WO2010058501A1 - アルカリ電池 - Google Patents

アルカリ電池 Download PDF

Info

Publication number
WO2010058501A1
WO2010058501A1 PCT/JP2009/004257 JP2009004257W WO2010058501A1 WO 2010058501 A1 WO2010058501 A1 WO 2010058501A1 JP 2009004257 W JP2009004257 W JP 2009004257W WO 2010058501 A1 WO2010058501 A1 WO 2010058501A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
battery
height
range
Prior art date
Application number
PCT/JP2009/004257
Other languages
English (en)
French (fr)
Inventor
加藤丞
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/671,384 priority Critical patent/US8187741B2/en
Priority to EP09827283.4A priority patent/EP2348565B1/en
Publication of WO2010058501A1 publication Critical patent/WO2010058501A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/023Gel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline battery with reduced packing density of the positive electrode and the negative electrode.
  • Alkaline batteries have a high energy density per unit weight, and are therefore widely used as power sources with the rapid spread of portable electronic devices in recent years. And today, from regular type batteries suitable for devices such as portable game machines and excellent discharge characteristics at light loads, excellent discharge characteristics under heavy loads suitable for devices such as digital cameras. A lineup of high-performance batteries, as well as high-quality and high-performance batteries with high discharge performance in a wide range from large current to small current, in various grades with different price ranges according to the equipment used and application. Has been.
  • an alkaline battery has a structure in which a positive electrode and a negative electrode are housed in a battery case via a separator, but simply reducing the amount of the positive electrode and / or the negative electrode decreases the facing area between the positive electrode and the negative electrode. The reaction efficiency also decreases.
  • the inventor of the present application produced an alkaline battery with a reduced packing density of the positive electrode and the negative electrode, and evaluated its performance.
  • a material containing graphite in manganese dioxide was used for the positive electrode, and a material containing a gelling agent in zinc was used for the negative electrode.
  • the gelled negative electrode originally has fluidity, and when an impact is applied to the battery, the gelled negative electrode moves to the negative electrode terminal side (gasket side) and collides with the gasket. It is considered that the internal short circuit occurred due to leakage from the gasket to the positive electrode side (hereinafter simply referred to as “gel spill”).
  • gel spill the internal short circuit occurred due to leakage from the gasket to the positive electrode side
  • the gelled negative electrode having a reduced density is more likely to move in response to an impact, and it is considered that the rate of generation of batteries that generate heat due to an internal short circuit is increased.
  • the present invention has been made in view of the above points, and its main purpose is to reduce the packing density of the positive electrode and the negative electrode without causing an internal short circuit due to gel spillage, excellent reliability, and high cost performance.
  • the object is to provide an alkaline battery.
  • the alkaline battery according to the present invention is an alkaline battery in which a positive electrode and a negative electrode with reduced packing density are accommodated in a battery case via a separator, and the ratio of the height of the positive electrode to the height of the negative electrode. Is adopted in the range of 0.96 to 1.06.
  • the alkaline battery according to the present invention is an alkaline battery in which a positive electrode and a negative electrode are housed in a battery case via a separator, the positive electrode includes manganese dioxide which is a positive electrode active material, and the negative electrode is a negative electrode active material.
  • the packing density of manganese dioxide in the positive electrode is in the range of 2.31 to 2.45 g / cm 3
  • the packing density of zinc in the negative electrode is 1.49 to in the range of 1.65 g / cm 3
  • the ratio of the positive electrode height (h 1) and the negative pole of a height (h 2) (h 1 / h 2) is in the range of 0.96 to 1.06 It is characterized by that.
  • the positive electrode height (h 1) the ratio of the negative electrode of the height (h 2) (h 1 / h 2) is in the range of 0.98 to 1.04.
  • the arithmetic mean roughness (Ra) of the inner wall surface of the battery case is in the range of 0.7 to 2.0 ⁇ m.
  • the zinc is made of zinc powder, and zinc powder having a particle size of 200 mesh or less is contained in the range of 15 to 40 wt%.
  • the separator has a thickness in the range of 350 to 550 ⁇ m.
  • the present invention even if the packing density of the positive electrode and the negative electrode is reduced, it is possible to obtain an alkaline battery with excellent reliability and high cost performance that does not cause an internal short circuit due to gel spillage.
  • (A) is the figure which showed the structure of the battery
  • (b) the figure which showed the state after dropping a battery
  • (c) is the X-ray photograph of (a)
  • (d) is X of (b). It is a line photograph.
  • 1 is a half cross-sectional view showing a configuration of an alkaline battery in an embodiment of the present invention.
  • an alkaline battery has a structure in which a positive electrode and a negative electrode are housed in a battery case via a separator.
  • the height of the positive electrode housed in the battery case is It is designed so that the opposing area is maximized by aligning the height of the negative electrode.
  • Table 1 shows the evaluation results when a drop test is performed on a battery in which the height (h 1 ) of the positive electrode and the height (h 2 ) of the negative electrode are not uniform.
  • the variation in the height of the positive electrode and the negative electrode is typically considered to be about 2 to 4%.
  • the height of the positive electrode Batteries with different (h 1 ) and negative electrode height (h 2 ) were prepared and evaluated.
  • the produced battery was an AA alkaline battery, and a material containing manganese dioxide in graphite was used for the positive electrode, and a material containing a gelling agent in zinc was used for the negative electrode.
  • the packing density of manganese dioxide in the positive electrode was set to 2.38 g / cm 3
