WO2013100714A1 - 연료전지를 이용한 이산화탄소 회수 시스템 - Google Patents

연료전지를 이용한 이산화탄소 회수 시스템 Download PDF

Info

Publication number
WO2013100714A1
WO2013100714A1 PCT/KR2012/011773 KR2012011773W WO2013100714A1 WO 2013100714 A1 WO2013100714 A1 WO 2013100714A1 KR 2012011773 W KR2012011773 W KR 2012011773W WO 2013100714 A1 WO2013100714 A1 WO 2013100714A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
catalytic oxidizer
supplied
exhaust gas
Prior art date
Application number
PCT/KR2012/011773
Other languages
English (en)
French (fr)
Inventor
박미영
유정균
최원준
윤좌문
이기풍
이태원
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110147788A external-priority patent/KR101408139B1/ko
Priority claimed from KR1020120014983A external-priority patent/KR101401451B1/ko
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Publication of WO2013100714A1 publication Critical patent/WO2013100714A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbon dioxide recovery system for recovering carbon dioxide contained in flue gas discharged from a power plant.
  • Flue gas from power plants contains large amounts of carbon dioxide.
  • the carbon dioxide is a representative greenhouse gas and affects global warming and thus climate change.
  • molten carbonate fuel cell is a device that directly converts the chemical energy stored in the hydrocarbon fuel to electrical energy by electrochemical reaction.
  • the molten carbonate fuel cell includes an anode, a cathode, and a matrix, and each component is impregnated with an electrolyte.
  • Fuel electrode rich in natural gas or hydrogen is injected into the anode, and oxygen is supplied together with carbon dioxide to the cathode to form carbonate ions (CO 3 2- ).
  • Carbonate ions generated in the cathode move from the cathode to the anode through a matrix electrolyte located between the anode and the cathode, and the electrons generated at the anode produce electricity via an external circuit.
  • the electrolyte is usually in a solid state, but when the fuel cell system is normally operated, the temperature rises to about 650 ° C to liquefy.
  • the present invention is to propose a carbon dioxide recovery system that recovers carbon dioxide contained in flue gas discharged from a power plant, and minimizes the power required and the scale of the device.
  • a carbon dioxide recovery system using a fuel cell is a molten carbonate having an anode to which the flue gas discharged from the power plant is supplied and a fuel electrode to which hydrogen gas is supplied
  • a fuel cell a pure oxygen catalytic oxidizer configured to burn the exhaust gas of the anode to concentrate carbon dioxide and convert the exhaust gas into carbon dioxide and water, and a heat recovery device configured to recover heat generated from the pure oxygen catalytic oxidizer;
  • a gas-liquid separator which separates water from the exhaust gas and recovers carbon dioxide, a carbon dioxide storage tank connected to the gas-liquid separator and configured to store the recovered carbon dioxide, and a temperature of the pure oxygen catalytic oxidizer connected to the carbon dioxide storage tank.
  • Recovery for control A portion of the carbon dioxide and a flow regulator consisting of the oxide to be supplied to the pure oxygen catalyst.
  • a carbon dioxide recovery system using the fuel cell includes a pure oxygen supply device configured to supply pure oxygen to each of the cathode and the pure oxygen catalytic oxidizer for stable oxygen supply and high concentration of carbon dioxide. It includes more.
  • the flue gas and the pure oxygen may be supplied mixed or supplied to the cathode.
  • the recovered carbon dioxide is supplied directly to the pure oxygen catalytic oxidizer or mixed with the exhaust gas of the anode.
  • the heat recovered through the heat recovery device is used to operate a fuel reformer for generating the hydrogen gas supplied to the anode.
  • the carbon dioxide recovery system according to another embodiment of the present invention, a heat exchange type catalytic oxidizer for performing carbon dioxide concentration concentration and thermal management for the exhaust gas supplied from the molten carbonate fuel cell, the anode of the molten carbonate fuel cell, And a carbon dioxide separator separating carbon dioxide from the exhaust of the heat exchange type catalytic oxidizer.
  • the heat exchange type catalytic oxidizer is made to evenly distribute the flow rate of the exhaust gas supplied from the anode through the hot gas part to minimize the hot spot.
  • the heat exchange type catalytic oxidizer is supplied with pure oxygen to the combustion gas composition of the catalytic oxidizer and high concentration of carbon dioxide in the hot gas part, and the exhaust gas of the fossil fuel power plant is supplied to the upper or lower part in the low temperature gas part. It may be configured to.
  • the heat exchange type catalytic oxidizer includes a hot gas part and a low temperature gas part composed of a catalyst layer. If the flow rate of the exhaust gas is locally distributed without being evenly distributed throughout the hot gas portion, or if a hot spot occurs due to a channeling phenomenon, the flow rate of the exhaust gas is a pressure corresponding to an increase in the temperature of the hot gas portion. It can be made to be distributed evenly to the entire hot gas portion by the difference.
  • the discharge may be carbon dioxide and water.
  • the present invention in the carbon dioxide recovery system for recovering carbon dioxide from the exhaust gas of the molten carbonate fuel cell, is composed of a catalytic oxidizer and a heat exchanger, concentrating the carbon dioxide concentration of the exhaust gas supplied from the anode of the molten carbonate fuel cell And a heat exchange type catalytic oxidizer of a carbon dioxide recovery system including a heat exchange type catalytic oxidizer which simultaneously performs thermal management.
  • the heat exchange type catalytic oxidizer is made to evenly distribute the flow rate of the exhaust gas supplied from the anode through the hot gas part to minimize the hot spot.
  • the heat exchange type catalytic oxidizer includes a hot gas part and a low temperature gas part composed of a catalyst layer.
  • the heat exchange type catalytic oxidizer is supplied with a mixture of carbon dioxide recovered at a high concentration to control the temperature of the exhaust gas of the anode, and the air and fossil are supplied to the low temperature gas unit.
  • the exhaust gases of the fuel power plant are configured to be mixed and fed to the top or bottom.
  • the molten carbonate fuel cell is connected to the power plant is made to recover the carbon dioxide contained in the flue gas, so the power required for the recovery of carbon dioxide and the scale of the device can be minimized.
