WO2010054529A1 - 单周期控制的功率因数校正方法 - Google Patents
单周期控制的功率因数校正方法 Download PDFInfo
- Publication number
- WO2010054529A1 WO2010054529A1 PCT/CN2009/001026 CN2009001026W WO2010054529A1 WO 2010054529 A1 WO2010054529 A1 WO 2010054529A1 CN 2009001026 W CN2009001026 W CN 2009001026W WO 2010054529 A1 WO2010054529 A1 WO 2010054529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- duty
- switch
- value
- cycle
- sampling
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/70—Regulating power factor; Regulating reactive current or power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to the field of 3 ⁇ 4 source technologies, and more particularly to a single-cycle power factor correction method based on a boos t boost circuit. Background technique
- a Power Factor Correction (PFC) circuit In order to reduce the input harmonic current, a Power Factor Correction (PFC) circuit is required.
- PFC Power Factor Correction
- the conventional power factor correction circuit is complicated in technology, complicated in design steps, requires many components, is bulky, and has high cost. It often has to trade off between performance and cost.
- single-cycle PFC research has focused on how to simplify the traditional PFC control circuit structure, avoid sampling the input voltage and use complex analog multipliers.
- the single-cycle PFC circuit solves this problem well.
- a single-cycle PFC control chip has been successfully developed and applied, such as the single-cycle controlled continuous conduction mode PFC boost converter integrated circuit with power switch and boost converter disclosed in Chinese Patent No. 200380109048. .
- the single-cycle PFC control chip is simple and reliable, but its use cost is too high.
- a single-cycle power factor correction method based on boos t boost circuit and system main control chip, boos t boost circuit includes AC input terminal, rectifier circuit, inductor, fast recovery diode, capacitor, DC output terminal, inductor current sampling circuit And an output voltage sampling circuit, a switch tube driving circuit, and a switch tube; wherein the control method comprises the following steps: (1) to determine whether the soft start is over, if yes, go directly to step (2); otherwise increase the output voltage reference value U r and then proceed to step (1);
- the advantage of the present invention over the prior art is that: instead of using a conventional power factor correction circuit and a dedicated single-cycle PFC chip, the method software can be integrated into the main control chip (such as a DSP chip) of the existing system, and the simple cooperation is simple.
- the boos t boosting circuit can realize the power factor correction function, which effectively saves cost; in particular, the invention avoids sampling near the switching point by calculating the sampling triggering time, so that the sampling data is more real and effective, and thus the P-control The signal achieves the best results and ensures stable system operation.
- Figure 1 is a schematic diagram of a single-cycle PFC control system based on a boos t boost circuit
- Single-cycle power factor correction method of the present invention is provided in FIG. 3 as signal relates ⁇ i, u e, the waveform of the PWM control signal;
- Figure 4 is a flow chart showing the first mode of calculating the duty cycle of the P ⁇ control signal
- Figure 5 is a flow chart showing a second way of calculating the duty cycle of the PWM control signal
- FIG. 6 is a block diagram of the A/D sampling time calculation. detailed description
- the method provided by the present invention is based on a boost boost circuit and a system main control chip, wherein the boost boost circuit belongs to an existing circuit, and includes an AC input terminal, a rectifier circuit, an inductor, a boost diode, and a capacitor. , DC output, inductor current sampling circuit, bus voltage sampling circuit, drive circuit, switching transistor (IGBT or MOSFET).
- the dashed box portion is a control module integrated in the main control chip corresponding to the method provided by the present invention.
- / s follows the rectified input voltage waveform u s while maintaining the output voltage. Stable to a given value. Assuming that the control circuit has satisfied that the inductor current is proportional to the input voltage and the phase is consistent, the entire converter can be equivalent to a resistor.
- T w 2 (t) is implemented by the DSP counter. When (0 ⁇ (0, the switch is turned on, otherwise, the switch is turned off).
