WO2010057360A1 - 具有耐磨性和防腐性的不粘涂层及其涂覆方法 - Google Patents

具有耐磨性和防腐性的不粘涂层及其涂覆方法 Download PDF

Info

Publication number
WO2010057360A1
WO2010057360A1 PCT/CN2009/001239 CN2009001239W WO2010057360A1 WO 2010057360 A1 WO2010057360 A1 WO 2010057360A1 CN 2009001239 W CN2009001239 W CN 2009001239W WO 2010057360 A1 WO2010057360 A1 WO 2010057360A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
corrosion resistance
layer
abrasion resistance
stick coating
Prior art date
Application number
PCT/CN2009/001239
Other languages
English (en)
French (fr)
Inventor
史航
Original Assignee
金华鹏孚隆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金华鹏孚隆科技有限公司 filed Critical 金华鹏孚隆科技有限公司
Priority to EP09827109.1A priority Critical patent/EP2407306B1/en
Publication of WO2010057360A1 publication Critical patent/WO2010057360A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the present invention relates to a non-stick coating and a coating method thereof, and more particularly to a non-stick coating having both abrasion resistance and corrosion resistance and a coating method thereof.
  • the heat-resistant non-stick coating was first used in cookware such as pots. It has been more than 30 years old. Although more than 30 years, scientists have developed a variety of coatings for coating non-stick coatings, but the main components are the same. , are all polytetrafluoroethylene (referred to as 4F, PTFE) a synthetic polymer material.
  • Polytetrafluoroethylene is a perfluoropolymer obtained by copolymerization of tetrafluoroethylene. Polytetrafluoroethylene has high crystallinity, large molecular weight, no branches in the molecule, fluorine atoms arranged tightly around the CC skeleton, high CF bond energy and shielding of the main chain by fluorine atoms.
  • a non-stick coating of fluoropolymer which relates to a non-stick coating which is excellent in both abrasion resistance and food peeling, and the coating comprises An undercoat layer adhered to the substrate, an intermediate coating adhered to the undercoat layer, and an overcoat layer adhered to the intermediate coating layer, the undercoat layer containing the outer layers that are wrapped by them and extending to each other Intermediate coating
  • the inner ceramic layer is reinforced and thicker than the base coat, whereby the ceramic particles anchor the overcoat layer to prevent it from being worn away, and the overcoat layer is replaced with the intermediate coating layer.
  • the above literature is directed to the disadvantage of poor wear resistance of a simple fluorine coating. Ceramic particles are added to the undercoat layer to enhance the wear resistance of the fluorine coating. However, as the amount of the inorganic filler added in the primer layer increases, the primer is applied. The film of the layer becomes no longer dense, resulting in a decrease in its corrosion resistance.
  • One of the main objects of the present invention is to overcome the deficiencies of the prior art described above and to provide a non-stick coating which has excellent wear resistance and also has good corrosion resistance.
  • Another main object of the present invention is to provide a method of coating a non-stick coating which has excellent abrasion resistance and also has a good anticorrosive property.
  • a non-stick coating having abrasion resistance and corrosion resistance comprising an anticorrosive primer layer, a wear resistant intermediate layer and a non-stick top layer, the anticorrosive primer layer comprising a fluoropolymer, at least one heat resistant polymer binder And pigment filler, pigment filler and heat resistant polymer binder weight percentage is 1% ⁇ 15%;
  • the wear resistant intermediate layer is coated on the anticorrosive bottom layer, the wear resistant intermediate layer comprises fluoropolymer and inorganic a filler particle;
  • the overcoat layer is coated on the wear resistant intermediate layer, the overcoat layer comprises a fluoropolymer having a non-sticking effect; and the bottom and top portions of the large particles of the inorganic filler particles are worn
  • the wear-resistant intermediate layer is embedded in the anti-corrosion bottom layer and the convex cover layer respectively;
  • the heat resistant polymer binder is selected from the group consisting of polyamide-imide (PAI), polyethersulfone (PES), polyimide (PI), polyphenylene sulfide (PPS), polyether.
  • PAI polyamide-imide
  • PES polyethersulfone
  • PI polyimide
  • PPS polyphenylene sulfide
  • PEEK ether ketone
  • silicone resin silicone resin
  • the heat resistant polymer binder is preferably one or more of PAI, PPS, PES;
  • the weight percentage of the pigment filler and the heat resistant polymer binder is preferably 2% to 6%;
  • the pigment filler has a particle size of less than 5 microns;
  • the particle size of the pigment filler is preferably less than 2 microns
  • the anti-corrosion bottom layer has a thickness of at least 10 ⁇ m; and the anti-corrosion bottom layer has a thickness of preferably 15 ⁇ m;
  • composition of the anticorrosive primer layer is an aqueous dispersion
  • the composition of the anti-corrosion underlayer comprises an organic liquid; preferably, the inorganic filler particles of the wear-resistant intermediate layer have a Knoop hardness of at least 1000;
  • the inorganic filler particles are selected from the group consisting of nitrides, carbides, borides, oxides, metal particles or diamonds;
  • the inorganic filler particles are preferably silicon carbide, diamond or alumina; preferably, the inorganic filler particles have a particle size of less than 50 microns;
  • the inorganic filler particles have a particle size of less than 40 microns;
  • the inorganic filler particles have a particle size of between 5 meters and 35 microns, preferably 5 ⁇ .
  • the inorganic filler particles have a weight percentage of the intermediate wear layer composition of 3% to 15%;
  • the weight of the inorganic filler particles is preferably 5% to 10% by weight of the intermediate wear layer composition
  • the fluoropolymer is polytetrafluoroethylene (PTFE); preferably, the non-stick coating has a dry film thickness greater than 40 microns;
  • the dry film thickness of the non-stick coating is preferably 40 ⁇ 55 microns
  • the ratio of the sum of the dry film thickness of the wear-resistant intermediate layer and the non-stick cover layer to the particle size of the largest inorganic filler particles is from 0.95 to 1.65.
  • a coating method for a non-stick coating having abrasion resistance and corrosion resistance comprising the steps of: (1), including cleaning and roughening the surface of the substrate;
  • the composite coating formed on the surface of the substrate is baked at a temperature of 380 to 400 ° C for 5 to 10 minutes so that all the coatings are simultaneously sintered to form on the substrate.
  • the coating method is spray coating
  • the roughening treatment method is acid etching, sand blasting, sanding
  • the substrate is metal or ceramic.
  • the inorganic filler particles can be embedded in the undercoat layer and can also protrude into the overcoat layer, the inorganic filler particles of the intermediate coating protrude into the overcoat layer compared with the conventional coating, so that the overcoat layer forms a deflection. The point, thereby deflecting the friction from the overcoat, thus increasing the wear resistance of the coating.
  • the finish coat adhered to the intermediate coating also contains pearl powder and pigment filler, which makes the finish coating have good non-stick properties and good visual effect.
  • the invention is directed to the conventional coating composition, as the amount of the inorganic filler particles increases, the amount of the resin decreases relatively, and the wear resistance of the coating film is enhanced, but the compactness of the coating film is affected, and the corrosion resistance of the coating film is weakened. With this contradiction, a three-layer composite coating is used to protect the wear resistance and corrosion resistance of the non-stick coating.
  • the ratio of the amount of the filler to the amount of the resin is less than 6% and the particle size of the pigment filler is less than 5 ⁇ m, so that the undercoat coating film is as dense as possible, so that the undercoat layer can be very good for the substrate. Good protection.
  • the invention takes two technical measures: First, through Controlling the weight ratio of the filler weight of the inorganic filler particles to the intermediate wear-resistant coating layer in the range of 3% to 15%, preferably 5% to 10%; second, controlling the particle size of the inorganic filler particles to The ratio of the maximum particle size to the thickness of the coating layer of the wear-resistant intermediate layer and the non-stick military layer is 0.85 - 1. 65.
  • the intermediate coating not only has good wear resistance, but also minimizes the influence on the excellent performance of the anticorrosive primer coating and the non-stick coating, so that the entire composite can be simultaneously achieved.
  • the structural coating has the purpose of three properties of abrasion resistance, corrosion resistance and non-stickiness.
  • the fluoropolymer in each of the coating compositions of the present invention is preferably polytetrafluoroethylene (PTFE) having a melt viscosity at 380 ° C of at least 1 x 10 8 Pa.s, and in fact PTFE in the fluoropolymer Has the highest thermal stability.
  • PTFE polytetrafluoroethylene
  • Such PTFE can also contain a small amount of a comonomer modifier which improves the film forming ability during baking.
  • a comonomer modifier which improves the film forming ability during baking.
  • perfluoroolefins, especially hexafluoropropylene or perfluoroethers especially where the alkyl group contains from 1 to 5 carbon atoms.
  • the fluoropolymer component is generally commercially available as a dispersion of the polymer in water, and the dispersion is in the form of a preferred composition of the present invention from the viewpoint of ease of use and environmental acceptability.
  • dispersion is meant that the fluoropolymer particles are stably dispersed in the aqueous medium so that particle settling does not occur during use, which is achieved by the developer by the size of the polymer particles and the surfactant.
