実質的にはCOの大気放出をしない発電設備または極減した発電設備ということができる。
(2) 一方、アノード排気中の可燃成分を酸素で燃焼し冷却して水を除去すればCOだけが残り、その一部はカソードへリサイクルし、残りは高濃度COガスとしてほとんど回収されるため、アノードからのCOの大気放出はほとんどなくなる。
(3) また、アノード排気中の燃料ガスをリサイクル使用することで、外部から供給する燃料ガスの供給量を減らすことができる。
 また、本発明では高温のアノード排気の一部と混合することによって燃料ガス及び改質用水蒸気の温度をプレコンバータの運転温度にまで上げることができるので、燃料加湿器が不要となる。
 更に、アノード排気中にはアノードの発電反応で生成された水蒸気が含まれているために、新たに供給する改質用水蒸気の量を著しく低減できる。
(4) また改質用水蒸気の供給量を著しく低減できるため、低温再生熱交換器を出たタービン排気から低圧の水蒸気を発生させると改質用水蒸気の供給はここだけで賄える。
 一方、アノード排気を酸素で燃焼した燃焼ガスの系統では、従来必要であった燃料加湿器が必要なくなったため余剰の熱量はすべて高圧蒸気の発生に使うことができ、回収水蒸気量が著しく増大し、総合熱効率を著しく高くできる。
(5) また、本発明のMCFCは内部改質型であり、アノード排気の一部と外部から供給する都市ガス等の燃料ガスを混合し、改質用水蒸気を加えて1つの改質触媒層を通すことで、改質反応とメタン化反応を同時に進めることができ、吸熱反応と発熱反応が同時に進行するため相互に温度変化が緩和され、反応温度を目的とする温度に維持することが容易になる。
(6) ガスタービンの媒体は空気で、排気によって大気を汚染することはない。また、ガスタービンを運転している時は電気出力が多くなるが、停止すれば排熱回収が大きくなるので、熱電比可変運転が可能となる。
(7) MCFCのカソードに供給する酸化剤として空気でなく、酸素を供給する場合は、単にCO回収ができるというだけではなく、カソードのCO及びO濃度を高めることで燃料電池の電圧を高めることができる。これによって燃料電池の出力を高め、発電効率を向上させることができる。
特許文献1に開示された発電システムの構成図である。 特許文献2に開示された発電システムの構成図である。 従来型のMCFC発電システムの全体構成図である。 燃焼排ガスからCOを分離回収する装置の構成図である。 本発明のMCFC発電システムの全体構成図である。 図5のカソードガス循環系統の詳細図である。 図5の燃料ガス供給系統の詳細図である。 図5のエネルギー回収システムの詳細図である。 燃焼ガスリサイクル量とガスタービンの入口温度及び出力の関係図である。 電圧一定運転時のデータである。
 以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図5は、本発明のMCFC発電システムの全体構成図である。
 外部から供給する都市ガス等の燃料ガスFGは脱硫装置1の中の脱硫剤2で脱硫され、フィルター3を介してプレコンバータ9に供給されるが、その途中でアノード排気の一部が高温の状態で混合される。次いで、外部から供給される都市ガス等の燃料ガスに見合った改質用水蒸気と混合され、プレコンバータ内に設けられた改質触媒層10を通過する過程で、外部から供給された都市ガス等の燃料ガスに含まれるエタン以上の重質成分が改質されると同時に、リサイクルされるアノード排ガス中のH,CO,COは逆にメタン化反応を起こす。
 外部から供給される都市ガス等の燃料ガスとアノード排気の一部と改質用水蒸気の混合の順序は図5に記載の通りか又はアノード排気の一部と改質用水蒸気を混合した後に都市ガス等と混合することでドレンの発生を防ぐことが好ましいが、混合の場所は図5では配管で混合するように記載しているが、配管の途中にミキサーを設ける方法やプレコンバータ内で混合する方法があり、いずれにしても図5はこれらの中の1例を示しているに過ぎない。
 プレコンバータを出たガスは燃料加熱器11に導かれ、アノード排気によって燃料電池の運転温度より少し低い温度まで加熱され、燃料電池12に供給される。燃料電池12は内部改質型MCFCで改質器38が燃料電池内部に組み込まれており、燃料ガスは燃料電池内で改質され、MCFCの燃料となるHやCOが生成される。
 図3に示した従来型のMCFC-ガスタービンハイブリッドシステムでは生成されたH+COの約70%程度が発電反応(H+CO 2-→HO+CO+2e)で消費され、残りはアノード排気として触媒燃焼器で可燃成分が燃焼されるが、本発明ではアノード排気の一部をリサイクルしているので、燃料利用率を80%以上にまで高めることができ、それによって外部から供給される都市ガス等の燃料ガス及び改質用水蒸気の供給量を減らすことができる。
 いずれにせよ、燃料ガス中のHやCOの一部は発電反応で消費され、残りはアノード排気として燃料電池から排出される。燃料電池では直流の電気が発生するのでこれをインバータ37で交流に変えて出力する。
 アノード排気は燃料加熱器11でプレコンバータ出口ガスに熱を与えた後、一部はアノード排気循環ブロワ8で昇圧され、外部から供給される都市ガス等の燃料ガスと混合される。残りはミキサー13で酸素及びリサイクル燃焼ガスRCGと混合され、触媒燃焼器14に導かれる。
 触媒燃焼器14には燃焼触媒層15が設けられており、これによってアノード排気中の可燃成分は燃焼される。触媒燃焼器14を出た燃焼ガスは高温熱交換器16に導かれ、圧縮空気CAをタービン入口温度まで加熱する。次いで、CO加熱器17でリサイクルCOであるRCOに熱を与え、排熱回収ボイラ18に導かれる。排熱回収ボイラ18は蒸発部EVAと給水加熱部ECOから構成されており、熱源は同じ燃焼ガスであるが、リサイクル燃焼ガスRCGは排熱回収ボイラ18の蒸発部の出口から分岐されるので、蒸発部と給水加熱部では燃焼ガスの流量が異なる。
 なお、図5では燃焼ガスをリサイクルする位置を排熱回収ボイラの蒸発部出口としているが、CO加熱器17の出口または高温熱交換器16の出口とすることも可能で、リサイクル位置が高温になるほど発電効率は高くなるが、排熱回収効率は下がるのでそれぞれの特徴を有している。
 リサイクル燃焼ガスは燃焼ガスリサイクルブロワ19で昇圧され、ミキサー13に送られる。図5では酸素ライン上で混合するように記載しているが、アノード排気と酸素とリサイクル燃焼ガスの混合はミキサー13で行う方法やその他の方法があり、図5は特定する意味で描いたものではない。
 排熱回収ボイラ18の給水加熱部を出た燃焼ガスはクーラ20で冷却され、KOドラム21で凝縮水が分離される。KOドラム21を出たガスはほぼCOガスと言えるものであるが、必要に応じ更に温度を下げて水分を除去する除湿システム22に導かれる。除湿システム22は冷凍機23、熱交換器24、KOドラム25から構成されている。
 KOドラム25を出たCOガスは、CO濃度が95%程度にまで高められている。その一部はCOリサイクルブロワ26で昇圧され、CO加熱器17で予熱された後、カソードガス循環系に補給される。残りのCOガスは高濃度な状態で高濃度CO回収装置70により回収され、大気への放出はほとんどなくなる。
