WO2010050178A1 - トレハロース化合物、その製造方法、及び該化合物を含有する医薬 - Google Patents

トレハロース化合物、その製造方法、及び該化合物を含有する医薬 Download PDF

Info

Publication number
WO2010050178A1
WO2010050178A1 PCT/JP2009/005650 JP2009005650W WO2010050178A1 WO 2010050178 A1 WO2010050178 A1 WO 2010050178A1 JP 2009005650 W JP2009005650 W JP 2009005650W WO 2010050178 A1 WO2010050178 A1 WO 2010050178A1
Authority
WO
WIPO (PCT)
Prior art keywords
trehalose
compound
bis
group
formula
Prior art date
Application number
PCT/JP2009/005650
Other languages
English (en)
French (fr)
Inventor
西沢麦夫
今川洋
山本博文
櫻井純
小田真隆
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to CN2009801436265A priority Critical patent/CN102203110A/zh
Priority to EP09823291A priority patent/EP2351764A4/en
Priority to JP2010535655A priority patent/JP5552056B2/ja
Priority to US13/126,842 priority patent/US8741871B2/en
Publication of WO2010050178A1 publication Critical patent/WO2010050178A1/ja
Priority to US14/257,938 priority patent/US20140248317A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/08Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a trehalose compound, a method for producing the same, and a medicine containing the compound.
  • verotoxin is produced in the body, especially in elderly people and children with weak resistance, such as hemolytic uremic syndrome. May have unusual symptoms.
  • Antibiotics may be administered for such infections, but by administering antibiotics the bacteria are killed, and toxins inside the bacteria are released to the outside of the bacteria at the same time. It has been pointed out that there is a risk of the condition getting worse.
  • highly contagious infections such as O-157 that develop only by ingesting hundreds to thousands of bacteria, in order to prevent secondary infection, In some cases, antibiotics have to be chosen.
  • hemolytic uremic syndrome may occur in about 10% of cases with O-157, and in this case, plasma exchange or dialysis therapy is performed. It can be said that this is a heavy treatment.
  • symptomatic treatment is a priority method for coping with toxins produced by bacteria, and other methods include the use of toxin adsorbents and the use of antibodies against toxins.
  • side effects such as constipation, and the use of antibodies is inconvenient in that antibodies must be developed for each toxin.
  • TDM trehalose dimycolate
  • TDCM trehalose dicorynomycolate
  • TDM is found as a glycolipid present on the cell surface of Mycobacterium tuberculosis and is known to exhibit immunostimulatory activity and anticancer activity.
  • TDCM a homologue having a shorter carbon number than TDM, was isolated from the cognate Diphtheria bacterium (Corynebacterium spp), and it was revealed that TDCM and its stereoisomer show immunostimulatory activity and anticancer activity, respectively. Has been.
  • TDM and TDCM are highly toxic and cannot be used as pharmaceuticals. Therefore, in order to use it as a medicine, it was necessary to synthesize a compound having reduced toxicity while maintaining or enhancing the activity.
  • a trehalose 6,6′-diester compound which is an ester of trehalose and a fatty acid
  • tests such as a toxicity test and a macrophage activation action were performed (see Non-Patent Document 1).
  • the presence or absence of a ⁇ -hydroxyl group, the compound having 30,32,48 carbon atoms in the length of the alkyl part of the lipid, the compound in which the ester bond between the sugar and the lipid is replaced with an amide bond, etc. are examined. In terms, it was considered that ester bonds and long-chain fatty acids made important contributions to toxicity.
  • the present inventors have synthesized a derivative or the like having an ester bond or an amide bond and changing the ⁇ -position hydroxyl group to a hydrogen atom or a methoxy group with respect to the TDM derivative (see Patent Document 1).
  • the derivatives described in the literature have a relatively short alkyl moiety of fatty acid of about 7 carbon atoms, and the activity is only measured as an adenosine A3 receptor antagonist.
  • the present inventors succeeded in synthesizing amide derivatives of TDCM in which the hydroxyl group of TDCM is changed to a hydrogen atom so that it is not an asymmetric carbon and the ester bond is changed to an amide bond.
  • the immunostimulatory effect was confirmed (refer patent document 2).
  • these amide derivatives were later found to have an effect of inducing cancer, and it was unavoidable to use them as pharmaceutical compounds.
  • TDM or TDCM derivative a highly safe treatment or onset suppression method has not yet been established for various symptoms derived from pathogenic bacteria, but an effective and safe treatment or onset suppression method has been established. Is desired.
  • TDM and TDCM When synthesizing derivatives of TDM and TDCM, since TDM and TDCM themselves are highly toxic, it is necessary to synthesize a compound having activity and low toxicity. Although some modified TDM or TDCM have been known as the prior art, TDM and TDCM are glycolipids, and sugar chains have many hydroxyl groups and high polarity, which may be difficult to synthesize. The structure-activity relationship of which structure leads to what activity has not yet been clarified.
  • an object of the present invention is to produce many derivatives of TDM and TDCM, and to provide a compound having high activity and low toxicity, and a medicament containing the compound.
  • the use of antibiotics against pathogenic bacteria as a conventional technique is intended to prevent E. coli from releasing toxins by inhibiting the growth of E. coli and killing E. coli.
  • the present invention provides a pharmaceutical that can reduce the toxicity of a toxin even when the bacteria grow to produce a toxin. The purpose is to provide.
  • the present inventors have found that the trehalose diester compound represented by the formula (1) exhibits excellent antibacterial activity against infectious diseases caused by pathogenic bacteria and has low toxicity.
  • X is R 1 —CHR 2 — and X ′ is R 1 ′ —CHR 2 ′ —
  • ⁇ -branched compound a compound in which n and n ′ are particularly 0
  • ⁇ -branched compound a compound in which n and n ′ are 1 in particular
  • the activity tends to be maximized for a specific length.
  • the trehalose diester compound it has not been known so far that it is useful as an antibacterial agent even when the toxin itself produced by the fungus is administered in the above-mentioned literature and the like. In the in vivo test, it was found that it is effective not only when the bacterium is administered but also when the toxin itself produced from the bacterium is administered.
  • the present invention provides the following formula (1):
  • X is a group represented by phenyl, naphthyl, or R 1 —CHR 2 —;
  • X ′ is a group represented by phenyl, naphthyl, or R 1 ′ —CHR 2 ′ —
  • R 1 , R 1 ′, R 2 and R 2 ′ are each independently a hydrogen atom or a C 1 -C 21 alkyl group, and with respect to R 1 , R 1 ′, R 2 and R 2 ′, each alkyl group
  • the hydrogen atom therein may be substituted by a hydroxyl group or an alkoxy group, and all or part of each alkyl group may form a 4-8 membered ring, and R 1 and R 2 , R 1 'And R 2 ' may be connected to each other to form a 4-8 membered ring
  • n and n ′ are each independently an integer of 0 to 3.
  • X is R 1 —CHR 2 —
  • X ′ is R 1 ′ —CHR 2 ′ —
  • R 1 , R 1 ′, R 2 and R 2 ′ are each independently hydrogen A compound that is an atomic or unsubstituted and straight-chain C 1 -C 6 alkyl group, wherein n and n ′ are 0, and
  • X is R 1 —CHR 2 —
  • X ′ is R 1 ′ —CHR 2 ′ —
  • R 1 , R 1 ′, R 2 and R 2 ′ are C 14 linear alkyl groups And excluding compounds in which n and n ′ are 0]
  • the compound represented by these is provided.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound represented by formula (1) and a pharmacologically acceptable carrier.
  • the present invention also relates to a medicament comprising a compound represented by the formula (1) and a pharmacologically acceptable carrier, an immunostimulator, a macrophage activator, a neutrophil activator, a phagocytic phagocytic cell
  • a pharmaceutical composition used as an action activator, antibacterial infection agent, or fungus-producing toxin neutralizer.
  • the present invention also relates to a pharmaceutical composition used as an immunostimulant, macrophage activator, neutrophil activator, phagocytic phagocytic activator, antibacterial infection agent, or fungus-producing toxin neutralizer.
  • a pharmaceutical composition used as an immunostimulant, macrophage activator, neutrophil activator, phagocytic phagocytic activator, antibacterial infection agent, or fungus-producing toxin neutralizer.
  • the use of a compound of formula (1) for the manufacture is provided.
  • the present invention also relates to a method for preventing or treating infectious diseases in mammals including humans, There is provided a method comprising administering to the mammal a therapeutically effective amount of a compound represented by formula (1).
  • X is a group represented by phenyl, naphthyl, or R 1 —CHR 2 —;
  • X ′ is a group represented by phenyl, naphthyl, or R 1 ′ —CHR 2 ′ —
  • R 1 , R 1 ′, R 2 and R 2 ′ are each independently a hydrogen atom or a C 1 -C 21 alkyl group, and with respect to R 1 , R 1 ′, R 2 and R 2 ′, each alkyl group
  • the hydrogen atom therein may be substituted by a hydroxyl group or an alkoxy group, and all or part of each alkyl group may form a 4-8 membered ring, and R 1 and R 2 , R 1 'And R 2 ' may be connected to each other to form a 4-8 membered ring, n and n ′ are each independently an integer of 0 to 3.
  • a fungus-producing toxin neutralizing agent comprising a
  • the trehalose compound of the present invention has high immunostimulatory activity and low toxicity, it is useful for providing an excellent pharmaceutical against infection caused by pathogenic bacteria.
  • the trehalose compound of the present invention has an action of activating cellular immunity, and exhibits antibacterial action by activating neutrophils and macrophages and enhancing their phagocytic action. That is, according to the compound of the present invention, since the bacteria themselves are taken into neutrophils and macrophages, the release of toxins to the outside of the bacteria is small, and the risk of toxin release by destruction of Escherichia coli during antibiotic administration is low. A medicament can be provided.
  • the trehalose compound of the present invention exhibits a toxicity reducing action against the toxin itself. Therefore, according to the present invention, it is possible to provide an effective medicine even in the case where the degree of infection progresses in an infectious disease caused by Escherichia coli, etc., resulting in a situation where Escherichia coli and the like proliferate and produce toxins outside the fungus. Can do.
  • the activation of neutrophils and macrophages by administration of the trehalose compound of the present invention enables predation of multidrug-resistant bacteria produced by antibiotic administration as well as non-resistant bacteria. Therefore, it is possible to provide a medicament that has a therapeutic effect on infections caused by multidrug-resistant bacteria.
  • the trehalose compound of the present invention activates cellular immunity, but an excessive immune response hardly occurs. Therefore, according to the present invention, for example, an antibody against an antibody administered as a medicine in vivo can be produced against an antibody medicine, and a medicine with a low risk that an excessive immune response is generated can be provided.
  • the trehalose compound of the present invention includes a compound not containing an asymmetric carbon atom. That is, the trehalose compound according to the present invention can be efficiently synthesized in a large amount by the method for producing a trehalose compound of the present invention without including asymmetric synthesis.
  • FIG. 2 shows a CD-8 positive cell image by a fluorescence microscope in mouse peritoneal infiltrating cells treated with TDCM, vehicle or a test compound of the present invention. Shows the measurement results of CD-8 positive cells by flow cytometry in mouse peritoneal infiltrating cells treated with TDCM, vehicle or the test compound of the present invention.
  • the compound represented by Formula (1) may exist in the form of the pharmacologically acceptable salt or solvate.
  • the “C 1 -C 21 alkyl group” means a linear or branched aliphatic hydrocarbon group having 1 to 21 carbon atoms, or all or part of the aliphatic hydrocarbon group. It also includes an alicyclic hydrocarbon group forming a 4-8 membered ring. In one of the preferred embodiments, the “C 1 -C 21 alkyl group” of the compound represented by formula (1) of the present invention is a linear aliphatic hydrocarbon group.
  • C 1 -C 21 alkyl group which is a linear aliphatic hydrocarbon group
  • examples of the “C 1 -C 21 alkyl group” which is a linear aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, Examples thereof include n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-icosyl group
  • Examples of the alicyclic hydrocarbon group in which all of the aliphatic hydrocarbon groups form a ring include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • Examples of the alicyclic hydrocarbon group in which a part of the aliphatic hydrocarbon group forms a ring include a cyclohexyl-n-octyl group, a cyclohexyl-n-nonyl group, and a cycloheptyl-n-octyl group. Group, etc. can be mentioned.
  • R 1 , R 1 ′, R 2 , or R 2 ′ is preferably a linear alkyl group, more preferably a linear alkyl group having 10 to 16 carbon atoms, particularly preferably When n is 0, it is an n-decyl group which is a linear alkyl group having 10 carbon atoms, and when n is 1, an n-nonyl group which is a linear alkyl group having 9 carbon atoms, N-tridecyl group, which is a 13 linear alkyl group, or n-tetradecyl group, which is a linear alkyl group having 14 carbon atoms, and most preferably an n-decyl group.
  • the hydrogen atom in each alkyl group may be substituted with a hydroxyl group or an alkoxy group.
  • the alkoxy group is a substituent having a structure in which a linear or branched aliphatic hydrocarbon having 1 to 21 carbon atoms is bonded to an oxygen atom, such as a methoxy group, an ethoxy group, a propoxy group, Examples include butoxy group, pentyloxy group, hexyloxy group, heptyloxy group and the like.
  • it is a straight-chain alkoxy group, and as an alkyl group substituted by an alkoxy group, for example, a methoxydodecyl group, ethoxyundecyl group, propoxydecyl group, pentyloxynonyl group, hexyloxyoctyl group, hexyloxyheptyl group, And a pentyloxyoctyl group.
  • each alkyl group is substituted by a hydroxyl group or an alkoxy group
  • the position of substitution may be any in each alkyl group, but preferably the hydrogen atom bonded to the terminal carbon atom of the alkyl group is It is a compound substituted by a hydroxyl group or an alkoxy group.
  • the hydrocarbon group is bonded via an oxygen atom to form a linear ether structure, and the intervening oxygen atom and the carbon atom constituting the hydrocarbon group are It is preferable that the number of carbon and oxygen atoms constituting the alkoxyalkyl group is 2 to 21 as the sum of the numbers is the same as the length of the alkyl group of the hydrocarbon group, and more preferably, when n is 0, 10 to 16, and 9 to 15 when n is 1.
  • R 1 and R 2 , R 1 ′ and R 2 ′ may be connected to each other to form a 4-8 membered ring, and when X is R 1 —CHR 2 —, R 1 and Both the carbon atom to which R 2 is bonded and R 1 and R 2 are constituent atoms of a 4-8 membered ring.
  • the alkyl group constituting R 1 and R 2 may be a branched alkyl group. In this case, a part of the branched alkyl group constitutes a 4-8 membered ring and is substituted with the alkyl group. A structure like cycloalkyl may be used. Further, the case where a ring is formed includes the case where it is substituted with the same substituent as described above.
  • Examples of the 4-8 membered ring include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. From the viewpoint of the structural stability of the compound, a cyclohexyl group or a cycloheptyl group is preferable.
  • R 1 and R 1 ′, R 2 and R 2 ′ may be the same or different. From the viewpoint of the efficiency of synthesis, R 1 is preferably the same as R 1 ′, and R 2 is R 2. Same as'.
  • R 1 and R 2 may be the same or different, as one preferred embodiment, the number of carbon atoms of R 1 is compared with the number of carbon atoms in R 2 The same compound having 1 or 2 carbon atoms or 1 or 2 carbon atoms less than that of R 2 .
  • R 1 is a short-chain alkyl group having 1 to 5 carbon atoms
  • R 2 is a long-chain alkyl group having 10 to 16 carbon atoms, and vice versa.
  • 1 is a long chain alkyl group such as 10 to 16 and R 2 is a short chain alkyl group such as 1 to 5 carbon atoms.
  • R 1 ′ and R 2 ′ is the same as the relationship between R 1 and R 2.
  • R 1 is R 1 ′ and R 2 is R 2 ′. It can be read as R 2 '.
  • N and n ′ may be the same or different. From the viewpoint of the efficiency of synthesis, it is preferable that n and n ′ are the same. From the viewpoint of activity, compounds in which n to n ′ are 0 and compounds in which n to n ′ are 1 are preferable.
  • trehalose has three isomers, ⁇ , ⁇ ′, ⁇ , ⁇ ′, and ⁇ , ⁇ ′.
  • the trehalose compound of the present invention is preferably an ⁇ , ⁇ ′ form.
  • the compound of formula (1) and salts thereof may exist as solvates, which are also within the scope of the present invention.
  • the scope of the present invention also includes radiolabeled compounds of the compound of formula (1) useful for biological research.
  • a preferred compound of the present invention is a compound represented by the above formula (1), and each substituent in the formula has the following characteristics. The following features can be selected independently, alone or in combination as long as they do not conflict.
  • (C) R 1 and R 1 ′ are each independently an unsubstituted C 1 -C 21 alkyl group.
  • R 2 and R 2 ′ are each independently a hydrogen atom or an unsubstituted C 1 -C 21 alkyl group.
  • R 1 and R 1 ′ are each independently a linear C 1 -C 21 alkyl group.
  • R 2 and R 2 ′ are each independently a hydrogen atom or a linear C 1 -C 21 alkyl group.
  • R 1 and R 1 ′ are each independently an unsubstituted and linear C 1 -C 21 alkyl group.
  • R 2 and R 2 ′ are each independently a hydrogen atom or an unsubstituted and linear C 1 -C 21 alkyl group.
  • R 1 and R 1 ′ are each independently an unsubstituted and linear C 7 -C 21 alkyl group.
  • R 2 and R 2 ′ are each independently an unsubstituted and linear C 7 -C 21 alkyl group.
  • K R 1 and R 1 ′ are identical and are an unsubstituted C 1 -C 21 alkyl group.
  • L R 2 and R 2 ′ are the same and are a hydrogen atom or an unsubstituted C 1 -C 21 alkyl group.
  • M R 1 and R 1 ′ are the same and are a linear C 1 -C 21 alkyl group.
  • N R 2 and R 2 ′ are the same and are a hydrogen atom or a linear C 1 -C 21 alkyl group.
  • R 1 and R 1 ′ are the same, unsubstituted and straight-chain C 1 -C 21 alkyl groups.
  • P R 2 and R 2 ′ are the same and are a hydrogen atom or an unsubstituted and linear C 1 -C 21 alkyl group.
  • Q R 1 and R 1 ′ are the same, unsubstituted and straight-chain C 7 -C 21 alkyl groups.
  • R R 2 and R 2 ′ are the same, unsubstituted and straight-chain C 7 -C 21 alkyl groups.
  • S n and n ′ are each independently 0 or 1.
  • T n and n ′ are 0.
  • U n and n ′ are 1.
  • a preferred compound of the present invention is a compound represented by the formula (1), or a pharmacologically acceptable salt or solvate thereof, and has the following structure.
  • each alkyl group is a hydroxyl group , May be substituted by an alkoxy group, all or part of each alkyl group may form a 4-8 membered ring, and R 1 and R 2 , R 1 ′ and R 2 ′ are Each may be linked to each other to form a 4-8 membered ring; n and n ′ are each independently an integer of 0 to 3.
  • X is a group represented by R 1 —CHR 2 —;
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —, wherein R 1 , R 1 ′, R 2 and R 2 ′ are each independently a linear C 8 -C 16 alkyl group, and with respect to R 1 , R 1 ′, R 2 and R 2 ′, the hydrogen atom in each alkyl group is a hydroxyl group , May be substituted by an alkoxy group, and all or part of each alkyl group may form a 4-8 membered ring; n and n ′ are 0.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —, wherein R 1 , R 1 ′, R 2 and R 2 ′ are each independently a linear C 8 -C 14 alkyl group, and with respect to R 1 , R 1 ′, R 2 and R 2 ′, the hydrogen atom in each alkyl group is a hydroxyl group , May be substituted by an alkoxy group, and all or part of each alkyl group may form a 4-8 membered ring; n and n ′ are 1.
  • (Z) X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —, wherein R 1 and R 1 ′ are The same, a hydrogen atom or a C 1 -C 21 alkyl group, and with respect to R 1 and R 1 ′, the hydrogen atom in each alkyl group may be substituted with a hydroxyl group or an alkoxy group; All or part of may form a 4-8 membered ring;
  • R 2 and R 2 ′ are the same and are a hydrogen atom or a C 1 -C 21 alkyl group, and R 2 , R 2 ′
  • the hydrogen atom in each alkyl group may be substituted with a hydroxyl group or an alkoxy group, and all or part of each alkyl group may form a 4-8 membered ring; and
  • R 1 and R 2, R 1 'and R 2' is to form a 4-8 membere
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same there is a C 1 -C 21 alkyl group, a hydrogen atom in each alkyl group, a hydroxyl group, it may be substituted by an alkoxy group;
  • R 2 and R 2 ' is the same, C 7 - A C 21 alkyl group, the hydrogen atom in each alkyl group may be substituted by a hydroxyl group, an alkoxy group;
  • n and n ′ are the same and are 0 or 1.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same there are a C 7 -C 21 alkyl group, a hydrogen atom in each alkyl group, a hydroxyl group, it may be substituted by an alkoxy group;
  • R 2 and R 2 ' are identical and hydrogen atoms, Alternatively, it is a C 1 -C 21 alkyl group, and the hydrogen atom in each alkyl group may be substituted with a hydroxyl group or an alkoxy group;
  • n and n ′ are the same and are 0 or 1.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same
  • R 2 and R 2 ′ are the same;
  • n and n ′ are the same and are 0 or 1 .
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same
  • R 2 and R 2 ′ are the same and are a hydrogen atom or an unsubstituted and straight-chain C 7 -C 21 alkyl group
  • N and n ′ are the same and are 0 or 1.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same An unsubstituted and straight-chain C 7 -C 21 alkyl group;
  • R 2 and R 2 ′ are the same and are a hydrogen atom or an unsubstituted and straight-chain C 1 -C 21 alkyl group
  • N and n ′ are the same and are 0 or 1.
  • FF FF
  • X is a group represented by R 1 —CHR 2 —
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —
  • R 1 and R 1 ′ are the same
  • R 2 and R 2 ′ are the same, unsubstituted and straight-chain C 7 -C 21 alkyl group
  • n and n ′ is the same and is 0 or 1.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same An unsubstituted and straight-chain C 8 -C 16 alkyl group;
  • R 2 and R 2 ′ are the same, unsubstituted and straight-chain C 8 -C 16 alkyl group;
  • n and n ′ is the same and is 0 or 1.
  • (HH) X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same An unsubstituted and straight-chain C 8 -C 16 alkyl group;
  • R 2 and R 2 ′ are the same, unsubstituted and straight-chain C 8 -C 16 alkyl group;
  • n and n ′ is 0.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 and R 1 ′ are the same An unsubstituted and straight-chain C 9 -C 14 alkyl group;
  • R 2 and R 2 ′ are the same, unsubstituted and straight-chain C 9 -C 14 alkyl group;
  • n and n ′ is 1.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 , R 1 ′, R 2 and R 2 ' is the same, unsubstituted and straight-chain C 10 alkyl group;
  • n and n' are 0.
  • X is a group represented by R 1 —CHR 2 —;
  • X ′ is a group represented by R 1 ′ —CHR 2 ′ —;
  • R 1 , R 1 ′, R 2 and R 2 ′ is the same, unsubstituted and linear C 9 , C 13 , or C 14 alkyl group;
  • n and n ′ are 1.
  • trehalose compound of the present invention As specific examples of the trehalose compound of the present invention, the following compounds can be exemplified.
  • Examples of compounds suitable as the trehalose compound of the present invention include the following.
  • any of the following compounds 6,6′-bis-O- (2-decyldodecanoyl) - ⁇ , ⁇ ′-trehalose, 6,6′-bis-O- (2-tetradecyldodecanoyl) - ⁇ , ⁇ ′-trehalose, 6,6′-bis-O- (3-nonyldodecanoyl) - ⁇ , ⁇ ′-trehalose, 6,6′-bis-O- (3-tridecylhexadecanoyl) - ⁇ , ⁇ ′-trehalose, or
  • An example is a fungus-producing toxin neutralizing agent characterized by containing 6,6′-bis-O- (3-tetradecylheptadecanoyl) - ⁇ , ⁇ ′-trehalose.
  • the pharmaceutical composition and immunostimulant of the present invention are characterized by containing the trehalose compound.
  • the trehalose compound of the present invention is an immunostimulant having a high activation action on macrophages and neutrophils. Therefore, the trehalose compound of the present invention can be used as a prophylactic or therapeutic agent for diseases associated with immune defense such as bacterial infections, viral infections, fungal infections, opportunistic infections, multidrug resistant infections, etc. It is effective as an agent.
  • ⁇ Manufacturing method> The compound represented by Formula (1) of this invention is compoundable by the two processes shown by the following (a) and (b).
  • (A) A step of performing an esterification reaction by causing the carbonyl compound represented by the formula (4) and the formula (6) to act on the trehalose compound represented by the formula (3) simultaneously or sequentially.
  • the compound represented by Formula (2) can also be synthesized in the same manner as the compound represented by Formula (1).
  • the compound represented by Formula (1) of this invention can be manufactured by the method represented by the following synthetic scheme 1. ⁇ Synthesis scheme 1>
  • R 1 , R 1 ′, R 2 , R 2 ′, n and n ′ are the same as described above.
  • R 3 and R 3 ′ represent a protecting group for the hydroxyl group of the sugar.
  • Y and Y ′ each independently represent a hydroxyl group or a halogen atom.
  • the trehalose compound represented by the formula (3) is an ⁇ , ⁇ ′ form, but an ⁇ , ⁇ ′ form and a ⁇ , ⁇ ′ form can be synthesized in the same manner. However, in the present invention, ⁇ and ⁇ ′ forms are preferred.
  • R 3 and R 3 ′ those known as a protecting group for a hydroxyl group can be used.
  • a protecting group for a hydroxyl group described in Protecting groups in Organic chemistry John Wiley & Sons INC., New York 1991, ISBN 0-471-62301-6
  • arylalkyl groups such as benzyl group, p-methoxybenzyl group and biphenylmethyl group
  • acyl groups such as acetyl group
  • alkoxycarbonyl groups such as methoxycarbonyl group and tert-butoxycarbonyl group
  • Examples thereof include an alkylsilyl group.
  • a benzyl group is preferred.
  • R 3 and R 3 ′ may be the same or different and are preferably the same.
  • Y and Y ′ are each independently a hydroxyl group or a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, and an iodine atom.
  • Y and Y ′ are preferably a hydroxyl group.
  • the trehalose compound represented by the formula (3) is allowed to react with the carbonyl compound represented by the formula (4) and the formula (6) in order to carry out an esterification reaction between the trehalose compound and the carbonyl compound.
  • the trehalose compound represented by the formula (3) is a compound in which hydroxyl groups other than the 6-position and 6'-position of trehalose are protected with a protecting group, and a commercially available one is used or synthesized from trehalose by a known method. Can be used. For example, 2,3,4,2 ′, 3 ′, 4′-hexabenzoxy- ⁇ , ⁇ ′-trehalose in which the protecting group is a benzyl group is commercially available and can be suitably used. . In addition, ⁇ and ⁇ ′ forms of trehalose exist in nature and are readily available.
  • the carbonyl compounds represented by the formulas (4) and (6) are commercially available, or synthesized by a known method in addition to those synthesized by the synthesis scheme 4, 5, or 6 described later. Can be used.
  • both the 6-position and 6′-position hydroxyl groups in the trehalose compound represented by the formula (3) are used.
  • esterification A compound in which both the 6-position and 6'-position hydroxyl groups are esterified is called a diester, and an intermediate compound in which only one of them is esterified is called a monoester.
  • the monoester product in which the desired 6-position hydroxyl group is esterified after the reaction may be separated and purified.
  • esterification with the carbonyl compound represented by the formula (4) among the 6-position and 6′-position hydroxyl groups of the trehalose compound represented by the formula (3) as a raw material is performed.
  • One undesired hydroxyl group may be selectively protected, and the other hydroxyl group may be selectively deprotected after the esterification reaction.
  • the 6'-position hydroxyl group may be esterified first in addition to the case where the 6-position hydroxyl group is esterified first.
  • esterification reaction a method commonly used as a general esterification reaction and a method known to those skilled in the art can be widely used.
  • condensing agent used in these methods a dehydrating agent is included, and those usually used in the esterification reaction of alcohol and carboxylic acid can be widely used.
  • condensing agents include mineral acids such as hydrogen chloride, sulfuric acid and hydrochloric acid; organic acids such as paratoluenesulfonic acid and camphorsulfonic acid; dehydrating agents such as Lewis acids such as boron fluoride etherate; phosphorus trichloride and triodorous Acid halide generators such as phosphorus chloride, phosphorus pentachloride, phosphorus oxychloride and thionyl chloride; mixed acid anhydride generators such as ethyl chloroformate and methanesulfonyl chloride; N, N′-dicyclohexylcarbodiimide (DCC), diisopropyl Carbodiimides such as carbodiimide, 1-ethyl-3-dimethylaminopropylcarbodi
  • the esterification reaction can be performed in a suitable solvent.
  • Any solvent may be used as long as it is an inert solvent that has appropriate solubility with respect to the raw material compound and does not adversely affect the esterification reaction.
  • the solvent used in the esterification reaction include aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene: aliphatics such as n-hexane, cyclohexane and petroleum ether.
  • Hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride; ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether; acetone, 2 -Ketones such as butanone and methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile and benzonitrile; N, N-dimethylformamide, hexamethylphosphoric triamide (HMPA) Amides and the like; may be mentioned sulfoxide such as dimethyl sulfoxide. These solvents may be used alone or in combination of two or more.
  • ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene
  • reaction accelerators can be widely used.
  • the reaction accelerator include catalysts such as dimethylformamide, dimethylamide pyridine and 4-pyrrolidinopyridine, and desiccants such as anhydrous magnesium sulfate and molecular sieves (4A, 5A). These reaction accelerators may be added to the reaction system.
  • an apparatus such as a Dean-Stark water separator or a Soxhlet extractor may be used.
  • reaction accelerators or apparatuses may be used singly or in combination of two or more, and a catalyst and a desiccant may be used in combination.
  • the use ratio of the raw material compound and the reaction accelerator is not particularly limited, and can be appropriately selected from a wide range.
  • the amount of the raw material compound used for this reaction is not particularly limited and is appropriately selected from a wide range.
  • the compound represented by the formula (4) and the compound represented by the formula (6) are sequentially reacted, the compound represented by the formula (4) is represented with respect to 1 mol of the trehalose compound represented by the formula (3).
  • the carbonyl compound is usually used in an amount of 0.5 to 1.8 mol, preferably 0.8 to 1.2 mol.
  • the carbonyl compound represented by the formula (6) is usually 0.5 to 1.8 moles, preferably 0.8 to 1.2 moles per mole of the monoester represented by the formula (5). Use mol.
  • reaction temperature of the esterification reaction is not particularly limited, but it may be usually within a range from ⁇ 10 ° C. to the boiling point temperature of the solvent used. Usually, it is carried out at 0 to 200 ° C., preferably from room temperature to 100 ° C.
  • reaction time varies depending on the reaction conditions such as the type of raw material compound and the amount used, reaction temperature, etc., it can usually be appropriately adjusted within the range of 1 hour to 1 week, preferably 1 to 24 hours, more preferably 3 to 10 hours.
  • reaction mixture After completion of the reaction, the reaction mixture is subjected to general treatments such as separation and removal of by-products, drying and evaporation of the solvent, and then purified by a general method such as silica gel column chromatography.
  • general treatments such as separation and removal of by-products, drying and evaporation of the solvent, and then purified by a general method such as silica gel column chromatography.
  • the esterification reaction is carried out in a suitable solvent in the presence of a base as necessary. be able to.
  • the same inert solvent used in the esterification reaction can be used.
  • Examples of the base include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; hydroxides of alkaline earth metals such as calcium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; Alkali metal hydrogen carbonates such as sodium hydrogen and potassium hydrogen carbonate; Alkali metal acetates such as sodium acetate and potassium acetate; Alkaline earth metal acetates such as calcium acetate; Alkaline such as sodium hydride and potassium hydride Metal hydrides; hydrides of alkaline earth metals such as calcium hydride; ammonium salts such as ammonium hydroxide, ammonium carbonate and ammonium acetate; trimethylamine, triethylamine, N, N-dimethylaniline, pyridine, 4- (dimethylamino ) Pyridine, diazabicyclooctane (DAB) O), diazabicyclononene (DBN), mention may be made of a ter
  • the amount of the raw material compound and base used for this reaction is also not particularly limited and is appropriately selected from a wide range.
  • the compound represented by the formula (4) and the compound represented by the formula (6) are sequentially reacted, the compound represented by the formula (4) is represented with respect to 1 mol of the trehalose compound represented by the formula (2).
  • the carbonyl compound is usually used in an amount of 0.5 to 1.8 mol, preferably 0.8 to 1.2 mol
  • the base is usually used in an amount of 0.5 to 1.8 mol, preferably 0.8 to 1.2 mol. Use mol.
  • the carbonyl compound represented by the formula (6) is usually 0.5 to 1.8 moles, preferably 0.8 to 1.2 moles per mole of the monoester represented by the formula (5).
  • the base is usually used in an amount of 0.5 to 1.8 mol, preferably 0.8 to 1.2 mol.
  • the reaction temperature is usually in the range from ⁇ 10 ° C. to the boiling point temperature of the solvent used, as in the esterification reaction.
  • the reaction time varies depending on the concentration, temperature, etc., as in the esterification reaction, but can be appropriately adjusted in the range of usually 0.1 to 10 hours.
  • a catalytic hydrogenation reaction can be applied.
  • the catalytic hydrogenation reaction is performed in the presence of a catalyst under a hydrogen atmosphere.
  • catalysts can be widely used as long as they are used for catalytic hydrogenation reaction, and examples thereof include platinum oxide, platinum carbon, palladium hydroxide, palladium carbon, Raney nickel and the like.
  • the amount of the catalyst used is usually about 0.001 to 50% by weight, preferably about 0.01 to 10% by weight, based on the compound represented by the formula (7).
  • the hydrogen pressure is not particularly limited and can be appropriately selected from a wide range.
  • the hydrogen pressure is usually about 0.8 to 100 atm, preferably about 1 to 3 atm.
  • the reaction is usually carried out in a suitable solvent, and any solvent can be used as long as it is inert so as not to adversely affect the reaction.
  • the solvent used include aliphatic halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform and carbon tetrachloride; alcohols such as methanol, ethanol and isopropanol; esters such as methyl formate, methyl acetate and ethyl acetate.
  • a carboxylic acid such as formic acid or acetic acid, or a mixed solvent thereof.
  • the temperature of this reaction is usually about 0 to 100 ° C., preferably about 10 to 40 ° C.
  • the reaction time varies depending on the base mass, temperature, type of catalyst, etc., but the reaction may be terminated based on the theoretical amount of hydrogen consumption. Usually, it is about 1 to 50 hours, preferably 1 to 30 hours.
  • the catalyst is filtered and the solvent is distilled off, followed by purification by a general method such as solvent extraction or silica gel column chromatography.
  • the compound represented by the formula (1) of the present invention can also be produced by the method shown in the following synthesis scheme 2 or 3. ⁇ Synthesis scheme 2>
  • R 1 , R 1 ′, R 2 , R 2 ′, R 3 , R 3 ′, n and n ′ are the same as described above.
  • Synthesis scheme 2 is a scheme in which the carbonyl compound represented by formula (4) and formula (6) is simultaneously acted on the trehalose compound represented by formula (3) in step (a), which is an esterification reaction.
  • Step (b), which is a deprotection reaction, is the same as in Synthesis Scheme 1.
  • the esterification reaction and deprotection reaction are synthesized in the step (a) except that the trehalose compound represented by the formula (3) is allowed to simultaneously act on the carbonyl compound represented by the formula (4) and the formula (6).
  • the reaction can be performed in the same manner as in Scheme 1.
  • the carbonyl compound represented by the formula (4) and the carbonyl compound represented by the formula (6) are allowed to act simultaneously, it can be obtained by separating and purifying the target compound from the product.
  • the above synthesis scheme 2 particularly includes the following synthesis scheme 3 It can be expressed as In the case where the compound represented by the formula (1) is not a compound in which R 1 and R 1 ′, R 2 and R 2 ′, n and n ′ are the same, from the viewpoint of increasing the reaction yield. It is preferable to synthesize by the method represented by Synthesis Scheme 1.
  • R 1 , R 2 , R 3 , R 3 ′ and n are the same as described above.
  • step (a) which is an esterification reaction
  • step (b) which is a deprotection reaction
  • the esterification reaction and deprotection reaction in Synthesis Scheme 3 can be performed in the same manner as in the above-mentioned Synthesis Scheme 1 except that the amount of the carbonyl compound represented by Formula (4) is increased.
  • the carbonyl compound represented by the formula (4) is usually 1.8 to 5 mol, preferably 2 to 3 with respect to 1 mol of the trehalose compound represented by the formula (3).
  • the condensing agent is usually 1.8 to 5 mol, preferably 2 to 4 mol
  • the base is usually 1.8 to 8 mol, preferably 2 to 6 mol.
  • the compound represented by the formula (7) can be used in the next reaction without isolation and purification, but it is preferable to remove the reagent and by-product used in the esterification reaction.
  • the carbonyl compound represented by formula (4) or formula (6) which is a raw material compound, can be produced by a method known to those skilled in the art in addition to using a commercially available one. it can.
  • benzoic acid or a benzoic acid halide can be used as the compound in which X to X ′ are phenyl groups and n to n ′ are 0.
  • a compound in which X is R 1 —CHR 2 — and n is 0 can also be produced by the following synthesis scheme 4 or 5.
  • R 1 and R 2 are the same as described above.
  • R 4 represents an alkyl group having 1 to 6 carbon atoms, and Hal represents a halogen atom.
  • Synthesis scheme 4 is a step in which a compound represented by formula (8) is subjected to a normal alkylation reaction to obtain a carbonyl compound represented by formula (4).
  • the compound represented by formula (8) which is a raw material compound a commercially available compound can be used.
  • R 1 is a linear alkyl group having 10 carbon atoms
  • ethyl dodecanoate or the like is used.
  • Can do An ester of an acid having a desired length may be used as the side chain alkyl of the target compound.
  • alkylation reaction various methods such as the method described in Creger, J. Am. Chem. Soc., Vol. 92, pages 1397-98, 1970 can be used. More specifically, after adding a strong base to the solution of the compound represented by the formula (8) and extracting a hydrogen atom at the 2-position, an alkyl halide may be reacted. As an example, alkylation can be carried out by the following reaction.
  • the strong base is not particularly limited as long as it has an action of extracting a hydrogen atom, and examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and the like. Can be mentioned. These bases may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • proton-lithium exchange reaction may be performed in combination with lithium diisopropylamide. Any solvent may be used as long as it is an inert solvent that has appropriate solubility with respect to the raw material compound and does not adversely affect the esterification reaction.
  • solvent used in the alkylation reaction examples include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as n-hexane, cyclohexane and petroleum ether; diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, Examples include ethers such as ethylene glycol dimethyl ether and ethylene glycol diethyl ether. These solvents may be used alone or in combination of two or more.
  • the ratio of the compound represented by the formula (8) and the strong base can be appropriately selected from a wide range, but usually a strong base or the like is added to the compound represented by the formula (8). About 0.9 to 5 times mole is used.
  • the reaction temperature at this time is usually about ⁇ 80 to 60 ° C., preferably about 0 ° C. to 60 ° C.
  • the reaction time is about 5 minutes to 6 hours, preferably about 5 minutes to 1 hour.
  • an alkyl halide is added to the reaction mixture.
  • the halogenated alkyl include 1-iodooctane, 1-iodoheptane, 1-iododecane, 1-iodoundecane, 1-iodododecane, 1-iodotridecane, etc.
  • An alkane halide having a carbon chain moiety having a desired length may be used.
  • the halide include chlorinated products, iodinated products, brominated products, and the like, and preferred are iodinated products.
  • the ratio of the compound represented by the formula (8) and the alkyl halide can be appropriately selected from a wide range, but usually the alkyl halide is compared with the compound represented by the formula (8).
  • the reaction temperature at this time is usually about room temperature.
  • the reaction time is usually about 2 to 12 hours.
  • the target compound is isolated and purified by applying known isolation and purification methods such as silica gel column chromatography and vacuum distillation.
  • a compound in which X is R 1 —CHR 2 — and n is 0 can also be produced by the following synthesis scheme 5.
  • R 1 , R 2 , R 4 and Hal are the same as described above.
  • Synthesis scheme 5 is a step of subjecting the compound represented by formula (11) to a normal alkylation reaction to obtain a carbonyl compound represented by formula (4).
  • the compound represented by the formula (11) which is a raw material compound commercially available compounds can be used.
  • diethyl malonate, dimethyl malonate, dipropyl malonate, didibutyl malonate, diisopropyl malonate, di-malonate examples thereof include tert-butyl, dicyclohexyl malonate, diphenyl malonate, and dibenzyl malonate.
  • the alkylation reaction can be carried out in the same manner as described above by reacting the compound represented by the formula (11), which is a raw material compound, with a strong base and then reacting with an alkyl halide.
  • the ratio of the compound represented by the formula (11) and the strong base can be appropriately selected from a wide range.
  • a strong base or the like is used in an amount of about 0.9 to 5 moles compared to the compound represented by 11).
  • the reaction temperature at this time is usually about ⁇ 80 to 60 ° C., preferably about 0 ° C. to 60 ° C.
  • the reaction time is about 5 minutes to 6 hours, preferably about 5 minutes to 1 hour.
  • the ratio of the compound represented by the formula (11) and the alkyl halide can be appropriately selected from a wide range, but usually the compound represented by the formula (11)
  • the alkyl halide represented by the formula (12) and the alkyl halide represented by the formula (9) are each used in an amount of about 0.8 to 1.2 times mol.
  • the target compound is a compound in which R 1 and R 2 are the same
  • the number of alkyl halides may be one, and usually a halogenated alkyl is 2. with respect to the compound represented by formula (11). Use about 2 to 4 moles.
  • the alkyl halide represented by the formula (12) and the alkyl halide represented by the formula (9) are allowed to act simultaneously as described above.
  • different alkyl halides are allowed to act in sequence. After acting on one alkyl halide, isolation and purification are performed, and the other alkyl halide is allowed to act.
  • the compound may be isolated and purified.
  • known isolation and purification methods such as silica gel column chromatography and vacuum distillation can be applied.
  • a compound in which X is R 1 —CHR 2 — and n is 1 can also be produced by the following synthesis scheme 6.
  • Synthesis scheme 6 can be described as the following synthesis schemes 6-1 to 6-5. ⁇ Synthesis scheme 6-1>
  • R 1 is the same as described above.
  • Synthesis scheme 6-1 is a reaction in which N, O-dimethylhydroxyamine is dehydrated and bound to a carboxylic acid that is a raw material compound.
  • a basic condensing agent is allowed to act on the carboxylic acid represented by the formula (13). Any known basic condensing agent can be widely used. Examples of the basic condensing agent include carbonyldiimidazole, 4-dimethylaminopyridine, piperidine, pyrrolidine, pyridine, imidazole, N, N, N Examples include ', N'-tetramethylurea, bis (pentamethylene) urea, 1,1-carbonyldipyrrole, and the like.
  • a commercially available carboxylic acid that is a raw material compound can be used, and examples thereof include heptanoic acid, octanoic acid, decanoic acid, and undecanoic acid.
  • An acid having a desired length may be used as the side chain alkyl of the target compound.
  • Any solvent may be used as long as it is an inert solvent that has appropriate solubility with respect to the raw material compound and does not adversely affect the esterification reaction.
  • the solvent used in the esterification reaction include aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene: aliphatics such as n-hexane, cyclohexane and petroleum ether.
  • Hydrocarbons aliphatic halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride; ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether Can do. These solvents may be used alone or in combination of two or more.
  • the ratio of the carboxylic acid represented by formula (13) to carbonyldiimidazole can be appropriately selected from a wide range, and is usually about 0.8 to 2.0 mol.
  • the reaction temperature at this time is usually about ⁇ 80 to 60 ° C., preferably about 0 ° C. to 60 ° C.
  • the reaction time is about 5 minutes to 6 hours, preferably about 30 minutes to 3 hours.
  • N, O-dimethylhydroxyamine represented by the formula (14) is reacted.
  • N, O-dimethylhydroxyamine, 1-hydroxybenzobenzotriazole and the like can also be used.
  • the ratio of the carboxylic acid represented by the formula (13) and N, O-dimethylhydroxyamine can be appropriately selected from a wide range.
  • the carboxylic acid represented by the formula (13) is N, About 0.8 to 1.5 moles of O-dimethylhydroxyamine may be used.
  • the reaction is usually about ⁇ 80 to 60 ° C., preferably about 0 ° C. to 60 ° C.
  • the reaction time may be about 10 minutes to 10 hours.
  • Synthesis scheme 6-2 is a reaction in which an alkyl halide is allowed to act on the compound represented by formula (15) to synthesize a ketone body.
  • an alkyl halide represented by the formula (9) can be reacted with magnesium metal in an ether solvent to prepare a Grignard reagent and used in the reaction.
  • a Grignard reagent As the metallic magnesium, polished ground magnesium is preferably used, and lithium, sodium, zinc, indium and the like can also be used.
  • alkyl halide represented by the formula (9) the same ones as described above can be used.
  • the reaction is carried out in an ether solvent system
  • examples of the ether solvent system include diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether. These solvents may be used alone or in combination of two or more.
  • the ratio of the compound represented by the formula (15) and the alkyl halide can be appropriately selected from a wide range, but usually the alkyl halide is compared with the compound represented by the formula (15). About 0.8 to 5 times mol.
  • the reaction temperature at this time is usually about 0 ° C. to 80 ° C.
  • the reaction time is about 5 minutes to 6 hours.
  • R 1 , R 2 and R 4 are the same as described above.
  • R 5 and R 6 represent an alkyl group, an alkoxy group, an aryl group or an aryloxy group, and these may be substituted with a halogen atom or the like.
  • Synthesis scheme 6-3 is a reaction in which a ketone compound represented by formula (16) is reacted with a Wittig reagent or Horner-Emmons reagent in the presence of a strong base to form a carbon-carbon double bond.
  • the compound represented by the formula (17) described in the above synthesis scheme is a Horner-Emmons reagent, but a Wittig reagent may be used instead.
  • the strong base is not particularly limited as long as it has an action of extracting a hydrogen atom, and examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and the like. Can be mentioned. These bases may be used individually by 1 type, and may be used in mixture of 2 or more types. Any solvent may be used as long as it is an inert solvent that has appropriate solubility with respect to the raw material compound and does not adversely affect the esterification reaction.
  • solvent used in the reaction examples include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as n-hexane, cyclohexane and petroleum ether; diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran and ethylene glycol. Mention may be made of ethers such as dimethyl ether and ethylene glycol diethyl ether. These solvents may be used alone or in combination of two or more.
  • the ratio of the compound represented by the formula (16) and the strong base can be appropriately selected from a wide range, but usually a strong base or the like is added to the compound represented by the formula (16). About 1.1 to 8 moles are used.
  • the reaction temperature at this time is usually about ⁇ 80 to 60 ° C.
  • the reaction time is usually about 5 minutes to 3 hours.
  • the Wittig reagent or Horner-Emmons reagent is reacted with the reaction mixture.
  • the Wittig reagent or Horner-Emmons reagent known ones can be widely used.
  • any carbon-carbon double bond may be formed between the ketone compound represented by formula (16) and the acetate ester.
  • Examples of Wittig reagents include ethoxycarbonylmethyl (trimethyl Examples of phenyl) phosphonium bromide, ethyl (triphenylphosphoranylidene) acetate, Horner-Emmons reagent include ethyl (diaryl) phosphonoacetate such as ethyldiphenylphosphonoacetate, ethyldiethylphosphonoacetate, etc. And ethyl (dialkyl) phosphonoacetate. Ethyl diethyl phosphonoacetate is preferable.
  • the ratio of the compound represented by the formula (16) and ethyl diethyl phosphonoacetate can be appropriately selected from a wide range, but is usually ethyl with respect to the compound represented by the formula (16).
  • Diethylphosphonoacetate is used in an amount of about 1.1 to 10 times mol.
  • the reaction temperature at this time is usually about room temperature.
  • the reaction time is usually about 2 to 30 hours.
  • R 1 , R 2 and R 4 are the same as described above.
  • Synthesis Scheme 6-4 is a reaction in which a catalytic hydrogenation reaction is performed on a carboxylic acid ester having an unsaturated bond represented by Formula (18) to form a saturated carboxylic acid ester.
  • the catalytic hydrogenation reaction is performed in a hydrogen atmosphere and in the presence of a catalyst.
  • catalysts can be widely used as long as they are used for catalytic hydrogenation reaction, and examples thereof include platinum oxide, platinum carbon, palladium hydroxide, palladium carbon, Raney nickel and the like.
  • the amount of the catalyst used is usually about 0.001 to 50% by weight, preferably about 0.01 to 10% by weight, based on the compound represented by the formula (18).
  • the hydrogen pressure is not particularly limited and can be appropriately selected from a wide range.
  • the hydrogen pressure is usually about 0.8 to 100 atm, preferably about 1 to 3 atm.
  • the reaction is usually carried out in an appropriate solvent, and any solvent can be used as long as it is inert so as not to adversely affect the reaction.
  • the solvent used include aliphatic halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform and carbon tetrachloride; alcohols such as methanol, ethanol and isopropanol; esters such as methyl formate, methyl acetate and ethyl acetate.
  • a carboxylic acid such as formic acid or acetic acid, or a mixed solvent thereof.
  • the temperature of this reaction is usually about 0 to 100 ° C., preferably about 10 to 40 ° C.
  • the reaction time varies depending on the base mass, temperature, type of catalyst, etc., but the reaction may be terminated based on the theoretical amount of hydrogen consumption. Usually, it is about 1 to 50 hours, preferably about 1 to 30 hours.
  • R 1 , R 2 and R 4 are the same as described above.
  • Synthesis Scheme 6-5 is a step of obtaining a desired carboxylic acid by hydrolyzing the carboxylic acid ester represented by the formula (19).
  • the hydrolysis reaction various known reactions can be used.
  • the reaction may be performed under acidic conditions, basic conditions, or as an enzymatic reaction.
  • a base may be added to a solvent, and any substance that produces hydride ions as a base can be used widely.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; water Alkali earth metal hydroxides such as calcium oxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkalis such as sodium acetate and potassium acetate Metal acetates; alkaline earth metal acetates such as calcium acetate; alkali metal hydrides such as sodium hydride and potassium hydride; alkaline earth metal hydrides such as calcium hydride; ammonium hydroxide and carbonic acid Ammonium salts such as ammonium and ammonium acetate; trimethylamine, triethylamine, N, N Dimethylaniline, pyridine, 4- (dimethylamino) pyridine, diazabicyclooctane (DABCO),
  • DABCO
  • the solvent may be any inert solvent that has moderate solubility in the raw material compound and does not adversely affect the esterification reaction, and a wide variety of known solvents can be used.
  • the solvent used in the esterification reaction include aromatic hydrocarbons such as benzene, toluene and xylene; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene: aliphatics such as n-hexane, cyclohexane and petroleum ether.
  • Hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride; ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether; acetone, 2 -Ketones such as butanone and methyl isobutyl ketone; nitriles such as acetonitrile, propionitrile and benzonitrile; N, N-dimethylformamide, hexamethylphosphoric triamide (HMPA) Amides and the like; may be mentioned sulfoxide such as dimethyl sulfoxide. These solvents may be used alone or in combination of two or more.
  • ethers such as diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene
  • the reaction temperature, reaction time, etc. can be appropriately selected from a wide range, the reaction temperature is usually about 0 ° C. to 100 ° C., and the reaction time is usually about 30 minutes to 20 hours. Can do.
  • the target compound is isolated and purified by applying known isolation and purification methods such as silica gel column chromatography and vacuum distillation.
  • R 1 and R 2 are the same as described above.
  • a ketone compound represented by the formula (16) is reacted with a diethyl 3-hydroxypropanoyl phosphonate represented by the formula (21) as a Horner-Emmons reagent to produce a carbon-carbon double bond.
  • a catalytic hydrogenation reaction is performed to obtain a compound represented by the formula (23)
  • an oxidation reaction of alcohol is performed, and the formula (24) as a carbonyl compound is obtained.
  • the compound represented by formula (22) only one of the double bond cis-trans stereoisomers is described for the compound represented by formula (22), but the compound is not limited to the stereoisomer. .
  • the reaction using the Horner-Emmons reagent and the catalytic hydrogenation reaction can be similarly performed with reference to Synthesis Scheme 6-3 and Synthesis Scheme 6-4, respectively.
  • the alcohol oxidation reaction can be performed by oxidizing the alcohol with a strong oxidizing agent, and can be appropriately performed using a known method such as chromic acid oxidation or Jones oxidation.
  • chromic acid oxidation can be performed using a salt or complex of chromic anhydride, chromic acid, dichromic acid, or the like.
  • the catalyst is filtered and the solvent is distilled off, followed by purification by a general method such as solvent extraction or silica gel column chromatography.
  • immunostimulation refers to activating various immunity effects such as cellular immunity and humoral immunity, and the immunostimulant indicates any of these immunity activation effects. Anything is acceptable.
  • the trehalose compound of the present invention is assumed to activate at least immune functions such as macrophages and neutrophils called cellular immunity in the immune system. In addition, it includes a wide range of situations in which humoral immunity is further activated by the release of cytokines from these cells.
  • macrophage activation means that macrophages originally have phagocytosis against foreign substances from the outside, but act to enhance macrophage phagocytosis, and macrophage adherence to tissues. , And motility is improved, and refers to a state of phagocytosing bacteria that have entered from the outside and denatured self-components. It is known that the release of nitric oxide (NO) and the release of active oxygen increase when macrophages are activated. The release amount of these free substances can be measured as an index of macrophage activation, or the enhancement of phagocytosis itself can be measured and used as an index of macrophage activation.
  • NO nitric oxide
  • neutrophil activation is a state in which neutrophils originally have phagocytosis against foreign substances similar to macrophages, but enhance phagocytosis of neutrophils and phagocytose bacteria etc. It is. It is known that even when neutrophils are activated, release of nitric oxide (NO) and release of active oxygen increase. In addition, it is also known that the release of physiologically active substances by degranulation of microgranules and azurophilic granules is observed by neutrophil activation. The amount of release of these free substances can be measured and used as an indicator of neutrophil activation, or the enhancement of phagocytosis itself can be measured and used as an indicator of neutrophil activation.
  • NO nitric oxide
  • phagocytic cells include macrophages and monocytes, polynuclear leukocytes, dendritic cells, etc.
  • the phagocytic action refers to immune system cells such as pathogens as foreign substances from the outside. This is the action of digesting the foreign substance by incorporating into the vesicle and fusing the vesicle with the intracellular lysosome.
  • the phagocytic activation of a phagocytic cell is not particularly limited as long as it activates any of these phagocytic cells to enhance its phagocytic action. Preferably, it enhances the phagocytic action of one or both of macrophages and neutrophils.
  • the antibacterial infectious agent may be any agent that reduces infection caused by bacteria, that is, various symptoms caused by the presence of bacteria in the body.
  • bacteria include Pseudomonas aeruginosa and pathogenic Escherichia coli in addition to Clostridium perfringens.
  • the fungus-producing toxin neutralizing agent refers to a substance that reduces the action of bacteria-producing toxins.
  • antibacterial infectious agents there are those that alleviate the symptoms caused by bacteria by suppressing the growth of bacteria or the release of toxins from bacteria.
  • it reduces the action of the toxin, adsorbs the toxin, or modifies the toxin into an inactive one, incorporates the toxin into the phagocytic cell, and further incorporates it It refers to actions such as digesting toxins.
  • the anticancer agent means an agent having antitumor activity and used for the prevention or treatment of cancer.
  • the tumor to which the anticancer agent acts may be a primary tumor or a metastatic tumor. Therefore, the anticancer agent of the present invention may be used not only for the treatment of primary cancer and metastatic tumor, but also for the prevention of metastatic tumor simultaneously with or after treatment of primary cancer.
  • tumors to which the anticancer agent acts in the present invention include, for example, breast cancer, testicular cancer, testicular tumor, pancreatic cancer, diaphragm tumor, lung cancer, ovarian cancer, gastric cancer, gallbladder cancer, kidney cancer, prostate cancer, esophageal cancer, liver cancer, Oral cancer, colon cancer, colon cancer, rectal cancer, uterine cancer, bile duct cancer, islet cell cancer, adrenocortical cancer, bladder cancer, thyroid cancer, skin cancer, malignant carcinoid tumor, melanoma, glioma, osteosarcoma, myeloma, soft part
  • tissue sarcoma neuroblastoma, malignant lymphoma, leukemia and the like.
  • breast cancer, testicular cancer, pancreatic cancer or diaphragm tumor can be preferably exemplified.
  • the trehalose compound of the present invention or a pharmaceutical composition containing the compound and a pharmacologically acceptable carrier is used for pharmaceutical uses such as an immunostimulant, a bacterial toxin neutralizing agent, and an anticancer agent.
  • a pharmacologically acceptable carrier such as an immunostimulant, a bacterial toxin neutralizing agent, and an anticancer agent.
  • the pharmacologically acceptable carrier is not particularly limited as long as it is pharmacologically and pharmaceutically acceptable.
  • excipients for example, excipients, binders, dispersants, thickeners, lubricants, pH adjusters, solubilizers, etc. in addition to carriers generally used in the preparation of preparations, antibiotics, antibacterial agents, bactericides, Preservatives, builders, bleaches, enzymes, chelating agents, antifoaming agents, colorants (dyes, pigments, etc.), softeners, moisturizers, surfactants, antioxidants, fragrances, flavoring agents, flavoring agents, solvents, etc. Is included.
  • the pharmacologically acceptable carrier can be blended within a range that does not interfere with the activity of the trehalose compound (1) of the present invention.
  • the absorbability and blood of the trehalose compound (1) of the present invention can be increased. It can also affect medium levels and cause changes in pharmacokinetics.
  • the method of administering the present compound is a method of administering the trehalose compound of the present invention itself or a pharmaceutical composition containing the compound to a human or an animal, and the present compound or pharmaceutical composition is usually It can be formulated in the form of a medical preparation.
  • the medical preparation is appropriately prepared using the pharmacological carrier.
  • the dosage form There is no particular limitation on the dosage form, and it is appropriately selected depending on the purpose of treatment. Typical examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions) and the like. These preparations may be produced by a commonly used method.
  • the dosage of the above-mentioned medical preparation may be appropriately selected according to usage, patient age, sex, disease severity, and other conditions.
  • the active ingredient trehalose compound (1) is 1 kg body weight per day. 0.01 to 100 mg, preferably 0.1 to 50 mg, is administered once to several times.
  • a dose smaller than the above range may be sufficient, or a dose exceeding the above range may be necessary.
  • Embodiments of the present invention may be described with reference to schematic diagrams, but in the case of schematic diagrams, they may be exaggerated for clarity of explanation.
  • terms such as first, second, etc. are used to represent various elements, it is understood that these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
  • Production Example A-1 Synthesis of 6,6′-bis-O- (2-decyldodecanoyl) -2,3,4,2 ′, 3 ′, 4′-hexabenzyl- ⁇ , ⁇ ′-trehalose]
  • Carboxylic acid (2-decyldodecanoic acid) (145 mg, 425 ⁇ mol) and trehalose derivative (2,3,4,2 ′, 3 ′, 4′-hexabenzoxy- ⁇ ) obtained by the method described in Production Example C-1 , ⁇ ′-trehalose) (150 mg, 170 ⁇ mol) in anhydrous dichloromethane solution (2 ml), powdered molecular sieves 4A (0.3 g), 4-dimethylaminopyridine (20.8 mg, 170 ⁇ mol), 1-ethyl-3- (3-Dimethylaminopropyl) carbodiimide hydrochloride [hereinafter abbreviated as EDCI] (97.8 mg, 510 ⁇ mol) was sequentially added, and the mixture was heated to reflux for 4 hours.
  • EDCI 1-ethyl-3- (3-Dimethylaminopropyl carbodiimide hydrochloride
  • Example 1 Production Example ⁇ -1 [Synthesis of 6,6′-bis-O- (2-decyldodecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 2 Production Example ⁇ -2 [Synthesis of 6,6′-bis-O- (2-octyldecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 3 Production Example ⁇ -3 [Synthesis of 6,6′-bis-O- (2-nonylundecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 5 Production example ⁇ -5 [Synthesis of 6,6′-bis-O- (2-dodecyltetradecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 6 Production example ⁇ -6 [Synthesis of 6,6′-bis-O- (2-tridecylpentadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 7 Production Example ⁇ -7 [Synthesis of 6,6′-bis-O- (2-pentadecylheptadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 8 Production Example ⁇ -8 [Synthesis of 6,6′-bis-O- (2-hexadecyloctadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • EDCI 1-ethyl-3- (3 -Dimethylaminopropyl) carbodiimide hydrochloride
  • carboxylic acid 3-octylundecanoic acid obtained by the method described in Production Example D-2 was used, and 6,6′-bis-O- (3-octylunound was produced by the same method as in Production Example B-1.
  • Decanoyl) -2,3,4,2 ′, 3 ′, 4′-hexabenzyl- ⁇ , ⁇ ′-trehalose was obtained.
  • 6,6′-bis-O- (3-decyl) was prepared by the same method as in Production Example B-1 using 3-decyltridecanoic acid obtained by the method described in Production Example D-3.
  • Tridecanoyl) -2,3,4,2 ′, 3 ′, 4′-hexabenzyl- ⁇ , ⁇ ′-trehalose was obtained.
  • carboxylic acid commercially available 3-tridecylhexadecanoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and in the same manner as in Production Example B-1, 6,6′-bis-O- (3-tridecylhexa Decanoyl) -2,3,4,2 ′, 3 ′, 4′-hexabenzyl- ⁇ , ⁇ ′-trehalose was obtained.
  • Example 9 Production Example ⁇ -1 [Synthesis of 6,6′-bis-O- (3-nonyldodecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 15 Production Example ⁇ -2 [Synthesis of 6,6′-bis-O- (3-octylundecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 10 Production Example ⁇ -3 [Synthesis of 6,6′-bis-O- (3-decyltridecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 11 Production Example ⁇ -4 [Synthesis of 6,6′-bis-O- (3-undecyltetradecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 12 Production Example ⁇ -5 [Synthesis of 6,6′-bis-O- (3-dodecylpentadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 13 Production Example ⁇ -6 [Synthesis of 6,6′-bis-O- (3-tridecylhexadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • Example 14 Production Example ⁇ -7 [Synthesis of 6,6′-bis-O- (3-tetradecylheptadecanoyl) - ⁇ , ⁇ ′-trehalose]
  • the obtained residue was dissolved in a mixed solvent of 10N aqueous sodium hydroxide solution (4 ml) and n-butanol (8 ml), and heated under reflux for 6 hours. Then, it cooled to room temperature, 1N hydrochloric acid was added, it extracted 3 times with ether, the organic layer was dried using the anhydrous sodium sulfate, and it concentrated after filtering.
  • the obtained residue was dissolved in acetic acid (3.3 ml) and heated to reflux for 18 hours. After cooling, concentrated under reduced pressure to remove acetic acid.
  • Decanoic acid (4 g, 23.2 mmol) was dissolved in anhydrous dichloromethane solution (80 mL), 1,1-carbonyldiimidazole (4.5 g, 27.9 mmol) was added, and the mixture was stirred for 1.5 hours. Then, N, O-dimethylhydroxyamine hydrochloride (2.7 g, 27.9 mmol) was added, and the mixture was further stirred for 3 hours. After adding distilled water, extraction was performed twice using dichloromethane. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated.
  • octanoic acid was used instead of decanoic acid described in Production Example D-1-1
  • 1-bromooctane was used instead of 1-bromononane described in Production Example D-1-2.
  • the produced compound was used in the next step and synthesized in the same manner as described in Production Examples D-1-1 to D-1-5 to obtain 3-octylundecanoic acid.
  • pentadecanoic acid was used instead of decanoic acid described in Production Example D-1-1
  • 1-bromotetradecane was used instead of 1-bromononane described in Production Example D-1-2.
  • the produced compound was used in the next step and synthesized in the same manner as described in Production Examples D-1-1 to D-1-5 to obtain 3-tetradecylheptadecanoic acid.
  • Example compounds are compounds represented by the formula (1) of the present invention, in which X, X ′, R 1 , R 1 ′, R 2 , R 2 ′, n and n ′ are the following: Show things.
  • TDCM which is a known natural compound derived from Mycobacterium tuberculosis, was used as a positive control. Note that TDCM is represented by the following chemical structural formula.
  • Test Example 1 (Measurement of macrophage activation ability) Test Example 1 (1) ⁇ Measurement of active oxygen release from mouse peritoneal macrophages using a fluorescence intensity measuring device> ⁇ Preparation of phosphate buffer (PBS)> 8.0 g of sodium chloride, 0.2 g of potassium chloride, 1.15 g of disodium hydrogen phosphate and 0.2 g of potassium dihydrogen phosphate were dissolved in 1000 ml of distilled water (DW).
  • PBS phosphate buffer
  • DW distilled water
  • mice 3 ml of 5% thioglycolic acid medium (Difco, BD, code. 225640, Lot. 6192372) was administered into the abdominal cavity of mice (ICR mice (SPF), 5 weeks old, male). Four days after administration, the mice were killed using diethyl ether. A cut was made in the epidermis at the center of the abdomen with scissors, the abdomen was pinched and the abdomen epidermis was peeled off.
  • 5% thioglycolic acid medium Difco, BD, code. 225640, Lot. 6192372
  • a total volume of 5 ml of PBS ( ⁇ ) (EDTA 2Na, nuclease and protease tested, Nacalai Tesque) containing 0.05% EDTA was injected intraperitoneally with a 10 ml syringe equipped with a 26G needle. After that, massage was performed about 40-50 times by pinching the side of the abdomen. The fluid inside the abdominal cavity is slowly collected into a small centrifuge tube with a 23G needle. This operation was repeated twice. The collected macrophages were centrifuged at 1000 rpm for 8 minutes. The supernatant was discarded and RPMI1640 medium (containing RPMI-1640, L-glutamine and phenol red, Wako, 189-02025, Lot.
  • RPMI1640 medium containing RPMI-1640, L-glutamine and phenol red, Wako, 189-02025, Lot.
  • a 40 mM test compound solution was prepared as follows. 0.7 g BSA was weighed into a large test tube. After adding 10 ml of sterilized PBS ( ⁇ ) and stirring well, the impurities contained in the BSA solution were removed using an LPS removal column (Endo Trap TM red 1/1 (proofs)). Thereafter, the treated BSA solution was filtered through a sterilizing filter (0.2 ⁇ m). Next, the protein was quantified using Nano Drop ND-1000, and diluted with sterile PBS ( ⁇ ) so that the final concentration was 2%.
  • the weighed test compound was placed in a homogenizer together with 250 ⁇ l of 2% BSA (2% BSA dissolved in PBS ( ⁇ )) and treated with a bath-type ultrasonic device for 150 seconds while in the homogenizer.
  • the solution thus prepared was transferred to an eppen and used for the following tests.
  • the positive control was prepared in the same manner using TDCM as the test compound, and the negative control was prepared in the same manner without adding any test compound.
  • the preparation solution containing no test compound is referred to as “vehicle”.
  • HBS Hanks balanced salt solution
  • HBSG-BSA Hanks balanced salt solution containing glucose and BSA> Glucose (0.1 g) and BSA (sigma) (0.03 g) were dissolved in 100 ml of HBS prepared as described above to prepare a Hanks balanced salt solution (HBSG-BSA) containing glucose and BSA (prepared at the time of use).
  • HBSG-BSA Hanks balanced salt solution
  • HBSG-BSA containing the test compound or vehicle as a negative control was added so that the final concentration of the test compound was 50 ⁇ M, and Genios fluorescence was added after 1 hour. It was measured with an intensity measuring device.
  • H 2 DCFDA is the fluorescence probe, in the presence of hydrogen peroxide (H 2 O 2), the fluorescence intensity increases, by measuring the fluorescence intensity, hydrogen peroxide (H 2 O 2 ) Production amount can be measured.
  • Hydrogen peroxide (H 2 O 2 ) is derived from superoxide (O 2 ⁇ ) produced by macrophages, and the degree of activation of macrophages is determined using the amount of hydrogen peroxide (H 2 O 2 ) produced as an index. Can be represented.
  • FIG. Figure 1 ⁇ Amount of active oxygen released from mouse peritoneal macrophages> As shown in FIG. 1, all of the test compounds of the present invention showed the action of promoting the production of active oxygen from mouse peritoneal macrophages, equivalent to or more than TDCM. In particular, among the compounds of the present invention, the compound of Example 1 and the compound of Example 9 showed a high activity more than twice that of TDCM.
  • Test Example 1 (2) ⁇ Measurement of mouse peritoneal macrophage phagocytosis> Mouse peritoneal macrophages, 40 mM test compound solution, and RPMI 1640 medium were prepared as described above.
  • Fluoresbrite (trademark) Carboxylate Microspheres (2.58% Solids-Latex) YG (Polysciences, Inc.) was used as the fluorescent beads.
  • Macrophages were added to TC-plates (TC-PLATE 24WELL, STERILE WITH LID, IND PACKED, greiner bio-one) to 80% confluent. After incubation at 37 ° C. for 2 hours, the supernatant was discarded and the cells were washed twice with 500 ⁇ l of RPMI 1640 medium.
  • the composition shown in Table 3 below was assembled in a TC-plate and incubated at 37 ° C. for 2 hours. After removing the supernatant, the cells were washed with 300 ⁇ l of sterile PBS ( ⁇ ). This washing operation was repeated twice to remove unincorporated fluorescent beads.
  • Macrophages were peeled off with 200 ⁇ l of sterile PBS ( ⁇ ), and the macrophages were transferred to an eppen. After centrifugation at 1,500 rpm for 8 minutes, the supernatant was removed and well suspended in 100 ⁇ l of sterile PBS ( ⁇ ). Again, after centrifugation at 1,500 rpm for 8 minutes, the supernatant was removed and well suspended in 100 ⁇ l of sterile PBS ( ⁇ ).
  • FUJIFILM FLA-2000 was used to measure the amount of fluorescent beads incorporated into the cells [fluorescence intensity (Fluor 473 nm, Y520 Filter)].
  • Fluorescence intensity Fluor 473 nm, Y520 Filter
  • Image Reader V1.4J was used for the analysis.
  • FIG. Fig. 2 ⁇ Mouse peritoneal macrophage phagocytosis> As shown in FIG. 2, all of the test compounds of the present invention showed an action of activating the phagocytosis of mouse peritoneal macrophages in the same manner or more than TDCM. In particular, among the compounds of the present invention, the compound of Example 1 and the compound of Example 9 exhibited about twice as high activity as TDCM.
  • Test Example 2 (Measurement of neutrophil activation ability) ⁇ Preparation of rabbit neutrophil suspension> Hanks balanced salt solution (HBS), glucose and BSA-containing Hanks balanced salt solution (HBSG-BSA) were prepared in the same manner as in Test Example 1 (1).
  • HBS Hanks balanced salt solution
  • HBSG-BSA BSA-containing Hanks balanced salt solution
  • ⁇ Preparation of citric acid-glucose solution > 6.25 g of sodium citrate, 3.125 g of citric acid and 5 g of glucose were dissolved in 250 ml of distilled water (DW) and stored at 4 ° C. until use.
  • the precipitate was suspended in 2 ml of HBSG-BSA, and this cell suspension was gently layered on the upper layer of 2 ml of Lymphoprep [Nycomed, 808068] (centrifuge tube, 15 ml type), and centrifuged at 1200 rpm for 20 minutes (centrifuge conditions: accel) 0.5, break Off), and the supernatant was removed with an aspirator.
  • the sediment (neutrophils) was suspended in HBSG-BSA, centrifuged again at 1,500 rpm for 5 minutes, and the supernatant was removed. Neutrophils were suspended in HBSG-BSA, and the number of cells was measured with a cell count device “celltac” [Nihon Kohden].
  • Test Example 2 (1) ⁇ Measurement of active oxygen release from rabbit neutrophils> The influence on the release of active oxygen from rabbit neutrophils was measured by the following procedure.
  • a 96-well plate (Falcon) was seeded with neutrophils (1.0 ⁇ 10 5 cells / 100 ⁇ l). To this, 1 ⁇ l of 10 mM H 2 DCFDA was added and incubated at 37 ° C. for 1 hour. In order to remove excess H 2 DCFDA, 300 ⁇ l of HBS was added and suspended, followed by centrifugation at 8000 rpm for 5 minutes. After removing the supernatant and suspending with HBS, HBS was added to a final concentration of 50 ⁇ M. After incubation at 37 ° C. for 2 hours, the amount of released active oxygen was measured with a fluorescence measuring device (Ex: 485 nm, Em: 535 nm).
  • FIG. Figure 3 Reactive oxygen release from rabbit neutrophils>
  • the compound of the present invention exhibited an action of activating the release of active oxygen from rabbit neutrophils to the same extent or more than TDCM.
  • the compound of Example 1 showed about twice the activity of TDCM.
  • Test Example 2 (2) ⁇ Measurement of rabbit neutrophil phagocytic ability> (2) Ampicillin resistant E. coli and opsonized E. coli ⁇ Preparation of L-broth> 10 g of tryptophan, 5 g of NaCl, 5 g of Yeast Extract and 1 ml of MgSO 4 were dissolved in 1 L of distilled water (DW).
  • opsonizing agent 10 mg of opsonizing agent (BioParticles Opsonizing Reagent (Molecular Probes) was dissolved in 500 ⁇ l of ultrapure water.
  • ⁇ Opsonized Escherichia coli preparation method 100 ⁇ l of the ampicillin-resistant E. coli solution prepared above and 100 ⁇ l of the dissolved opsonizing agent were suspended in an Eppendorf tube. The obtained suspension was incubated at 37 ° C. for 1 hour, and the suspension was suspended in 300 ⁇ l of PBS, and then centrifuged at 1200 G for 15 minutes to remove the supernatant. Further, the obtained liquid was suspended in 300 ⁇ l of PBS and centrifuged at 1200 G for 15 minutes to remove the supernatant. Repeated twice. 1 ⁇ l of the bacterial solution was added to 100 ⁇ l of L-broth, suspended well and diluted 100 times. The bacterial solution diluted 100 times was added to a 10 ⁇ l one-cell counter, and the number of bacteria was counted with a microscope.
  • FIG. Figure 4 ⁇ Rabbit neutrophil phagocytic activity> As shown in FIG. 4, all of the compounds of the present invention exhibited an action of activating the phagocytic ability of rabbit neutrophils. In particular, among the compounds of the present invention, the compound of Example 1 showed about twice the activity of TDCM.
  • Test example 3 ⁇ Measurement of cytokine release from mouse peritoneal macrophages by test compound treatment> Mouse peritoneal macrophages, 40 mM test compound solution, and RPMI 1640 medium were prepared as described above.
  • Macrophages were added to the TC-plate so as to be 80% confluent. After 2 hours incubation at 37 ° C., the supernatant was discarded and the cells were washed with 500 ⁇ l RPMI 1640 medium. This washing operation was repeated twice. An emulsion solution of the test compound (final concentration 100 ⁇ M) was allowed to act on the macrophages, and after 2 hours, the medium was transferred to another eppen.
  • the supernatant is further transferred to another eppen, and using the supernatant as a sample, the released cytokine is ELISA kit (IL-6, TNF- ⁇ Quantikine Immunoassay (R & D Systems (trademark)). And analyzed.
  • IL-6 TNF- ⁇ Quantikine Immunoassay
  • the value of vehicle as a negative control was about 15 pg / ml for the release of IL-6, whereas among the compounds of the present invention, the activity is considered to be particularly high.
  • the compound of Example 1 showed an activity of about 200 pg / ml.
  • the value of vehicle as a negative control was about 80 pg / ml, whereas the compound of Example 1 showed an activity of about 1000 pg / ml.
  • Test example 4 ⁇ Measurement of IL-8 release from THP-1 cells by treatment with test compound>
  • the RPMI medium solution was prepared in the same manner as described above, and using this, an RPMI medium solution of the test compound was prepared as follows.
  • Test compound 1.0 mg was sonicated in 25 ⁇ l of DMSO for about 1 minute and dissolved.
  • the 40 mM test compound stock solution thus obtained was added to 100 ⁇ l of RPMI medium to a concentration of 50 ⁇ M (final concentration) and treated with ultrasound for 5 seconds.
  • As a control vehicle the same amount of solvent alone was added to the RPMI medium instead of the 40 mM test compound stock solution, and treated with ultrasound for 5 seconds.
  • THP-1 cells purchased from RIKEN cells BANK
  • RIKEN cells BANK were prepared in RPMI medium to 1.0 ⁇ 10 6 cells / 100 ⁇ l, and dispensed in 100 ⁇ l sterilized eppenes.
  • 100 ⁇ l of the RPMI medium solution of the test compound prepared as described above was sonicated for 5 seconds, and then added to the Eppenes in which the cells were dispensed. After 2 hours, the reaction eppen was centrifuged at 5000 rpm for 5 minutes, and the amount of IL-8 released in the supernatant was measured using an ELISA kit (human IL-8 ELISA kit (R & D Systems TM)).
  • test results are shown in FIG. Among the compounds of the present invention, when a compound considered to have particularly high immunostimulatory activity was measured, as shown in FIG. 5, the compound of Example 1 and the compound of Example 9 were about 0.6% of TDCM. The activity was about 0.8 times.
  • Test Example 5 ⁇ Measurement of IL-6, TNF- ⁇ and IFN- ⁇ release into peripheral blood in test compound-treated mice> An emulsion solution of the test compound was prepared as follows.
  • test compounds refer to the compounds synthesized in Production Examples ⁇ -1 to 8, compounds synthesized in Production Examples ⁇ -1 to 7, and TDCM as a comparative example.
  • test compound was weighed (100 ⁇ g / mouse), and the total amount was placed in the bottom of a homogenizer (WEATON USA 10 ml) using a micropartel.
  • a homogenizer WEATON USA 10 ml
  • One drop of mineral oil Nacalai Tesque
  • bath type ultrasonic waves for 150 seconds.
  • 1.0 ml of physiological saline containing 1.1% Tween 80 (polyoxyethylene sorbitan monooleate, Nacalai Tesque) and 5.6% mannitol was added to the homogenizer. Homogenized several times and thoroughly mixed the test compound-dissolved mineral oil and solvent.
  • the completed solution was transferred to an Eppendorf tube and pasteurized at 62 ° C. for 30 minutes.
  • the homogenizer was placed on ice for 3 minutes in advance. 1.0 mg of various test compounds were each taken in a homogenizer, mineral oil was added and treated with ultrasound for 150 seconds. After confirming that the oil was sticky, 1.0 ml of physiological saline (containing 1.1% Tween and 5.6% mannitol) was added thereto and homogenized for about 1 minute. The sample was transferred to an eppen and pasteurized at 62 ° C. for 30 minutes.
  • test compound emulsion solution 100 ⁇ g / mouse prepared as described above was administered to 2 mice per group by intravenous injection, and 2 hours later, heart blood (heparin blood collection) was performed. After centrifugation at 10,000 rpm for 10 minutes, various plasma cytokines were measured using ELISA alone (IL-6, TNF- ⁇ , IFN- ⁇ Quantikine Immunoassay (R & D Systems TM)) using plasma alone.
  • FIG. 6 ⁇ IL-6 concentration in mouse plasma (pg / ml)> FIG. 7 ⁇ Mouse Plasma IFN- ⁇ Concentration (pg / ml)> Fig. 8 ⁇ TNF- ⁇ concentration in mouse plasma (pg / ml)>
  • an increase in plasma IL-6 concentration was observed in the mice administered with the test compound of the present invention.
  • the compound of Example 1 and the compound of Example 9 are both about 1.2 times the TDCM, which is a known natural trehalose diester compound as a positive control, respectively.
  • the IL-6 releasing activity was about 1.5 times as high.
  • the compound of Example 13 and the compound of Example 14 also showed about half the same activity against TDCM, respectively.
  • Test Example 6 ⁇ Mouse survival test by administration of Clostridium perfringens (compound of Example 1)> As a test compound, 1 mg each of the compound synthesized by the method described in Production Example ⁇ -1 and TDCM were weighed, and an emulsion solution (1 mg / ml) of the test compound was prepared in the same manner as described above.
  • C. perfringens (TypeA NTCT8237) was prepared as follows.
  • BHI Brain Heart Infusion
  • Bacteria grown in the screw-mouth test tube (turbidity inside the clean bench becomes turbid and gas is generated) are transferred to a 200 ml Erlenmeyer flask containing 40 ml of BHI medium in the clean bench, and a glass tube is inserted into the medium. Then, nitrogen substitution was performed for 10 minutes. Next, a rubber stopper with a glass tube (with a cotton stopper) was attached to the Erlenmeyer flask (Because Clostridium perfringens produces a gas, an air hole is necessary) and incubated at 37 ° C. for 4-5 hours. The cultured C.
  • perfringens was transferred to a centrifuge tube, centrifuged (9000 rpm, 15 minutes), and the supernatant was removed.
  • 20 ml of sterile physiological saline was added to the sediment to suspend the bacteria, followed by centrifugation (9000 rpm, 15 minutes), and the supernatant was removed.
  • BHI medium in a screw-cap test tube in which the obtained sediment was sterilized was added, and the number of bacteria was counted with a one-cell counter (manufactured by One-Cell).
  • mice ICR, 6 weeks old
  • 100 ⁇ g / mouse 100 ⁇ l / mouse in the case of emulsion solution only
  • an emulsion solution of a test compound 100 ⁇ l / mouse in the case of emulsion solution only
  • mice 100 ⁇ l / mouse in the case of emulsion solution only
  • mice 100 ⁇ l / mouse in the case of emulsion solution only
  • mice 100 ⁇ l / mouse (100 ⁇ l / mouse in the case of emulsion solution only) was administered intraperitoneally to each group of 4 mice, an emulsion solution of a test compound, an emulsion solution of TDCM, or an emulsion solution as a control alone.
  • C. perfringens 2.4 ⁇ 10 7 cells / mouse
  • mice administered with the compound of Example 1 which is a compound of the present invention escaped from lethality in 4 mice in the administration group in a lethal model of Clostridium perfringens.
  • Test Example 7 ⁇ Mouse survival test by administration of Clostridium perfringens toxin (compound of Example 1)> A test compound emulsion solution (1 mg / ml) was prepared as described above. C. perfringens toxin was prepared as follows.
  • Bacillus subtilis ⁇ -toxin gene transformant is cultured in L-Broth at 37 ° C. for 14 hours, centrifuged at 4 ° C. and 8,000 rpm for 20 minutes, and the culture supernatant is stirred under ice-cooling with ammonium sulfate ( A small amount of ammonium sulfate (Nacalai Tesque) was periodically added to a final concentration of 70% saturated ammonium sulfate (472 g / L) and left overnight.
  • a crude toxin preparation was applied to a column (1.5 ⁇ 9 cm), followed by 0.5M NaCl-TB (pH 7.5), 0.5M NaCl-0.1M PB (pH 6.5), 0.5M. NaCl-0.02M acetate buffer (pH 4.5) and 0.5M NaCl-0.1M PB (pH 6.5) were sequentially flowed in 100 ml portions.
  • the toxin bound in the column was eluted with 100 ml of 15 mM L-histidine (Nacalai Tesque) -0.5 M NaCl-0.1 M PB (pH 6.5), and this eluate was then filtered with a syringe filter (DISMIC-ADVANTEC).
  • mice ICR, 6 weeks old
  • mice 100 ⁇ g / mouse (100 ⁇ l / mouse in the case of emulsion solution only) was administered intraperitoneally to each group of 4 mice, an emulsion solution of a test compound, an emulsion solution of TDCM, or an emulsion solution as a control alone.
  • C. perfringens toxin 200 ng / mouse was intraperitoneally administered to the mice. Thereafter, follow-up was performed.
  • Test Example 8 ⁇ Mouse survival test by administration of Pseudomonas aeruginosa (compound of Example 1)> As a test compound, 1 mg of the compound synthesized by the method described in Production Example ⁇ -1 was weighed, and an emulsion solution of the test compound was prepared in the same manner as described above. Pseudomonas aeruginosa (Fhu-0711115 strain) was derived from a patient and prepared as follows.
  • L-broth was taken with a 40 ml measuring pipette, put into one 200 ml flask, and sealed with a sponge. In addition, 5 ml of L-broth was placed in two separate screw-cap test tubes. The flask and screw test tube were autoclaved at 121 ° C. for 20 minutes. After the L-broth medium had cooled to room temperature, Pseudomonas aeruginosa stored in an ultra-low temperature freezer was added to 40 ml of L-broth in a clean bench. Shaking was performed overnight in the culture room.
  • Centrifugation was performed at 9000 rpm for 15 minutes, and the supernatant was removed. After adding 20 ml of sterilized physiological saline and mixing with vortex, the step of centrifuging at 9000 rpm for 15 minutes and removing the supernatant was performed three times. 4.5 ml of sterilized physiological saline was added and mixed using a vortex to make a bacterial stock solution. The bacterial solution diluted 1000 times was used to count the number of bacteria with a one-cell counter, and then the bacterial stock solution was diluted to a desired concentration and used for the following tests.
  • mice were divided into two groups and the following two experiments were performed.
  • A An emulsion solution (100 ⁇ g / mouse) of the above test compound was intraperitoneally administered to 3 mice (ICR, 5 weeks old) per group, and after 3 hours, Pseudomonas aeruginosa (5.0 ⁇ 10 5). 7 cells / mouse) was administered intraperitoneally. Thereafter, follow-up was performed.
  • Test Example 9 ⁇ Cytokine release from THP-1 cells> The amount of each cytokine and chemokine released from THP-1 cells derived from human monocytic leukemia cells treated with the test compound obtained in Example 9 was measured by ELISA. In addition, the same analysis was performed using A549 cells derived from human lung cancer cells and DLD-1 cells derived from human colon cancer cells.
  • ⁇ Culture method of THP-1 cells (1) Serum lot check The cultured THP-1 cells were transferred to a 15 ml centrifuge tube in a clean bench. The cells were centrifuged at 1,000 rpm for 5 minutes at 20 ° C., and the supernatant was removed. Each sediment was suspended in 1 ml of RPMI 1640 (containing 10% lot check FBS) medium, and the number of cells was counted using a hemocytometer (Higaki Medical Science Co., Ltd.) and a cover glass (Sansho). To 2.5 ⁇ 10 5 cells / ml.
  • MULTI WELL PLATE 24wells SUMILON
  • cell growth and morphology were observed once a day.
  • the culture was diluted 100-fold with the medium, 4 ⁇ l was taken, the number of cells was counted with a counting plate, and the quality of growth was compared.
  • Cells with good growth and morphology are recovered from the well, washed with the same medium, diluted again to 2.5 ⁇ 10 5 cells / ml, and 1 ml is added to MULTI WELL PLATE 6 wells (SUMILON) for suspension culture at 37 ° C. It was incubated under the conditions of 5% CO 2.
  • the medium was changed every 24 hours, and the whole plate was centrifuged (TOMY) at 1,800 rpm for 5 minutes. Then, the medium was slowly removed, and 1 ml of the medium was newly added. The medium exchange operation was performed twice. After the third day, after changing the medium, the cells were diluted 100 times, counted with a counting plate, and the degree of proliferation was measured. Thereafter, this operation was performed for several days, and a medium with good growth and morphology was selected.
  • RPMI 1640 medium (10% non-immobilized FBS + 1% Penicillin Streptomycin)
  • a clean bench add 5.6 ml of non-immobilized FBS and Penicillin Streptomycin (GIBCO) 5.6 ml filtered with Acrodisc 25 mm Syringe Filter (Pall Corporation) to 500 ml of RPMI 1640 liquid medium (Wako).
  • the prepared medium was used as it was without filtering. Storage was performed at 4 ° C. and the temperature was returned to room temperature before use.
  • THP-1 cells were cultured in a 75 cm 2 suspension culture flask (SUMILON) (90% or higher growth), and their morphology and proliferation were observed. If the cells were well shaped and grew quickly, the cell suspension was transferred to a new flask or transplanted with approximately twice the amount of fresh medium added to the flask in use. When the growth was slow, the progress was observed as it was, or an equal amount of fresh medium was added and transplanted.
  • SUPILON suspension culture flask
  • Standard substrate solution 600 ⁇ L of standard substrate solution dilution is put in two microtubes. Dissolve the standard substrate in 1 mL of standard substrate diluent (2450 pg / mL), transfer it to a 100 ⁇ L microtube, dissolve (350 pg / mL), add 100 ⁇ L to another microtube and dissolve. (50 pg / mL) for dilution. A dilution for standard substrate solution was used as a control (0 pg / mL).
  • Color Reagent Preparation Color reagent A and color reagent B were mixed in equal amounts, and 100 ⁇ l / well ⁇ well color solution to be measured was added. This was prepared within 15 minutes before use.
  • sample measurement> The reagents of the ELISA kit to be used were returned to room temperature, 50 ⁇ L of various concentrations of standard substrate solution and assay buffer were added to each well, and 50 ⁇ L of the sample was further added. The plate was lightly tapped for 1 minute, the plate was covered and incubated for 2 hours at room temperature. Thereafter, the plate was washed 5 times with a washing solution (aspirator can be used), 100 ⁇ L of the prepared conjugate solution was added, the plate was covered, and incubated at room temperature for 2 hours.
  • a washing solution aspirator can be used
  • the number of cells was counted with 4 ⁇ l of a 100-fold diluted solution using a hemocytometer, and the cell suspension was diluted to 1 ⁇ 10 7 cells / ml with serum-free RPMI 1640 medium.
  • 100 ⁇ L of RPMI medium was taken in an eppen, 40 mM test compound (Example 9) / DMSO solution to 200 ⁇ M was added, and ultrasonic waves were applied for 5 seconds.
  • 100 ⁇ l THP-1 cells were added (final concentration of test compound 100 ⁇ M). After incubation at 37 ° C.
  • control compound A 6,6′-bis-O- (2-tetradecylhexanoyl) - ⁇ , ⁇ ′-trehalose
  • TDCM 6,6′-bis-O- (2-tetradecylhexanoyl) - ⁇ , ⁇ ′-trehalose
  • control compound A 6,6′-bis-O- (2-tetradecylhexanoyl) - ⁇ , ⁇ ′-trehalose
  • Test Example 10 ⁇ Cytotoxicity study and mutagenicity test for THP-1 cells> ⁇ Study of cytotoxicity of THP-1 cells using trypan blue> Reagent preparation Preparation of 0.3% Trypan Blue / PBS ( ⁇ ) 0.3 g of trypan blue (nacarai) was dissolved in 100 ml of PBS ( ⁇ ).
  • THP-1 cells The cultured THP-1 cells were transferred to a 50 ml centrifuge tube in a clean bench, centrifuged at 1,000 rpm for 5 minutes at 20 ° C., and the supernatant was removed. The sediment was suspended in 1 ml of fresh serum-free RPMI 1640 medium (Wako). 10 ⁇ l of this cell suspension was added to a sterile Eppendorf tube to which 990 ⁇ l of serum-free RPMI 1640 medium had been added in advance, and diluted 100 times. 10 ⁇ l of 100-fold diluted solution was counted with a hemocytometer, and the cell suspension was diluted with serum-free RPMI 1640 medium to 1 ⁇ 10 7 cells / ml.
  • serum-free RPMI 1640 medium 1 ⁇ 10 7 cells / ml.
  • test compound B 6-O- (2-decyldocanoyl) - ⁇ -glucose
  • control compound B 6-O- (2-decyldocanoyl) - ⁇ -glucose
  • TDCM 6-O- (2-decyldocanoyl) - ⁇ -glucose
  • negative control no test compound was added, and the same control was prepared (Vehicle).
  • 100 ⁇ l of THP-1 cells prepared to 1.0 ⁇ 10 7 cells / ml were added and incubated at 37 ° C. for 2 hours or 24 hours. Thereafter, 20 ⁇ l of 0.3% trypan blue / PBS ( ⁇ ) was added and suspended, and immediately the cell viability was analyzed with a cell number measuring device (CYRORECON).
  • VB medium 0.4 g of MgSO 4 .7H 2 O, 4 g of citrate H 2 O, 20 g of K 2 HPO 4 , 7 g of NaNH 4 HPO 4 .4H 2 O are dissolved in 200 mL of distilled water. And then autoclaved.
  • Glucose 40 g was dissolved in distilled water 200 mL and autoclaved.
  • agar medium 1.2 g of powder agar and 1 g of NaCl were suspended in 200 mL of water, sterilized by high-pressure steam, and transferred to a 50 mL tube. Before use, 20 mL of 0.5 mM histidine / biotin solution was mixed and kept at 47 ° C.
  • Oxoid Nutrient Broth Medium for Salmonella typhi 2.5 g of Oxoid Nutrient Broth (Difco) was dissolved in 100 ml of distilled water, 5 ml of which was placed in a screw test tube and sterilized. Thereafter, about 10 ⁇ L of bacterial solution of TA98 (Salmonella typhimurium TA98) was inoculated and cultured overnight at 37 ° C. with shaking to prepare a bacterial suspension.
  • Example 9 ⁇ Experimental result>
  • the survival rate of THP-1 cells treated with the test compound obtained in Example 9 for 2 hours and 24 hours was analyzed by trypan blue staining. Although cytotoxicity was observed in the treated cells, no cytotoxicity was observed in the cells treated with the compound obtained in Example 9. The results are shown in FIG. Similarly, significant results were obtained for the compound obtained in Example 1 (data not shown). Furthermore, the Ames test was performed on the test compound obtained in Example 9 in the presence and absence of S9mix, but none of the test compounds showed mutagenicity. Further, the mutagenicity of the standard substance (2-amino anthracene, 4NQO) under the analysis conditions was positive (FIG. 11). Similarly, significant results were obtained for the compound obtained in Example 1 (data not shown).
  • Test Example 11 ⁇ Cell infiltration into mouse abdominal cavity> ⁇ Preparation of PBS (-) solution> 4 g of NaCl, 1.45 g of Na 2 HPO 4 ⁇ 12H 2 O, 0.1 g of KH 2 PO 4 and 0.1 g of KCl were dissolved in 500 ml of distilled water and autoclaved at 121 ° C. for 20 minutes.
  • test compound solution was transferred to an eppen and treated at 62 ° C. for 30 minutes for pasteurization.
  • a test compound was prepared in the same manner using control compound A and TDCM.
  • no test compound was added and the same was prepared (vehicle).
  • test compound (Example 9) solution was intraperitoneally administered to mice (ICR mice (SPF) (4 weeks old, male, body weight: 20 to 22 g)) to a concentration of 100 ⁇ g / mouse. Mice that received the test compound ip were killed after 2 or 24 hours using diethyl ether. A cut was made in the epidermis at the center of the abdomen with scissors, the abdomen was pinched and the abdomen epidermis was peeled off.
  • the peritoneum was gently lifted with tweezers, and 5 mL of 0.05% EDTA in PBS ( ⁇ ) was injected into the abdominal cavity with a 10 mL syringe attached with a 26 G needle so that the needle did not pierce the internal organs. After that, massage was performed about 40-50 times by pinching the side of the abdomen. The fluid inside the abdominal cavity was slowly collected into a small centrifuge tube. This operation was repeated again. The collected cells were centrifuged at 1,000 rpm for 10 minutes. The supernatant was removed and the precipitate was suspended in RPMI 1640 medium. The centrifuge tube was filled with RPMI 1640 medium and centrifuged again at 1,000 rpm for 10 minutes. After discarding the supernatant and suspending in RPMI 1640 medium, the number of cells is counted using a cell counter. RPMI-1640 medium was used to dilute to any concentration.
  • the cells were suspended in 100 ⁇ L of phosphate buffer and placed on a glass slide for staining. After confirming that the water had evaporated, 10-15 drops of May-Grünwald liquid were dropped on the staining pad and allowed to stand for 2-3 minutes. Without flowing the May-Grünwald solution, 10 to 15 drops of phosphate buffer were formed and allowed to stand for 2 to 3 minutes. An appropriate amount of Giemsa staining solution was added and left for 30 minutes. After running the water with the slide glass on the back, the slide glass was dried and observed with a microscope.
  • test compound 1 mg / mL test compound (emulsion solution)
  • the test compound was prepared in the same manner as in Test Example 11.
  • ⁇ Experiment method> A 1 mg / mL test compound emulsion solution was intraperitoneally administered to mice (100 ⁇ g / mouse), and cells infiltrated into the peritoneal cavity were collected 24 hours later using 0.05% EDTA / PBS ( ⁇ ). Thereafter, the collected peritoneal cells were centrifuged at 300 g for 10 minutes, and the supernatant was removed. The prepared peritoneal cells were suspended in 1 ml of 0.05% EDTA (dissolved in 0.5% BSA / PBS). The cell suspension was filtered with a mesh for flow site, and the number of cells was measured with the cell suspension diluted 100 times.
  • the abundance ratio of CD8 positive cells was increased by about 2 to 3 times compared to the vehicle-treated mice (FIGS. 13 to 15). From the above, it was shown that the test compound of Example 9 accumulates phagocytic cells in the mouse abdominal cavity, and in particular, the ratio of NK cells was shown to be large.
  • Test Example 12 ⁇ Effects on C. perfringens or Pseudomonas aeruginosa-infected mice (Compound of Example 9)> ⁇ Method for preparing Clostridium perfringens> Preparation of COOKED MEAT medium (hereinafter sometimes abbreviated as CM medium) CM medium (125 mg / ml in DW) was added to a threaded test tube and boiled for 15 minutes to degas the air in the CM medium. High-pressure steam sterilization with an autoclave (121 ° C., 20 minutes) was performed, and the mixture was cooled to room temperature.
  • CM medium COOKED MEAT medium
  • BHI Brain Heart Infusion
  • C.I. perfringens Type-A NCTC8237 (PLC +) was added, cultured at 37 ° C. for 2 days, and stored as a stock solution at room temperature.
  • Bacterial culture and preparation of bacterial solution 0.2 mL of the bacterial solution was taken from each preserved bacterial solution, added to 4.5 mL BHI medium for preculture, and cultured at 37 ° C overnight. The total amount of this culture solution was added to 40 mL BHI medium, and after nitrogen substitution (10 minutes), the cells were again cultured at 37 ° C. for 5 hours. Then, it moved to the culture solution 50mL tube, and centrifuged (4 degreeC, 9000 rpm, 15 minutes). The supernatant was removed, physiological saline was added and washed well, and then the cells were collected by centrifugation (4 ° C., 9000 rpm, 15 minutes). This washing was repeated twice.
  • fungus 0.2 mL of P. aeruginosa was added to 10 mL of L-Broth and shaken overnight at 37 ° C. To this culture solution, 1 mL of sterilized glycerin (glycerin) was added and vortexed. 300 ⁇ L of the bacterial solution was dispensed into a sterilized eppen and stored at ⁇ 80 ° C.
  • This suspension was used as a stock solution, and a bacterial solution obtained by diluting the stock solution 10,000 times was autoclaved (121 ° C., 20 minutes) using an autoclave, and then the number of bacteria was measured using a one-cell canter.
  • a bacterial solution having a bacterial concentration of 1 ⁇ 10 8 cells / mL was prepared and used in the experiment.
  • test compound > 100 ⁇ g / mouse test compound (Example 9) emulsion solution was administered intraperitoneally, and 24 hours later, 3.0 ⁇ 10 10 CFU / mL of Pseudomonas aeruginosa or 5.0 ⁇ 10 7 CFU / mL of C. perfringens Administered intraperitoneally, mice were observed every 2 hours.
  • mice post-test compound administration> 3.0 ⁇ 10 10 CFU / mL of Pseudomonas aeruginosa was intraperitoneally administered, and 3 hours later, 100 ⁇ g / mouse of the test compound (Example 9) emulsion solution was intraperitoneally administered. Thereafter, the mice were observed every 2 hours.
  • Test Example 13 ⁇ Sepsis observation> 100 ⁇ g / mouse of the test compound (Example 9) emulsion solution was intraperitoneally administered and 24 hours later, 3.0 ⁇ 10 10 CFU / mL of Pseudomonas aeruginosa was infected. 15 hours after administration of the bacteria, heart blood was collected with a syringe with a little heparin in the needle tip, 200 ⁇ L of whole blood was seeded on a normal agar medium, and incubated in an incubator for 16 hours. The number of colonies on the medium was counted.
  • Test Example 14 ⁇ Anti-tumor effect> 100 ⁇ g / mouse of the test compound (emulsion solution) obtained in Example 9 was intraperitoneally administered to mice, and 24 hours later, breast cancer cells (FM3A cells) were inoculated intraperitoneally. After 19 days, mice were weighed. Further, tissue sections of the diaphragm, pancreas, and testis were observed with a microscope after HE staining. As a result, the breast cancer cell-inoculated mice had an increased body weight of about 10 g compared to the control mice, and a large amount of ascites was observed.
  • FM3A cells breast cancer cells
  • mice treated with the test compounds of the Examples and inoculated with breast cancer cells had the same body weight as that of the control mice, and further, infiltration of cancer cells into each organ and metastasis were not observed at all (Fig. 20).
  • the trehalose compound of the present invention is superior to TDCM or has an immunostimulatory action comparable to that of TDCM, but has a markedly reduced toxicity compared to TDCM and can be suitably used as a pharmaceutical product. It has been found that the toxicity of the present compound is reduced not only in model mice but also in human-derived cells. Moreover, it was shown that this-application compound also has low mutagenicity.
  • the ⁇ hydroxyl group is replaced with a hydrogen atom
  • the fatty acid is ⁇ -branched or ⁇ -branched
  • branched carbon chains R 1 , R 2 in formula (1), R 1 ′ or R 2 ′
  • R 1 , R 2 in formula (1), R 1 ′ or R 2 ′ branched carbon chains each having about 7 to 20 carbon atoms are synthesized and tested one by one, so that ⁇ -branched type has 10 carbon atoms and ⁇ -branched type.
  • the cancer induction activity which an amide bond has can be suppressed by making an amide bond of a prior art into an ester bond.
  • the trehalose compound of the present invention is very useful in an in vivo test in that it reduces lethality in mice administered intraperitoneally with C. perfringens. In addition, it is epoch-making in that the lethality is reduced even in the mouse intraperitoneally administered with the toxin produced by Clostridium perfringens. Furthermore, it has been found that the trehalose compound of the present invention reduces the lethality of the bacterium by excellent antibacterial activity even when administered intraperitoneally with Pseudomonas aeruginosa.
  • the trehalose compound of the present invention brings about activation of cellular immunity such as macrophages and neutrophils, and bacteria, viruses, fungi and the like that are subject to phagocytosis of macrophages and neutrophils This suggests that it is useful for a wide range of infections caused by This is because, in the treatment of infectious diseases, when antibiotics are used, the target causative bacteria must be determined, and antibiotics having an antibacterial spectrum must be appropriately selected. When a resistant bacterium emerges, it has the advantage of being a simple and reliable method compared to the conventional method in which another antibiotic having an antibacterial spectrum for the resistant bacterium must be selected appropriately. .
  • particularly active compounds have an activity that is about 2 times that of TDCM, particularly about 8 times to 10 times that of a highly active compound, and have low toxicity. It was shown to be particularly useful.
  • IL-6, IFN- ⁇ , and TNF- ⁇ release all showed an increasing tendency.
  • in vitro tests and in vivo tests are carried out.
  • particularly active compounds may cause a significant increase in these cytokines in the in vitro test, but in in vivo tests. Found that it does not increase TNF- ⁇ release significantly.
  • IL-8 release activity from human-derived THP-1 cells it has been found that particularly highly active compounds of the present invention are not as strongly activated as TDCM.
  • Immunostimulation has long been regarded as important, and induction of cytokines and chemokines is useful for activating immunity.
  • immunity is activated too much, it becomes rather harmful as typified by anaphylactic shock and allergy.
  • the trehalose compound of the present invention is not excessively activated against the release of inflammatory TNF- ⁇ which can be a factor causing these excessive inflammatory reactions and IL-8 known as chemokine, and has an immunostimulatory effect. This indicates that there is a low possibility of side effects such as inflammation due to an excessive immune reaction.
  • cytokines and chemokines are preferably released in a large amount depending on their properties, otherwise they may not be a problem, and may vary depending on the situation.
  • the compound should be released or inhibited to release IL-8 or TNF- ⁇ . It is also within the scope of the present invention to use a particular type of trehalose compound of the present invention in the desired amount, without intending to be done.
  • the trehalose compound provided by the present invention has high immunostimulatory activity and low toxicity, and is useful for the treatment of infectious diseases caused by pathogenic bacteria. Specifically, by using the trehalose compound of the present invention, there is little risk of causing a side effect such as toxin release due to destruction of bacterial cells upon administration of antibiotics, and a drug having a toxicity-reducing action on the toxin of the pathogenic bacteria itself Can be provided. In addition, by using the trehalose compound of the present invention, it is possible to provide a medicament that has a therapeutic effect on infections caused by multidrug-resistant bacteria. Furthermore, the compounds of the present invention are also useful in the manufacture of pharmaceuticals with a low risk of causing an excessive immune response. Moreover, the trehalose compound according to the present invention can be efficiently synthesized in a large amount by the method for producing a trehalose compound of the present invention without including asymmetric synthesis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

【課題】本発明は、免疫賦活活性が高く、毒性の低いトレハロース化合物を提供する ことを目的とする。 【解決手段】本発明のトレハロース化合物は、以下の式(1) [式中、XおよびX’は、フェニル、ナフチル、または、R-CHR-等を示し、R およびRは各々C-C21アルキル基等を示し、n及びn’は、それぞれ独立に、 0から3の整数を示す。]で表される。本発明の化合物は、マクロファージ、好中球に対し高い活性化作用を示す。

Description

トレハロース化合物、その製造方法、及び該化合物を含有する医薬
 本発明は、トレハロース化合物、その製造方法、及び該化合物を含有する医薬に関する。
 感染症として、細菌、ウィルス、真菌による感染症など種々のものが知られている。細菌による感染症に対する治療法としては、抗生物質の投与が行われているが、抗生物質に対する耐性菌の出現が問題となり、また、耐性菌が院内感染する問題も生じている。さらに、HIV感染や、抗癌剤治療、老人・子供等の免疫力低下状況における感染症として、日和見感染症が生じる問題もある。
 さらに、O-157などの病原性大腸菌や志賀赤痢菌による感染の場合には、体内でベロ毒素が産生され、特に抵抗力の弱い老人や子供では、溶血性尿毒症症候群を併発するなど重篤な症状を呈することがある。このような感染症に対しては、抗生物質の投与が行われる場合もあるが、抗生物質を投与して細菌が死滅し、細菌内部の毒素が一度に菌外部へ放出されることによって、かえって状態が悪化する危険性があることが指摘されている。しかしながら、一方で、O-157のように、数百から数千個の細菌を摂取するだけで発症するような伝染性の強い感染症の場合には、二次感染を予防するためにも、抗生物質の投与を選択せざるを得ない場面も生じている。その他の治療方法として、O-157では約10%のケースで溶血性尿毒症症候群を併発することがあるとされ、この場合には、血漿交換や透析療法などが行われるが、いずれも患者に負担の大きい治療方法であるといえる。
 また、細菌の産生する毒素への対処方法としては、対症療法が優先であり、その他の方法としては、毒素吸着剤の使用や毒素に対する抗体の使用等が挙げられるが、活性炭などによる吸着の方法では便秘になるなどの副作用もあり、また、抗体の使用については、各毒素に対して抗体を開発しなければならない点で不便である。
 そこで、このような病原菌による感染症に対する治療ないし発症抑制方法が模索されており、最近では、抗生物質の投与ではなく、患者自身の免疫力を高めることによって、感染症を治療ないし予防する試みもなされている。
 患者の免疫力を高める物質としては、種々の化合物が模索されているが、天然物由来成分の一例として、トレハロースのジエステル化合物である、トレハロースジミコレート(TDM)とトレハロースジコリノミコレート(TDCM)が知られている。TDMは結核菌(Mycobacterium tuberculosis)の細胞表層に存在する糖脂質として見出され、免疫賦活活性および抗癌活性を示すことが知られている。また、同族のジフテリア菌(Corynebacterium spp)から、TDMより炭素数の短い同族体であるTDCMが単離され、TDCMとその立体異性体が、それぞれ免疫賦活活性及び抗癌活性を示すことが明らかにされている。
 しかしながら、TDM及びTDCMは毒性が強く、医薬として用いることができない。したがって、医薬として用いるためには、活性を維持ないし増強しつつ、毒性を低下させた化合物を合成することが必要であった。
 そこで、TDM誘導体として、トレハロースと脂肪酸のエステルである、トレハロース6,6'位-ジエステル化合物が合成され、毒性試験やマクロファージ賦活作用等の試験がなされた(非特許文献1を参照)。当該文献においてはβ水酸基の有無や、脂質のアルキル部分の長さが炭素数30,32,48の化合物、糖と脂質の間のエステル結合をアミド結合に代えた化合物などについて検討され、毒性の面においては、エステル結合と長鎖脂肪酸とが毒性に重要な寄与をしているものと考察された。しかしながら、当該文献には、側鎖脂肪酸部分の炭素数が30の化合物なども記載されているものの、糖と側鎖の結合様式や、側鎖脂肪酸に対する置換基の有無、側鎖脂肪酸を構成するアルキル基の長さなどについて、活性が高く毒性が低い化合物を得るために網羅的に検討して最適化がなされたわけではない。ただ、上記したようないくつかの化合物に関して散発的に試験がなされたものである。また、免疫賦活作用に関しても、その内容が詳細に検討されたものでもない。
 一方で、本発明者らは、TDM誘導体に関して、エステル結合またはアミド結合を有し、β位水酸基を水素原子やメトキシ基に変更した誘導体等を合成した(特許文献1を参照)。しかしながら、当該文献記載の誘導体は、脂肪酸のアルキル部分が炭素原子7個程度の比較的短いものであり、また、活性としても、アデノシンA3受容体アンタゴニストとしての活性を測定したにすぎない。
 そこで、本発明者らは、TDCMの水酸基を水素原子に変え、不斉炭素でなくするとともに、エステル結合をアミド結合に変えたTDCMのアミド誘導体を合成することに成功し、これらのアミド誘導体の免疫賦活作用を確認した(特許文献2を参照)。しかしながら、これらのアミド誘導体は、癌を誘発する作用があることが後に判明し、医薬化合物として用いることは断念せざるを得ないものであった。
 よって、TDMないしTDCM誘導体として、病原菌に由来する諸症状に対し、いまだ十分有効でありながら安全性の高い治療ないし発症抑制方法は確立されておらず、有効かつ安全な治療ないし発症抑制方法の確立が望まれている。
国際公開第2007/111214号パンフレット 国際公開第2008/093700号パンフレット
Numata et al., Chem.Pharm.Bull.(1985),33(10),4544-4555
 TDM,TDCMの誘導体を合成する場合、TDM,TDCMそれ自体は毒性の強いものであるため、活性を有し、かつ、毒性の低い化合物を合成することが必要となる。従来技術としては、TDMまたはTDCMの改変体もいくつか知られてはいたが、TDM及びTDCMが糖脂質であり、糖鎖は水酸基が多く極性も高く、合成において困難性を伴うこともあり、どの構造がどのような活性に結びつくのか、という構造活性相関は、いまだ明らかにされたとはいえなかった。
 そこで、本発明は、TDM及びTDCMの誘導体を数多く製造し、活性が高く毒性の低い化合物、及び、当該化合物を含有する医薬を提供することを目的とする。
 また、従来技術としての病原菌に対する抗生物質の使用は、大腸菌の成長を阻害し、大腸菌を死滅させるなどして、大腸菌に毒素を放出させないようにすることを目的としたものであって、産生された毒素自体に対して無毒化することはできないものであるところ、本発明は、細菌が増殖して毒素を産生する状態に至った場合にも、毒素の毒性を低減させることが可能な医薬を提供することを目的とする。
 本発明者らは、式(1)で表されるトレハロースジエステル化合物が、病原菌による感染症に対して優れた抗菌活性を示し、かつ、低毒性であることを見出した。また、式(1)で表されるトレハロースジエステル化合物のうち、Xが、R-CHR-であり、X’が、R’-CHR’-である化合物であって、脂質部分の分岐の形状として、特にn及びn’が0である化合物(以下、α-分岐型化合物、という。)、及び、特にn及びn’が1である化合物(以下、β-分岐型化合物、という。)が特に優れたものであることを見出した。さらに、式(1)で表されるトレハロースジエステル化合物のうち、式(1)におけるR、R、R’またはR’で示されるアルキル鎖部分において、炭素数が10及び14などの特定の長さの場合に活性が極大化する傾向にあることを見出した。さらに、トレハロースジエステル化合物に関して、前記文献等においても、菌の産生する毒素自体を投与した場合においても抗菌剤として有用であることはこれまで知られていなかったところ、本発明者らは、マウスのin vivo試験において、菌を投与された場合のみならず、菌から産生される毒素自体を投与された場合にも有効であることを見出した。
 本発明は、以下の式(1):
Figure JPOXMLDOC01-appb-C000001
      (式1)
[式中、
 Xは、フェニル、ナフチル、または、R-CHR-で表される基であり、
 X’は、フェニル、ナフチル、または、R’-CHR’-で表される基であり、
 ここで、
     R、R’、R及びR’は、それぞれ独立に、水素原子またはC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく、また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく、
     n及びn’は、それぞれ独立に、0から3の整数である。
但し、
 (1)Xが、R-CHR-であり、X’が、R’-CHR’-であり、R、R’、R及びR’が、それぞれ独立に、水素原子または無置換かつ直鎖のC-Cアルキル基であり、n及びn’が0である化合物、及び、
 (2)Xが、R-CHR-であり、X’が、R’-CHR’-であり、R、R’、R及びR’がC14直鎖アルキル基であり、n及びn’が0である化合物
を除く]
で表される化合物を提供する。
 また、本発明は、式(1)で表される化合物及び薬理学的に許容できるキャリアを含有する医薬組成物を提供する。
 また、本発明は、式(1)で表される化合物及び薬理学的に許容できるキャリアを含有する医薬であって、免疫賦活剤、マクロファージ賦活剤、好中球賦活剤、貪食細胞の食菌作用賦活剤、抗細菌感染症剤、または、菌産生毒素中和剤として用いられる医薬組成物を提供する。
 また、本発明は、免疫賦活剤、マクロファージ賦活剤、好中球賦活剤、貪食細胞の食菌作用賦活剤、抗細菌感染症剤、または、菌産生毒素中和剤として用いられる医薬組成物の製造のための、式(1)で表される化合物の使用を提供する。
 また、本発明は、ヒトを含む哺乳動物の感染症の予防方法又は治療方法であって、
 治療上有効量の式(1)で表される化合物を当該哺乳動物に投与することを含む方法を提供する。
 また、本発明は、以下の式(2):
Figure JPOXMLDOC01-appb-C000002
      (式2)
[式中、
 Xは、フェニル、ナフチル、または、R-CHR-で表される基であり、
 X’は、フェニル、ナフチル、または、R’-CHR’-で表される基であり、
 ここで、
     R、R’、R及びR’は、それぞれ独立に、水素原子またはC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく、また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく、
     n及びn’は、それぞれ独立に、0から3の整数である。]
で表される化合物を含有することを特徴とする菌産生毒素中和剤を提供する。
 本発明のトレハロース化合物は、免疫賦活活性が高く、さらに、毒性も低いので、病原菌による感染症に対して優れた医薬品を提供するために有用である。
 本発明のトレハロース化合物は、細胞性免疫を賦活化する作用を有し、好中球やマクロファージを活性化し、その貪食作用を高めることによって、抗菌作用を発揮するものである。すなわち本発明の化合物によれば、細菌自体を好中球やマクロファージ内に取り込むために、細菌外への毒素放出が少なく、抗生物質投与の際の大腸菌破壊による毒素放出のような危険性の少ない医薬を提供することができる。
 また、本発明のトレハロース化合物は、毒素自体に対しても毒性低減作用を示す。したがって、本発明によれば、大腸菌等による感染症において、感染の程度が進行し、大腸菌等が増殖して菌外へ毒素が産生される状況に至った場合においても有効な医薬を提供することができる。
 また、本発明のトレハロース化合物の投与による好中球やマクロファージの活性化により、抗生物質投与により生じた多剤耐性菌をも非耐性菌と同様に捕食することが可能である。したがって、多剤耐性菌による感染症にも治療効果のある医薬を提供することができる。
 また、本発明のトレハロース化合物は、細胞性免疫を賦活化するが、過剰な免疫応答が生じにくい。したがって本発明によれば、例えば、抗体医薬に対し、生体内において、医薬として投与された抗体に対する抗体が産生され、過剰な免疫応答が生じるような危険性の少ない医薬を提供することができる。
 また、本発明のトレハロース化合物には、不斉炭素原子を含まない化合物が含まれる。すなわち、本発明のトレハロース化合物の製造方法により、不斉合成を含まずに、本発明に係るトレハロース化合物を大量に効率よく合成することができる。
は、マウス腹腔マクロファージにTDCM、vehicleまたは本発明の試験化合物を作用させた場合のマウス腹腔マクロファージからの活性酸素遊離量を示す。 は、マウス腹腔マクロファージにTDCM、vehicleまたは本発明の試験化合物を作用させた場合のマウス腹腔マクロファージ貪食能を示す。 は、ウサギ好中球にTDCM、または本発明の試験化合物を作用させた場合のウサギ好中球からの活性酸素遊離量を示す。 は、ウサギ好中球にTDCM、または本発明の試験化合物を作用させた場合のウサギ好中球貪食能を示す。 は、ヒト由来のTHP-1細胞にTDCM、vehicleまたは本発明の試験化合物を作用させた場合のTHP-1細胞からのIL-8遊離量を示す。 は、マウスにTDCM、vehicleまたは本発明の試験化合物を投与した場合における、マウス血漿中のIL-6濃度を示す。 は、マウスにTDCM、vehicleまたは本発明の試験化合物を投与した場合における、マウス血漿中のIFN-γ濃度を示す。 は、マウスにTDCM、vehicleまたは本発明の試験化合物を投与した場合における、マウス血漿中のTNF-α濃度を示す。 は、ヒト由来細胞にTDCM、vehicleまたは本発明の試験化合物を作用させた場合のヒト由来細胞からのMIP-1βおよびTNF-α遊離量を示す。値はmean±S.D.(n=5)で示した。*は、コントロールと比較してP<0.01の場合を示す。 は、ヒト由来のTHP-1細胞における、TDCM、vehicleまたは本発明の試験化合物の細胞毒性を示す。白色のバーは2時間、黒色のバーは24時間、試験化合物で処理した場合の結果をそれぞれ示す。値はmean±S.D.(n=5)で示した。*は、コントロールと比較してP<0.01の場合を示す。 は、Ames試験による、TDCM、vehicleまたは本発明の試験化合物の変異原性の測定結果を示す。 は、マウス腹腔内浸潤細胞にTDCM、vehicleまたは本発明の試験化合物を作用させた場合の細胞数および顕微鏡像を示す。値はmean±S.D.(n=5)で示した。*は、コントロールと比較してP<0.01の場合を示す。 は、マウス腹腔内浸潤細胞にTDCM、vehicleまたは本発明の試験化合物を作用させた場合のギムザ染色の結果を示す。 は、TDCM、vehicleまたは本発明の試験化合物を作用させたマウス腹腔内浸潤細胞における、蛍光顕微鏡によるCD-8陽性細胞像を示す。 は、TDCM、vehicleまたは本発明の試験化合物を作用させたマウス腹腔内浸潤細胞における、フローサイトメトリーによるCD-8陽性細胞の測定結果を示す。 は、TDCM、vehicleまたは本発明の試験化合物を投与したマウスに、ウェルシュ菌を投与した場合における、前記化合物のマウス生存数への影響を示す。*は、コントロールと比較してP<0.01の場合を示す。試験を8回行ったうちの、標準的な結果を示す。 は、TDCM、vehicleまたは本発明の試験化合物を投与したマウスに、緑膿菌を投与した場合における、前記化合物のマウス生存数への影響を示す。*は、コントロールと比較してP<0.01の場合を示す。試験を8回行ったうちの、標準的な結果を示す。 は、マウスに緑膿菌投与後に、TDCM、vehicleまたは本発明の試験化合物を投与した場合における、化合物のマウス生存数への影響を示す。*は、コントロールと比較してP<0.01の場合を示す。試験を8回行ったうちの、標準的な結果を示す。 は、vehicleまたは本発明の試験化合物を投与したマウスに、緑膿菌を投与した場合における、マウスの血中の緑膿菌数を示す。 は、乳癌細胞接種マウスにおける、TDCM、vehicleまたは本発明の試験化合物の癌転移への影響を示す。
 以下、本発明の好適な実施形態について説明する。なお、式(1)で表される化合物は、その薬理学的に許容される塩または溶媒和物の形態で存在していてもよい。
 本明細書において、「C-C21アルキル基」とは、炭素数1から21の直鎖状又は分岐鎖状の脂肪族炭化水素基のほか、脂肪族炭化水素基の全部または一部が4-8員環を形成している脂環式炭化水素基をも含む。好ましい態様の1つにおいて、本発明の式(1)で表される化合物の「C-C21アルキル基」は、直鎖状の脂肪族炭化水素基である。直鎖状の脂肪族炭化水素基である「C-C21アルキル基」の例として、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基、n-ヘンイコシル基、等を挙げることができる。脂肪族炭化水素基の全部が環を形成している脂環式炭化水素基の例としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基等を挙げることができ、脂肪族炭化水素基の一部が環を形成している脂環式炭化水素基の例としては、シクロへキシル-n-オクチル基、シクロへキシル-n-ノニル基、シクロヘプチル-n-オクチル基、等を挙げることができる。R、R’、R、またはR’としては、直鎖状のアルキル基が好適であり、より好ましくは、炭素数10から16の直鎖状アルキル基であり、特に好ましくは、nが0の場合、炭素数10の直鎖状のアルキル基であるn-デシル基であり、nが1の場合、炭素数9の直鎖状のアルキル基であるn-ノニル基、炭素数13の直鎖状のアルキル基であるn-トリデシル基または炭素数14の直鎖状のアルキル基であるn-テトラデシル基であり、最も好ましくは、n-デシル基である。
 R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよい。ここで、アルコキシ基とは、炭素数1から21の直鎖状又は分岐鎖状の脂肪族炭化水素が酸素原子と結合した構造の置換基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基等を挙げることができる。好ましくは、直鎖アルコキシ基であり、アルコキシ基によって置換されたアルキル基として、例えば、メトキシドデシル基、エトキシウンデシル基、プロポキシデシル基、ペンチルオキシノニル基、ヘキシルオキシオクチル基、ヘキシルオキシヘプチル基、ペンチルオキシオクチル基、などを挙げることができる。各アルキル基中の水素原子が、水酸基またはアルコキシ基によって置換されている場合、置換の位置は各アルキル基中のいずれでもよいが、好ましくは、アルキル基の末端炭素原子に結合した水素原子が、水酸基またはアルコキシ基によって置換された化合物である。アルキル基の末端炭素原子にアルコキシ基が結合した場合には、炭化水素基が酸素原子を介して結合した直鎖エーテル状の構造となり、介在する酸素原子と炭化水素基を構成する炭素原子との数の総和が、上記炭化水素基のアルキル基の長さと同様に、アルコキシアルキル基を構成する炭素及び酸素原子の数が2から21であることが好ましく、より好ましくは、nが0の場合、10から16であり、nが1の場合、9から15である。
 R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく、Xが、R-CHR-である場合に、R及びRが結合している炭素原子と、R及びRとは、いずれも4-8員環の構成原子となる。また、R及びRを構成するアルキル基は、分岐状アルキル基でもよいので、その場合には、分岐状アルキル基の一部が4-8員環を構成し、アルキル基で置換されたシクロアルキルのような構造となってもよい。また、環を形成している場合にも、前記と同様の置換基によって置換されている場合をも含む。これらは、XのみならずX’についても同様である。4-8員環の例としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などを挙げることができる。化合物の構造上の安定性の観点から、好ましくは、シクロヘキシル基またはシクロヘプチル基である。
 RとR’、RとR’は、同一でも異なっていてもよく、合成の効率の観点からは、好ましくは、RがR’と同一であり、RがR’と同一である。
 また、RとRとの関係については、RとRとは、同一でも異なっていてもよく、1つの好ましい態様としては、Rの炭素数がRの炭素数と比べて同一、Rの炭素数よりも炭素数が1若しくは2多いまたは1もしくは2少ない化合物である。例えば、Rが炭素数14であり、Rが炭素数16である化合物などが挙げられる。また、上記以外にも、Rが炭素数1~5のような短鎖アルキル基であり、Rが炭素数10~16のような長鎖アルキル基であるものや、その逆に、Rが10~16のような長鎖アルキル基であり、Rが炭素数1~5のような短鎖アルキル基であるものも好ましい。なお、R’とR’との関係も、上記RとRとの関係と同様であり、上記RとRとの関係において、RをR’に、RをR’に読み替えることが可能である。
 nとn’とは、同一でも異なっていてもよく、合成の効率の観点からは、nとn’とが同一であることが好ましい。また、活性の観点からは、nないしn’が0の化合物、及び、nないしn’が1の化合物が好ましい。
 また、トレハロースには、α,α’体、α,β’体、β,β’体という3つの異性体が存在する。本発明のトレハロース化合物としては、α,α’体が好適である。
 式(1)の化合物とその塩は溶媒和物として存在し得るが、これも本発明の範囲内である。また、本発明範囲には、生物学研究に有用な式(1)の化合物の放射性標識化合物も含まれる。
 本発明の好ましい化合物は、上述の式(1)で表される化合物であり、式中の各置換基が以下の特徴を有するものである。以下の特徴は、矛盾しない限りにおいて、それぞれ独立に、1つのみ又は組み合わせて選択することができる。
(A)Xは、R-CHR-で表される基である。
(B)X’は、R’-CHR’-で表される基である。
(C)R及びR’は、それぞれ独立に、無置換のC-C21アルキル基である。
(D)R及びR’は、それぞれ独立に、水素原子または無置換のC-C21アルキル基である。
(E)R及びR’は、それぞれ独立に、直鎖のC-C21アルキル基である。
(F)R及びR’は、それぞれ独立に、水素原子または直鎖のC-C21アルキル基である。
(G)R及びR’は、それぞれ独立に、無置換かつ直鎖のC-C21アルキル基である。
(H)R及びR’は、それぞれ独立に、水素原子または無置換かつ直鎖のC-C21アルキル基である。
(I)R及びR’は、それぞれ独立に、無置換かつ直鎖のC-C21アルキル基である。
(J)R及びR’は、それぞれ独立に、無置換かつ直鎖のC-C21アルキル基である。
(K)R及びR’は、同一であって、無置換のC-C21アルキル基である。
(L)R及びR’は、同一であって、水素原子または無置換のC-C21アルキル基である。
(M)R及びR’は、同一であって、直鎖のC-C21アルキル基である。
(N)R及びR’は、同一であって、水素原子または直鎖のC-C21アルキル基である。
(O)R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基である。
(P)R及びR’は、同一であって、水素原子または無置換かつ直鎖のC-C21アルキル基である。
(Q)R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基である。
(R)R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基である。
(S)n及びn’は、それぞれ独立に、0または1である。
(T)n及びn’は、0である。
(U)n及びn’は、1である。
 本発明の好ましい化合物は、式(1)で表される化合物、またはその薬理学的に許容可能な塩若しくは溶媒和物であり、以下の構造を有するものである。
(V)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり、ここで、R、R’、R及びR’は、それぞれ独立に、水素原子またはC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく、また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく;n及びn’は、それぞれ独立に、0から3の整数である。
(W)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり、ここで、R、R’、R及びR’は、それぞれ独立に、直鎖のC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく;n及びn’は、それぞれ独立に、0または1である。
(X)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;ここで、R、R’、R及びR’は、それぞれ独立に、直鎖のC-C16アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく;n及びn’は、0である。
(Y)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり、ここで、R、R’、R及びR’は、それぞれ独立に、直鎖のC-C14アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく;n及びn’は、1である。
(Z)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;ここで、R及びR’は同一であって、水素原子またはC-C21アルキル基であり、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく;R及びR’は同一であって、水素原子またはC-C21アルキル基であり、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく;また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく;n及びn’は同一であって、0から3の整数である。
(AA)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、C-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;R及びR’は、同一であって、C-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;n及びn’は、同一であって、0または1である。
(BB)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、C-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;R及びR’は、同一であって、水素原子、または、C-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;n及びn’は、同一であって、0または1である。
(CC)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、直鎖のC-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;R及びR’は、同一であって、直鎖のC-C21アルキル基であり、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく;n及びn’は、同一であって、0または1である。
(DD)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基であり;R及びR’は、同一であって、水素原子、または、無置換かつ直鎖のC-C21アルキル基であり;n及びn’は、同一であって、0または1である。(EE)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基であり;R及びR’は、同一であって、水素原子、または、無置換かつ直鎖のC-C21アルキル基であり;n及びn’は、同一であって、0または1である。
(FF)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C21アルキル基であり;n及びn’は、同一であって、0または1である。
(GG)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C16アルキル基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C16アルキル基であり;n及びn’は、同一であって、0または1である。
(HH)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C16アルキル基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C16アルキル基であり;n及びn’は、0である。
(II)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C14アルキル基であり;R及びR’は、同一であって、無置換かつ直鎖のC-C14アルキル基であり;n及びn’は、1である。
(JJ)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R、R’、R及びR’は、同一であって、無置換かつ直鎖のC10アルキル基であり;n及びn’は、0である。
(KK)Xは、R-CHR-で表される基であり;X’は、R’-CHR’-で表される基であり;R、R’、R及びR’は、同一であって、無置換かつ直鎖のC、C13、または、C14アルキル基であり;n及びn’は、1である。
 本発明のトレハロース化合物の具体例として、以下の化合物を例示することができる。
 6,6’-ビス-O-(2-オクチルデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ノニルウンデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ウンデシルトリデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ドデシルテトラデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-トリデシルペンタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-デシルトリデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ドデシルペンタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(ベンゾイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ナフチルカルボニル)-α,α’-トレハロース、
 6,6’-ビス-O-(シクロヘキサンカルボニル)-α,α’-トレハロース、
 6,6’-ビス-O-(シクロヘプタンカルボニル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-テトラデシルオクタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(14-メトキシ-2-(12-メトキシドデシル)-テトラデカノイル)-α,α’-トレハロース、または、
 6,6’-ビス-O-(15-ヒドロキシ-2-(13-ヒドロキシトリデシル)-ペンタデカノイル)-α,α’-トレハロース。
 本発明のトレハロース化合物として好適な化合物として、以下のものを例示することができる。
 6,6’-ビス-O-(2-オクチルデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ノニルウンデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ウンデシルトリデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ドデシルテトラデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-トリデシルペンタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-α,α’-トレハロース、または、
 6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-α,α’-トレハロース。
 また、本発明のトレハロース化合物として好適な化合物として、以下のものを例示することができる。
 6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-デシルトリデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ドデシルペンタデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、または、
 6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロース。
 また、本発明のトレハロース化合物としてより好適な化合物として、以下のものを例示することができる。
 6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、または、
 6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロース。
 また、本発明の好適な菌産生毒素中和剤として、以下のいずれかの化合物:
 6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(2-テトラデシルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
 6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、または、
 6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロースを含有することを特徴とする菌産生毒素中和剤を例示することができる。
 本発明の医薬組成物及び免疫賦活剤等は、上記トレハロース化合物を含有することを特徴とする。
 本発明のトレハロース化合物は、マクロファージや好中球に対する高い活性化作用を有する免疫賦活剤である。よって、本発明のトレハロース化合物は、細菌感染症、ウィルス感染症、真菌感染症などの感染症、日和見感染症、多剤耐性感染症など、免疫による生体防御反応の関連する疾患の予防剤または治療剤として有効である。
<製造方法>
 本発明の式(1)で表される化合物は、以下の(a)及び(b)で示される二つの工程により合成することができる。
 (a)式(3)で表されるトレハロース化合物に、式(4)及び式(6)で表されるカルボニル化合物を同時にまたは順次に作用させ、エステル化反応を行う工程。
 (b)前記工程(a)で得られる式(5)で表されるトレハロース化合物の水酸基の保護基を脱保護する工程。
 工程(a)において、「式(4)及び式(6)で表されるカルボニル化合物を同時にまたは順次に作用させ」るとは、以下の合成スキーム1に表されるように、式(4)及び式(6)で表されるカルボニル化合物を順次作用させてもよく、また、以下の合成スキーム2に表されるように、式(4)及び式(6)で表されるカルボニル化合物を同時に作用させてもよく、さらに、式(4)及び式(6)で表されるカルボニル化合物が同一である場合には、これを式(4)で表されるカルボニル化合物として、以下の合成スキーム3に表されるように、同時に、すなわち一段階の反応において作用させてもよいことを意味する。なお、式(2)で表される化合物も式(1)で表される化合物と同様にして合成することができる。
 本発明の式(1)で表される化合物は、以下の合成スキーム1に表される方法により製造することができる。
<合成スキーム1>
Figure JPOXMLDOC01-appb-C000003
 上記合成スキーム中、R、R’、R、R’、n及びn’は、前記と同様である。R及びR’は、糖の水酸基の保護基を示す。Y及びY’は、それぞれ独立に、水酸基またはハロゲン原子を表す。なお、上記スキームにおいて、式(3)で表されるトレハロース化合物はα,α’体であるが、α,β’体とβ,β’体も同様に合成することができる。ただ、本発明においては、α,α’体が好適である。
 ここで、R及びR’としては、水酸基の保護基として公知のものを使用することができる。例えば、Protecting groups in Organic chemistry(John Wiley &Sons INC., New York 1991, ISBN 0-471-62301-6)に記載の水酸基の保護基が挙げられる。具体的には、ベンジル基、p-メトキシベンジル基、ビフェニルメチル基等のアリールアルキル基;アセチル基等のアシル基;メトキシカルボニル基、tert-ブトキシカルボニル基等のアルコキシカルボニル基;トリメチルシリル基等のトリアルキルシリル基等が挙げられる。好ましくはベンジル基である。R及びR’は、同一でも異なっていてもよく、好ましくは、同一である。
 また、Y及びY’は、それぞれ独立に、水酸基またはハロゲン原子であり、ハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子、等を挙げることができる。Y及びY’は、好ましくは、水酸基である。
<工程(a):エステル化反応>
 式(3)で表されるトレハロース化合物に、式(4)及び式(6)で表されるカルボニル化合物を順次作用させ、トレハロース化合物とカルボニル化合物とのエステル化反応を行う工程である。
 式(3)で表されるトレハロース化合物は、トレハロースの6位及び6’位以外の水酸基が保護基により保護された化合物であり、市販のものを用いるか、或いはトレハロース等から公知の方法により合成したものを用いることができる。例えば、保護基がベンジル基である、2,3,4,2’,3’,4’-ヘキサベンゾキシ-α,α’-トレハロースは、市販されており、これを好適に用いることができる。また、トレハロースのα,α’体は天然に存在するものであり入手容易である。トレハロースにおいて6位及び6’位の水酸基と他の水酸基とは反応性が異なるので、天然のトレハロースに対し、公知の方法により、水酸基の保護基を導入することにより、6位及び6’位以外の水酸基が保護された式(3)で表されるトレハロース化合物を比較的容易に合成することができる。
 また、式(4)及び式(6)で表されるカルボニル化合物は、市販のものを用いるか、後述する合成スキーム4、5、または6により合成したもののほか、公知の方法により合成したものを用いることができる。
 式(3)で表されるトレハロース化合物に、式(4)で表されるカルボニル化合物を作用させる工程において、式(3)で表されるトレハロース化合物における6位及び6’位の水酸基のいずれもエステル化される可能性がある。6位及び6’位の水酸基のいずれもエステル化された化合物をジエステル体、いずれか一方のみがエステル化された中間化合物をモノエステル体と呼ぶ。式(3)で表されるトレハロース化合物に対し、式(4)で表されるカルボニル化合物を1当量程度用いる場合には、立体障害により、モノエステル体が多く生成される。所望の化合物の反応収率を高めるためには、反応後に所望の6位水酸基がエステル化されたモノエステル体を分離精製すればよい。あるいは、反応収率を高めるために、原料である式(3)で表されるトレハロース化合物の6位及び6’位の水酸基のうち、式(4)で表されるカルボニル化合物とのエステル化を望まない一方の水酸基を選択的に保護しておき、他方水酸基のエステル化反応の後に、選択的に脱保護してもよい。水酸基をエステル化する順番としては、6位水酸基を先にエステル化する場合の他、6’位水酸基を先にエステル化してもよい。
 当該エステル化反応は、一般的なエステル化反応として通常用いられる方法及び当業者等に公知の方法を広く用いることができる。
 式(4)または式(6)で表されるカルボニル化合物について、YまたはY’が水酸基である場合には、カルボン酸とアルコールとの公知のエステル化反応を広く適用することができる。例えば、脱水法(カルボジイミド法を含む)、混合酸無水物法、活性エステル化法等を挙げることができる。これらの方法は、好ましくは、不活性溶媒中、縮合剤を用いて行うことができる。
 これらの方法に用いられる縮合剤としては、脱水剤も含み、アルコールとカルボン酸とのエステル化反応において通常使用されるものを広く使用することができる。縮合剤の例としては、塩化水素、硫酸、塩酸等の鉱酸;パラトルエンスルホン酸、カンファースルホン酸等の有機酸;フッ化ホウ素エーテラート等のルイス酸等の脱水剤;三塩化リン、三臭化リン、五塩化リン、オキシ塩化リン、塩化チオニル等の酸ハロゲン化物生成剤;クロロぎ酸エチル、塩化メタンスルホニル等の混合酸無水物生成剤;N,N’-ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド、1-エチル-3-ジメチルアミノプロピルカルボジイミド等のカルボジイミド;またはその他の縮合剤、例えばN,N-カルボニルジイミダゾール、2-エトキシ-N-エトキシカルボニル-1,2-ジヒドロキノリン(EEDQ)、トリフェニルホスフィン-四塩化炭素(錯体)等を挙げることができる。これらの縮合剤は、1種単独で使用しても良いし、2種以上混合して使用しても良い。原料化合物と縮合剤の使用割合も特に限定されず、広い範囲内から適宜選択することができる。
 当該エステル化反応は、適当な溶媒中で行うことができる。溶媒としては、原料化合物に対して適度の溶解性を有し、エステル化反応に悪影響を及ぼさない不活性溶媒であればよく、公知の溶媒を広く使用することができる。上記エステル化反応に用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素:n-ヘキサン、シクロヘキサン、石油エーテル等の脂肪族炭化水素;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル;アセトン、2-ブタノン、メチルイソブチルケトン等のケトン;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド(HMPA)等のアミド;ジメチルスルホキシド等のスルホキシド等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 また、当該エステル化反応において、公知の反応促進剤を広く使用することができる。反応促進剤の例としては、ジメチルホルムアミド、ジメチルアミドピリジン、4-ピロリジノピリジン等の触媒、無水硫酸マグネシウム、モレキュラーシーブ(4A,5A)等の乾燥剤を挙げることができる。これらの反応促進剤は、反応系内に添加すればよい。また、エステル化反応を促進するために、ディーン-スタークの水分離装置、ソックスレー抽出器等の装置を使用してもよい。これらの反応促進剤ないし装置は、1種単独で使用しても良いし、2種以上混合して使用しても良く、触媒と乾燥剤を合わせて用いてもよい。原料化合物と反応促進剤の使用割合も特に限定されず、広い範囲内から適宜選択することができる。
 本反応に供される原料化合物の使用量は、特に限定されず広い範囲内から適宜選択される。式(4)で表される化合物及び式(6)で表される化合物を順次反応させる場合には、式(3)で表されるトレハロース化合物1モルに対して、式(4)で表されるカルボニル化合物を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用する。また、式(5)で表されるモノエステル体1モルに対して、式(6)で表されるカルボニル化合物を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用する。
 また、当該エステル化反応の反応温度も特に限定されないが、通常、-10℃から使用する溶媒の沸点温度以下の範囲内とすればよい。通常、0~200℃、好ましくは室温から100℃で行われる。
 反応時間は、原料化合物の種類及びその使用量、反応温度等の反応条件によって異なるが、通常、1時間から1週間の範囲で適宜調節することができ、好ましくは1~24時間、より好ましくは3~10時間である。
 反応終了後は、反応混合液に対して副生物の分離除去、乾燥、溶媒の留去などの一般的な処理を行った後、シリカゲルカラムクロマトグラフィ等の一般的な方法により精製する。
 式(4)または式(6)で表されるカルボニル化合物について、YまたはY’がハロゲン原子である場合には、エステル化反応は、適当な溶媒中、必要に応じて塩基の存在下で行うことができる。 
 溶媒は、上記エステル化反応で使用される不活性溶媒と同じものを使用することができる。 
 塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩;酢酸ナトリウム、酢酸カリウム等のアルカリ金属の酢酸塩;酢酸カルシウム等のアルカリ土類金属の酢酸塩;水素化ナトリウム、水素化カリウム等のアルカリ金属の水素化物;水素化カルシウム等のアルカリ土類金属の水素化物;水酸化アンモニウム、炭酸アンモニウム、酢酸アンモニウム等のアンモニウム塩;トリメチルアミン、トリエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、ジアザビシクロオクタン(DABCO)、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)等の第三級アミンを挙げることができる。これら塩基は、1種単独で使用しても良いし、2種以上混合して使用してもよい。
 本反応に供される原料化合物、及び、塩基の使用量も、特に限定されず広い範囲内から適宜選択される。式(4)で表される化合物及び式(6)で表される化合物を順次反応させる場合には、式(2)で表されるトレハロース化合物1モルに対して、式(4)で表されるカルボニル化合物を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用し、塩基を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用する。また、式(5)で表されるモノエステル体1モルに対して、式(6)で表されるカルボニル化合物を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用し、塩基を、通常0.5~1.8モル、好ましくは0.8~1.2モル使用する。
 反応温度は、上記エステル化反応と同様、通常、-10℃から使用する溶媒の沸点温度以下の範囲内とすればよい。反応時間は、上記エステル化反応と同様、前記の濃度、温度等によって変化するが、通常0.1~10時間の範囲で適宜調整することができる。 
 式(4)で表される化合物及び式(6)で表される化合物として、Xが水酸基であるカルボニル化合物とX’がハロゲン原子であるカルボニル化合物とを使用する場合、及び、Xがハロゲン原子であるカルボニル化合物とX’が水酸基である化合物とを使用する場合にも、上記反応条件の中から適宜選択することによって、同様に、式(7)で表わされる化合物を合成することができる。
<工程(b)>
 上記工程(a)において得られた、トレハロースの6位及び6’位がエステル化され、糖の水酸基が保護された、式(7)で表される化合物に対し、糖の水酸基の脱保護を行うことにより、目的とする、式(1)で表されるトレハロースジエステル化合物を得る。
 式(7)で表される化合物における保護された水酸基から保護基を脱離するには、例えば、前記文献に記載の当該保護基に適した脱保護方法を適宜適用することができる。 
 例えば、Rの保護基がベンジル基である場合には、接触水素添加反応を適用することができる。接触水素添加反応は、水素雰囲気下、触媒の存在下で行われる。 
 触媒は、接触水素添加反応に使用されるものである限り公知の触媒を広く使用でき、例えば、酸化白金、白金炭素、水酸化パラジウム、パラジウム炭素、ラネーニッケル等が挙げられる。 
 触媒の使用量は、式(7)で表される化合物に対して、通常0.001~50重量%程度、好ましくは0.01~10重量%程度である。
 水素圧は、特に制限されず、広い範囲内から適宜選択することができる。水素圧は、通常、0.8~100気圧程度であり、好ましくは1~3気圧程度である。 
 当該反応は、通常、適当な溶媒中で行われ、溶媒としては、反応に悪影響を与えない不活性なものであれば広く用いることができる。使用する溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;メタノール、エタノール、イソプロパノール等のアルコール;ギ酸メチル、酢酸メチル、酢酸エチル等のエステル;ギ酸、酢酸等のカルボン酸又はこれらの混合溶媒を挙げることができる。 
 本反応の温度は、通常、0~100℃程度であり、好ましくは10~40℃程度である。反応時間は、基質量、温度、触媒の種類等によって異なるが、水素消費の理論量を目安に反応を終結させればよい。通常、1~50時間程度であり、好ましくは1~30時間である。
 反応終了後は、触媒の濾別、溶媒の留去などの一般的な処理を行った後、溶媒抽出、シリカゲルカラムクロマトグラフィ等の一般的な方法により精製する。
 本発明の式(1)で表される化合物は、以下の合成スキーム2または合成スキーム3に示される方法により製造することもできる。
<合成スキーム2>
Figure JPOXMLDOC01-appb-C000004
 上記合成スキーム中、R、R’、R、R’、R、R’、n及びn’は、前記と同様である。
 合成スキーム2は、エステル化反応である工程(a)において、式(3)で表されるトレハロース化合物に、式(4)及び式(6)で表されるカルボニル化合物を同時に作用させるスキームであり、脱保護反応である工程(b)は合成スキーム1と同様である。
 エステル化反応及び脱保護反応は、工程(a)において、式(3)で表されるトレハロース化合物に、式(4)及び式(6)で表されるカルボニル化合物を同時に作用させる他は、合成スキーム1と同様にして行うことができる。
 式(4)で表されるカルボニル化合物及び式(6)で表されるカルボニル化合物を同時に作用させた場合には、生成物の中から、目的化合物を分離精製することにより得ることができる。
 式(1)で表される化合物において、R及びR’、R及びR’、n及びn’がそれぞれ同一である場合には、上記合成スキーム2は、特に以下の合成スキーム3のように表すことができる。なお、式(1)で表される化合物が、R及びR’、R及びR’、n及びn’がそれぞれ同一である化合物でない場合には、反応収率を高める観点からは、合成スキーム1で表される方法により合成する方が好ましい。
<合成スキーム3>
Figure JPOXMLDOC01-appb-C000005
 上記合成スキーム中、R、R、R、R’及びnは、前記と同様である。
 合成スキーム3は、エステル化反応である工程(a)において、式(3)で表されるトレハロース化合物に対し、作用させるカルボニル化合物(4)は一種類のみであるので、エステル化反応を同時に、すなわち、一段階の反応により行うスキームであり、脱保護反応である工程(b)は合成スキーム1と同様である。
 合成スキーム3におけるエステル化反応及び脱保護反応は、は、式(4)で表されるカルボニル化合物の使用量を増やす以外は、上記合成スキーム1の反応と同様にして行うことができる。使用量に関しては、具体的には、式(3)で表されるトレハロース化合物1モルに対して、式(4)で表されるカルボニル化合物を通常1.8~5モル、好ましくは2~3モル、縮合剤を通常1.8~5モル、好ましくは2~4モル、塩基を通常1.8~8モル、好ましくは2~6モル使用する。
 また、式(7)で表される化合物は、単離精製せずに次反応に使用することもできるが、エステル化反応に使用した試薬及び副生成物を除去しておくのが好ましい。
<原料となるカルボニル化合物>
 上記合成スキーム1、2、または3において、原料化合物である式(4)または式(6)で表されるカルボニル化合物は、市販のものを用いる他、当業者に公知の方法により製造することができる。例えば、式(4)または式(6)において、XないしX’がフェニル基であり、nないしn’が0である化合物としては、安息香酸または安息香酸のハロゲン化物を用いることができる。
 式(4)で表される化合物のうち、Xが、R-CHR-であり、nが0である化合物は、以下の合成スキーム4または5により製造することもできる。
 以下では、式(4)で表されるカルボニル化合物が目的化合物として記載されているが、式(6)で表されるカルボニル化合物も、同様に製造することができる。
<合成スキーム4>
Figure JPOXMLDOC01-appb-C000006
 上記合成スキーム中、R及びRは前記と同様である。Rは炭素数1~6のアルキル基を表し、Halはハロゲン原子を表す。
 合成スキーム4は、式(8)で表される化合物を、通常のアルキル化反応に付して、式(4)で表されるカルボニル化合物を得る工程である。原料化合物である式(8)で表される化合物は、市販のものを用いることができ、例えば、Rが炭素数10の直鎖アルキル基である場合には、ドデカン酸エチルなどを用いることができる。目的化合物の側鎖アルキルとして所望の長さを有する酸のエステルを用いればよい。
 アルキル化反応には、例えば、Creger,J.Am.Chem.Soc., 92巻,1397-98頁,1970年に記載の方法等の種々の方法を用いることができる。より具体的には、式(8)で表される化合物の溶液に強塩基を加えて2位の水素原子を引き抜いた後、ハロゲン化アルキルを反応させればよい。例として、以下のような反応によりアルキル化を行うことができる。
 まず、式(8)で表される化合物と強塩基を反応させる。強塩基としては、水素原子を引き抜く作用のあるものであればよく、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物等を挙げることができる。これら塩基は、1種単独で使用しても良いし、2種以上混合して使用してもよい。また、リチウムジイソプロピルアミドを併用して、プロトン-リチウム交換反応を行なってもよい。溶媒としては、原料化合物に対して適度の溶解性を有し、エステル化反応に悪影響を及ぼさない不活性溶媒であればよく、公知の溶媒を広く使用することができる。上記アルキル化反応に用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;n-ヘキサン、シクロヘキサン、石油エーテル等の脂肪族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 当該反応において、式(8)で表される化合物と強塩基の割合は、広い範囲内から適宜選択することができるが、通常は式(8)で表される化合物に対して強塩基等を0.9~5倍モル程度用いる。この際の反応温度は、通常-80~60℃程度、好ましくは0℃~60℃程度である。反応時間は5分~6時間程度とし、好ましくは5分~1時間程度である。
 次いで、反応混合液にハロゲン化アルキルを加える。ハロゲン化アルキルとしては、例えば、1-ヨードオクタン、1-ヨードへプタン、1-ヨードデカン、1-ヨードウンデカン、1-ヨードドデカン、1-ヨードトリデカン、など、目的化合物の側鎖のアルキル基として、炭素鎖部分が所望の長さを有するアルカンのハロゲン化物を用いればよい。ハロゲン化物としては、塩素化物、ヨウ素化物、臭素化物などが挙げられるが、好ましくは、ヨウ素化物である。当該反応において、式(8)で表される化合物とハロゲン化アルキルの割合は、広い範囲内から適宜選択することができるが、通常は式(8)で表される化合物に対してハロゲン化アルキルを1.1~3倍モル程度用いる。この際の反応温度は、通常は室温程度にすればよい。また、反応時間は、通常2~12時間程度とする。
 反応終了後においては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することによって、目的化合物を単離し、精製する。
 式(4)で表される化合物のうち、Xが、R-CHR-であり、nが0である化合物は、以下の合成スキーム5により製造することもできる。
<合成スキーム5>
Figure JPOXMLDOC01-appb-C000007
 上記合成スキーム中、R、R、R及びHalは前記と同様である。
 合成スキーム5は、式(11)で表される化合物を、通常のアルキル化反応に付して、式(4)で表されるカルボニル化合物を得る工程である。原料化合物である式(11)で表される化合物は、市販のものを用いることができ、例えば、マロン酸ジエチル、マロン酸ジメチル、マロン酸ジプロピル、マロン酸ジジブチル、マロン酸ジイソプロピル、マロン酸ジ-tert-ブチル、マロン酸ジシクロヘキシル、マロン酸ジフェニル、マロン酸ジベンジルなどが挙げられる。
 アルキル化反応は、上記と同様に、原料化合物である式(11)で表される化合物に強塩基を反応させ、次いで、ハロゲン化アルキルを作用させて行うことができる。
 式(11)で表される化合物に強塩基を反応させる工程において、式(11)で表される化合物と強塩基の割合は、広い範囲内から適宜選択することができるが、通常は式(11)で表される化合物に対して強塩基等を0.9~5倍モル程度用いる。この際の反応温度は、通常-80~60℃程度、好ましくは0℃~60℃程度である。反応時間は5分~6時間程度とし、好ましくは5分~1時間程度である。
 次いで、ハロゲン化アルキルを加える工程において、式(11)で表される化合物とハロゲン化アルキルの割合は、広い範囲内から適宜選択することができるが、通常は式(11)で表される化合物に対して、式(12)で表されるハロゲン化アルキル、及び、式(9)で表されるハロゲン化アルキルを、それぞれ、0.8~1.2倍モル程度用いる。目的化合物が、R及びRが同一である化合物である場合には、ハロゲン化アルキルは1種類でよく、通常は式(11)で表される化合物に対して、ハロゲン化アルキルを2.2~4倍モル程度用いる。目的化合物において、R及びRが同一でない場合には、上記のように、式(12)で表されるハロゲン化アルキル、及び、式(9)で表されるハロゲン化アルキルを同時に作用させて目的化合物のみを単離精製する場合の他、異なるハロゲン化アルキルを順次作用させることとし、一方のハロゲン化アルキルを作用させた後、単離精製し、他方のハロゲン化アルキルを作用させ、目的化合物を単離精製してもよい。単離精製の方法としては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することができる。
 式(4)で表される化合物のうち、Xが、R-CHR-であり、nが1である化合物は、以下の合成スキーム6により製造することもできる。
<合成スキーム6>
 合成スキーム6は、以下の合成スキーム6-1から6-5として説明することができる

<合成スキーム6-1>
Figure JPOXMLDOC01-appb-C000008
 上記合成スキーム中、Rは前記と同様である。
 合成スキーム6-1は、原料化合物であるカルボン酸にN,O-ジメチルヒドロキシアミンを脱水結合する反応である。
 式(13)で表されるカルボン酸に、塩基性縮合剤を作用させる。公知の塩基性縮合剤であれば広く使用することができ、塩基性縮合剤の例としては、カルボニルジイミダゾールの他、4-ジメチルアミノピリジン、ピペリジン、ピロリジン、ピリジン、イミダゾール、N,N,N',N'-テトラメチルウレア、ビス(ペンタメチレン)ウレア、1,1-カルボニルジピロール、などが挙げられる。原料化合物であるカルボン酸は、市販のものを用いることができ、例えば、へプタン酸、オクタン酸、デカン酸、ウンデカン酸などが挙げられる。目的化合物の側鎖アルキルとして所望の長さを有する酸を用いればよい。溶媒としては、原料化合物に対して適度の溶解性を有し、エステル化反応に悪影響を及ぼさない不活性溶媒であればよく、公知の溶媒を広く使用することができる。上記エステル化反応に用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素:n-ヘキサン、シクロヘキサン、石油エーテル等の脂肪族炭化水素;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 当該反応において、式(13)で表されるカルボン酸とカルボニルジイミダゾール等との使用割合は、広い範囲から適宜選択することができ、通常、0.8~2.0モル程度である。この際の反応温度は、通常-80~60℃程度、好ましくは0℃~60℃程度である。反応時間は5分~6時間程度とし、好ましくは30分~3時間程度である。
 次いで、式(14)で表されるN,O-ジメチルヒドロキシアミンを反応させる。N,O-ジメチルヒドロキシアミンに代えて、1-ホドロキシベンゾトリアゾールなども使用することができる。式(13)で表されるカルボン酸とN,O-ジメチルヒドロキシアミンとの割合は、広い範囲から適宜選択することができ、通常、式(13)で表されるカルボン酸に対し、N,O-ジメチルヒドロキシアミンを0.8~1.5モル程度用いればよい。反応は、通常-80~60℃程度、好ましくは0℃~60℃程度である。反応時間は、10分から10時間程度とすればよい。
 反応終了後においては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することによって、目的化合物を単離し、精製する。
<合成スキーム6-2>
Figure JPOXMLDOC01-appb-C000009
 上記合成スキーム中、R、R及びHalは前記と同様である。
 合成スキーム6-2は、式(15)で表される化合物にハロゲン化アルキルを作用させてケトン体を合成する反応である。
 当該反応において、式(9)で表されるハロゲン化アルキルをエーテル系溶媒中において金属マグネシウムと作用させ、Grignard試薬を調製して反応に用いることができる。金属マグネシウムとしては、研磨した削状マグネシウムが好適に用いられる他、リチウム、ナトリウム、亜鉛、インジウムなども使用することができる。
 式(9)で表されるハロゲン化アルキルは、前記と同様のものを用いることができる。
 当該反応は、エーテル溶媒系において行われ、エーテル溶媒系としては、ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 当該反応において、式(15)で表される化合物とハロゲン化アルキルの割合は、広い範囲内から適宜選択することができるが、通常は式(15)で表される化合物に対してハロゲン化アルキルを0.8~5倍モル程度用いる。この際の反応温度は、通常0℃~80℃程度である。反応時間は5分~6時間程度である。
 反応終了後においては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することによって、目的化合物を単離し、精製する。
<合成スキーム6-3>
Figure JPOXMLDOC01-appb-C000010
 上記合成スキーム中、R、R及びRは前記と同様である。R及びRは、アルキル基、アルコキシ基、アリール基またはアリールオキシ基を表し、これらはハロゲン原子等により置換されていてもよい。
 合成スキーム6-3は、式(16)で表されるケトン化合物に強塩基の存在下において、Wittig試薬またはHorner-Emmons試薬を反応させて、炭素-炭素二重結合を形成する反応である。上記合成スキームに記載の、式(17)で表される化合物は、Horner-Emmons試薬であるが、代わりにWittig試薬を用いてもよい。
 強塩基としては、水素原子を引き抜く作用のあるものであればよく、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物等を挙げることができる。これら塩基は、1種単独で使用しても良いし、2種以上混合して使用してもよい。溶媒としては、原料化合物に対して適度の溶解性を有し、エステル化反応に悪影響を及ぼさない不活性溶媒であればよく、公知の溶媒を広く使用することができる。当該反応に用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;n-ヘキサン、シクロヘキサン、石油エーテル等の脂肪族炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 当該反応において、式(16)で表される化合物と強塩基の割合は、広い範囲内から適宜選択することができるが、通常は式(16)で表される化合物に対して強塩基等を1.1~8倍モル程度用いる。この際の反応温度は、通常-80~60℃程度である。反応時間は、通常5分~3時間程度とする。
 次いで、反応混合液に、Wittig試薬またはHorner-Emmons試薬を反応させる。Wittig試薬またはHorner-Emmons試薬としては、公知のものを広く用いることができる。当該工程においては、式(16)で表されるケトン化合物と、酢酸エステルとの間で炭素-炭素二重結合を形成させるものであればよく、Wittig試薬の例としては、エトキシカルボニルメチル(トリフェニル)フォスフォニウムブロミドや、エチル(トリフェニルフォスフォラニリデン)アセテート、ホルナー-エモンズ試薬の例としては、エチルジフェニルフォスフォノアセテートなどのエチル(ジアリール)フォスフォノアセテートや、エチルジエチルフォスフォノアセテートなどのエチル(ジアルキル)フォスフォノアセテートなどを挙げることができる。好ましくは、エチルジエチルフォスフォノアセテートである。
 当該反応において、式(16)で表される化合物とエチルジエチルフォスフォノアセテートの割合は、広い範囲内から適宜選択することができるが、通常は式(16)で表される化合物に対してエチルジエチルフォスフォノアセテートを1.1~10倍モル程度用いる。この際の反応温度は、通常は室温程度にすればよい。また、反応時間は、通常2~30時間程度とする。
 反応終了後においては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することによって、目的化合物を単離し、精製する。
<合成スキーム6-4>
Figure JPOXMLDOC01-appb-C000011
 上記合成スキーム中、R、R及びRは前記と同様である。
 合成スキーム6-4は、式(18)で表される不飽和結合を有するカルボン酸エステルに対し、接触水素添加反応を行い、飽和カルボン酸エステルとする反応である。
 接触水素添加反応は、水素雰囲気下、触媒の存在下で行われる。 
 触媒は、接触水素添加反応に使用されるものである限り公知の触媒を広く使用でき、例えば、酸化白金、白金炭素、水酸化パラジウム、パラジウム炭素、ラネーニッケル等が挙げられる。
 触媒の使用量は、式(18)で表される化合物に対して、通常0.001~50重量%程度、好ましくは0.01~10重量%程度である。
 水素圧は、特に制限されず、広い範囲内から適宜選択することができる。水素圧は、通常、0.8~100気圧程度であり、好ましくは1~3気圧程度である。
 当該反応は、通常、適当な溶媒中で行われ、溶媒としては、反応に悪影響を与えない不活性なものであれば広く用いることができる。使用する溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;メタノール、エタノール、イソプロパノール等のアルコール;ギ酸メチル、酢酸メチル、酢酸エチル等のエステル;ギ酸、酢酸等のカルボン酸又はこれらの混合溶媒を挙げ
ることができる。 
 本反応の温度は、通常、0~100℃程度であり、好ましくは10~40℃程度である。反応時間は、基質量、温度、触媒の種類等によって異なるが、水素消費の理論量を目安に反応を終結させればよい。通常、1~50時間程度であり、好ましくは1~30時間程度である。
 反応終了後は、触媒の濾別、溶媒の留去などの一般的な処理を行った後、溶媒抽出、シリカゲルカラムクロマトグラフィ等の一般的な方法により精製する。
<合成スキーム6-5>
Figure JPOXMLDOC01-appb-C000012
 上記合成スキーム中、R、R及びRは前記と同様である。
 合成スキーム6-5は、式(19)で表されるカルボン酸エステルの加水分解を行い、所望のカルボン酸を得る工程である。
 加水分解反応としては、公知の種々の反応を用いることができる。酸性条件下、または、塩基性条件下で行われ、あるいは酵素反応として行われてもよい。
 塩基性条件は、塩基を溶媒に加えればよく、塩基として水素化物イオンを出す物質であれば広く使用することができ、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム等のアルカリ土類金属の水酸化物;炭酸ナトリウム、炭酸カリウム等のアルカリ金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩;酢酸ナトリウム、酢酸カリウム等のアルカリ金属の酢酸塩;酢酸カルシウム等のアルカリ土類金属の酢酸塩;水素化ナトリウム、水素化カリウム等のアルカリ金属の水素化物;水素化カルシウム等のアルカリ土類金属の水素化物;水酸化アンモニウム、炭酸アンモニウム、酢酸アンモニウム等のアンモニウム塩;トリメチルアミン、トリエチルアミン、N,N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、ジアザビシクロオクタン(DABCO)、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)等の第三級アミンを挙げることができる。これら塩基は、1種単独で使用しても良いし、2種以上混合して使用してもよい。
 溶媒としては、原料化合物に対して適度の溶解性を有し、エステル化反応に悪影響を及ぼさない不活性溶媒であればよく、公知の溶媒を広く使用することができる。上記エステル化反応に用いられる溶媒の例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素:n-ヘキサン、シクロヘキサン、石油エーテル等の脂肪族炭化水素;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素等の脂肪族ハロゲン化炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等のエーテル;アセトン、2-ブタノン、メチルイソブチルケトン等のケトン;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド(HMPA)等のアミド;ジメチルスルホキシド等のスルホキシド等を挙げることができる。これらの溶媒は、1種単独で使用しても良いし、2種以上混合して使用しても良い。
 当該反応において、反応温度、反応時間等は、広い範囲から適宜選択することができ、反応温度は、通常、0℃から100℃程度とし、反応時間は、通常、30分から20時間程度とすることができる。
 反応終了後においては、シリカゲルカラムクロマトグラフィ、減圧蒸留などの公知の単離及び精製方法を適用することによって、目的化合物を単離し、精製する。
 式(4)で表される化合物のうち、Xが、R-CHR-であり、nが2である化合物は、例えば、以下の合成スキーム7で表される反応により合成することもできる。
<合成スキーム7>
Figure JPOXMLDOC01-appb-C000013
 上記合成スキーム中、R及びRは前記と同様である。
 合成スキーム7は、式(16)で表されるケトン化合物に対し、式(21)で表されるジエチル3-ヒドロキシプロパノイルフォスフォネートをHorner-Emmons試薬として反応させ、炭素-炭素二重結合を形成して式(22)で表される化合物を得て、接触水素添加反応を行い式(23)で表される化合物を得て、アルコールの酸化反応を行い、カルボニル化合物としての式(24)で表される化合物を得る反応である。なお、上記合成スキーム中には、式(22)で表される化合物について、二重結合のシス-トランス立体異性体の一方のみを記載しているが、当該立体異性体に限られるものではない。
 Horner-Emmons試薬を用いた反応、及び、接触水素添加反応は、それぞれ合成スキーム6-3、合成スキーム6-4を参照して同様に行うことができる。また、アルコールの酸化反応は、アルコールを強い酸化剤で酸化することにより行うことができ、クロム酸酸化、ジョーンズ酸化などの公知の方法を用いて適宜行うことができる。例として、クロム酸酸化においては、無水クロム酸、クロム酸、二クロム酸などの塩や錯体を用いて行うことができる。
 反応終了後は、触媒の濾別、溶媒の留去などの一般的な処理を行った後、溶媒抽出、シリカゲルカラムクロマトグラフィ等の一般的な方法により精製する。
 本明細書において、免疫賦活とは、細胞性免疫、液性免疫など、種々の免疫作用を活性化することを指し、免疫賦活剤とは、これらの免疫活性化作用のうちのいずれかを示すものであればよい。本発明のトレハロース化合物は、免疫系の中でも、少なくとも、細胞性免疫と呼ばれる、マクロファージや好中球などの免疫作用の活性化を行うことが想定されるが、細胞性免疫が活性化された結果、これらの細胞がサイトカインを遊離することなどにより、さらに液性免疫をも活性化される状況等をも広く含めるものである。
 本明細書において、マクロファージ賦活とは、元来マクロファージは外界からの異物に対する食作用を有するものであるところ、マクロファージの食作用を高めるように作用することであって、マクロファージの組織への付着性、及び運動性が向上し、外部から侵入した細菌や変性した自己成分を貪食する状態を指す。マクロファージが活性化した状態においては、一酸化窒素(NO)の放出、活性酸素の遊離が増大することが知られている。これらの遊離物質の放出量を測定してマクロファージ活性化の指標とすることができ、また、食作用の亢進そのものを測定し、これをマクロファージ活性化の指標とすることもできる。
 本明細書において、好中球賦活とは、元来好中球自身もマクロファージと同様の異物に対する食作用を有するものであるところ、好中球の食作用を亢進させ、細菌などを貪食する状態である。好中球が活性化した状態においても、一酸化窒素(NO)の放出、活性酸素の遊離が増大することが知られている。また、好中球の活性化により、微小顆粒やアズール顆粒の脱顆粒による生理活性物質の遊離が見られることも知られている。これらの遊離物質の放出量を測定して好中球活性化の指標とすることができ、また、食作用の亢進そのものを測定し、これを好中球活性化の指標とすることもできる。
 本明細書において、貪食細胞としては、マクロファージ及び単球、多核白血球、樹状細胞等が挙げられ、その食菌作用とは、免疫系細胞として、外界からの異物としての病原菌等をその細胞内の小胞にとりこみ、その小胞と細胞内のリソソームを融合させることにより、当該異物を消化する作用をいう。貪食細胞の食菌作用賦活とは、これらの貪食細胞のいずれかを活性化してその食菌作用を高めるものであれば特に限定されない。好ましくは、マクロファージ及び好中球のうちの1方ないし双方の食菌作用を亢進するものをいう。
 本明細書において、抗細菌感染症剤とは、細菌による感染症、すなわち、細菌が体内に存在することにより引き起こされる諸症状を軽減するものであればよい。細菌としては、例えば、ウェルシュ菌などのほか、緑膿菌、病原性大腸菌などを含む。
 本明細書において、菌産生毒素中和剤とは、細菌の産生する毒素の作用を軽減するものをいう。抗細菌感染症剤という場合には、細菌の増殖ないし細菌からの毒素の放出を抑制することにより、細菌による諸症状を軽減するものも含まれるのに対し、毒素中和剤としう場合には、毒素のみが生体に作用しようという状況においても、毒素の作用を低減させるものであり、毒素を吸着し、または、毒素を不活性なものに改変する、毒素を貪食細胞にとりこむ、さらには取り込んだ毒素を消化するなどの作用をいう。
 本発明において、抗癌剤とは、抗腫瘍活性を有し、癌の予防または治療のために用いられる薬剤を意図する。本発明において抗癌剤が作用する腫瘍は、原発性の腫瘍、転移腫瘍であるとを問わない。したがって、本発明の抗癌剤は、原発性癌および転移腫瘍の治療のみならず、原発性癌の治療と同時または治療後に転移腫瘍の予防のために用いられてもよい。また、本発明において抗癌剤が作用する腫瘍として、例えば、乳癌、精巣癌、睾丸腫瘍、膵臓癌、横隔膜腫瘍、肺癌、卵巣癌、胃癌、胆嚢癌、腎臓癌、前立腺癌、食道癌、肝臓癌、口腔癌、結腸癌、大腸癌、直腸癌、子宮癌、胆管癌、膵島細胞癌、副腎皮質癌、膀胱癌、甲状腺癌、皮膚癌、悪性カルチノイド腫瘍、メラノーマ、グリオーマ、骨肉腫、骨髄腫、軟部組織肉腫、神経芽細胞腫、悪性リンパ腫や白血病等が挙げられるが、なかでも、乳癌、精巣癌、膵臓癌または横隔膜腫瘍を好適に例示することができる。
 本明細書において、本発明のトレハロース化合物、または、当該化合物と薬理学的に許容できるキャリアとを含有する医薬組成物を、免疫賦活剤、細菌毒素中和剤、抗癌剤などの医薬用途に用いることができる。
 本明細書において、薬理学的に許容できるキャリアとは、薬理学的及び製剤学的に許容されるものであればよく、特に制限されない。例えば、賦形剤、結合剤、分散剤、増粘剤、滑沢剤、pH調整剤、可溶化剤等の一般に製剤の製造に使用される担体のほか、抗生物質、抗菌剤、殺菌剤、防腐剤、ビルダー、漂白剤、酵素、キレート剤、消泡剤、着色料(染料、顔料等)、柔軟剤、保湿剤、界面活性剤、酸化防止剤、香料、矯味剤、矯臭剤、溶媒等が含まれる。薬理学的に許容できるキャリアは、本発明のトレハロース化合物(1)の活性を妨げない範囲で配合することができ、キャリアを配合することにより、本発明のトレハロース化合物(1)の吸収性や血中濃度に影響を及ぼし、体内動態の変化をもたらす
ことも可能である。
 本明細書において、本件化合物を投与する方法とは、本発明のトレハロース化合物それ自体または当該化合物を含有する医薬組成物をヒトまたは動物に投与する方法であり、本件化合物または医薬組成物は、通常の医療製剤の形態に製剤することができる。当該医療製剤としては、上記薬理学的キャリア用いて適宜調製される。投与形態としては特に限定はなく、治療目的に応じて適宜選択して使用される。その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、坐剤、注射剤(液剤、懸濁剤、乳剤)等が挙げられる。これら製剤は、通常用いられる方法により製造すればよい。
 上記医療製剤の投与量は、用法、患者の年齢、性別、疾患の程度、その他の条件に応じて適宜選択すればよく、通常、有効成分であるトレハロース化合物(1)を、1日あたり体重1kgに対して0.01~100mg、好ましくは0.1~50mgを1回~数回に分けて投与される。
 上記投与量は、種々の条件で変動するので、上記範囲より少ない投与量で充分な場合もあるし、また上記範囲を超えた投与量が必要な場合もある。
 なお、本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。
 また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記述された事項(部材、ステップ、要素、数字など)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素、数字など)が存在することを排除しない。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
 本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
 第一の、第二のなどの用語が種々の要素を表現するために用いられるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、 例えば、第一の要素を第二の要素と記し、同様に、第二の要素は第一の要素と記すことは、本発明の範囲を逸脱することなく可能である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
<実施例 トレハロースジエステル化合物の化学合成>
 合成スキーム1で示された式(3)で表される糖の水酸基が保護されたトレハロース化合物と、式(4)または式(6)で表されるそれぞれ所望のカルボニル化合物とのエステル化反応を行い、式(7)で表される化合物を合成した後、糖の水酸基の脱保護を行い、所望のトレハロースジエステル化合物を得た。
 以下にその一部の製造例を示すが、本発明は、以下の製造例に限られるものではない。
製造例A-1
[6,6’-ビス-O-(2-デシルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000014
 製造例C-1に記載の方法により得られたカルボン酸(2-デシルドデカン酸)(145mg,425μmol)とトレハロース誘導体(2,3,4,2’,3’,4’-ヘキサベンゾキシ-α,α’-トレハロース)(150mg,170μmol)を無水ジクロロメタン溶液(2ml)に溶かし、粉末モレキュラーシーブス4A(0.3g)、4-ジメチルアミノピリジン(20.8mg,170μmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩[以下、EDCIと略す](97.8mg,510μmol)を順次加えて4時間加熱還流反応した。セライト-535を用いて濾過し、蒸留水を加えジクロロメタンで3回抽出した。有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)を用いて精製し、ジエステル体である6,6’-ビス-O-(2-デシルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロース(242mg,93%)を無色無定形固体として得た。
 colorless syrup; [α]D 20 +57.7o(c 0.9 CHCl3); FT IR (neat) 3088, 3064, 3031, 2941, 2862, 1946, 1869, 1804, 1741 cm-1 1H NMR (300 MHz in CDCl3) δ0.87 (12H, t, J = 6.9 Hz), 1.14-1.32 (64H, m), 1.43 (4H, m), 1.55 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 9.0, 3.6 Hz), 3.56 (2H, t, J = 9.0 Hz), 4.04 (2H, t, J = 9.0 Hz), 4.10 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.8 Hz), 4.67 (2H, d, J = 11.7 Hz), 4.72 (2H, d, J = 11.7 Hz), 4.85 (2H, d, J = 10.8 Hz), 4.87 (2H, d, J = 10.8 Hz), 4.99 (2H, d, J = 10.8 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.13, 22.69, 27.41, 27.45, 29.33, 29.35, 29.51, 29.53, 29.63, 31.90, 32.32, 45.70, 62.07, 69.16, 73.04, 75.28, 75.71, 77.82, 79.68, 81.55, 93.78, 127.38, 127.61, 127.73, 127.86, 127.92, 128.34, 128.43, 137.79, 137.94, 138.59, 176.16.
製造例A-2
[6,6’-ビス-O-(2-オクチルデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000015
 カルボン酸として、製造例C-2に記載の方法により得られた2-オクチルデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-オクチルデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 16 +62.3o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2927, 2855, 1947, 1868, 1808, 1737 cm-1 1H NMR (300 MHz in CDCl3) δ0.85 (6H, t, J = 6.9 Hz), 0.86(6H, t, J = 6.9 Hz), 1.12-1.34 (48H, m), 1.43 (4H, m), 1.55 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 9.6, 3.6 Hz), 3.57 (2H, t, J = 9.3 Hz), 4.04 (2H, t, J = 9.6 Hz), 4.10 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.5 Hz),4.67 (2H, d, J = 11.7 Hz), 4.71 (2H, d, J = 11.7 Hz), 4.85 (2H, d, J = 10.5 Hz), 4.87 (2H, d, J = 10.5 Hz), 4.99 (2H, d, J = 10.5 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.38 (30H, m); 13CNMR (75 MHz in CDCl3) δ14.12, 22.64, 22.67, 27.40, 27.45, 29.27, 29.45, 29.48, 29.62, 31.83, 31.85, 32.34, 45.71, 62.06, 69.15, 73.04, 75.27, 75.71, 77.24, 77.82, 79.68, 81.55, 93.75,127.37, 127.61, 127.72, 127.84, 127.91, 127.93, 128.38, 128.44, 137.80, 137.95, 138.59, 176.15; FABMS m/z (%)1438 (M++Na); HRMS (FAB+) m/z calcd for C90H126O13Na (M++Na) 1437.9096, Found 1437.9126.
製造例A-3
[6,6’-ビス-O-(2-ノニルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000016
 カルボン酸として、製造例C-3に記載の方法により得られた2-ノニルウンデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-ノニルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 16 +64.8o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2926, 2854, 1946, 1871, 1806, 1738 cm-1 1H NMR (300 MHz in CDCl3) δ0.86 (6H, t, J = 7.0 Hz), 0.87(6H, t, J = 7.0 Hz), 1.10-1.34 (56H, m), 1.43 (4H, m), 1.55 (4H, m), 2.32 (2H, m), 3.55 (2H, dd, J = 9.6, 3.6 Hz), 3.57 (2H, t, J = 9.3 Hz), 4.04 (2H, t, J = 9.6 Hz), 4.11 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.2 Hz),4.67 (2H, d, J = 11.7 Hz), 4.72 (2H, d, J = 11.7 Hz), 4.85 (2H, d, J = 10.2 Hz), 4.87 (2H, d, J = 10.5 Hz), 4.99 (2H, d, J = 10.5 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.37 (30H, m); 13CNMR (75 MHz in CDCl3) δ14.11, 22.67, 27.39, 27.45, 29.28, 29.30, 29.48, 29.51, 29.56, 29.57, 29.61, 31.85, 31.88, 32.33, 45.69, 62.06, 69.15, 73.03, 75.26, 75.70, 77.23, 77.82, 79.68,81.54, 93.75, 127.36, 127.59,127.71, 127.83, 127.90, 127.91, 128.37, 128.42, 137.79, 137.93, 138.58, 176.12;FABMS m/z (%) 1934 (M++Na); HRMS (FAB+) m/z calcd for C94H134O13Na (M++Na) 1493.9722, Found 1493.9701.
製造例A-4
[6,6’-ビス-O-(2-ウンデシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000017
 カルボン酸として、製造例C-4に記載の方法により得られた2-ウンデシルトリデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-ウンデシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +60.0o(c 0.9 CHCl3); FT IR (neat) 3088, 3064, 3031, 2940, 2862, 1946, 1869, 1805, 1740 cm-1 1H NMR (300 MHz in CDCl3) δ0.87 (12H, t, J = 6.9 Hz), 1.14-1.34 (72H, m), 1.43 (4H, m), 1.56 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 10.2, 3.6 Hz), 3.56 (2H, t, J = 8.7 Hz), 4.04 (2H, t, J = 10.2 Hz), 4.12 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J =10.5 Hz), 4.67 (2H, d, J = 12.0Hz), 4.72 (2H, d, J = 12.0 Hz), 4.85 (2H, d, J = 10.8 Hz), 4.88 (2H, d, J = 10.5 Hz), 4.99 (2H, d, J = 10.8 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.37 (30H, m); 13C NMR (75 MHz in CDCl3)δ14.12, 22.67, 27.40, 27.44, 29.34, 29.50, 29.52, 29.62, 31.90, 32.30, 45.68, 62.05, 69.14,73.03, 75.25, 75.69, 77.80, 79.66, 81.52,93.76, 127.35, 127.58, 127.70, 127.82, 127.90, 128.36, 128.40, 137.76, 137.92, 138.57, 176.12.
製造例A-5
[6,6’-ビス-O-(2-ドデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000018
 カルボン酸として、製造例C-5に記載の方法により得られた2-ドデシルテトラデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-ドデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +60.8o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2940, 2862, 1946, 1869, 1804, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.9 Hz), 1.14-1.34 (80H, m), 1.43 (4H, m), 1.56 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 9.6, 3.6 Hz), 3.57 (2H, t, J = 8.4 Hz), 4.04 (2H, t, J = 9.6 Hz), 4.12 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (2H, d, J = 10.8 Hz), 4.87 (2H, d, J = 10.5 Hz), 4.99 (2H, d, J = 10.8 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.24-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.12, 22.69, 27.41, 27.46, 29.36, 29.53, 29.66, 31.92, 32.32, 45.70, 62.09, 69.19, 73.07, 75.27, 75.71, 77.86, 79.72, 81.56, 93.78, 127.71, 127.62, 127.74, 127.86, 127.94, 128.40, 128.45, 137.83, 138.00, 138.64, 176.17.
製造例A-6
[6,6’-ビス-O-(2-トリデシルペンタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000019
 カルボン酸として、製造例C-6に記載の方法により得られた2-トリデシルペンタデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-トリデシルペンタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +50.2o(c 1.1 CHCl3); FT IR (neat) 3088, 3064, 3031, 2929, 2855, 1945, 1868, 1804, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.6 Hz), 1.10-1.34 (88H, m), 1.44 (4H, m), 1.56 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 9.8, 3.6 Hz), 3.58 (2H, t, J = 9.8 Hz), 4.04 (2H, t, J = 9.8 Hz), 4.13 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.8 Hz), 4.66 (2H, d, J = 12.0 Hz), 4.73 (2H, d, J = 12.0 Hz), 4.85 (2H, d, J = 11.0 Hz), 4.87 (2H, d, J = 10.8 Hz), 4.99 (2H, d, J = 11.0 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.20-7.38 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.11, 22.70, 27.42, 27.46, 29.37, 29.54, 29.66, 31.93, 32.33, 45.72, 62.12, 69.23, 73.10, 75.26, 75.69, 77.23, 77.67, 77.91, 79.77, 81.58, 93.77, 127.42, 127.61, 127.74, 127.85, 127.94, 128.40, 128.44, 128.46, 137.86, 138.05, 138.68, 176.15.
製造例A-7
[6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000020
 カルボン酸として、製造例C-8に記載の方法により得られた2-ペンタデシルヘプタデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +44.3o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2941, 2861, 1945, 1868, 1812, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 7.2 Hz), 1.12-1.38 (104H, m), 1.43 (4H, m), 1.56 (4H, m), 2.32 (2H, m), 3.54 (2H, dd, J = 9.6, 3.6 Hz), 3.57 (2H, t, J = 8.7 Hz), 4.04 (2H, t, J = 9.6 Hz), 4.12 (2H, m), 4.20 (4H, m), 4.53 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (2H, d, J = 10.8 Hz), 4.87 (2H, d, J = 10.8Hz), 4.99 (2H, d, J = 10.5 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.70, 27.25, 27.42, 27.45, 29.38, 29.55, 29.68, 29.72, 31.94, 32.32, 45.70, 62.07, 69.16, 73.05, 75.29, 75.72, 77.82, 79.68, 81.55, 93.78, 127.40, 127.62, 127.75,127.95, 128.41, 128.45, 137.81, 137.95, 138.61, 176.19.
製造例A-8
[6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000021
 カルボン酸として、製造例C-9に記載の方法により得られた2-ヘキサデシルオクタデカン酸を用い、製造例A-1と同様の方法により、6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +48.8o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2938, 2857, 1944, 1869, 1808, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.9 Hz), 1.10-1.36 (112H, m), 1.43 (4H, m), 1.56 (4H, m), 2.32 (2H, m), 3.55 (2H, dd, J = 9.3, 3.6 Hz), 3.57 (2H, t, J = 9.0 Hz), 4.04 (2H, t, J = 9.3 Hz), 4.11 (2H, m), 4.19 (4H, m), 4.53 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (2H, d, J =10.8 Hz), 4.87 (2H, d, J = 10.5Hz), 4.99 (2H, d, J = 10.8 Hz), 5.18 (2H, d, J = 3.6 Hz), 7.22-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.15, 22.71, 27.43, 29.39, 29.56, 29.69, 29.73, 31.94, 32.31, 45.70, 62.08, 69.17, 73.05, 75.31, 75.74, 77.83, 79.68, 81.56, 93.81, 127.41, 127.64, 127.76, 127.96, 128.42, 128.47, 137.83, 138.00, 138.62, 176.22.
実施例1:製造例α-1
[6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000022
 製造例A-1に記載の方法により得られた6,6’-ビス-O-(2-デシルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロース(200mg,131μmol)をクロロホルム:メタノール:酢酸(1:1:0.05)の混合溶媒(4ml)に溶かし、水酸化パラジウム(20w/w%,8mg,11.4μmol)を加えて1気圧水素下、6時間撹拌した。反応混合液を濾過後濃縮し、残渣をカラムクロマトグラフィー(ジクロロメタン:メタノール=10:1)で精製して、6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース(125mg,97%)を無色無定形固体として得た。
 colorless syrup; [α]D 20 +61.8o(c 1.0 CHCl3); FT IR (neat) 3358, 2940, 2861, 1746 cm-1 1H NMR (300 MHz in C5D5N) δ0.88 (12H, t, J = 6.9 Hz), 1.25 (56H, m),1.45 (8H, m), 1.58 (4H, m), 1.83 (4H, m), 2.58 (2H, m), 4.18 (2H, t, J = 9.3 Hz), 4.29 (2H, dd, J = 9.3, 3.6 Hz), 4.73 (2H, t, J = 9.3 Hz), 4.88 (2H, dd, J = 11.7, 5.1 Hz), 5.07 (4H, m), 5.87 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.29, 22.95, 27.75, 27.80, 29.62, 29.80, 29.90, 29.95, 32.14, 32.82, 46.16, 63.93, 71.54, 71.94, 73.31, 74.81, 95.69, 176.26; FABMS m/z (%) 1010 (M++Na); HRMS (FAB+) m/z calcd for C56H106O13Na (M++Na) 1009.7532, Found 1009.7498. 
実施例2:製造例α-2
[6,6’-ビス-O-(2-オクチルデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000023
 製造例A-2に記載の方法により得られた6,6’-ビス-O-(2-オクチルデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-オクチルデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 14 +70.2o(c 0.6 CHCl3); FT IR (neat) 3300, 2929, 2856, 1743 cm-1 1H NMR (300 MHz in C5D5N) δ0.86 (12H, t, J = 6.9 Hz), 1.21 (40H, m),1.46 (8H, m), 1.57 (4H, m), 1.80 (4H, m), 2.56 (2H, m), 4.19 (2H, t, J = 9.6 Hz), 4.29 (2H, dd, J = 9.6, 3.6 Hz), 4.74 (2H, t, J = 9.6 Hz), 4.88 (2H, dd, J = 12.0, 4.8 Hz), 5.08 (4H, m), 5.87 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ13.69, 22.32, 27.12, 27.19, 28.96, 29.11, 29.33, 31.47, 32.23, 45.55, 63.25, 70.94, 71.30, 72.69, 74.18, 95.14, 175.68; FABMS m/z (%) 898 (M++Na); HRMS (FAB+)m/z calcd for C48H90O13Na (M++Na) 897.6279, Found 897.6249.
実施例3:製造例α-3
[6,6’-ビス-O-(2-ノニルウンデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000024
 製造例A-3に記載の方法により得られた6,6’-ビス-O-(2-ノニルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-ノニルウンデカノイル)-α,α’-トレハロースを得た。
colorless syrup; [α]D 14+64.9o (c 0.6 CHCl3); FT IR (neat) 3306, 2928, 2855, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.87 (12H, t, J = 6.9 Hz), 1.22 (48H, m), 1.42 (8H, m), 1.54 (4H, m), 1.79 (4H, m), 2.56 (2H, m), 4.19 (2H, t, J = 9.0 Hz),4.39 (2H, dd, J = 9.0, 3.6 Hz), 4.74 (2H, t, J = 9.0 Hz), 4.88 (2H, dd, J = 11.7, 4.8 Hz), 5.08 (4H, m), 5.88 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ13.69, 22.32, 27.14, 27.20, 28.97, 29.17, 29.27, 29.34, 31.51, 32.22, 45.55, 63.28, 70.94, 71.31, 72.69, 74.18, 95.13, 175.67; FABMS m/z (%) 954 (M++Na); HRMS (FAB+) m/z calcd for C52H98O13Na (M++Na) 953.6905,Found 953.6862.
実施例4:製造例α-4
[6,6’-ビス-O-(2-ウンデシルトリデカノイル)-α,α’-トレハロースの
合成]
Figure JPOXMLDOC01-appb-C000025
 製造例A-4に記載の方法により得られた6,6’-ビス-O-(2-ウンデシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-ウンデシルトリデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 14 +58.5o(c 1.0 CHCl3); FT IR (neat) 3297, 2934, 2856, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.88 (12H, t, J = 6.6 Hz), 1.26 (64H, m),1.45 (8H, m), 1.58 (4H, m), 1.82 (4H, m), 2.58 (2H, m), 4.18 (2H, t, J = 9.0 Hz), 4.29 (2H, dd, J = 9.0, 3.6 Hz), 4.73 (2H, t, J = 9.0 Hz), 4.88 (2H, dd, J = 11.7, 5.1 Hz), 5.07 (4H, m), 5.88 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.29, 22.94, 27.75, 27.80, 29.63, 29.81, 29.96, 32.14, 32.81, 46.15, 63.93, 71.54, 71.94, 73.31, 74.81, 95.67, 176.25; FABMS m/z (%) 1066 (M++Na); HRMS (FAB+) m/z calcd for C60H114O13Na (M++Na) 1065.8157, Found 1065.8160.
実施例5:製造例α-5
[6,6’-ビス-O-(2-ドデシルテトラデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000026
 製造例A-5に記載の方法により得られた6,6’-ビス-O-(2-ドデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-ドデシルテトラデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 14 +54.6o(c 1.0 CHCl3); FT IR (neat) 3310, 2937, 2857, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.88 (12H, t, J = 6.9 Hz), 1.28 (72H, m),1.46 (8H, m), 1.58 (4H, m), 1.82 (4H, m), 2.59 (2H, m), 4.18 (2H, t, J = 9.0 Hz), 4.29 (2H, dd, J = 9.0, 3.6 Hz), 4.73 (2H, t, J = 9.0 Hz), 4.88 (2H, dd, J = 11.7, 5.1 Hz), 5.08 (4H, m), 5.87 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.30, 22.97, 27.77, 27.82, 29.66, 29.83, 29.99, 32.17, 32.82, 46.16, 63.94, 71.53, 71.95, 73.31, 74.80, 95.66, 176.24; FABMS m/z (%) 1122 (M++Na); HRMS (FAB+) m/z calcd for C64H122O13Na (M++Na) 1121.8784, Found 1121.8831.
実施例6:製造例α-6
[6,6’-ビス-O-(2-トリデシルペンタデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000027
 製造例A-6に記載の方法により得られた6,6’-ビス-O-(2-トリデシルペンタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-トリデシルペンタデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 19 +52.7o(c 0.6 CHCl3); FT IR (neat) 3313, 2927, 2854, 1741 cm-1 1H NMR (300 MHz in C5D5N) δ0.88 (12H, t, J = 6.9 Hz), 1.29 (80H, m),1.46 (8H, m), 1.58 (4H, m), 1.83 (4H, m), 2.59 (2H, m), 4.19 (2H, t, J = 9.6 Hz), 4.29 (2H, dd, J = 9.6, 3.6 Hz), 4.74 (2H, t, J = 9.6 Hz), 4.89 (2H, dd, J = 11.7, 5.1 Hz), 5.08 (4H, m), 5.88 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.28, 22.94, 27.75, 27.80, 29.63, 29.82, 29.98, 32.14, 32.80, 46.14, 63.92, 71.53, 71.94, 73.30, 74.79, 95.66, 176.21; FABMS m/z (%) 1178 (M++Na); HRMS (FAB+) m/z calcd for C68H130O13Na (M++Na) 1177.9409, Found 1177.9404.
実施例7:製造例α-7
[6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000028
 製造例A-7に記載の方法により得られた6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 19 +44.8o(c 0.5 CHCl3); FT IR (neat) 3330, 2925, 2853, 1741 cm-1 1H NMR (300 MHz in C5D5N) δ0.87 (12H, t, J = 7.2 Hz), 1.31 (96H, m),1.47 (8H, m), 1.58 (4H, m), 1.83 (4H, m), 2.59 (2H, m), 4.19 (2H, t, J = 9.0 Hz), 4.29 (2H, dd, J = 9.0, 3.6 Hz), 4.74 (2H, t, J = 9.0 Hz), 4.88 (2H, dd, J = 11.4, 4.8 Hz), 5.08 (4H, m), 5.87 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.23, 22.89, 27.73, 27.79, 29.58, 29.80, 29.91, 29.97, 32.09, 32.78, 46.13, 63.92, 71.55, 71.95, 73.32, 74.80, 95.67, 176.21; FABMS m/z (%) 1290 (M++Na); HRMS (FAB+) m/z calcd for C76H146O13Na (M++Na) 1290.0661, Found 1290.0677.
実施例8:製造例α-8
[6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000029
 製造例A-8に記載の方法により得られた6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例α-1と同様の方法により、6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 17 +45.1o(c 0.5 CHCl3); FT IR (neat) 3308, 2937, 2856, 1741 cm-1 1H NMR (300 MHz in C5D5N) δ0.87 (12H, t, J = 6.9 Hz), 1.31 (104H, m), 1.46 (8H, m), 1.57 (4H, m), 1.80 (4H, m), 2.56 (2H, m), 4.19 (2H, t, J = 9.3 Hz), 4.29 (2H, dd, J = 9.3, 3.6 Hz), 4.74 (2H, t, J = 9.3 Hz), 4.88 (2H, dd, J = 11.4, 4.8 Hz), 5.08 (4H, m), 5.87 (2H, d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N)δ14.25, 22.90, 27.75, 27.80, 29.60, 29.82, 29.91, 29.99, 32.10, 32.80, 46.14, 63.91, 71.55,71.95, 73.32, 74.80, 95.66, 176.24; FABMS m/z (%) 1346 (M++Na); HRMS (FAB+) m/z calcd for C80H154O13Na (M++Na) 1346.1288, Found 1346.1287.
製造例B-1
[6,6’-ビス-O-(3-ノニルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000030
 製造例D-1に記載の方法により得られたカルボン酸(3-ノニルドデカン酸)(236mg,724μmol)とトレハロース誘導体(2,3,4,2’,3’,4’-ヘキサベンゾキシ-α,α’-トレハロース)(256mg,290μmol)を無水ジクロロメタン溶液(10ml)に溶かし、粉末モレキュラーシーブス4A(1g)、4-ジメチルアミノピリジン(35.4mg,290μmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩[以下、EDCIと略す](222mg,1.16mmol)を順次加えて10時間加熱還流反応した。セライト-535を用いて濾過し、飽和食塩水を加えジクロロメタンで2回抽出した。有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=15:1)を用いて精製し、ジエステル体である6,6’-ビス-O-(3-ノニルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロース(350mg,80%)を無色無定形固体として得た。
 colorless syrup; [α]D 21 +65.3o(c 1.0 CHCl3); FT IR (neat) 3088, 3063, 3031, 2925, 2853, 1944, 1871, 1806, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.87 (12H, t, J = 5.1 Hz), 1.20 (64H, m), 1.81 (2H, m), 2.20 (4H, d, J = 6.9 Hz), 3.54 (2H,t, J = 9.3 Hz), 3.56 (2H, m), 4.04 (2H, t, J = 9.3 Hz), 4.09 (4H, m), 4.23 (2H,m), 4.51 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0Hz), 4.86 (4H, d, J = 10.5 Hz), 5.00 (2H, d, J = 10.5 Hz), 5.17 (2H, d, J = 3.6Hz), 7.23-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.13, 22.68, 26.51, 29.33, 29.56, 29.64, 29.92, 31.89, 33.65, 33.76, 34.89, 39.08, 62.35, 69.12, 72.94, 75.30, 75.70, 77.60, 79.38, 81.56, 94.02, 127.44, 127.63, 127.78, 127.92, 128.09,128.41, 128.47, 137.78, 137.84, 138.60, 173.24; FABMS m/z (%) 1522 (M++Na); HRMS (FAB+) m/z calcd for C96H138O13Na (M++Na) 1522.0036, Found 1522.0020.
製造例B-2
[6,6’-ビス-O-(3-オクチルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000031
 カルボン酸として、製造例D-2に記載の方法により得られた3-オクチルウンデカン酸を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-オクチルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +41.8o(c 2.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2932, 2855, 1947, 1867, 1806, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.86 (6H, t, J = 6.9 Hz), δ0.87 (6H, t, J = 6.9 Hz), 1.20 (56H, m), 1.81 (2H, m), 2.20 (4H, d, J = 6.9 Hz), 3.54 (2H, t, J = 8.4 Hz), 3.56 (2H, m), 4.04 (2H, t, J = 9.3 Hz), 4.09 (4H, m), 4.23 (2H, m), 4.51 (2H, d, J =10.5 Hz), 4.67 (2H, d, J = 12.0Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (4H, d, J = 10.5 Hz), 5.00 (2H, d, J = 10.5 Hz), 5.17 (2H, d, J = 3.6 Hz), 7.23-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.69, 26.52, 29.32, 29.61, 29.94, 31.89, 33.69, 33.80, 34.91, 39.10, 62.38, 69.14,72.96, 75.29, 75.70, 77.62, 79.40, 81.58, 93.95, 94.04, 127.44, 127.62, 127.77, 127.91, 128.07, 128.41, 128.46, 137.78, 137.85, 138.59, 173.23; FABMS m/z (%) 1466 (M++Na); HRMS (FAB+) m/z calcd for C92H130O13Na (M++Na) 1465.9409, Found 1465.9392.
製造例B-3
[6,6’-ビス-O-(3-デシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000032
 カルボン酸として、製造例D-3に記載の方法により得られた3-デシルトリデカン酸を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-デシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +53.6o(c 1.0 CHCl3); FT IR (neat) 3088, 3063, 3030, 2926, 2854, 1946, 1874, 1804, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.87 (12H, t, J = 6.9 Hz), 1.21 (72H, m), 1.81 (2H, m), 2.19 (4H, d, J = 6.9 Hz), 3.54 (2H,t, J = 8.4 Hz), 3.56 (2H, m), 4.04 (2H, t, J = 8.4 Hz), 4.11 (4H, m), 4.21 (2H,m), 4.51 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0Hz), 4.86 (4H, d, J = 10.5 Hz), 5.00 (2H, d, J = 10.5 Hz), 5.17 (2H, d, J = 3.6Hz), 7.23-7.36 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.70, 26.51, 29.36, 29.66, 29.95, 31.93, 33.67, 77.23, 77.62, 79.40, 81.58, 94.04, 127.46, 127.65,127.80, 127.93, 128.10, 128.43, 128.49, 137.80, 137.87, 138.62, 173.27; FABMS m/z (%) 1579 (M++H+Na); HRMS (FAB+) m/z calcd for C100H147O13Na (M++H+Na) 1579.0787, Found 1579.0763.
製造例B-4
[6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000033
 カルボン酸として、製造例D-4に記載の方法により得られた3-ウンデシルテトラデカン酸を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +58.1o(c 1.0 CHCl3); FT IR (neat) 3088, 3064, 3031, 2926, 2854, 1946, 1867, 1806, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 7.2 Hz), 1.21 (80H, m), 1.81 (2H, m), 2.19 (4H, d, J = 6.9 Hz), 3.54 (2H,t, J = 8.4 Hz), 3.55 (2H, m), 4.04 (2H, t, J = 6,9 Hz), 4.10 (4H, m), 4.20 (2H,m), 4.51 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.71 (2H, d, J = 12.0Hz), 4.86 (4H, d, J = 10.5 Hz), 5.00 (2H, d, J = 10.5 Hz), 5.17 (2H, d, J = 3.6Hz), 7.19-7.36 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.71, 26.53, 29.38, 29.67, 29.95, 31.93, 33.68, 33.79, 34.91, 39.10, 62.37, 69.14, 72.96, 75.31, 75.71, 77.63, 79.40, 81.58, 94.04, 127.46, 127.64, 127.80, 127.93, 128.10, 128.43, 128.49, 137.80, 137.87, 138.62, 173.27; FABMS m/z (%) 1635 (M++Na); HRMS (FAB+) m/z calcd for C104H154O13Na (M++Na) 1634.1288, Found 1634.1298.
製造例B-5
[6,6’-ビス-O-(3-ドデシルペンタデカノイル)-2,3,4,2’,3’,
4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000034
 カルボン酸として、製造例D-5に記載の方法により得られた3-ドデシルペンタデカン酸を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-ドデシルペンタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +68.9o(c 0.9 CHCl3); FT IR (neat) 3088, 3063, 3031, 2925, 2853, 1944, 1867, 1806, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.9 Hz), 1.21 (88H, m), 1.81 (2H, m), 2.20 (4H, d, J = 6.9 Hz), 3.54 (2H,t, J = 8.7 Hz), 3.57 (4H, m), 4.05 (2H, t, J = 8.7 Hz), 4.05 (2H, t, J = 8.7 Hz), 4.11 (2H, m), 4.21 (2H, m), 4.52 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.3 Hz), 4.72 (2H, d, J = 12.3 Hz), 4.86 (4H, d, J = 10.5 Hz), 5.01 (2H, d, J = 10.5Hz), 5.18 (2H, d, J = 3.3 Hz), 7.21-7.37 (30H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.70,26.53, 29.38, 29.67, 29.95, 31.92, 33.67, 33.78, 34.91, 39.10, 62.37, 69.14, 72.96, 75.30, 75.71, 77.63, 79.40, 81.57, 94.03, 127.45, 127.63, 127.79, 127.93, 128.09, 128.42, 128.48, 137.79, 137.87, 138.62, 173.26; FABMS m/z (%) 1691 (M++H+Na); HRMS (FAB+) m/z calcd for C108H163O13Na (M++H+Na) 1691.1993, Found 1691.1992.
製造例B-6
[6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-2,3,4,2’,3’
,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000035
 カルボン酸として、市販の3-トリデシルヘキサデカン酸(和光純薬工業株式会社製)を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +49.5o(c 0.9 CHCl3); FT IR (neat) 3088, 3064, 3031, 2925, 2853, 1944, 1871, 1806, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.9 Hz), 1.23 (96H, m), 1.81 (2H, m), 2.20 (4H, d, J = 6.9 Hz), 3.54 (4H,m), 4.04 (2H, t, J = 9.3 Hz), 4.11 (4H, m), 4.21 (2H, m), 4.51 (2H, d, J = 10.8Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (4H, d, J = 10.8 Hz), 5.00 (2H, d, J = 10.8 Hz), 5.17 (2H, d, J = 3.6 Hz), 7.23-7.37 (30H, m); 13C NMR (75 MHz in CDCl3)δ14.16, 22.72, 26.54, 29.40, 29.69, 29.72, 29.97, 31.95, 33.68, 33.79, 34.92, 39.11, 62.37,69.14, 72.96, 75.33, 75.72, 77.24, 77.62,79.40, 81.59, 94.07, 127.46, 127.66, 127.81, 127.94, 128.11, 128.44, 128.50, 137.80, 137.87,138.63, 173.28; FABMS m/z (%) 1691 (M++H+Na); HRMS (FAB+) m/z calcd for C112H171O13Na (M++H+Na) 1747.2619, Found 1747.2618. 
製造例B-7
[6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000036
 カルボン酸として、製造例D-6に記載の方法により得られた3-テトラデシルヘプタデカン酸を用い、製造例B-1と同様の方法により、6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを得た。
 colorless syrup; [α]D 20 +43.7o(c 1.0 CHCl3); FT IR (neat) 3087, 3064, 3032, 2924, 2853, 1943, 1871, 1796, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (12H, t, J = 6.9 Hz), 1.23 (104H, m), 1.80 (2H, m), 2.19 (4H, d, J = 6.9 Hz), 3.54 (4H, m), 4.04 (2H, t, J = 9.6 Hz), 4.11(4H, m), 4.21 (2H, m), 4.51 (2H, d, J = 10.5 Hz), 4.67 (2H, d, J = 12.0 Hz), 4.72 (2H, d, J = 12.0 Hz), 4.86 (4H, d, J = 10.5 Hz), 5.00 (2H, d, J = 10.5 Hz), 5.17 (2H, d, J = 3.3 Hz), 7.22-7.37 (30H, m);13C NMR (75 MHz in CDCl3) δ14.16, 22.72, 26.55, 29.39, 29.70, 29.73, 29.97, 31.95, 33.68, 33.79, 34.92, 39.11, 62.38, 69.15, 72.97, 75.32, 75.72, 77.23, 77.63, 79.41, 81.59, 94.06, 127.46, 127.65, 127.81, 127.94, 128.11, 128.44, 128.49, 137.81, 137.88, 138.63, 173.27; FABMS m/z (%) 1802 (M++Na); HRMS (FAB+) m/z calcdfor C116H178O13Na (M++Na) 1802.3185, Found 1802.3175.
実施例9:製造例β-1
[6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000037
 製造例B-1に記載の方法により得られた6,6’-ビス-O-(3-ノニルドデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロース(350mg,233μmol)をクロロホルム:メタノール:酢酸(5:1:0.5)の混合溶媒(5ml)に溶かし、水酸化パラジウム(3w/w%,13mg,18.5μmol)を加えて1気圧水素下、27時間撹拌した。反応混合液を濾過後濃縮し、残渣をカラムクロマトグラフィー(ジクロロメタン:メタノール=15:1)で精製して、6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース(135mg,61%)を無色無定形固体として得た。
 colorless syrup; [α]D 21 +62.8o(c 0.7 CHCl3); FT IR (neat) 3316, 2926, 2854, 1743 cm-1 1H NMR (300 MHz in C5D5N) δ0.81 (12H, t, J = 6.9 Hz), 1.23 (64H, m),1.99 (2H, m), 2.33 (4H, d, J = 6.6 Hz), 4.13 (2H, t, J = 9.6 Hz), 4.25 (2H, dd,J = 9.6, 3.9 Hz), 4.74 (2H, t, J = 9.6 Hz), 4.78 (2H, d, J = 12.3 Hz), 4.93 (2H, d, J = 12.3 Hz), 4.98 (2H, m), 5.81 (2H, d, J = 3.9 Hz); 13C NMR (75 MHz in C5D5N) δ14.29, 22.94, 29.84, 29.62, 29.91, 29.94, 30.22, 32.12, 34.10, 35.23, 39.33, 64.26, 71.48, 71.96,73.35, 74.82, 95.82, 173.51; FABMS m/z (%) 982 (M++Na);HRMS (FAB+) m/z calcd for C54H102O13Na (M++Na) 981.7218, Found 981.7198. 
実施例15:製造例β-2
[6,6’-ビス-O-(3-オクチルウンデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000038
 製造例B-2に記載の方法により得られた6,6’-ビス-O-(3-オクチルウンデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-オクチルウンデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 21 +70.7o(c 0.4 CHCl3); FT IR (neat) 3275, 2925, 2854, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.86 (12H, t, J = 7.2 Hz), 1.24 (56H, m),2.03 (2H, m), 2.37 (4H, d, J = 6.6 Hz), 4.19 (2H, t, J = 9.3 Hz), 4.31 (2H, dd,J = 9.6, 3.6 Hz), 4.74 (2H, t, J = 9.3 Hz), 4.85 (2H, dd, J = 11.7, 5.7 Hz), 5.01 (2H, d, J = 11.7 Hz), 5.11 (2H, m), 5.89 (2H, d, J = 3.9 Hz); 13C NMR (75 MHzin C5D5N) δ14.28, 22.93, 26.83, 26.87, 29.59, 29.87, 30.21, 32.11, 34.10, 35.23, 39.32, 64.26, 71.48, 71.95, 73.35, 74.83, 95.82, 173.52; FABMS m/z (%) 926 (M++Na); HRMS (FAB+) m/z calcd for C50H94O13Na (M++Na) 925.6592, Found 925.6585.
実施例10:製造例β-3
[6,6’-ビス-O-(3-デシルトリデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000039
 製造例B-3に記載の方法により得られた6,6’-ビス-O-(3-デシルトリデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-デシルトリデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 21 +60.9o(c 0.9 CHCl3); FT IR (neat) 3279, 2924, 2854, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.83 (12H, t, J = 6.9 Hz), 1.24 (72H, m),2.00 (2H, m), 2.35 (4H, d, J = 6.6 Hz), 4.14 (2H, t, J = 8.7 Hz), 4.26 (2H, dd,J = 9.6, 3.3 Hz), 4.74 (2H, t, J = 9.0 Hz), 4.78 (2H, dd, J = 11.7, 5.4 Hz), 4.95 (2H, d, J = 12.0 Hz), 5.01 (2H, m), 5.82 (2H, d, J = 3.9 Hz); 13C NMR (75 MHzin C5D5N) δ14.10, 22.74, 26.65, 29.41, 29.73, 30.00, 31.92, 33.87, 35.03, 39.16, 64.10, 71.10, 71.57, 72.92, 74.38, 95.14, 173.52; FABMS m/z (%) 1037 (M++Na);HRMS (FAB+) m/z calcd for C58H110O13Na (M++Na) 1037.7903, Found 1037.7874.
実施例11:製造例β-4
[6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000040
 製造例B-4に記載の方法により得られた6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 21 +60.6o(c 0.5 CHCl3); FT IR (neat) 3289, 2925, 2853, 1743 cm-1 1H NMR (300 MHz in C5D5N) δ0.86 (12H, t, J = 6.9 Hz), 1.28 (80H, m),2.04 (2H, m), 2.38 (4H, d, J = 6.6 Hz), 4.19 (2H, t, J = 9.0 Hz), 4.31 (2H, dd,J = 9.0, 3.6 Hz), 4.74 (2H, t, J = 9.0 Hz), 4.85 (2H, dd, J = 11.7, 5.1 Hz), 5.05 (2H, d, J = 11.7 Hz), 5.01 (2H, m), 5.89 (2H, d, J = 3.9 Hz); 13C NMR (75 MHzin C5D5N) δ14.30, 22.96, 26.92, 29.64, 30.00, 30.27, 32.14, 34.14, 35.26, 39.37, 64.30, 71.52, 72.00, 73.40, 74.87, 95.86, 173.53; FABMS m/z (%) 1094 (M++Na);HRMS (FAB+) m/z calcd for C62H118O13Na (M++Na) 1093.8470, Found 1093.8458.
実施例12:製造例β-5
[6,6’-ビス-O-(3-ドデシルペンタデカノイル)-α,α’-トレハロースの
合成]
Figure JPOXMLDOC01-appb-C000041
 製造例B-5に記載の方法により得られた6,6’-ビス-O-(3-ドデシルペンタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-ドデシルペンタデカノイル)-α,α’-トレハロースを得た。
colorless syrup; [α]D 21+52.5o (c 0.3 CHCl3); FT IR (neat) 3271, 2923, 2853, 1743 cm-1 1H NMR (300 MHz in C5D5N) δ0.84 (12H, t, J = 6.3 Hz), 1.25 (88H, m), 2.02 (2H, m),2.36 (4H, d, J = 6.6 Hz), 4.15 (2H, t, J = 9.0 Hz), 4.27 (2H, dd, J= 9.9, 3.6 Hz), 4.74 (2H, t, J = 9.6 Hz), 4.81 (2H, dd, J = 11.4, 4.8 Hz), 4.97(2H, d, J = 11.4 Hz), 5.02 (2H, m), 5.84 (2H, d, J = 2.4 Hz); 13C NMR (75 MHz in C5D5N) δ14.18, 22.82, 26.73, 29.50, 29.87, 30.12, 32.01, 33.97, 35.12, 39.25,64.18, 71.25, 71.71, 73.06, 74.51, 95.38, 173.52; FABMS m/z (%) 1150 (M++Na); HRMS (FAB+) m/z calcd for C66H126O13Na (M++Na) 1149.9110, Found 1149.9103.
実施例13:製造例β-6
[6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロースの合成]
Figure JPOXMLDOC01-appb-C000042
 製造例B-6に記載の方法により得られた6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 21 +42.3o(c 0.5 CHCl3); FT IR (neat) 3321, 2925, 2853, 1742 cm-1 1H NMR (300 MHz in C5D5N) δ0.83 (12H, t, J = 6.6 Hz), 1.27 (96H, m),2.02 (2H, m), 2.36 (4H, d, J = 6.9 Hz), 4.15 (2H, t, J = 9.3 Hz), 4.27 (2H, dd,J = 9.3, 3.3 Hz), 4.75 (2H, t, J = 9.3 Hz), 4.80 (2H, dd, J = 12.0, 5.4 Hz), 4.97 (2H, d, J = 12.0 Hz), 5.02 (2H, m), 5.84 (2H, d, J = 3.6 Hz); 13C NMR (75 MHzin C5D5N) δ14.30, 22.96, 26.91, 29.65, 30.03, 30.28, 32.15, 34.12, 35.25, 39.36, 64.28, 71.51, 71.99, 73.38, 74.85, 95.83, 173.51; FABMS m/z (%) 1206 (M++Na);HRMS (FAB+) m/z calcd for C70H134O13Na (M++Na) 1205.9770, Found 1205.9746.
実施例14:製造例β-7
[6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロー
スの合成]
Figure JPOXMLDOC01-appb-C000043
 製造例B-7に記載の方法により得られた6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-2,3,4,2’,3’,4’-ヘキサベンジル-α,α’-トレハロースを原料化合物として用い、製造例β-1と同様の方法により、6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロースを得た。
 colorless syrup; [α]D 21 +55.7o(c 1.0 CHCl3); FT IR (neat) 3310, 2925, 2853, 1743 cm-1 1H NMR (300 MHz in C5D5N) δ0.84 (12H, t, J = 6.9 Hz), 1.26 (104H, m), 2.03 (2H, m), 2.37 (4H, d, J = 6.6 Hz), 4.15 (2H, t, J = 9.9 Hz), 4.28 (2H, dd, J = 9.6, 3.9 Hz), 4.74 (2H, t, J =9.9 Hz), 4.81 (2H, dd, J = 11.7, 5.4 Hz), 4.97 (2H, d, J = 11.7 Hz), 5.03 (2H, m), 5.84 (2H,d, J = 3.6 Hz); 13C NMR (75 MHz in C5D5N) δ14.05, 22.67, 26.55, 29.36, 29.67, 29.74, 29.94,31.87, 33.74, 34.95, 39.14, 64.02, 70.91, 71.46, 72.77, 74.20, 94.69, 173.45; FABMS m/z (%) 1262 (M++Na); HRMS (FAB+) m/z calcd for C74H142O13Na (M++Na) 1262.0348, Found 1262.0348.
[原料となるカルボン酸化合物の合成]
製造例C-1
[2-デシルドデカン酸の合成]
Figure JPOXMLDOC01-appb-C000044
 乾燥させた二口フラスコに無水THF(11ml)を加え、そこに水素化ナトリウム(60w/w%,397mg,9.93mmol)を加えて、0℃に冷却し、マロン酸ジエチル(530mg,3.31mmol)を滴下した。0℃で10分撹拌し、1-ヨードデカン(2.22g,8.28mmol)を加えて、室温で6時間撹拌した。飽和塩化アンモニウム水溶液を加えて、エーテルで3回抽出し、有機層を無水硫酸マグネシウムを用いて乾燥させて、濾過後濃縮した。得られた残渣を10N水酸化ナトリウム水溶液(4ml)とn-ブタノール(8ml)の混合溶媒に溶かして、6時間加熱還流した。その後、室温まで冷却し、1N塩酸を加えて、エーテルで3回抽出し、有機層を無水硫酸ナトリウムを用いて乾燥させて、濾過後濃縮した。得られた残渣を酢酸(3.3ml)に溶かして、18時間加熱還流した。冷却後、減圧濃縮して酢酸を除去した。残渣をシリカゲルカラムクロトマトグラフィー(ヘキサン:酢酸エチル=7:1)で精製し、カルボン酸(2-デシルドデカン酸)(710mg,63%)を無定形白色粉末として得た。
 white powder; FT IR (neat) 3041, 2943, 2857, 2689, 1714 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 7.6Hz), 1.21 (32H, m), 1.48 (2H, m), 1.61 (2H, m),2.34 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.13, 22.72, 27.40, 29.37, 29.50, 29.64, 31.95, 32.19, 45.61, 183.22; CIMS m/z (%) 341 (M++H); HRMS (CI+) m/z calcd for C22H45O2(M++H) 341.3420, Found 341.3421.
製造例C-2
[2-オクチルデカン酸の合成]
Figure JPOXMLDOC01-appb-C000045
 1-ヨードデカンに代えて、1-ヨードオクタンを用い、製造例C-1と同様の方法により、2-オクチルデカン酸を得た。
 white powder; FT IR (neat) 3032, 2927, 2856, 1707 cm-11H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.26 (24H, m), 1.48 (2H, m), 1.63 (2H, m), 2.34 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.12, 22.70, 27.40, 29.30, 29.45, 29.60, 31.90, 32.20, 45.66, 183.50; CIMS m/z (%) 285 (M++H); HRMS (CI+) m/z calcd for C18H37O2(M++H) 285.2794, Found 285.2772.
製造例C-3
[2-ノニルウンデカン酸の合成]
Figure JPOXMLDOC01-appb-C000046
 1-ヨードデカンに代えて、1-ヨードノナンを用い、製造例C-1と同様の方法により、2-ノニルウンデカン酸を得た。
 white powder; FT IR (neat) 3019, 2934, 2858, 1712 cm-11H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.26 (28H, m), 1.48 (2H, m), 1.61 (2H, m), 2.33 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.72, 27.40, 29.34, 29.50, 29.60, 31.92, 32.20, 45.60, 183.11; CIMS m/z (%) 313 (M++H); HRMS (CI+) m/z calcd for C20H41O2(M++H) 313.3106, Found 313.3111.
製造例C-4
[2-ウンデシルトリデカン酸の合成]
Figure JPOXMLDOC01-appb-C000047
 1-ヨードデカンに代えて、1-ヨードウンデカンを用い、製造例C-1と同様の方法により、2-ウンデシルトリデカン酸を得た。
 white powder; FT IR (neat) 3028, 2941, 2858, 1712 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.25 (36H, m), 1.48 (2H, m), 1.61 (2H, m), 2.35 (1H, m); 13C NMR (75 MHzin CDCl3) δ14.17, 22.74, 27.41, 29.40, 29.51, 29.61, 29.65, 29.69, 29.72, 31.97, 32.20, 45.55, 182.81; CIMS m/z (%) 369 (M++H); HRMS (CI+) m/z calcd for C24H49O2(M++H) 369.3732, Found369.3731.
製造例C-5
[2-ドデシルテトラデカン酸の合成]
Figure JPOXMLDOC01-appb-C000048
 1-ヨードデカンに代えて、1-ヨードドデカンを用い、製造例C-1と同様の方法により、2-ドデシルテトラデカン酸を得た。
 white powder; FT IR (neat) 3028, 2943, 2860, 2691, 1714 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 7.1Hz), 1.25 (40H, m), 1.48 (2H, m), 1.61 (2H, m),2.34 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.16, 22.76, 27.43, 29.43, 29.54, 29.64, 29.68, 29.71, 29.72, 31.99, 32.22, 45.68, 183.46; CIMS m/z (%) 397 (M++H); HRMS (CI+) m/z calcd for C26H53O2(M++H) 397.4045, Found 397.4043.
製造例C-6
[2-トリデシルペンタデカン酸の合成]
Figure JPOXMLDOC01-appb-C000049
 1-ヨードデカンに代えて、1-ヨードトリデカンを用い、製造例C-1と同様の方法により、2-トリデシルペンタデカン酸を得た。
 white powder; FT IR (neat) 3032, 2922, 2851, 2691, 1712 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.25 (44H, m), 1.48 (2H, m), 1.61 (2H, m),2.35 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.72, 27.40, 29.39, 29.50, 29.60, 29.64, 29.69, 31.96, 32.19, 45.54, 182.79; CIMS m/z (%) 425 (M++H); HRMS (CI+) m/z calcd for C28H57O2(M++H) 425.4358, Found 425.4341.
製造例C-7
[2-テトラデシルへキサデカン酸の合成]
Figure JPOXMLDOC01-appb-C000050
 1-ヨードデカンに代えて、1-ヨードテトラデカンを用い、製造例C-1と同様の方法により、2-テトラデシルへキサデカン酸を得た。
 white powder; FT IR (neat) 3028, 2928, 2854, 2684, 1706 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 7.2Hz), 1.25 (48H, m), 1.48 (2H, m), 1.60 (2H, m),2.34 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.13, 22.72, 27.40, 29.40, 29.50, 29.60, 29.64, 29.73, 31.96, 32.19, 45.57, 182.87; CIMS m/z (%) 453 (100 M++H); HRMS (CI+) m/z calcd for C30H61O2(M++H) 453.4671, Found 453.4677.
製造例C-8
[2-ペンタデシルヘプタデカン酸の合成]
Figure JPOXMLDOC01-appb-C000051
 1-ヨードデカンに代えて、1-ヨードペンタデカンを用い、製造例C-1と同様の方法により、2-ペンタデシルヘプタデカン酸を得た。
 white powder; FT IR (neat) 3028, 2911, 2848, 2650, 1703 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.25 (52H, m), 1.48 (2H, m), 1.61 (2H, m),2.35 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.05, 22.65, 27.33, 29.33, 29.43, 29.53, 29.57, 29.66, 31.90, 32.14, 45.43, 182.41; CIMS m/z (%) 481 (M++H); HRMS (CI+) m/z calcd for C32H65O2(M++H) 481.4984, Found 481.4977.
製造例C-9
[2-ヘキサデシルオクタデカン酸の合成]
Figure JPOXMLDOC01-appb-C000052
 1-ヨードデカンに代えて、1-ヨードヘキサデカンを用い、製造例C-1と同様の方法により、2-ヘキサデシルオクタデカン酸を得た。
 white powder; FT IR (neat) 3028, 2914, 2848, 2691, 1705 cm-1 1H NMR (300 MHzin CDCl3) δ0.88 (6H, t, J = 6.9Hz), 1.25 (56H, m), 1.48 (2H, m), 1.61 (2H, m),2.35 (1H, m); 13C NMR (75 MHz in CDCl3) δ14.14, 22.72, 27.40, 29.40, 29.50, 29.60, 29.64, 29.73, 31.96, 32.20, 45.51, 182.51; CIMS m/z (%) 509 (M++H); HRMS (CI+) m/z calcd for C34H69O2(M++H) 509.5297, Found 509.5298.
製造例D-1
[3-ノニルドデカン酸の合成]
 以下の製造例D-1-1からD-1-5に記載の方法により、3-ノニルドデカン酸を合成した。
製造例D-1-1
[N-メトキシ-N-メチルデカンアミドの合成]
Figure JPOXMLDOC01-appb-C000053
 デカン酸(4g,23.2mmol)を無水ジクロロメタン溶液(80mL)に溶かし、1,1-カルボニルジイミダゾール(4.5g,27.9mmol)を加えて1.5時間撹拌した。次いでN,O-ジメチルヒドロキシアミン塩酸塩(2.7g,27.9mmol)を加えて、さらに3時間撹拌した。蒸留水を加えた後、ジクロロメタンを用いて2回抽出した。有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=8:1)を用いて精製し、アミド体であるN-メトキシ-N-メチルデカンアミド(4.8g,97%)を無色透明の液体として得た。
 colorless oil; FT IR (neat) 2927, 2854, 1731 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (3H, t, J = 6.9 Hz), 1.27 (12H, m), 1.63 (2H, m), 2.41 (2H, t, J = 7.8 Hz), 3.18 (3H, s), 3.68 (3H, s); 13C NMR (75 MHz in CDCl3) δ14.09, 22.65, 24.65, 29.28, 29.45, 31.86, 61.17, 174.77; CIMS m/z (%) 215 (M+); HRMS (CI+) m/z calcd for C12H25NO2(M+) 215.1921, Found 215.1903.
製造例D-1-2
[10-ノナデカノンの合成]
Figure JPOXMLDOC01-appb-C000054
 研磨した削状マグネシウム(3.2g,134mmol)を加熱し、1-ブロモノナン(12.9ml,67.5mmol)の無水THF溶液(68ml)をゆっくり滴下した。1.5時間加熱環流した後、反応液を室温まで冷却し、これを製造例D-1-1に記載の方法により得られたN-メトキシ-N-メチルデカンアミド(4.8g,22.5mmol)のTHF(80mL)溶液中に滴下した。30分撹拌した後、1N塩酸を加えてジエチルエーテルで2回抽出した。有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン:ジクロロメタン=8:1)で精製し、ケトン体である10-ノナデカノン(6.0g,95%)を白色無定形固体として得た。
 colorless solid; FT IR (neat) 2953, 2916, 2847, 1698 cm-1 1H NMR (300 MHz inCDCl3) δ0.88 (6H, t, J = 6.9 Hz), 1.26 (24H, m), 1.55 (4H, m), 2.38 (4H, t, J = 7.5 Hz); 13C NMR (75 MHz in CDCl3) δ14.03, 22.63, 23.84, 29.24, 29.41, 31.84,42.74, 211.49; CIMS m/z (%) 282 (M+); HRMS (CI+) m/z calcd for C19H38O (M+) 282.2882, Found 282.2902.
製造例D-1-3
[エチル3-ノニル-2-ドデケノエートの合成]
Figure JPOXMLDOC01-appb-C000055
 水素化ナトリウム(60w/w%,6g,142mmol)を無水THF(200ml)に溶かし、0℃まで冷却した後、エチルジエチルフォスフォノアセテート(34ml,171mmol)を滴下し、30分撹拌した。室温まで昇温後、製造例D-1-2に記載の方法により得られた10-ノナデカノン(6.0g,21.3mmol)を加えて、さらに18時間加熱環流した。蒸留水を加えジエチルエーテルを用いて2回抽出し、有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン:ジクロロメタン=6:1)で精製して、エステル体であるエチル3-ノニル-2-ドデケノエート(7.6g,99%)を無色透明の液体として得た。
 colorless oil; FT IR (neat) 2928, 2855, 1718 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9 Hz), 1.27 (27H, m), 1.44 (4H, m), 2.12 (2H, t, J = 7.8 Hz), 2.58 (2H, t, J = 8.1 Hz), 4.14 (2H, q, J = 7.2 Hz), 5.61 (1H, br s); 13C NMR (75 MHz in CDCl3) δ14.14, 14.35, 22.70, 27.68, 28.75, 29.34, 29.49, 29.52, 29.60, 30.01, 31.92, 32.19, 38.44, 59.42, 114.98, 165.07, 166.66; CIMS m/z (%) 352 (M+); HRMS (CI+) m/z calcd for C23H44O2 (M+) 352.3349, Found 352.3345.
製造例D-1-4
[エチル3-ノニルドデカノエートの合成]
Figure JPOXMLDOC01-appb-C000056
 製造例D-1-3に記載の方法により得られたエチル3-ノニル-2-ドデケノエート(7.6g,21.7mmol)をクロロホルム:メタノール(5:1)の混合溶媒(100ml)に溶かし、PtO触媒(3w/w%,223mg,983μmol)を加えて1気圧水素下、23時間撹拌した。PtO触媒を濾紙を用いて取り除き、濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン:ジエチルエーテル=50:1)で精製し、エチル3-ノニルドデカノエート(7.1g,92%)を無色透明の液体として得た。
 colorless oil; FT IR (neat) 2929, 2855, 1739 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.6 Hz), 1.26 (35H, m), 1.84 (1H, m), 2.21 (2H, d, J = 6.6 Hz), 4.12 (2H, q, J = 7.2 Hz); 13C NMR (75 MHz in CDCl3) δ14.16, 14.32, 22.73, 26.55, 29.38, 29.64, 29.66, 29.93, 31.95, 33.91, 35.10, 39.40, 60.07, 173.73; CIMSm/z (%) 354 (M+); HRMS (CI+) m/z calcd for C23H46O2 (M+) 354.3508, Found 354.3503.
製造例D-1-5
[3-ノニルドデカン酸の合成]
Figure JPOXMLDOC01-appb-C000057
 製造例D-1-4に記載の方法により得られたエチル3-ノニルドデカノエート(6.3g,17.7mmol)を水飽和ブタノール溶液(80ml)に溶かし、KOH(10g,177mmol)を加えて4.5時間加熱環流した。1N塩酸を加えてジエチルエーテルで2回抽出した。有機層に無水硫酸マグネシウムを加えて乾燥し、濾過後濃縮した。得たれた残渣をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)で精製し、3-ノニルドデカン酸(6.3g,99%)を無色透明の液体として得た。
 colorless oil; FT IR (neat) 2925, 2854, 1709 cm-1 1H NMR (200 MHz in CDCl3) δ0.88 (6H, t, J = 6.6 Hz), 1.26 (32H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) δ14.16, 22.73, 26.52, 29.38, 29.65, 29.89, 31.95, 33.79, 34.87, 39.00, 179.94; CIMS m/z (%) 326 (M+); HRMS (CI+) m/z calcd for C21H42O2(M+) 326.3129, Found 326.3157.
製造例D-2
[3-オクチルウンデカン酸の合成]
Figure JPOXMLDOC01-appb-C000058
 出発化合物として、製造例D-1-1に記載のデカン酸に代えてオクタン酸を用い、製造例D-1-2に記載の1-ブロモノナンに代えて1-ブロモオクタンを用い、各工程において製造した化合物を次の工程に用いて、製造例D-1-1からD-1-5に記載の方法と同様にして合成し、3-オクチルウンデカン酸を得た。
 colorless oil; FT IR (neat) 2926, 2855, 1712 cm-1 1H NMR (300 MHz in CDCl3) d 0.88 (6H, t, J = 6.6 Hz), 1.26 (28H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) d 14.16, 22.71, 26.52, 29.34, 29.61, 29.89, 31.93, 33.80, 34.88, 38.94, 179.58; CIMS m/z (%) 298 (M+); HRMS (CI+) m/z calcd for C19H38O2(M+) 298.2876, Found 298.2874.
製造例D-3
[3-デシルトリデカン酸の合成]
Figure JPOXMLDOC01-appb-C000059
 出発化合物として、製造例D-1-1に記載のデカン酸に代えてウンデカン酸を用い、製造例D-1-2に記載の1-ブロモノナンに代えて1-ブロモデカンを用い、各工程において製造した化合物を次の工程に用いて、製造例D-1-1からD-1-5に記載の方法と同様にして合成し、3-デシルトリデカン酸を得た。
 colorless oil; FT IR (neat) 2935, 2857, 1711 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.6 Hz), 1.26 (36H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) δ14.15, 22.72, 26.51, 29.38, 29.66, 29.88, 31.94, 33.78, 34.86, 38.95, 179.79; CIMS m/z (%) 354 (M+); HRMS (CI+) m/z calcd for C23H46O2(M+) 354.3498, Found 354.3503.
製造例D-4
[3-ウンデシルテトラデカン酸の合成]
Figure JPOXMLDOC01-appb-C000060
 出発化合物として、製造例D-1-1に記載のデカン酸に代えてドデカン酸を用い、製造例D-1-2に記載の1-ブロモノナンに代えて1-ブロモウンデカンを用い、各工程において製造した化合物を次の工程に用いて、製造例D-1-1からD-1-5に記載の方法と同様にして合成し、3-ウンデシルテトラデカン酸を得た。
 colorless solid; FT IR (neat) 2923, 2853, 1707 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9 Hz), 1.26 (40H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) δ14.17, 22.74, 26.53, 29.40, 29.69, 29.72, 29.89, 31.96, 33.79, 34.88, 38.98, 179.82; CIMS m/z (%) 382 (M+); HRMS (CI+) m/z calcd for C25H50O2(M+) 382.3811, Found 382.3816.
製造例D-5
[3-ドデシルペンタデカン酸の合成]
Figure JPOXMLDOC01-appb-C000061
 製造例D-1-5に記載のエチル3-ノニルドデカノエートに代えて、製造例D-5-4に記載の方法により得られたエチル3-ドデシルペンタデカノエートを用い、製造例D-1-5と同様の方法により、3-ドデシルペンタデカン酸を得た。
 出発化合物として、製造例D-1-1に記載のデカン酸に代えてトリデカン酸を用い、製造例D-1-2に記載の1-ブロモノナンに代えて1-ブロモドデカンを用い、各工程において製造した化合物を次の工程に用いて、製造例D-1-1からD-1-5に記載の方法と同様にして合成し、3-ドデシルペンタデカン酸を得た。
 colorless solid; FT IR (neat) 2928, 2854, 1709 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.6 Hz), 1.26 (44H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) δ14.15, 22.72, 26.51, 29.39, 29.68, 29.71, 29.88, 31.96, 33.78, 34.86, 39.00, 180.00; CIMS m/z (%) 410 (M+); HRMS (CI+) m/z calcd for C27H54O2(M+) 410.4066, Found 410.4095.
製造例D-6
[3-テトラデシルヘプタデカン酸の合成]
Figure JPOXMLDOC01-appb-C000062
 出発化合物として、製造例D-1-1に記載のデカン酸に代えてペンタデカン酸を用い、製造例D-1-2に記載の1-ブロモノナンに代えて1-ブロモテトラデカンを用い、各工程において製造した化合物を次の工程に用いて、製造例D-1-1からD-1-5に記載の方法と同様にして合成し、3-テトラデシルヘプタデカン酸を得た。
 colorless solid; FT IR (neat) 2915, 2849, 1704 cm-1 1H NMR (300 MHz in CDCl3) δ0.88 (6H, t, J = 6.9 Hz), 1.26 (52H, m), 1.85 (1H, m), 2.27 (2H, d, J = 6.9 Hz); 13C NMR (75 MHz in CDCl3) δ14.15, 22.73, 26.52, 29.41, 29.73, 29.90, 31.96, 33.78, 34.88, 38.99, 179.72; CIMS m/z (%) 466 (M+); HRMS (CI+) m/z calcd for C31H62O2(M+) 466.4685, Found 466.4717.
[その他の化合物の合成]
 上記製造例と同様にして、実施例16から22の化合物を得た。当該化合物は、本発明の式(1)で表される化合物について、式中、X、X’、n及びn’が、以下の表1に表わされるものである。
Figure JPOXMLDOC01-appb-C000063
(式1)
Figure JPOXMLDOC01-appb-T000001
[生理活性の測定]
 本発明の化合物につき、以下の試験を行い、活性を測定した。
 本発明の実施例化合物について、実施例番号、製造例番号、及び、その化学構造式を、以下の表2に示す。実施例化合物は、本発明の式(1)で表される化合物であり、式中、X、X’、R、R’、R、R’、n及びn’は、以下のものを示す。
Figure JPOXMLDOC01-appb-C000064
(式1)
Figure JPOXMLDOC01-appb-T000002
 また、試験には、結核菌由来の公知の天然化合物であるTDCMをポジティブコントロールとして使用した。なお、TDCMは以下の化学構造式により表される。
Figure JPOXMLDOC01-appb-C000065
試験例1(マクロファージ活性化能の測定)
試験例1(1)<蛍光強度測定装置を用いたマウス腹腔マクロファージからの活性酸素遊離測定>
<リン酸バッファー(PBS)の調製>
 塩化ナトリウム8.0g、塩化カリウム0.2g、リン酸水素二ナトリウム1.15g、リン酸二水素カリウム0.2gを1000mlの蒸留水(D.W.)で溶解した。
<マウス腹腔マクロファージの調製>
 5%チオグリコール酸培地(Difco、BD、code.225640、Lot.6192372)3mlをマウス(ICRマウス(SPF)、5週齢、オス)腹腔に投与した。投与4日後、ジエチルエーテルを用いてマウスを死亡させた。腹部中央の表皮に少しハサミで切れ込みをいれ、腹部をつまみ腹部表皮を剥ぎ取った。26Gの針を取り付けた10mlのシリンジで0.05%EDTA含有PBS(-)(EDTA 2Na、ヌクレアーゼ及びプロテアーゼtested、ナカライテスク)5mlを腹腔内に全量注入した。その後、腹部の横をつまむようにして40~50回程度マッサージした。腹腔内部の液を23G注射針でゆっくりと小の遠沈管に採取する。この操作を2回繰り返した。採取したマクロファージを1000rpmで8分間遠心した。上清を捨て、RPMI1640培地(RPMI-1640、L-グルタミン及びフェノールレッド含有、和光、189-02025、Lot.WRM8043に10.61%非動化血清(Bio West)、1%ペニシリンストレプトマイシン(GIBCO)を含む)で沈殿を懸濁した。遠沈管をRPMI1640培地で満たし、再度1000rpmで8分間遠心した。上清を捨て、RPMI1640培地で懸濁後、One Cell Counter(和研薬)でマクロファージの数を計測した。RPMI-1640培地を用いて、任意の濃度に希釈した。このようにして得られたマウス腹腔マクロファージを以下の試験に用いた。
<40mM試験化合物溶液の調製>
 40mM試験化合物溶液を以下のようにして調製した。
 BSA0.7gを大試験管に秤量した。滅菌PBS(-)10mlを加え、よく撹拌後、LPS除去カラム(Endo Trap(商標)red 1/1(proofs))を用い、BSA溶液に含有されている不純物を除いた。その後、処理BSA溶液を滅菌フィルター(0.2μm)で濾過した。次に、Nano Drop ND-1000を用いて蛋白定量し、最終的な濃度が2%となるように滅菌PBS(-)で希釈した。秤量した試験化合物を、2%BSA(PBS(-)中にBSA2%を溶解したもの)250μlと共にホモジナイザーに入れ、ホモジナイザーに入れたままバスタイプ超音波装置で150秒間処理した。このようにして調製した溶液をエッペンに移し、以下の試験に使用した。ポジティブコントロールとしては、試験化合物として、TDCMを用いて同様に調製し、また、ネガティブコントロールとしては、試験化合物を何も加えず、同様に調製した。試験化合物を含まない調製液について、以下、「vehicle」という。
<ハンクス平衡化塩溶液(HBS)の調製>
 塩化カリウム0.4g、リン酸二水素カリウム0.06g、リン酸水素二ナトリウム0.107g、塩化ナトリウム8gを蒸留水(D.W.)で溶解後、1N水酸化ナトリウムでpH7.4に調整し、蒸留水(D.W.)で全量1000mlとして、ハンクス平衡化塩溶液(HBS)を調製した。
<グルコース及びBSA含有ハンクス平衡化塩溶液(HBSG-BSA)の調製>
 グルコース0.1g、及び、BSA(sigma)0.03gを、上記で調製したHBS100mlに溶解し、グルコース及びBSA含有ハンクス平衡化塩溶液(HBSG-BSA)を調製した(用時調製)。
<マクロファージからの活性酸素遊離の測定>
 マウス腹腔マクロファージ、40mM試験化合物溶液、及び、BSA含有ハンクス平衡化塩溶液(HBSG-BSA)は、前記と同様にして調製した。
 HBSG-BSAでマクロファージを洗浄後、5mL程度のHBSG-BSAで懸濁し、96ウェルのコラーゲンウェル(TC-PLATE 96WELL,STERILE WITH LID,IND PACKED)に100μlずつ分注し、37℃で1時間インキュベートを行い、細胞をウェルに張り付かせた。上清を除去し、HBSG-BSAを100μl加え、10mMのHDCFDA(2’,7’-ジクロロジヒドロフルオレセインジアセテート、invitrogen)を1μl添加した。37℃で1時間インキュベートを行い、上清を除去後、試験化合物を含んだHBSG-BSAまたはネガティブコントロールとしてのvehicleを、試験化合物の最終濃度が50μMになるように添加し、1時間後Genios蛍光強度測定装置で測定した。
 なお、上記HDCFDAは、蛍光プローブであり、過酸化水素(H)の存在下において、蛍光強度が増大するため、蛍光強度を測定することにより、過酸化水素(H)の産生量を測定することができる。過酸化水素(H)は、マクロファージが産生するスーパーオキサイド(O2-)から派生したものであり、過酸化水素(H)産生量を指標として、マクロファージの活性化度を表すことができる。
 測定結果を図1に示す。
 図1<マウス腹腔マクロファージからの活性酸素遊離量>
 図1に示されるように、本発明試験化合物は、いずれも、TDCMと同等もしくはそれ以上に、マウス腹腔マクロファージからの活性酸素の産生を促進する作用を示した。特に、本発明化合物のうち、実施例1の化合物、及び、実施例9の化合物は、TDCMの2倍を超える高活性を示した。
試験例1(2)
<マウス腹腔マクロファージ貪食能の測定>
 マウス腹腔マクロファージ、40mM試験化合物溶液、及び、RPMI1640培地は、前記と同様にして調製した。
 以下では、蛍光ビーズとして、Fluoresbrite(商標)Carboxylate Microspheres(2.58%Solids-Latex)YG(Polysciences,Inc.)を用いた。
 TC-プレート(TC-PLATE 24WELL,STERILE WITH LID,IND PACKED、greiner bio-one)に80% confluentとなるようにマクロファージを添加した。37℃で2時間インキュベーション後、上清を捨て、500μlのRPMI1640培地で2度細胞を洗浄した。下記の表3に表わされる組成をTC-プレートに組み、37℃で2時間インキュベーションし、上清を除去後、300μlの滅菌PBS(-)で細胞を洗浄した。取り込まれていない蛍光ビーズの除去のため、この洗浄操作を2回繰り返した。200μlの滅菌PBS(-)でマクロファージを剥ぎ取り、マクロファージをエッペンに移した。1,500rpmで8分間遠心後、上清を除き、100μlの滅菌PBS(-)でよく懸濁した。再度、1,500rpmで8分間遠心後、上清を除き、100μlの滅菌PBS(-)でよく懸濁した。
 FUJIFILM FLA-2000を使用し、細胞内に取り込まれた蛍光ビーズ量を測定した[蛍光強度(Fluor473nm,Y520Filter)]。解析は、Image Reader V1.4Jを用いた。
Figure JPOXMLDOC01-appb-T000003
 測定結果を図2に示す。
 図2<マウス腹腔マクロファージ貪食能>
 図2に示されるように、本発明試験化合物は、いずれも、TDCMと同等もしくはそれ以上に、マウス腹腔マクロファージの貪食作用を活性化する作用を示した。特に、本発明化合物のうち、実施例1の化合物、及び、実施例9の化合物は、TDCMの約2倍の高活性を示した。
試験例2(好中球活性化能の測定)
<ウサギ好中球懸濁液の調製>
 ハンクス平衡化塩溶液(HBS)、グルコース及びBSA含有ハンクス平衡化塩溶液(HBSG-BSA)は、試験例1(1)と同様にして調製した。
<クエン酸-グルコース溶液(ACD液)の調製>
 クエン酸ナトリウム6.25g、クエン酸3.125g及びグルコース5gを蒸留水(D.W.)250mlで溶解し、使用するまで4℃で保存した。 
<赤血球溶解溶液(Lysis液)の調製>
 EDTA0.037g、炭酸水素カリウム1g及び塩化アンモニウム8.3gを蒸留水(D.W.)1000mlで溶解し、使用するまで4℃で保存した。
<リン酸バッファー(PBS)の調製>
 試験例1(1)と同様にして調製した。
<1.2%デキストラン-PBS溶液の調製>
デキストランT500(ファルマシア)1.2gを蒸留水(D.W.)100mlで溶解し、オートクレーブ(121℃、20分間)で滅菌し、使用するまで4℃で保存した。
<ウサギ好中球懸濁液の調製方法>
 5mlのACD液を20mlのシリンジ(注射針[Nipro])に取り、シリンジ内を一様にリンスした。ウサギの耳介中心動脈から血液をシリンジで20ml採取し、静かに転倒混和後、遠沈管(15mlタイプ:Falcon)3本に分注し、4℃、1,500rpmで5分間遠心後、上清を遠沈管(50mlタイプ:Falcon)に回収した。回収した上清と等量の1.2%デキストラン-PBS溶液を加えて緩やかに転倒混和した後、室温で30分間以上放置した。境界面を確認し、上清を新しい遠沈管(50mlタイプ:Falcon)に入れた。残りの溶液に等量の1.2%デキストラン-PBS溶液を加え緩やかに転倒混和した後、室温で30分間以上放置した。境界面を確認し、上清を遠沈管(50mlタイプ:Falcon)に入れた。回収した上清を4℃、2,000rpmで10分間遠心後、上清を除いた。沈渣にLysis液15ml加え、静かに懸濁後、さらに、Lysis液5ml加えて転倒混和し、氷中で5分間放置した。HBSG-BSAで全量を50mlとし、4℃、2,000rpmで10分間遠心後、上清を除いた。沈渣をHBSG-BSA2mlで懸濁し、この細胞懸濁液をLymphoprep[Nycomed,808068]2ml(遠沈管、15mlタイプ)の上層に静かに重層し、1200rpmで20分間遠心後(遠心機の条件:accel 0.5、break Off)、上清をアスピレーターで除いた。残存するLyphoprepを除くため、沈渣(好中球)をHBSG-BSAに懸濁し、再び、1,500rpmで5分間遠心後、上清を除いた。好中球をHBSG-BSAで懸濁し、細胞数計測装置「celltac」[日本光電]で細胞数を測定した。
<試験化合物のエマルジョン溶液の調製>
 試験化合物及びTDCMのエマルジョン溶液を試験例1(1)と同様にして調製した。
<10mM HDCFDA(2’,7’-ジクロロジヒドロフルオレセインジアセテート(Molecular Probes)の調製> 
 4.86mgのHDCFDAを1mlのDMSOで溶解した。
試験例2(1)
<ウサギ好中球からの活性酸素遊離量の測定>
 ウサギ好中球からの活性酸素遊離に対する影響を以下の手順で測定した。 
 96wellプレート(Falcon)に好中球(1.0×10個/100μl)を播種した。これに10mM HDCFDAを1μl添加し、37℃で1時間インキュベーションした。余分なHDCFDAを除くため、HBSを300μl加え懸濁後、8000rpmで5分間遠心した。上清を除去しHBSで懸濁後、終濃度が50μMとなるようにHBSを添加した。これを37℃で2時間インキュベーション後、蛍光測定装置で活性酸素遊離量を測定した(Ex:485nm,Em:535nm)。
 結果を図3に示す。
 図3<ウサギ好中球からの活性酸素遊離量>
 図3に示されるように、本発明化合物は、おおむねTDCMと同程度もしくはそれ以上に、ウサギ好中球からの活性酸素遊離を活性化する作用を示した。特に、本発明化合物のうち、実施例1の化合物は、TDCMの約2倍の活性を示した。
試験例2(2)
<ウサギ好中球貪食能の測定>
(2)アンピシリン耐性大腸菌及びオプソニン化大腸菌作成法 
<L-brothの調製>
 蒸留水(D.W.)1Lに対してトリプトファン10g、NaCl5g、Yeast Extract5g及びMgSO1mlを溶解した。
<オプソニン化剤の調製>
 10mgのオプソニン化剤(BioParticles Opsonizing Reagent(Molucular Probes))を500μlの超純水で溶解した。
<アンピシリン耐性大腸菌の作成>
 エレクトロポーレーション用セル(JM109)を氷中で溶解し、アンピシリン耐性の遺伝子を大腸菌に導入するため、JM109に2μlのアンピシリン耐性プラスミド(pT7Blue、Novagen、100ng/μl)を加え懸濁し、その懸濁液をエレクトロポーレーション用キュベットに移しパルス(2.5kV,200Ω,25mF)をかけた。パルスをかけた菌液を、L-broth培地1mlを入れた5mlチューブに移し、37℃で3時間培養した。該溶液を0.005%アンピシリンを含むL-brothの寒天培地に塗布し、37℃で一晩培養した(培地に撒く際に、3,500rpmで5分間遠心を行った後、上清を800μl除き、沈渣を懸濁後、シャーレに撒いた)。翌日シャーレに生えた菌を少量かきとり、2mlのL-broth培地に溶解し、約4時間攪拌培養を行った。
<オプソニン化大腸菌作成法>
 上記で作成したアンピシリン耐性大腸菌溶液100μlと溶解したオプソニン化剤100μlをエッペンドルフチューブ内で懸濁した。得られた懸濁液を37℃で1時間インキュベーションし、該懸濁液を300μlのPBSで懸濁後、1200G、15分間遠心し上清を除去した。さらに、得られた液を300μlのPBSで懸濁後、1200G、15分間遠心し上清を除去した。2回繰り返した。100μlのL-brothに1μlの菌液を加えよく懸濁し100倍希釈した。100倍希釈した菌液を10μlワンセルカウンターに添加し、顕微鏡により菌数をカウントした。
<ウサギ好中球貪食能の測定>
 上記方法により調製した好中球1.0×10個をエッペンに分取し、HBSで懸濁後、50μMの試験化合物のエマルジョン溶液またはTDCMのエマルジョン溶液で1時間処理を行った。コントロールは2%BSA溶液を用いて同様に行った。300μlのHBSを加え懸濁し、1200Gで10分間遠心後、上清を除去した。さらに、得られた液に300μlのHBSを加え懸濁し、1200Gで10分間遠心後、上清を除去した。処理好中球に1.0×10cellsのオプソニン化したアンピシリン耐性大腸菌をよく懸濁後、37℃で1時間インキュベーションした。余分な大腸菌を除去後、0.5%TritonX-100(生理食塩水中)を100μl加え、よく懸濁し、37℃で30分間インキュベーションを行った。TritonX-100処理により好中球を破壊することによって、好中球内部に取り込まれていた大腸菌の量を比較定量するため、次に、TritonX-100処理溶液全量を0.005%アンピシリン含有普通寒天培地にまき、コンラージ棒で全体に広げた。24時間、37℃でインキュベーションを行い、好中球内部に取り込まれていた大腸菌のコロニー数をカウントした。
 結果を図4に示す。
 図4<ウサギ好中球貪食活性>
 図4に示されるように、本発明化合物は、いずれもウサギ好中球の貪食能を活性化する作用を示した。特に、本発明化合物のうち、実施例1の化合物は、TDCMの約2倍の活性を示した。
試験例3
<試験化合物処理によるマウス腹腔マクロファージからのサイトカイン遊離測定>
 マウス腹腔マクロファージ、40mM試験化合物溶液、及び、RPMI1640培地は、前記と同様にして調製した。
 TC-プレートに80% confluentとなるようにマクロファージを添加した。37℃で2時間インキュベーション後、上清を捨て、500μlのRPMI1640培地で細胞を洗浄した。この洗浄操作を2回繰り返した。試験化合物(最終濃度100μM)のエマルジョン溶液をマクロファージに作用させ、2時間後、培地を別のエッペンに移した。10,000rpmで10分間遠心後、上清をさらに別のエッペンに移し、当該上清をサンプルとして、遊離したサイトカインをELISA kit(IL-6、TNF-α Quantikine Immunoassay(R&D Systems(商標))を用いて解析した。 
 マウス腹腔マクロファージからのIL-6遊離について、ネガティブコントロールとしてのvehicleの値は、IL-6遊離について約15pg/mlであったのに対し、本発明化合物のうち、特に活性が高いと考えられる、実施例1の化合物は、約200pg/mlの活性を示した。また、マウス腹腔マクロファージからのTNF-α遊離について、ネガティブコントロールとしてのvehicleの値は、約80pg/mlであったのに対し、実施例1の化合物は、約1000pg/mlの活性を示した。
試験例4
<試験化合物処理によるTHP-1細胞からのIL-8遊離測定法>
 RPMI培地溶液は前記と同様にして調製し、これを用いて、試験化合物のRPMI培地溶液を以下のようにして調製した。
 試験化合物1.0mgを、25μlのDMSO中に、約1分間超音波処理し、溶解させた。このようにして得られた40mMの試験化合物原液を100μlのRPMI培地に50μM(終濃度)となるように添加し、超音波で5秒間処理した。コントロールとなるVehicleは、40mMの試験化合物原液に代えて溶媒だけをRPMI培地に同様の量を添加し、超音波で5秒間処理した。
 THP-1細胞(理研細胞BANKより購入)をRPMI培地で1.0×10cells/100μlとなるように調製し、滅菌エッペンに100μlずつ分注した。前記のように調製した試験化合物のRPMI培地溶液100μlを5秒間超音波処理後、細胞を分注したエッペンに全量添加した。2時間後、反応エッペンを5000rpmで5分間遠心し、上清中のIL-8遊離量をELISA kit(human IL-8 ELISA kit(R&D Systems(商標)))を用いて測定した。
 試験結果を図5に示す。
 本発明化合物のうち、特に免疫賦活活性が高いと考えられる化合物について測定したところ、図5に示されるように、実施例1の化合物、及び、実施例9の化合物は、TDCMの約0.6倍、約0.8倍の活性を示した。
試験例5
<試験化合物投与マウスにおける抹消血中へのIL-6、TNF-α、IFN-γの遊離測定>
 試験化合物のエマルジョン溶液を以下のようにして調製した。
 以下において、試験化合物は、製造例α-1から8において合成した化合物、製造例β-1から7において合成した化合物、及び、比較例としてのTDCMをいう。
 試験化合物を秤量し(100μg/マウス)、ミクロスパーテルを用い、全量をホモジナイザー(WEATON USA 10ml)の底部に入れた。1滴のミネラルオイル(ナカライテスク)を滴下し、ホモジナイズ後、バスタイプ超音波で150秒間処理した。さらに、1.1%Tween80(ポリオキシエチレンソルビタンモノオレエート、ナカライテスク)と5.6%マンニトールを含有した生理食塩水1.0mlをホモジナイザーに添加した。数回ホモジナイズし、試験化合物溶解ミネラルオイルと溶媒をよくなじませた。完成した溶液をエッペンドルフチューブに移し、62℃で30分間低温殺菌を行った。
 ホモジナイザーをあらかじめ3分間氷中につけておいた。1.0mgの種々の試験化合物をそれぞれホモジナイザーにとり、ミネラルオイルを加え超音波で150秒間処理した。オイルがねっとりしているのを確認し、そこに1.0mlの生理食塩水(1.1%Tween及び5.6%マンニトール含有)を加え約1分間ホモジナイズした。サンプルをエッペンに移し、62℃で30分間低温殺菌した。
 1群2匹のマウスに、上記のように調製した試験化合物エマルジョン溶液(100μg/マウス)を静脈注射により投与し、2時間後心臓採血(ヘパリン採血)を行った。10,000rpmで10分間遠心後、血漿のみを用い、ELISAキット(IL-6、TNF-α、IFN-γQuantikine Immunoassay(R&D Systems(商標))で種々のサイトカイン量を測定した。
 測定結果を図6、図7、図8に示す。
 図6<マウス血漿中IL-6濃度(pg/ml)>
 図7<マウス血漿中IFN-γ濃度(pg/ml)>
 図8<マウス血漿中TNF-α濃度(pg/ml)>
 図6に見られるように、本発明試験化合物を投与したマウスにおいて、血漿中IL-6濃度の増加が見られた。特に、本発明化合物のうち、実施例1の化合物、実施例9の化合物は、いずれも、ポジティブコントロールとした天然由来の公知のトレハロースジエステル化合物であるTDCMに対し、それぞれ、約1.2倍、約1.5倍程度の高いIL-6遊離活性を示した。実施例13の化合物、及び、実施例14の化合物も、TDCMに対し、それぞれ、約半分、同程度の活性を示した。
 図7に見られるように、本発明試験化合物を投与したマウスにおいて、血漿中IFN-γ濃度の増加が見られた。特に、本発明化合物のうち、実施例1の化合物、及び、実施例9の化合物は、いずれも、ポジティブコントロールとしたTDCMに対し、約1.5倍程度のIFN-γ遊離活性を示し、実施例13の化合物、及び、実施例14の化合物も、TDCMに対し、それぞれ、約半分、同程度の活性を示した。
 図8に見られるように、本発明試験化合物を投与したマウスにおいて、血漿中TNF-α濃度の増加が見られた。しかし、ポジティブコントロールとしたTDCMと対比して、実施例1の化合物においても、TDCMと同程度であり、その他の本発明の化合物は、総じてTDCMの1/2程度の活性を示した。
試験例6
<ウェルシュ菌投与によるマウス生存試験(実施例1の化合物)>
 試験化合物として、製造例α―1に記載の方法により合成した化合物、及び、TDCMをそれぞれ1mg秤量し、上記と同様にして、試験化合物のエマルジョン溶液(1mg/ml)を調製した。
 ウェルシュ菌(TypeA NTCT8237)は、以下のように調製した。
<ウェルシュ菌調製方法>
 ブレインハートインフュージョン(BHI)(Difco)の粉末7.4mgを蒸留水200mlに溶かした)。得られた溶液(以下、この溶液を「BHI培地」という。)40mlをメスピペットでとり、200mlのフラスコに加え、高圧蒸気滅菌(121℃、20分間)を行った。また、ねじ口試験管2本に5mlのBHI培地を入れ、高圧蒸気滅菌を行った。さらにガラス管付きゴム栓(綿栓付き)及びガラス管を高圧蒸気滅菌した。クリーンベンチ内で、クックドミート培地に生えた保存用の菌を滅菌したパスツールピペットで適量採取し、上記滅菌ねじ口試験管内のBHI培地に菌植えした。次いで、37℃で一晩インキュベーションした。
 ねじ口試験管内に生えた菌(菌が生えるクリーンベンチ内は濁り、ガスが発生する)をクリーンベンチ内で、40mlのBHI培地が入った200mlの三角フラスコに移し、培地内にガラス管を挿入し、10分間窒素置換を行った。次に、ガラス管付きゴム栓(綿栓付き)を三角フラスコに装着後(ウェルシュ菌はガスを産生するため、空気穴が必要である。)、37℃、4-5時間インキュベーションした。培養したウェルシュ菌を遠心用チューブに移し、遠心分離(9000rpm,15分間)を行い、上清を除去した。沈渣に滅菌生理食塩水20mlを加えて菌を懸濁後、遠心分離(9000rpm,15分間)し、上清を除去した。得られた沈渣を滅菌したねじ口試験管内のBHI培地を加え、ワンセルカウンター(ワンセル社製)で菌数を数えた。
<ウェルシュ菌投与における生存試験方法>
 マウス(ICR、6週齢)を3群に分け、以下の試験を行った。
 試験化合物のエマルジョン溶液、TDCMのエマルジョン溶液、又は、コントロールとしてのエマルジョン溶液のみ、を1群4匹のマウスに対し100μg/マウスずつ(エマルジョン溶液のみの場合は、100μl/マウスずつ)腹腔内投与した。3時間後、ウェルシュ菌(2.4×10cells/マウス)をマウスに腹腔内投与した。その後、経過観察を行った。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、本発明化合物である実施例1の化合物を投与したマウスは、ウェルシュ菌の致死モデルにおいて、投与群4匹中3匹が致死を免れた。
試験例7
<ウェルシュ菌毒素投与によるマウス生存試験(実施例1の化合物)>
 試験化合物のエマルジョン溶液(1mg/ml)を上記と同様にして調製した。
 ウェルシュ菌毒素は、以下のようにして調製した。
<ウェルシュ菌毒素の調製方法>
 枯草菌α毒素遺伝子トランスフォーマントをL-Broth中で攪拌しながら37℃、14時間培養後、4℃、8,000rpmで20分間遠心し、培養上清を氷冷下で攪拌しながら、硫酸アンモニウム(硫安)(ナカライテスク)を定期的に少量添加後、終濃度70%飽和硫安(472g/L)とし、一晩放置した。その後、4℃、9,500rpmで30分間遠心し、生じた沈査を0.02M TB(pH7.5)に溶解させ、同緩衝液で4℃、一晩透析した。透析後、4℃、15,000rpmで30分間遠心し、この上清を粗毒素(硫安毒素)標品とした。この粗毒素標品を終濃度0.5M NaClとなるように、1M NaCl-TB(pH7.5)で希釈後、予め、0.5M NaCl-TB(pH7.5)で平衡化した銅キレートアフィニティーカラム(1.5×9cm)に粗毒素標品をアプライし、続いて、0.5M NaCl-TB(pH7.5)、0.5M NaCl-0.1M PB(pH6.5)、0.5M NaCl-0.02M酢酸緩衝液(pH4.5)、そして、0.5M NaCl-0.1M PB(pH6.5)を順次、100mlずつ流した。次に、カラム中に結合した毒素を15mM L-ヒスチジン(ナカライテスク)-0.5M NaCl-0.1M PB(pH6.5)100mlで溶出させた後、この溶出液をシリンジフィルター(DISMIC-ADVANTEC)でろ過後、限外ろ過フィルターAmicon(商標)Ultra-15-3OK(MILLIPORE)で遠心濃縮し、この濃縮液を0.02M TB(pH8.0)で4℃、一晩透析し、15,000rpmで30分間遠心後、UNO(商標)Q-1 R Column(BIO-RAD)にアプライした。溶出は、0.02M TB(pH8.0)中の塩化ナトリウム濃度を0から0.05Mまで直線的に変化させ、流量1.0ml/minで行った。各溶出(0.5ml)画分において、抗α毒素血清に対するオクタロニー反応で沈降線が認められ、かつ、SDS-PAGEで、α毒素に相当する約43kDaの単一バンドを含む画分を集め、約1.0mlまで濃縮した。この濃縮液を0.02M TB(pH7.5)で4℃、一晩透析した後、4℃、15,000rpmで30分間遠心し、その上清(組み換えα毒素)を分取した。得られた組み換えα毒素は、SDS-PAGEで不純物の有無を確認後、使用まで-80℃で保存した。
<ウェルシュ菌毒素投与における生存試験方法>
 マウス(ICR、6週齢)を3群に分け、以下の試験を行った。
 試験化合物のエマルジョン溶液、TDCMのエマルジョン溶液、又は、コントロールとしてのエマルジョン溶液のみ、を1群4匹のマウスに対し100μg/マウスずつ(エマルジョン溶液のみの場合は、100μl/マウスずつ)腹腔内投与した。3時間後、ウェルシュ菌毒素(200ng/マウス)をマウスに腹腔内投与した。その後、経過観察を行った。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、本発明化合物である実施例1の化合物を投与したマウスは、ウェルシュ菌毒素の致死モデルにおいて、投与群4匹中3匹が致死を免れた。
試験例8
<緑膿菌投与によるマウス生存試験(実施例1の化合物)>
 試験化合物として、製造例α―1に記載の方法により合成した化合物を1mg秤量し、上記と同様にして、試験化合物のエマルジョン溶液を調製した。
 緑膿菌(Fhu-071115strain)は患者由来のものを用い、以下のようにして調製した。
<緑膿菌調製方法>
 L-brothを40mlメスピペットでとり、200mlのフラスコ1本に入れ、スポンジ栓をした。また、別のねじ口試験管2本に5mlのL-brothを入れた。当該フラスコ及びねじ口試験管を121℃で20分間オートクレーブにかけた。L-broth培地が室温まで冷えた後、クリーンベンチ内で40mlのL-brothに超低温フリーザーにて保管していた緑膿菌を加えた。培養室において、一晩シェイキングを行った。9000rpmで15分間遠心を行い、上清を除去した。滅菌生理食塩水20mlを加えてボルテックスを用いて混和した後、9000rpmで15分間遠心を行い、上清を除去する、という工程を3回行った。滅菌生理食塩水4.5mlを加え、ボルテックスを用いて混和し、これを菌原液とした。1000倍に希釈した菌液を用い、ワンセルカウンターで菌数を数えた後、所望の濃度に菌原液を希釈して、以下の試験に用いた。
<緑膿菌投与における生存試験方法>
 マウスを2群に分け、以下の二通りの実験を行った。
(A)1群3匹のマウス(ICR、5週齢)に対し、上記試験化合物のエマルジョン溶液(100μg/マウス)を腹腔内投与し、3時間経過後、緑膿菌(5.0×10cells/マウス)を腹腔内投与した。その後、経過観察を行った。(B)1群3匹のマウス(ICR、5週齢)に対し、緑膿菌(2.0×10cells/マウス)を腹腔内投与し、上記試験化合物のエマルジョン溶液(100μg/マウス)を腹腔内投与し、3時間経過後、上記試験化合物のエマルジョン溶液(100μg/マウス)を腹腔内投与した。その後、経過観察を行った。
 結果を表6及び表7に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、緑膿菌投与前に試験化合物をあらかじめ投与したA群において、3匹のうち2匹が緑膿菌による致死を免れた。感染当初は、コントロール群とあまり変化が認められなかったが、約8時間後より次第に歩ける状態となった。
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、緑膿菌投与後に試験化合物を投与したB群において、3匹のうち1匹が緑膿菌による致死を免れた。
試験例9
<THP-1細胞からのサイトカイン遊離>
 実施例9で得られた試験化合物で処理した、ヒト単球性白血病細胞由来のTHP-1細胞からの各々のサイトカインおよびケモカイン遊離量をELISA法により測定した。また、ヒト肺がん細胞由来A549細胞、及び、ヒト大腸癌細胞由来DLD-1細胞を用い、同様の解析を行った。
<THP-1細胞の培養方法>
(1)血清のロットチェック
 培養したTHP-1細胞をクリーンベンチ内で15mlの遠沈管に移した。細胞を1,000rpmで5分間、20℃で遠心後、上清を除去した。その沈渣を、それぞれRPMI 1640(10%ロットチェック用FBSを含む)培地1mlに懸濁し、ヘモサイトメーター(萱垣医理科工業)とカバーグラス(三商)を用いて細胞数を数えた後、培地で2.5×10cells/mlに希釈した。浮遊培養用MULTI WELL PLATE 24wells(SUMILON)に細胞懸濁液を0.5mlずつ分注し、1日1回細胞の増殖や形態を観察した。2~3日後に培養液を培地で100倍希釈し、4μlをとって計数板で細胞数をカウントし、増殖の良し悪しを比較した。増殖および形態が良い細胞をwellから回収し同じ培地で洗浄後、再び2.5×10cells/mlになるように希釈し、浮遊培養用MULTI WELL PLATE 6wells(SUMILON)に1ml入れ、37℃、5%COの条件下でインキュベーションした。24時間ごとに培地交換を行い、プレートごと、1,800rpmで5分間遠心(TOMY)した後、ゆっくりと培地を除去し、新しく培地を1ml加えた。培地の交換作業を2回行った。3日目以降は、培地を交換後、細胞を100倍希釈して、計数板で数え、増殖の程度を測定した。その後、数日間この操作を行い、増殖や形態が良い培地を選択した。
(2)血清の非動化と分注
 4℃で解凍したFetal bovine serum(FBS)(Biowest)500mlを56℃で時々撹拌しながら30分間インキュベーションし、非動化を行った。その後、血清は濾過せずに、クリーンベンチ内で50mlの遠沈管に30mlずつ分注し、-80℃で保存した。使用前は予め4℃で解凍した。
(3)RPMI 1640培地(10%非動化FBS+1%Penicillin Streptomycin)
 クリーンベンチ内で、RPMI 1640液体培地(Wako)500mlに、非動化したFBS 60mlと、Acrodisc 25mm Syringe Filter(Pall Corporation)で濾過したPenicillin Streptomycin(GIBCO)5.6mlを加え、均一になるように混和した。作製した培地は、濾過せずにそのまま使用した。保存は4℃で行い、使用前は予め室温に戻した。
(4)細胞の植え継ぎ
 THP-1細胞を75cmの浮遊培養用フラスコ(SUMILON)(90%増殖以上)で培養し、形態および増殖を観察した。細胞の形がよく、増殖が早い場合には、細胞懸濁液を新しいフラスコに移すか、または、使用中のフラスコに、新しい培地を、約2倍量添加して植え継ぎを行った。増殖が遅い場合は、そのまま経過を観察するか、新しい培地を等量加えて植え継ぎを行った。
(5)細胞の保存
 75cmの浮遊培養用フラスコ(90%増殖以上)で培養した細胞10~15mlを遠沈管に移し、1,000rpm、5分間遠心し、上清を除去した。その沈渣に、細胞凍結保存液Cell banker(日本全薬工業)1mlを加え、懸濁し、セラムチューブに分注し、-80℃で保存した。
(6)保存細胞の再培養
 -80℃で凍結した細胞を、37℃の水浴で急速に解凍した。直ちに、細胞保存液を予めRPMI 1640培地を9~10ml加えておいた15ml遠沈管に添加し転倒混和した。1,000rpmで5分間遠心後、上清を除去して10mlの新しい培地で再懸濁し、細胞懸濁液を75cmの浮遊培養用フラスコに移した。その後、新しい培地を加えて全量を20~30mlにし、37℃、5%COの条件下で培養した。
<ELISAキットの試薬調製>
洗浄液の調製
 洗浄液を超純水(S.D.W.)で25倍に希釈し、室温にて使用した。
標準基質液の調製
 2つのマイクロチューブに標準基質液用希釈液を600μL入れておく。スタンダードの基質を標準基質液用希釈液1mLで溶解し(2450pg/mL)、それを100μL、マイクロチューブに移し、溶解し(350pg/mL)、これをさらに、100μLを別のマイクロチューブに加え溶解して(50pg/mL)希釈を行った。標準基質液用希釈液をコントロールとして用いた(0pg/mL)。
呈色液の調製
 color reagent Aとcolor reagent Bを等量ずつ混合し、100μl/well×測定するwellの呈色液を加えた。これは使用前15分以内に調製しておた。
<サンプル測定>
 使用するELISAキットの試薬を常温に戻し、各ウェルに、種々の濃度の標準基質液、および、assay bufferを50μL入れ、さらに、サンプルを50μL添加した。プレートを1分間軽くタップさせ、プレートにカバーをかけ、室温で2時間インキュベートした。その後、洗浄液で5回洗浄し(アスピレーターの使用可)、調製したconjugate液を100μLずつ添加し、プレートにカバーをかけ、室温で2時間インキュベートした。その後、洗浄液で5回洗浄後、遮光しながら、color reagent溶液AとBの混合液を100μLずつ添加し、プレートを室温、暗所で30分間インキュベートした。最後に、反応停止液を100μLずつ添加し、30分間以内にマイクロプレートリーダー(Molecular Devices spectra MAX 340PC)で吸光度を測定した。(450nm-550nm)。標準基質液の直線グラフから、各サンプルのサイトカイン遊離量を算出した。
<実験方法>
 培養したTHP-1細胞をクリーンベンチ内で50mlの遠沈管に移し、1,000rpmで5分間、20℃で遠心後、上清を除去した。その沈渣を、新しい無血清RPMI 1640培地(Wako)1mlに懸濁し、細胞懸濁液を、予め無血清RPMI 1640培地を990μl加えておいた滅菌エッペンドルフチューブに10μl加えて100倍希釈した。100倍希釈液4μlを血球計数板で細胞数を数え、細胞懸濁液を無血清RPMI 1640培地で1×10cells/mlに希釈した。100μLのRPMI培地をエッペンにとり、200μMとなるようにの40mMの試験化合物(実施例9)/DMSO溶液を添加し、超音波に5秒間かけた。100μlのTHP-1細胞を加えた(試験化合物の最終濃度100μM)。37℃、2時間インキュベーション後、5000rpmで10分間遠心し、上清を別のエッペンにとりELISAキットによりサンプル測定を行った。
 なお、ポジティブコントロールとしては、試験化合物として、6,6’-ビス-O-(2-テトラデシルヘキサノイル)-α,α’-トレハロース(以下「対照化合物A」という)、およびTDCMを用いて同様に測定を行った。また、ネガティブコントロールとしては、試験化合物を何も加えず、同様に調製した(vehicle)。
<実験結果>
ポジティブコントロールと比較し、実施例9の化合物で処理したTHP-1細胞からのMIP-1βの遊離が、約8~10倍高いことが明らかとなった。また、TNF-αの遊離は、ネガティブコントロール細胞と比較してほとんど同等であった。結果を図9に示す。また、実施例1で得られた化合物については、MIP-1βの遊離についてはポジティブコントロールに比べて好適な結果が得られた一方で、TNF-αの遊離はネガティブコントロール細胞と比較してほとんど同等であった(データ示さず)。  
試験例10
<THP-1細胞に対する細胞毒性検討、及び、変異原性試験>
<THP-1細胞のトリパンブルーを用いた細胞毒性の検討>
試薬の調製
0.3%トリパンブルー/PBS(-)の調製
0.3gのトリパンブルー(nacarai)をPBS(-)100mlで溶解した。
THP-1細胞の調製
 培養したTHP-1細胞をクリーンベンチ内で50mlの遠沈管に移し、1,000rpmで5分間、20℃で遠心後、上清を除去した。その沈渣を、新しい無血清RPMI 1640培地(Wako)1mlに懸濁した。この細胞懸濁液を、予め無血清RPMI 1640培地を990μl加えた滅菌エッペンドルフチューブに10μl加え、100倍希釈した。100倍希釈液10μlを血球計数板で細胞数を数え、細胞懸濁液を無血清RPMI 1640培地で1×10cells/mlになるように希釈した。
<実験方法>
 RPMI培地100μlに200μMとなるように試験化合物(実施例9)/DMSO溶液、または、DMSOを添加し、5秒間超音波を行った。なお、ポジティブコントロールとしては、試験化合物として、6-O-(2-デシルドカノイル)-α-グルコース(以下「対照化合物B」という)、およびTDCMを用いて同様に調製した。また、ネガティブコントロールとしては、試験化合物を何も加えず、同様に調製した(Vehicle)。1.0×10cells/mlに調製したTHP-1細胞100μlを加え37℃で2時間、または、24時間インキュベーションした。その後、0.3% トリパンブルー/PBS(-)を20μl加え懸濁した後、すぐに細胞数測定装置(CYRORECON)で細胞の生存率を解析した。
<変異原性試験(Ames試験)>
試薬の調製
0.1 Mリン酸ナトリウム緩衝液の調製
NaHPO4 5.68gを蒸留水200mLに溶解し、NaHHPO・2HOを蒸留水100mLに溶解したものを徐々に加えてpH7.4に調整し、高圧蒸気滅菌した。
最小グルコース寒天培地の作成
(1)VB培地:MgSO・7HO 0.4g、クエン酸HO 4g、KHPO4 20g、NaNHHPO・4HO 7gを蒸留水200mLに溶解し高圧蒸気滅菌した。
(2)グルコース40gを蒸留水200mLに溶解し高圧蒸気滅菌した。
(3)粉末寒天30gを蒸留水1600mLに懸濁し高圧蒸気滅菌した。
(3)の試薬が約60℃に冷えた後、(1)と(2)の試薬を混合し、約30mLずつシャーレにまいた。
上層寒天培地の作成
 粉末寒天1.2gとNaCl 1gを水200mLに懸濁し高圧蒸気滅菌し、50mlのチューブに移した。使用前に0.5mMのヒスチジン/ビオチン溶液を20mL混合して47℃に保温した。
チフス菌培養用Oxoid Nutrient Broth培地の調製
 Oxoid Nutrient Broth(Difco)2.5gを蒸留水100mlに溶解し、その内5mlをねじ試験管に入れて滅菌した。その後、TA98(Salmonella typhimurium TA98)の菌液約10μLを接種して37℃で一晩、振とう培養して菌懸濁液を調製した。
S9mixの調製
S9 1mlにCo factorA mix(ORIENTAL YEAST)9mlを加えた。
標準変異原性物質の調製
4-NQO/DMSOの調製
4-Nitroquinoline N-oxide(4-NQO)(東京化成工業株式会社)0.3mgを10mlのDMSOに溶解した。
2-aminoanthrathen/DMSOの調製
2-aminoanthracen(ALDRICH)0.5mgを30mlのDMSOに溶解した。
<実験方法>
 エッペンに標準変異原性物質、実施例9の試験化合物、対照化合物B、またはTDCM10μLを各2本ずつ2組用意した。S9mixまたは100mMリン酸緩衝液0.5mLを加えた後、菌懸濁液100μLを加え、プレインキュベーションした(37℃、20分シェイキング)。ヒスチジン-ビオチンを含むソフトアガー(47℃に保温したもの)2mLを加え軽く懸濁し、最小グルコース寒天培地にまき、インキュベーションした(37℃、2日間)。その後、Hisのコロニー数を数えた。

<実験結果>
 THP-1細胞に対する細胞毒性を検討するため、実施例9で得られた試験化合物で2時間、及び、24時間処理したTHP-1細胞の生存率をトリパンブルー染色により分析した結果、対照化合物B処理細胞では細胞毒性が認められたが、実施例9で得られた化合物で処理した細胞では、細胞毒性が観察されなかった。結果を図10に示す。また実施例1で得られた化合物についても同様に有意な結果が得られた(データ示さず)。
 さらに、実施例9で得られた試験化合物に関してS9mix存在下、及び、非存在下においてAmes試験を行ったが、いずれの試験化合物も変異原性を示さなかった。また、本解析条件下における標準物質(2-amino anthracene, 4NQO)の変異原性は、陽性であった(図11)。また実施例1で得られた化合物についても同様に有意な結果が得られた(データ示さず)。
試験例11
<マウス腹腔内への細胞浸潤>
<PBS(-)溶液の調製>
NaCl 4g、NaHPO・12HO 1.45g、KHPO 0.1g、KCl 0.1gを蒸留水500mlに溶解し、121℃で20分間高圧蒸気滅菌を行った。
<0.05% EDTA/PBS(-)溶液の調製>
EDTA (nacalai tesque code.151-30)50mgをPBS(-)100mlに溶解後、0.2μmのフィルターを用い濾過滅菌した。
<1mg/mLエマルジョン溶液の調製>
NaCl 0.9g、Polyoxyethylene Sorbitan Monooleate(Tween80) 1.1ml、D(-)-Mannitol 5.6gを蒸留水 100mlに溶解し、0.2μmのフィルターで滅菌濾過を行った。実施例9で得られた試験化合物1mgをホモジナイザー(WEATON USA 10mL、アズワン)の底部に取り、1滴のMinelal Oilを添加し、2分間超音波に当てながらホモジナイズした。その後、1mLの1.1% Tween-5.6% Mannitol Salineを加え、液が白濁し、均一になるまでホモジナイズした。エッペンに試験化合物の溶液を全量移し、低温殺菌のため62℃で30分間処理した。ポジティブコントロールとしては、試験化合物として、対照化合物AおよびTDCMを用いて同様に調製した。また、ネガティブコントロールとしては、試験化合物を何も加えず、同様に調製した(vehicle)。
<腹腔内浸潤細胞の回収>
 1mg/mLの試験化合物(実施例9)溶液を100μg/マウスとなるように、マウス(ICRマウス(SPF)(4週齢、雄、体重:20~22g))に腹腔投与した。
 試験化合物を腹腔投与したマウスを、2時間後、または、24時間後、ジエチルエーテルを使用して死亡させた。腹部中央の表皮に少しハサミで切れ込みを入れ、腹部をつまみ腹部表皮を剥ぎ取った。ピンセットで腹膜を軽く持ち上げ、内臓に針が刺さらないように26Gの針を取り付けた10mLのシリンジで0.05% EDTA in PBS(-) 5mLを腹腔内に全量注入した。その後、腹部の横をつまむようにして40~50回程度マッサージした。腹腔内部の液をゆっくりと小サイズの遠沈管に採取した。この操作を再度繰り返した。採取した細胞を1,000rpmで10分間遠心した。上清を除去し、RPMI1640培地で沈殿を懸濁した。遠沈管をRPMI1640培地で満たし、再度1,000rpmで10分間遠心した。上清を捨て、RPMI1640培地で懸濁後、細胞計数盤を用いて細胞数を計測する。RPMI-1640培地を用いて、任意の濃度に希釈した。
<細胞のギムザ染色>
<1/15 M リン酸ナトリウムバッファー(pH6.4)の調製>
 NaHPO 6.0g、NaHPO 7.06gをそれぞれ250mlの蒸留水で溶解し、リン酸水素二ナトリウム溶液にpHを測定しながらリン酸二水素ナトリウム溶液を添加してpH6.4に合わせ、オートクレーブ121℃ 20分間で滅菌した。
 1mg/mLの試験化合物溶液を100μg/マウスになるようにマウスに腹腔投与し、24時間後に0.05% EDTA/PBS(-)を用いて腹腔内に浸潤した細胞を回収した。その後、1000rpmで8分間遠心を行い、上清を除去した。細胞を100μLのリン酸緩衝液で懸濁し、染色用スライドガラスの上に載せた。水分が蒸発したのを確認し、染色用バッドの上でメイグリュンワルド液を10~15滴、滴化し、2~3分間放置した。メイグリュンワルド液を流さずに、リン酸緩衝液を10~15滴、滴化し、2~3分間放置した。適当な量のギムザ染色液を添加し、30分間放置した。スライドガラスを裏面にして流水後、スライドガラスを乾燥させ、顕微鏡により観察した。
<マウス腹腔内におけるCD8陽性細胞のフローサイトメトリーによる解析>
試薬の調製
PBS(-)溶液の調製
試験例11と同じ方法で調製した。
1mg/mL試験化合物(エマルジョン溶液)の調製
試験例11と同じ方法で調製した。
0.05% EDTA/PBS(-)溶液の調整
 EDTA2Na 50mgを100mlのPBS(-)に溶解し、オートクレーブで121℃、20分間滅菌を行った。
0.5%BSA-0.05% EDTA/PBS(-)溶液の調整
 EDTA2Na 50mgを100mlのPBS(-)に溶解し、オートクレーブで121℃、20分間滅菌を行う。その後、用事調整で0.5%のBSAを溶解した。
<実験方法>
 1mg/mLの試験化合物エマルション溶液をマウス(100μg/マウス)に腹腔投与し、24時間後に0.05%EDTA/PBS(-)を用いて腹腔内に浸潤した細胞を回収した。その後、採取した腹腔細胞を300gで10分間遠心後、上清を除去した。調製した腹腔細胞を1mlの0.05%EDTA(0.5%BSA/PBSで溶解)で懸濁した。細胞懸濁液をフローサイト用メッシュでろ過を行い、100倍希釈した細胞懸濁液で細胞数を測定した。各々のサンプルの細胞を10cells/sampleに調整後、300gで10分間遠心を行い、上清を除去した。100μlの0.05%EDTA(0.5%BSA/PBSで溶解)で懸濁し、10μlのCD11b、CD4、CD8の抗体(それぞれ、FITC anti-mouse CD11b/Mac-1(BECKMAN)、FITC anti-mouse CD4(BECKMAN COULTER)、PE anti-mouse CD8a(BD Pharmingen))を添加した。2-8℃、暗所、10分間インキュベート後、1-2mlの0.05%EDTA(0.5%BSA/PBSで溶解)で細胞を懸濁し、300gで10分間遠心後、上清を除去した。1mlの0.05%EDTA(0.5%BSA/PBSで溶解)で懸濁後、フローサイトメトリーで解析した。
<実験結果>
 PBS(-) 1mLで細胞を懸濁した。ヘモライナック(溶血ヘモグロビン試薬)100μLを細胞懸濁液に加え赤血球を破壊した。その後、細胞測定装置(CYTORECON、GE healthcare)により細胞数を測定した。
 また、調製した細胞を24wellのコラーゲンウェル(greiner)に播種し、2時間インキュベーションした。その後、上清を吸引し、RPMI培地による細胞の洗浄を2回繰り返した。RPMI培地 300μl加え倒立顕微鏡により細胞を観察した。
 その結果、実施例9で得られた試験化合物を投与したマウス腹腔内では、時間依存的に浸潤細胞の増加が認められ、24時間処理後には、Vehicle処理と比較して15~20倍増加していた(図12)。
 また、浸潤細胞の解析を行うため、ギムザ染色による細胞の形態観察、及び、単球およびマクロファージの抗原(CD11b)、リンパ球の抗原(CD4)、そして、NK細胞の抗原(CD8)に対する種々の抗体で細胞を処理し、フローサイトメトリーにより解析した。その結果、実施例9で得られた試験化合物の投与24時間後では、CD11b陽性細胞、CD4陽性細胞、CD8陽性細胞の全体数は、Vehicle処理細胞と比較して15~20倍増加していた。しかしながら、CD11b陽性細胞、及び、CD4陽性細胞の存在比率は、Vehicle処理条件下と比較して、ほとんど変化が認められなかった。一方、CD8陽性細胞の存在比率は、Vehicle処理マウスと比較して、約2~3倍増加していた(図13~15)。
 以上より、実施例9の試験化合物により、マウス腹腔内で食細胞系の細胞が集積することが示され、中でもNK細胞の割合が大きいことが示された。
試験例12
<ウェルシュ菌感染マウスまたは緑膿菌感染マウスへの影響(実施例9の化合物)>
<ウェルシュ菌調製方法>
COOKED MEAT培地の調製 (以下CM培地と省略することもある)
 CM培地 (125mg/ml in D.W.)をネジ付試験管に加え、15分間煮沸してCM培地内の空気を脱気した。オートクレーブ(121℃,20分)による高圧蒸気滅菌を行い、室温まで冷却した。
Brain Heart Infusion(以下BHIと省略する)培地の調製
 37mgのBHI培地を100mlの蒸留水に溶解し、ネジ付試験管に4.5mL、三角フラスコに40mL加えてスポンジ栓をし、オートクレーブ(121℃,20分)で高圧蒸気滅菌を行ったあと、室温まで冷却した。
菌の保存
 作製したCM培地にC. perfringens Type-A NCTC8237(PLC+)を添加し、37 ℃で2日間培養し、保存菌液として室温で保管した。
菌の培養と菌液の作製
 各保存菌液から菌液を0.2mLとり、前培養用4.5mL BHI培地内に添加し、37℃で、一晩培養した。この培養液全量を40mLBHI培地内に添加し、窒素置換(10分間)を行ったあと、再び37℃で、5時間培養した。その後、培養液50mLチューブに移し、遠心分離(4℃,9000 rpm,15分)を行った。上清を除去し、生理食塩水を加えてよく洗浄した後、再び遠心分離(4℃,9000rpm,15分)を行い集菌した。この洗浄を2回繰り返した。その沈殿にBHI培地を4.5mL加えて懸濁した。この懸濁液を原液とした。原液を1000倍に希釈して、オートクレーブ(121℃,20分)により高圧蒸気滅菌を行った後、ワンセルカンターを使用し、菌数を計測した。菌濃度が1×10cells/mLの菌液を作製し、実験に使用した。
<緑膿菌調製方法>
Luria‐Bertani Broth培地 (L‐Broth)の調製
 BactoTM Tryptone(Difco)10.0g、BactoTM Yeast Extract(Difco)5.0g、及び、塩化ナトリウム(NaCl)(nacalai tesque)5.0gを蒸留水に溶解し、1M MgSOを1.0mLを加え、1N NaOHでpH7.5に調整し、蒸留水で全量を1,000mLにした後、オートクレーブで、121℃、20分間、高圧蒸気滅菌し、室温まで冷却した。
菌の保存
 緑膿菌(P.aeruginosa)0.2mLをL‐Broth 10mLに添加し、37℃で、一晩シェイキング培養した。この培養液に滅菌グリセリン1mL(グリセリン)を加え、ボルテックスを行った。菌液を300μLずつ滅菌エッペンに分注し、-80℃で保存した。
 各保存菌液0.2mLとり、40mL L‐Broth培地内に添加し、37℃で、一晩シェイキング培養した。その後、50mLチューブに移し、遠心分離(4℃,9000rpm,15分)行った。上清を除去し、生理食塩水を加えてよく洗浄した後、再び遠心分離(4℃,9000rpm,15分)を行い集菌した。この洗浄を2回繰り返す。その沈殿に生理食塩水を4.5mL加えて懸濁した。この懸濁液を原液とし、原液を10000倍に希釈した菌液をオートクレーブ(121℃,20分)で高圧蒸気滅菌を行った後、ワンセルカンターを使用し、菌数を計測した。菌濃度が1×10 cells/mLの菌液を作製し、実験に使用した。
<実験方法:試験化合物の前投与>
 100μg/マウスの試験化合物(実施例9)エマルション溶液を腹腔投与し、24時間後、3.0×1010CFU/mLの緑膿菌または、5.0×10CFU/mLのウェルシュ菌を腹腔に投与し、マウスを2時間おきに観察した。
<実験方法:試験化合物の後投与>
 3.0×1010CFU/mLの緑膿菌を腹腔に投与し3時間後、100μg/マウスの試験化合物(実施例9)エマルション溶液を腹腔投与した。その後、マウスを2時間おきに観察した。
<実験結果>
 図16および17に示すように、実施例9の試験化合物で処理マウスの致死は、著しく抑制された。また、緑膿菌感染3時間後に実施例9の試験化合物を投与した結果、マウスの致死は、有意に抑制された(図18)。
試験例13
<敗血症観察>
 100μg/マウスの試験化合物(実施例9)エマルション溶液を腹腔投与し、24時間後、3.0×1010CFU/mLの緑膿菌を感染させた。菌投与15時間後にへパリンを針先に少し入れた注射器で心臓採血を行い、全血200μLを普通寒天培地上に播種し、16時間、培養器でインキュベーションした。培地上のコロニー数をカウントした。
 菌数が多い場合は、全血を生理食塩水で10倍、100倍、1000倍、10000倍に希釈し、普通寒天培地に播種した。
 その結果、図19に示すように、菌のみを投与した場合、または、菌およびVehicleを投与した場にはマウス血液内に菌が検出されたが、実施例9の試験化合物を投与した場合には、血液内で菌が検出されなかった。
試験例14
<抗腫瘍効果>
 実施例9で得られた試験化合物(エマルション溶液)100μg/マウスをマウスに腹腔内へ投与し、24時間後に乳癌細胞(FM3A細胞)を腹腔内に接種した。19日後にマウスの体重測定を行った。また、横隔膜、膵臓、そして、精巣の組織切片をHE染色後、顕微鏡により観察した。その結果、乳癌細胞接種マウスは、コントロールマウスと比較して体重が約10g増加しており、多量の腹水が認められた。また、乳癌細胞接種マウスの横隔膜、膵臓、そして、精巣に著しい癌細胞の浸潤、及び、転移が観察された。一方、実施例の試験化合物で処理した後に乳癌細胞を接種したマウスは、コントロールマウスと同様の体重であり、さらに、各臓器への癌細胞の浸潤、及び、転移は全く認められなかった(図20)。
 本発明のトレハロース化合物は、TDCMより優れたないしTDCMと同等程度の免疫賦活作用を有するものでありながら、TDCMに比して毒性が著しく低減しており、医薬品として好適に用いることができる。本願化合物の毒性は、モデルマウスのみならず、ヒト由来細胞においても低減することが見出された。また、本願化合物は変異原性も低いことが示された。
 また、種々の構造を有するトレハロース化合物の中で、β水酸基を水素原子に代え、脂肪酸をα-分岐型またはβ-分岐型とし、分岐した炭素鎖(式(1)におけるR、R、R'、またはR'で表される部分)がそれぞれ炭素数7から20程度の脂肪酸について逐一合成して試験を行うことにより、α-分岐型については炭素数10、β-分岐型については炭素数9、13または14である化合物において、活性が極大となることを見出したものである。また、従来技術のアミド結合をエステル結合にすることで、アミド結合の有する癌誘発活性をも抑制することができることを見出したものである。
 さらに、本発明のトレハロース化合物は、ウェルシュ菌を腹腔内投与されたマウスにおいて、その致死性を低減するものである点で、当該化合物がin vivo試験においても大変有用であることが示された。また、ウェルシュ菌が産生した毒素を腹腔内投与されたマウスにおいても、その致死性を低減するものである点は画期的である。さらに、本発明のトレハロース化合物は、緑膿菌の腹腔内投与に対しても優れた抗菌活性により当該細菌の致死性を低減させることを見出した。
 また、その作用機序に関して、本発明のトレハロース化合物を投与した場合に、好中球H活性、好中球貪食能、マクロファージ貪食能が増強されることを示した点で、これらの抗感染症作用は、マクロファージや好中球などの細胞性免疫の活性化によりもたらされるものであることを示唆するものである。
 これらの試験結果から、本発明のトレハロース化合物は、マクロファージや好中球などの細胞性免疫の活性化をもたらすものであり、マクロファージや好中球の食作用の対象となる細菌、ウィルス、真菌などによる感染症に対して広範囲において有用であることを示唆するものである。これは、感染症治療において、抗生物質を用いる際に、対象となる原因菌を見極め、それに対し抗菌スペクトルを有する抗生物質を適切に選択しなければならない上に、耐性菌出現リスクを抱え、そのうえ耐性菌が出現した折には、また当該耐性菌に対して抗菌スペクトルを有する他の抗生物質を適切に選択しなければならない従来の方法に比べて、簡便かつ確実な方法であるという利点を有する。
 さらに、ウィルスに対しては抗生物質が効かず、むしろワクチンを投与して予防するしかないという従来技術の現状において、ウィルスに対する治療薬をも提供しうる点で有用でありうる。
 そして、中でも、本発明のトレハロースジエステル化合物のうち、特に活性の高い化合物は、TDCMの約2倍、特に活性の高いものでは約8倍~10倍もの活性を有し、かつ、毒性が低い点で、特に有用なものであることが示された。
 さらに、本発明のトレハロース化合物投与後のサイトカイン応答を測定したところ、IL-6、IFN-γ、TNF-α遊離について、いずれも増加傾向が見られた。また、in vitro試験とin vivo試験を行い、本発明の化合物のうち、特に活性の高い化合物は、in vitro試験においては、これらのサイトカインの顕著な増大をもたらす面もあるものの、in vivo試験においては、TNF-αの遊離をあまり大きく増大させるものではないことを見出した。また、ヒト由来のTHP-1細胞からのIL-8遊離活性においても、本発明化合物のうちの特に活性の高い化合物について、TDCMほど強く活性化するものではないことを見出した。さらに、ヒト由来のTHP-1細胞、A549細胞、DLD-1細胞を用いて測定した結果、発明化合物のうちの特に活性の高い化合物は、THP-1細胞においてMIP-1βに対する顕著な遊離活性を示す一方で、TNF-αの遊離活性を特に高めるものではないことを見出した。
 免疫賦活化は従来から重要視されており、サイトカインやケモカインの誘導は、免疫を活性化するために有用である。一方で、免疫を活性化しすぎると、アナフィラキシーショックやアレルギー等に代表されるように、かえって弊害の多いものとなることが知られている。本発明のトレハロース化合物は、これらの行き過ぎた炎症反応を引き起こすファクターとなりうる炎症性のTNF-αや、ケモカインとして知られるIL-8の遊離に対する活性化が過度に至らず、免疫賦活作用はあるものの、免疫反応が過剰に作用して炎症等の副作用が生じる可能性が低いことを示したものである。その一方で、免疫反応の一過程において、一度にケモカイン等が放出されて免疫細胞を活性化することが重要である局面もあり、感染の状態や、被感染体の身体の状態等の種々の事情に応じて、サイトカインやケモカインが多量に遊離されることが有用となる面も存在する。
 以上のように、サイトカインやケモカインはその性質により、多量に遊離されることが好ましい場合、そうでない場合、特に問題にならない場合とがあり、状況に応じて様々ではありうるが、本発明のトレハロース化合物を、IL-8やTNF-αの遊離が所望される場合や、特に問題とならない場合には、IL-8やTNF-αなどの遊離を亢進させるように、または、これらの遊離が抑制されることを意図することなく、特定の種類の本発明のトレハロース化合物を所望の量で用いることも、本発明の範囲内である。
 さらに、本発明トレハロース化合物を投与した乳癌細胞接種マウスにおいて、癌細胞の増殖を有意に抑制し、他の臓器への浸潤や転移をも抑制することを見出した。これは、本願化合物が抗腫瘍活性を有することを示したものである。
 よって、本発明のトレハロース化合物の抗感染症治療剤および抗癌剤としての有用性・安全性をより明確に示すものである。
 本発明により提供されるトレハロース化合物は、免疫賦活活性が高く、さらに、毒性も低いことから、病原菌による感染症の治療に有用である。具体的には、本発明のトレハロース化合物を用いることにより、抗生物質投与の際の菌体破壊による毒素放出のような副作用を生じる危険性が少なく、病原菌の毒素自体にも毒性低減作用を有する医薬品を提供することが可能である。また、本発明のトレハロース化合物を用いることにより多剤耐性菌による感染症にも治療効果のある医薬を提供することが可能である。さらに、本発明の化合物は、過剰な免疫応答が生じるような危険性の少ない医薬品の製造にも有用である。
 また、本発明のトレハロース化合物の製造方法により、不斉合成を含まずに、本発明に係るトレハロース化合物を大量に効率よく合成することができる。