  • the flow rate regulator is configured to supply a portion of the recovered carbon dioxide to the pure oxygen catalytic oxidizer to control the temperature, thereby improving efficiency and stability of the molten carbonate fuel cell.
  • the present invention can minimize the size of the power required by the carbon dioxide recovery and the size of the device by using a heat exchange type catalytic oxidizer composed of a heat exchanger and a catalytic oxidizer integrally when constructing a fuel cell system for recovering carbon dioxide ), which can improve economic efficiency.
  • the flow rate of the exhaust gas supplied from the anode can be divided into two parts through the hot gas part to minimize the hot spots, thereby minimizing the shortening of the catalyst life and the temperature of the catalytic oxidizer. have.
  • FIG. 1 is a conceptual diagram showing a carbon dioxide recovery system using a molten carbonate fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a modification of the carbon dioxide recovery system.
  • FIG 3 is a conceptual diagram showing a carbon dioxide recovery system using a molten carbonate fuel cell according to another embodiment of the present invention.
  • Figure 4 is a conceptual diagram showing the configuration of the heat exchange type catalytic oxidizer shown in FIG.
  • FIG. 1 is a conceptual diagram illustrating a carbon dioxide recovery system 100 using a molten carbonate fuel cell 110 according to an embodiment of the present invention.
  • a carbon dioxide recovery system 100 is connected to a molten carbonate fuel cell 110 at a power plant, and recovers carbon dioxide contained in flue gas using a chemical reaction occurring in the molten carbonate fuel cell 110. .
  • the molten carbonate fuel cell 110 includes an anode 111, an cathode 112, and a matrix 113, and each component is impregnated with an electrolyte.
  • Hydrogen gas is supplied to the fuel electrode 111, and flue gas discharged from the power plant is supplied to the air electrode 112.
  • Hydrogen gas may be natural gas or fuel gas sufficiently containing hydrogen, and a fuel reformer may be used to generate hydrogen.
  • the cathode 112 may be supplied with pure oxygen from the pure oxygen supply device 170 to supply air containing oxygen or more stable oxygen.
  • carbonate ions (CO 3 2- ) are generated by a chemical reaction between carbon dioxide and oxygen contained in the flue gas.
  • the carbonate ions move from the cathode 112 to the anode 111 through the electrolyte of the matrix 113 positioned between the anode 111 and the cathode 112, and react with the hydrogen gas of the anode 111. It produces carbon dioxide and electrons through it. The electrons produce electricity via an external circuit.
  • the concentration of carbon dioxide is increased in the exhaust gas at the outlet of the anode 111, and the flue gas depleted of carbon dioxide leaves the cathode 112.
  • the exhaust gas of the fuel electrode 111 having a higher concentration of carbon dioxide is supplied to the pure oxygen catalytic oxidizer 120.
  • the pure oxygen catalytic oxidizer 120 burns unreacted hydrogen and a small amount of other gases from the exhaust gas of the anode 111 to concentrate the concentration of carbon dioxide to a higher concentration, and converts the exhaust gas into carbon dioxide and water.
  • the pure oxygen catalytic oxidizer 120 can perform the final treatment of carbon dioxide using only dehydration, and thus has the advantage of efficiently recovering carbon dioxide without an additional carbon dioxide separation device.
  • the pure oxygen catalytic oxidizer 120 may be supplied with pure oxygen from the pure oxygen supply device 170 for a higher concentration of carbon dioxide.
  • the exhaust gas passing through the pure oxygen catalytic oxidizer 120 is recovered through the heat recovery device 130.
  • Heat recovered through the heat recovery device 130 may be used to operate a fuel reformer for generating hydrogen gas supplied to the fuel electrode 111.
  • Heat exhaust gas is passed through the gas-liquid separator 140, the moisture in the exhaust gas is separated. As a result, only carbon dioxide is finally left in the exhaust gas, and the carbon dioxide undergoes a compression or cooling process for easy recovery.
  • the carbon dioxide recovered from the gas-liquid separator 140 is stored in the carbon dioxide storage tank 150.
  • the flow rate controller 160 is connected to the carbon dioxide storage tank 150, and the flow rate controller 160 supplies a portion of the recovered carbon dioxide to the pure oxygen catalytic oxidizer 120 for temperature control of the pure oxygen catalytic oxidizer 120. Is done.
  • the pure oxygen catalytic oxidizer 120 can be controlled not to exceed the allowable temperature, to prevent damage to the catalyst that may occur when the allowable temperature is exceeded, the molten carbonate fuel cell 110 It can maintain stable performance.
  • the carbon dioxide recovery system 100 may be provided with a pure oxygen supply device 170 to supply pure oxygen to each of the cathode 112 and the pure oxygen catalytic oxidizer 120.
  • the pure oxygen supply device 170 may supply sufficient oxygen to the cathode 112 to generate sufficient carbonate ions through a chemical reaction with carbon dioxide contained in the flue gas, and provide sufficient oxygen to the pure oxygen catalytic oxidizer 120.
  • the off-gas can be concentrated to a higher concentration of carbon dioxide.
  • Flue gas and pure oxygen may be mixed and supplied to the cathode 112 or may be separately supplied.
  • the recovered carbon dioxide may be directly supplied to the pure oxygen catalytic oxidizer 120 or mixed with the exhaust gas of the fuel electrode 111.
  • the molten carbonate fuel cell 110 is connected to the power plant is made to recover the carbon dioxide contained in the flue gas, so the power required for the recovery of carbon dioxide and the scale of the device can be minimized.
  • the flow controller 160 is configured to supply a portion of the recovered carbon dioxide to the pure oxygen catalytic oxidizer 120 to control the temperature, thereby improving efficiency and stability of the molten carbonate fuel cell 110.
  • FIG. 2 is a conceptual diagram illustrating a modification of the carbon dioxide recovery system 200.
  • the flue gas discharged from the power plant is supplied to the heater 212 through the heat exchanger 280 after being supplied to the heater 270 with fresh air to improve the efficiency and stability of the fuel cell system. .
  • Heat generated in the pure oxygen catalytic oxidizer 220 is configured to pass through the heat exchanger 280. Accordingly, the temperature of the fresh air supplied to the cathode 212 and the exhaust gas of the power plant can be adjusted.