 一方、カソードガス循環系はカソードガス循環ブロワ36で循環される閉サイクルを形成しており、カソードの発電反応(CO+1/2O+2e→CO 2-)によって消費される酸素は酸素供給プラント33から補給される。図5では酸素供給プラント33は空気圧縮機34と分離装置35の構成としているが、酸素供給プラントにはPSA(Pressure Swing Adsorber)、液化分離等数種の方式があり、本発明は酸素供給プラントの詳細を特定するものではない。
 一方、発電反応によって消費されるCOについては、既に記載の通り、アノード排気を酸素で燃焼し、冷却・除湿したリサイクルCOを予熱した後カソードガス循環系に補給する。カソードガスの温度は燃料電池での発電反応に伴う発熱によって、入口より出口温度が高くなるが、常温近くの酸素と250~450℃に予熱したリサイクルCOの混合によって入口温度に調節することができる。この温度制御はCO加熱器17の出口温度を制御することによって行う。
 以上が本発明のMCFC発電設備部分の基本構成であるが、本発明はこれに空気を作動媒体とするガスタービン発電機が付加されている。
 フィルター31を介して空気はガスタービン発電機27の圧縮機28に導かれ、圧縮された空気CAは再生熱交換器32でタービン29の排気によって先ず加熱され、次いで、高温熱交換器16によってアノード排気の燃焼ガスCGと熱交換され、タービン入口温度まで昇温された圧縮空気はタービン29に導かれる。タービン29で大気圧近くの圧力まで膨張する過程で仕事をし、発電機30によって交流出力として取り出される。また、タービン排気は再生熱交換器32に導かれ、そこで圧縮空気に熱を与え、次いで、排熱回収ボイラ7に導かれる。排熱回収ボイラ7では改質に必要な低圧蒸気が発生され、排熱回収ボイラを出たタービン排気は大気に放出される。
 以上が本発明の基本システム構成であるが、各サブシステム詳細については、後述する図6~図10を使ってその構成、用途、効果等について説明する。
 上述した本発明のMCFC発電システムは、以下の効果を有する。
(1) カソードガスはカソードガス循環ブロワで循環されており、閉ループを形成している。発電反応(CO+1/2O+2e→CO 2-)によって消費される酸素は酸素供給プラントから補給され、COはリサイクルCOで補給されているので、カソード循環ガスはその量も組成も必要な状態に維持することができ、基本的にカソードガス循環系からは排気がない。ただし、補給する酸素やCOに不純物が含まれている場合は一定のパージが必要となる。しかし、酸素に含まれる窒素やCOに含まれるHOの量は僅かであり、このCOの一部はカソードへリサイクルし、残りは高濃度COガスとしてほとんど回収されるため、アノードからのCOの大気放出はほとんどなくなる。
(2) 一方、カソードで生成された炭酸イオン(CO 2-)は電解質の中を通ってアノードに行き、アノードの発電反応(H+CO 2-→HO+CO+2e)によってアノードでCOが生成される。アノード排気中にはCH,H,CO,CO,HOが含まれているが、可燃成分を酸素で燃焼するとCOとHOになり、冷却して水を除去すればCOだけが残ることになる。ただし、酸素中に窒素が含まれている場合はCOの中に微量の窒素が含まれ、酸素が過剰に入れられた場合は微量の酸素も含まれる。更に、COは冷却して水分を除去しても完全には除去できないことから、COの中には微量の窒素、酸素、水蒸気等が含まれることになるが、この不純物はリサイクルする場合も回収する場合も特に害とはならない。このCOの一部を回収し、残りはカソードへリサイクルするので、アノードからのCOの大気放出はゼロである。
(3) また、図3の従来システムではアノード排気中にはまだ燃料ガスが30%近く残っており、その全量を空気で燃焼し、その熱をガスタービンの熱源として動力回収することでシステム全体としての発電効率を高めていた。
 本発明ではアノード排気の一部をリサイクルし、外部から供給する都市ガス等の燃料ガス及び改質用水蒸気と混合し、アノード排気中の燃料ガスをリサイクル使用することで、外部から供給する燃料ガスの供給量を減らすことができる。
 また、図3の従来システムでは外部から供給する都市ガス等の燃料ガスの予熱と改質用水蒸気の発生及びそれらの予熱のために燃料加湿器を必要としたが、本発明では高温のアノード排気の一部と混合することによって燃料ガス及び改質用水蒸気の温度をプレコンバータの運転温度にまで上げることができるので、燃料加湿器が不要となる。
 更に、アノード排気中にはアノードの発電反応で生成された水蒸気が含まれているために、新たに供給する改質用水蒸気の量を著しく低減できる。外部から供給する都市ガス等の燃料ガスが減っていることも改質用水蒸気の供給量を低減できる要因となっている。
(4) 図5に示す本発明のシステムでアノード排気の一部をリサイクルしない場合を考えてみると、低温再生熱交換器を出たタービン排気は温度も低く、熱源としてほとんど有効利用することができなかったが、アノード排気の一部をリサイクルすることによって改質用水蒸気の供給量を著しく低減できたため、低温再生熱交換器を出たタービン排気から低圧の水蒸気を発生させると改質用水蒸気の供給はここだけで賄えることになった。
 一方、アノード排気を酸素で燃焼した燃焼ガスの系統では、従来必要であった燃料加湿器が必要なくなったため余剰の熱量はすべて高圧蒸気の発生に使うことができ、回収水蒸気量が著しく増大した。この高圧水蒸気は図5に示す本発明のシステムの外で使うことができるので、総合熱効率が著しく高くなった。
(5) また、本発明のMCFCは内部改質型であり、燃料電池の冷却のために吸熱反応である改質反応(CH+HO→CO+3H)を利用している。従って、燃料電池に供給する燃料ガス中のメタン濃度が高いことが好ましい。しかし、アノード排気中の主成分はH,CO,CO,HOでメタンはほとんど含まれていない。従って、改質反応の逆反応であるメタン化反応(CO+4H→CH+2HO)を進める必要がある。
 この反応は同じ改質触媒で温度を調整することで達成できるが、メタン化反応は発熱反応でアノード排気の一部を単独でメタン化させると温度が上がり過ぎ、平衡上メタン濃度が高くならないばかりか温度が高くなり過ぎると触媒を劣化させてしまう。一方、外部から供給する都市ガス等の燃料ガスにはメタンの外にエタン、プロパン、ブタン等が含まれており、改質温度が低い場合はエタン以上の重質成分はほとんど改質されるが、メタンはほとんど改質されない。この改質反応は吸熱反応であり、単独で進めるためには予め予熱する必要がある。
 従って、アノード排気の一部と外部から供給する都市ガス等の燃料ガスを混合し、改質用水蒸気を加えて1つの改質触媒層を通すことで、改質反応とメタン化反応を同時に進めることができ、吸熱反応と発熱反応が同時に進行するため相互に温度変化が緩和され、反応温度を目的とする温度に維持することが容易になる。この過程でガスの予熱や反応器の冷却といった操作は不要である。
 なお、外部から供給する都市ガス等の燃料ガスは常温であり、これと飽和水蒸気を混合するとドレンが発生するので、高温のアノード排気の一部と燃料ガスを混合した後、水蒸気を混合するか、または、高温のアノード排気の一部と水蒸気を混合した後、燃料ガスを混合することでドレンが発生することなく混合することができる。