- step (2) (1) to determine whether the soft start is over, if yes, go directly to step (2); otherwise increase the output voltage reference value I (ie "voltage command slowly increases” in Figure 2), and then proceed to step (2);
- ⁇ u 2 , 1 ⁇ 2 is completed by the system main control chip such as DSP counter, where ⁇ is the equivalent current sense resistor, which is the output bus voltage reference value and the bus voltage sample value U. The difference is output by the PI regulator; the duty cycle of the PWM signal is obtained;
- curve 1 is 1 and the pulse generated after comparison, curve 2 is w spicy, (nr), curve 3 is 2 , curve 4 is, it can be seen that in one cycle, when ⁇ is less than w 2 When the P-plane outputs a high level, the output low level, and thus repeatedly generates a pulse, so that the inductor current follows the rectified input voltage waveform.
- Embodiment 1 provides two ways of calculating the duty ratio of the PWM control signal, and Equation 6 above is Embodiment 1.
- 4 is a flow chart of the duty cycle calculation of Embodiment 1, wherein /?r_i3 ⁇ 4 ⁇ is the turn-off duty ratio of the switch, and the size of the first calculation is judged "; whether it is greater than the maximum duty-off duty ratio of the switch 1 if If it is greater than 1, then r- is the maximum value of 1, then it is judged whether the pr-duty is less than the minimum value of the off-duty of the switch. If it is less than, the pr- duty is the minimum value of 0.05, otherwise; the value of ⁇ is ⁇ Figure 5 For the implementation of the second duty cycle calculation flow chart, where ?
- / is the on-duty of the switch, first calculate the size of ⁇ /, to determine whether it is less than the switch's conduction duty The ratio is 0, if it is less than 0, then ⁇ is the minimum value of 0, and then it is judged whether the - ⁇ / " ⁇ is greater than the maximum on-duty of the switch. 0. 95, if greater than, i / Wy is the maximum value of 0. 95, otherwise the value is ⁇ Since the single-cycle PFC control only performs one sampling in one switching cycle, it is necessary to pay attention to the determination of the sampling point when using this method. Since the inductor current has a current spike at the moment of switching operation of the switching tube, it needs to be avoided. Sampling near the switch point, otherwise it will cause instability of the system. The solution is to sample at the middle of the switch when the switch is turned on or off for a long time.
- Figure 6 is a block diagram of the A/D sampling trigger timing calculation, where For the switch off duty cycle, T3CMPR is the comparison value of a compare register, T 3PER is the period value of the compare register, and AD_ ty is the output of the general-purpose timer of the system master chip.
- T3CMPR is the comparison value of a compare register
- T 3PER is the period value of the compare register
- AD_ ty is the output of the general-purpose timer of the system master chip.
- the on-time of the switch is determined according to the duty ratio of the switch signal. If the turn-on time is long, sampling is performed at the middle of the turn-on time. If the turn-off time is long, sampling is performed in the middle of the turn-off time.