  • the present invention is preferably a heat-resistant and non-toxic polymer binder which is composed of a polymer which is formed into a film upon heating and has thermal stability due to its special use, and the binder is generally not A fluorine-containing polymer, but it is required to adhere to a fluoropolymer and has good substrate adhesion. It is also possible to use a fluorine-containing polymer which has better adhesion to a fluoropolymer. In addition, as a trend in the development of coatings, water-based coatings are continuously developed, so water-solvent heat-resistant polymer binders are used as the present invention. The formulation system is preferred.
  • the heat resistant polymer binder of the present invention is preferably one or more of PAI, PI, PPS, PES, PEEK, silicone resin.
  • PAI polyamide-imide
  • PES polyamide-imide
  • the inorganic filler particles in the intermediate coating layer of the present invention are selected from the group consisting of boride, nitride, carbide, metal particles, diamond, and the like.
  • the inorganic filler particles of the intermediate coating of the present invention also have certain requirements on the hardness, and the inorganic filler particles have a Knoop hardness of at least 1,000.
  • the Knoop hardness of some of the above inorganic filler particles is as follows:
  • the inorganic filler particles are selected to have a particle diameter of less than 50 ⁇ m. From the standpoint of wear resistance, in the case where the addition amount of the inorganic filler particles is the same, the larger the particle diameter used, the better the wear resistance. In the case where the particle diameter of the inorganic filler particles is the same, the larger the amount of addition, the higher the wear resistance. Good, but on the contrary, the corrosion resistance of the coating is also significantly reduced, while the adhesion and fullness are affected.
  • the particle diameter of the inorganic filler particles is preferably from 5 ⁇ m to 35 ⁇ m, and the amount added is less than 12% by weight based on the total weight of the intermediate coating layer, and the wear resistance and corrosion resistance thereof are comprehensively improved.
  • the inorganic filler particles are preferably 5% to 10% by weight. The invention comprehensively considers the above requirements, and the inorganic filler particles are excellent Select silicon carbide, diamond, alumina
  • the average particle size is provided by the supplier.
  • the non-stick coating composition of the present invention also has small particles of inorganic filler and other pigment filler.
  • the pigment filler has a particle size of less than 5 microns, but more preferably has a particle size of less than 2 microns.
  • Suitable additional filler materials include silicates of aluminum or zirconium, titanium dioxide, talc, and the like.
  • the primer composition of the present invention can be applied to a substrate by a conventional spraying method, and a series of treatments are required on the surface of the substrate before spraying.
  • the metal is degreased to prevent the aqueous coating from sticking to the substrate and the leveling property is lowered.
  • the surface of the substrate needs to be roughened to increase the contact area between the coating and the surface of the substrate, thereby increasing the adhesion of the coating on the substrate.
  • the roughening method includes acid etching, sand blasting, sand. Grinding, etc.
  • the anticorrosive primer composition When spraying, the anticorrosive primer composition is applied to the surface of the substrate, and the undercoat layer is dried at a substrate temperature of 120 ° C ⁇ 10 ° C for 10 minutes, then cooled to room temperature, and then coated.
  • the intermediate coating composition is then applied to the intermediate coating in a wet-on-wet manner. After the spraying is completed, the formed composite structure The coating is baked at 380 ⁇ 400 ° C for 5 ⁇ 10 minutes to allow all coatings to be simultaneously sintered to form a non-stick coating with good adhesion on the substrate.
  • the substrate may be any baking resistant material such as metal and ceramic. Examples thereof may include aluminum, iron, stainless steel, high temperature ceramics, and the like.
  • Controlled film (dry film) thickness The base coat / intermediate coat / top coat is 10 ⁇ 15 microns / 20 ⁇ 25 microns / 8 ⁇ 15 microns, respectively, for best results.
  • test substrate selected for the experimental method of the present invention is die-cast aluminum.
  • Surface roughness is: 8 - 12 ⁇
  • A. 1. 1 A nylon mesh (7447B, 3M company) impregnated with phenolic resin and aluminum oxide. The specification is 75 ⁇ 5mm long, 30 ⁇ 5mm wide, 5 awake, adhered to a On a hard plastic block of similar size, it can carry a force of 15. 0 ⁇ 0 ⁇ 2 ⁇ applied to the polishing pad.
  • Reciprocating bracket used to fix the workpiece of the kitchen to be tested, can be controlled to move horizontally 100 ⁇ 5 mm in all directions at a speed of 55 cycles per minute.
  • the workpiece to be tested was fixed on the holder described in Al.1.2, and the polishing pad was placed on a non-stick coating, and the surface of the coating was lubricated with 50 ml of a household washing liquid having a concentration of 5 g/L.
  • B corrosion resistance test Bl visual inspection of coating defects Inject 10% NaCl solution into the container according to the requirements of Standard 3 of BS3978. The injection amount is one-half of the liquid level above the inner wall of the container. Boil the solution for 24 hours. According to the requirements of BS3978 Level 3, during the boiling process, Add water to the container at the right time. If required, ensure that the liquid surface width is within 15mm. It can be carried out continuously for 24 hours. It can also be divided into four stages, each stage is 6 hours. If it needs to be covered, the lid should be covered during the boiling process. With.
  • B2 Clean the salt attached to the surface of the container and immediately visually inspect the coating for defects. Record the boiling time when the defect occurs, as a result of corrosion resistance of the coating. B3 records whether there are other defects.
  • Example 1 The technical solution of the present invention will be further specifically described below by way of examples.
  • Example 1
  • the anticorrosive primer composition listed in Table 1 was sprayed on the surface of a smooth aluminum substrate which was only washed to remove grease, and then naturally cooled to room temperature after drying at a temperature of 120 ⁇ 10 ° C (substrate temperature) for 10 minutes.
  • the abradable intermediate layer compositions listed in Table 2 were then sprayed onto the dried base coat and the overcoat compositions listed in Table 3 were sprayed wet on the intermediate coat. After the spraying was completed, the formed three-layer composite structural coating was baked at 380 ° C for 8 minutes to simultaneously fuse all the coatings on the substrate to form a non-stick coating having good adhesion.
  • the thickness of the dried coating was determined by eddy current analysis, and the dry film thickness of the undercoat/intermediate coating/overcoat was 13 ⁇ m / 23 ⁇ m / 10 ⁇ m, respectively. Since the thickness of the intermediate layer is 23 ⁇ m smaller than the diameter of the largest S iC particle AA6 by 30 ⁇ m, the dried undercoat layer is sintered at a temperature of 380 ° C to be sintered with the intermediate coating layer, so that the intermediate coating layer is large.
  • the bottom of the S iC particles AA6 can be partially embedded in the undercoat layer without contacting the substrate, and since the overcoat composition is applied in a wet-on-wet manner On the intermediate coating, the top of the large SiC particles AA6 is also able to pass through the intermediate coating into the overcoat.
  • the thickness of the overcoat can cover the large SiC particles that pass through the intermediate coating without penetrating over the overcoat.
  • the blend of three different particle sizes of SiC in the intermediate coating composition is added in an amount of 10% by weight of the intermediate coating composition, and the coated (dry) film thickness of the abrasion resistant intermediate coating and the non-stick coating layer
  • the particle size ratio of the sum to the maximum particle size of the inorganic filler SiC AA6 was 1.1. In this way, a mixed coating structure with SiC particles as a framework is formed, and each layer has different properties.
  • NMP N-decylpyrrole
  • the film thickness of the primer/intermediate coating/overcoat layer is 12. 5 ⁇ m / 25 ⁇ m / respectively. 10 microns, the rest being the same as in Example 1.
  • the anti-corrosion primer composition adopts the anti-corrosion primer composition listed in Table 5, and the film thicknesses of the primer layer/intermediate coating layer/overcoat layer are respectively 13. 5 ⁇ m / 24 ⁇ m / 9 ⁇ m, the remainder being the same as in Example 1.
  • the anti-corrosion primer composition adopts the anti-corrosion primer composition listed in Table 6, and the film thickness of the primer/intermediate coating/overcoat layer is 13 micrometers/25 micrometers and eight micrometers, respectively.
  • the rest is the same as in the first embodiment.
  • Leveling agent 0. 8 Deionized water 56. 6 Carbon black pigment (1- 2 ⁇ ) 1. 6 surface active,) ⁇ shengsheng 0. 8 Total: 100. 0
  • the thickness of the undercoat layer/intermediate coating/overcoat layer is 12. 5 ⁇ m / 25 ⁇ m / respectively. 8 micrometers, the rest being the same as in the first embodiment.
  • Example 1 The difference between this embodiment and Example 1 is that the anti-corrosion primer composition adopts the anti-corrosion primer composition listed in Table 8, and the film thickness of the primer/intermediate coating/overcoat layer is 14 ⁇ m / 24 ⁇ m / 9 ⁇ m, respectively. The rest is the same as in the first embodiment.
  • the anti-corrosion primer composition adopts the anti-corrosion primer composition listed in Table 10, and the film thickness of the primer/intermediate coating/overcoat layer is 12 ⁇ m / 25 ⁇ m / 9. 5 micrometers, the rest being the same as in the first embodiment.
  • the film thickness of the primer/intermediate coating/overcoat layer is 13 ⁇ m/24. 5 ⁇ m, respectively, of the anti-corrosion primer composition. Eighty micron, the rest is the same as in the first embodiment.