  • the packing density of zinc in the negative electrode was set to 1.57 g / cm 3 .
  • these set packing densities are about 5% with respect to the packing density (typically about 2.50 g / cm 3 ) of manganese dioxide set in a high-grade battery aiming at high performance. This corresponds to a value obtained by reducing the density, and corresponds to a value obtained by reducing the density by about 9% with respect to the packing density of zinc (typically about 1.72 g / cm 3 ).
  • the drop test method and the evaluation method are as follows.
  • the battery was continuously applied 10 times on the P tile from the height of 1.5 m with the negative terminal side down. Then, the closed circuit voltage (V 2 ) immediately after the drop test and the closed circuit voltage (V 3 ) after 1 minute were measured, and the maximum temperature (T) on the battery surface after the drop test was measured. Then, a drop test was performed for each of the batteries 1 to 4 shown in Table 1 by 10 pieces. A battery in which V 2 was lowered by 2 mV or more with respect to V 1 was obtained, and a battery in which V 3 was lowered with respect to V 2 was further obtained. B. Further, the battery in which T increased to 40 ° C. or higher was evaluated as C, and the number of batteries that resulted in each evaluation was counted.
  • the battery of evaluation A has a suspicion that gel spillage has occurred
  • the battery of evaluation B has a progressive internal short circuit caused by gel spillage
  • the battery of evaluation C has the result of gel spillage It is assumed that the degree of progress of the internal short circuit is high and the heat has been generated.
  • FIG. 1A is a diagram showing a configuration of a battery in which the positive electrode 2 and the negative electrode 3 having a reduced density are accommodated in a battery case via a separator 4.
  • the space between the positive electrode 2 and the negative electrode 3 and the gasket 5 is shown in FIG. A is formed (FIG. 1 (c) shows an X-ray photograph thereof).
  • FIG. 1B shows the state of the battery after the battery is dropped with the negative electrode terminal side down, and not only the negative electrode 3 but also the positive electrode 2 moves to the negative electrode terminal side and moves to the gasket 5. It can be seen that a space B is formed on the positive electrode terminal side (FIG. 1 (d) shows an X-ray photograph thereof).
  • the positive electrode absorbs the electrolytic solution and expands in the radial direction of the battery case, so that the positive electrode is in close contact with the battery case and moves even when an impact is applied to the battery.
  • the positive electrode moved simultaneously when an impact was applied to the battery due to the lowering of the density of the positive electrode resulting in a decrease in adhesion to the battery case.
  • the reason why the battery 4 shown in Table 1 did not generate heat unlike the battery 3 although the height of the negative electrode was low can be considered as follows. That is, in the battery 4, since the height of the positive electrode is low, the length of contact with the gasket at the front end of the separator is increased by the movement of the separator following the movement of the positive electrode. Therefore, even if the negative electrode moves and strongly collides with the gasket, it is considered that the occurrence of gel spillage is suppressed by the separator whose adhesion to the gasket is improved by increasing the contact length.
  • the reason why the battery 2 shown in Table 1 has generated heat despite the high negative electrode height can be considered as follows. That is, in battery 2, since the height of the positive electrode is lower than the height of the negative electrode, after the negative electrode first contacts the gasket, the positive electrode delays and contacts the gasket. Therefore, when the separator is pressed against the moving positive electrode, the adhesion between the separator and the gasket is lowered, and as a result, gel spillage is considered to have occurred.
  • the present invention provides a guideline for the allowable range of the ratio between the height of the positive electrode and the height of the negative electrode.
  • FIG. 2 is a half cross-sectional view showing the configuration of the alkaline battery in the embodiment of the present invention.
  • a positive electrode 2 and a gelled negative electrode 3 are accommodated in a bottomed cylindrical battery case 1 via a separator 4, and an opening of the battery case 1 has a gasket 5, a negative electrode current collector 6, And the negative electrode terminal plate 7 are sealed by a sealing unit 9.
  • the positive electrode 2 includes manganese dioxide as a positive electrode active material
  • the negative electrode 3 includes a gelled negative electrode including zinc (including a zinc alloy) as a negative electrode active material.
  • the positive electrode 2 and the negative electrode 3 are comprised by the electrode reduced in density.
  • Table 2 shows that the packing density of manganese dioxide in the positive electrode 2 is lowered in the range of 2.31 to 2.45 g / cm 3 , and the packing density of zinc in the negative electrode 3 is 1.49 to 1. using a low density and electrodes in the range of 65 g / cm 3, respectively, the height of the positive electrode 2 (h 1) and height of the negative electrode 3 (h 2) 0.94 the ratio (h 1 / h 2) of ⁇
  • the evaluation result when it carries out by the same method as the drop test shown in Table 1 about the AA alkaline battery produced by changing to the range of 1.08 is shown.
  • the packing density of manganese dioxide in the positive electrode 2 is in the range of 2.31 to 2.45 g / cm 3
  • the packing density of zinc in the negative electrode 3 is in the range of 1.49 to 1.65 g / cm 3 .
  • the height of the positive electrode (h 1 ) and the height of the negative electrode (the ratio of h 2) (h 1 / h 2) it can be seen that it is more preferable in the range of 0.98 to 1.04.
  • the preferred range of the ratio (h 1 / h 2 ) between the height (h 1 ) of the positive electrode and the height (h 2 ) of the negative electrode described above includes manufacturing variations.
  • the preferable range can be defined as a design allowable range in consideration of the manufacturing variation.
  • the packing density of manganese dioxide in the present invention refers to the weight ratio of manganese dioxide contained in the electrolytic manganese dioxide constituting the positive electrode 2 with respect to the volume of the positive electrode 2. Further, the “packing density of manganese dioxide” can be measured, for example, by the following method.