(6) ガスタービンの媒体は空気で、排気によって大気を汚染することはなく、またMCFC発電システムから熱交換器を介して熱を受け取っているだけなので、ガスタービンが停止してもMCFC発電システムの運転は継続できる。従って、ガスタービンを運転している時は電気出力が多くなるが、停止すれば排熱回収が大きくなるので、熱電比可変運転が可能となる。この切換えの過程として、燃焼ガスのリサイクル量を増やし、触媒酸化器出口温度を下げることで、高温熱交換器の交換熱量を減らし、ガスタービンの出力を下げると同時に排熱回収ボイラでの蒸気発生量を増やすことができ、その最終形態がガスタービンの停止である。この詳細については実施例の中で記述する。
(7) MCFCのカソードに供給する酸化剤として空気でなく、酸素を供給する場合は、単にCO回収ができるというだけではなく、カソードのCO及びO濃度を高めることで燃料電池の電圧を高めることができる。これによって燃料電池の出力を高め、発電効率を向上させることができる。
 しかし、一方ではMCFCにはニッケル短絡という問題があり、カソードのCO分圧を高くすると燃料電池の寿命が短くなるという問題がある。ニッケル短絡とは、カソードを構成している酸化ニッケルが電解質の中にイオンの形で溶け出し(NiO+CO → Ni2++CO 2-)、それが水素で還元される結果、電解質板の中で金属ニッケルが析出する現象で(Ni2++H+CO 2- → Ni+HO+CO)、ニッケルの析出量が増えると絶縁体でなければならない電解質板のアノード、カソード間が導通してしまうことで、燃料電池としては致命的な問題である。
 これを防ぎながら、燃料電池の電圧を少しでも高めるためにはカソードのガス組成を自由にコントロールできる必要があるが、本発明のカソードガス循環系統は他のサブシステムとは完全に独立した閉ループであり、カソードのガス組成を自由に調整できると同時に、ガス組成の変化が他のサブシステムに影響を与えることもない。
 燃料電池の電圧が高くなると燃料電池での発熱が減り、燃料電池の冷却はそれだけ少なくて済むことになるが、カソードの循環ガス量はブロワの回転数を変えることによって容易に増減できるので、燃料電池の熱バランスを考えても、カソードガスのCO及びO濃度を、ニッケル短絡を考慮しながら、容易に、かつ、正確に調整することができる。これについては実施例の中で詳細に記述する。
 図6は図5のカソードガス循環系統の部分だけを取り出し、詳細に記述したものである。
 カソードの発電反応(CO+1/2O+2e → CO 2-)及びパージによって消費されるCO及びOを補給してやる必要がある。反応量は燃料電池の直流電流から算出でき、パージ量は流量調節弁53で確認できる。OはMCFC発電プラントの外部に設けられた酸素プラントから流量調節弁51によって制御され、常温付近の温度で供給される。COはアノード排気を酸素で燃焼し、冷却して水分を落としたリサイクルCO(RCO)を流量調節弁52で流量を制御され、CO加熱器36に設けられた温度調節弁40で温度を制御した後カソードガス循環系統に補給される。カソードを通過するガスは発電反応に伴う発熱によって入口より出口の温度が高くなるので、COとOの補給・混合によって入口温度に戻すように制御される。混合後のガスをカソードガス循環ブロワで断熱圧縮した温度がカソード入口温度となるようにリサイクルCOの補給温度をCO加熱器で調整する。カソードガス循環ブロワはカソード出口ガス温度が一定になるように循環量を制御する。
 一方、補給するCO及びOにはいずれも不純ガスが含まれているので、パージが必要になり、カソード循環系統のカソード出口を2系統に分け、1系統を流量制御弁53を装備したパージラインに接続し、もう1系統を逆止弁54に接続し、この逆止弁54の下流にCO及びOの補給ラインを接続する構成とする。
 本発明のカソードガス循環系統はカソードのガス組成を自由に変更することができ、かつ、燃料電池の発熱の程度に応じて循環量を自由に増減することができる。また、それによって他のサブシステムに影響を与えることもない。
 一実施例として、本発明のカソードガス組成を変えたときのプラント性能を表1に示す。
 表1のCO及びO濃度は最高濃度を意味するものではなく、ニッケル短絡の影響を考慮した濃度であり、それでも発電効率が5%向上している。かつ、高濃度での運転は発電効率を高めたい時だけ行えば良く、容易に標準運転条件に戻すこともできる。
Figure JPOXMLDOC01-appb-T000001
 
 
 すべての燃料電池は運転時間とともに電圧が劣化して行く。一般的にはセル電圧が10%劣化した時を燃料電池の寿命としている。1年間の運転時間を8000時間と仮定し、燃料電池の寿命を5年間、40000時間とすれば半年に1%ずつ劣化していくことになり、燃料電池の電圧に比例して燃料電池の出力も発電効率も半年に1%ずつ低下することになる。しかし、本発明では、この燃料電池の劣化に応じてカソードのCO及びO濃度を徐々に上げて行くことができ、これによって燃料電池の電圧を常に一定に保持することができる。
 図10は、電圧一定運転時のデータである。この図は、標準運転条件と同じ性能を5年間維持するためのカソードのCO及びO濃度の変化の一例を示したもので、この運転をすることで燃料電池の寿命の間に相対的に平均5%の燃料電池の出力及び発電効率を向上することができる。この運転方法ではカソードのCO分圧が非常に高い期間は短く、ニッケル短絡に至る金属ニッケルの累積析出量が抑えられるので、ニッケル短絡を抑えながら発電効率を高める1つの運転方法である。
 図7は図5の燃料ガス供給系統だけを取り出した詳細図で、アノード出口は燃料加熱器11に接続されており、アノード排気を熱源としてプレコンバータ9の出口ガスを燃料電池の運転温度近くまで加熱する。これによって温度の下がったアノード排気を2系統に分け、1系統をアノード排気循環ブロワに接続し、そのブロワ出口ガスを外部から供給する都市ガス等の燃料ガスと混合する。都市ガス等の燃料ガスは流量調節弁56によって流量を調節されて供給される。次いで、これらの都市ガス等を改質するための蒸気と混合される。蒸気は流量調節弁57によって流量を調節されて供給される。
 図7ではこれらの混合は配管内で行われるように記載しているが、ミキサーを設けて混合する方法やプレコンバータ9の内部で混合する方法があり、本発明ではこの混合方法は特定していない。
 この混合ガスは次にプレコンバータ9の改質触媒層10に導かれる。ここで都市ガス中のエタン以上の重質成分は改質され、アノードリサイクルガス中のCO,CO,HOはメタン化反応を起こす。改質反応は吸熱反応であり、メタン化反応は発熱反応であり、この2つの反応が同時に起こることで相互に温度変化を抑制する効果があり、プレコンバータの運転温度を希望する温度に維持することが容易となる。