  • Example 1 The difference between this embodiment and Example 1 is that the anti-corrosion primer composition uses the anti-corrosion primer composition listed in Table 12, and the film thickness of the primer/intermediate coating/overcoat layer is 13 ⁇ m / 25 ⁇ m / 9 respectively. Micron, the rest is the same as in the first embodiment. Table 1 12 bottom layer composition (9)
  • the film thickness of the undercoat layer/intermediate coating/overcoat layer is 12. 5 ⁇ m / 24 ⁇ m / respectively. 10 microns, the rest being the same as in Example 1.
  • Example 1 The main difference between the non-stick coatings of Example 1 and Examples 7 to 10 is the difference in the percentage of the majority of the components of the undercoating composition, in particular, the difference in weight percentage of the pigment and the resin, pigment and resin.
  • Table 14 Table 1 Corrosion resistance comparison table (2) Example Pigment and resin (wt.3 ⁇ 4) Bottom layer (um) Three layers (um) Salt water resistance time ( h. )
  • Example 7 has similar corrosion resistance effects, while Examples 8, 9, and 10 have worse corrosion resistance as the weight percentage of the pigment and the resin increases.
  • Example 7 since the amount of the pigment was small, the hiding power was small, so the weight percentage of the pigment and the resin of Example 1 was preferred.
  • the particle size of the carbon black pigment in the anticorrosive underlayer composition is 5 ⁇
  • the film thickness of the undercoat layer/intermediate coating/overcoat layer is 12.5 ⁇ m/24 ⁇ m, respectively.
  • Micron, the rest is the same as in the first embodiment.
  • Example 13 The difference between this embodiment and Example 1 is that the particle size of the carbon black pigment in the anticorrosive underlayer composition is 10 ⁇ , and the film thickness of the undercoat layer/intermediate coating/overcoat layer is 14 ⁇ m / 22 ⁇ m / 9.5, respectively. Micron, the rest is the same as in the first embodiment.
  • Example 13 the particle size of the carbon black pigment in the anticorrosive underlayer composition is 10 ⁇ , and the film thickness of the undercoat layer/intermediate coating/overcoat layer is 14 ⁇ m / 22 ⁇ m / 9.5, respectively. Micron, the rest is the same as in the first embodiment.
  • Example 13 The difference between this embodiment and Example 1 is that the particle size of the carbon black pigment in the anticorrosive underlayer composition is 10 ⁇ , and the film thickness of the undercoat layer/intermediate coating/overcoat layer is 14 ⁇ m / 22 ⁇ m / 9.5, respectively. Micron, the rest is the same as in the first embodiment.
  • Example 13 the particle size of
  • the film thickness of the undercoat layer/intermediate coating/overcoat layer is 14.5 m/24, respectively. 5 4 ⁇ ⁇ ⁇ save the rice, the rest is the same as in the first embodiment.
  • Example 15 The main difference between the non-stick coatings of Example 1 and Examples 11 - 13 is that the particle size (carbon black) of the undercoat layer composition is different in particle size, and the particle size of the pigment filler (carbon black) is resistant to Corrosive effects, as shown in Table 15:
  • the influence of the particle size of the pigment filler (carbon black) on the corrosion resistance is that as the particle size of the pigment filler (carbon black) increases, the corrosion resistance performance is worse, so the undercoat layer
  • the particle size of the pigment filler should be as small as possible.
  • the amount of pigment filler in the undercoat layer and the weight percent of the resin and the particle size of the pigment filler are critical to the corrosion resistance of the coating. Considering the hiding power of the coating and the convenient construction, the amount of pigment and filler in the undercoat layer is not selected to be zero. Therefore, the weight ratio of the pigment filler to the resin is preferably 4.89%, and the particle diameter of the pigment filler is preferably less than 2 ⁇ m.
  • the addition amount and particle diameter of SiC in the intermediate coating composition of Example 1 are directly related to the abrasion resistance of the coating.
  • Chinese patent ZL 99111835. 9 has described in detail the specific amount of SiC added and the proportion of various particle sizes.
  • the addition amount of the SiC and the selected particle diameter are more optimally adjusted, and as far as possible, the corrosion resistance is ensured. Improve wear resistance.
  • This embodiment differs from Example 1 in that the blend of three different particle sizes of SiC in the intermediate coating composition is added in an amount of 0% by weight of the intermediate coating composition, and the undercoat layer/intermediate coating layer
  • the film thickness of the overcoat layer was 12.5 ⁇ m / 24 ⁇ m and 80 ⁇ m, respectively, and the rest was the same as in Example 1.
  • This embodiment differs from Example 1 in that the SiC three different particle size blends in the intermediate coating composition are added in an amount of 2% by weight of the intermediate coating composition, AA1 is 0.5%, and AA2 is 1%, AA6 was 0.5%, and the film thickness of the undercoat layer/intermediate coating/overcoat layer was 13 ⁇ m / 23 ⁇ m / 9 ⁇ m, respectively, and the rest was the same as in Example 1.
  • This embodiment differs from Example 1 in that the SiC three different particle size blends in the intermediate coating composition are added in an amount of 5% by weight of the intermediate coating composition, AA1 is 1.25%, and AA2 is 2.5%, AA6 was 1.25%, and the film thickness of the undercoat layer/intermediate coating/overcoat layer was 15 ⁇ m / 22 ⁇ m / 10 ⁇ m, respectively, and the rest was the same as in Example 1.
  • This embodiment differs from Example 1 in that the SiC three different particle size blends in the intermediate coating composition are added in an amount of 15% by weight of the intermediate coating composition, AA1 is 3.75%, and AA2 is 7.5%, AA6 is 3.75%, and the film thickness of the undercoat/intermediate coating/overcoat is 14 ⁇ /23.5 ⁇ /9 ⁇ , respectively, and the rest is the same as in Example 1. Same
  • Table 1 16 Comparison of wear resistance and corrosion resistance (4) Example 3 ⁇ and intermediate layer ⁇ %) Three-layered num (um) Number of rubbing times Salt-resistant time (h.)
  • the addition amount of the SiC three different particle diameter blends in the intermediate coating composition may preferably be 5% and 10% by weight of the intermediate coating composition, in view of the comprehensive properties of both abrasion resistance and corrosion resistance.
  • the focus is only different, and the present invention is particularly preferably 10%.
  • Example 18 The difference between this embodiment and the embodiment 1 is that the three sizes of the S iC in the intermediate coating composition are different, and the particle size model is AA1/AA2/AA3, the primer layer/intermediate coating layer.
  • the thickness of the overcoat is 12.5 ⁇ m / 24 ⁇ m / 10 ⁇ m, the sum of the thickness of the coating (dry) film of the wear-resistant intermediate coating and the non-stick coating, and the maximum particle size of the inorganic filler SiC
  • the SiC has three different particle size models in the intermediate coating composition, and the particle size model is AA2/AA3/AA6, and the primer/intermediate coating/overcoat layer.
  • the film has a film thickness of 15 ⁇ m / 22 ⁇ m / 9 ⁇ m, and the ratio of the thickness of the coating (dry) film of the wear-resistant intermediate coating and the non-stick coating layer to the particle size of the inorganic particles is 1.
  • 033 The rest is the same as in the first embodiment.
  • the difference between this embodiment and the embodiment 1 is that the three types of S iC in the intermediate coating composition are different, the particle size model is AA2/AA3/AA9, the primer layer/intermediate coating/overcoat layer.
  • the film thickness is 13 ⁇ m / 24. 5 ⁇ m / 10 ⁇ m, the ratio of the sum of the thickness of the coating (dry) film of the wear-resistant intermediate coating and the non-stick coating layer to the particle size of the largest particle of the inorganic filler S iC AA9 is 0. 69, the rest is the same as in Embodiment 1.
  • Example 21 Example 21
  • the difference between this embodiment and the embodiment 1 is that the three types of S iC in the intermediate coating composition are different, the particle size model is AA3/AA6/AA9, the primer layer/intermediate coating/overcoat layer.
  • the film thickness is 15 ⁇ m / 25 ⁇ m / 8 ⁇ m, the ratio of the sum of the thickness of the coating (dry) film of the wear-resistant intermediate coating and the non-stick coating layer to the particle size of the largest particle of the inorganic filler S iC AA9 is 0. 66, the rest is the same as in the first embodiment.
  • Table 1 Comparison Table of Abrasion Resistance and Corrosion Resistance (5)
  • Example SiC (Model) Ratio Three Layers (um) Number of rubbing times Salt water resistance time (h.)
  • the ratio is the ratio of the sum of the thickness of the coated (dry) film of the wear-resistant intermediate coating and the non-stick top layer to the maximum particle size of the inorganic filler SiC.
  • SiC As the particle size of SiC increases, the corrosion resistance gradually deteriorates. In particular, SiC with an excessively large particle size is used, and the underlying layer can penetrate the undercoat layer to contact the substrate and pass through the overcoat layer. As a result, the entire coating film is lost in density, and of course, corrosion resistance is not mentioned.
  • SiC three particle size models are preferably AA1/AA2/AA6 (wear-resistant intermediate coating and non-stick coating (dry) film)
  • AA2/AA3/AA6 the sum of the coating thickness of the wear-resistant intermediate coating and the non-stick overcoat layer and the maximum particle size of the inorganic filler
  • the particle size ratio of SiC is 1.033), but the emphasis is different, and AAT1/AA2/AA6 is particularly preferred in the present invention.
  • the SiC particle size model in the intermediate coating composition can also be selected as AA1/AA2/AA6 (weight ratio: 1/2/1), and the addition amount is the intermediate coating combination.
  • 5% of the weight of the article is Example 16
  • the SiC particle size model in the intermediate coating composition is AA2/AA3/AA6 (weight ratio: 1/2/1) in an amount of the weight of the intermediate coating composition. 10% is Example 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