  • the volume of the positive electrode 2 is calculated by measuring the outer diameter, inner diameter, and height of the positive electrode 2 through X-ray fluoroscopy. Then, after disassembling the battery and taking out all of the positive electrode 2 and sufficiently dissolving it with acid, manganese in the aqueous solution is obtained by ICP emission analysis (high frequency inductively coupled plasma emission spectroscopy) from an aqueous solution obtained by filtering out the insoluble matter. The content of (Mn) is examined, and the content is converted into the amount of manganese dioxide to determine the weight of manganese dioxide contained in the positive electrode 2. In this way, “the packing density of manganese dioxide” is preferably obtained.
  • the “zinc packing density” in the present invention refers to the weight ratio of zinc constituting the negative electrode 3 to the volume of the negative electrode 3.
  • the “zinc packing density” can be measured, for example, by the following method.
  • the volume of the negative electrode 3 is calculated by measuring the outer diameter and height of the negative electrode 3 through X-ray fluoroscopy of the battery. Then, the battery is disassembled and all the negative electrode 3 is taken out. After removing the water-soluble substance and the gelling agent by decantation using water as a solvent, zinc is taken out by sufficiently drying and the weight thereof is obtained. In this way, the “zinc packing density” may be obtained.
  • Table 3 using the positive and negative electrodes is not low density (filling density of manganese dioxide 2.50 g / cm 3, the packing density of the zinc 1.72 g / cm 3), the positive electrode height (h 1) a negative electrode of the height ratio (h 2) (h 1 / h 2), the battery prepared by changing the range of 0.90 to 1.10, when a drop test was carried out in the same manner as Table 2 The evaluation results are shown.
  • the positive electrode By the way, as described above, by reducing the density of the positive electrode, the positive electrode also easily moves when an impact is applied to the battery. By improving the adhesion between the positive electrode and the battery case, the positive electrode The effect of suppressing the movement of can be expected.
  • Table 4 shows the evaluation when the drop test was performed in the same manner as in Table 2 on the battery produced by changing the arithmetic average roughness (Ra) of the inner wall surface of the battery case 1 in the range of 0.5 to 3.0 ⁇ m. The results are shown. As shown in Table 4, it can be seen that as the arithmetic average roughness (Ra) of the inner wall surface of the battery case 1 increases, the occurrence of internal short-circuits (evaluations A and B) due to gel spillage is reduced. This is presumably because the adhesion between the positive electrode and the battery case was improved by increasing the surface roughness of the inner wall surface of the battery case 1.
  • the arithmetic average roughness (Ra) of the inner wall surface of the battery case 1 is in the range of 0.7 to 2.0 ⁇ m. It is preferable to set to.
  • the battery shown in Table 4 used an electrode having a packing density of manganese dioxide in the positive electrode 2 of 2.31 g / cm 3 and a packing density of zinc in the negative electrode 3 of 1.49 g / cm 3 .
  • the zinc network can be enhanced, and the effect of suppressing the movement of the negative electrode can be expected.
  • Table 5 shows a drop test using the same method as in Table 2 for batteries manufactured by changing the content of zinc powder having a particle size of 200 mesh or less (hereinafter referred to as “zinc fine powder”) in the range of 10 to 40 wt%. The evaluation result when performing is shown. As shown in Table 5, it can be seen that the occurrence of internal short circuits (evaluations A and B) due to gel spillage is reduced as the content of the zinc fine powder increases.
  • the content of the fine zinc powder exceeds 40 wt%, the viscosity of the negative electrode is increased and the productivity may be reduced. Therefore, in order to effectively reduce the occurrence of internal short circuit due to gel spillage.
  • the battery shown in Table 5 used an electrode having a packing density of manganese dioxide in the positive electrode 2 of 2.31 g / cm 3 and a packing density of zinc in the negative electrode 3 of 1.49 g / cm 3 .
  • the separator 4 has a function of preventing the gelled negative electrode 3 from leaking to the positive electrode 2 by bringing the tip portion into contact with the gasket, but by increasing the thickness of the separator 4, The function can be further strengthened, and as a result, an effect of suppressing a decrease in adhesion between the separator 4 and the gasket 5 accompanying the movement of the positive electrode can be expected.
  • Table 6 shows the evaluation results when a drop test is performed in the same manner as in Table 2 on the battery manufactured by changing the thickness of the separator 4 in the range of 315 to 650 ⁇ m.
  • the thickness of the separator 4 is a thickness obtained by winding a nonwoven fabric mainly composed of polyvinyl alcohol fibers and rayon fibers each having a thickness of 100 to 210 ⁇ m in a cylindrical shape. As shown in Table 6, it can be seen that the occurrence of internal short circuits (evaluations A and B) due to gel spillage is reduced as the thickness of the separator 4 increases.
  • the thickness of the separator 4 exceeds 550 ⁇ m, the volume of the positive electrode 2 and the negative electrode 3 is reduced.
  • the thickness of the separator 4 is preferably set in the range of 350 to 550 ⁇ m.
  • the battery shown in Table 6 used an electrode in which the packing density of manganese dioxide in the positive electrode 2 was 2.31 g / cm 3 and the packing density of zinc in the negative electrode 3 was 1.49 g / cm 3 .
  • the arithmetic average roughness (Ra) of the inner wall surface of the battery case 1, the content of zinc powder having a particle size of 200 mesh or less, and the thickness of the separator 4 are appropriately set to values within a range where the above-described effects can be exhibited. By combining them, the occurrence of internal short circuit due to gel spillage can be reduced more effectively.
  • the alkaline battery of the present invention has excellent productivity and high cost performance, and can be used for a wide range of electronic devices using a dry battery as a power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 正極2は、正極活物質である二酸化マンガンを含み、負極3は、負極活物質である亜鉛を含むゲル状負極からなり、正極2中の二酸化マンガンの充填密度は、2.31~2.45g/cmの範囲にあり、負極3中の亜鉛の充填密度は、1.49~1.65g/cmの範囲にあり、正極2の高さ(h)と負極3の高さ(h)の比(h/h)は、0.96~1.06の範囲にある。