  • the flue gas discharged from the power plant is exclusively connected to the cathodes 112 and 212 by connecting the power plant and the molten carbonate fuel cells 110 and 210 in series to reduce the carbon dioxide discharged from the power plant.
  • the system to supply is presented.
  • the amount of oxygen for generating carbonate ions by reacting with oxygen in the cathodes 112 and 212 may be insufficient depending on the oxygen concentration in the power plant exhaust gas, which may adversely affect the efficiency of the fuel cell system.
  • the unreacted fuel (hydrogen and a small amount of other gas) in the exhaust gas of the anodes 111 and 211 is burned in the oxygen catalytic oxidizers 120 and 220 to recover the high concentration of carbon dioxide
  • the pure oxygen catalytic oxidizer 120 The exhaust gas of 220
  • carbon dioxide only by dehydration, but it will rise above 1000 ° C, which is the allowable temperature range of the pure oxygen catalytic oxidizers 120 and 220, to cause damage to the catalyst.
  • the carbon dioxide recovered is recycled to reduce the damage of the catalyst, the carbon dioxide recycling cost and cooling duty are increased.
  • FIG. 3 is a conceptual diagram showing a carbon dioxide recovery system 300 using a molten carbonate fuel cell 310 according to another embodiment of the present invention
  • Figure 4 is a configuration of a heat exchange type catalytic oxidizer 320 shown in FIG. Is a conceptual diagram.
  • the carbon dioxide recovery system 300 includes a molten carbonate fuel cell 310, a heat exchange type (oxygen) catalytic oxidizer 320 for performing concentration and thermal management of high concentration carbon dioxide, a heat recovery device 330, and And a gas-liquid separator 340 for separating carbon dioxide and water.
  • a heat exchange type (oxygen) catalytic oxidizer 320 for performing concentration and thermal management of high concentration carbon dioxide
  • a heat recovery device 330 for recovering heat recovery device 330
  • a gas-liquid separator 340 for separating carbon dioxide and water.
  • the present invention is a heat exchange type catalytic oxidizer (operation of the heat exchanger 280 and the heater 270 and the operation of the carbon dioxide storage tank 250 and the flow regulator 260 to recover the carbon dioxide described above).
  • the economic and efficient aspects are considered simultaneously.
  • the heat exchange type catalytic oxidizer 320 includes a hot gas side 322 and a cold gas side 323 formed of a catalyst layer 321.
  • the high temperature gas unit 322 is supplied with pure oxygen to form a combustion atmosphere of the heat exchange-type catalytic oxidizer 320 and the high concentration of carbon dioxide, and the low temperature gas unit 323 is mixed with fresh air and exhaust gas of a power plant. Fed to the bottom.
  • a fuel gas rich in natural gas or hydrogen is supplied to the anode 311 of the molten carbonate fuel cell 310, and fresh air and flue gas (emission gas) discharged from a power plant are supplied to the cathode 312.
  • the concentration of carbon dioxide increases in the exhaust gas discharged from the fuel electrode 311 of the fuel cell 310, and the exhaust gas of the fuel electrode 311 having the higher carbon dioxide concentration is supplied to the heat exchange type catalytic oxidizer 320.
  • the heat exchange type catalytic oxidizer 320 burns unreacted hydrogen and a large amount of other gases from the exhaust gas discharged from the fuel electrode 311 of the fuel cell 310 to condense the concentration of carbon dioxide at a high concentration and discharge at a high temperature. Hot gas is converted to carbon dioxide and water. This allows the present invention to efficiently recover carbon dioxide without additional carbon dioxide separators. In addition, the fresh air supplied to the cathode 312 and the exhaust gas of the power plant can be economically improved because the temperature is controlled by the heat exchange type catalytic oxidizer 320 without the heat exchanger 280 and the heater 270. have.
  • the pure gas is supplied to the high temperature gas part 322 of the heat exchange type catalytic oxidizer 320 to form a combustion atmosphere of the heat exchange type catalytic oxidizer 320 and to concentrate the high concentration carbon dioxide, and the low temperature gas.
  • the unit 323 is mixed with fresh air and the discharge gas of the power plant is supplied to the upper (or lower). At this time, if the flow rate of the hot gas supplied from the anode 311 is not evenly distributed throughout the hot gas part 322 or locally increases, or if a hot spot occurs due to channeling phenomenon, The temperature in the hot gas part 322 is raised to increase the pressure.
  • the discharge gas of the fuel electrode 311 locally supplied to the hot gas part 322 causes the flow rate to be transferred to the entire hot gas part 322 by the pressure difference, and evenly.
  • the temperature of the exhaust gas is controlled, thereby minimizing the lifespan of the catalyst due to hot spots as in the related art.
  • the exhaust (carbon dioxide and water) of the heat exchange type catalytic oxidizer 320 is further recovered while passing through the heat recovery device 330, and the gas-liquid separator 340 separates and removes water from the exhaust. Therefore, only carbon dioxide is finally discharged from the gas-liquid separator 340 to easily recover carbon dioxide through direct compression or cooling.
  • the present invention uses the heat exchange type catalytic oxidizer 320 having a heat exchanger and a catalytic oxidizer integrally when constructing a fuel cell system for recovering carbon dioxide. It has the advantage of minimizing and reducing footprint.
  • the present invention in the heat exchange type catalytic oxidizer 320, by dividing the flow rate of the exhaust gas supplied from the anode through the hot gas portion 322 to minimize the hot spot (minimizing the hot spot) to minimize the shortening of the catalyst life It is possible to control the temperature of the pure oxygen catalytic oxidizer.
  • the carbon dioxide recovery system using the fuel cell described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications may be made. It may be.
  • Embodiments of the present invention by recovering the carbon dioxide contained in the flue gas discharged from the power plant, by suggesting a carbon dioxide recovery system minimized the power and the size of the device for this, it can be applied to various industrial fields related thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 발전소에서 배출되는 연도가스가 공급되는 공기극과 수소가스가 공급되는 연료극을 구비하는 용융탄산염 연료전지와, 상기 연료극의 배출가스를 연소하여 이산화탄소를 농축하고 상기 배출가스를 이산화탄소와 물로 전환하도록 이루어지는 순산소 촉매산화기와, 상기 순산소 촉매산화기에서 발생하는 열을 회수하도록 형성되는 열회수장치와, 상기 배출가스 중 수분을 분리시키며 이산화탄소를 회수하도록 이루어지는 기액분리기와, 상기 기액분리기와 연결되고 회수된 이산화탄소를 저장하도록 형성되는 이산화탄소 저장조, 및 상기 이산화탄소 저장조와 연결되며 상기 순산소 촉매산화기의 온도 제어를 위하여 회수된 이산화탄소의 일부를 상기 순산소 촉매산화기로 공급하도록 이루어지는 유량 조절기를 포함하는 연료전지를 이용한 이산화탄소 회수 시스템을 제공한다.