 また図7のMCFCは内部改質型であり、燃料電池の冷却に吸熱反応である改質反応(CH+HO → CO+3H)を利用しているので、プレコンバータ出口ガスはメタン濃度が高いことが好ましく、プレコンバータの触媒層出口温度が250~450℃の範囲に入るように温度コントローラ58によって、都市ガス等の流量及び改質用蒸気の流量に応じて、アノード排気循環ブロワに装備された速度コントローラ39でリサイクル量を制御する。
 本発明の燃料供給系統の構成要件は、アノード出口と燃料加熱器を接続し、アノード排気の温度を下げること、その温度が下がったアノード排気のラインを2系統に分け、その1系統をアノード排気循環ブロワに接続すること、アノード排気循環ブロワの出口ガスと都市ガス等の燃料ガスと改質用水蒸気を混合することによって、プレコンバータへの供給ガス温度まで熱交換器を使わずに温度調節をすること、次いで、熱源を持たないプレコンバータの改質触媒層に混合ガスを導くこと、プレコンバータ出口ガスのメタン濃度が高くなるようにプレコンバータの運転温度は250~450℃の範囲であること、この目的を達成するためにアノード排気のリサイクル率は約20~40%の範囲であることである。
 アノード排気をリサイクルする場合としない場合の性能比較を表2に示す。発電効率は変わらないが、熱回収率が大きく向上する。
 また、アノードリサイクル率を変えてもプラント全体としての発電効率は大きく変化しないが、個々の要因はいろいろと変化している。アノードリサイクル率を上げると、都市ガス供給量は減り、供給する改質用蒸気量が減り、燃料電池の電圧は下がり、従って、燃料電池の出力も下がり、ガスタービンの出力は下がり、所内動力も下がる。これらの変動要因はプラントの運転条件を変える効果があり、例えば、カソードのCO及びO濃度を高くすると燃料電池の電圧が高くなり、燃料電池の発熱が減るので条件によっては燃料電池が冷却され過ぎる状態も起こってくるが、このときは、アノードのリサイクル率を上げることで燃料電池の電圧を下げ、その代わり都市ガス供給量も下げることで、発電効率を維持しながら燃料電池の熱バランスを取ることができる。その他、構成機器の仕様を調整する上でも有効である。
Figure JPOXMLDOC01-appb-T000002
 図8は図5におけるアノード排気を酸素で燃焼して各種熱交換器を介して、その燃焼熱を有効に利用するエネルギー回収システムを取り出し、その詳細を示した図である。
 アノード排気AEGはミキサー13において酸素OXG及びリサイクル燃焼ガスRCGと混合される。アノード排気中の可燃成分の量は、燃料供給量、燃料利用率、燃料電池の直流電流等から算出することができるので、それに基づいて必要酸素量を算出し、流量調節弁59によって制御され供給される。一方、一度冷却された燃焼ガスRCGは燃焼ガスリサイクルブロワによってミキサーにリサイクルされる。単純にアノード排気を酸素で燃焼すると温度が高くなりすぎるので、低温の燃焼ガスをリサイクルすることで触媒燃焼器の出口温度を調節できるように配慮されている。
 アノード排気と酸素とリサイクル燃焼ガスの混合ガスは触媒燃焼器14の燃焼触媒でアノード排気中の可燃性ガスが燃焼され、温度が上昇する。燃焼ガスリサイクルブロワの速度コントローラ61は触媒燃焼器の出口温度を設定値に合うように流量を制御する。この設定値は必要に応じ変更される。
 触媒燃焼器14を出た燃焼ガスは先ず高温熱交換器16で圧縮空気に熱を与え、次いでCO加熱器でリサイクルCOに熱を与え、次いで、排熱回収ボイラ18で蒸気を発生させる。
 標準運転条件では排熱回収ボイラの蒸発部EVAを出たところで燃焼ガスはリサイクルされる。残りの燃焼ガスは排熱回収ボイラの給水加熱部ECOに送られる。
 一方、高出力運転モードでは燃焼ガスのリサイクルは高温熱交換器16の出口からとなる。この切換えはダンパー62の開度を低温側から高温側に徐々に切り換えて行くことで行う。同時に、触媒燃焼器出口温度を設定値に維持するように燃焼ガスリサイクルブロワの流量が増大する。従って、高温熱交換器16を通る燃焼ガスの量が増大し、圧縮空気に与える熱量が増大する。このとき、ガスタービン発電機の速度コントローラ64によってガスタービンの空気量を増大する。この結果、ガスタービンは出力が増大するが、排熱回収ボイラに行く熱量はその分低減するので蒸気発生量は低減する。
 表3に標準運転条件と高出力運転モードの比較を示す。高出力運転モードにすると発電効率は2ポイント向上するが、熱回収率は逆に6ポイント低下する。どのような運転モードが望ましいかどうかは、その時の熱需要と電力需要のバランスで決まる。
Figure JPOXMLDOC01-appb-T000003
 一方、空気を作動媒体とするガスタービンはフィルター31を介して空気が圧縮機で圧縮され、再生熱交換器32でタービン排気と熱交換する。この再生熱交換器ではタービン排気側の出口温度を制御しており、排熱回収ボイラ7で常に改質に必要な低圧蒸気が発生できるように制御される。従って、圧縮空気の再生熱交換器出口温度は運転条件によって一定とはならず、その分は高温熱交換器16で調整されるシステムである。
 高温熱交換器で昇温された圧縮空気はタービンに導かれ、そこで大気圧近くまで膨張する過程で仕事をし、発電機30によって交流出力が得られる。このガスタービンは燃料電池の排熱を回収して発電するもので、MCFC側の負荷で排熱の量も変わるので、発電機はモータ/ジェネレータとし、かつ、回転数可変としており、燃料電池の運転状態に合わせて空気流量も変えられるように配慮している。
 図8のエネルギー回収システムを利用することで熱電可変運転が可能である。電気出力を最大にする条件は前記の通り、燃焼ガスのリサイクル位置を高温熱交換器出口に切り換える運転モードである。一方、熱回収を最大にする運転方法は以下に記述する通りである。
 燃焼ガスのリサイクル位置は排熱回収ボイラの蒸発部を出た所とし、その状態で触媒酸化器の出口温度の設定値を徐々に下げて行く。それによって燃焼ガスリサイクルブロワの流量が増える。触媒酸化器の出口温度が下がると高温熱交換器16を介して圧縮空気に与えられる熱量が減り、ガスタービン入口温度は下がる。それによってガスタービン出力は下がって来る。一方、その過程でCO加熱器でリサイクルCOを加熱する熱量は変わらないので、ガスタービンに与える熱が減った分だけ排熱回収ボイラでの蒸発量が増える。
 燃焼ガスリサイクル量とガスタービンの入口温度及び出力の関係が図9に示されている。触媒燃焼器出口温度がある温度以下になるとガスタービンの出力はゼロになる。この時点で改質用の蒸気の供給をガスタービン側の排熱回収ボイラから燃焼ガス側の排熱回収ボイラに切り換え、ガスタービンを停止する。ガスタービンを停止すると標準運転時にガスタービンに入っていた熱はすべて燃焼ガス側の排熱回収ボイラに入ることになるので熱回収量は最大となる。標準運転と熱回収を最大にしたときの比較を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
A アノード、AEG アノード排気、AIR 空気
C カソード、CA 圧縮空気、CG 燃焼ガス
CMP 圧縮機、COG COガス、COR 回収CO
DR ドレン、ECO 給水加熱部、EVA 蒸発部
EXG 排気、FG 燃料、G 発電機、HM 熱媒体
HPSTM 高圧水蒸気、LAB COを放出した吸収液