Description

アルカリ電池
 本発明は、正極及び負極の充填密度を低減したアルカリ電池に関する。
 アルカリ電池は、単位重量当たりのエネルギー密度が高いことから、近年の携帯用電子機器の急速な普及に伴い、その電源として広く用いられるようになっている。そして、今日においては、携帯用ゲーム機等の機器に適した、軽負荷での放電特性に優れたレギュラータイプの電池から、デジタルカメラ等の機器に適した、重負荷での放電特性に優れた高性能の電池、さらには、大電流から小電流まで幅広いレンジで高い放電性能を有する高品質・高性能の電池まで、使用機器や用途に合わせて、価格帯の異なる種々のグレードの商品がラインナップされている。
 特に、アルカリ電池の高性能化に対しては、活物質の充填量や比表面積を増加したり、活物質を含む合剤への電解液の吸液量を増加するなど、様々な改善がなされている(例えば、特許文献1、2等)。
特開2003-163003号公報 特開2000-106176号公報
 高性能化を図ったグレードの高い電池に対して、コストを抑えたグレードの低い電池を製造するには、正極及び/又は負極の活物質の量を減らすのが最も効果的である。
 一般に、アルカリ電池は、正極及び負極をセパレータを介して電池ケース内に収納した構造を有するが、正極及び/又は負極の量を単純に減らすと、正極と負極との対向面積が減少するため、反応効率も低下してしまう。
 そこで、正極及び/又は負極の量を単純に減らす代わりに、正極及び負極の高さは維持したまま、正極及び負極の充填密度を低減することによって、反応効率の低下をできるだけ抑えて、コストダウンを図ることが望ましい。
 そこで、本願発明者は、正極及び負極の充填密度を低減したアルカリ電池を作製して、その性能の評価を行った。なお、作製したアルカリ電池は、正極には二酸化マンガンに黒鉛を含んだ材料、負極には亜鉛にゲル化剤を含んだ材料を用いた。
 作製したアルカリ電池について、落下試験による信頼性の評価を行ったところ、内部短絡に起因すると思われる発熱を生じた電池があった。特に、負極端子側(電池ケースの開口部がガスケットを介して負極端子板で封口されている)を下にした落下試験において、発熱を生じた電池の発生する割合が多かった。
 これは、もともと、ゲル状負極は流動性を有するため、電池に衝撃が加わると、ゲル状負極が負極端子側(ガスケット側)に移動してガスケットに衝突することによって、ゲル状負極がセパレータとガスケットとの間から正極側に漏れ出て(以下、単に「ゲルこぼれ」という。)、内部短絡が起きたことによるものと考えられる。特に、負極を低密度化した場合、亜鉛粒子間でのネットワークが低下するため、ゲル状負極の粘性が低下している。そのため、低密度化したゲル状負極は、衝撃に対してより移動しやすくなっていることから、内部短絡による発熱を生じた電池の発生する割合が増えたものと考えられる。
 本発明は、かかる点に鑑みなされたもので、その主な目的は、正極及び負極の充填密度を低減しても、ゲルこぼれによる内部短絡の生じない、信頼性に優れ、かつコストパフォーマンスの高いアルカリ電池を提供することにある。
 上記目的を達成するために、本発明におけるアルカリ電池は、充填密度を低減した正極及び負極がセパレータを介して電池ケース内に収容されてなるアルカリ電池において、正極の高さと負極の高さの比を0.96~1.06の範囲にした構成を採用する。
 すなわち、本願発明に係わるアルカリ電池は、正極及び負極がセパレータを介して電池ケース内に収納されてなるアルカリ電池であって、正極は、正極活物質である二酸化マンガンを含み、負極は、負極活物質である亜鉛を含むゲル状負極からなり、正極中の二酸化マンガンの充填密度は、2.31~2.45g/cmの範囲にあり、負極中の亜鉛の充填密度は、1.49~1.65g/cmの範囲にあり、正極の高さ(h)と負極の高さ(h)の比(h/h)は、0.96~1.06の範囲にあることを特徴とする。
 ある好適な実施形態において、上記正極の高さ(h)と負極の高さ(h)の比(h/h)は、0.98~1.04の範囲にある。
 ある好適な実施形態において、上記電池ケースの内壁面の算術平均粗さ(Ra)は、0.7~2.0μmの範囲にある。
 ある好適な実施形態において、上記亜鉛は亜鉛粉末からなり、200メッシュ以下の粒度を有する亜鉛粉末が、15~40wt%の範囲で含まれている。
 ある好適な実施形態において、上記セパレータの厚みは、350~550μmの範囲にある。
 本発明によれば、正極及び負極の充填密度を低減しても、ゲルこぼれによる内部短絡の生じない、信頼性に優れ、かつコストパフォーマンスの高いアルカリ電池を得ることができる。
(a)は電池の構成を示した図、(b)は電池を落下させた後の状態を示した図、(c)は(a)のX線写真、(d)は(b)のX線写真である。 本発明の実施形態におけるアルカリ電池の構成を示した半断面図である。
 一般に、アルカリ電池は、正極及び負極をセパレータを介して電池ケース内に収納した構造を有しているが、正極と負極との反応効率を高めるために、電池ケースに収納された正極の高さと負極の高さとを揃えて、対向面積が最大になるように設計している。
 しかしながら、量産工程においては、製造上のバラツキからゲル状負極の高さにもバラツキは生じる。そこで、正極及び負極の充填密度を低減したアルカリ電池の落下試験において、ゲルこぼれによる内部短絡に起因して発熱を生じた電池の発生する割合が増えたことに鑑みて、本願発明者は、負極高さのバラツキと落下試験における電池の発熱との関係を調べたところ、以下のような知見を得た。
 表1は、正極の高さ(h)と負極の高さ(h)が揃っていない電池について、落下試験を行ったときの評価結果を示したものである。なお、正極及び負極の高さのバラツキは、典型的には2~4%程度と考えられるが、負極高さのバラツキと電池の発熱との関係を明確に把握するために、正極の高さ(h)及び負極の高さ(h)を予め変えた電池をそれぞれ作製して評価を行った。
Figure JPOXMLDOC01-appb-T000001
 ここで、作製した電池は、単3形アルカリ電池で、正極には二酸化マンガンに黒鉛を含んだ材料、負極には亜鉛にゲル化剤を含んだ材料を用いた。なお、正極中の二酸化マンガンの充填密度は、2.38g/cm、負極中の亜鉛の充填密度は、1.57g/cmに設定した。なお、設定したこれらの充填密度は、高性能化を図った高グレードの電池で設定される二酸化マンガンの充填密度(典型的には2.50g/cm程度)に対して、約5%程度低密度化された値に相当し、また、亜鉛の充填密度(典型的には1.72g/cm程度)に対して、約9%程度低密度化された値に相当する。
 また、落下試験の方法、及び評価方法は、以下の通りである。
 落下試験前に、それぞれ作製した電池の閉路電圧(V)を測定(精度1mV)した後、1.5mの高さから、電池を負極端子側を下にしてPタイル上に10回連続して落下させてから、落下試験直後の閉路電圧(V)と、1分後の閉路電圧(V)とを測定するとともに、落下試験後の電池表面の最高温度(T)を測定した。そして、表1に示した電池1~4について10個ずつ落下試験を行い、VがVに対して2mV以上低下した電池をA、さらに、VがVに対して低下した電池をB、さらに、Tが40℃以上に上昇した電池をCと評価し、それぞれの評価結果となった電池の数をカウントした。
