WO2010058632A1 - 油圧アクチュエータ及び油圧振動試験装置 - Google Patents

油圧アクチュエータ及び油圧振動試験装置 Download PDF

Info

Publication number
WO2010058632A1
WO2010058632A1 PCT/JP2009/063695 JP2009063695W WO2010058632A1 WO 2010058632 A1 WO2010058632 A1 WO 2010058632A1 JP 2009063695 W JP2009063695 W JP 2009063695W WO 2010058632 A1 WO2010058632 A1 WO 2010058632A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
sensor
pressure chamber
piston
pressure
Prior art date
Application number
PCT/JP2009/063695
Other languages
English (en)
French (fr)
Inventor
繁 松本
博至 宮下
一宏 村内
光央 角田
Original Assignee
国際計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際計測器株式会社 filed Critical 国際計測器株式会社
Priority to CN200980146327.7A priority Critical patent/CN102216750B/zh
Priority to KR1020117011087A priority patent/KR101305982B1/ko
Publication of WO2010058632A1 publication Critical patent/WO2010058632A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • G01N2203/0008High frequencies from 10 000 Hz
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means

Definitions

  • the present invention relates to a hydraulic actuator and a hydraulic vibration test apparatus capable of high-speed inversion driving.
  • a vibration test apparatus that vibrates a subject with a hydraulic cylinder
  • a device using a volumetric pump and a servo valve as described in JP-A-2000-2617 is known.
  • Such a vibration test apparatus can vibrate the subject at a high frequency while applying a large load to the subject.
  • An example of a circuit diagram of a hydraulic vibration testing apparatus using a servo valve is shown in FIG.
  • the pump unit 110 drives the volume pump body 111 by a motor 112, and is connected to a hydraulic circuit between the hydraulic oil tank 120 and the servo valve 140. Note that the rotation direction of the motor 112 is limited to one direction, that is, the motor 112 can only rotate forward. Further, the rotation speed of the motor 112 is kept substantially constant.
  • the pump unit 110 has a function of only sending hydraulic oil from the hydraulic oil tank 120 to the servo valve 140, and its flow rate is kept substantially constant.
  • the cylinder unit 130 includes a sleeve 131, a piston 132 that can move within the sleeve 131, and a piston rod 133 that projects from one side of the piston 132 to the outside of the sleeve 131.
  • a vibration table 150 is fixed to the tip of the piston rod 133.
  • the inside of the sleeve 131 is divided into a first pressure chamber 131a and a second pressure chamber 131b by a piston 132.
  • the first pressure chamber 131a and the second pressure chamber 131b are filled with hydraulic oil.
  • the first pressure chamber 131a and the second pressure chamber 131b are connected to the servo valve 140 via pipes 161 and 162, respectively.
  • Servo valve 140 is used to switch the hydraulic oil sent from pump unit 110 to either pipe 161 or 162 and to control the hydraulic pressure of the hydraulic oil sent to the pipe.
  • the servo valve 140 connects a pipe through which hydraulic oil is not sent to a pipe 164 that leads to the hydraulic oil tank 120.
  • the switching operation and hydraulic pressure adjustment operation of the servo valve 140 are controlled by the controller 102.
  • the hydraulic circuit When the hydraulic circuit is configured so that the hydraulic oil is sent from the pump unit 110 to the pipe 161, the hydraulic oil is supplied to the first pressure chamber 131a, and the internal pressure of the first pressure chamber 131a increases. Thereby, the piston 132 is pushed down toward the second pressure chamber 131b, and the vibration table 150 is lowered. At this time, the hydraulic oil in the second pressure chamber 131 b is returned to the hydraulic oil tank 120 via the pipe 162 and the servo valve 140. On the other hand, when the hydraulic circuit is configured so that the hydraulic oil is sent from the pump unit 110 to the pipe 162, the hydraulic oil is supplied to the second pressure chamber 131b, and the internal pressure of the second pressure chamber 131b increases.
  • the piston 132 is pushed up toward the first pressure chamber 131a, and the vibration table 150 is raised.
  • the hydraulic oil in the first pressure chamber 131 a is returned to the hydraulic oil tank 120 via the pipe 161 and the servo valve 140.
  • the pipe 163 from the pump unit 110 to the servo valve 140 and the pipe 164 from the servo valve 140 to the hydraulic oil tank 120 are connected by a bypass pipe 165. All of the hydraulic oil supplied by the pump unit 110 does not go to the hydraulic cylinder unit 130, and a part is returned to the hydraulic oil tank 120 via the bypass pipe 165.
  • check valves 166 and 167 are provided in the respective pipes.
  • the controller 102 controls the servo valve 140 to periodically switch the hydraulic oil to be sent to the first pressure chamber 131a or the second pressure chamber 131b.
  • the vibration table 150 is reciprocated.
  • a part of the hydraulic fluid circulated at a high pressure and a large flow rate is sent to the hydraulic cylinder unit 130 by the servo valve 140. Therefore, the first pressure chamber 131a and the second pressure chamber
  • the pressure in the pressure chamber to which the hydraulic oil is sent rises instantaneously to a high pressure, and the moving direction of the vibration table 150 is switched without causing a time lag. For this reason, it is possible to vibrate the vibration table at a high frequency.
  • the vibration table 150 is provided with an acceleration sensor 103, and a signal indicating the acceleration detected by the acceleration sensor 103 is supplied to the controller 102.
  • the controller 102 calculates the displacement, speed, or acceleration of the vibration table 150 based on the detection result of the acceleration sensor 103, and controls the servo valve 140 so that the vibration table 150 vibrates with a desired displacement, speed, or acceleration waveform. It is possible.
  • a hydraulic actuator using a servo valve in order to supply a desired pressure to a hydraulic cylinder instantaneously and stably, only a part of the hydraulic energy supplied by the pump is driven while continuously driving a pump having a sufficiently large flow rate.
  • a configuration for supplying to a hydraulic cylinder has been adopted. For this reason, the amount of energy consumed by the vibration test apparatus using such a hydraulic actuator is much larger than the energy required for exciting the subject, and wasted energy is consumed.
  • a large-capacity hydraulic oil tank is required to circulate the hydraulic oil by such a pump.
  • the present invention has been made to solve the above problems, and does not require a large-sized pump or hydraulic oil tank, and is a high-output hydraulic actuator capable of high-speed response, and a high frequency while applying a large load to the subject.
  • An object of the present invention is to provide a vibration test apparatus capable of vibrating a subject.
  • a hydraulic pump capable of reversing operation, a piston, and a piston are connected to a sleeve and a piston whose inner space is divided into a first pressure chamber and a second pressure chamber, and a tip projects out of the sleeve.
  • a hydraulic cylinder unit including a piston rod, a first pipe connecting the first pressure chamber to the first intake / exhaust port, and a second pipe connecting the second pressure chamber to the second intake / exhaust port;
  • An actuator is provided that moves the piston up and down by alternately applying hydraulic pressure to the first and second pressure chambers by reverse operation.
  • the actuator further includes a bypass pipe that connects the first and second pipes, and an accumulator that is provided in the middle of the bypass pipe and applies back pressure to the first and second pressure chambers.
  • a hydraulic pump that reversely operates in both forward and reverse directions is used.
  • This hydraulic pump is directly connected to the hydraulic cylinder unit without passing through the servo valve, and drives the hydraulic cylinder unit.
  • a large pump such as that used for a servo valve actuator or No hydraulic oil tank is required.
  • the energy consumption by the actuator according to the embodiment of the present invention is not so large as compared with the energy required for the vibration of the subject. Energy consumption can be greatly reduced.