LPSTM 低圧水蒸気、M モータ、OXG 酸素
PW 処理水、RAB COを吸収した吸収液
RCG リサイクル燃焼ガス、RCO リサイクルCO
SC 速度制御、T タービン、TC 温度制御、W 供給水 
1 脱硫器、2 脱硫剤、3 フィルター、4 水処理装置、
5 処理水タンク、6 ポンプ、7 低圧蒸気用排熱回収ボイラ、
8 アノード排気循環ブロワ、9 プレコンバータ、
10 改質触媒、11 燃料加熱器、12 MCFC、
13 ミキサー、14 触媒燃焼器、15 燃焼触媒、
16 高温熱交換器、17 CO加熱器、
18 高圧蒸気発生用排熱回収ボイラ、
19 燃焼ガスリサイクルブロワ、
20 冷却器、21 KOドラム、22 冷却・除湿システム、
23 冷凍機、24 熱交換器、25 KOドラム、
26 COリサイクルブロワ、27 ガスタービン発電機、
28 圧縮機、29 タービン、30 発電機、
31 フィルター、32 低温再生熱交換器、
33 酸素供給プラント、34 空気圧縮機、35 空気分離装置、
36 カソードガス循環ブロワ、37 インバータ、
38 内部改質器、39 速度調節器、
40 温度調節器、41 燃料加湿器、
42 吸収塔、43 ポンプ、44 熱交換器、
45 再生塔、46 リボイラ、47 ポンプ、48 冷却器、
50 起動用ヒータ、51 流量調節弁、52 流量調節弁、
53 流量調節弁、54 逆止弁、55 速度コントローラ
56 流量調節弁57 流量調節弁58 温度コントローラ
59 流量調節弁60 温度コントローラ
61 速度コントローラ、62 ダンパー、63 温度調節弁、
70 高濃度CO回収装置
110 空気予熱器、120 空気、130 予熱空気、150 SOFC、
200 熱交換器、220 水、230 冷却器、240 ドレン、
310 石炭ガス化炉、320 脱硫器、330 メタノール合成器、
340 石炭、350 酸素、
401 燃料電池(MCFC)、402 ガスタービン、
403 燃焼器、404 酸素タンク、405 メタノールタンク、
406 カソード、407 アノード、408 蒸気発生器、
409 蒸気タービン、410 冷却器、411 圧縮機、
412 燃焼器、413 熱交換器、414 冷却器、
415 CO回収装置

Claims (13)

  1.  溶融炭酸塩形の燃料電池に燃料ガスを供給する燃料ガス供給系統を有し、
     該燃料ガス供給系統は、アノード出口に燃料加熱器を接続し、燃料加熱器出口のアノード排気を2系統に分け、その1系統をアノード排気循環ブロワに接続し、当該ブロワ出口ガスを前記燃料電池に外部から供給する燃料ガスと混合し、次いで、改質用水蒸気と混合した後プレコンバータの触媒層に導き、当該混合ガスを前処理した後、燃料加熱器で温度を上げて前記燃料電池に供給する、ことを特徴とするMCFC発電システム。
  2.  前記燃料ガス供給系統において、アノード排気循環ブロワの出口ガスと外部から供給する燃料ガスと改質用水蒸気の混合温度が250~400℃の範囲となるようにアノードリサイクル量を制御し、それによってプレコンバータ出口ガスのメタン濃度を高くするようにした請求項1に記載のMCFC発電システム。
  3.  溶融炭酸塩形の燃料電池のカソードガスを循環するカソードガス循環系統を有し、
     該カソードガス循環系統は、カソードガス循環ブロワの吸入側がカソード出口に接続され、吐出側がカソード入口に接続される閉循環ループにおいて、カソード出口側が2系統に分かれ、1系統が流量調節弁を有するパージラインに接続され、もう1系統が逆止弁に接続され、その逆止弁の下流には流量調節弁を持つ酸素補給ラインと流量調節弁を有するCO補給ラインが接続されている、ことを特徴とするMCFC発電システム。
  4.  前記カソードガス循環系統において、CO補給ラインに温度調節機能を有する熱交換器を設け、CO供給温度を調節することで、逆止弁を通過したカソード出口ガスに酸素とCOを補給・混合することだけでカソード入口温度を調節できるようにした請求項3に記載のMCFC発電システム。
  5.  溶融炭酸塩形の燃料電池のアノード排気からエネルギーを回収するエネルギー回収システムを有し、
     該エネルギー回収システムは、アノード排気の少なくとも一部をミキサーに導き、一方、当該ミキサーには酸素供給ライン及び燃焼ガスリサイクルラインが接続されており、ミキサー出口の混合ガスは触媒酸化器に導かれ酸化触媒でアノード排気中の可燃成分が酸素で燃焼され、触媒酸化器を出た燃焼ガスは、先ず、別途設けられた空気を作動媒体とするガスタービンの圧縮空気を加熱し、次いで、リサイクルCOを加熱した後、排熱回収ボイラに導かれそこで蒸気を発生し、また、排熱回収ボイラの蒸発部を出た燃焼ガスを2系統に分け、1系統を燃焼ガスリサイクルブロワに接続し、冷却された燃焼ガスをミキサーにリサイクルし、もう1系統を排熱回収ボイラの給水加熱部に供給する、ことを特徴とするMCFC発電システム。
  6.  前記触媒酸化器からの高温燃焼ガスから空気加熱器を介して熱を受け取る空気を作動媒体とするガスタービンを併設し、前記作動媒体である空気はガスタービン用に独立しており他の如何なる流体とも混合しない、ことを特徴とする請求項5に記載のMCFC発電システム。
  7.  タービン排気の持つ熱エネルギーを回収する手段として、先ず再生熱交換器で圧縮空気を加熱し、次いで、排熱回収ボイラで蒸気を発生するように構成し、排熱回収ボイラでは常に改質に必要な蒸気が発生できるように、再生熱交換器の出口温度を制御するようにした請求項5に記載のMCFC発電システム。
  8.  設定値によって触媒酸化器の出口温度を一定にするように燃焼ガスリサイクルブロワの回転数を制御するようにした請求項5に記載のMCFC発電システム。
  9.  燃焼ガスのリサイクルの位置を低温部から高温部に切り換えることのできるダンパーを有することを特徴とする請求項5のMCFC発電システム。
  10.  請求項9のMCFC発電システムにおいて、燃焼ガスのリサイクル位置を低温部から高温部に切換え、それによって空気加熱器を通過する燃焼ガス流量を増大させ、圧縮空気に与える熱量を増大させることでガスタービンの出力を増大させ、逆に、排熱回収ボイラでの蒸気発生量を低減させる、ことを特徴とするMCFC発電システムの運転方法。
  11.  請求項8のMCFC発電システムにおいて、触媒酸化器の出口温度の設定値を徐々に低下させることで、燃焼ガスリサイクルブロワの循環流量を徐々に増大させ、それによって触媒酸化器の出口温度を下げ、空気加熱器を通じて圧縮空気に与えられる熱量を低減させ、その結果、ガスタービンの出力を低減させ、逆に、排熱回収ボイラの発生蒸気量を増大させる、ことを特徴とするMCFC発電システムの運転方法。
  12.  ガスタービン出力がゼロ付近において、改質用水蒸気の供給をガスタービン側の排熱回収ボイラから燃焼ガス側の排熱回収ボイラに切換え、次いで、ガスタービンを停止し、排熱回収ボイラの発生蒸気量を最大にする請求項11に記載のMCFC発電システムの運転方法。