 なお、評価Aの電池は、ゲルこぼれが生じた疑いのあるもの、評価Bの電池は、ゲルこぼれに起因する進行性のある内部短絡が発生したもの、評価Cの電池は、ゲルこぼれに起因する内部短絡の進行度が高く、発熱に至ったものと想定される。
 表1に示すように、負極の高さが低い電池3では、発熱に至った電池(評価C)があったのに対し、負極の高さが高い電池1では、発熱に至った電池のみならず、評価A、Bの電池も発生しておらず、明らかに負極の高さの違いによって、電池の発熱発生の有無に差が生じている。これは、負極の高さが高い電池1と、負極の高さが低い電池3とでは、負極とガスケットとの距離に差があるため、落下による衝撃で負極が負極端子側(ガスケット側)に移動した際に、ガスケットに衝突する衝撃の強さに差が生じ、この衝撃強さの差によって、ゲルこぼれに至った電池と至らなかった電池とが生じたものと考えられる。
 ところで、表1に示すように、負極の高さが低くても発熱に至らなかった電池4がある一方、負極の高さが高くても発熱に至った電池2があった。これは、ゲルこぼれにより発熱に至った原因が、上述したゲル状負極の移動によるものとは考えにくい結果であり、本願発明者は、ゲル状負極の移動以外に、ゲルこぼれを引き起こす別の要因があると考え、さらに詳細な検討を加え、以下のような知見を得た。
 図1(a)は、低密度化した正極2及び負極3をセパレータ4を介して電池ケース内に収容した電池の構成を示した図で、正極2及び負極3とガスケット5との間に空間Aが形成されている(図1(c)は、そのX線写真を示す)。図1(b)は、この電池を負極端子側を下にして落下させた後の電池の状態を示した図で、負極3のみならず正極2も負極端子側に移動して、ガスケット5に当接しており、正極端子側には空間Bが形成されているのが分かる(図1(d)は、そのX線写真を示す)。
 これは、一般に、正極は、電池ケース内に収容された後、電解液を吸収して電池ケースの径方向に膨張するため、電池ケースに密着しており、電池に衝撃が加わっても移動することはないと考えられていたが、正極を低密度化したことによって、電池ケースとの密着性が低下したことにより、電池に衝撃が加わった際に正極も同時に移動したものと考えられる。
 このような事実から、表1に示した電池4が、負極の高さが低いにも係わらず、電池3とは異なり、発熱に至らなかった理由は、次のように考えることができる。すなわち、電池4では、正極の高さも低くなっているため、正極の移動とともに、セパレータも追随して移動することによって、セパレータの先端部のガスケットに当接する長さが増大する。そのため、負極が移動してガスケットに強く衝突しても、当接する長さの増大によりガスケットとの密着性が向上したセパレータによって、ゲルこぼれの発生を抑制したものと考えられる。
 一方、表1に示した電池2が、負極の高さが高いにも係わらず、電池1とは異なり、発熱に至った理由は、次のように考えることができる。すなわち、電池2では、正極の高さが負極の高さよりも低くなっているため、負極が先にガスケットに当接した後、正極が遅れてガスケットに当接する。そのため、セパレータが移動してきた正極に押圧されることによって、セパレータとガスケットとの密着性が低下し、その結果、ゲルこぼれが発生したものと考えられる。
 以上の知見から、製造上のバラツキによって正極及び負極の高さにバラツキが生じた場合、ゲルこぼれの要因は異なるものの、正極及び負極の高さのバラツキが所定の範囲を超えるとゲルこぼれが生じるおそれがあることが分かった。それ故に、低密度化した正極及び負極を用いた電池において、ゲルこぼれによる内部短絡の発生を防止するためには、製造上のバラツキに伴う正極及び負極の高さバランス、すなわち、正極の高さと負極の高さとの比を、所定の範囲内にすることが必要と言える。本発明は、かかる正極の高さと負極の高さの比の許容範囲について指針を与えるものである。
 以下に、本発明の実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されない。
 図2は、本発明の実施形態におけるアルカリ電池の構成を示した半断面図である。図2に示すように、有底円筒状の電池ケース1内に、セパレータ4を介して正極2とゲル状負極3が収納され、電池ケース1の開口部が、ガスケット5、負極集電子6、及び負極端子板7を一体化した封口ユニット9によって封口されている。ここで、正極2は、正極活物質である二酸化マンガンを含み、負極3は、負極活物質である亜鉛(亜鉛合金を含む)を含むゲル状負極からなる。また、正極2及び負極3は低密度化された電極で構成されている。
 表2は、正極2中の二酸化マンガンの充填密度を、2.31~2.45g/cmの範囲で低密度化し、また、負極3中の亜鉛の充填密度を、1.49~1.65g/cmの範囲で低密度化した電極を用い、それぞれ、正極2の高さ(h)と負極3の高さ(h)の比(h/h)を0.94~1.08の範囲に変えて作製した単3形アルカリ電池について、表1で示した落下試験と同じ方法で行ったときの評価結果を示したものである。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、低密度化した正極2及び負極3を用いた電池において、ゲルこぼれによる内部短絡の発生を防止するために、製造上のバラツキに伴う正極2及び負極3の高さバランス、すなわち、正極2の高さ(h)と負極3の高さ(h)との比(h/h)の許容範囲について有用な指針を得ることができる。
 すなわち、正極2中の二酸化マンガンの充填密度を、2.31~2.45g/cmの範囲に、負極3中の亜鉛の充填密度は、1.49~1.65g/cmの範囲に設定した場合、電池に落下等の衝撃を加えた場合でも、ゲルこぼれによる内部短絡の発生に伴う電池の発熱を防止するためには、表2の落下試験における評価Cの結果に基づけば、正極の高さ(h)と負極の高さ(h)の比(h/h)を、0.96~1.06の範囲にすることが好ましいことが分かる。
 また、ゲルこぼれに起因する進行性のある内部短絡の発生を防止するためには、表2の落下試験における評価Bの結果に基づけば、正極の高さ(h)と負極の高さ(h)との比(h/h)を、0.98~1.04の範囲にすることがより好ましいことが分かる。
 なお、本実施形態において、上記に示した正極の高さ(h)と負極の高さ(h)との比(h/h)の好ましい範囲は、製造上のバラツキを含めたものであるが、もとより、電池の仕様等によって、製造上のバラツキも異なるため、かかる好ましい範囲は、製造上のバラツキを考慮した設計上の許容範囲として規定することができる。
 ここで、本発明における「二酸化マンガンの充填密度」は、正極2の体積に対して、正極2を構成する電解二酸化マンガンに含有される二酸化マンガンの重量比をいう。また、「二酸化マンガンの充填密度」は、例えば、以下の方法により測定することができる。