- the calculation in Fig. 6 is specifically to take the time in the middle, and may actually be selected in the middle for a period of time.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011535855A JP5543975B2 (ja) | 2008-11-11 | 2009-09-14 | ワンサイクルコントロールの力率要素補正方法 |
ES09825704.1T ES2686343T3 (es) | 2008-11-11 | 2009-09-14 | Método de corrección del factor de potencia controlado de un ciclo |
BRPI0921346-5A BRPI0921346B1 (pt) | 2008-11-11 | 2009-09-14 | Método de controle de um ciclo para correção de fator de potência |
NZ592969A NZ592969A (en) | 2008-11-11 | 2009-09-14 | One-cycle controlled power factor correction method |
EP09825704.1A EP2355320B1 (en) | 2008-11-11 | 2009-09-14 | One-cycle controlled power factor correction method |
US13/128,610 US8335095B2 (en) | 2008-11-11 | 2009-09-14 | One cycle control method for power factor correction |
KR1020117013136A KR101294898B1 (ko) | 2008-11-11 | 2009-09-14 | 역률 보정을 위한 1 사이클 제어 방법 |
RU2011122684/07A RU2475806C1 (ru) | 2008-11-11 | 2009-09-14 | Способ одноциклического управления коррекцией коэффициента мощности |
AU2009316166A AU2009316166B2 (en) | 2008-11-11 | 2009-09-14 | One-cycle controlled power factor correction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810219009.6 | 2008-11-11 | ||
CN2008102190096A CN101404446B (zh) | 2008-11-11 | 2008-11-11 | 单周期功率因数校正方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010054529A1 true WO2010054529A1 (zh) | 2010-05-20 |
Family
ID=40538346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/001026 WO2010054529A1 (zh) | 2008-11-11 | 2009-09-14 | 单周期控制的功率因数校正方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US8335095B2 (zh) |
EP (1) | EP2355320B1 (zh) |
JP (1) | JP5543975B2 (zh) |
KR (1) | KR101294898B1 (zh) |
CN (1) | CN101404446B (zh) |
AU (1) | AU2009316166B2 (zh) |
BR (1) | BRPI0921346B1 (zh) |
ES (1) | ES2686343T3 (zh) |
NZ (1) | NZ592969A (zh) |
RU (1) | RU2475806C1 (zh) |
WO (1) | WO2010054529A1 (zh) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101404446B (zh) | 2008-11-11 | 2011-02-16 | 珠海格力电器股份有限公司 | 单周期功率因数校正方法 |
CN101888173A (zh) * | 2010-07-09 | 2010-11-17 | 矽创电子股份有限公司 | 功率因子修正电路 |
CN102651606A (zh) * | 2011-02-24 | 2012-08-29 | 珠海格力电器股份有限公司 | 单周期功率因数校正电路 |
JP2013165598A (ja) * | 2012-02-13 | 2013-08-22 | Panasonic Corp | 電源装置および、これを用いた照明装置,照明器具 |
CN103595239B (zh) * | 2012-08-15 | 2015-12-16 | 珠海格力电器股份有限公司 | 功率因数校正电路及其控制方法 |
CN103280964B (zh) * | 2013-05-27 | 2015-10-28 | 奇瑞汽车股份有限公司 | 一种功率因数校正电路 |
CN104113199B (zh) * | 2013-06-03 | 2018-03-16 | 广东美的制冷设备有限公司 | 一种有源pfc电路及其控制方法 |
CN103929179B (zh) * | 2014-04-11 | 2017-07-04 | 西北工业大学 | 一种飞机电刹车系统采样抗干扰方法 |
CN106471726B (zh) * | 2014-10-01 | 2018-11-02 | 三菱电机株式会社 | 除湿机 |
CN104319987B (zh) * | 2014-10-24 | 2017-10-17 | 海林火地电气科技有限公司 | 基于单片机的led路灯电源功率因数校正装置及方法 |
CN104660028B (zh) * | 2015-01-22 | 2017-09-29 | 矽力杰半导体技术(杭州)有限公司 | 一种功率因数校正电路 |
CN104779786A (zh) * | 2015-03-20 | 2015-07-15 | 四川长虹电器股份有限公司 | 变频空调pfc直流检测控制方法 |
CN104953813B (zh) * | 2015-06-26 | 2018-03-13 | 广东美的制冷设备有限公司 | 防止功率因数校正pfc电路的输出电压过压的方法和装置 |
CN105186854B (zh) * | 2015-10-09 | 2019-05-14 | 安徽师范大学 | 基于dsp的数字化pfc采集控制系统及方法 |
CN105675971A (zh) * | 2016-02-23 | 2016-06-15 | 无锡中誉东莲电气技术有限公司 | 一种变频器电流采样方法 |
US10656026B2 (en) | 2016-04-15 | 2020-05-19 | Emerson Climate Technologies, Inc. | Temperature sensing circuit for transmitting data across isolation barrier |
US10277115B2 (en) | 2016-04-15 | 2019-04-30 | Emerson Climate Technologies, Inc. | Filtering systems and methods for voltage control |
US10284132B2 (en) | 2016-04-15 | 2019-05-07 | Emerson Climate Technologies, Inc. | Driver for high-frequency switching voltage converters |
US10763740B2 (en) | 2016-04-15 | 2020-09-01 | Emerson Climate Technologies, Inc. | Switch off time control systems and methods |
US10312798B2 (en) | 2016-04-15 | 2019-06-04 | Emerson Electric Co. | Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters |
US10305373B2 (en) | 2016-04-15 | 2019-05-28 | Emerson Climate Technologies, Inc. | Input reference signal generation systems and methods |
US9933842B2 (en) | 2016-04-15 | 2018-04-03 | Emerson Climate Technologies, Inc. | Microcontroller architecture for power factor correction converter |
CN106059281A (zh) * | 2016-07-01 | 2016-10-26 | 安徽亮亮电子科技有限公司 | 一种用于大功率led的功率因数矫正电路 |
CN106292820B (zh) * | 2016-08-05 | 2017-09-08 | 广州金升阳科技有限公司 | 一种纹波电流产生电路 |
CN108521214A (zh) * | 2018-04-13 | 2018-09-11 | 南京理工大学 | 一种升压型功率因数校正变换器及其校正变换方法 |
CN108429449A (zh) * | 2018-05-04 | 2018-08-21 | 马少峰 | 一种恒流输出的Boost功率因数校正器 |
CN108649787A (zh) * | 2018-06-14 | 2018-10-12 | 广东美的制冷设备有限公司 | 驱动电路、功率因数校正控制器及驱动方法 |
CN109113979B (zh) * | 2018-07-23 | 2021-06-01 | 珠海格力电器股份有限公司 | 压缩机控制方法、控制装置及控制系统 |
CN108923638B (zh) * | 2018-09-11 | 2023-10-27 | 西南交通大学 | 一种连续模式boost功率因数校正变换器的控制方法和装置 |
CN111245216B (zh) * | 2018-11-29 | 2021-09-03 | 比亚迪股份有限公司 | Pfc电路的校正方法、装置、电子设备 |
CN111256281B (zh) * | 2018-11-30 | 2021-10-22 | 广东美的制冷设备有限公司 | 运行控制方法及系统、压缩机和空调器 |
CN110244625A (zh) * | 2019-06-21 | 2019-09-17 | 一汽解放汽车有限公司 | 一种基于电子控制单元的信号测量方法 |
CN110336457B (zh) * | 2019-07-26 | 2020-08-21 | 南京桐润新能源有限公司 | 一种数字式车载电源输出软起动方法 |
CN110649801B (zh) * | 2019-08-13 | 2021-11-26 | 深圳市航嘉聚源科技股份有限公司 | 一种对母线电压的采样方法及pfc控制电路、电源转换电路 |
CN113890372B (zh) * | 2021-09-29 | 2023-07-14 | 苏州安步新能源科技有限公司 | 一种用于光伏发电的最大功率点跟踪控制方法和系统 |
CN113890398B (zh) * | 2021-10-11 | 2023-07-21 | 四川大学 | 一种考虑频率动态特性的pr控制与pi控制等效方法 |
CN114384962B (zh) * | 2022-01-21 | 2023-06-30 | 长沙锐逸微电子有限公司 | 一种恒功率输出算法和控制芯片 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278490A (en) * | 1990-09-04 | 1994-01-11 | California Institute Of Technology | One-cycle controlled switching circuit |
CN101404446A (zh) * | 2008-11-11 | 2009-04-08 | 珠海格力电器股份有限公司 | 单周期功率因数校正方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2051467C1 (ru) * | 1992-01-27 | 1995-12-27 | Сергей Данилович Рудык | Регулируемый преобразователь переменного напряжения в постоянное с синусоидальным потребляемым током |
CN1055804C (zh) * | 1998-04-27 | 2000-08-23 | 深圳市华为电气股份有限公司 | 一种软开关拓扑电路 |
US5986901A (en) * | 1998-07-09 | 1999-11-16 | Matsushita Electric Works R&D Laboratory, Inc. | Power factor correction circuit for a power supply |
US6307361B1 (en) * | 2001-04-25 | 2001-10-23 | Green Power Technologies Ltd. | Method and apparatus for regulating the input impedance of PWM converters |
DE10134976A1 (de) * | 2001-07-24 | 2003-02-06 | Philips Corp Intellectual Pty | Verbesserter Netzteileingangsschaltkreis hinsichtlich Netzstörungen |
US6728121B2 (en) * | 2002-05-31 | 2004-04-27 | Green Power Technologies Ltd. | Method and apparatus for active power factor correction with minimum input current distortion |
US6657417B1 (en) * | 2002-05-31 | 2003-12-02 | Champion Microelectronic Corp. | Power factor correction with carrier control and input voltage sensing |
US7068016B2 (en) * | 2002-11-01 | 2006-06-27 | International Rectifier Corporation | One cycle control PFC boost converter integrated circuit with inrush current limiting, fan motor speed control and housekeeping power supply controller |
US6781352B2 (en) * | 2002-12-16 | 2004-08-24 | International Rectifer Corporation | One cycle control continuous conduction mode PFC boost converter integrated circuit with integrated power switch and boost converter |
US7164591B2 (en) * | 2003-10-01 | 2007-01-16 | International Rectifier Corporation | Bridge-less boost (BLB) power factor correction topology controlled with one cycle control |
US7102341B1 (en) * | 2005-03-30 | 2006-09-05 | Texas Instruments Incorporated | Apparatus for controlling a power factor correction converter device |
WO2008054653A2 (en) * | 2006-10-20 | 2008-05-08 | International Rectifier Corporation | One cycle control pfc circuit with dynamic gain modulation |
US8619442B2 (en) * | 2007-04-06 | 2013-12-31 | Robert S. Wrathall | Boost-buck power factor correction |
US7719862B2 (en) * | 2007-04-06 | 2010-05-18 | Wrathall Robert S | Power factor correction by measurement and removal of overtones |
US7906941B2 (en) * | 2007-06-19 | 2011-03-15 | Flextronics International Usa, Inc. | System and method for estimating input power for a power processing circuit |
US7643317B2 (en) * | 2007-12-26 | 2010-01-05 | Hitachi, Ltd. | Power converting device and method for controlling the same |
US8008898B2 (en) * | 2008-01-30 | 2011-08-30 | Cirrus Logic, Inc. | Switching regulator with boosted auxiliary winding supply |
US7929323B2 (en) * | 2008-09-26 | 2011-04-19 | Rockwell Automation Technologies, Inc. | Method and apparatus for pre-charging power converters and diagnosing pre-charge faults |
US8525495B2 (en) * | 2009-06-03 | 2013-09-03 | Lincoln Global, Inc. | Input current generator for buck-boost circuit control |
JP2011029002A (ja) * | 2009-07-24 | 2011-02-10 | Panasonic Electric Works Co Ltd | 高圧放電灯点灯装置及びこれを用いた照明器具、照明システム |
-
2008
- 2008-11-11 CN CN2008102190096A patent/CN101404446B/zh active Active
-
2009
- 2009-09-14 US US13/128,610 patent/US8335095B2/en active Active
- 2009-09-14 ES ES09825704.1T patent/ES2686343T3/es active Active
- 2009-09-14 WO PCT/CN2009/001026 patent/WO2010054529A1/zh active Application Filing
- 2009-09-14 KR KR1020117013136A patent/KR101294898B1/ko active IP Right Grant
- 2009-09-14 AU AU2009316166A patent/AU2009316166B2/en active Active
- 2009-09-14 EP EP09825704.1A patent/EP2355320B1/en active Active
- 2009-09-14 RU RU2011122684/07A patent/RU2475806C1/ru active
- 2009-09-14 JP JP2011535855A patent/JP5543975B2/ja active Active
- 2009-09-14 BR BRPI0921346-5A patent/BRPI0921346B1/pt active IP Right Grant
- 2009-09-14 NZ NZ592969A patent/NZ592969A/xx unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278490A (en) * | 1990-09-04 | 1994-01-11 | California Institute Of Technology | One-cycle controlled switching circuit |
CN101404446A (zh) * | 2008-11-11 | 2009-04-08 | 珠海格力电器股份有限公司 | 单周期功率因数校正方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP2355320A4 |
WANG, KUANG ET AL: "The Research on Power Factor Correction Based on ''One-cycle Control''", TELECOM POWER TECHNOLOGIES, vol. 25, no. 3, 25 May 2008 (2008-05-25), pages 17 - 18, XP008143931 * |
Also Published As
Publication number | Publication date |
---|---|
US20110216565A1 (en) | 2011-09-08 |
NZ592969A (en) | 2013-11-29 |
AU2009316166A1 (en) | 2010-05-20 |
RU2475806C1 (ru) | 2013-02-20 |
EP2355320A4 (en) | 2015-05-27 |
US8335095B2 (en) | 2012-12-18 |
JP2012508558A (ja) | 2012-04-05 |
ES2686343T3 (es) | 2018-10-17 |
AU2009316166B2 (en) | 2014-02-06 |
EP2355320A1 (en) | 2011-08-10 |
CN101404446B (zh) | 2011-02-16 |
KR101294898B1 (ko) | 2013-08-08 |
JP5543975B2 (ja) | 2014-07-09 |
BRPI0921346A2 (pt) | 2015-12-29 |
BRPI0921346B1 (pt) | 2019-07-09 |
EP2355320B1 (en) | 2018-06-27 |
RU2011122684A (ru) | 2012-12-20 |
KR20110082084A (ko) | 2011-07-15 |
CN101404446A (zh) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010054529A1 (zh) | 单周期控制的功率因数校正方法 | |
JP5141774B2 (ja) | Pfcコンバータ | |
US8026704B2 (en) | System and method for controlling a converter | |
JP6089677B2 (ja) | 電源装置 | |
US10199938B2 (en) | Switching power source device, semiconductor device, and AC/DC converter including a switching control | |
JP2019134674A (ja) | ゼロ電圧スイッチングのための装置および方法 | |
TW201206043A (en) | Voltage converters | |
EP3098955B1 (en) | Step-up device and converter device | |
CN113595398A (zh) | 控制装置及控制方法 | |
JP2007288892A (ja) | デジタルコンバータ及びその制御方法 | |
CN215734041U (zh) | Zvs型反激开关电源及其控制芯片 | |
JP2002359977A (ja) | スイッチング電源装置 | |
WO2007086287A1 (ja) | 電源装置 | |
JP2004069630A (ja) | 電磁流量計の励磁回路 | |
JP2000116134A (ja) | 電源装置 | |
JP5326641B2 (ja) | モータ駆動装置 | |
CN118694163A (zh) | Pfc电路的控制方法、装置、存储介质和产品 | |
Ulrich | Improved Clamp-Switch Boost Converter with Extended ZVS range | |
JP6932294B1 (ja) | 電力変換装置 | |
Patil et al. | Push pull boost converter with low loss switching | |
CN118763890A (zh) | Pfc电路的控制方法、装置、存储介质和产品 | |
JP2001178139A (ja) | 単相入力整流装置 | |
CN113904551A (zh) | 一种极性变换器的控制方法、装置、设备及可读存储介质 | |
JP2001028877A (ja) | スイッチング電源 | |
JP5569406B2 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09825704 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13128610 Country of ref document: US Ref document number: 12011500897 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011535855 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009825704 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009316166 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 592969 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 20117013136 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2009316166 Country of ref document: AU Date of ref document: 20090914 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2406/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011122684 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0921346 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110510 |