  • a hydraulic pump that operates in reverse is characterized in that when the pump operation direction is reversed, the pressure of the hydraulic oil decreases, and a time lag of about several tens of milliseconds occurs before the pressure increases sufficiently. For this reason, if the pump is simply connected to the hydraulic cylinder unit, the time lag will occur when the pump drive direction is reversed and the moving direction of the vibration table is switched, and the vibration table is moved during that time. I can't. For this reason, the subject cannot be vibrated at a high frequency (several tens of Hz or more) such that this time lag cannot be ignored.
  • the actuator according to the embodiment of the present invention since the accumulator applies back pressure to the first pressure chamber and the second pressure chamber of the hydraulic cylinder unit via the bypass pipe, the operation direction of the pump is reversed. However, the pressure of the hydraulic oil hardly decreases, and the time lag is extremely small. For this reason, in the actuator according to the embodiment of the present invention, the subject can be vibrated at a high frequency.
  • the back pressure applied by the accumulator to the first pressure chamber and the second pressure chamber is set larger than the minimum pressure required for driving the cylinder of the hydraulic cylinder unit. In this case, there is almost no response delay due to the hydraulic system.
  • the hydraulic pump used in the hydraulic actuator according to the embodiment of the present invention is typically a piston pump.
  • the actuator preferably further includes a servo motor as a drive source for the hydraulic pump.
  • the hydraulic actuator according to the embodiment of the present invention may further include a sensor that detects the movement of the movable portion of the hydraulic actuator (or the object to be driven by the hydraulic actuator) and a controller that controls the servo motor.
  • the controller can control the servo motor based on the detection result of the sensor.
  • the sensor preferably includes any one of a displacement sensor, a speed sensor, an acceleration sensor, and a load sensor.
  • the controller can control the servo motor to drive the piston in accordance with a predetermined displacement, velocity or acceleration waveform based on the detection result of the sensor.
  • the sensor may be detachable from a hydraulic actuator (specifically, a controller).
  • the sensor may include a load sensor.
  • the controller can control the servo motor so that the load detected by the load sensor changes according to a predetermined waveform based on the detection result of the sensor.
  • a vibration test apparatus including the hydraulic actuator described above and a vibration table provided at the tip of the piston rod.
  • the vibration test apparatus preferably further includes a sensor provided on the vibration table and a controller for controlling the servo motor.
  • the senor provided on the vibration table may include a sensor that measures the displacement, speed, or acceleration of the vibration table.
  • the controller can control the servo motor to drive the vibration table according to a predetermined waveform of displacement, speed, or acceleration based on the detection result of the sensor.
  • the senor may include a load sensor that measures a load applied to the subject.
  • the controller can control the servo motor to apply a load to the subject according to a predetermined waveform based on the detection result of the sensor.
  • FIG. 1 is a schematic circuit diagram of a vibration test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration for applying a static load to a subject in the vibration test apparatus according to the embodiment of the present invention.
  • FIG. 3 is a graph plotting acceleration and displacement of the vibration table in the embodiment of the present invention.
  • FIG. 4 is a graph plotting acceleration and displacement of the vibration table in the comparative example.
  • FIG. 5 is a schematic circuit diagram of a conventional hydraulic vibration test apparatus using a servo valve.
  • FIG. 1 is a circuit diagram of a vibration test apparatus according to the present embodiment.
  • the vibration test apparatus 1 includes a pump unit 10, a hydraulic oil tank 20, a hydraulic cylinder unit 30, a vibration table 50, and an accumulator 70.
  • the vibration table 50 is moved up and down by the hydraulic pressure supplied to the hydraulic cylinder unit 30, whereby the subject W fixed on the vibration table 50 is vibrated.
  • the pump unit 10 has a pump body 11 and a servo motor 12.
  • the servo motor 12 is driven by an alternating current output from the servo amplifier 4.
  • the servo motor 12 is configured to be able to rotate the drive shaft 12a in both forward and reverse directions and to precisely adjust the rotational speed of the drive shaft 12a.
  • the servo motor 12 is a low-inertia AC servo motor capable of high-output and high-repetition-rate inversion driving.
  • the pump body 11 is a piston pump capable of sending hydraulic oil from the first intake / exhaust port 11a to the second intake / exhaust port 11b or from the second intake / exhaust port 11b to the first intake / exhaust port 11a.
  • the flow rate and direction of the hydraulic oil supplied by the pump body 11 can be changed. For example, when the servo motor 12 is driven in reverse at a constant cycle, the flow rate and direction of the hydraulic oil flowing between the first intake / exhaust port 11a and the second intake / exhaust port 11b change periodically.
  • the cylinder unit 30 includes a sleeve 31, a piston 32 that can move within the sleeve 31, and a piston rod 33 that projects from one surface of the piston 32 to the outside of the sleeve 31.
  • a vibration table 50 is fixed to the tip of the piston rod 33.
  • the inside of the sleeve 31 is divided into a first pressure chamber 31a and a second pressure chamber 31b by a piston 32.
  • the first pressure chamber 31a and the second pressure chamber 31b are filled with hydraulic oil.
  • the first pressure chamber 31a and the second pressure chamber 31b are connected to the first intake / exhaust port 11a and the second intake / exhaust port 11b of the pump body 11 through pipes 61 and 62, respectively.
  • a high-pressure hose that can withstand a pressure increase (approximately several tens of MPa) of hydraulic oil generated when the vibration table 50 is moved (not causing elastic deformation) is used.
  • the hydraulic oil tank 20 is connected to the first pressure chamber 31a and the second pressure chamber 31b via check valves 63 and 64, respectively.
  • the check valves 63 and 64 open when the internal pressures of the first pressure chamber 31a and the second pressure chamber 31b become lower than the hydraulic pressure (for example, atmospheric pressure) in the hydraulic oil tank 20, respectively. Hydraulic oil is supplied to the pipes 61 and 62.
  • the check valve 63 or the check valve 64
  • the pressure chamber 31a is opened from the working oil tank 20.
  • the hydraulic oil moves to (or the pressure chamber 31b).
  • the hydraulic oil is filled into the pressure chambers 31a and 31b as follows.
  • the first pressure chamber 31a and the second pressure chamber 31b are provided with a valve (not shown) for bleeding air.
  • the pump unit 10 is set so that hydraulic oil and air are sent from the second intake / exhaust port 11b to the first intake / exhaust port 11a.
  • the air in the second pressure chamber 31b and the pipe 62 is released from the valve of the first pressure chamber 31a through the pipe 61.
  • the check valve 64 opens and the hydraulic oil in the hydraulic oil tank 20 passes through the pipes 62 and 61 to the first.
  • the pressure chamber 31a is filled.
  • the valve of the first pressure chamber 31a is closed, the valve of the second pressure chamber 31b is opened, and the hydraulic oil is sent from the first intake / exhaust port 11a to the second intake / exhaust port 11b.
  • the pump unit 10 is driven so that Then, the air in the second pressure chamber 31b and the pipe 62 escapes from the valve of the second pressure chamber 31b, and the piston 32 rises and the hydraulic oil filled in the first pressure chamber 31a is pushed out to the pipe 61. It is.
  • the pump unit 10 When raising the vibration table 50, the pump unit 10 is driven so that the hydraulic oil moves from the first intake / exhaust port 11a to the second intake / exhaust port 11b. Then, the hydraulic oil is supplied to the second pressure chamber 31b through the pipe 62, the piston 32 is pushed into the first pressure chamber 31a, and the piston rod 33 and the vibration table 50 are raised. The hydraulic oil in the first pressure chamber 31a moves to the pump unit 10 via the pipe 61 as the piston 32 moves, and is sent from the pump unit 10 to the second pressure chamber 31b via the pipe 62.
  • the pump unit 10 When the vibration table 50 is lowered, the pump unit 10 is driven so that the hydraulic oil moves from the second intake / exhaust port 11b to the first intake / exhaust port 11a. At this time, since the hydraulic oil is supplied to the first pressure chamber 31a via the pipe 61, the piston 32 is pushed into the second pressure chamber 31a, and the piston rod 33 and the vibration table 50 are lowered. The hydraulic oil in the second pressure chamber 31b moves to the pump unit 10 via the pipe 62 as the piston 32 moves, and is further sent from the pump unit 10 to the first pressure chamber 31a via the pipe 61.
  • the acceleration sensor 3 is attached to the vibration table 50 of the vibration test apparatus 1 according to the present embodiment.
  • the acceleration sensor 3 is connected to the controller 2, and a signal indicating the acceleration detected by the acceleration sensor 3 is supplied to the controller 2.
  • the controller 2 calculates the displacement, speed, or acceleration of the vibration table 50 based on the detection result of the acceleration sensor 3, and sets a target value to be given to the servo amplifier 4 based on the calculation result. send.
  • the servo amplifier 4 generates an alternating current having a period and amplitude set based on a target value designated by the controller 2 from the power supplied from the power supply 5 and outputs the alternating current to the servo motor 12.
  • the vibration table 50 can be vibrated with a predetermined displacement, speed, or acceleration amplitude, for example.
  • a displacement sensor or a speed sensor may be used.
  • the vibration test apparatus 1 supplies hydraulic oil to the first pressure chamber 31a or the second pressure chamber 31b of the hydraulic cylinder unit 30 by the pump unit 10 that can be driven in both forward and reverse directions.
  • the vibration table 50 is moved in the vertical direction, and the subject W fixed thereon is vibrated.
  • the vibration test apparatus 1 includes a bypass pipe 65 that bypasses the pipes 61 and 62, and an accumulator 70 provided in the middle of the bypass pipe 65.
  • the accumulator 70 is a pressure vessel in which a layer of a gas having a predetermined pressure (dry nitrogen gas or the like) is formed, and the first pressure chamber 31a or the second pressure chamber of the hydraulic cylinder unit 30 is connected via pipes 61 and 62.
  • the pressure chamber 31b is pressurized with a constant pressure.
  • the pipe on the side not supplied with hydraulic oil (the pipe 61 when the vibration table 50 is raised and the pipe 62 when the vibration table 50 is lowered) has a low pressure close to atmospheric pressure. It has become. Therefore, immediately after the rising and lowering of the vibration table 50 are switched, the pressure of the piping and pressure chamber to which hydraulic fluid is supplied is increased to a high pressure (10 to several tens of MPa) that can move the piston 32 from this low pressure. It takes a time of about several tens of milliseconds to increase the pressure to the maximum. This period is a time lag when the vibration table 50 does not move. Since this time lag has a magnitude that cannot be ignored with respect to the vibration period, the vibration system 50 cannot be vibrated at a high frequency of several tens of Hz or more in the hydraulic system having such a configuration.
  • the accumulator is always maintained so that the pressures of the pipes 61 and 62 and the pressure chambers 31a and 31b are maintained at a high pressure at which the hydraulic oil can transmit a sufficient driving force to the piston 32. 70 is pressurized.
  • the accumulator 70 can always transmit a necessary load to the hydraulic oil in the pressure chambers 31a and 31b and the pipes 61 and 62 by applying a high back pressure to the first pressure chamber 31a and the second pressure chamber 31b. Kept in a state. For this reason, there is almost no time lag in the configuration without the accumulator 70, and the vibration table 50 can be vibrated at a frequency of several tens of Hz or more.
  • the pressure of the gas layer of the accumulator 70 that is, the pressure applied to the hydraulic oil by the accumulator 70 is set to be larger than the minimum pressure required for the movement of the piston 32.
  • a high-pressure hose or the like that can sufficiently withstand the pressure applied to the hydraulic oil by the accumulator 70 is used.
  • the piston pump used in the pump body 11 of the pump unit 10 is likely to generate pulsation when driven.
  • the pulsation is absorbed by the accumulator 70 provided between the pump unit 10 and the hydraulic cylinder unit 30. 2A, the subject W is sandwiched between the frame 52 and the pressurizing table 50, the vibration table 50 is raised, and a vertical compressive static load is applied to the subject W.
  • FIG. Useful when performing additional compression tests.
  • the above-described feature is that the jigs 53 and 54 attached to the vibration table 50 and the frame 52 ′ are fixed to the subject, the vibration table 50 is lowered, and the subject W It is also useful when performing a tensile test in which a vertical static load in the vertical direction is applied.
  • the subject W is arranged between the frame and the vibration table, and the load applied to the subject W is periodically changed by reciprocating the vibration table. It is also possible to perform a vibration test.
  • a load sensor such as a load cell may be provided on the frame or the vibration table, and the controller 2 may be configured to control the pump unit based on the measurement result of the load sensor. For example, it is possible to perform a so-called fatigue test in which a load is repeatedly applied to the subject W so that the amplitude of the load applied to the subject W is constant.
  • FIG. 3 plots the acceleration and displacement of the vibration table measured when the object W is vibrated by giving a target waveform of a sine wave with a frequency of 50 Hz to the vibration test apparatus 1 (example) according to the present embodiment. It is a graph. 4 plots the acceleration and displacement of the vibration table measured when the object W is vibrated by giving a target waveform of a sine wave with a frequency of 50 Hz to a vibration test apparatus (comparative example) without an accumulator. It is a graph.
  • the measured acceleration and displacement waveforms of the vibration table are sinusoidal, and it can be seen that the workpiece W is vibrated in accordance with the target waveform of 50 Hz.
  • the measured acceleration waveform of the vibration table is greatly broken from the sine wave, and the amplitude thereof is less than 1/10 of the embodiment.
  • the displacement of the vibration table is hardly changed.
  • the vibration test apparatus can vibrate the subject at a high frequency.
  • a piston pump is used as the hydraulic pump of the actuator, but the present invention can be implemented using various types of hydraulic pumps other than the piston pump.
  • a rotary pump such as a gear pump or a vane pump is used.
  • the above exemplary embodiment is an example in which an actuator having a characteristic configuration of the present invention is mounted on a vibration test apparatus.
  • Such an actuator requires high frequency response, low vibration, and low noise. It can be installed in various hydraulic devices and systems.
  • the configuration of the present invention can be applied to a material testing apparatus, a robot arm, or the like.