 すなわち、電池をX線透視して正極2の外径、内径、および高さの寸法を計測することにより正極2の体積を算出する。そして、電池を分解して正極2を全て取り出して充分に酸溶解させた後、不溶分を濾別して得られる水溶液からICP発光分析法(高周波誘導結合プラズマ発光分光分析法)によりその水溶液中のマンガン(Mn)の含有量を調べ、その含有量を二酸化マンガン量に換算して正極2に含まれている二酸化マンガンの重量を求める。このようにして「二酸化マンガンの充填密度」を求めるとよい。
 また、本発明における「亜鉛の充填密度」は、負極3の体積に対して、負極3を構成する亜鉛の重量比をいう。また「亜鉛の充填密度」は、例えば、以下の方法により測定することができる。
 すなわち、電池をX線透視して負極3の外径及び高さの寸法を計測することにより負極3の体積を算出する。そして、電池を分解して負極3をすべて取り出して、水を溶媒としてデカンテーションにより水溶性物質及びゲル化剤を取り除いた後、十分乾燥することにより亜鉛を取り出しその重量を求める。このようにして「亜鉛の充填密度」を求めるとよい。
 表3は、低密度化していない正極及び負極(二酸化マンガンの充填密度が2.50g/cm、亜鉛の充填密度が1.72g/cm)を用いて、正極の高さ(h)と負極の高さ(h)の比(h/h)を、0.90~1.10の範囲に変えて作製した電池について、表2と同じ方法で落下試験を行ったときの評価結果を示したものである。表3に示すように、正極の高さ(h)と負極の高さ(h)の比(h/h)が、製造上のバラツキの範囲(典型的には、2~4%程度)を超える値(例えば、h/h=0.90、または1.10)になっても、ゲルこぼれによる内部短絡の発生に伴う電池の発熱は生じていない。それ故に、低密度化した正極及び負極を用いた電池において、ゲルこぼれによる内部短絡の発生を防止するためには、正極の高さ(h)と負極の高さ(h)の比(h/h)は、製造上管理しなければならない重要なパラメータと言える。
Figure JPOXMLDOC01-appb-T000003
 ところで、上述したように、正極を低密度化したことにより、電池に衝撃が加わったときに、正極も移動しやすくなっているが、正極と電池ケースとの密着性を向上させることによって、正極の移動を抑制する効果が期待できる。
 表4は、電池ケース1の内壁面の算術平均粗さ(Ra)を0.5~3.0μmの範囲で変えて作製した電池について、表2と同じ方法で落下試験を行ったときの評価結果を示したものである。表4に示すように、電池ケース1の内壁面の算術平均粗さ(Ra)が大きくなるに従い、ゲルこぼれに起因する内部短絡の発生(評価A、B)が低減されているのが分かる。これは、電池ケース1の内壁面の表面粗さが増すことによって、正極と電池ケースとの密着性が向上したためと考えられる。
Figure JPOXMLDOC01-appb-T000004
 ただし、算術平均粗さ(Ra)が2.0μmを超えると、電池ケース1の内壁面の表面積が増加することによって、ガスが発生しやすくなるため、かえって耐漏液性の低下を招くおそれがある。従って、表4に示すように、ゲルこぼれに起因する内部短絡の発生を低減するためには、電池ケース1の内壁面の算術平均粗さ(Ra)を、0.7~2.0μmの範囲に設定することが好ましい。なお、表4に示した電池は、正極2中の二酸化マンガンの充填密度が2.31g/cm、負極3中の亜鉛の充填密度が1.49g/cmの電極を用いた。
 また、負極についても、粒度の細かい亜鉛粉末を多く含有させることによって、亜鉛のネットワークを高めることができ、これにより、負極の移動を抑制する効果が期待できる。
 表5は、200メッシュ以下の粒度を有する亜鉛粉末(以下、「亜鉛微粉末」という。)の含有率を10~40wt%の範囲で変えて作製した電池について、表2と同じ方法で落下試験を行ったときの評価結果を示したものである。表5に示すように、亜鉛微粉末の含有率が大きくなるに従い、ゲルこぼれに起因する内部短絡の発生(評価A、B)が低減されているのが分かる。
Figure JPOXMLDOC01-appb-T000005
 ただし、亜鉛微粉末の含有率が40wt%を超えると、負極の粘度が高くなって生産性の低下を招くおそれがあるため、ゲルこぼれに起因する内部短絡の発生を効果的に低減するためには、表5に示すように、亜鉛微粉末の含有率を、15~40wt%の範囲に設定することが好ましい。なお、表5に示した電池は、正極2中の二酸化マンガンの充填密度が2.31g/cm、負極3中の亜鉛の充填密度が1.49g/cmの電極を用いた。
 また、セパレータ4は、その先端部をガスケットに当接させることによって、ゲル状負極3が正極2に漏れ出ることを防止する機能を有しているが、セパレータ4の厚みを増加させることによって、その機能をより強化することができ、これにより、正極の移動に伴うセパレータ4とガスケット5との密着性の低下を抑制する効果が期待できる。
 表6は、セパレータ4の厚みを315~650μmの範囲で変えて作製した電池について、表2と同じ方法で落下試験を行ったときの評価結果を示したものである。なお、セパレータ4の厚みとは、1枚の厚さが100~210μmのポリビニルアルコール繊維およびレーヨン繊維を主体として混抄した不織布を円筒状に3重に巻回して得られた厚みである。表6に示すように、セパレータ4の厚みが大きくなるに従い、ゲルこぼれに起因する内部短絡の発生(評価A、B)が低減されているのが分かる。
Figure JPOXMLDOC01-appb-T000006
 ただし、セパレータ4の厚みが550μmを超えると、正極2及び負極3の容積の低下を招くため、ゲルこぼれに起因する内部短絡の発生を効果的に低減するためには、表6に示すように、セパレータ4の厚みを、350~550μmの範囲に設定することが好ましい。なお、表6に示した電池は、正極2中の二酸化マンガンの充填密度が2.31g/cm、負極3中の亜鉛の充填密度が1.49g/cmの電極を用いた。
 なお、電池ケース1の内壁面の算術平均粗さ(Ra)、200メッシュ以下の粒度を有する亜鉛粉末の含有率、及びセパレータ4の厚みを、それぞれ上述した効果を発揮し得る範囲の値に適宜組み合わせることによって、より効果的にゲルこぼれに起因する内部短絡の発生を低減することができる。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記の実施形態では、単3形アルカリ電池を例に説明したが、他の大きさのアルカリ電池についても、同様の効果を得ることができる。
 本発明のアルカリ電池は、優れた生産性と、高いコストパフォーマンスを有し、乾電池を電源とする広範な電子機器に用いることができる。
 1   電池ケース
 2   正極
 3   ゲル状負極
 4   セパレータ
 5   ガスケット
 6   負極集電子
 7   負極端子板
 9   封口ユニット