  13.  請求項3のMCFC発電システムにおいて、燃料電池の経時的な電圧劣化に対応して、カソード循環系統のCO及びO濃度を電圧劣化分だけ高めることで、燃料電池の電圧をその寿命の期間ほぼ一定に維持するようにした、ことを特徴とするMCFC発電システムの運転方法。
PCT/JP2009/069429 2008-11-18 2009-11-16 Mcfc発電システムとその運転方法 WO2010058749A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117011593A KR101352219B1 (ko) 2008-11-18 2009-11-16 Mcfc 발전 시스템과 그 운전 방법
US13/129,801 US20110223500A1 (en) 2008-11-18 2009-11-16 Mcfc power generation system and method for operating same
EP09827530.8A EP2360764A4 (en) 2008-11-18 2009-11-16 MCFC ENERGY GENERATION SYSTEM AND METHOD OF OPERATION
JP2010539222A JP5331819B2 (ja) 2008-11-18 2009-11-16 Mcfc発電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-294106 2008-11-18
JP2008294106 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058749A1 true WO2010058749A1 (ja) 2010-05-27

Family

ID=42198189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069429 WO2010058749A1 (ja) 2008-11-18 2009-11-16 Mcfc発電システムとその運転方法

Country Status (5)

Country Link
US (1) US20110223500A1 (ja)
EP (1) EP2360764A4 (ja)
JP (3) JP5331819B2 (ja)
KR (1) KR101352219B1 (ja)
WO (1) WO2010058749A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435230B2 (en) 2011-12-27 2016-09-06 Posco Energy Co., Ltd. Fuel cell hybrid system
CN108321416A (zh) * 2018-03-29 2018-07-24 中国华能集团清洁能源技术研究院有限公司 Co2近零排放的整体煤气化燃料电池发电系统及方法
CN113540504A (zh) * 2021-07-16 2021-10-22 中国科学院上海应用物理研究所 热泵式-氢能复合储能发电方法及装置
CN114371745A (zh) * 2021-12-29 2022-04-19 徐州捷科思网络科技有限公司 一种温度控制系统
CN114635815A (zh) * 2022-04-01 2022-06-17 招商局重工(深圳)有限公司 一种甲醇燃料供给系统及其控制方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491562A (en) * 2011-05-23 2012-12-12 Alstom Technology Ltd Fossil fuel power plant with gas turbine and MCFC arrangements
WO2013100714A1 (ko) * 2011-12-30 2013-07-04 두산중공업 주식회사 연료전지를 이용한 이산화탄소 회수 시스템
KR101401451B1 (ko) * 2012-02-14 2014-05-29 두산중공업 주식회사 열교환형 촉매 산화기 및 이를 이용한 고농도 이산화탄소 회수장치
KR101408139B1 (ko) * 2011-12-30 2014-06-17 두산중공업 주식회사 연료전지를 이용한 이산화탄소 회수 시스템
KR101451839B1 (ko) * 2012-12-18 2014-10-16 두산중공업 주식회사 연료 전지 시스템 및 그 제어 방법
KR101397091B1 (ko) * 2012-12-28 2014-05-19 포스코에너지 주식회사 연료 전지 시스템
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
EP2973819B1 (en) 2013-03-15 2018-10-31 ExxonMobil Research and Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
CN103410614B (zh) * 2013-08-21 2015-12-23 华北电力大学 用两级常压mcfc回收燃气轮机排气中co2的复合动力系统
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
CN104196582B (zh) * 2014-07-03 2015-10-21 华北电力大学 基于mcfc电化学法捕集igcc系统中co2的复合动力系统
KR101511100B1 (ko) 2015-01-27 2015-04-10 (주)지케이홀딩스 연료전지시스템에서 발생한 고온배출가스를 이용한 발전시스템 및 발전방법
US10686204B2 (en) 2015-08-10 2020-06-16 Nissan Motor Co., Ltd. Solid oxide fuel cell system
JP6483598B2 (ja) * 2015-12-21 2019-03-13 本田技研工業株式会社 燃料電池システム
DK178834B1 (en) * 2016-03-15 2017-03-06 Mogens Skou Nielsen A system and method to generate power using dry ice
US10770741B2 (en) * 2016-08-31 2020-09-08 Toshiba Energy Systems & Solutions Corporation Fuel cell module with hydrodesulfurizer and preheating
US10854899B2 (en) * 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof
JP7108848B2 (ja) * 2016-11-28 2022-07-29 パナソニックIpマネジメント株式会社 燃料電池システム
CN108301922A (zh) * 2017-01-12 2018-07-20 华北电力大学(保定) 基于燃气轮机和熔融碳酸盐燃料电池的混合供能系统
CN108301923A (zh) * 2017-01-13 2018-07-20 华北电力大学(保定) 一种富氧燃烧与熔融碳酸盐燃料电池混合发电系统
CN107221695B (zh) * 2017-06-30 2023-05-30 北京理工大学 一种以生物质气化制氢的燃料电池系统及其发电方法
US10622656B2 (en) 2017-10-11 2020-04-14 Saudi Arabian Oil Company Method and system for capturing high-purity CO2 in a hydrocarbon facility
CN109148919B (zh) * 2018-10-11 2023-06-09 中国华能集团清洁能源技术研究院有限公司 一种利用煤气高温显热的整体煤气化燃料电池发电系统及方法
CN109346744B (zh) * 2018-11-15 2023-04-25 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的天然气燃料电池发电系统及方法
WO2020112895A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced co2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
WO2020112812A1 (en) 2018-11-30 2020-06-04 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with enhanced co 2 utilization
KR102662253B1 (ko) 2018-11-30 2024-04-29 퓨얼셀 에너지, 인크 Co2 이용률이 향상된 용융 탄산염 연료 전지의 증가된 압력 작동
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
CN113228361B (zh) * 2018-11-30 2023-09-22 燃料电池能有限公司 具有提高的co2利用率的熔融碳酸盐燃料电池的高压操作
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
JP2023503995A (ja) 2019-11-26 2023-02-01 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 燃料電池モジュールのアセンブリおよびそれを使用するシステム
JP2023503473A (ja) 2019-11-26 2023-01-30 エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー 高電解質充填レベルでの溶融炭酸塩型燃料電池の作動
US20210300788A1 (en) * 2020-03-29 2021-09-30 Chaac Holdings, Inc. Atmospheric water and power generation compression apparatus, system and method
CN111874863B (zh) * 2020-08-07 2023-05-30 华北电力大学(保定) 一种太阳能光催化制氢燃料电池发电系统
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell
CN113530677A (zh) * 2021-07-30 2021-10-22 中国华能集团清洁能源技术研究院有限公司 一种前置燃料电池的天然气联合循环发电系统及方法
CN113464279A (zh) * 2021-07-30 2021-10-01 中国华能集团清洁能源技术研究院有限公司 一种采用燃料电池调制合成气成分的igcc系统及工作方法
CN114094242B (zh) * 2021-12-29 2023-09-15 重庆大学 处理脱硫废水同时还原二氧化碳的流动式光电化学电池
CN115466637B (zh) * 2022-09-15 2024-03-22 西安交通大学 一种耦合生物质能及太阳能的燃料电池发电系统及方法
CN117599607A (zh) * 2023-11-14 2024-02-27 常熟荣瑞灭菌技术有限公司 一种新型高效节能eog处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141268A (ja) * 1986-12-03 1988-06-13 Ishikawajima Harima Heavy Ind Co Ltd 天然ガス改質溶融炭酸塩型燃料電池発電装置
JPH04108A (ja) 1990-03-14 1992-01-06 Mitsubishi Heavy Ind Ltd 燃焼装置
JPH05101839A (ja) * 1991-05-13 1993-04-23 Mitsubishi Electric Corp 溶融炭酸塩型燃料電池発電装置
JPH065298A (ja) * 1992-06-19 1994-01-14 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JPH1126004A (ja) 1997-07-02 1999-01-29 Toshiba Corp 発電システム
JPH11176455A (ja) * 1997-12-15 1999-07-02 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai 燃料電池複合発電装置
JP2000228208A (ja) * 1999-02-05 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池とガスタービンの複合装置
JP2000331698A (ja) * 1999-05-19 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン排ガスを用いた燃料電池発電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276764A (ja) * 1986-05-26 1987-12-01 Hitachi Ltd 燃料電池の運転法
JPS63174282A (ja) * 1987-01-12 1988-07-18 Hitachi Ltd 燃料電池発電方法
JPH0896824A (ja) * 1994-09-29 1996-04-12 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池発電装置
JPH10302820A (ja) * 1997-04-24 1998-11-13 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電設備
US7285350B2 (en) * 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