Abstract

 本発明の実施形態により、油圧ポンプと油圧シリンダユニットとを備えた油圧アクチュエータが提供される。油圧ポンプは、第1吸排口と第2吸排口とを有し、反転作動が可能である。油圧シリンダユニットは、ピストンと、ピストンによって内部空間が第1圧力室と第2圧力室に区切られるスリーブと、ピストンに連結されると共に先端が該スリーブの外部に突出するピストンロッドとを備えている。また、油圧アクチュエータは、第1圧力室と第1吸排口とを接続する第1配管と、第2圧力室と第2吸排口とを接続する第2配管とを備えており、油圧ポンプが反転作動することによって第1及び第2圧力室に交互に油圧を加えてピストンを上下動させる。油圧アクチュエータは、更に第1及び第2配管を連結するバイパス管と、バイパス管の中途に設けられた、第1及び第2圧力室に背圧を加えるアキュムレータを備えている。また、本発明の実施形態により、この油圧アクチュエータを備えた振動試験装置も提供される。

Description

油圧アクチュエータ及び油圧振動試験装置
 本発明は、高速反転駆動が可能な油圧アクチュエータ及び油圧式振動試験装置に関する。
 油圧シリンダにより被検体を振動させる振動試験装置として、例えば特開2000-2617に記載されているような、容積ポンプとサーボバルブを用いたものが知られている。このような振動試験装置は、大荷重を被検体に加えつつ、高い周波数で被検体を振動させることが可能である。サーボバルブを使用する油圧振動試験装置の回路図の一例を図5に示す。
 図5に示される油圧振動試験装置101は、ポンプユニット110、作動油タンク120、油圧シリンダユニット130、サーボバルブ140、及び振動テーブル150を有している。振動テーブル150の上にはワークWが固定され、振動テーブル150を往復移動させることによりワークWを加振する。
 ポンプユニット110は、モータ112によって容積ポンプ本体111を駆動するものであり、作動油タンク120とサーボバルブ140との間で油圧回路に接続されている。なお、モータ112の回転方向は一方向に限定されており、すなわちモータ112は正転のみが可能となっている。また、モータ112の回転速度は略一定に保たれる。ポンプユニット110は、作動油タンク120から作動油をサーボバルブ140に送るのみの機能を有しており、且つその流量は略一定に保たれている。
 シリンダユニット130は、スリーブ131と、このスリーブ131内で移動可能なピストン132と、ピストン132の片側からスリーブ131の外部に突出するピストンロッド133とを有している。ピストンロッド133の先端には、振動テーブル150が固定されている。スリーブ131の内部は、ピストン132によって第1圧力室131aと第2圧力室131bとに分けられている。第1圧力室131aと第2圧力室131bには作動油が充填されている。また、第1圧力室131aと第2圧力室131bは、それぞれ配管161、162を介してサーボバルブ140に接続されている。
 サーボバルブ140は、ポンプユニット110から送られる作動油を配管161、162のいずれに送るかを切り換えると共に、配管に送られる作動油の油圧を制御する為に使用されている。また、サーボバルブ140は作動油が送られない配管を作動油タンク120に通じる配管164に接続する。サーボバルブ140の切替動作及び油圧調整動作は、コントローラ102によって制御される。
 ポンプユニット110から配管161へ作動油が送られるように油圧回路が構成されると、第1圧力室131aに作動油が供給され、第1圧力室131aの内圧が上昇する。これにより、ピストン132は第2圧力室131bに向かって押し下げられ、振動テーブル150が降下する。この時、第2圧力室131b内の作動油は、配管162及びサーボバルブ140を介して作動油タンク120に戻される。一方、ポンプユニット110から配管162へ作動油が送られるように油圧回路が構成されると、第2圧力室131bに作動油が供給され、第2圧力室131bの内圧が上昇する。これにより、ピストン132は第1圧力室131aに向かって押し上げられ、振動テーブル150が上昇する。この時、第1圧力室131a内の作動油は、配管161及びサーボバルブ140を介して作動油タンク120に戻される。
 なお、図5に示されるように、ポンプユニット110からサーボバルブ140に向かう配管163と、サーボバルブ140から作動油タンク120に向かう配管164とは、バイパス管165によって連結されている。ポンプユニット110が供給する作動油の全てが油圧シリンダユニット130に向かうことは無く、一部はこのバイパス管165を介して作動油タンク120に戻される。なお、配管163及び164内での作動油の逆流を防止するため、各配管には夫々逆止弁166、167が設けられている。
 このように、サーボバルブ式の振動試験装置においては、コントローラ102がサーボバルブ140を制御して、第1圧力室131aと第2圧力室131bのどちらに作動油を送るかを周期的に切り換えることによって、振動テーブル150を往復移動させる。サーボバルブ式の油圧振動試験装置においては、高圧、大流量で循環する作動油の一部を、サーボバルブ140によって油圧シリンダユニット130に送るものであるため、第1圧力室131aと第2圧力室131bのどちらに作動油を送るかを切り換えると、作動油が送られる圧力室の圧力は瞬時に高圧に上昇し、タイムラグを生じることなく振動テーブル150の移動方向が切り換わる。このため、高い周波数で振動テーブルを加振することが可能である。
 振動テーブル150には加速度センサ103が設けられており、加速度センサ103が検出した加速度を示す信号はコントローラ102に供給される。コントローラ102は加速度センサ103の検出結果に基づいて、振動テーブル150の変位、速度又は加速度を計算し、所望の変位、速度又は加速度波形で振動テーブル150が振動するように、サーボバルブ140を制御することが可能である。
 サーボバルブを使用した油圧アクチュエータにおいて、所望の圧力を瞬時に且つ安定して油圧シリンダに供給するためには、流量が十分に大きいポンプを連続駆動させながらポンプが供給する油圧エネルギの一部のみを油圧シリンダに供給する構成が採用されていた。このため、このような油圧アクチュエータを使用する振動試験装置によるエネルギの消費量は、被検体の加振に必要なエネルギよりもはるかに大きなものとなり、無駄なエネルギが消費されていた。また、そのようなポンプによって作動油を循環させるためには大容量の作動油タンクを必要としていた。
 本発明は上記の問題を解決するためになされたものであり、大型のポンプや作動油タンクを必要とせず、高出力で高速応答が可能な油圧アクチュエータ、及び大荷重を被検体に加えながら高周波で被検体を加振可能な振動試験装置を提供することを目的とする。
 本発明の実施形態により、反転作動可能な油圧ポンプと、ピストン、ピストンによって内部空間が第1圧力室と第2圧力室に区切られるスリーブ及びピストンに連結されると共に先端がスリーブの外部に突出するピストンロッドとを備えた油圧シリンダユニットと、第1圧力室を第1吸排口に接続する第1配管と、第2圧力室を第2吸排口に接続する第2配管とを備え、油圧ポンプが反転作動することによって第1及び第2圧力室に交互に油圧を加えてピストンを上下動させるアクチュエータが提供される。このアクチュエータは、第1及び第2配管を連結するバイパス管と、バイパス管の中途に設けられた、第1及び第2圧力室に背圧を加えるアキュムレータとを更に備えている。
 本発明の実施形態に係るアクチュエータにおいては、正逆両方向に反転作動する油圧ポンプが使用される。この油圧ポンプは、サーボバルブを介さずに油圧シリンダユニットに直接接続され、油圧シリンダユニットを駆動する。本発明の実施形態に係るアクチュエータにおいては、ポンプから出力される作動油の流量及び方向に応じて油圧シリンダユニットが駆動されるため、サーボバルブ式のアクチュエータに使用されるもののような大型のポンプや作動油タンクを必要としない。また、上記の理由により、本発明の実施形態に係るアクチュエータによるエネルギの消費量は被検体の加振に必要なエネルギと比べて然程大きいものとはならないため、サーボバルブ式のアクチュエータと比較してエネルギ消費量を大幅に抑えることが可能となる。