Claims (5)

  1.  正極及び負極がセパレータを介して電池ケース内に収納されてなるアルカリ電池であって、
     前記正極は、正極活物質である二酸化マンガンを含み、
     前記負極は、負極活物質である亜鉛を含むゲル状負極からなり、
     前記正極中の二酸化マンガンの充填密度は、2.31~2.45g/cmの範囲にあり、
     前記負極中の亜鉛の充填密度は、1.49~1.65g/cmの範囲にあり、
     前記正極の高さ(h)と前記負極の高さ(h)の比(h/h)は、0.96~1.06の範囲にある、アルカリ電池。
  2.  前記正極の高さ(h)と前記負極の高さ(h)の比(h/h)は、0.98~1.04の範囲にある、請求項1に記載のアルカリ電池。
  3.  前記電池ケースの内壁面の算術平均粗さ(Ra)は、0.7~2.0μmの範囲にある、請求項1または2に記載のアルカリ電池。
  4.  前記亜鉛は亜鉛粉末からなり、200メッシュ以下の粒度を有する亜鉛粉末が、15~40wt%の範囲で含まれている、請求項1または2に記載のアルカリ電池。
  5.  前記セパレータの厚みは、350~550μmの範囲にある、請求項1または2に記載のアルカリ電池。
PCT/JP2009/004257 2008-11-18 2009-08-31 アルカリ電池 WO2010058501A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/671,384 US8187741B2 (en) 2008-11-18 2009-08-31 Alkaline battery
EP09827283.4A EP2348565B1 (en) 2008-11-18 2009-08-31 Alkaline battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008294265A JP5416948B2 (ja) 2008-11-18 2008-11-18 アルカリ電池
JP2008-294265 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058501A1 true WO2010058501A1 (ja) 2010-05-27