具有耐磨性和防腐性的不粘涂层及其涂覆方法 技术领域
本发明涉及一种不粘涂层及其涂覆方法, 更具体地说, 是涉 及一种同时具有耐磨性能和防腐性能的不粘涂层及其涂覆方法。
背景技术
耐热不粘涂层最早用于锅等炊具上, 迄今已有 30 多年的历 史, 30 多年来虽然科技人员开发了多种用于涂覆不粘涂层的涂 料, 但其主要成分是相同的, 都是聚四氟乙烯(简称 4F, PTFE ) 一种合成的高分子材料。 聚四氟乙烯是由四氟乙烯共聚而成的全 氟代聚合物。 聚四氟乙烯具有结晶度高, 分子量大, 分子中没有 支链, 氟原子紧密排布在 C-C骨架的周围, C-F键能高和氟原子 对主链起屏蔽作用等结构特点, 这些特点决定了其具有摩擦系数 小, 不吸水, 不粘, 不燃, 耐气候性好, 使用温度范围宽和介电 性能优异等特点,使得氟涂料具备了其它涂料不具备的优良特性。 但氟涂料力学性能如耐磨擦性达不到要求, 因此, 需通过对氟涂 料中加入无机填料, 来提高氟涂料涂层的耐磨性, 随着无机填料 量的加入, 氟涂料的耐磨性随之加强, 但氟涂料的防腐性却下降 了。
目前, 涂料领域的科技人员为了同时得到好的耐磨性和好的 防腐性不粘涂层, 做出了很多努力。 但迄今为止, 所取得的成果 还不是很理想。 在中国发明专利申请公开说明书 (公开号 CN1500014A ) 中, 公开了一种氟聚合物不粘涂层, 涉及一种耐磨 性与食物剥离二者表现俱佳的不粘涂层, 该涂层包含粘附在基材 上的底涂层、 粘附在底涂层上的中间涂层和粘附在中间涂层上的 罩面层, 底涂层含有被其包裹的彼此保持间距并伸出到中间涂层 内的大陶瓷颗粒, 中间涂层为增强的且比底涂层厚, 借此陶瓷颗 粒将罩面层锚固住, 阻止其被磨掉, 罩面层代之以与中间涂层变 为一体。 上述文献针对单纯的氟涂层耐磨性差的缺点, 在底涂层 中添加了陶瓷颗粒, 增强了氟涂层的耐磨性, 但随着底涂层中无 机填料加入量的增加, 底涂层的膜会变的不再致密, 结果导致了 其防腐性能的下降。
发明内容
本发明的主要目的之一是克服上述现有技术的不足, 提供一 种具有很好的耐磨性的同时也具有很好的防腐性能的不粘涂层。
本发明的另一个主要目的是提供一种涂覆具有很好的耐磨性 的同时也具有很好的防腐性能不粘涂层的方法。
本发明的目的主要是通过下述技术方案实现的:
一种具有耐磨性和防腐性的不粘涂层, 包括防腐底层、 耐磨 中间层和不粘罩面层, 所述的防腐底层包含氟聚合物、 至少一种 耐热聚合物粘合剂和颜填料, 颜填料与耐热聚合物粘合剂重量百 分比为 1% ~ 15%; 所述的耐磨中间层涂于防腐底层之上, 所述的 耐磨中间层包含氟聚合物和无机填料颗粒; 所述的罩面层涂于耐 磨中间层之上, 所述的罩面层包含具有不粘作用的氟聚合物; 所 述的无机填料颗粒中的部分大颗粒的底部和顶部穿出耐磨中间 层, 分别嵌入防腐底层和凸入罩面层;
作为优选, 所述的耐热聚合物粘合剂选自聚酰胺-酰亚胺 ( PAI ) 、 聚醚砜( PES ) 、 聚酰亚胺( PI ) 、 聚苯硫醚( PPS ) 、 聚醚醚酮 (PEEK ) 和有机硅树脂中的一种或多种;
所述的耐热聚合物粘合剂优选 PAI、 PPS, PES中的一种或多 种;
所述的颜填料与耐热聚合物粘合剂重量百分比优选 2% ~ 6%; 作为优选, 所述的颜填料粒径小于 5微米;
所述的颜填料粒径优选小于 2微米;
作为优选, 所述的防腐底层干膜厚度至少为 10微米; 所述的防腐底层干膜厚度优选 1 5微米;
作为优选, 所述的防腐底层的组合物是水分散体;
作为优选, 所述的防腐底层的组合物包括有机液体; 作为优选, 所述的耐磨中间层的无机填料颗粒的努普硬度至 少为 1000;
作为优选, 所述的无机填料颗粒选自氮化物、 碳化物、 硼化 物、 氧化物、 金属颗粒或金刚石;
所述的无机填料颗粒优选碳化硅、 金刚石或氧化铝; 作为优选, 所述的无机填料颗粒粒径小于 50微米;
作为优选, 所述的无机填料颗粒粒径小于 40微米;
所述的无机填料颗粒粒径为 5 米到 35微米之间,优选 5 ~
30微米;
作为优选, 所述的无机填料颗粒重量占中间耐磨层组合物重 量百分比为 3% ~ 15%;
所述的无机填料颗粒重量占中间耐磨层组合物重量百分比优 选 5% ~ 10%;
作为优选, 所述的氟聚合物为聚四氟乙烯(PTFE ) ; 作为优选, 所述的不粘涂层干膜厚度大于 40微米;
所述的不粘涂层干膜厚度优选 40 ~ 55微米;
作为优选, 所述的耐磨中间层和不粘罩面层干膜厚度之和与 最大的无机填料颗粒粒径之比为 0. 85 ~ 1. 65。
一种具有耐磨性和防腐性的不粘涂层的涂覆方法, 包括以下 步驟: ( 1 ) 、 对基材表面进行包括清洁处理和糙化处理;
( 2 )、 在基材表面涂覆防腐底涂层组合物, 然后将底涂层在 基材温
度 120°C ± 10°C的温度下千燥 10分钟;
( 3 )、 底涂层经人工或自然冷却至室温后, 再在底涂层之上 涂敷耐磨中间涂层组合物;
( 4 )、 在耐磨中间涂层未完全干燥之前, 将罩面涂层組合物 以湿碰湿方式涂敷在中间涂层上;
( 5 ) 、 涂敷完成后, 对基材表面所形成的复合涂层在 380 ~ 400°C的温度下烘烤 5 ~ 10 分钟以使所有涂层同时熔结形成在基 材上。
作为优选, 所述的涂覆方法为喷涂, 所述的糙化处理方式为 酸蚀、 喷砂、 磨砂, 所述的基材为金属或陶瓷。
由于无机填料颗粒能嵌入到底涂层同时也能凸入到罩面层, 与传统的涂料相比, 中间涂层的无机填料颗粒凸入到罩面涂层, 使罩面涂层形成了一个偏转点,从而使摩擦力从罩面涂层偏转开, 因此增加了涂层的耐磨性。 粘附在中间涂层上的罩面涂层, 还包 含有珠光粉及颜填料, 使罩面涂层在具有很好的不粘性能的同时 也具有很好的视觉效果。
本发明针对传统涂层组合物中, 随着无机填料颗粒用量的增 加, 树脂量相对減少, 涂膜的耐磨性增强了, 但涂膜的致密性受 到了影响, 涂膜的防腐性却减弱了这一矛盾, 采用三层复合结构 涂层保护不粘涂层的耐磨性和防腐性。 对于底涂层, 采用填料用 量与树脂量之比小于 6%和颜填料粒径小于 5微米的技术方案, 尽 可能使底涂层涂膜致密, 这样底涂层就能对基材起到了很好的保 护作用。 对于中间涂层, 本发明采取两项技术措施: 第一, 通过 控制无机填料颗粒的填料重量与中间耐磨涂层的重量比例, 使其 在 3%-15%范围内, 优选 5%--10%; 第二, 控制无机填料颗粒的粒 径大小, 使其最大颗粒粒径与耐磨中间层和不粘軍面层的涂膜厚 度之和比为 0. 85— 1. 65。 通过这两项技术措施, 使中间涂层不仅 具有很好的耐磨性, 而且也最低程度减少对防腐底涂层和不粘面 涂层的优良性能的影响, 从而达到了可以同时使得整个复合结构 涂层具有耐磨性、 防腐性和不粘性三个特性的目的。
氟聚合物
本发明的每层涂料组合物中的氟聚合物优选聚四氟乙烯 ( PTFE ) , 它在 380°C时的熔体粘度至少是 l x l 08 Pa. S , 并且事 实上 PTFE在氟聚合物中具有最高的热稳定性。 这样的 PTFE还能 够含有少量的烘烤期间提高成膜能力的共聚用单体改性剂。例如: 全氟烯烃, 特别是六氟丙烯或全氟醚, 特别是其中烷基含有 1 ~ 5 个碳原子。
氟聚合物组分通常作为聚合物在水中的分散体由市售购得, 所说的分散体从便于使用与环境的可接受性来看是本发明的优选 组合物形式。 所谓分散体是指氟聚合物颗粒稳定地分散在水介质 中, 以至于在使用时不致于发生颗粒沉降, 这是开发商通过聚合 物颗粒的大小和表面活性剂来实现的。
耐热聚合物粘合剂
本发明由于其特殊的用途, 优选耐热无毒的聚合物粘合剂, 所说的粘合剂组分由加热熔化时成膜并且具有热稳定性的聚合物 组成, 粘合剂一般为不含氟的聚合物, 但要求它能粘附在氟聚合 物上, 并且还有好的基材粘附性。 也可以使用含氟的聚合物, 其 与氟聚合物的粘附性更佳。 另外, 作为涂料的发展一种趋势, 是 不断发展水性涂料, 所以水溶剂耐热聚合物粘合剂, 作为本发明 配方体系的优选。
本发明耐热聚合物粘合剂优选 PAI、 PI、 PPS、 PES, PEEK, 有机硅树脂中的一种或多种。 例如, 聚酰胺-酰亚胺(PAI) , 此粘 合剂具有超过 250°C的连续工作温度; 还有涂料级 PES、 PPS, 均 具有耐高温、 阻燃、 耐辐射、 耐化学腐蚀和电绝缘性等特点, 并 与金属粘接力较强, 添加氟树脂后以提高其不粘性和耐腐蚀性。
无机填料颗粒
本发明中间涂层中的无机填料颗粒选自硼化物、 氮化物、 碳 化物、 金属颗粒、 金刚石等。 本发明中间涂层的无机填料颗粒对 硬度方面也有一定要求, 无机填料颗粒的努普硬度至少为 1000。 部分上述无机填料颗粒的努普硬度如下表:
Figure imgf000007_0001
上述无机填料颗粒中, 选用的无机填料颗粒粒径小于 50 微 米。单从耐磨性方面考虑,在无机填料颗粒添加量相同的情况下, 所用的粒径越大耐磨性越好,在无机填料颗粒粒径相同的情况下, 添加量越大耐磨性越好,但相反会使涂层耐腐蚀性能也明显下降, 同时附着力、 饱满度都受影响。 所以无机填料颗粒的粒径优选为 5微米到 35微米, 添加量小于中间涂层总重的 12%, 其耐磨性和 耐腐蚀性得到综合性的优点。 较佳的, 无机填料颗粒重量百分比 优选 5%— 10%。 本发明从上述等要求综合考虑, 无机填料颗粒优 选碳化硅、 金刚石、 氧化铝
无机填料颗粒及粒径
5±1μΐη平均粒径
10± Ιμΐη平均粒径
15±1μΐη平均粒径
30±1.5μπι平均粒径
50±2μΐη平均粒径
1-2 μπι平均粒径
平均粒径由供应商提供资料。
其它瑱料
除了大颗粒的无机填料外, 本发明的不粘涂层的组合物中还 有小颗粒的无机填料与其它颜填料。 其中所述的颜填料粒径小于 5微米, 但更优选粒径小于 2微米。 合适的附加填料物质包括铝 或锆的硅酸盐、 二氧化钛、 滑石粉等。
涂敷方法
本发明的底层组合物可通过传统的喷涂方法涂敷到基材上, 在喷涂之前需对基材表面进行一系列的处理。 如果为金属基材, 则需对金属除油处理, 防止水性涂料在基材上粘附不牢, 流平性 下降。 除油后还需对基材表面进行糙化处理, 增大涂层与基材表 面的接触面积, 从而增加涂层在基材上的粘附力, 糙化方式有酸 蚀、 喷砂、 砂磨等。
在喷涂时, 先将防腐底涂层组合物涂敷在基材表面, 再将底 涂层在基材温度 120°C ± 10°C的温度下干燥 10分钟, 然后冷却至 室温, 再涂敷中间涂层组合物, 之后再将罩面涂层组合物以湿碰 湿的方式涂敷在中间涂层上。 喷涂完成后, 对所形成的复合结构 涂层在 380 ~ 400°C下烘烤 5 ~ 10分钟, 以使所有涂层同时熔结, 从而在基材上形成粘附能力好的不粘涂层。
在本发明涂敷的基材中,基材可以是任何耐烘烤温度的材料, 例如金属和陶瓷。 其例子可以包括铝、 铁、 不锈钢、 高温陶瓷等。
所控制的涂膜(干膜)厚度: 底涂层 /中涂层 /面涂层分别为 10 ~ 15微米 /20 ~ 25微米 /8 ~ 15微米, 这样可达到最佳效果。
实验方法
本发明实验方法选用的测试基材为压铸铝。 表面粗糙度为: 8 - 12μΐη
A. 1 耐磨测试
A. 1. 1 仪器
A. 1. 1. 1 研磨垫 被酚醛树脂和三氧化二铝浸蘸过的尼龙 网 ( 7447B, 3M公司) , 规格为长 75 ± 5mm, 宽 30 ± 5mm, 厚 5醒, 粘附在一个尺寸类似的硬塑料块上, 可以承载对研磨垫 施加向下 15. 0 ± 0· 2Ν的力。
A1. 1. 2 往复支架, 用来固定被测厨具工件, 可以控制其 以每分钟 55个循环的速度在各个方向上水平移动 100 ± 5mm。
A. 1. 2 流程
将被测工件固定在 Al. 1. 2所述的支架上,并将研磨垫放在不 粘涂层上, 用 50ml浓度为 5g/L的家用洗涤液润滑涂层表面。
保持研磨垫固定不动, 从各个水平方向上, 穿过工件中心, 前后移动支架 50讓 ± 2. 5mm。 重复 250个循环, 每 250个循环更 换一次研磨垫。
用清水冲洗被研磨过的工件表面, 检测其涂层损坏情况, 以 开始露底时循环次数作为耐磨结果。
B耐腐蚀测试 Bl 目测法检测涂层缺陷。 按照 BS3978的标准 3 的要求 向容器中注入 10%的 NaCl溶液, 注入量为液面超过容器内壁 二分之一的位置, 煮沸溶液 24小时,按照 BS3978三级标准要 求, 在煮沸过程中应向容器中适时添加水, 按要求, 要保证 液面宽度为 15mm以内, 24小时可以连续进行, 也可以分成四 个阶段, 每个阶段 6小时, 如果需要加盖, 盖子在煮沸过程中 应一直盖着。
B2 清洗附着在容器表面的盐,并立即目测检查涂层是否 有缺陷, 记录出现缺陷时煮沸时间, 作为涂层耐腐蚀结果。 B3 记录是否存^ ^其它缺陷。
具体实施方式
下面通过实施例,对本发明的技术方案作进一步具体的说明。 实施例 1
将表 1所列防腐底层组合物喷涂在仅经过洗涤而除去油脂的 平滑的铝基材表面上, 然后在 120 ± 10 °C的温度下(基材温度)干 燥 10分钟后自然冷却至室温,随后在干燥底涂层上喷涂表 2所列 耐磨中间层组合物, 再在中间涂层上以湿碰湿地喷涂表 3所列罩 面层组合物。 喷涂完成后, 对所形成的三层复合结构涂层在 380 °C的温度下烘烤 8分钟以使所有涂层同时熔结在基材上, 形成粘 附能力好的不粘涂层。
干燥涂层的厚度(DFT ) 由涡流分析来测定, 底涂层 /中间涂 层 /罩面涂层的干膜厚分别为 13微米 / 23微米 / 10微米。由于中间 层的厚度为 23微米小于最大 S iC颗粒 AA6的直径 30微米, 干燥 后的底涂层在 380 °C的温度下进行烘烤时与中间涂层进行熔结, 使得中间涂层中大的 S iC颗粒 AA6的底部能够部分嵌入底涂层而 不接触到基材, 并且由于罩面涂层组合物是以湿碰湿地方式涂敷 在中间涂层上, 大的 SiC颗粒 AA6的顶部也能够穿出中间涂层进 入罩面涂层。 罩面涂层的厚度能将穿出中间涂层大的 SiC颗粒覆 盖住而不穿出罩面涂层之上。 中间涂层组合物中的 SiC的三种不 同粒径的掺和物的添加量为中间涂层組合物重量的 10%, 耐磨中 间涂层和不粘罩面层的涂(干)膜厚度之和与无机填料的最大颗 粒 SiC AA6的粒径比为 1.1。 这样一来便形成以 SiC颗粒为构架 的混合涂层结构, 且每一层涂层具有不同的性能。 表 1一 底层组合物 (1)
成分 重量百分比
PAI 9.9
水 48.4
N-曱基吡咯垸酮 (NMP) 16.5
PTFE (水分散体中的固体) 22.8
流平剂 0.8
碳黑颜料 (1- 2μιη) 1.6 合计: 100.0
固体含量: 34.3%
颜料与树脂的重量比: 4.89% 2—中间层组合物
成分 重量百分比
PTFE (水分散体中的固体) 39.0
SiC AA1 2.5
SiC AA2 5.0 S iC 2. 5 丙烯酸树脂 3. 0 珠光粉 A 0. 65 丙二醇 0. 5 表面活性剂 1. 45
100#溶剂 1. 2
Figure imgf000012_0001
0. 37 水 42. 08 群青(1- 2μΐη) 0. 5 碳黑 (1-2μΐη) 1. 25 合计: 100. 0 固体含: 54. 4% 表 3—罩面层组合物
成 重量百分比
PTFE (水分散体中的固体) 41. 05 十二烷基硫酸钠 0. 4 丙烯酸树脂 3. 3 珠光粉 0. 5 丙二醇 2. 5 表面活性剂 3. 06 100#溶剂 0. 98 流平剂 0. 37 水 47. 84 合计: 100. 0 固体含量: 45. 2% 实施例 1
本实施例与实施例 1的不同点是防腐底层组合物采用表 4所 列防腐底层組合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 12. 5微米 /25微米 /10微米, 其余与实施例 1相同。
表 4- 底层组合物 ( 2 )
成分
PES PTFE NMP
三乙醇胺
丙三醇
流平剂
去离子水
碳黑颜料(1- 2μπι)
表面活性剂
Figure imgf000013_0001
颜料与树脂的重量比:4. 82% 实施例 3
本实施例与实施例 1的不同点是防腐底层組合物采用表 5所 列防腐底层组合物 , 底涂层 /中间涂层 /罩面涂层的膜厚分别为 13. 5微米 /24微米 /9微米, 其余与实施例 1相同。 表 5— 底层組合物 ( 3 )
成分 重量百分比
PPS 12. 0 PTFE 20. 4 NMP 3. 0 流平剂 0. 3 三乙醇胺 0. 78 丙三醇 0. 91 表面活性剂 0. 72 水 59. 2 碳黑颜料(1- 2μΐη) 1. 6
合计 100. 0 固体含量: 34. 0%
颜料与树脂的重量比: 4. 94%
实施例 4
本实施例与实施例 1的不同点是防腐底层组合物采用表 6 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 13微米 /25微米八 0微米, 其余与实施例 1相同。
表 6— 底层组合物 (4 )
成分 重量百分比 ΡΑΙ 5. 2
PPS 8. 0
PTFE 19. 4
ΝΜΡ 6. 6 三乙醇胺 2. 0
流平剂 0. 8 去离子水 56. 6 碳黑颜料(1- 2μΐη) 1. 6 表面活,)·生剂 0. 8 合计: 100. 0
固体含量: 34. 2°/。
颜料与树脂的重量比: 4. 91% 实施例 5
本实施例与实施例 1的不同点是防腐底层组合物采用表 7 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 12. 5微米 /25微米 /8微米, 其余与实施例 1相同。
表 7— 底层组合物 (5 )
成分 重量百分比
ΡΑΙ 2. 8 PES 11. 0 PTFE 19. 6 NMP 2. 0 三乙醇胺 3. 0 流平剂 0. 8 去离子水 58. 4 碳黑颜料(1-2μΐη) 1. 6 表面活性剂 0. 8
Figure imgf000015_0001
固体含量: 35. 0%
颜料与树脂的重量比: 4. 79% 实施例 6
本实施例与实施例 1的不同点是防腐底层组合物采用表 8所列防 腐底层组合物,底涂层 /中间涂层 /罩面涂层的膜厚分别为 14微米 /24微米 /9微米, 其余与实施例 1相同。
表 8— 底层组合物 ( 6 ) 成分 重量百分比
PAI 11. 8 FEP 21. 0 NMP 15. 8 三乙醇胺 3. 0 流平剂 0. 8 去离子水 45. 2 碳黑颜料 (1-2μΐη) 1. 6 表面活性剂 0. 8 合计 100. 0 固体含量: 34. 4%
颜料与树脂的重量比: 4. 87% 实施例 1 ~ 6 各不粘涂层之间的主要不同点是底涂层组合物 中所使用的耐热聚合物粘合剂不同,实施例 1 ~ 6不粘涂层的耐腐 蚀性如表 9所示。 表 9—耐腐蚀性对比表(1 ) 底涂层膜厚(μπ 三层膜厚(nm) 耐盐水时间 (h. )
13. 0 46. 0 60
12. 5 47. 5 54
13. 5 46. 5 54
13. 0 48. 0 60
12. 5 45. 5 60
14. 0 47. 0 54
通过对实施例 1 ~ 6各不粘涂层的耐腐蚀性比较, 可见底涂层 组合物中的耐热聚合物粘合剂的选用对耐腐蚀性的影响很小, 可 根据具体成本和生产工艺情况进行优选.
实施例 7
本实施例与实施例 1的不同点是防腐底层組合物采用表 10 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 12微米 /25微米 /9. 5微米, 其余与实施例 1相同。
表一 10 底层组合物 (7 )
成分 重量百分比
PAI 10. 5
水 48. 7
N-曱基吡咯烷酮 17. 0
PTFE (水分散体中的固体) 5
流平剂 0. 8 碳黑颜料(1-2μΐη) ^_5_
合计: 100. 0
固体含量: 34. 5%
颜料与树脂的重量比: 1. 47%
实施例 8
本实施例与实施例 1 的不同点是防腐底层组合物采用表 11 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 1 3微米 /24. 5微米八 0微米, 其余与实施例 1相同。 表一 11 底层组合物 (8 )
成分 重量百分比
ΡΑΙ 8. 8
水 50. 2
Ν-甲基吡咯烷酮 15. 5
PTFE (水分散体中的固体) 21. 5
流平剂 0. 8
碳黑颜料(1- 2μΐη) 3. 2
合计: 100. 0
固体含量: 33. 5%
颜料与树脂的重量比: 10. 56%
实施例 9
本实施例与实施例 1 的不同点是防腐底层组合物采用表 12 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 1 3微米 /25微米 /9微米, 其余与实施例 1相同。 表一 12 底层組合物 (9 )
成分 重量百分比
PAI 8. 6
水 49. 9
N-甲基吡咯烷酮 15. 3
PTFE (水分散体中的固体) 19. 0
流平剂 0. 8
碳黑颜料(1-2μΐη) 6. 4
合计: 100. 0
固体含量: 34. 0%
颜料与树脂的重量比: 23. 19%
实施例 10
本实施例与实施例 1的不同点是防腐底层组合物采用表 13 所列防腐底层组合物, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 12. 5微米 /24微米 /10微米, 其余与实施例 1相同。
表一 13 底层组合物 (10 ) 成分 重量百分比
ΡΑΙ 8. 5
水 48. 97
Ν-曱基吡咯烷酮 14. 8
PTFE (水分散体中的固体) 17. 4
流平剂 0. 8
碳黑颜料 (1-2μΐη) 9^6
合计: 100. 0
固体含量: 35. 5% 颜料与树脂的重量比: 37.07%
实施例 1及实施例 7 ~ 10各不粘涂层之间的主要区别是底涂 层组合物的多数成分的百分比的重量不同, 特别是其中颜料与树 脂的重量百分比差别较大, 颜料与树脂的重量百分比对耐腐蚀性 的影响如表 14所示: 表一 14耐腐蚀性对比表(2 ) 实施例 颜料与树脂 (wt.¾) 底层麟 (um) 三层 (um) 耐盐水时间 (h. )
1 4.89 13 46 60
7 1.47 12 46.5 66
8 10.56 13 47.5 48
9 23.19 13 47 36
10 37.07 12.5 46.5 30
可见实施例 7和实施例 1的不粘涂层耐腐蚀性效果接近,而实 施例 8、 9和 10随着颜料与树脂的重量百分比的增加而耐腐蚀性 表现的越差。 考虑到施工的便捷和可操作性, 实施例 7因颜料量 少遮盖力差, 因此优选实施例 1的颜料与树脂的重量百分比。 实施例 11
本实施例与实施例 1的不同点是防腐底层组合物中的碳黑颜 料的粒径为 5μΐη, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 12.5 微米 /24微米八 0微米, 其余与实施例 1相同。
实施例 12
本实施例与实施例 1的不同点是防腐底层组合物中的碳黑颜 料的粒径为 10μΐη, 底涂层 /中间涂层 /罩面涂层的膜厚分别为 14 微米 /22微米 /9.5微米, 其余与实施例 1相同。 实施例 13
本实施例与实施例 1的不同点是防腐底层组合物中的碳黑颜 料的粒径为 15μΐη,底涂层 /中间涂层 /罩面涂层的膜厚分别为 14. 5 米 /24. 5 4敖米八 救米, 其余与实施例 1相同。
实施例 1及实施例 11 - 13各不粘涂层之间的主要区别是底涂 层组合物中的颜料量(碳黑)的粒径不同, 颜填料(碳黑)的粒径大 小对耐腐蚀性的影响, 如表 15所示:
表一 15耐腐蚀性对比表(3 )
实施例 碳黑颜 立径(nm ) 底层 (um ) 三层麟 ( urn ) 耐盐水时间 (h. )
1 - 2 13 47
5 12. 5 46. 5
10 14 45. 5
15 14. 5 47
由上表可见颜填料 (碳黑)的粒径大小对耐腐蚀性的影响是 随着颜填料 (碳黑)的粒径的增大而耐腐蚀性的性能越差,所以底 涂层中的颜填料的粒径应尽可能的小。
综上所述:
底涂层中的颜填料量与树脂的重量百分比和颜填料的粒径大 小对涂层的耐腐蚀性的影响至关重要的。 考虑到涂料的遮盖力及 施工便捷, 不选择底涂层中的颜填料量为零。 因此颜填料量与树 脂的重量比优选 4. 89%, 颜填料的粒径优选小于 2微米。
实施例 1的中间涂层组合物中的 S iC的添加量和粒径直接关 系到涂层的耐磨性。 中国专利 ZL 99111835. 9已详细描述了具体 的 S iC的添加量和各种不同粒径的搭配比例。 本发明为了使不粘 涂层同时具有耐磨和耐腐蚀二者综合性能, 将 S iC的添加量和所 选粒径进行更为优化的调整, 在保证耐腐蚀性能的前提下尽可能 提高耐磨性能。
以下实施例 14~ 18, 在中间涂层组合物中加入的 SiC的三种 不同粒径的掺和物重量比和粒径型号不变的条件下, 通过改变 SiC 在中间涂层組合物中的重量百分比来测试涂膜的耐磨性和耐 腐蚀性。
实施例 14
本实施例与实施例 1的不同点是中间涂层组合物中的 SiC的 三种不同粒径的掺和物的添加量为中间涂层組合物重量的 0%, 底 涂层 /中间涂层 /罩面涂层的膜厚分别为 12.5微米 /24微米八 0微 米, 其余与实施例 1相同。
实施例 15
本实施例与实施例 1 的不同点是, 中间涂层组合物中的 SiC 三种不同粒径的掺和物的添加量为中间涂层组合物重量的 2 %, AA1为 0.5%, AA2为 1%, AA6为 0.5%, 底涂层 /中间涂层 /罩面 涂层的膜厚分别为 13微米 /23微米 /9微米,其余与实施例 1相同。 实施例 16
本实施例与实施例 1 的不同点是, 中间涂层组合物中的 SiC 三种不同粒径的掺和物的添加量为中间涂层组合物重量的 5% , AA1为 1.25%, AA2为 2.5%, AA6为 1.25%, 底涂层 /中间涂层 / 罩面涂层的膜厚分别为 15微米 /22微米 /10微米, 其余与实施例 1相同。
实施例 17
本实施例与实施例 1 的不同点是, 中间涂层组合物中的 SiC 三种不同粒径的掺和物的添加量为中间涂层组合物重量的 15%, AA1为 3.75%, AA2为 7.5%, AA6为 3.75%, 底涂层 /中间涂层 / 罩面涂层的膜厚分别为 14μΐη /23.5μΐη /9μΐη, 其余与实施例 1相 同
表一 16耐磨性和耐腐蚀性对比表 ( 4 ) 实施例 3 ^与中间层 ^%) 三层麟(um) 磨擦次数 耐盐水时间(h. )
14 0 46.5 700 96 15 2 45.0 3500 78 16 47.0 15500 72 1 10 47.0 42000 60
17 15 46.5 55000 36 从表一 16 耐磨性和耐腐蚀性对比表(4) 中的测试结果可以 明显地得出结论: 当 SiC的量为 0时涂膜很容易被磨穿, 耐磨性 最差。 随着 SiC量的增加, 其耐磨性也随着显著提高, 但添加量 达到一定程度时, 耐磨性提高的幅度逐渐减小。
虽然随着 SiC量的增加, 耐腐蚀性逐渐变差, 但总体的幅度 不是太显著, 只是在当 SiC的量增加到 15%时 (实施例 Π) , 下 降的幅度才变得略微大些。
若从耐磨和耐腐蚀二者综合性能来考虑, 中间涂层组合物中 的 SiC三种不同粒径的掺和物的添加量与中间涂层组合物的重量 百分比可优选 5%和 10%, 只是侧重点有所不同, 本发明特别优选 10%。
以下实施例 18~21, 在中间涂层组合物中的 SiC的三种不同 粒径的掺和物的添加量和三种不同粒径的掺和物之间重量比不变 的条件下, 通过改变 SiC的三种不同粒径在中间涂层组合物中的 粒径型号来测试涂膜的耐磨性和耐腐蚀性。
实施例 18 本实施例与实施例 1 的不同点是, 中间涂层组合物中的 S iC 三种粒径型号不同, 粒径型号为 AA1/AA2/AA3 , 底涂层 /中间涂层
/罩面涂层的膜厚分别为 12. 5微米 / 24微米 / 10微米,耐磨中间涂 层和不粘罩面层的涂(干)膜厚度之和与无机填料的最大颗粒 SiC
AA3的粒径比为 2. 267 , 其余与实施例 1相同。 实施例 19
本实施例与实施例 1 的不同点是, 中间涂层组合物中的 SiC 三种粒径型号不同, 粒径型号为 AA2/AA3/AA6 , 底涂层 /中间涂层 /罩面涂层的膜厚分别为 15微米 /22微米 /9微米, 耐磨中间涂层 和不粘罩面层的涂(干)膜厚度之和与无机填料的最大颗粒 S iC AA6的粒径比为 1. 033 , 其余与实施例 1相同。 实施例 20
本实施例与实施例 1 的不同点是, 中间涂层组合物中的 S iC 三种粒径型号不同, 粒径型号为 AA2/AA3/AA9 , 底涂层 /中间涂层 /罩面涂层的膜厚分别为 13微米 / 24. 5微米 / 10微米,耐磨中间涂 层和不粘罩面层的涂(干)膜厚度之和与无机填料的最大颗粒 S iC AA9的粒径比为 0. 69 , 其余与实施例 1相同。 实施例 21
本实施例与实施例 1 的不同点是, 中间涂层組合物中的 S iC 三种粒径型号不同, 粒径型号为 AA3/AA6/AA9 , 底涂层 /中间涂层 /罩面涂层的膜厚分别为 15微米 /25微米 /8微米, 耐磨中间涂层 和不粘罩面层的涂(干)膜厚度之和与无机填料的最大颗粒 S iC AA9的粒径比为 0. 66, 其余与实施例 1相同。 表一 17耐磨性和耐腐蚀性对比表( 5 ) 实施例 SiC (型号) 比值 三层 (um) 磨擦次数 耐盐水时间 (h. )
1 AA1/AA2/AA6 1.1 47.0 42000 60
18 AA1/AA2/AA3 2.267 46.5 12500 72
19 AA2/AA3/AA6 1.033 46.0 48000 54
20 AA2/AA3/AA9 0.69 47.5 67000 24
21 AA3/AA6/AA9 0.66 48.0 72000 24 注: 比值为耐磨中间涂层和不粘」 面层的涂(干)膜厚度之和与 无机填料的最大颗粒 SiC 的粒径比。
从表一17 耐磨性和耐腐蚀性对比表(5) 中的测试结果可以 明显地得出结论: 当 SiC的粒径过小时, 涂膜很容易被磨穿, 耐 磨性较差。 随着 SiC粒径的增加, 特别是大粒径的加入, 其耐磨 性也随着显著提高, 但当大粒径 SiC 相对整个涂膜的厚度(40— 50μπι)来说过大时, 由于罩面层无法将其盖住, 将会导致整个涂 膜平整性和光滑性的大幅下降, 直接影响涂膜的不粘性。
随着 SiC粒径的增加, 耐腐蚀性逐渐变差, 特别是选用过大 粒径的 SiC, 下面可过能会穿透底涂层而接触到基材, 上面穿过 罩面涂层, 这样一来使得整个涂膜失去致密性, 当然更谈不上耐 腐蚀性了。
从不粘涂层同时具有耐磨和耐腐蚀二者综合性能来考虑, SiC 三种粒径型号可优选 AA1/AA2/AA6 (耐磨中间涂层和不粘罩面层 的涂(干)膜厚度之和与无机填料的最大颗粒 SiC的粒径比为 1.1 ) 和 AA2/AA3/AA6 (耐磨中间涂层和不粘罩面层的涂(干)膜厚度 之和与无机填料的最大颗粒 SiC的粒径比为 1.033 ) , 只是侧重 点有所不同, 本发明特别优选 AA1/AA2/AA6。
综上所述: 中间涂层中的 SiC的添加量和粒径的大小直接影响不粘涂层 耐磨和耐腐蚀性能, 本发明优选实施例 1。 出于对二者性能要求 的侧重点不同, 也可以选择中间涂层組合物中 SiC 粒径型号为 AA1/AA2/AA6(重量比为: 1/2/1),添加量为中间涂层组合物重量的 5%即实施例 16, 和中间涂层組合物中的 SiC 粒径型号为 AA2/AA3/AA6(重量比为: 1/2/1) ,添加量为中间涂层组合物重量的 10%即实施例 19。

Claims

权 利 要 求
1、 一种具有耐磨性和防腐性的不粘涂层, 其特征在于包括 防腐底层、 耐磨中间层和不粘罩面层, 所述的防腐底层包含氟聚 合物、 至少一种耐热聚合物粘合剂和颜填料, 颜填料与耐热聚合 物粘合剂重量百分比为 1% ~ 15%; 所述的耐磨中间层涂于防腐底 层之上, 所述的耐磨中间层包含氟聚合物和无机填料颗粒; 所述 的罩面层涂于耐磨中间层之上, 所述的罩面层包含具有不粘作用 的氟聚合物; 所述的无机填料颗粒中的部分大颗粒的底部和顶部 穿出耐磨中间层, 分别嵌入防腐底层和凸入罩面层。
2、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的耐热聚合物粘合剂选自聚酰胺-酰亚胺( PAI )、 聚醚砜( PES ) 、 聚酰亚胺( PI ) 、 聚苯硫醚( PPS ) 、 聚醚醚酮
( PEEK ) 和有机硅树脂中的一种或多种。
3、 根据权利要求 1或 2所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的耐热聚合物粘合剂优选 PAI、 PPS、 PES 中的一种或多种。
4、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的颜填料与耐热聚合物粘合剂重量百分比优选 2% ~ 6%。
5、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的颜填料粒径小于 5微米。
6、 根据权利要求 1或 5所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的颜填料粒径优选小于 2微米。
7、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的防腐底层干膜厚度至少为 10微米。
8、 根据权利要求 1或 7所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的防腐底层干膜厚度优选 15微米。
9、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的防腐底层的組合物是水分散体。
10、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的防腐底层的組合物包括有机液体。
11、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的耐磨中间层的无机填料颗粒的努普硬度至少为 1000。
12、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所迷的无机填料颗粒选自氮化物、 碳化物、 硼化物、 氧化物、 金属颗粒或金刚石。
13、 根据权利要求 1或 12所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的无机填料颗粒优选碳化硅、 金刚石或氧 化铝。
14、 根据权利要求 1或 12所述的具有耐磨性和防腐性的不粘 涂层,其特征在于所述的无机填料颗粒粒径小于 50微米。
15、 根据权利要求 1或 12所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的无机填料颗粒粒径小于 40微米。
16、 根据权利要求 1或 12所述的具有耐磨性和防腐性的不粘 涂层,其特征在于所述的无机填料颗粒粒径为 米到 35微米之 间, 优选 5 ~ 3( 款米。
17、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的无机填料颗粒重量占中间耐磨层组合物重量百 分比为 3% ~ 15%。
18、 根据权利要求 1或 17所述的具有耐磨性和防腐性的不粘 涂层, 其特征在于所述的无机填料颗粒重量占中间耐磨层组合物 重量百分比优选 5%~ 10%。
19、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的氟聚合物为聚四氟乙烯(PTFE) 。
20、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的不粘涂层干膜厚度大于 40微米。
21、 根据权利要求 1或 20所述的具有耐磨性和防腐性的不粘 涂层,其特征在于所述的不粘涂层干膜厚度优选 40~ 55微米。
22、 根据权利要求 1所述的具有耐磨性和防腐性的不粘涂层, 其特征在于所述的耐磨中间层和不粘罩面层干膜厚度之和与最大 的无机填料颗粒粒径之比为 0.85 ~ 1.65。
23、 一种具有耐磨性和防腐性的不粘涂层的涂覆方法, 其特 征在于包括以下步驟:
( 1 ) 、 对基材表面进行包括清洁处理和糙化处理;
( 2 ) 、 在基材表面涂覆防腐底涂层组合物, 然后将底涂层在 基材温
度 120°C ± 10°C的温度下干燥 10分钟;
( 3) 、 底涂层经人工或自然冷却至室温后, 再在底涂层之上 涂敷耐磨中间涂层组合物;
( 4) 、 在耐磨中间涂层未完全干燥之前, 将罩面涂层组合物 以湿碰湿方式涂敷在中间涂层上;
( 5 ) 、 涂敷完成后, 对基材表面所形成的复合涂层在 380 ~ 400°C的温度下烘烤 5~ 10 分钟以使所有涂层同时熔结形成在基 材上。
24、 根据权利要求 23所述的具有耐磨性和防腐性的不粘涂层 的涂覆方法, 其特征在于所述的涂覆方法为喷涂, 所述的糙化处 理方式为酸蚀、 喷砂、 磨砂, 所述的基材为金属或陶瓷。
PCT/CN2009/001239 2008-11-24 2009-11-09 具有耐磨性和防腐性的不粘涂层及其涂覆方法 WO2010057360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09827109.1A EP2407306B1 (en) 2008-11-24 2009-11-09 Non-stick coating and coating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810162349XA CN101462390B (zh) 2008-11-24 2008-11-24 具有耐磨性和防腐性的不粘涂层及其涂覆方法
CN200810162349.X 2008-11-24

Publications (1)

Publication Number Publication Date
WO2010057360A1 true WO2010057360A1 (zh) 2010-05-27

Family

ID=40803281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001239 WO2010057360A1 (zh) 2008-11-24 2009-11-09 具有耐磨性和防腐性的不粘涂层及其涂覆方法

Country Status (3)

Country Link
EP (1) EP2407306B1 (zh)
CN (1) CN101462390B (zh)
WO (1) WO2010057360A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052718B2 (en) 2011-02-10 2018-08-21 Honda Motor Co., Ltd. Cylindrical workpiece cutting apparatus
CN113214718A (zh) * 2021-03-25 2021-08-06 宁波贝得厨具有限公司 一种耐磨涂层及其制备方法和应用
CN116769365A (zh) * 2023-06-02 2023-09-19 苏州市惠昌锯业有限公司 一种耐磨涂层

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462390B (zh) * 2008-11-24 2010-09-29 金华鹏孚隆科技有限公司 具有耐磨性和防腐性的不粘涂层及其涂覆方法
FR2954074B1 (fr) * 2009-12-23 2011-12-16 Seb Sa Article culinaire comprenant un revetement externe antiadhesif, comportant un decor au niveau du fond externe
CN101913273A (zh) * 2010-02-23 2010-12-15 宁夏万隆新材料有限公司 耐磨、抗污纳米膜彩色不锈钢及其制造方法
US20120239068A1 (en) * 2010-12-10 2012-09-20 Morris James R Surgical instrument
CN102139263B (zh) * 2011-01-19 2013-07-03 金发科技股份有限公司 一种聚醚醚酮导热绝缘涂料的使用方法
CN103131228B (zh) * 2011-12-02 2015-10-28 中联重科股份有限公司 涂装用清漆组合物及采用其的涂装方法
FR2989379B1 (fr) * 2012-04-11 2015-03-27 Seb Sa Compositions de primaires de revetements antiadhesifs et leur procede de preparation
CN103205142B (zh) * 2013-01-15 2015-05-27 浙江鹏孚隆科技有限公司 一种有机改性陶瓷不粘涂层及其涂覆方法
CN103465574B (zh) * 2013-07-01 2015-08-26 浙江鹏孚隆化工有限公司 一种耐刮不粘涂层及其涂覆方法
US20150003996A1 (en) * 2013-07-01 2015-01-01 General Electric Company Fluorinated polymer based coatings and methods for applying the same
CN103666189B (zh) * 2013-12-06 2016-03-02 中国科学院重庆绿色智能技术研究院 一种耐冲击耐高温烧蚀自润滑耐磨涂料及其制备方法
CN104059522A (zh) * 2014-06-27 2014-09-24 袁卫林 滑动部件用耐磨涂料
DE102014215772A1 (de) * 2014-08-08 2016-02-11 Leibniz-Institut Für Polymerforschung Dresden E.V. VERSCHLEIßMATERIAL FÜR WELLE-NABE-BEREICHE UND VERFAHREN ZU SEINER AUFBRINGUNG
CN105482685A (zh) * 2014-10-08 2016-04-13 曾志玲 防粘连涂料以及涂有该涂料的制品
CN104816516B (zh) * 2014-10-24 2017-12-01 中申(上海)管道工程股份有限公司 运用烧结法粘接改性复合聚四氟乙烯与钢板的工艺及应用
CN105686675B (zh) * 2014-11-25 2019-04-02 佛山市顺德区美的电热电器制造有限公司 用于烹饪器具的内锅
CN105686676B (zh) * 2014-11-25 2020-04-03 佛山市顺德区美的电热电器制造有限公司 用于烹饪器具的内锅
CN104650668B (zh) * 2015-01-16 2017-03-22 安徽三联泵业股份有限公司 一种化工离心泵内壁用防腐蚀涂料及其制备方法
CN105470445B (zh) * 2015-03-27 2018-03-23 万向一二三股份公司 一种改善锂离子电池极片浸润性能的方法
CN105034481B (zh) * 2015-07-07 2017-05-03 苏州扬子江新型材料股份有限公司 耐磨耐高温有机涂层钢板
CN105111926B (zh) * 2015-08-18 2018-05-08 宁波格莱美厨具有限公司 一种耐磨防霉不粘锅涂层
CN105331243A (zh) * 2015-10-27 2016-02-17 江苏友成高分子材料科技有限公司 一种水性磺化聚醚醚酮涂料及其制备方法及成膜工艺
CN105559519A (zh) * 2015-12-07 2016-05-11 浙江炊大王炊具有限公司 一种不粘炒锅及其生产工艺
AU2017222636B2 (en) * 2016-02-25 2019-07-11 Stanley Kin Sui Cheng Article with reinforced nonstick food preparation surface
CN106073516B (zh) * 2016-05-06 2019-01-22 美的集团股份有限公司 用于炊具的不粘涂层及含有其的炊具
CN106280975A (zh) * 2016-08-25 2017-01-04 无锡卡秀堡辉涂料有限公司 一种仿抛丸效果的高硬度不粘涂层及其制备方法
ES2903245T3 (es) 2017-02-07 2022-03-31 Chemours Co Fc Llc Sustrato revestido con revestimiento no adherente, resistente a la abrasión y al rayado
JP6811649B2 (ja) * 2017-03-07 2021-01-13 ダイキン工業株式会社 組成物及び塗膜
CN108968721B (zh) * 2017-06-01 2024-04-09 佛山市顺德区美的电热电器制造有限公司 豆浆机机头组件和豆浆机
CN109054532A (zh) * 2018-06-27 2018-12-21 广东富多新材料股份有限公司 一种陶瓷溶胶改性聚醚醚酮涂料及其制备方法
WO2020042738A1 (zh) * 2018-08-27 2020-03-05 佛山市顺德区美的电热电器制造有限公司 锅具及具有其的烹饪器具
CN109486411A (zh) * 2018-11-20 2019-03-19 宁波喜尔美厨房用品有限公司 一种耐磨耐刮不粘锅涂层
CN109439036A (zh) * 2018-11-20 2019-03-08 宁波喜尔美厨房用品有限公司 一种耐磨耐刮耐洗不粘锅涂层
CN109439037A (zh) * 2018-11-20 2019-03-08 宁波喜尔美厨房用品有限公司 一种耐磨耐刮耐洗不粘锅涂层制备方法
CN109575792A (zh) * 2018-12-12 2019-04-05 金华市青荷新材料技术有限公司 一种超强度不粘涂层及其施工方法
CN109820429B (zh) * 2019-01-25 2020-11-27 浙江乐太新材料有限公司 一种制备耐磨不粘锅涂层的方法
CN110079210A (zh) * 2019-05-15 2019-08-02 深圳市易珑科技有限公司 不粘涂层封闭材料及其制备方法和应用
CN112137421B (zh) * 2019-06-28 2024-03-15 武汉苏泊尔炊具有限公司 涂料与烹饪器具
CN112745758A (zh) * 2019-10-30 2021-05-04 浙江绍兴苏泊尔生活电器有限公司 复合涂料、复合涂料的应用、烹饪器具及其制作方法
CN113116157B (zh) * 2019-12-31 2022-05-13 佛山市顺德区美的电热电器制造有限公司 复合涂层、锅体及烹饪器具
CN111265117A (zh) * 2020-03-12 2020-06-12 卢世荣 一种带有热变色涂层的烹饪器具及其制作方法
CN114601341A (zh) * 2020-12-07 2022-06-10 佛山市顺德区美的电热电器制造有限公司 容器及具有其的烹饪器具
CN115121463A (zh) * 2022-06-01 2022-09-30 上海大学 一种具有长效不粘peek和ptfe复合涂层的制备方法及所制备的复合涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500014A (zh) 2001-04-02 2004-05-26 ��Ļ���Ű˾ 氟聚合物不粘涂层
WO2007070601A2 (en) * 2005-12-14 2007-06-21 E.I. Dupont De Nemours And Company Non-stick coating composition comprising diamond particles and substrate having the composition applied thereto
WO2007114941A2 (en) * 2006-04-04 2007-10-11 E. I. Du Pont De Nemours And Company Non-stick finish
CN101462390A (zh) * 2008-11-24 2009-06-24 金华鹏孚隆科技有限公司 具有耐磨性和防腐性的不粘涂层及其涂覆方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500014A (zh) 2001-04-02 2004-05-26 ��Ļ���Ű˾ 氟聚合物不粘涂层
WO2007070601A2 (en) * 2005-12-14 2007-06-21 E.I. Dupont De Nemours And Company Non-stick coating composition comprising diamond particles and substrate having the composition applied thereto
WO2007114941A2 (en) * 2006-04-04 2007-10-11 E. I. Du Pont De Nemours And Company Non-stick finish
CN101462390A (zh) * 2008-11-24 2009-06-24 金华鹏孚隆科技有限公司 具有耐磨性和防腐性的不粘涂层及其涂覆方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407306A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052718B2 (en) 2011-02-10 2018-08-21 Honda Motor Co., Ltd. Cylindrical workpiece cutting apparatus
CN113214718A (zh) * 2021-03-25 2021-08-06 宁波贝得厨具有限公司 一种耐磨涂层及其制备方法和应用
CN116769365A (zh) * 2023-06-02 2023-09-19 苏州市惠昌锯业有限公司 一种耐磨涂层

Also Published As

Publication number Publication date
EP2407306A4 (en) 2013-08-14
CN101462390B (zh) 2010-09-29
EP2407306B1 (en) 2015-09-30
EP2407306A1 (en) 2012-01-18
CN101462390A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2010057360A1 (zh) 具有耐磨性和防腐性的不粘涂层及其涂覆方法
JP4486182B2 (ja) 耐摩耗性被覆剤組成物を被覆された基板
CN101242912B (zh) 改善不粘涂层在基材上的耐腐蚀性的方法
US8642171B2 (en) Non-stick coating having improved abrasion resistance, hardness and corrosion on a substrate
ES2493665T3 (es) Artículo con acabado antiadherente y resistencia mejorada al rayado
CN101534966B (zh) 具有粘附性和耐污不粘涂层的玻璃制品
CN101415763B (zh) 不粘涂饰层
MXPA01009323A (es) Recubrimiento antiadherente con resistencia mejorada a las rayaduras.
JP5244088B2 (ja) 非付着性仕上げ塗り
JP2006297685A (ja) フッ素樹脂塗膜
JP2008501501A (ja) 耐摩耗性を向上した非粘着性塗膜物およびその非粘着性塗膜物にてコーティングされた調理器具
JPH05500327A (ja) 第一下塗りがポリシロキサンである2層薄下塗りを有する非粘着コーテイングシステム
EP0489036A1 (en) NON-STICKING COATING SYSTEM COMPRISING A THIN LAYER OF IMID POLYAMIDE, POLYARYLENE SULFIDE OR POLYETHER SULFONE.
ES2361535T3 (es) Recubrimientos con resistencia a la abrasión.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827109

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827109

Country of ref document: EP