Description

연료전지를 이용한 이산화탄소 회수 시스템
본 발명은 발전소에서 배출되는 연도가스에 포함된 이산화탄소를 회수하기 위한 이산화탄소 회수 시스템에 관한 것이다.
발전소에서 배출되는 연도가스는 다량의 이산화탄소를 포함한다. 상기 이산화탄소는 대표적인 온실 가스로서 지구 온난화 및 이에 따른 기후 변화에 영향을 미친다.
연도가스에 포함된 이산화탄소를 제거하기 위해 여러 가지 방법이 제안되고 있다. 그러나 이산화탄소를 처리하는 과정은 연도가스 내의 이산화탄소의 농도가 낮기 때문에 비용면에서 효과적이지 못하다.
한편, 용융탄산염 연료전지(MCFC: Molten Carbonate Fuel Cell)는 탄화수소연료에 저장된 화학에너지를 전기화학적 반응에 의해 전기에너지로 직접 변환하는 장치이다. 용융탄산염 연료전지는 연료극(anode), 공기극(cathode) 및 매트릭스(matrix)를 포함하며, 각 구성요소에는 전해질이 함침되어 있다.
연료극에는 천연가스 또는 수소가 풍부한 연료가스가 주입되고, 공기극에는 산소가 이산화탄소와 함께 공급되어 카보네이트 이온(CO3 2-)을 만든다. 공기극에서 생성된 카보네이트 이온은 연료극과 공기극 사이에 위치하는 매트릭스의 전해질을 통하여 공기극에서 연료극으로 이동하며, 연료극에서 생성된 전자는 외부회로를 경유하여 전기를 생산하게 된다. 이때, 전해질은 평상시에는 고체 상태로 존재하다가 연료전지 시스템이 정상 운전될 경우에는 약 650℃까지 온도가 상승하여 액화된다.
본 발명은 발전소에서 배출되는 연도가스에 포함된 이산화탄소를 회수하며, 이를 위한 소요 동력 및 장치의 규모가 최소화된 이산화탄소 회수 시스템을 제안하기 위한 것이다.
이와 같은 본 발명의 해결 과제를 달성하기 위하여, 본 발명의 일 실시예에 따르는 연료전지를 이용한 이산화탄소 회수 시스템은 발전소에서 배출되는 연도가스가 공급되는 공기극과 수소가스가 공급되는 연료극을 구비하는 용융탄산염 연료전지와, 상기 연료극의 배출가스를 연소하여 이산화탄소를 농축하고 상기 배출가스를 이산화탄소와 물로 전환하도록 이루어지는 순산소 촉매산화기와, 상기 순산소 촉매산화기에서 발생하는 열을 회수하도록 형성되는 열회수장치와, 상기 배출가스 중 수분을 분리시키며 이산화탄소를 회수하도록 이루어지는 기액분리기와, 상기 기액분리기와 연결되고 회수된 이산화탄소를 저장하도록 형성되는 이산화탄소 저장조, 및 상기 이산화탄소 저장조와 연결되며 상기 순산소 촉매산화기의 온도 제어를 위하여 회수된 이산화탄소의 일부를 상기 순산소 촉매산화기로 공급하도록 이루어지는 유량 조절기를 포함한다.
본 발명과 관련된 일 예에 따르면, 상기 연료전지를 이용한 이산화탄소 회수 시스템은 안정적인 산소 공급 및 고농도의 이산화탄소 농축을 위해 상기 공기극 및 상기 순산소 촉매산화기 각각에 순산소를 공급하도록 이루어지는 순산소 공급장치를 더 포함한다. 상기 연도가스와 상기 순산소는 상기 공기극에 혼합되어 공급되거나 별도로 공급될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 회수된 이산화탄소는 상기 순산소 촉매산화기로 직접 또는 상기 연료극의 상기 배출가스와 혼합되어 공급된다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 열회수장치를 통해 회수되는 열은 상기 연료극에 공급되는 상기 수소가스의 생성을 위한 연료개질기의 작동에 이용된다.
또한, 본 발명의 다른 일 실시예에 따르는 이산화탄소 회수 시스템은, 용융탄산염 연료전지와, 용융탄산염 연료전지의 연료극에서 공급된 배출가스에 대한 이산화탄소 농도 농축 및 열 관리를 수행하는 열교환형 촉매산화기, 및 열교환형 촉매산화기의 배출물에서 이산화탄소를 분리하는 이산화탄소 분리기를 포함한다.
본 발명과 관련된 일 예에 따르면, 상기 열교환형 촉매 산화기는, 연료극에서 공급된 배출가스의 유량을 고온 가스부를 통해 고르게 분산시켜 열점을 최소화하도록 이루어진다. 상기 열교환형 촉매 산화기는, 고온 가스부에는 촉매산화기의 연소 분위기 조성 및 고농도 이산화탄소 농축을 위해 순산소가 공급되고, 저온 가스부에는 공기와 화석연료 발전소의 배출가스가 혼합되어 상부 또는 하부로 공급되도록 구성될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 열교환형 촉매 산화기는, 촉매층으로 구성된 고온 가스부 및 저온 가스부를 포함한다. 상기 배출가스의 유량이 고온 가스부 전체로 고르게 분배되지 않고 국부적으로 증가하거나 또는 채널링(Channeling) 현상으로 인해 열점(Hot spot)이 발생되면, 상기 배기가스의 유량은 고온 가스부의 온도 증가에 따른 압력차에 의해 전체 고온 가스부로 고르게 분배되도록 이루어질 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 배출물은, 이산화탄소와 물이 될 수 있다.
아울러 본 발명은, 용융탄산염 연료전지의 배출가스에서 이산화탄소를 회수하는 이산화탄소 회수 시스템에 있어서, 촉매산화기와 열교환기의 일체형으로 구성되어, 용융탄산염 연료전지의 연료극에서 공급된 배출가스에 대한 이산화탄소 농도 농축 및 열 관리를 동시에 수행하는 열교환형 촉매산화기를 포함하는 이산화탄소 회수 시스템의 열교환형 촉매산화기를 제안한다.
본 발명과 관련된 일 예에 따르면, 상기 열교환형 촉매산화기는, 연료극에서 공급된 배출가스의 유량을 고온 가스부를 통해 고르게 분산시켜 열점을 최소화하도록 이루어진다.
본 발명과 관련된 다른 일 예에 따르면, 상기 열교환형 촉매산화기는, 촉매층으로 구성된 고온 가스부 및 저온 가스부를 포함한다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 열교환형 촉매산화기는, 고온 가스부에는 연료극의 배출가스의 온도를 제어하기 위해 고농도로 회수된 이산화탄소가 혼합되어 공급되고, 저온 가스부에는 공기와 화석연료 발전소의 배출가스가 혼합되어 상부 또는 하부로 공급되도록 구성된다.
상기와 같은 구성의 본 발명에 의하면, 용융탄산염 연료전지는 발전소에 연결되어 연도가스에 포함된 이산화탄소를 회수하도록 이루어지므로 이산화탄소의 회수를 위한 소요 동력 및 장치의 규모가 최소화될 수 있다. 유량 조절기는 회수된 이산화탄소의 일부를 순산소 촉매산화기에 공급하여 온도를 제어하도록 이루어지는바, 용융탄산염 연료전지의 효율 및 안정성이 향상될 수 있다.
또한, 본 발명은 이산화탄소를 회수하기 위한 연료전지 시스템을 구성할 때 열교환기와 촉매산화기를 일체형으로 구성한 열교환형 촉매산화기를 사용함으로써 이산화탄소 회수에 따른 소요동력 및 장치의 규모를 최소화할 수 있고 공간(footprint)을 줄일 수 있어 경제성 향상 효과가 있다.
본 발명은 열교환형 촉매산화기에서, 연료극에서 공급된 배출가스의 유량을 고온 가스부를 통해 이분하게 분산시켜 열점을 최소화함으로써 촉매 수명의 단축을 최소화할 수 있으며 촉매산화기의 온도관리가 가능한 효과가 있다.
본 발명에서는 열교환형 촉매산화기 자체에서 열관리가 가능하기 때문에 종래와 같이 이산화탄소 저장소 및 유량 조절기를 통한 이산화탄소의 재순환 비용과 쿨링 듀티(cooling duty)를 줄일 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 용융탄산염 연료전지를 이용한 이산화탄소 회수 시스템을 보인 개념도.
도 2는 이산화탄소 회수 시스템의 변형예를 보인 개념도.
도 3은 본 발명의 다른 일 실시예에 따른 용융탄산염 연료전지를 이용한 이산화탄소 회수 시스템을 보인 개념도.
도 4는 도 3에 도시된 열교환형 촉매산화기의 구성을 보인 개념도.
이하, 본 발명에 관련된 연료전지를 이용한 이산화탄소 회수 시스템에 대하여 도면을 참조하여 보다 상세하게 설명한다.
본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.
도 1은 본 발명의 일 실시예에 따른 용융탄산염 연료전지(110)를 이용한 이산화탄소 회수 시스템(100)을 보인 개념도이다.
도 1을 참조하면, 이산화탄소 회수 시스템(100)은 발전소에 용융탄산염 연료전지(110)가 연결되고, 용융탄산염 연료전지(110)에서 일어나는 화학 반응을 이용하여 연도가스에 포함된 이산화탄소를 회수하도록 이루어진다.
구체적으로, 용융탄산염 연료전지(110)는 연료극(anode, 111), 공기극(cathode, 112) 및 매트릭스(matrix, 113)를 포함하며, 각 구성요소에는 전해질이 함침되어 있다.
연료극(111)에는 수소가스가 공급되고, 공기극(112)에는 발전소에서 배출되는 연도가스가 공급된다. 수소가스는 수소가 충분히 포함된 천연가스 또는 연료가스가 될 수 있으며, 수소의 발생을 위해 연료개질기(fuel reformer)가 이용될 수 있다. 공기극(112)에는 산소를 포함하는 공기 또는 보다 안정적인 산소 공급을 위해 순산소 공급장치(170)로부터 순산소가 공급될 수 있다.
공기극(112)에서는 연도가스에 포함된 이산화탄소와 산소의 화학반응으로 카보네이트 이온(CO3 2-)이 생성된다. 상기 카보네이트 이온은 연료극(111)과 공기극(112) 사이에 위치하는 매트릭스(113)의 전해질을 통하여 공기극(112)에서 연료극(111)으로 이동하며, 연료극(111)의 수소가스와의 화학반응을 통해 이산화탄소와 전자를 생성한다. 상기 전자는 외부회로를 경유하여 전기를 생산하게 된다.
이러한 전기화학적 반응에 따라 연료극(111) 출구의 배출가스에는 이산화탄소의 농도가 높아지고, 이산화탄소가 고갈된 연도가스는 공기극(112)을 빠져나가게 된다.
이산화탄소의 농도가 높아진 연료극(111)의 배출가스는 순산소 촉매산화기(120)에 공급된다. 순산소 촉매산화기(120)는 연료극(111)의 배출가스에서 반응하지 않은 수소 및 소량의 다른 가스를 연소하여 이산화탄소의 농도를 더욱 고농도로 농축하고, 상기 배출가스를 이산화탄소와 물로 전환한다.
순산소 촉매산화기(120)는 공기촉매산화기를 이용하는 경우와는 달리, 탈수만을 이용하여 이산화탄소의 최종 처리가 가능하므로, 추가적인 이산화탄소 분리장치가 없이도 이산화탄소를 효율적으로 회수할 수 있다는 장점을 갖는다. 또한, 순산소 촉매산화기(120)에는 보다 고농도의 이산화탄소 농축을 위하여 순산소 공급장치(170)로부터 순산소가 공급될 수 있다.
순산소 촉매산화기(120)를 통과한 배출가스는 열회수장치(130)를 통해 열이 회수된다. 열회수장치(130)를 통해 회수된 열은 연료극(111)에 공급되는 수소가스의 생성을 위한 연료개질기의 작동에 이용될 수 있다.
열이 회수된 배출가스는 기액분리기(140)를 통과하며, 배출가스 중 수분은 분리된다. 그 결과, 상기 배출가스에는 최종적으로 이산화탄소만 남게 되고, 상기 이산화탄소는 용이한 회수를 위하여 압축 또는 냉각 과정을 거치게 된다.
기액분리기(140)에서 회수된 이산화탄소는 이산화탄소 저장조(150)에 저장된다. 이산화탄소 저장조(150)에는 유량 조절기(160)가 연결되며, 유량 조절기(160)는 순산소 촉매산화기(120)의 온도 제어를 위하여 회수된 이산화탄소의 일부를 순산소 촉매산화기(120)로 공급하도록 이루어진다.
상기 구조에 의하면, 순산소 촉매산화기(120)를 냉각시켜 허용 온도를 넘지않도록 제어할 수 있으며, 허용 온도를 넘었을 경우 발생할 수 있는 촉매의 손상을 방지하고, 용융탄산염 연료전지(110)가 안정된 성능을 유지하도록 할 수 있다.
앞서 설명한 바와 같이, 이산화탄소 회수 시스템(100)에는 순산소 공급장치(170)가 구비되어 공기극(112) 및 순산소 촉매산화기(120) 각각에 순산소를 공급하도록 이루어질 수 있다. 순산소 공급장치(170)는 공기극(112)에 안정적인 산소를 공급하여 연도가스에 포함된 이산화탄소와의 화학반응을 통해 충분한 카보네이트 이온을 생성할 수 있으며, 순산소 촉매산화기(120)에 충분한 산소를 공급하여 배출가스가 보다 고농도의 이산화탄소로 농축되도록 할 수 있다.
연도가스와 순산소는 공기극(112)에 혼합되어 공급되거나 별도로 공급될 수 있다. 또한, 회수된 이산화탄소는 순산소 촉매산화기(120)로 직접 또는 연료극(111)의 배출가스와 혼합되어 공급될 수 있다.
상기와 같은 구성의 본 발명에 의하면, 용융탄산염 연료전지(110)는 발전소에 연결되어 연도가스에 포함된 이산화탄소를 회수하도록 이루어지므로 이산화탄소의 회수를 위한 소요 동력 및 장치의 규모가 최소화될 수 있다.
또한, 유량 조절기(160)는 회수된 이산화탄소의 일부를 순산소 촉매산화기(120)에 공급하여 온도를 제어하도록 이루어지는바, 용융탄산염 연료전지(110)의 효율 및 안정성이 향상될 수 있다.
도 2는 이산화탄소 회수 시스템(200)의 변형예를 보인 개념도이다.
발전소에서 배출되는 연도가스는 연료전지 시스템의 효율 및 안정성 향상을 위하여 신선한 공기(fresh air)와 함께 히터(pre heater, 270)에 공급된 후 열교환기(280)를 거쳐 공기극(212)에 공급된다.
순산소 촉매산화기(220)에서 발생한 열은 열교환기(280)를 통과하도록 구성된다. 이에 따라, 공기극(212)으로 공급되는 신선한 공기와 발전소 배출가스의 온도가 조절될 수 있다.
이상의 이산화탄소 회수 시스템(100, 200)에서는 발전소에서 배출되는 이산화탄소를 감소시키기 위해 발전소와 용융탄산염 연료전지(110, 210)를 직렬 연결하여 발전소에서 배출되는 연도가스를 공기극(112, 212)에 배타적으로 공급하는 시스템을 제시하고 있다. 그러나 발전소 배출가스 내의 산소 농도에 따라 공기극(112, 212)에서 산소와 반응하여 카보네이트 이온을 생성하기 위한 산소량이 부족할 가능성이 내재되어 있어 연료전지 시스템의 효율에 악영향을 미칠 우려가 있다.