Family

ID=42197945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004257 WO2010058501A1 (ja) 2008-11-18 2009-08-31 アルカリ電池

Country Status (4)

Country Link
US (1) US8187741B2 (ja)
EP (1) EP2348565B1 (ja)
JP (1) JP5416948B2 (ja)
WO (1) WO2010058501A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728652B2 (en) 2010-10-13 2014-05-20 Panasonic Corporation Cylindrical alkaline battery having specific electrode packing densities and electrode thickness
EP2479824A4 (en) * 2010-10-13 2017-01-25 Panasonic Intellectual Property Management Co., Ltd. Cylindrical alkaline battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248768A (ja) 2010-05-28 2011-12-08 Sony Corp 情報処理装置、情報処理システム及びプログラム
CN102859767B (zh) * 2011-04-18 2015-08-05 松下电器产业株式会社 碱性一次电池
JP5022526B1 (ja) * 2011-04-18 2012-09-12 パナソニック株式会社 アルカリ一次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106176A (ja) 1998-07-28 2000-04-11 Fuji Elelctrochem Co Ltd 電池用正極合剤の製造方法、電池用正極合剤、およびアルカリマンガン電池
JP2000340237A (ja) * 1999-05-25 2000-12-08 Toshiba Battery Co Ltd アルカリ電池
JP2003163003A (ja) 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
JP2007227011A (ja) * 2006-02-21 2007-09-06 Toshiba Battery Co Ltd アルカリ電池
JP2008108585A (ja) * 2006-10-26 2008-05-08 Hitachi Maxell Ltd 円筒形アルカリ電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672998A (en) * 1967-01-30 1972-06-27 Union Carbide Corp Extended area zinc anode having low density for use in a high rate alkaline galvanic cell
US5283139A (en) * 1993-04-12 1994-02-01 Duracell Inc. Alkaline cell
JPH10144304A (ja) 1996-11-15 1998-05-29 Fuji Elelctrochem Co Ltd アルカリ電池
JP2000243450A (ja) * 1999-02-19 2000-09-08 Fujitsu Ltd アルカリ二次電池
CN1293659C (zh) * 2002-07-12 2007-01-03 日立万胜株式会社 碱性电池及其制造方法
US7947393B2 (en) 2003-11-14 2011-05-24 Eveready Battery Company, Inc. Alkaline electrochemical cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106176A (ja) 1998-07-28 2000-04-11 Fuji Elelctrochem Co Ltd 電池用正極合剤の製造方法、電池用正極合剤、およびアルカリマンガン電池
JP2000340237A (ja) * 1999-05-25 2000-12-08 Toshiba Battery Co Ltd アルカリ電池
JP2003163003A (ja) 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
JP2007227011A (ja) * 2006-02-21 2007-09-06 Toshiba Battery Co Ltd アルカリ電池
JP2008108585A (ja) * 2006-10-26 2008-05-08 Hitachi Maxell Ltd 円筒形アルカリ電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348565A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728652B2 (en) 2010-10-13 2014-05-20 Panasonic Corporation Cylindrical alkaline battery having specific electrode packing densities and electrode thickness
EP2479824A4 (en) * 2010-10-13 2017-01-25 Panasonic Intellectual Property Management Co., Ltd. Cylindrical alkaline battery

Also Published As

Publication number Publication date
US20110020691A1 (en) 2011-01-27
EP2348565B1 (en) 2013-11-27
EP2348565A1 (en) 2011-07-27
JP5416948B2 (ja) 2014-02-12
US8187741B2 (en) 2012-05-29
EP2348565A4 (en) 2013-02-27
JP2010123319A (ja) 2010-06-03

Similar Documents

Publication Publication Date Title
TWI652849B (zh) 鋰電池
JP3856074B2 (ja) 導電性ペースト及びその製造方法並びに二次電池用導電助剤
KR20190032390A (ko) 축전 디바이스용 양극 및 축전 디바이스
CN107293701A (zh) 一种锂离子电池负极活性材料及其制备方法、负极和包含该负极的锂离子电池
JP5416948B2 (ja) アルカリ電池
CN104781967B (zh) 活性物质颗粒、蓄电装置用正极、蓄电装置以及活性物质颗粒的制造方法
JP2006339046A (ja) リチウム一次電池
JPWO2018163485A1 (ja) アルカリ乾電池
JP2014179203A (ja) 電気化学セル
JP2008053223A (ja) ニッケル水素電池用負極活物質およびニッケル水素電池、およびニッケル水素電池用負極活物質の処理方法
JP2014123449A (ja) 蓄電デバイス用電極およびその製造方法、並びに蓄電デバイス
JP2012028668A (ja) 塗布電極およびこれを用いたキャパシタ
JP4672985B2 (ja) リチウムイオン二次電池
CN106329000B (zh) 一种锂二硫化铁电池的电解液及其电池
JP2011210640A (ja) 鉛蓄電池用正極活物質及びそれを充填して成る鉛蓄電池用正極板
JP6691738B2 (ja) アルカリ電池
KR101551700B1 (ko) 아연 공기 전지, 아연 공기 전지용 음극 및 그 제조 방법
CN102280641A (zh) 一种二次锂电池及其阴极极片
JP2021170442A (ja) リチウム硫黄二次電池の正極用バインダ
JP2009224188A (ja) リチウムイオン二次電池およびその正極板の製造方法
JP2007273279A (ja) 非水電解液電池
Cao et al. Dilution effects of highly concentrated LiBF4/DMC with fluorinated esters on charge/dishcharge properties of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 positive electrode
JP2015149190A (ja) 非水電解液二次電池
JP2015022913A (ja) 負極活物質層形成用組成物の製造方法
JP2005011822A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12671384

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009827283

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE