WO2010051277A1 - Process for the production of alpha-tocotrienol and derivatives - Google Patents

Process for the production of alpha-tocotrienol and derivatives Download PDF

Info

Publication number
WO2010051277A1
WO2010051277A1 PCT/US2009/062212 US2009062212W WO2010051277A1 WO 2010051277 A1 WO2010051277 A1 WO 2010051277A1 US 2009062212 W US2009062212 W US 2009062212W WO 2010051277 A1 WO2010051277 A1 WO 2010051277A1
Authority
WO
WIPO (PCT)
Prior art keywords
alpha
tocotrienol
less
tocols
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2009/062212
Other languages
English (en)
French (fr)
Other versions
WO2010051277A8 (en
Inventor
Kieron E. Wesson
Andrew W. Hinman
Orino D. Jankowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edison Phamaceuticals Inc
Original Assignee
Edison Phamaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edison Phamaceuticals Inc filed Critical Edison Phamaceuticals Inc
Priority to BRPI0920414-8A priority Critical patent/BRPI0920414B1/pt
Priority to PL09824070T priority patent/PL2362875T3/pl
Priority to PL15175938T priority patent/PL2963006T3/pl
Priority to DK09824070.8T priority patent/DK2362875T3/en
Priority to CN200980152635.0A priority patent/CN102264730B/zh
Priority to EA201100699A priority patent/EA026417B1/ru
Priority to ES09824070.8T priority patent/ES2553557T3/es
Priority to EP09824070.8A priority patent/EP2362875B1/en
Priority to EP15175938.8A priority patent/EP2963006B1/en
Priority to CA2741767A priority patent/CA2741767C/en
Priority to MX2011004440A priority patent/MX2011004440A/es
Priority to EP18200523.1A priority patent/EP3450431B1/en
Priority to JP2011534678A priority patent/JP5775459B2/ja
Publication of WO2010051277A1 publication Critical patent/WO2010051277A1/en
Publication of WO2010051277A8 publication Critical patent/WO2010051277A8/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/70Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
    • C07D311/723,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring

Definitions

  • This invention relates generally to a process for production, enrichment and/or isolation of pure alpha-tocotrienol from natural extracts that comprise mixed tocols.
  • the invention relates to a novel and effective process for production, enrichment and/or isolation of alpha-tocotrienol of high purity from plant extracts, e.g. palm oil extract such as Tocomin ® , that is economically feasible on a commercial scale.
  • the invention also relates to a process for the synthesis of alpha-tocotrienol quinone of high purity.
  • the invention also relates to the alpha-tocotrienol-containing product produced by the process.
  • the present invention provides a process for the production, enrichment and/or isolation of pure alpha-tocotrienol enriched tocotrienol compositions from naturally occurring extracts, and to the alpha-tocotrienol-containing product produced by the process.
  • This process can be performed without chromatography, or with minimal use of chromatography, and is economically feasible on a commercial scale.
  • Tocopherols and tocotrienols are molecules characterized by a 6-chromanol ring structure and a side chain at the C-2-position. Tocotrienols possess a 4', 8', 12' trimethyltridecyl unsaturated phytol side chain with the presence of double bonds at 3',7', and 11' positions of the side chain, while tocopherols have a saturated side chain. The geometry of each of these double bond sites is trans (also referred to as E) in all four natural tocotrienols. There are four naturally occurring tocotrienols, d-alpha-, d-beta-, d-gamma-, and d-delta-tocotrienol. The four naturally occurring tocotrienols have the (R) absolute configuration at the C-2 chroman ring position.
  • Tocotrienols are present in the oils, seeds, and other parts of many plants used as foods (see pp. 99-165 in L. Machlin, ed., "Vitamin E: A Comprehensive Treatise” for a discussion of the occurrence of tocotrienols in foods).
  • Tocotrienol-containing concentrates can be prepared from certain plant oils and plant oil by-products such as rice bran oil or palm oil distillate. For examples of such isolation processes, see for instance A. G. Top et ah, U.S. Pat. No. 5,190,618 (1993) or Tanaka, Y. et al, Japanese Patent No. JP2003-171376 (2003).
  • Tocotrienols occur largely in palm oil, rice bran oil, and barley. While synthetic and natural tocopherols are readily available in the market, the supply of natural tocotrienols is limited, and generally comprises a mixture of tocotrienols. Crude palm oil which is rich in tocotrienols (800-1500 ppm) offers a potential source of natural tocotrienols.
  • Carotech located in Malaysia, is an industrial plant able to extract and concentrate tocotrienols from crude palm oil. Carotech uses a molecular distillation process (employing ultra-high vacuum and very low temperature) in its production plant. This process (see U.S. Pat. No.
  • Tocomin®-50 typically comprises about 25.32% mixed tocotrienols (7.00% alpha-tocotrienol, 14.42% gamma tocotrienol, 3.30% delta tocotrienol and 0.6% beta tocotrienol ), 6.90% alpha-tocopherol and other phytonutrients such as plant squalene, phytosterols, co-enzyme QlO and mixed carotenoids.
  • Additional commercially available products that may be used in the present invention are for example, Nu Triene Tocotrienol ® (30% content, a product of Eastman Chemical Company), various Oryza ® tocotrienol products of different tocotrienol concentrations from Oryza Oil & Fat Co.
  • Delta Tocotrienol- 92 ® (92% pure by HPLC) is a commercially available product from Beijing Gingko Group that may be also used in the present invention.
  • Methods for isolation or enrichment of tocotrienol from certain plant oils and plant oil by-products have been described in the literature, but these methods generally produce mixtures of natural tocols in varying amounts and are not economically feasible on a commercial scale.
  • it has been necessary to resort to expensive procedures such as preparative scale reversed-phase chromatography or simulated moving bed chromatography.
  • this invention relates to a novel process for the production, enrichment, and/or isolation of alpha-tocotrienol from source material comprising at least one tocotrienol which is not alpha-tocotrienol.
  • the at least one tocotrienol which is not alpha-tocotrienol comprises beta- tocotrienol, gamma-tocotrienol, or delta-tocotrienol; or any two of beta-tocotrienol, gamma- tocotrienol, or delta-tocotrienol; or all three of beta-tocotrienol, gamma-tocotrienol, and delta-tocotrienol.
  • the source material can optionally also comprise alpha tocopherol.
  • this invention relates to a novel process for the production, enrichment and/or isolation of pure alpha-tocotrienol from plant extracts comprising naturally occurring mixed tocotrienols.
  • this invention relates to a novel process for the production, enrichment and/or isolation of pure alpha-tocotrienol from plant extracts enriched in naturally occurring mixed tocotrienols.
  • the invention does not need the use of chromatography, and is amenable to large commercial production of alpha-tocotrienol.
  • the invention needs minimal use of chromatography and is amenable to large commercial production of alpha-tocotrienol
  • the invention relates to a novel process for the production, enrichment and/or isolation of pure alpha-tocotrienol from naturally occurring extracts comprising a mixture of tocotrienols and alpha tocopherol.
  • the naturally occurring extract is a palm oil extract, a palm fruit extract, or a palm oil/palm fruit extract.
  • the naturally occurring extract is a palm oil extract, a palm fruit extract, or a palm oil/palm fruit extract which has been concentrated.
  • the naturally occurring extract is a palm oil extract, a palm fruit extract, or a palm oil/palm fruit extract from Elaeis guineensis.
  • the naturally occurring extract is a palm oil extract, a palm fruit extract, or a palm oil/palm fruit extract from Elaeis guineensis which has been concentrated.
  • the naturally occurring extract is the commercial palm oil concentrate Tocomin®, a product of Carotech Bhd.
  • the naturally occurring extract is an extract of palm oil, rice bran oil, barley or annatto, or any combination of two or more of the foregoing oils.
  • the formulation of the present invention comprises an enriched tocotrienol extract from palm oil, as sold by Carotech, Golden Hope Bioorganic, Davos Life Science, Beijing Gingko Group, Eisai, Eastman Corporation, Sime Darby Biorganic Sdn Bhd or Palm Nutraceuticals.
  • Another embodiment of the invention comprises the production, enrichment and/or isolation of natural d-alpha-tocotrienol from a material comprising at least one compound selected from:
  • One embodiment of the invention comprises the production, enrichment and/or isolation of natural d-alpha-tocotrienol from natural plant sources that comprise at least one non-alpha tocotrienol, and optionally additional tocotrienols, and that optionally also include alpha tocopherol and optionally other tocols and optionally non-tocol phytonutrients or impurities, comprising the steps of:
  • step (Ic.) optionally further separating the alpha-tocotrienol in the mixture separated in step (Ib), from the optional alpha tocopherol and other non-tocol compounds;
  • step (Id.) chemically reacting the one or more non-alpha-tocol functionalized homologues from step (Ib) to give alpha-tocotrienol;
  • step Ie.) optionally combining the alpha-tocotrienol from step (Ic) with the newly produced alpha-tocotrienol from step (Id) to give alpha-tocotrienol of high purity.
  • step Ib) is followed by an optional step IbI) of filtering a solution of the one or more non-alpha-tocols homologues that have been functionalized. Filtration can be performed using diatomaceous earth such as Celite® or any other method of filtration known to the skilled artisan.
  • step Id) is followed by an optional step IdI), wherein a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel. The silica gel is removed by filtration, and the remaining filtrate is concentrated to give alpha-tocotrienol of high purity.
  • steps IbI) and IdI) are performed.
  • the plant extract is a palm oil plant extract.
  • the plant extract is a palm fruit plant extract.
  • the plant extract is a rice extract.
  • the plant extract is a rice bran oil extract.
  • the plant extract is a barley extract.
  • the plant extract is an annatto extract.
  • the plant extract is a mixture of two or more of the foregoing plant extracts.
  • introduction of a functional group in the free 5 and/or 7 positions of the non-alpha tocol homologues comprises introduction of a group which provides for increased differential solubility of the functionalized non-alpha tocol homologues compared to non-functionalized compounds in the starting material, source material, or extract.
  • the increased differential solubility can be differential solubility in a single solvent, or increased differential solubility between two or more solvents in a mixed solvent system.
  • the introduction of a functional group in the free 5 and/or 7 positions of the non-alpha tocol homologues is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the step of chemically reacting the non-alpha tocol functionalized homologues to produce alpha-tocotrienol is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the functionalization is introduced by amino-alkylation followed by acidification, thus converting the non-alpha-tocotrienol into the corresponding amino-alkylated product and converting said products to acid salts.
  • the functionalization is introduced by amino-alkylation with a formaldehyde equivalent, such as paraformaldehyde, and an amine, such as a secondary amine, such as a cyclic amine such as 1-methylpiperazine, piperidine or morpholine.
  • the functionalization is introduced by amino-alkylation with paraformaldehyde and 1- methylpiperazine.
  • the functionalization is introduced by amino- alkylation with paraformaldehyde and morpholine.
  • the separation of the amino-alkylation products from the alpha-tocotrienol, the optional alpha tocopherol and other non-tocol compounds that may be present is done by partitioning between two organic layers. In one embodiment, the separation of the amino-alkylation products from the alpha-tocotrienol, the optional alpha tocopherol and other non-tocol compounds that may be present is done by partitioning between an organic layer and an aqueous layer. In one embodiment, the separation of the amino-alkylation products from the alpha-tocotrienol, the optional alpha tocopherol and other non-tocol compounds that may be present is done by partitioning using an acidic organic layer such as acetonitrile comprising formic acid.
  • an acidic organic layer such as acetonitrile comprising formic acid.
  • the non-alpha-tocotrienol functionalized homologues are reduced with a hydride reagent such as sodium cyano borohydride (NaCNBH 3 ).
  • the non-alpha-tocotrienol functionalized homologues are reduced with a hydride reagent such as sodium borohydride.
  • the non-alpha- tocotrienol functionalized homologues are reduced with lithium borohydride, zinc borohydride, or tetraalkylammonium hydride.
  • the non-alpha- tocotrienol functionalized homologues are reduced with a hydride reagent such as lithium aluminum hydride.
  • the non-alpha-tocotrienol functionalized homologues are reduced with a borane, diborane, or a borane complex, such as borane-t-butyl amine complex.
  • the non-alpha-tocotrienol functionalized homologues are reduced electrochemically or with an electron donor such as sodium, lithium, magnesium, potassium, zinc, nickel, or amalgams thereof, in the presence of a suitable proton source such as ammonium salts or carboxylic acids.
  • a suitable proton source such as ammonium salts or carboxylic acids.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%. In some embodiments, the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol, such as quantities of material containing alpha-tocotrienol of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha-tocotrienol can have any purity level as recited herein.
  • the process involves an additional optional step, wherein the alpha-tocotrienol of high purity is oxidized to produce alpha- tocotrienol quinone of high purity.
  • the conversion of alpha-tocotrienol to alpha-tocotrienol quinone is carried out under buffered conditions.
  • the buffer and/or base employed during conversion of alpha-tocotrienol to alpha-tocotrienol quinone is sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, phosphate buffer, or any mixture in any proportion of two or more of the foregoing buffers.
  • the processes of the invention can yield alpha-tocotrienol quinone of high purity.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 09.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol quinone, such as quantities of material containing alpha-tocotrienol quinone of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha- tocotrienol quinone can have any purity level as recited herein.
  • the invention comprises a method for oxidizing alpha- tocotrienol to alpha-tocotrienol quinone with minimal isomerization of the double bonds of the triene moiety.
  • the alpha-tocotrienol quinone, 2-((6E,10E)-3R- hydroxy-3,7,l l,15-tetramethylhexadeca-6,10,14-trienyl)-3,5,6-trimethylcyclohexa-2,5-diene- 1,4-dione, produced by the method comprises at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5%, or at least about 99.9% of the 2-(3-hydroxy-3,7, 11,15- tetramethylhexadeca-6, 10, 14-trienyl)-3,5,6-trimethylcyclohexa-2,5-d
  • the oxidation of alpha-tocotrienol to alpha- tocotrienol quinone can be performed with cerium (IV) ammonium nitrate.
  • a solution of alpha-tocotrienol quinone, in a solvent such as isopropylacetate, n-heptane, or a mixture of isopropylacetate and n-heptane is placed on a chromatography column packed with silica gel.
  • the silica gel can contain between about 0.1- 5% by weight of sodium hydrogen carbonate, such as about 0.5-2% by weight or about 1% by weight of sodium hydrogen carbonate.
  • the alpha-tocotrienol quinone can be eluted from the silica gel/NaHCO 3 with solvents, such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • solvents such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • the recovered solution of alpha-tocotrienol quinone can be concentrated to give alpha- tocotrienol quinone of high purity.
  • the foregoing quantities of alpha-tocotrienol or alpha- tocotrienol quinone can be produced using a single performance of the method, that is, with a single iteration of the steps of the method.
  • One embodiment of the invention comprises the production, enrichment and/or isolation of natural d-alpha-tocotrienol from a natural plant source extract from palm oil, wherein said extract comprises at least one non-alpha tocotrienol, comprising the steps of:
  • the alpha-tocotrienol separated from the one or more amino-alkyl tocotrienol homologues in step (2b) is not recovered, thus allowing for a process yielding pure alpha-tocotrienol without the need of intensive and/or expensive chromatography .
  • the process does not comprise an additional step wherein the alpha-tocotrienol from step (2b) is recovered, thus allowing for a more economical commercial process.
  • step 2b) is followed by an optional step 2b 1) of filtering a solution of the one or more non-alpha-tocols homologues that have been functionalized.
  • Filtration can be performed using diatomaceous earth such as Celite® or any other method of filtration known to the skilled artisan.
  • step 2c) is followed by an optional step 2c 1), wherein a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel. The silica gel is removed by filtration, and the remaining filtrate is concentrated to give alpha-tocotrienol of high purity.
  • both step 2b 1) and 2c 1) are performed.
  • the palm oil extract is commercially available Tocomin®.
  • the palm oil extract is commercially available Tocomin®-50.
  • introduction of an aminoalkyl group in the free 5 and/or 7 positions of the non-alpha tocol homologues provides for increased differential solubility of the functionalized non-alpha tocol homologues compared to non-functionalized compounds in the starting material, source material, or extract.
  • the increased differential solubility can be differential solubility in a single solvent, or increased differential solubility between two or more solvents in a mixed solvent system.
  • the introduction of an aminoalkyl group in the free 5 and/or 7 positions of the non-alpha tocol homologues is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the step of reducing the non-alpha tocol functionalized homologues to produce alpha-tocotrienol is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the amino-alkylation is performed with a formaldehyde equivalent, such as paraformaldehyde, and an amine, such as a secondary amine, such as a cyclic amine selected from 1-methylpiperazine, piperidine or morpholine.
  • a formaldehyde equivalent such as paraformaldehyde
  • an amine such as a secondary amine, such as a cyclic amine selected from 1-methylpiperazine, piperidine or morpholine.
  • the amino-alkylation is performed with paraformaldehyde and 1- methylpiperazine.
  • the amino-alkylation is performed with paraformaldehyde and morpholine.
  • the reduction is performed with a hydride reagent such as lithium aluminum hydride, lithium borohydride, zinc borohydride, tetraalkylammonium hydride, sodium borohydride or sodium cyano borohydride.
  • a hydride reagent such as lithium aluminum hydride, lithium borohydride, zinc borohydride, tetraalkylammonium hydride, sodium borohydride or sodium cyano borohydride.
  • the reduction is performed with a borane, diborane, or a borane complex, such as borane t-butyl amine complex.
  • the reduction is performed electrochemically or with an electron donor such as sodium, lithium, potassium, magnesium, zinc or nickel or amalgams thereof in the presence of a suitable proton source, such as a protic solvent such as an organic alcohol or liquid ammonia, or such as ammonium salts or carboxylic acids.
  • a suitable proton source such as a protic solvent such as an organic alcohol or liquid ammonia, or such as ammonium salts or carboxylic acids.
  • the processes of the invention can yield alpha-tocotrienol of high purity. In some embodiments, the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%. In some embodiments, the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol, such as quantities of material containing alpha-tocotrienol of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha-tocotrienol can have any purity level as recited herein.
  • the process involves an additional optional step, wherein the alpha-tocotrienol of high purity is oxidized to produce alpha- tocotrienol quinone of high purity.
  • the conversion of alpha-tocotrienol to alpha-tocotrienol quinone is carried out under buffered conditions.
  • the buffer and/or base employed during conversion of alpha-tocotrienol to alpha-tocotrienol quinone is sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, phosphate buffer, or any mixture in any proportion of two or more of the foregoing buffers.
  • the processes of the invention can yield alpha-tocotrienol quinone of high purity.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol quinone, such as quantities of material containing alpha-tocotrienol quinone of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha- tocotrienol quinone can have any purity level as recited herein.
  • the invention comprises a method for oxidizing alpha- tocotrienol to alpha-tocotrienol quinone with minimal isomerization of the double bonds of the triene moiety.
  • the alpha-tocotrienol quinone, 2-((6E,10E)-3R- hydroxy-3,7,l l,15-tetramethylhexadeca-6,10,14-trienyl)-3,5,6-trimethylcyclohexa-2,5-diene- 1,4-dione, produced by the method comprises at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5%, or at least about 99.9% of the 2-(3-hydroxy-3,7,l l,15- tetramethylhexadeca-6, 10, 14-trienyl)-3,5,6-trimethylcyclohexa-2,
  • the oxidation of alpha-tocotrienol to alpha- tocotrienol quinone can be performed with cerium (IV) ammonium nitrate.
  • a solution of alpha-tocotrienol quinone, in a solvent such as isopropylacetate, n-heptane, or a mixture of isopropylacetate and n-heptane is placed on a chromatography column packed with silica gel.
  • the silica gel can contain between about 0.1- 5% by weight of sodium hydrogen carbonate, such as about 0.5-2% by weight or about 1% by weight of sodium hydrogen carbonate.
  • the alpha-tocotrienol quinone can be eluted from the silica gel/NaHCO 3 with solvents, such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • solvents such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • the recovered solution of alpha-tocotrienol quinone can be concentrated to give alpha- tocotrienol quinone of high purity.
  • the foregoing quantities of alpha-tocotrienol or alpha- tocotrienol quinone can be produced using a single performance of the method, that is, with a single iteration of the steps of the method.
  • the process comprises the steps of:
  • step (3c.) optionally further separating the alpha-tocotrienol in the mixture separated in step (3b), from the optional alpha tocopherol and other non-tocol compounds;
  • step (3e) optionally combining the alpha-tocotrienol from step (3c) with the newly produced alpha-tocotrienol from step (3d) to give alpha-tocotrienol of high purity;
  • step (3f.) oxidizing the alpha-tocotrienol from step (3e) to give alpha-tocotrienol quinone of high purity.
  • step 3b) is followed by an optional step 3b 1) of filtering a solution of the one or more non-alpha-tocols homologues that have been functionalized.
  • Filtration can be performed using diatomaceous earth such as Celite® or any other method of filtration known to the skilled artisan.
  • step 3d) is followed by an optional step 3dl), and/or step 3e) is followed by an optional step 3el), wherein a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel.
  • a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel.
  • the silica gel is removed by filtration, and the remaining filtrate is concentrated to give alpha-tocotrienol of high purity.
  • both steps 3bl) and 3dl), both steps 3bl) and 3el), or all three steps 3bl), 3dl), and 3el) are performed.
  • introduction of a functional group in the free 5 and/or 7 positions of the non-alpha tocol homologues comprises introduction of a group which provides for increased differential solubility of the functionalized non-alpha tocol homologues compared to non-functionalized compounds in the starting material, source material, or extract.
  • the increased differential solubility can be differential solubility in a single solvent, or increased differential solubility between two or more solvents in a mixed solvent system.
  • the introduction of a functional group in the free 5 and/or 7 positions of the non-alpha tocol homologues is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the step of chemically reacting the non-alpha tocol functionalized homologues to produce alpha-tocotrienol is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the functionalization is introduced by amino-alkylation followed by acidification, thus converting the non-alpha-tocotrienol into the corresponding amino-alkylated product and converting said products to acid salts.
  • the functionalization is introduced by amino-alkylation with a formaldehyde equivalent, such as paraformaldehyde, and an amine, such as a secondary amine, such as a cyclic amine such as 1-methylpiperazine, piperidine or morpholine.
  • the functionalization is introduced by amino-alkylation with paraformaldehyde and 1- methylpiperazine.
  • the functionalization is introduced by amino- alkylation with paraformaldehyde and morpholine.
  • the processes of the invention can yield alpha-tocotrienol of high purity.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol, such as quantities of material containing alpha-tocotrienol of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha-tocotrienol can have any purity level as recited herein.
  • the processes of the invention can yield alpha-tocotrienol quinone of high purity.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol quinone, such as quantities of material containing alpha-tocotrienol quinone of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha- tocotrienol quinone can have any purity level as recited herein.
  • the conversion of alpha-tocotrienol to alpha-tocotrienol quinone of step 3f) is carried out under buffered conditions.
  • the buffer and/or base employed during conversion of alpha-tocotrienol to alpha-tocotrienol quinone of step 3f) is sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, phosphate buffer, or any mixture in any proportion of two or more of the foregoing buffers.
  • the invention comprises a method for oxidizing alpha- tocotrienol to alpha-tocotrienol quinone with minimal isomerization of the double bonds of the triene moiety.
  • the alpha-tocotrienol quinone, 2-((6E,10E)-3R- hydroxy-3,7,l l,15-tetramethylhexadeca-6,10,14-trienyl)-3,5,6-trimethylcyclohexa-2,5-diene- 1,4-dione, produced by the method comprises at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5%, or at least about 99.9% of the 2-(3-hydroxy-3,7, 11,15- tetramethylhexadeca-6, 10, 14-trienyl)-3,5,6-trimethylcyclohexa-2,5-d
  • the oxidation of alpha-tocotrienol to alpha- tocotrienol quinone can be performed with cerium (IV) ammonium nitrate.
  • a solution of alpha-tocotrienol quinone, in a solvent such as isopropylacetate, n-heptane, or a mixture of isopropylacetate and n-heptane is placed on a chromatography column packed with silica gel.
  • the silica gel can contain between about 0.1- 5% by weight of sodium hydrogen carbonate, such as about 0.5-2% by weight or about 1% by weight of sodium hydrogen carbonate.
  • the alpha-tocotrienol quinone can be eluted from the silica gel/NaHCO 3 with solvents, such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • solvents such as n-heptane, isopropylacetate, or n- heptane: isopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • the recovered solution of alpha-tocotrienol quinone can be concentrated to give alpha- tocotrienol quinone of high purity.
  • the foregoing quantities of alpha-tocotrienol or alpha- tocotrienol quinone can be produced using a single performance of the method, that is, with a single iteration of the steps of the method.
  • the process comprises the steps of:
  • step 4b separating the one or more non-alpha-tocotrienol acid salts of the products (from step 4a) from the alpha-tocotrienol, optional alpha tocopherol and other non-tocol compounds that may be present;
  • step (4d.) oxidizing the alpha-tocotrienol from step (4c) to give alpha-tocotrienol quinone of high purity.
  • step 4b) is followed by an optional step 4b 1) of filtering a solution of the one or more non-alpha-tocols homologues that have been functionalized.
  • Filtration can be performed using diatomaceous earth such as Celite® or any other method of filtration known to the skilled artisan.
  • step 4c) is followed by an optional step 4c 1), wherein a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel.
  • a solution of the alpha-tocotrienol (in a solvent such as toluene) produced by the reduction is mixed with silica gel.
  • the silica gel is removed by filtration, and the remaining filtrate is concentrated to give alpha-tocotrienol of high purity.
  • both steps 4b 1) and 4c 1) are performed.
  • the conversion of alpha-tocotrienol to alpha-tocotrienol quinone of step 4d) is carried out under buffered conditions.
  • the buffer and/or base employed during conversion of alpha-tocotrienol to alpha-tocotrienol quinone of step 4d) is sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, phosphate buffer, or any mixture in any proportion of two or more of the foregoing buffers.
  • introduction of an aminoalkyl group in the free 5 and/or 7 positions of the non-alpha tocol homologues provides for increased differential solubility of the functionalized non-alpha tocol homologues compared to non-functionalized compounds in the starting material, source material, or extract.
  • the increased differential solubility can be differential solubility in a single solvent, or increased differential solubility between two or more solvents in a mixed solvent system.
  • the introduction of an aminoalkyl group in the free 5 and/or 7 positions of the non-alpha tocol homologues is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the step of reducing the non-alpha tocol functionalized homologues to produce alpha-tocotrienol is accomplished without reducing the double bonds present in tocotrienol compounds and/or without causing isomerization of the double bonds present in tocotrienol compounds.
  • the amino-alkylation is performed with a formaldehyde equivalent, such as paraformaldehyde, and an amine, such as a secondary amine, such as a cyclic amine selected from 1-methylpiperazine, piperidine or morpholine.
  • a formaldehyde equivalent such as paraformaldehyde
  • an amine such as a secondary amine, such as a cyclic amine selected from 1-methylpiperazine, piperidine or morpholine.
  • the amino-alkylation is performed with paraformaldehyde and 1- methylpiperazine.
  • the amino-alkylation is performed with paraformaldehyde and morpholine.
  • a solution of alpha-tocotrienol quinone, in a solvent such as isopropylacetate, n-heptane, or a mixture of isopropylacetate and n-heptane is placed on a chromatography column packed with silica gel.
  • the silica gel can contain between about 0.1- 5% by weight of sodium hydrogen carbonate, such as about 0.5-2% by weight or about 1% by weight of sodium hydrogen carbonate.
  • the alpha-tocotrienol quinone can be eluted from the silica gel/NaHCO 3 with solvents, such as n-heptane, isopropylacetate, or n- heptanedsopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • solvents such as n-heptane, isopropylacetate, or n- heptanedsopropylacetate in ratios of about 100:1, about 100:5, about 100:10, or about 100:15.
  • the recovered solution of alpha-tocotrienol quinone can be concentrated to give alpha- tocotrienol quinone of high purity.
  • the processes of the invention can yield alpha-tocotrienol of high purity.
  • the purity is in the range of 80% to 99.9%, or in the range of 85% to 99.9%, or in the range of 90% to 99.9%, or in the range of 95% to 99.9%.
  • the purity is in the range of about 80% to about 99.9%, or in the range of about 85% to about 99.9%, or in the range of about 90% to about 99.9%, or in the range of about 95% to about 99.9%.
  • the purity is more than 80%, or more than 85%, or more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the purity is more than about 80%, or more than about 85%, or more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5% or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, less than about 0.5% or less than about 0.1%.
  • the invention provides a method for large-scale production, enrichment, and/or isolation of alpha-tocotrienol, such as quantities of material containing alpha-tocotrienol of at least 50 grams, at least 100 grams, at least 250 grams, at least 500 grams, at least 1 kilogram, at least 2 kilograms, at least 5 kilograms, or at least 10 kilograms, or at least about 50 grams, at least about 100 grams, at least about 250 grams, at least about 500 grams, at least about 1 kilogram, at least about 2 kilograms, at least about 5 kilograms, or at least about 10 kilograms.
  • the quantity of material containing alpha- tocotrienol can have any purity level as recited herein.
  • the alpha-tocotrienol quinone is of high purity.
  • the purity is in the range of 80% to 99%, or in the range of 85% to 99% or in the range of 90% to 99%, or in the range of 95% to 99%.
  • the purity is more than 80%, or more than 85%, more than 90%, or more than 91%, or more than 92%, or more than 93%, or more than 94%, or more than 95%, or more than 96%, or more than 97%, or more than 98%, or more than 99%, or more than 99.5%, or more than 99.9%.
  • the impurities in the final product are less than 20%, or less than 15%, or less than 10%, or less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or less than 0.5%, or less than 0.1%.
  • the purity is in the range of about 80% to about 99%, or in the range of about 85% to about 99% or in the range of about 90% to about 99%, or in the range of about 95% to about 99%.
  • the purity is more than about 80%, or more than about 85%, more than about 90%, or more than about 91%, or more than about 92%, or more than about 93%, or more than about 94%, or more than about 95%, or more than about 96%, or more than about 97%, or more than about 98%, or more than about 99%, or more than about 99.5%, or more than about 99.9%.
  • the impurities in the final product are less than about 20%, or less than about 15%, or less than about 10%, or less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the impurities consisting of tocols or tocol derivatives in the final product are less than about 5%, or less than about 4%, or less than about 3%, or less than about 2%, or less than about 1%, or less than about 0.5%, or less than about 0.1%.
  • the invention comprises a method for oxidizing alpha- tocotrienol to alpha-tocotrienol quinone with minimal isomerization of the double bonds of the triene moiety.
  • the alpha-tocotrienol quinone, 2-((6E,10E)-3R- hydroxy-3,7,l l,15-tetramethylhexadeca-6,10,14-trienyl)-3,5,6-trimethylcyclohexa-2,5-diene- 1,4-dione, produced by the method comprises at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.5%, or at least about 99.9% of the 2-(3-hydroxy-3,7, 11,15- tetramethylhexadeca-6, 10, 14-trienyl)-3,5,6-trimethylcyclohexa-2,5-diene- 1 ,4-dione material present.
  • the non-alpha tocols can be reacted with a formaldehyde equivalent and at least one amine compound of the formula H-N(RiI)(Rn), where Rn and Ri 2 are independently selected from the group consisting of H and C 1 -C 8 alkyl, or where Rn and Ri 2 are combined together with the nitrogen to which they are bonded to form a five-to-eight membered heterocyclic ring, said heterocyclic ring having zero, one, or two additional heteroatoms in addition to the nitrogen to which Rn and Ri 2 are bonded.
  • the oxidation of alpha-tocotrienol to alpha- tocotrienol quinone can be performed with cerium (IV) ammonium nitrate.
  • the quantities of alpha-tocotrienol or alpha-tocotrienol quinone described herein, at any level of purity described herein can be produced using a single performance of a method recited herein, that is, with a single iteration of the steps of the method.
  • Figure 1 is a flow chart depicting certain processes of the invention.
  • Figure 2 is a flow chart depicting additional processes of the invention.
  • Figure 3 is a flow chart depicting additional processes of the invention.
  • Figure 4 is a flow chart depicting additional processes of the invention.
  • the invention embraces a method for production, enrichment and/or isolation of pure alpha-tocotrienol from natural extracts that comprise mixed tocotrienols.
  • tocols refers to tocopherols and tocotrienols as described herein.
  • non-tocols refers to phytonutrients or organic materials that may be present in the extract, but are not tocopherols or tocotrienols.
  • amino-alkylation also known as the Mannich reaction, is a reaction that effects amino-alkyl addition.
  • the reaction can be conducted from at about room temperature up to about 140 0 C for a sufficient length of time to effectuate amino-alkylation.
  • the reagents necessary are a source of formaldehyde (a "formaldehyde equivalent") and an amine. Any primary or secondary amine, including amines such as cyclic and aromatic amines, alkyl amines, and polyamines, as well as ammonia, can be used.
  • Suitable amines are dibutyl amine, di-isopropyl amine, dimethyl amine, diethyl amine, dipropyl amine, 1-methylpiperazine, N,N,N'-trimethylethylenediamine, piperidine, pyrrolidine and morpholine.
  • Sources of formaldehyde include, but are not limited to, paraformaldehyde, formaline, formaldehyde gas, trioxane and hexamethylenetetramine.
  • the relative molar concentration of the formaldehyde equivalent and the amine are maintained in equimolar amounts, but the relative concentrations may be varied as long as there is at least one mole of amine and at least one mole of formaldehyde for every mole of free aromatic position on the tocotrienols, and, if present, any other compounds that will react with the formaldehyde and amine reagents.
  • Either the amine or formaldehyde component may be present in an amount of from about 1 to about 20 moles per mole of free aromatic position on tocotrienol, and, if present, any other compounds that will react with the formaldehyde and amine reagents, particularly in a molar amount of at least about four times greater than the free aromatic positions on tocotrienol present, and, if present, any other compounds that will react with the formaldehyde and amine reagents.
  • This process could also be accomplished step-wise, for example by formylation followed by reductive amination, or by pre-formation of the "Mannich" reagent — the alkyliminium or functional equivalent intermediate.
  • the starting material is a mixed tocotrienol extract that may also optionally comprise alpha tocopherol in amounts that may vary depending on the source of the extract.
  • Naturally produced alpha-tocotrienol and optional alpha tocopherol are separated from the beta, gamma, and delta-tocotrienol homologues of alpha-tocotrienol, by reacting the mixture of tocotrienols and optional alpha tocopherol with an appropriate reagent or reagents to introduce a functional group at the free 5 and/or 7 positions of the non-alpha-tocotrienols.
  • the starting material can be amino-alkylated to introduce amino-alkylated groups on the beta, gamma, and delta- tocotrienols.
  • alpha-tocotrienol does not have a free ring position, any alpha-tocotrienol present in the mixture will not be amino-alkylated.
  • the amino-alkylated groups will allow the separation of the amino-alkylated beta, gamma, and delta-tocotrienols from alpha-tocotrienol, alpha tocopherol and other non-tocol phytonutrients that may be present. The separation will be accomplished by partitioning between different organic solvents.
  • Any non-polar organic solvents such as hexanes, heptanes, pentanes, petroleum ether, or mixtures thereof, can be used to take up the alpha tocopherol, alpha- tocotrienol and other phytonutrients or hydrocarbon impurities.
  • the amino-alkylated products optionally having been converted to an acid salt, can be partitioned in an acidic organic layer such as acetonitrile comprising formic acid. In another embodiment of the invention, the partitioning can be performed between an organic layer and an aqueous layer.
  • the products from the amino-alkylation can be removed by first permethylating to the tetra alkyl ammonium salt, followed by reductive deamination under basic conditions (see for example Maeda, Y. et al., JOC (1994) 59, 7897-7901; and Tayama, E. et al, Chem Letters (2006) 35, 478-479).
  • reducing agent is contemplated hydrides such as lithium aluminum hydride, sodium borohydride, and sodium cyano borohydride, borane complexes and electron donors such as sodium, lithium, magnesium, potassium, zinc, nickel, or amalgams thereof in the presence of a suitable proton source such as ammonium salts or carboxylic acids.
  • impurities consisting of tocols or tocol derivatives in the final product refers to beta-tocotrienol, gamma-tocotrienol, delta-tocotrienol, alpha-tocopherol, beta-tocopherol, gamma-tocopherol, or delta-tocopherol.
  • impurities in the final product, without further specification, can refer to beta-tocotrienol, gamma-tocotrienol, delta-tocotrienol, alpha-tocopherol, beta-tocopherol, gamma-tocopherol, delta-tocopherol, and/or other non-tocol impurities.
  • solvents which can be readily removed by evaporation are not considered as impurities when determining the percentage of impurities present.
  • the quinone (cyclohexadienedione) form and dihydroquinone (benzenediol) form of the compounds disclosed herein are readily interconverted with appropriate reagents.
  • the quinone can be treated in a biphasic mixture of an ethereal solvent with a basic aqueous solution Of Na 2 S 2 O 4 (Vogel, A.I. et al. Vogel's Textbook of Practical Organic Chemistry, 5 th Edition, Prentice Hall: New York, 1996; Section 9.6.14 Quinones, "Reduction to the Hydroquinone"). Standard workup in the absence of oxygen yields the desired hydroquinone.
  • the hydroquinone form can be oxidized to the quinone form with oxidizing agents such as eerie ammonium nitrate (CAN) or ferric chloride.
  • oxidizing agents such as eerie ammonium nitrate (CAN) or ferric chloride.
  • CAN eerie ammonium nitrate
  • ferric chloride ferric chloride.
  • the quinone and hydroquinone forms are also readily interconverted electrochemically, as is well known in the art. See, e.g., Section 33.4 of Streitweiser & Heathcock, Introduction to Organic Chemistry, New York: Macmillan, 1976.
  • the oxidation can be carried out under buffered conditions. This can be accomplished by including sodium carbonate, sodium hydrogen carbonate, other carbonates such as potassium carbonate or potassium hydrogen carbonate, phosphate buffers, other buffers, or mixtures of any two or more of the foregoing buffers in any proportion, during the oxidation. Removal of acid during oxidation reduces isomerization of the double bonds in the triene moiety of the tocotrienol and tocotrienol quinone.
  • Buffered conditions can also be maintained during workup of the alpha-tocotrienol quinone, for example, by mixing a percentage of a solid buffer such as sodium hydrogen carbonate with silica gel prior to placing the alpha-tocotrienol on the silica gel for elution.
  • a solid buffer such as sodium hydrogen carbonate
  • silica gel when silica gel is used in the workup, the grade of silica gel used can be that used for standard preparative flash chromatography. For example, silica gel of about 6OA pore size with a particle distribution of about 40 to 63 microns can be used. It can be used as is from the supplier, without further activation, or can be activated by heating in air or an oxygen-containing atmosphere.
  • Ri,R 2 H or 4-Me-Piperazine
  • R 11 R 2 H or 4-Me-Piperazine
  • the bottom acetonitrile layer was separated and extracted with heptane (2 x 3.5 mL/g).
  • the acetonitrile layer was diluted with tert-b ⁇ Xy ⁇ methyl ether (3 mL/g) and cooled to O 0 C. 45% w/w aqueous tribasic potassium phosphate solution (7 mL/g) was added dropwise (exothermic) so as to keep the temperature below 2O 0 C.
  • the organic layer was separated at room temperature, washed with saturated aqueous sodium chloride solution (23.1% w/w; 3 mL/g), and solvents were removed by distillation at up to 5O 0 C under vacuum.
  • the resulting solution was added to a mixture of silica gel (2 wt) and toluene (5.5vol) with an additional rinse of toluene (2 vol).
  • the silica gel suspension was stirred at room temperature for 1 h.
  • the silica gel was removed by filtration and washed with toluene (2 x 5 vol).
  • the combined filtrates were concentrated by distillation at up to 5O 0 C under vacuum.
  • the residue solution was cooled to 3O 0 C and transferred to a rotoevaporator with toluene (2 x 1.4 vol) and further evaporated to dryness by distillation at up to 6O 0 C under vacuum to give alpha- tocotrienol.
  • Step 3 Note: unless otherwise indicated, all relative weight (wt) and volume (mL/g) equivalents in Step 3 are with respect to the mass of this stage's starting material, the product of Step 2 — alpha-tocotrienol.
  • Step 2 The residue of Step 2 was dissolved in isopropyl acetate (10 vol), water (0.5 vol) was added, and the mixture was cooled to O 0 C.
  • the buffered cerium (IV) ammonium nitrate solution was added over 30 min to the prepared mixture of alpha-tocotrienol from step 2 in isopropylacetate and water while maintaining the temperature at O 0 C.
  • the mixture was stirred at O 0 C and monitored for conversion of starting material components to product components.
  • the organic layer was separated and treated for 2 h with a slurry of solid sodium hydrogen carbonate (2 wt) and solid sodium sulfate (2 wt) in isopropylacetate (5 vol).
  • the suspension was filtered, the solids washed with isopropylacetate (1.5 vol), and the combined filtrates treated with sodium hydrogen carbonate (2 x 0.05 wt).
  • the suspension was concentrated to a maximum extent while maintaining an agitable mixture by distillation at up to 45 0 C under vacuum.
  • the residue was cooled to 3O 0 C and diluted with n-heptane (10 vol).
  • a chromatography column of silica gel (5 wt) and sodium hydrogen carbonate (0.05 wt) was prepared from a slurry in n-heptane.
  • the mixture was eluted on the chromatography column and further eluted with mixtures of n-heptane/isopropylacetate in relative volume -ratios of 100:5 and then 100:10.
  • Fractions were collected, treated with solid sodium hydrogen carbonate (ca. 0.1 to lg/L eluent), and analyzed for product content and purity. Acceptable fractions were combined, treated with additional solid sodium hydrogen carbonate (0.05 wt), and concentrated to a maximum extent while maintaining an agitable mixture by distillation of solvent at up to 45 0 C under vacuum. Isopropylacetate (1 to 3 vol) was added and the mixture passed through a 0.45 to 1 um filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
PCT/US2009/062212 2008-10-28 2009-10-27 Process for the production of alpha-tocotrienol and derivatives Ceased WO2010051277A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
BRPI0920414-8A BRPI0920414B1 (pt) 2008-10-28 2009-10-27 Processo para a produção, o enriquecimento e/ou o isolamento do alfa-tocotrienol a partir de um material de planta que compreende alfa- tocotrienol e pelo menos um não-alfa tocotrienol
PL09824070T PL2362875T3 (pl) 2008-10-28 2009-10-27 Proces do wytwarzania alfa-tokotrienolu i pochodnych
PL15175938T PL2963006T3 (pl) 2008-10-28 2009-10-27 Kompozycja zawierająca chinon alfa-tokotrienolu, i jego związki pośrednie
DK09824070.8T DK2362875T3 (en) 2008-10-28 2009-10-27 METHOD OF PRODUCING ALPHA-tocotrienol AND DERIVATIVES
CN200980152635.0A CN102264730B (zh) 2008-10-28 2009-10-27 用于生产生育三烯酚及衍生物的方法
EA201100699A EA026417B1 (ru) 2008-10-28 2009-10-27 СПОСОБ ПОЛУЧЕНИЯ α-ТОКОТРИЕНОЛА И ЕГО ПРОИЗВОДНЫХ
ES09824070.8T ES2553557T3 (es) 2008-10-28 2009-10-27 Proceso para la producción de alfa-tocotrienol y derivados
EP09824070.8A EP2362875B1 (en) 2008-10-28 2009-10-27 Process for the production of alpha-tocotrienol and derivatives
EP15175938.8A EP2963006B1 (en) 2008-10-28 2009-10-27 Composition containing alpha-tocotrienol quinone,and intermediates thereof
CA2741767A CA2741767C (en) 2008-10-28 2009-10-27 Process for the production of alpha-tocotrienol and derivatives
MX2011004440A MX2011004440A (es) 2008-10-28 2009-10-27 Proceso para la produccion de alfa tocotrienol y derivados.
EP18200523.1A EP3450431B1 (en) 2008-10-28 2009-10-27 Process for the production of alpha-tocotrienol and derivatives
JP2011534678A JP5775459B2 (ja) 2008-10-28 2009-10-27 α−トコトリエノールおよび誘導体の産生のためのプロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19758508P 2008-10-28 2008-10-28
US61/197,585 2008-10-28

Publications (2)

Publication Number Publication Date
WO2010051277A1 true WO2010051277A1 (en) 2010-05-06
WO2010051277A8 WO2010051277A8 (en) 2011-01-27

Family

ID=42118126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/062212 Ceased WO2010051277A1 (en) 2008-10-28 2009-10-27 Process for the production of alpha-tocotrienol and derivatives

Country Status (17)

Country Link
US (6) US8106223B2 (enExample)
EP (3) EP2362875B1 (enExample)
JP (7) JP5775459B2 (enExample)
CN (2) CN102264730B (enExample)
BR (1) BRPI0920414B1 (enExample)
CA (2) CA2974482C (enExample)
DK (2) DK2963006T3 (enExample)
EA (2) EA201692046A1 (enExample)
ES (2) ES2701260T3 (enExample)
HU (1) HUE041714T2 (enExample)
MX (1) MX2011004440A (enExample)
MY (2) MY157119A (enExample)
PL (2) PL2362875T3 (enExample)
PT (2) PT2963006T (enExample)
SI (1) SI2963006T1 (enExample)
TR (1) TR201819154T4 (enExample)
WO (1) WO2010051277A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154613A1 (en) * 2011-05-06 2012-11-15 Edison Pharmaceuticals, Inc. Improved process for the preparation of d-alpha-tocotrienol from natural extracts

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032544A1 (en) 2003-09-19 2005-04-14 Galileo Pharmaceuticals, Inc. Treatment of mitochondrial diseases
EP2564842A1 (en) 2005-06-01 2013-03-06 Edison Pharmaceuticals, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
CA2635280C (en) 2006-02-22 2017-12-12 Edison Pharmaceuticals, Inc. Side chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
HUE028502T2 (en) 2007-11-06 2016-12-28 Edison Pharmaceuticals Inc 4- (P-Quinonyl) -2-hydroxybutanamide derivatives for the treatment of mitochondrial diseases
WO2009089224A1 (en) * 2008-01-08 2009-07-16 Edison Pharmaceuticals, Inc. (HET) ARYL-p-QUINONE DERIVATIVES FOR TREATMENT OF MITOCHONDRIAL DISEASES
WO2009111576A2 (en) 2008-03-05 2009-09-11 Edison Pharmaceuticals, Inc. 2-SUBSTITUTED-p-QUINONE DERIVATIVES FOR TREATMENT OF OXIDATIVE STRESS DISEASES
JP5798481B2 (ja) 2008-06-25 2015-10-21 エジソン ファーマシューティカルズ, インコーポレイテッド 酸化ストレス疾患を治療するための2−ヘテロシクリルアミノアルキル−(p−キノン)誘導体
LT3827815T (lt) 2008-09-10 2023-10-10 Ptc Therapeutics, Inc. Psichologinių raidos sutrikimų gydymas oksidacijos redukcijos atžvilgiu aktyviais vaistais
CA2740773A1 (en) 2008-10-14 2010-04-22 Edison Pharmaceuticals, Inc. Treatment of oxidative stress disorders including contrast nephropathy, radiation damage and disruptions in the function of red cells
EA201692046A1 (ru) 2008-10-28 2017-06-30 Эдисон Фармасьютикалз, Инк. СПОСОБ ПОЛУЧЕНИЯ α-ТОКОТРИЕНОЛА И ЕГО ПРОИЗВОДНЫХ
CA2777479C (en) 2009-04-28 2017-10-17 Edison Pharmaceuticals, Inc. Treatment of leber's hereditary optic neuropathy and dominant optic atrophy with tocotrienol quinones
AU2010286704B2 (en) 2009-08-26 2016-10-20 Ptc Therapeutics, Inc. Methods for the prevention and treatment of cerebral ischemia
EP2720689A4 (en) 2011-06-14 2014-11-26 Edison Pharmaceuticals Inc CATECHOL DERIVATIVES FOR THE TREATMENT OF DISEASES ASSOCIATED WITH OXIDATIVE STRESS
WO2013013078A1 (en) 2011-07-19 2013-01-24 Edison Pharmeceuticals, Inc. Methods for selective oxidation of alpha tocotrienol in the presence of non-alpha tocotrienols
MY162508A (en) * 2011-07-21 2017-06-15 Sime Darby Malaysia Berhad External preparation for skin
JP2015533794A (ja) 2012-09-07 2015-11-26 エジソン ファーマシューティカルズ, インコーポレイテッド 酸化ストレス障害を処置するためのベンゾキノン誘導体
US8937191B2 (en) * 2012-12-20 2015-01-20 Orochem Technologies, Inc. Recovery of highly pure alpha-tocotrienol from crude palm oil extract
US9868711B2 (en) 2013-03-15 2018-01-16 Bioelectron Technology Corporation Phenazine-3-one and phenothiazine-3-one derivatives for treatment of oxidative stress disorders
US9296712B2 (en) 2013-03-15 2016-03-29 Edison Pharmaceuticals, Inc. Resorufin derivatives for treatment of oxidative stress disorders
CA2906145A1 (en) 2013-03-15 2014-09-18 Edison Pharmaceuticals, Inc. Alkyl-heteroaryl substituted quinone derivatives for treatment of oxidative stress disorders
US9670170B2 (en) 2013-03-15 2017-06-06 Bioelectron Technology Corporation Resorufin derivatives for treatment of oxidative stress disorders
EP3074460A1 (en) * 2013-11-29 2016-10-05 Saudi Basic Industries Corporation Stabilised polyolefin composition
US9512098B1 (en) 2014-02-03 2016-12-06 Board Of Trustees Of The University Of Arkansas Process of producing purified gamma- and delta-tocotrienols from tocol-rich oils or distillates
CN104262315A (zh) * 2014-09-05 2015-01-07 宁波大红鹰生物工程股份有限公司 一种生育三烯酚的分离提纯方法
CN107531616B (zh) 2014-12-16 2022-04-26 Ptc医疗公司 (r)-2羟基-2-甲基-4-(2,4,5-三甲基-3,6-二氧环己-1,4-二烯基)丁酰胺的多晶型和无定形形式
WO2016114860A1 (en) 2015-01-12 2016-07-21 Edison Pharmaceuticals, Inc. Quinones for protection against radiation exposure
JP7117241B2 (ja) * 2015-12-16 2022-08-12 ピーティーシー セラピューティクス, インコーポレイテッド 混合されたトコール組成物からアルファ-トコトリエノールを富化するための改良された方法
CA3008849A1 (en) 2015-12-17 2017-06-22 Bioelectron Technology Corporation Flouroalkyl, flouroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders
WO2017123820A1 (en) 2016-01-12 2017-07-20 Bioelectron Technology Corporation Methods for diagnosing and treating oxidative stress disorders using biomarkers
JP2018083799A (ja) 2016-11-15 2018-05-31 バイオエレクトロン テクノロジー コーポレイション 2−置換アミノ−ナフト[1,2−d]イミダゾール−5−オン化合物またはその製薬学上許容される塩
US20200121618A1 (en) 2017-04-14 2020-04-23 Bioelectron Technology Corporation Methods and compositions for treatment of inflammation and oxidative stress
JP7586815B2 (ja) 2018-10-17 2024-11-19 ピーティーシー セラピューティクス, インコーポレイテッド α-シヌクレイノパチー、タウオパチー、および他の障害を抑制および処置するための2,3,5-トリメチル-6-ノニルシクロヘキサ-2,5-ジエン-1,4-ジオン
IL291898A (en) 2019-10-04 2022-06-01 Stealth Biotherapeutics Inc Quinone-, hydroquinone- and naphthoquinone-analogues of vatiquinone for treatment of mitochondrial disorder diseases
WO2021202986A1 (en) 2020-04-03 2021-10-07 Stealth Biotherapeutics Corp Compositions and methods for the prevention and/or treatment of mitochondrial disease, including friedreich's ataxia
AU2022306868A1 (en) 2021-07-08 2024-02-22 Ptc Therapeutics, Inc. Pharmaceutical compositions comprising 2,3,5-trimethyl-6-nonylcyclohexa-2,5-diene-1,4-dione

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977282A (en) * 1984-04-17 1990-12-11 Henkel Corporation Production of d-alpha-tocopherol from natural plant sources
US5157132A (en) * 1990-05-18 1992-10-20 Carotech Associates Integrated process for recovery of carotenoids and tocotrienols from oil
US6562372B1 (en) * 1998-11-06 2003-05-13 Fuji Chemical Industry Co., Ltd. Tocotrienol-containing powder, a process for preparing it and a tablet comprising compressed said powder into a tablet form
US20040116715A1 (en) * 2000-07-14 2004-06-17 Kai-Uwe Baldenius Tocotrienolquinone cyclisation product with an anti-hypercholesterol effect
US20050124687A1 (en) * 2003-10-10 2005-06-09 Couladouros Elias A. Process for synthesizing d-tocotrienols

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519863A (en) 1949-05-14 1950-08-22 Eastman Kodak Co Conversion of beta-, gamma-, and delta-tocopherol to alpha-tocopherol by aminoalkylation and reduction
EP0159018A3 (en) * 1984-04-17 1986-10-01 HENKEL CORPORATION (a Delaware corp.) Production of d-alpha-tocopherol from natural plant sources
US4603142A (en) 1984-06-01 1986-07-29 Wisconsin Alumni Research Foundation Cholesterol lowering method of use
JPS636186A (ja) 1986-06-23 1988-01-12 タツタ電線株式会社 点滴監視装置
JPH0788376B2 (ja) 1986-09-02 1995-09-27 エーザイ株式会社 光学活性α−トコトリエノ−ルの製造方法
JP2685785B2 (ja) 1988-03-11 1997-12-03 エーザイ株式会社 光学活性α−トコトリエノールの製造方法
EP0333472B1 (en) 1988-03-16 1997-10-08 PALM OIL RESEARCH & DEVELOPMENT BOARD Production of high concentration tocopherols and tocotrienols from palm oil by-products
JPH07504887A (ja) 1991-11-22 1995-06-01 リポジェニックス,インコーポレイテッド トコトリエノールおよびトコトリエノール様化合物ならびにこれらを使用する方法
ATE194609T1 (de) 1995-03-28 2000-07-15 Hoffmann La Roche Aminomethylierung von tocopherolen
US5660691A (en) 1995-11-13 1997-08-26 Eastman Chemical Company Process for the production of tocotrienol/tocopherol blend concentrates
US6232060B1 (en) 1996-01-19 2001-05-15 Galileo Laboratories, Inc. Assay system for anti-stress agents
US5801159A (en) 1996-02-23 1998-09-01 Galileo Laboratories, Inc. Method and composition for inhibiting cellular irreversible changes due to stress
US5932748A (en) 1997-06-06 1999-08-03 Roche Vitamins Inc. Process for permethylating non-α-tocopherols to produce α-tocopherol
DE69814163T2 (de) * 1997-10-29 2004-02-12 Flexsys America L.P., Akron Herstellung von chinondiiminen aus phenylendiaminen unter verwendung von wasserstoffperoxid als katalysator
US6224717B1 (en) 1998-01-29 2001-05-01 Eastman Chemical Company Methods for separating a tocotrienol from a tocol-containing mixture and compositions thereof
US6395915B1 (en) 1999-09-10 2002-05-28 Technikrom, Inc. Method for producing purified tocotrienols and tocopherols using liquid chromatography
MY127451A (en) 1999-11-04 2006-12-29 Malaysian Palm Oil Board A method of chromatographic isolation for vitamin e isomers
US7034054B2 (en) 2000-12-15 2006-04-25 Galileo Pharmaceuticals, Inc. Methods for the prevention and treatment of cerebral ischemia using non-alpha tocopherols
US6838104B2 (en) 2000-12-20 2005-01-04 Archer Daniels Midland Company Process for the production of tocotrienols
US6608196B2 (en) 2001-05-03 2003-08-19 Galileo Pharmaceuticals, Inc. Process for solid supported synthesis of pyruvate-derived compounds
JP4842455B2 (ja) 2001-06-13 2011-12-21 コマツNtc株式会社 半導体単結晶引上げ装置及びそのライン構成
JP2003171376A (ja) 2001-09-27 2003-06-20 Lion Corp トコフェロール類及びトコトリエノール類濃縮物、その製造方法
US6667330B2 (en) 2002-01-31 2003-12-23 Galileo Pharmaceuticals, Inc. Furanone derivatives
US6653346B1 (en) 2002-02-07 2003-11-25 Galileo Pharmaceuticals, Inc. Cytoprotective benzofuran derivatives
US6590113B1 (en) 2002-03-26 2003-07-08 Ronald T. Sleeter Process for treating oils containing antioxidant compounds
CA2504334A1 (en) 2002-10-30 2004-05-21 Galileo Pharmaceuticals, Inc. Identifying therapeutic compounds based on their physical-chemical properties
MY130618A (en) * 2002-11-27 2007-07-31 Malaysian Palm Oil Board A method of extracting and isolating minor components from vegetable oil
WO2005032544A1 (en) 2003-09-19 2005-04-14 Galileo Pharmaceuticals, Inc. Treatment of mitochondrial diseases
MY173044A (en) 2003-11-19 2019-12-20 Carotech Bhd Recovery of phytonutriens from oils
US7393662B2 (en) 2004-09-03 2008-07-01 Centocor, Inc. Human EPO mimetic hinge core mimetibodies, compositions, methods and uses
EP2564842A1 (en) * 2005-06-01 2013-03-06 Edison Pharmaceuticals, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
LT1933821T (lt) 2005-09-15 2020-11-10 Ptc Therapeutics, Inc. Šoninės grandinės variantai redoks aktyviųjų terapijos priemonių, skirtų mitochondrinių ligų ir kitokių būklių gydymui ir energijos biologinių žymenų moduliavimui
CA2635280C (en) 2006-02-22 2017-12-12 Edison Pharmaceuticals, Inc. Side chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
WO2007105297A1 (ja) * 2006-03-13 2007-09-20 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo メチン系色素とその用途
CN101610782A (zh) 2007-01-10 2009-12-23 爱迪生药物公司 使用具有促红细胞生成素或血小板生成素活性的化合物治疗呼吸链紊乱
MY162051A (en) 2007-05-24 2017-05-31 Loders Croklaan Bv Process for producing compositions comprising tocopherols and tocotrienols
HUE028502T2 (en) 2007-11-06 2016-12-28 Edison Pharmaceuticals Inc 4- (P-Quinonyl) -2-hydroxybutanamide derivatives for the treatment of mitochondrial diseases
WO2009088572A2 (en) 2008-01-07 2009-07-16 Centocor, Inc. Method of treating erythropoietin hyporesponsive anemias
WO2009089224A1 (en) 2008-01-08 2009-07-16 Edison Pharmaceuticals, Inc. (HET) ARYL-p-QUINONE DERIVATIVES FOR TREATMENT OF MITOCHONDRIAL DISEASES
JP2011513420A (ja) * 2008-03-05 2011-04-28 エジソン ファーマシューティカルズ, インコーポレイテッド レドックス活性治療薬を用いる聴覚機能障害および平衡機能障害の処置
WO2009111576A2 (en) 2008-03-05 2009-09-11 Edison Pharmaceuticals, Inc. 2-SUBSTITUTED-p-QUINONE DERIVATIVES FOR TREATMENT OF OXIDATIVE STRESS DISEASES
CA2723621A1 (en) 2008-05-15 2009-11-19 Edison Pharmaceuticals, Inc Treatment of hearing and balance impairments using compounds having erythropoietin activity
EP2303309A2 (en) 2008-05-22 2011-04-06 Edison Pharmaceuticals, Inc. Treatment of mitochondrial diseases with an erythropoietin mimetic
JP5798481B2 (ja) 2008-06-25 2015-10-21 エジソン ファーマシューティカルズ, インコーポレイテッド 酸化ストレス疾患を治療するための2−ヘテロシクリルアミノアルキル−(p−キノン)誘導体
US20100010100A1 (en) 2008-07-09 2010-01-14 Hinman Andrew W Dermatological compositions with anti-aging and skin even-toning properties
US20100029706A1 (en) 2008-07-30 2010-02-04 Edison Parmaceuticals, Inc. a Delaware Corporation HYDROGENATED PYRIDO[4,3-b]INDOLES FOR THE TREATMENT OF OXIDATIVE STRESS
US20100029784A1 (en) 2008-07-30 2010-02-04 Hinman Andrew W Naphthoquinone compositions with anti-aging, anti-inflammatory and skin even-toning properties
LT3827815T (lt) * 2008-09-10 2023-10-10 Ptc Therapeutics, Inc. Psichologinių raidos sutrikimų gydymas oksidacijos redukcijos atžvilgiu aktyviais vaistais
CA2740773A1 (en) 2008-10-14 2010-04-22 Edison Pharmaceuticals, Inc. Treatment of oxidative stress disorders including contrast nephropathy, radiation damage and disruptions in the function of red cells
EA201692046A1 (ru) * 2008-10-28 2017-06-30 Эдисон Фармасьютикалз, Инк. СПОСОБ ПОЛУЧЕНИЯ α-ТОКОТРИЕНОЛА И ЕГО ПРОИЗВОДНЫХ
EA201101576A1 (ru) 2009-04-28 2012-04-30 Эдисон Фармасьютикалз, Инк. Лекарственная форма токотриенол хинонов для лечения офтальмических (глазных) заболеваний
US20120136048A1 (en) 2009-04-28 2012-05-31 Miller Guy M Topical, periocular, or intraocular use of tocotrienols for the treatment of ophthalmic diseases
CA2777479C (en) 2009-04-28 2017-10-17 Edison Pharmaceuticals, Inc. Treatment of leber's hereditary optic neuropathy and dominant optic atrophy with tocotrienol quinones
JP2012531411A (ja) 2009-06-25 2012-12-10 アンペア ライフ サイエンシーズ,インコーポレイテッド トコトリエノールまたはトコトリエノール濃縮抽出物を用いた広汎性発達障害の処置
AU2010286704B2 (en) 2009-08-26 2016-10-20 Ptc Therapeutics, Inc. Methods for the prevention and treatment of cerebral ischemia
US20110172312A1 (en) 2009-12-31 2011-07-14 Miller Guy M Treatment of leigh syndrome and leigh-like syndrome with tocotrienol quinones
SG184787A1 (en) 2010-03-09 2012-11-29 Edison Pharmaceuticals Inc Synthesis of alpha-tocopherolquinone derivatives, and methods of using the same
WO2011113018A1 (en) 2010-03-12 2011-09-15 Ampere Life Sciences, Inc. Measurement and control of biological time
JP2013523816A (ja) 2010-04-06 2013-06-17 エジソン ファーマシューティカルズ, インコーポレイテッド 毛細血管拡張性運動失調症の治療
CA2797581A1 (en) 2010-04-27 2011-11-03 Edison Pharmaceuticals, Inc. Formulations of quinones for the treatment of ophthalmic diseases
US20120101169A1 (en) 2010-07-14 2012-04-26 Penwest Pharmaceuticals Co. Methods of providing anticoagulation effects in subjects
SG187744A1 (en) 2010-08-06 2013-03-28 Edison Pharmaceuticals Inc Treatment of mitochondrial diseases with naphthoquinones
US20120295985A1 (en) 2010-11-19 2012-11-22 Miller Guy M Methods for improving blood glucose control
WO2012154613A1 (en) 2011-05-06 2012-11-15 Edison Pharmaceuticals, Inc. Improved process for the preparation of d-alpha-tocotrienol from natural extracts
WO2012170773A1 (en) 2011-06-08 2012-12-13 Edison Pharmaceuticals, Inc. Adjunctive therapy for the treatment of mitochondrial disorders with quinones and naphthoquinones
EP2720689A4 (en) 2011-06-14 2014-11-26 Edison Pharmaceuticals Inc CATECHOL DERIVATIVES FOR THE TREATMENT OF DISEASES ASSOCIATED WITH OXIDATIVE STRESS
JP6728520B2 (ja) 2011-07-06 2020-07-22 ピーティーシー セラピューティクス, インコーポレイテッド メチルマロン酸尿症、イソ吉草酸尿症、および他の有機酸尿症のトコトリエノールキノンによる処置
WO2013006736A1 (en) 2011-07-06 2013-01-10 Edison Pharmaceuticals, Inc Treatment of leigh syndrome and leigh-like syndrome, including complications of sucla2 mutations, with tocotrienol quinones
WO2013013078A1 (en) 2011-07-19 2013-01-24 Edison Pharmeceuticals, Inc. Methods for selective oxidation of alpha tocotrienol in the presence of non-alpha tocotrienols
JP2015533794A (ja) 2012-09-07 2015-11-26 エジソン ファーマシューティカルズ, インコーポレイテッド 酸化ストレス障害を処置するためのベンゾキノン誘導体
US8937191B2 (en) 2012-12-20 2015-01-20 Orochem Technologies, Inc. Recovery of highly pure alpha-tocotrienol from crude palm oil extract
EA031098B1 (ru) 2013-03-08 2018-11-30 Юнилевер Н.В. Соединения резорцина для дерматологического применения
US9296712B2 (en) 2013-03-15 2016-03-29 Edison Pharmaceuticals, Inc. Resorufin derivatives for treatment of oxidative stress disorders
US20140275045A1 (en) 2013-03-15 2014-09-18 Edison Pharmaceuticals, Inc. Phenazine-3-one and phenothiazine-3-one derivatives for treatment of oxidative stress disorders
CA2906145A1 (en) 2013-03-15 2014-09-18 Edison Pharmaceuticals, Inc. Alkyl-heteroaryl substituted quinone derivatives for treatment of oxidative stress disorders
US9670170B2 (en) 2013-03-15 2017-06-06 Bioelectron Technology Corporation Resorufin derivatives for treatment of oxidative stress disorders
US9868711B2 (en) 2013-03-15 2018-01-16 Bioelectron Technology Corporation Phenazine-3-one and phenothiazine-3-one derivatives for treatment of oxidative stress disorders
EP3004071A1 (en) 2013-05-31 2016-04-13 Edison Pharmaceuticals, Inc. Carboxylic acid derivatives for treatment of oxidative stress disorders
CN107531616B (zh) 2014-12-16 2022-04-26 Ptc医疗公司 (r)-2羟基-2-甲基-4-(2,4,5-三甲基-3,6-二氧环己-1,4-二烯基)丁酰胺的多晶型和无定形形式
US20180002247A1 (en) 2014-12-16 2018-01-04 Bioelectron Technology Corporation Methods for chiral resolution of trolox
WO2016114860A1 (en) 2015-01-12 2016-07-21 Edison Pharmaceuticals, Inc. Quinones for protection against radiation exposure
JP7117241B2 (ja) 2015-12-16 2022-08-12 ピーティーシー セラピューティクス, インコーポレイテッド 混合されたトコール組成物からアルファ-トコトリエノールを富化するための改良された方法
CA3008849A1 (en) 2015-12-17 2017-06-22 Bioelectron Technology Corporation Flouroalkyl, flouroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders
WO2017123820A1 (en) 2016-01-12 2017-07-20 Bioelectron Technology Corporation Methods for diagnosing and treating oxidative stress disorders using biomarkers
WO2017123823A1 (en) 2016-01-12 2017-07-20 Bioelectron Technology Corporation Alkyl-, acyl-, urea-, and aza-uracil sulfide:quinone oxidoreductase inhibitors
WO2018081644A1 (en) 2016-10-28 2018-05-03 Bioelectron Technology Corporation Methods of analyzing p-hydroquinone levels and ratios
WO2018093957A1 (en) 2016-11-15 2018-05-24 Bioelectron Technology Corporation 2-substituted amino-naphth[1,2-d]imidazol-5-one compounds or pharmaceutically acceptable salts thereof cross reference to related applications
WO2018129411A1 (en) 2017-01-06 2018-07-12 Bioelectron Technology Corporation Aryl- and heteroaryl-resorufin derivatives for treatment of oxidative stress disorders and liver and kidney disorders
US20200121618A1 (en) 2017-04-14 2020-04-23 Bioelectron Technology Corporation Methods and compositions for treatment of inflammation and oxidative stress

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977282A (en) * 1984-04-17 1990-12-11 Henkel Corporation Production of d-alpha-tocopherol from natural plant sources
US5157132A (en) * 1990-05-18 1992-10-20 Carotech Associates Integrated process for recovery of carotenoids and tocotrienols from oil
US6562372B1 (en) * 1998-11-06 2003-05-13 Fuji Chemical Industry Co., Ltd. Tocotrienol-containing powder, a process for preparing it and a tablet comprising compressed said powder into a tablet form
US20040116715A1 (en) * 2000-07-14 2004-06-17 Kai-Uwe Baldenius Tocotrienolquinone cyclisation product with an anti-hypercholesterol effect
US20050124687A1 (en) * 2003-10-10 2005-06-09 Couladouros Elias A. Process for synthesizing d-tocotrienols

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154613A1 (en) * 2011-05-06 2012-11-15 Edison Pharmaceuticals, Inc. Improved process for the preparation of d-alpha-tocotrienol from natural extracts

Also Published As

Publication number Publication date
ES2701260T3 (es) 2019-02-21
EP2362875A1 (en) 2011-09-07
CA2974482A1 (en) 2010-05-06
CN102264730B (zh) 2016-04-13
HK1161876A1 (en) 2012-08-10
US20170037023A1 (en) 2017-02-09
US10071978B2 (en) 2018-09-11
US20100105930A1 (en) 2010-04-29
EP2963006A1 (en) 2016-01-06
PL2362875T3 (pl) 2016-01-29
CN105753829B (zh) 2019-02-01
JP2018135394A (ja) 2018-08-30
EA201692046A1 (ru) 2017-06-30
CA2974482C (en) 2019-10-29
JP2012506910A (ja) 2012-03-22
EP2362875A4 (en) 2012-06-27
TR201819154T4 (tr) 2019-01-21
PL2963006T3 (pl) 2019-01-31
JP2023073469A (ja) 2023-05-25
EP2963006B1 (en) 2018-10-17
JP2021066745A (ja) 2021-04-30
BRPI0920414A2 (pt) 2015-08-04
SI2963006T1 (sl) 2019-01-31
MY157119A (en) 2016-05-13
CA2741767A1 (en) 2010-05-06
EP3450431B1 (en) 2023-09-13
HUE041714T2 (hu) 2019-05-28
DK2963006T3 (en) 2019-01-14
MY185183A (en) 2021-04-30
US8106223B2 (en) 2012-01-31
ES2553557T3 (es) 2015-12-10
DK2362875T3 (en) 2015-11-30
US20120130093A1 (en) 2012-05-24
BRPI0920414B1 (pt) 2018-05-22
JP2014221842A (ja) 2014-11-27
US20220204469A1 (en) 2022-06-30
WO2010051277A8 (en) 2011-01-27
JP6001025B2 (ja) 2016-10-05
US8575369B2 (en) 2013-11-05
EP3450431A1 (en) 2019-03-06
CA2741767C (en) 2017-09-12
JP2015187169A (ja) 2015-10-29
MX2011004440A (es) 2011-06-20
HK1219718A1 (en) 2017-04-13
JP5775459B2 (ja) 2015-09-09
EA026417B1 (ru) 2017-04-28
CN105753829A (zh) 2016-07-13
EP2362875B1 (en) 2015-08-19
US20140221674A1 (en) 2014-08-07
US11312697B2 (en) 2022-04-26
CN102264730A (zh) 2011-11-30
JP7181708B2 (ja) 2022-12-01
EA201100699A1 (ru) 2011-12-30
US20190002428A1 (en) 2019-01-03
PT2362875E (pt) 2015-11-03
JP2019065041A (ja) 2019-04-25
PT2963006T (pt) 2018-12-14

Similar Documents

Publication Publication Date Title
US20220204469A1 (en) Process for the production of alpha-tocotrienol and derivatives
WO2012154613A1 (en) Improved process for the preparation of d-alpha-tocotrienol from natural extracts
US20080039638A1 (en) Asymmetric Hydrogenation of Alkennes Using Chiral Iridium Complexes
HK1219718B (en) Composition containing alpha-tocotrienol quinone,and intermediates thereof
HK1161876B (en) Process for the production of alpha-tocotrienol and derivatives
EA040327B1 (ru) Способ получения альфа-токотриенола и его производных

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152635.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2741767

Country of ref document: CA

Ref document number: 2011534678

Country of ref document: JP

Ref document number: MX/A/2011/004440

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3303/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009824070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201100699

Country of ref document: EA

ENP Entry into the national phase

Ref document number: PI0920414

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110427