그리고 고농도 이산화탄소를 회수하기 위해 연료극(111, 211) 배출가스 중 미반응 연료(수소 및 소량의 다른 가스)를 순산소 촉매산화기(120, 220)에서 연소시킬 때 순산소 촉매산화기(120, 220)의 배출가스는 탈수만을 이용해 이산화탄소의 최종 처리가 가능하지만, 순산소 촉매산화기(120, 220)의 허용 온도범위인 700℃를 넘어 1000℃이상으로 상승하게 되어 촉매의 손상이 발생하게 되며, 용융탄산염 연료전지(110, 210)의 성능에 영향을 미치게 된다. 특히 촉매의 손상을 줄이기 위해 회수된 이산화탄소를 재순환시킬 경우에는 이산화탄소 재순환 비용 및 쿨링 듀티(cooling duty)가 증가하게 된다.
아울러, 순산소 촉매산화기(120, 220)의 온도 제어를 위해 회수된 이산화탄소를 공급하더라도 국부적으로 공급되기 때문에 온도 제어가 제대로 이루어지지 않으며, 채널링(channeling)현상이 발생할 경우에는 열점(hot spot)이 발생되어 촉매 수명에 영향을 미치게 된다.
이하, 이러한 점들을 개선시킬 수 있는 이산화탄소 회수 시스템(300)에 대하여 설명한다.
도 3은 본 발명의 다른 일 실시예에 따른 용융탄산염 연료전지(310)를 이용한 이산화탄소 회수 시스템(300)을 보인 개념도이고, 도 4는 도 3에 도시된 열교환형 촉매산화기(320)의 구성을 보인 개념도이다.
도 3을 참조하면, 이산화탄소 회수 시스템(300)은 용융탄산염 연료전지(310), 고농도 이산화탄소의 농축 및 열 관리를 수행하는 열교환형 (순산소) 촉매산화기(320), 열회수장치(330) 및 이산화탄소와 물을 분리하기 위한 기액분리기(340)를 포함한다.
즉, 본 발명은 앞서 설명한 열 관리를 수행하는 열교환기(280) 및 히터(270)의 동작과 이산화탄소를 회수하기 위한 이산화탄소 저장조(250) 및 유량 조절기(260)의 동작을 열교환형 촉매산화기(320)에서 통합적으로 수행하도록 구성하여, 경제적인 측면과 효율적인 측면을 동시에 고려하였다.
도 4를 참조하면, 열교환형 촉매산화기(320)는 촉매층(321)으로 구성된 고온 가스부(hot gas side, 322) 및 저온 가스부(cold gas side, 323)로 구성된다. 고온 가스부(322)에는 열교환형 촉매산화기(320)의 연소 분위기 조성 및 고농도 이산화탄소 농축을 위해 순산소가 공급되고, 저온 가스부(323)에는 신선한 공기와 발전소의 배출가스가 혼합되어 상부 또는 하부로 공급된다.
이와 같이 구성된 본 발명에 따른 열교환형 촉매산화기(320) 및 이를 이용한 이산화탄소 회수 시스템(300)의 동작을 설명하면 다음과 같다.
용융탄산염 연료전지(310)의 연료극(311)에는 천연가스 또는 수소가 풍부한 연료가스가 공급되고, 공기극(312)에는 신선한 공기와 발전소에서 배출되는 연도가스(배출가스)가 공급된다.
공기극(312)의 연도가스 배출물과 연료극(311)에서 개질된 수소는 전력을 생산하기 위해 전기 화학반응을 거치며, 전기 화학적 반응에 의해 연도가스 내의 이산화탄소가 공기극(312)에서 연료극(311)으로 이동된다.
따라서, 연료전지(310)의 연료극(311)에서 배출되는 배출가스에는 이산화탄소의 농도가 높아지고, 이산화탄소의 농도가 높아진 연료극(311)의 배출가스는 열교환형 촉매산화기(320)에 공급된다.
열교환형 촉매산화기(320)는 연료전지(310)의 연료극(311)에서 배출되는 배출가스에서 반응하지 않은 수소 및 다량의 다른 가스를 연소시켜 이산화탄소의 농도를 고농도로 농축함과 함께 고온의 배출가스(hot gas)를 이산화탄소와 물로 전환한다. 이로 인해 본 발명은 추가적인 이산화탄소 분리기 없이도 이산화탄소를 효율적으로 회수할 수 있다. 또한, 공기극(312)으로 공급되는 신선한 공기와 발전소의 배출가스는 열교환기(280)와 히터(270)없이도 열교환형 촉매산화기(320)에 의해 온도가 조절되기 때문에 경제성 향상 효과를 가져 올 수 있다.
즉, 도 4를 참조하면, 열교환형 촉매산화기(320)의 고온 가스부(322)에는 열교환형 촉매산화기(320)의 연소 분위기 조성 및 고농도 이산화탄소 농축을 위해 순산소가 공급되고, 저온 가스부(323)에는 신선한 공기와 발전소의 배출가스가 혼합되어 상부로(또는 하부)로 공급된다. 이때, 연료극(311)에서 공급된 배출가스(hot gas)의 유량이 고온 가스부(322) 전체로 고르게 분배되지 않고 국부적으로 증가하거나 또는 채널링(channeling) 현상으로 인해 열점(hot spot)이 발생되면 고온 가스부(322) 내의 온도가 상승되어 압력이 증가하게 된다.
고온 가스부(322) 내의 압력이 증가하게 되면, 국부적으로 고온 가스부(322)에 공급되던 연료극(311)의 배출가스는 압력차에 의해 전체 고온 가스부(322)로 유량이 옮겨지게 되어 고르게 분배되고, 이로 인해 배출가스의 온도가 제어됨으로써 종래와 같이 열점(hot spot)에 의한 촉매의 수명 단축을 최소화할 수 있다.
따라서, 열교환형 촉매산화기(320)의 배출물(이산화탄소와 물)은 열회수장치(330)를 통과하면서 추가로 열이 회수되며, 기액분리기(340)는 상기 배출물에서 물을 분리하여 제거한다. 따라서, 기액분리기(340)로부터 최종적으로 이산화탄소만 배출되어 직접 압축 또는 냉각을 통해 이산화탄소를 용이하게 회수할 수 있게 된다.
상술한 바와 같이, 본 발명은 이산화탄소를 회수하기 위한 연료전지 시스템을 구성할 때 열교환기와 촉매산화기를 일체형으로 구성한 열교환형 촉매산화기(320)를 사용함으로써 이산화탄소 회수에 따른 소요동력 및 장치의 규모를 최소화할 수 있으며 아울러 점유 공간(footprint)을 줄일 수 있는 장점이 있다.
아울러, 본 발명은 열교환형 촉매산화기(320)에서, 연료극에서 공급된 배출가스의 유량을 고온 가스부(322)를 통해 이분하게 분산시켜 열점(hot spot)을 최소화함으로써 촉매 수명의 단축을 최소화할 수 있으며 순산소 촉매산화기의 온도관리가 가능한 효과가 있다.
또한, 본 발명에서는 열교환형 촉매산화기(320) 자체에서 열관리가 가능하기 때문에 이산화탄소 저장조(150, 250) 및 유량 조절기(160, 260)를 통한 이산화탄소의 재순환 비용과 쿨링 듀티(cooling duty)를 줄일 수 있다.
이상에서 설명한 연료전지를 이용한 이산화탄소 회수 시스템은 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명의 실시예들은 발전소에서 배출되는 연도가스에 포함된 이산화탄소를 회수하며 이를 위한 소요 동력 및 장치의 규모가 최소화된 이산화탄소 회수 시스템을 제안함으로로써, 이와 관련된 다양한 산업 분야에 적용될 수 있다.