 反転作動する油圧ポンプにおいては、ポンプの作動方向を反転させる際に作動油の圧力が低下し、この圧力が十分に上昇するまでに数10ミリ秒程度のタイムラグが発生するという特徴がある。このため、単にポンプを油圧シリンダユニットに接続したのみの構成であれば、ポンプの駆動方向を反転させて振動テーブルの移動方向を切り換える時に、上記のタイムラグが発生し、その間上記振動テーブルを動かすことができない。このため、このタイムラグが無視できない影響を及ぼすような高周波数(数10Hz以上)で被検体を振動させることができない。しかしながら、本発明の実施形態に係るアクチュエータにおいては、アキュムレータがバイパス管を介して油圧シリンダユニットの第1圧力室と第2圧力室に背圧を加えているため、ポンプの作動方向を反転したとしても作動油の圧力の低下は殆ど発生せず、上記のタイムラグは極めて小さなものとなる。このため、本発明の実施形態に係るアクチュエータにおいては、高周波で被検体を振動させることが可能となる。
 アキュムレータが第1圧力室と第2圧力室に加える背圧力の大きさは、油圧シリンダユニットのシリンダの駆動に必要な最低圧力よりも大きく設定されていることが好ましい。この場合には、油圧系に起因する応答遅延がほとんど無くなる。
 本発明の実施形態に係る油圧アクチュエータに使用される油圧ポンプは、典型的にはピストンポンプである。アクチュエータは油圧ポンプの駆動源としてサーボモータを更に備えていることが好ましい。
 また、本発明の実施形態に係る油圧アクチュエータは、油圧アクチュエータの可動部(又は油圧アクチュエータによる駆動対象)の動きを検出するセンサと、サーボモータを制御するコントローラとを更に備えていてもよい。この場合、コントローラは、センサの検出結果に基づいてサーボモータを制御することができる。また、センサは、変位センサ、速度センサ、加速度センサ、荷重センサのいずれかを含んでいることが好ましい。この場合、コントローラは、センサの検出結果に基づいて、所定の変位、速度又は加速度の波形に従ってピストンを駆動するようサーボモータを制御することができる。センサは油圧アクチュエータ(具体的にはコントローラ)に着脱可能であってもよい。
 センサは、荷重センサを含んでいてもよい。この場合、コントローラは、センサの検出結果に基づいて、荷重センサによって検出される荷重が所定の波形に従って変化するようサーボモータを制御することができる。
 また、本発明の実施形態により、上記の油圧アクチュエータと、ピストンロッドの先端に設けられた振動テーブルとを備えた振動試験装置も提供される。
 本発明の実施形態に係る振動試験装置は、振動テーブルに設けられたセンサと、サーボモータを制御するコントローラとを更に備えていることが好ましい。
 また、振動テーブルに設けられたセンサが、振動テーブルの変位、速度或いは加速度を計測するセンサを含んでいてもよい。この場合、コントローラは、センサの検出結果に基づいて、変位、速度又は加速度の所定の波形に従って振動テーブルを駆動するようサーボモータを制御することができる。
 また、センサは被検体に加わる荷重を計測する荷重センサを含んでいてもよい。この場合、コントローラは、センサの検出結果に基づいて、所定の波形に従って被検体に荷重を加えるようサーボモータを制御することができる。
図1は、本発明の実施形態に係る振動試験装置の概略回路図である。 図2は、本発明の実施形態に係る振動試験装置における、被検体に静荷重を加えるための概略構成を示した図である。 図3は、本発明の実施例における振動テーブルの加速度及び変位をプロットしたグラフである。 図4は、比較例における振動テーブルの加速度及び変位をプロットしたグラフである。 図5は、サーボバルブを使用する従来の油圧式振動試験装置の概略回路図である。
 以下、本発明の実施の形態について図面を用いて説明する。図1は本実施形態に係る振動試験装置の回路図である。図1に示されるように、本実施形態に係る振動試験装置1は、ポンプユニット10、作動油タンク20、油圧シリンダユニット30、振動テーブル50及びアキュムレータ70を有している。油圧シリンダユニット30に供給される油圧によって振動テーブル50が上下に移動し、これにより振動テーブル50の上に固定された被検体Wが加振される。
 ポンプユニット10は、ポンプ本体11とサーボモータ12とを有している。サーボモータ12は、サーボアンプ4から出力される交流電流によって駆動される。サーボモータ12は、その駆動軸12aを正逆両方向へ回転させることができ、且つ、駆動軸12aの回転速度を精密に調整できるように構成されている。なお、サーボモータ12は、高出力で高い繰り返しレートの反転駆動が可能な低慣性ACサーボモータである。
 また、ポンプ本体11は、第1吸排口11aから第2吸排口11bへ、或いは第2吸排口11bから第1吸排口11aへ作動油を送ることが可能なピストンポンプである。サーボモータ12によってポンプ本体11を駆動することで、ポンプ本体11が供給する作動油の流量及び方向を変化させることができる。例えば、サーボモータ12を一定の周期で反転駆動させると、第1吸排口11aと第2吸排口11bとの間を流れる作動油の流量及び方向は、周期的に変化する。
 シリンダユニット30は、スリーブ31、スリーブ31内で移動可能なピストン32、及び、ピストン32の一面からスリーブ31の外部に突出するピストンロッド33を有している。ピストンロッド33の先端には振動テーブル50が固定されている。スリーブ31の内部は、ピストン32によって第1圧力室31aと第2圧力室31bとに分けられている。第1圧力室31aと第2圧力室31bには作動油が充填されている。また、第1圧力室31aと第2圧力室31bは、配管61、62をそれぞれ介してポンプ本体11の第1吸排口11aと第2吸排口11bに接続されている。なお、配管61、62としては、振動テーブル50を移動させる際に発生する作動油の圧力上昇(数10MPa程度)に耐えられる(弾性変形を起こさない)高圧ホースなどが使用される。
 作動油タンク20は、逆止弁63、64をそれぞれ介して第1圧力室31a及び第2圧力室31bに接続されている。各逆止弁63、64は、それぞれ第1圧力室31a及び第2圧力室31bの内圧が作動油タンク20内の油圧(例えば大気圧)よりも小さくなったときに開き、作動油タンク20から作動油を配管61、62に供給する。本実施形態においては、第1圧力室31a(又は第2圧力室31b)に作動油を充填する際に、逆止弁63(又は逆止弁64)が開いて作動油タンク20から圧力室31a(又は圧力室31b)に作動油が移動する。
 具体的には、各圧力室31a、31bへの作動油の充填は次のように行われる。第1圧力室31a及び第2圧力室31bには、エア抜きのための図示しないバルブが設けられている。まず、第1圧力室31aのバルブを開け、且つ第2圧力室31bのバルブを閉じた状態で、第2吸排口11bから第1吸排口11aに作動油及びエアが送られるようポンプユニット10を駆動する。すると、第2圧力室31b及び配管62内のエアが配管61を介して第1圧力室31aのバルブから抜ける。やがて、第2圧力室31b及び配管62の圧力が作動油タンク20内の圧力より低くなるため、逆止弁64が開き、作動油タンク20内の作動油が配管62、61を介して第1圧力室31aに充填される。
 作動油が第1圧力室31aに充填された後、第1圧力室31aのバルブを閉じ、第2圧力室31bのバルブを開け、第1吸排口11aから第2吸排口11bに作動油が送られるようポンプユニット10を駆動する。すると、第2圧力室31b及び配管62内のエアが第2圧力室31bのバルブから抜け、また、ピストン32が上昇して第1圧力室31a側に充填されている作動油が配管61に押し出される。ピストン32が上死点まで上昇すると、第1圧力室31a及び配管61内の作動油の圧力が作動油タンク20内の圧力より低くなるため、逆止弁63が開き、作動油タンク20内の作動油が配管61、62を介して第2圧力室31bに移動する。第2圧力室31bに作動油が充填された後、第2圧力室31bのバルブを閉じる。
 次に、本実施形態に係る振動試験装置1において、振動テーブル50を振動させる機構について説明する。振動テーブル50を上昇させる際は、作動油が第1吸排口11aから第2吸排口11bに移動するようにポンプユニット10を駆動する。すると、作動油が配管62を介して第2圧力室31bに供給され、ピストン32が第1の圧力室31a側に押し込まれ、ピストンロッド33及び振動テーブル50が上昇する。第1圧力室31a内の作動油は、ピストン32の移動に伴って配管61を介してポンプユニット10に移動し、ポンプユニット10から配管62を介して第2圧力室31bに送られる。
 振動テーブル50を降下させる際は、作動油が第2吸排口11bから第1吸排口11aへ移動するようにポンプユニット10が駆動される。このとき、作動油が配管61を介して第1圧力室31aに供給されるため、ピストン32が第2の圧力室31a側に押し込まれ、ピストンロッド33及び振動テーブル50が降下する。第2圧力室31b内の作動油は、ピストン32の移動に伴って配管62を介してポンプユニット10へ移動し、更にポンプユニット10から配管61を介して第1圧力室31aへ送られる。
 図1に示されるように、本実施形態に係る振動試験装置1の振動テーブル50には加速度センサ3が取り付けられている。加速度センサ3はコントローラ2に接続されており、加速度センサ3が検出した加速度を示す信号がコントローラ2に供給される。コントローラ2は、加速度センサ3の検出結果に基づいて振動テーブル50の変位、速度、又は加速度を計算し、この計算結果に基づいてサーボアンプ4に与える目標値を設定し、これをサーボアンプ4に送る。サーボアンプ4は、電源5から供給される電力から、コントローラ2が指定する目標値に基づいて設定される周期及び振幅を有する交流電流を生成し、これをサーボモータ12に出力する。上記の処理によって、例えば所定の変位、速度、或いは加速度振幅で振動テーブル50を加振することができる。なお、加速度センサ3の代わりに、変位センサ或いは速度センサを使用しても良い。
 このように、本実施形態に係る振動試験装置1は、正逆両方向に駆動可能なポンプユニット10によって作動油を油圧シリンダユニット30の第1圧力室31a又は第2圧力室31bに供給することにより、振動テーブル50を上下方向に移動させて、その上に固定された被検体Wを振動させるように構成されている。
 さらに、本実施形態に係る振動試験装置1は、配管61と62とをバイパスするバイパス管65と、バイパス管65の中途に設けられたアキュムレータ70とを備えている。アキュムレータ70は、その内部に所定の圧力のガス(乾燥窒素ガス等)の層が形成されている圧力容器であり、配管61及び62を介して油圧シリンダユニット30の第1圧力室31a又は第2圧力室31bを一定の圧力で加圧する。
 バイパス管65及びアキュムレータ70を備えない構成においては、作動油が供給されない側の配管(振動テーブル50の上昇時においては配管61、降下時においては配管62)は、大気圧に近い程度の低い圧力となっている。そのため、振動テーブル50の上昇と降下が切り換わった直後は、作動油が供給される側の配管及び圧力室の圧力をこの低い圧力からピストン32を移動できるだけの高い圧力(10~数10MPa)にまで上昇させるのに、数10ミリ秒程度の時間を要する。この期間は、振動テーブル50が移動しないタイムラグとなる。このタイムラグが振動の周期に対して無視できない大きさとなる為、このような構成の油圧システムでは数10Hz以上の高い周波数で振動テーブル50を加振することはできなかった。
 本実施形態に係る振動試験装置1においては、配管61、62及び圧力室31a、31bの圧力が、作動油がピストン32に十分な駆動力を伝達可能となる高い圧力に常に維持されるようアキュムレータ70が加圧している。言い換えれば、アキュムレータ70は、第1圧力室31a及び第2圧力室31bに高い背圧を与えることにより、圧力室31a、31b及び配管61、62内の作動油を常に必要な荷重が伝達可能な状態に保っている。このため、アキュムレータ70が無い構成におけるタイムラグは殆ど発生せず、数10Hz以上の周波数で振動テーブル50を加振可能である。なお、タイムラグをできる限り小さくするため、アキュムレータ70のガス層の圧力、すなわちアキュムレータ70が作動油に加える圧力の大きさは、ピストン32の移動に必要な最低圧力よりも大きくなるよう設定されている。また、バイパス管65としては、高圧ホースなど、アキュムレータ70が作動油に加える圧力に十分耐えられるものが使用される。
 また、ポンプユニット10のポンプ本体11に使用されるピストンポンプは、駆動時に脈動を発生しやすい。本実施形態においては、ポンプユニット10と油圧シリンダユニット30との間に設けられたアキュムレータ70よって脈動が吸収される。この特徴は、図2(a)に示される様な、フレーム52と加圧テーブル50との間で被検体Wを挟み込んで振動テーブル50を上昇させ、被検体Wに上下方向の圧縮静荷重を加える圧縮試験を行う際に有用である。上記特徴は同様に、図2(b)に示されるような、振動テーブル50及びフレーム52’に取り付けられた治具53、54を被検体に固定して振動テーブル50を降下させ、被検体Wに上下方向の引張静荷重を加える引張試験を行う際にも有用である。
 また、図2(a)及び(b)の構成のように、フレームと振動テーブルとの間に被検体Wを配置し、振動テーブルを往復移動させて被検体Wに加える荷重を周期的に変動させるような振動試験を行うことも可能である。その場合は、フレーム又は振動テーブルにロードセルなどの荷重センサを設け、コントローラ2がこの荷重センサの計測結果に基づいてポンプユニットを制御する構成とすることも可能である。例えば、被検体Wに加える荷重の振幅が一定となるように被検体Wに繰り返し荷重を加える、いわゆる疲労試験を行うことが可能である。
 次に、以上説明した本実施形態の振動試験装置1にて振動試験を行った結果及び、アキュムレータを備えない振動試験装置にて振動試験を行った結果について説明する。図3は、本実施形態に係る振動試験装置1(実施例)に周波数50Hzの正弦波の目標波形を与えて、被検体Wを振動させたときに計測された振動テーブルの加速度及び変位をプロットしたグラフである。また、図4は、アキュムレータを備えない振動試験装置(比較例)に周波数50Hzの正弦波の目標波形を与えて、被検体Wを振動させたときに計測された振動テーブルの加速度及び変位をプロットしたグラフである。なお、実施例の振動試験装置と比較例の振動試験装置とでは、アキュムレータの有無以外の構成上の差異は無い。また、サーボアンプ4からサーボモータ12に送られる交流電流の振幅及び周波数も、実施例と比較例との間で差異は無い。
 図3に示されるように、実施例においては計測された振動テーブルの加速度及び変位の波形は正弦波状を示しており、50Hzの目標波形に忠実に従ってワークWが加振されていることが分かる。一方、図4に示されるように、比較例においては、計測された振動テーブルの加速度波形は正弦波から大きく崩れており、またその振幅も実施例の10分の1未満である。そして、比較例においては、振動テーブルの変位は殆ど変化していない。
 このように、本実施形態に係る振動試験装置は、高い周波数で被検体を加振することができる。
 本発明の技術的範囲は、上記の例示的な実施形態及び実施例の具体的な態様に限定されない。上記の実施形態においては、アクチュエータの油圧ポンプとしてピストンポンプが使用されているが、ピストンポンプ以外の様々な方式の油圧ポンプを用いて本発明を実施することができる。本発明の幾つかの実施形態においては、例えば、ギアポンプやベーンポンプ等の回転式ポンプが使用される。
 また、上記の例示的な実施形態は、本発明に特徴的な構成を有するアクチュエータを振動試験装置に搭載した例であるが、このようなアクチュエータは高い周波数応答性や低振動・低騒音が要求される様々な油圧装置・システムに搭載され得る。例えば、材料試験装置、ロボットアーム等に本発明の構成を適用することができる。
  1  振動試験装置
  2  コントローラ
  3  加速度センサ
  4  サーボアンプ
  5  電源
 10  ポンプユニット
 11  ポンプ本体
 11a 第1吸排口
 11b 第2吸排口
 12  サーボモータ
 20  作動油タンク
 30  油圧シリンダユニット
 31  スリーブ
 31a 第1圧力室
 31b 第2圧力室
 32  ピストン
 33  ピストンロッド
 50  振動テーブル
 65  バイパス管
 70  アキュムレータ

Claims (14)

  1.  第1吸排口と第2吸排口とを有する反転作動可能な油圧ポンプと、
     ピストンと、該ピストンによって内部空間が第1圧力室と第2圧力室に区切られるスリーブと、該ピストンに連結されると共に先端が該スリーブの外部に突出するピストンロッドとを備えた油圧シリンダユニットと、
     前記第1圧力室と前記第1吸排口とを接続する第1配管と、
     前記第2圧力室と前記第2吸排口とを接続する第2配管と
    を備え、
     前記油圧ポンプが反転作動することによって前記第1及び第2圧力室に交互に油圧を加えて前記ピストンを上下動させる油圧アクチュエータであって、
     前記第1及び第2配管を連結するバイパス管と、
     前記バイパス管の中途に設けられた、前記第1及び第2圧力室に背圧を加えるアキュムレータと
    を更に備えたことを特徴とする油圧アクチュエータ。
  2.  前記アキュムレータが前記第1圧力室と第2圧力室に加える背圧力の大きさは、前記油圧シリンダユニットのシリンダの駆動に必要な最低圧力よりも大きく設定されていることを特徴とする請求項1に記載の油圧アクチュエータ。
  3.  前記油圧ポンプがピストンポンプであることを特徴とする請求項1又は2に記載の油圧アクチュエータ。
  4.  前記油圧ポンプを駆動するサーボモータを更に備えたことを特徴とする請求項1から3のいずれか一項に記載の油圧アクチュエータ。
  5.  油圧アクチュエータの可動部に設けられたセンサと、前記サーボモータを制御するコントローラとを更に備え、
     前記コントローラは、前記センサの検出結果に基づいて前記サーボモータを制御する
    ことを特徴とする請求項1から4のいずれか一項に記載の油圧アクチュエータ。
  6.  前記センサが、変位センサ、速度センサ、加速度センサ、荷重センサのいずれかを含み、
     前記コントローラは、前記センサの検出結果に基づいて、所定の変位、速度又は加速度の波形に従って前記ピストンを駆動するよう前記サーボモータを制御する
    ことを特徴とする請求項5に記載の油圧アクチュエータ。
  7.  前記センサは、荷重センサを含み、
     前記コントローラは、前記センサの検出結果に基づいて、前記荷重センサによって検出される荷重が所定の波形に従って変化するよう前記サーボモータを制御する
    ことを特徴とする請求項5に記載の油圧アクチュエータ。
  8.  請求項1に記載の油圧アクチュエータと、
     前記ピストンロッドの先端に設けられた振動テーブルと
    を備えた振動試験装置。
  9.  前記アキュムレータが前記第1圧力室と第2圧力室に加える背圧力の大きさは、前記油圧シリンダユニットのシリンダの駆動に必要な最低圧力よりも大きく設定されていることを特徴とする請求項8に記載の振動試験装置。
  10.  前記油圧ポンプがピストンポンプであることを特徴とする請求項8又は9に記載の振動試験装置。
  11.  前記油圧ポンプを駆動するサーボモータを更に備えたことを特徴とする請求項8から10のいずれか一項に記載の振動試験装置。
  12.  前記振動テーブルに設けられたセンサと、
     前記サーボモータを制御するコントローラと
    を更に備え、
     前記コントローラは、前記センサの検出結果に基づいて前記サーボモータを制御する
    ことを特徴とする請求項11に記載の振動試験装置。
  13.  前記センサが、振動テーブルの変位、速度或いは加速度を計測するセンサを含み、
     前記コントローラは、前記センサの検出結果に基づいて、変位、速度又は加速度の所定の波形に従って前記振動テーブルを駆動するよう前記サーボモータを制御する
    ことを特徴とする請求項11又は12に記載の振動試験装置。
  14.  前記センサは、被検体に加わる荷重を計測する荷重センサを含み、
     前記コントローラは、前記センサの検出結果に基づいて、所定の波形に従って前記被検体に荷重を加えるよう前記サーボモータを制御する
    ことを特徴とする請求項11から13のいずれか一項に記載の振動試験装置。
PCT/JP2009/063695 2008-11-21 2009-07-31 油圧アクチュエータ及び油圧振動試験装置 WO2010058632A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980146327.7A CN102216750B (zh) 2008-11-21 2009-07-31 油压致动器和油压振动试验装置
KR1020117011087A KR101305982B1 (ko) 2008-11-21 2009-07-31 유압 액추에이터 및 유압 진동 시험 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-298837 2008-11-21
JP2008298837 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010058632A1 true WO2010058632A1 (ja) 2010-05-27

Family

ID=42198072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063695 WO2010058632A1 (ja) 2008-11-21 2009-07-31 油圧アクチュエータ及び油圧振動試験装置

Country Status (5)