WO2005101562A1 (en) * 2004-03-31 2005-10-27 Modine Manufacturing Company Fuel humidifier and pre-heater for use in a fuel cell system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141268A (ja) * 1986-12-03 1988-06-13 Ishikawajima Harima Heavy Ind Co Ltd 天然ガス改質溶融炭酸塩型燃料電池発電装置
JPH04108A (ja) 1990-03-14 1992-01-06 Mitsubishi Heavy Ind Ltd 燃焼装置
JPH05101839A (ja) * 1991-05-13 1993-04-23 Mitsubishi Electric Corp 溶融炭酸塩型燃料電池発電装置
JPH065298A (ja) * 1992-06-19 1994-01-14 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JPH1126004A (ja) 1997-07-02 1999-01-29 Toshiba Corp 発電システム
JPH11176455A (ja) * 1997-12-15 1999-07-02 Yoyu Tansanengata Nenryo Denchi Hatsuden System Gijutsu Kenkyu Kumiai 燃料電池複合発電装置
JP2000228208A (ja) * 1999-02-05 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池とガスタービンの複合装置
JP2000331698A (ja) * 1999-05-19 2000-11-30 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン排ガスを用いた燃料電池発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360764A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435230B2 (en) 2011-12-27 2016-09-06 Posco Energy Co., Ltd. Fuel cell hybrid system
CN108321416A (zh) * 2018-03-29 2018-07-24 中国华能集团清洁能源技术研究院有限公司 Co2近零排放的整体煤气化燃料电池发电系统及方法
CN108321416B (zh) * 2018-03-29 2023-09-29 中国华能集团清洁能源技术研究院有限公司 Co2近零排放的整体煤气化燃料电池发电系统及方法
CN113540504A (zh) * 2021-07-16 2021-10-22 中国科学院上海应用物理研究所 热泵式-氢能复合储能发电方法及装置
CN114371745A (zh) * 2021-12-29 2022-04-19 徐州捷科思网络科技有限公司 一种温度控制系统
CN114371745B (zh) * 2021-12-29 2022-09-27 徐州捷科思网络科技有限公司 一种温度控制系统
CN114635815A (zh) * 2022-04-01 2022-06-17 招商局重工(深圳)有限公司 一种甲醇燃料供给系统及其控制方法
CN114635815B (zh) * 2022-04-01 2023-04-28 招商局重工(深圳)有限公司 一种甲醇燃料供给系统及其控制方法

Also Published As

Publication number Publication date
KR101352219B1 (ko) 2014-01-15
JP2013219034A (ja) 2013-10-24
KR20110086110A (ko) 2011-07-27
US20110223500A1 (en) 2011-09-15
JPWO2010058749A1 (ja) 2012-04-19
JP2013191572A (ja) 2013-09-26
EP2360764A1 (en) 2011-08-24
JP5331819B2 (ja) 2013-10-30
EP2360764A4 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5331819B2 (ja) Mcfc発電システム
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
JP5282103B2 (ja) 水素リサイクル型mcfc発電システム
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
JP7155241B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
JP2009048854A (ja) 燃料電池発電装置およびその制御方法
JPWO2003038934A1 (ja) 燃料電池システム
JP4342172B2 (ja) エネルギー併給システム
JP5066020B2 (ja) 燃料電池発電システムおよびその動作方法
JPH07230819A (ja) 自己熱交換型断熱プレリフォーマを有する内部改質型固体電解質燃料電池システム
JP2004171802A (ja) 燃料電池システム
JP4578787B2 (ja) ハイブリッド型燃料電池システム
JP2009176659A (ja) 燃料電池発電システムおよびその制御方法
JP5134309B2 (ja) 燃料電池発電装置およびその制御方法
JP2001143731A (ja) 燃料電池システム
JP3872006B2 (ja) 燃料電池発電システム
JP4938299B2 (ja) 燃料電池発電装置の運転方法
JP2006100197A (ja) 固体酸化物形燃料電池を用いたコンバインド発電システム
KR101295237B1 (ko) 연료전지 시스템
JP4467929B2 (ja) 燃料電池発電システム
JP3886887B2 (ja) 燃料電池発電システム
WO2022113397A1 (ja) 燃料電池システム
JPH08339815A (ja) 燃料電池発電装置
JP2010044960A (ja) 燃料電池発電システムおよび燃料電池発電方法
KR101324112B1 (ko) 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009827530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13129801

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117011593

Country of ref document: KR

Kind code of ref document: A