Claims (15)

  1. 발전소에서 배출되는 연도가스가 공급되는 공기극과 수소가스가 공급되는 연료극을 구비하는 용융탄산염 연료전지(MCFC: Molten Carbonate Fuel Cell);
    상기 연료극의 배출가스를 연소하여 이산화탄소를 농축하고, 상기 배출가스를 이산화탄소와 물로 전환하도록 이루어지는 순산소 촉매산화기;
    상기 순산소 촉매산화기에서 발생하는 열을 회수하도록 형성되는 열회수장치;
    상기 배출가스 중 수분을 분리시키며, 이산화탄소를 회수하도록 이루어지는 기액분리기;
    상기 기액분리기와 연결되고, 회수된 이산화탄소를 저장하도록 형성되는 이산화탄소 저장조; 및
    상기 이산화탄소 저장조와 연결되며, 상기 순산소 촉매산화기의 온도 제어를 위하여 회수된 이산화탄소의 일부를 상기 순산소 촉매산화기로 공급하도록 이루어지는 유량 조절기를 포함하는 것을 특징으로 하는 연료전지를 이용한 이산화탄소 회수 시스템.
  2. 제 1항에 있어서,
    안정적인 산소 공급 및 고농도의 이산화탄소 농축을 위해 상기 공기극 및 상기 순산소 촉매산화기 각각에 순산소를 공급하도록 이루어지는 순산소 공급장치를 더 포함하는 것을 특징으로 하는 연료전지를 이용한 이산화탄소 회수 시스템.
  3. 제 2항에 있어서,
    상기 연도가스와 상기 순산소는 상기 공기극에 혼합되어 공급되거나 별도로 공급되는 것을 특징으로 하는 연료전지를 이용한 이산화탄소 회수 시스템.
  4. 제 1항에 있어서,
    회수된 이산화탄소는 상기 순산소 촉매산화기로 직접 또는 상기 연료극의 상기 배출가스와 혼합되어 공급되는 것을 특징으로 하는 연료전지를 이용한 이산화탄소 회수 시스템.
  5. 제 1항에 있어서,
    상기 열회수장치를 통해 회수되는 열은 상기 연료극에 공급되는 상기 수소가스의 생성을 위한 연료개질기의 작동에 이용되는 것을 특징으로 하는 연료전지를 이용한 이산화탄소 회수 시스템.
  6. 용융탄산염 연료전지;
    용융탄산염 연료전지의 연료극에서 공급된 배출가스에 대한 이산화탄소 농도 농축 및 열 관리를 수행하는 열교환형 촉매산화기; 및
    열교환형 촉매산화기의 배출물에서 이산화탄소를 분리하는 이산화탄소 분리기를 포함하는 이산화탄소 회수 시스템.
  7. 제 6항에 있어서, 상기 열교환형 촉매 산화기는
    연료극에서 공급된 배출가스의 유량을 고온 가스부를 통해 고르게 분산시켜 열점을 최소화하는 것을 특징으로 하는 이산화탄소 회수 시스템.
  8. 제 6항에 있어서, 상기 열교환형 촉매 산화기는
    촉매층으로 구성된 고온 가스부 및 저온 가스부를 포함하는 것을 특징으로 하는 이산화탄소 회수 시스템.
  9. 제 7항에 있어서, 상기 열교환형 촉매 산화기는
    고온 가스부에는 촉매산화기의 연소 분위기 조성 및 고농도 이산화탄소 농축을 위해 순산소가 공급되고, 저온 가스부에는 공기와 화석연료 발전소의 배출가스가 혼합되어 상부 또는 하부로 공급되도록 구성된 것을 특징으로 하는 이산화탄소 회수 시스템.
  10. 제 8항에 있어서, 상기 배출가스의 유량이 고온 가스부 전체로 고르게 분배되지 않고 국부적으로 증가하거나 또는 채널링(Channeling) 현상으로 인해 열점(Hot spot)이 발생되면, 상기 배기가스의 유량은 고온 가스부의 온도 증가에 따른 압력차에 의해 전체 고온 가스부로 고르게 분배되는 것을 특징으로 하는 이산화탄소 회수 시스템.
  11. 제 6항에 있어서, 상기 배출물은
    이산화탄소와 물인 것을 특징으로 하는 이산화탄소 회수 시스템.
  12. 용융탄산염 연료전지의 배출가스에서 이산화탄소를 회수하는 이산화탄소 회수 시스템에 있어서,
    촉매산화기와 열교환기의 일체형으로 구성되어, 용융탄산염 연료전지의 연료극에서 공급된 배출가스에 대한 이산화탄소 농도 농축 및 열 관리를 동시에 수행하는 열교환형 촉매산화기를 포함하는 이산화탄소 회수 시스템의 열교환형 촉매산화기.
  13. 제 12항에 있어서, 상기 열교환형 촉매산화기는
    연료극에서 공급된 배출가스의 유량을 고온 가스부를 통해 고르게 분산시켜 열점을 최소화하는 것을 특징으로 하는 이산화탄소 회수 시스템의 열교환형 촉매산화기.
  14. 제 12항에 있어서, 상기 열교환형 촉매산화기는
    촉매층으로 구성된 고온 가스부 및 저온 가스부를 포함하는 것을 특징으로 하는 이산화탄소 회수 시스템의 열교환형 촉매산화기.
  15. 제 12항에 있어서, 상기 열교환형 촉매산화기는
    고온 가스부에는 연료극의 배출가스의 온도를 제어하기 위해 고농도로 회수된 이산화탄소가 혼합되어 공급되고, 저온 가스부에는 공기와 화석연료 발전소의 배출가스가 혼합되어 상부 또는 하부로 공급되도록 구성된 것을 특징으로 하는 이산화탄소 회수 시스템의 열교환형 촉매산화기.
PCT/KR2012/011773 2011-12-30 2012-12-28 연료전지를 이용한 이산화탄소 회수 시스템 WO2013100714A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0147788 2011-12-30
KR1020110147788A KR101408139B1 (ko) 2011-12-30 2011-12-30 연료전지를 이용한 이산화탄소 회수 시스템
KR1020120014983A KR101401451B1 (ko) 2012-02-14 2012-02-14 열교환형 촉매 산화기 및 이를 이용한 고농도 이산화탄소 회수장치
KR10-2012-0014983 2012-02-14

Publications (1)

Publication Number Publication Date
WO2013100714A1 true WO2013100714A1 (ko) 2013-07-04

Family

ID=48698045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011773 WO2013100714A1 (ko) 2011-12-30 2012-12-28 연료전지를 이용한 이산화탄소 회수 시스템

Country Status (1)

Country Link
WO (1) WO2013100714A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741504A (zh) * 2017-08-24 2020-01-31 熔盐电化学技术开发株式会社 二氧化碳电解-碳燃料电池一体型装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141268A (ja) * 1986-12-03 1988-06-13 Ishikawajima Harima Heavy Ind Co Ltd 天然ガス改質溶融炭酸塩型燃料電池発電装置
KR20110074621A (ko) * 2008-11-18 2011-06-30 도쿄 가스 가부시키가이샤 수소 리사이클형 mcfc 발전 시스템
KR20110086110A (ko) * 2008-11-18 2011-07-27 도쿄 가스 가부시키가이샤 Mcfc 발전 시스템과 그 운전 방법
KR20110114816A (ko) * 2010-04-14 2011-10-20 삼성중공업 주식회사 연료전지 발전시스템을 이용한 이산화탄소 포집장치 및 그 방법
KR101084072B1 (ko) * 2009-02-17 2011-11-16 삼성에스디아이 주식회사 연료 전지 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141268A (ja) * 1986-12-03 1988-06-13 Ishikawajima Harima Heavy Ind Co Ltd 天然ガス改質溶融炭酸塩型燃料電池発電装置
KR20110074621A (ko) * 2008-11-18 2011-06-30 도쿄 가스 가부시키가이샤 수소 리사이클형 mcfc 발전 시스템
KR20110086110A (ko) * 2008-11-18 2011-07-27 도쿄 가스 가부시키가이샤 Mcfc 발전 시스템과 그 운전 방법
KR101084072B1 (ko) * 2009-02-17 2011-11-16 삼성에스디아이 주식회사 연료 전지 시스템
KR20110114816A (ko) * 2010-04-14 2011-10-20 삼성중공업 주식회사 연료전지 발전시스템을 이용한 이산화탄소 포집장치 및 그 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741504A (zh) * 2017-08-24 2020-01-31 熔盐电化学技术开发株式会社 二氧化碳电解-碳燃料电池一体型装置
CN110741504B (zh) * 2017-08-24 2024-04-02 熔盐电化学技术开发株式会社 二氧化碳电解-碳燃料电池一体型装置

Similar Documents

Publication Publication Date Title
US10170782B2 (en) High-efficiency fuel cell system with carbon dioxide capture assembly and method
CN101427408B (zh) 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
KR102143864B1 (ko) 연료 전지로부터 co2를 포집하기 위한 시스템
US4751151A (en) Recovery of carbon dioxide from fuel cell exhaust
EP0376219B1 (en) Electric power producing system using molten carbonate type fuel cell
US8062799B2 (en) High-efficiency dual-stack molten carbonate fuel cell system
JP2819730B2 (ja) 溶融炭酸塩型燃料電池の運転方法
WO2000016426A1 (en) Fuel cell power supply with exhaust recycling for improved water management
KR101992123B1 (ko) 엔진과 함께 rep를 이용한 에너지 저장
WO2013085216A1 (ko) 연료 전지 시스템과 그 구동 방법
JP2002319428A (ja) 溶融炭酸塩型燃料電池発電設備
US6610434B1 (en) Segregated exhaust SOFC generator with high fuel utilization capability
KR20180078319A (ko) 향상된 co2 포집을 갖는 연료 전지 시스템
US6572996B1 (en) Electrochemical fuel depletion means for fuel cell generators
US6492048B1 (en) Segregated exhaust fuel cell generator
WO2013100714A1 (ko) 연료전지를 이용한 이산화탄소 회수 시스템
JP4100479B2 (ja) 二酸化炭素分解方法
EP0521185B1 (en) Power generation method using molten carbonate fuel cells
KR20210085524A (ko) 연료전지 시스템
KR101408139B1 (ko) 연료전지를 이용한 이산화탄소 회수 시스템
KR101401451B1 (ko) 열교환형 촉매 산화기 및 이를 이용한 고농도 이산화탄소 회수장치
JPH11191427A (ja) 排ガスからの電力回収方法
WO2014104526A1 (ko) 발전 시스템
KR20120064319A (ko) 연료전지 시스템을 이용한 이산화탄소 회수장치
JPH02199776A (ja) 溶融炭酸塩型燃料電池発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861383

Country of ref document: EP

Kind code of ref document: A1