Country Link
JP (2) JP5368084B2 (ja)
KR (1) KR101305982B1 (ja)
CN (1) CN102216750B (ja)
TW (1) TWI420090B (ja)
WO (1) WO2010058632A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120178A1 (es) 2011-03-08 2012-09-13 Instituto Tecnologico Del Embalaje, Transporte Y Logística Máquina simuladora de movimiento producido durante el transporte
CN103016453A (zh) * 2012-12-14 2013-04-03 浙江大学 液压软管脉冲试验系统
CN112879359A (zh) * 2021-01-25 2021-06-01 武汉工程大学 煤层气水平井钻井液压推进系统位移跟踪控制系统与方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443261B1 (ko) * 2002-01-28 2004-08-04 한국화학연구원 카테콜의 선택적 합성을 위한 다공성 촉매
CN102042847A (zh) * 2010-10-29 2011-05-04 安徽士必达液压器材有限公司 高压脉冲测试系统
CN104614137B (zh) * 2015-01-15 2016-08-31 浙江大学 基于静压气浮解耦装置的三分量标准振动台
KR101671829B1 (ko) * 2015-07-06 2016-11-03 홍국선 기어펌프유닛을 포함하는 유압공급장치, 그리고 이를 포함하는 복합형 유압식 액추에이터
DE102018214295A1 (de) * 2018-08-23 2020-02-27 Stabilus Gmbh Messung von Betriebsparametern an Stellenantrieben
CN114258283A (zh) * 2019-10-31 2022-03-29 国立大学法人山形大学 评估检测装置
CN114382824B (zh) * 2021-12-22 2024-02-20 北京航天希尔测试技术有限公司 一种抗高变过载的振动台运动部件位置平衡系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074780A (ja) * 1998-06-16 2000-03-14 Kayaba Ind Co Ltd 振動/加振試験機
JP2004150985A (ja) * 2002-10-31 2004-05-27 Daiichi Denki Kk 加圧加振試験機
JP2006258574A (ja) * 2005-03-16 2006-09-28 Railway Technical Res Inst 載荷装置および載荷方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077688U (ja) * 1973-11-19 1975-07-05
JPS5548807Y2 (ja) * 1976-01-19 1980-11-14
JPS55101839A (en) * 1979-01-31 1980-08-04 Saginomiya Seisakusho Inc Controller for vibrating station
JPS59155603A (ja) * 1983-02-23 1984-09-04 Hitachi Ltd 流体圧駆動装置
JPH0666672A (ja) * 1992-08-18 1994-03-11 Mitsubishi Heavy Ind Ltd 振動試験機
JP3281882B2 (ja) * 1993-03-23 2002-05-13 防衛庁技術研究本部長 航空機の可変圧力油圧系統用アキュムレータ油圧回路
JPH08300433A (ja) * 1995-05-11 1996-11-19 Sumitomo Heavy Ind Ltd 射出成形機における油圧機構の制御装置
JP2753970B2 (ja) * 1995-05-16 1998-05-20 重三 前川 重量体を支持している構造部材又は構造体の地震の横揺れと縦揺れに対するシュミレーション試験装置
US5682980A (en) * 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
JPH1062297A (ja) * 1996-06-12 1998-03-06 Mitsubishi Heavy Ind Ltd 流動振動実験装置
JP2000002617A (ja) * 1998-06-18 2000-01-07 Hitachi Ltd 加振機及び振動試験機
JP2000264033A (ja) * 1999-03-19 2000-09-26 Kayaba Ind Co Ltd アクティブサスペンションの制御装置
KR20000060927A (ko) * 1999-03-22 2000-10-16 정몽규 자동차용 능동 현가장치
JP2001295813A (ja) * 2000-04-12 2001-10-26 Yanmar Diesel Engine Co Ltd 作業機の油圧回路
WO2001086153A1 (de) * 2000-05-11 2001-11-15 Mannesmann Rexroth Ag Hydraulische steueranordnung
JP2005007944A (ja) * 2003-06-17 2005-01-13 Hitachi Ltd 鉄道車両の振動制御装置
JP2006090761A (ja) * 2004-09-22 2006-04-06 Hitachi Industries Co Ltd 振動試験装置
JP2006138813A (ja) * 2004-11-15 2006-06-01 Kayaba Ind Co Ltd 加振試験装置
JP4443391B2 (ja) * 2004-11-26 2010-03-31 カヤバ工業株式会社 シリンダ装置
JP4550612B2 (ja) * 2005-02-18 2010-09-22 日立オートモティブシステムズ株式会社 車両用歯車式変速機の制御装置,制御方法及び制御システム
JP2006256180A (ja) * 2005-03-18 2006-09-28 Ube Machinery Corporation Ltd 射出成形機におけるトグル式型締装置及び型開制御方法
CN1847707B (zh) * 2005-04-04 2010-07-14 诺信公司 带有枢转致动器组件的配给器
JP4573198B2 (ja) * 2006-01-18 2010-11-04 カヤバ工業株式会社 流体圧ダンパ
RU2419827C2 (ru) * 2006-08-08 2011-05-27 Сименс Энерджи Энд Отомейшн, Инк. Устройства, системы и способы, касающиеся сбоя plc-системы
JP4317862B2 (ja) * 2006-09-15 2009-08-19 三菱重工業株式会社 軌道系交通システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074780A (ja) * 1998-06-16 2000-03-14 Kayaba Ind Co Ltd 振動/加振試験機
JP2004150985A (ja) * 2002-10-31 2004-05-27 Daiichi Denki Kk 加圧加振試験機
JP2006258574A (ja) * 2005-03-16 2006-09-28 Railway Technical Res Inst 載荷装置および載荷方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120178A1 (es) 2011-03-08 2012-09-13 Instituto Tecnologico Del Embalaje, Transporte Y Logística Máquina simuladora de movimiento producido durante el transporte
US9280918B2 (en) 2011-03-08 2016-03-08 Instituto Tecnologico Del Embalaje Transporte Y Logistica Machine that simulates the movement produced during transport
CN103016453A (zh) * 2012-12-14 2013-04-03 浙江大学 液压软管脉冲试验系统
CN112879359A (zh) * 2021-01-25 2021-06-01 武汉工程大学 煤层气水平井钻井液压推进系统位移跟踪控制系统与方法

Also Published As

Publication number Publication date
CN102216750A (zh) 2011-10-12
JP2014025590A (ja) 2014-02-06
CN102216750B (zh) 2014-12-31
KR101305982B1 (ko) 2013-09-12
JP5368084B2 (ja) 2013-12-18
KR20110070917A (ko) 2011-06-24
JP2010151772A (ja) 2010-07-08
TW201020536A (en) 2010-06-01
TWI420090B (zh) 2013-12-21
JP5735595B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2010058632A1 (ja) 油圧アクチュエータ及び油圧振動試験装置
CN102439412B (zh) 油压系统和万能试验装置
JP6371653B2 (ja) 超高圧発生装置
RU2006141599A (ru) Многоцилиндровый насос с гидроприводом
CA2476032A1 (en) Hydraulic drive system and method of operating a hydraulic drive system
JP2010151772A5 (ja)
JP2008157407A5 (ja)
JP2015081553A (ja) 液圧式拡管装置
AU2010276482B2 (en) Hydraulic power module
JP4196145B2 (ja) 圧縮・引張試験装置および出力調整装置
JP2016020880A (ja) 内圧疲労試験機
JP2004150985A (ja) 加圧加振試験機
JP2008291865A (ja) シリンダ駆動装置
JP7195557B2 (ja) 液圧駆動装置
JP5716552B2 (ja) 材料試験機
JP4855056B2 (ja) 液体供給システム
JP6015440B2 (ja) 材料試験機
JP5701678B2 (ja) 加圧装置および加圧装置の制御方法
JPH09265324A (ja) 流体輸送用ブーム装置
JP2009275917A (ja) エアシリンダ駆動装置
EP3663577A1 (en) Piston pump drive and control pneumatic oscillating system used in medical research
JP2015096757A (ja) 液圧駆動装置
JPH10115302A (ja) 流体圧シリンダの加圧力制御方法およびその装置
JP2018066366A (ja) 圧力容器のサイクル試験装置
RO133361A2 (ro) Stand universal pentru anduranţa maşinilor volumice liniare şi rotative

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146327.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827413

Country of ref document: EP

Kind code of ref document: A1