Claims (15)

  1.  以下の式(1):
    Figure JPOXMLDOC01-appb-C000066
          (式1)
    [式中、
     Xは、フェニル、ナフチル、または、R-CHR-で表される基であり、
     X’は、フェニル、ナフチル、または、R’-CHR’-で表される基であり、
     ここで、
         R、R’、R及びR’は、それぞれ独立に、水素原子またはC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく、また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく、
         n及びn’は、それぞれ独立に、0から3の整数である。
    但し、
     (1)Xが、R-CHR-であり、X’が、R’-CHR’-であり、R、R’、R及びR’が、それぞれ独立に、水素原子または無置換かつ直鎖のC-Cアルキル基であり、n及びn’が0である化合物、及び、
     (2)Xが、R-CHR-であり、X’が、R’-CHR’-であり、R、R’、R及びR’がC14直鎖アルキル基であり、n及びn’が0である化合物
    を除く]
    で表される化合物。
  2.  請求項1に記載の化合物であって、
    Xが、R-CHR-であり、X’が、R’-CHR’-である
    化合物。
  3.  請求項2に記載の化合物であって、
     R、R’、R及びR’は、それぞれ独立に、直鎖C-C21アルキル基であり、
     n及びn’は、それぞれ独立に0または1である
    化合物。
  4.  請求項2に記載の化合物であって、
     R、R’、R及びR’は、それぞれ独立に、直鎖C-C16アルキル基であり、
     n及びn’が0である
    化合物。
  5.  請求項2に記載の化合物であって、
     R、R’、R及びR’は、それぞれ独立に、直鎖C-C14アルキル基であ
    り、
     n及びn’は、1である
    化合物。
  6.  請求項1に記載の化合物であって、
     RがR’と同一であり、RがR’と同一であり、nがn’と同一である、
    化合物。
  7.  請求項1に記載の化合物であって、以下のいずれかの化合物:
     6,6’-ビス-O-(2-オクチルデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-ノニルウンデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-ウンデシルトリデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-ドデシルテトラデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-トリデシルペンタデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-ペンタデシルヘプタデカノイル)-α,α’-トレハロース、又は、
     6,6’-ビス-O-(2-ヘキサデシルオクタデカノイル)-α,α’-トレハロース。
  8.  請求項1に記載の化合物であって、以下のいずれかの化合物:
     6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-デシルトリデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-ウンデシルテトラデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-ドデシルペンタデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、又は、
     6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロース。
  9.  請求項1に記載の化合物であって、以下のいずれかの化合物:
     6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、又は、
     6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロース。
  10.  請求項1から9のいずれかに記載の化合物及び薬理学的に許容できるキャリアを含有する医薬組成物。
  11.  請求項10に記載の医薬であって、免疫賦活剤、マクロファージ賦活剤、好中球賦活剤、貪食細胞の食菌作用賦活剤、抗細菌感染症剤、菌産生毒素中和剤、または、抗癌剤として用いられる医薬組成物。
  12.  免疫賦活剤、マクロファージ賦活剤、好中球賦活剤、貪食細胞の食菌作用賦活剤、抗細菌感染症剤、菌産生毒素中和剤、または、抗癌剤として用いられる医薬組成物の製造のための、請求項1から9のいずれかに記載の化合物の使用。
  13.  ヒトを含む哺乳動物の感染症、または、癌の予防方法又は治療方法であって、
     治療上有効量の請求項1から9のいずれかに記載の化合物を当該哺乳動物に投与することを含む方法。
  14.  以下の式(2):
    Figure JPOXMLDOC01-appb-C000067
          (式2)
    [式中、
     Xは、フェニル、ナフチル、または、R-CHR-で表される基であり、
     X’は、フェニル、ナフチル、または、R’-CHR’-で表される基であり、
     ここで、
         R、R’、R及びR’は、それぞれ独立に、水素原子またはC-C21アルキル基であり、R、R’、R、R’に関し、各アルキル基中の水素原子は、水酸基、アルコキシ基によって置換されていてもよく、各アルキル基の全部または一部は4-8員環を形成していてもよく、また、R及びR、R’及びR’は、それぞれ互いに連結して4-8員環を形成していてもよく、
         n及びn’は、それぞれ独立に、0から3の整数である。]
    で表される化合物を含有することを特徴とする菌産生毒素中和剤。
  15. 以下のいずれかの化合物:
     6,6’-ビス-O-(2-デシルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(2-テトラデシルヘキサデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-ノニルドデカノイル)-α,α’-トレハロース、
     6,6’-ビス-O-(3-トリデシルヘキサデカノイル)-α,α’-トレハロース、又は、
     6,6’-ビス-O-(3-テトラデシルヘプタデカノイル)-α,α’-トレハロースを含有することを特徴とする菌産生毒素中和剤。
PCT/JP2009/005650 2008-10-31 2009-10-27 トレハロース化合物、その製造方法、及び該化合物を含有する医薬 WO2010050178A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801436265A CN102203110A (zh) 2008-10-31 2009-10-27 海藻糖化合物、其制造方法以及含有该化合物的药品
EP09823291A EP2351764A4 (en) 2008-10-31 2009-10-27 TREHALOSE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL PRODUCT CONTAINING THE COMPOUND
JP2010535655A JP5552056B2 (ja) 2008-10-31 2009-10-27 トレハロース化合物、その製造方法、及び該化合物を含有する医薬
US13/126,842 US8741871B2 (en) 2008-10-31 2009-10-27 Trehalose compound, method for producing same, and pharmaceutical product containing the compound
US14/257,938 US20140248317A1 (en) 2008-10-31 2014-04-21 Trehalose compound, method for producing same, and pharmaceutical product containing the compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008282613 2008-10-31
JP2008-282613 2008-10-31
JP2009046824 2009-02-27
JP2009-046824 2009-02-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/126,842 A-371-Of-International US8741871B2 (en) 2008-10-31 2009-10-27 Trehalose compound, method for producing same, and pharmaceutical product containing the compound
US14/257,938 Division US20140248317A1 (en) 2008-10-31 2014-04-21 Trehalose compound, method for producing same, and pharmaceutical product containing the compound

Publications (1)

Publication Number Publication Date
WO2010050178A1 true WO2010050178A1 (ja) 2010-05-06

Family

ID=42128548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005650 WO2010050178A1 (ja) 2008-10-31 2009-10-27 トレハロース化合物、その製造方法、及び該化合物を含有する医薬

Country Status (7)

Country Link
US (2) US8741871B2 (ja)
EP (2) EP2351764A4 (ja)
JP (1) JP5552056B2 (ja)
KR (1) KR20110082584A (ja)
CN (1) CN102203110A (ja)
TW (1) TW201016221A (ja)
WO (1) WO2010050178A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016367A1 (zh) * 2010-08-06 2012-02-09 山东大学 海藻糖衍生物及其制备方法与应用
JP2014227404A (ja) * 2013-05-27 2014-12-08 公益財団法人微生物化学研究会 新規化合物レンツトレハロース、その製造方法、及びその用途、並びに、新規微生物
JP2021501791A (ja) * 2017-11-02 2021-01-21 ヴィクトリア リンク リミテッド ブラルテミシン類似体
JP2021514000A (ja) * 2018-02-21 2021-06-03 ザ ユニバーシティー オブ モンタナ ジアリールトレハロース化合物及びその使用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081969A1 (en) 2012-11-21 2014-05-30 University Of Louisville Research Foundation, Inc Compositions and methods for reducing oxidative damage
US9084720B2 (en) 2013-05-07 2015-07-21 BioBlast Pharma Ltd. Compositions and methods for treating oculopharyngeal muscular dystrophy
KR20160009617A (ko) 2013-05-07 2016-01-26 바이오 블라스트 파마 리미티드 트레할로스의 비경구 투여에 의한 단백질 응집 근병증 및 신경퇴행성 질환의 치료
US11406591B2 (en) 2015-02-09 2022-08-09 University Of Louisville Research Foundation, Inc. Ophthalmic compositions and methods for reducing oxidative damage to an eye lens
CZ309423B6 (cs) * 2016-06-06 2022-12-28 Apigenex S.R.O. Lipofilní deriváty trehalózy, jejich příprava a farmaceutická využitelnost
WO2019197595A2 (en) 2018-04-13 2019-10-17 Glaxosmithkline Biologicals Sa Compounds and uses
CN110501483B (zh) * 2019-07-25 2020-12-29 同济大学 一种中草药活性的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1202622A (en) * 1982-10-14 1986-04-01 Yoshihiro Nishikawa .alpha..alpha.-TREHALOSE-6,6'-MEDIUM CHAINED LENGHT ALIPHATIC ACID DIESTER AND A PHARMACEUTICAL AGENT CONTAINING THE SAME
JPH11171727A (ja) * 1997-09-30 1999-06-29 Kanebo Ltd 身体洗浄剤組成物
JP2005330232A (ja) * 2004-05-20 2005-12-02 Noguchi Inst ベロ毒素中和剤としてのスフィンゴ糖脂質類似体
WO2007111214A1 (ja) 2006-03-27 2007-10-04 Otsuka Chemical Co., Ltd. トレハロース化合物および該化合物を含有する医薬
WO2008093700A1 (ja) 2007-01-31 2008-08-07 Otsuka Chemical Co., Ltd. トレハロース化合物、その製造方法、及び該化合物を含有する免疫賦活剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185599A (ja) * 1982-04-26 1983-10-29 Ss Pharmaceut Co Ltd α,α―トレハロース―6,6′―脂肪酸ジエステルの製造方法
JPS59181297A (ja) * 1984-03-01 1984-10-15 Ss Pharmaceut Co Ltd α,α‐トレハロース‐6,6′‐中鎖脂肪酸ジエステル及びこれを含有する抗腫瘍剤
JPS6253926A (ja) 1985-05-30 1987-03-09 Ss Pharmaceut Co Ltd 抗癌剤
JP3326059B2 (ja) * 1995-10-05 2002-09-17 カネボウ株式会社 皮膚化粧料
JPH09188603A (ja) * 1996-01-08 1997-07-22 Kanebo Ltd 皮膚化粧料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1202622A (en) * 1982-10-14 1986-04-01 Yoshihiro Nishikawa .alpha..alpha.-TREHALOSE-6,6'-MEDIUM CHAINED LENGHT ALIPHATIC ACID DIESTER AND A PHARMACEUTICAL AGENT CONTAINING THE SAME
JPH11171727A (ja) * 1997-09-30 1999-06-29 Kanebo Ltd 身体洗浄剤組成物
JP2005330232A (ja) * 2004-05-20 2005-12-02 Noguchi Inst ベロ毒素中和剤としてのスフィンゴ糖脂質類似体
WO2007111214A1 (ja) 2006-03-27 2007-10-04 Otsuka Chemical Co., Ltd. トレハロース化合物および該化合物を含有する医薬
WO2008093700A1 (ja) 2007-01-31 2008-08-07 Otsuka Chemical Co., Ltd. トレハロース化合物、その製造方法、及び該化合物を含有する免疫賦活剤

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Protecting groups in Organic chemistry", 1991, JOHN WILEY & SONS INC.
CREGER, J. AM. CHEM. SOC., vol. 92, 1970, pages 1397 - 98
LIU JIA ET AL.: "Effect of Displacer Chemistry on Displacer Efficacy for a Sugar-Based Anion", EXCHANGE DISPLACER LIBRARY INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 45, no. 26, 2006, pages 9107 - 9114, XP008147128 *
NISHIZAWA MUGIO ET AL.: "Efficient Syntheses of a Series of Trehalose Dimycolate (TDM)/ Trehalose Dicorynomycolate (TDCM) Analogues and Their Interleukin-6 Level Enhancement Activity in Mice Sera", JOURNAL OF ORGANIC CHEMISTRY, vol. 72, no. 5, 2007, pages 1627 - 1633, XP002512853 *
NUMATA ET AL., CHEM. PHARM. BULL., vol. 33, no. 10, 1985, pages 4544 - 4555
NUMATA FUMIO ET AL.: "Lethal and adjuvant activities of cord factor (trehalose 6,6'- dimycolate) and synthetic analogs in mice", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 33, no. 10, 1985, pages 4544 - 4555, XP008111645 *
See also references of EP2351764A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016367A1 (zh) * 2010-08-06 2012-02-09 山东大学 海藻糖衍生物及其制备方法与应用
US8889651B2 (en) 2010-08-06 2014-11-18 Joyochem Co., Ltd. Trehalose derivatives, preparation method and uses thereof
JP2014227404A (ja) * 2013-05-27 2014-12-08 公益財団法人微生物化学研究会 新規化合物レンツトレハロース、その製造方法、及びその用途、並びに、新規微生物
JP2021501791A (ja) * 2017-11-02 2021-01-21 ヴィクトリア リンク リミテッド ブラルテミシン類似体
JP7360385B2 (ja) 2017-11-02 2023-10-12 ヴィクトリア リンク リミテッド ブラルテミシン類似体
JP2021514000A (ja) * 2018-02-21 2021-06-03 ザ ユニバーシティー オブ モンタナ ジアリールトレハロース化合物及びその使用
JP7448954B2 (ja) 2018-02-21 2024-03-13 ザ ユニバーシティー オブ モンタナ ジアリールトレハロース化合物及びその使用

Also Published As

Publication number Publication date
TW201016221A (en) 2010-05-01
EP2351764A4 (en) 2012-09-05
JP5552056B2 (ja) 2014-07-16
US8741871B2 (en) 2014-06-03
US20110218171A1 (en) 2011-09-08
KR20110082584A (ko) 2011-07-19
CN102203110A (zh) 2011-09-28
EP2351764A1 (en) 2011-08-03
EP2567963A1 (en) 2013-03-13
EP2351764A8 (en) 2011-09-21
US20140248317A1 (en) 2014-09-04
JPWO2010050178A1 (ja) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5552056B2 (ja) トレハロース化合物、その製造方法、及び該化合物を含有する医薬
AU2015315294B2 (en) Human iNKT cell activation using glycolipids
AU2014317889B2 (en) Human iNKT cell activation using glycolipids with altered glycosyl groups
KR101651695B1 (ko) 트리테르펜 사포닌, 그의 합성 방법, 및 그의 용도
WO2009119692A1 (ja) 新規糖脂質及びその用途
AU2005235080A1 (en) Novel synthetic C-glycolipids, their synthesis and use to treat infections, cancer and autoimmune diseases
JP6528029B2 (ja) 有機化合物
US10722574B2 (en) Use and preparation of glycolipids as adjuvants in vaccines
NZ573689A (en) C-glycolipids with enhanced TH-1 profile
JP5258582B2 (ja) トレハロース化合物、その製造方法、及び該化合物を含有する免疫賦活剤
US9717790B2 (en) Sphingoglycolipid analogues
CA2842136A1 (en) Multivalent [beta]-1-2-linked mannose oligosaccharides as immunostimulatory compounds and uses thereof
WO1997048712A1 (fr) Derives asialotrisaccharide moranoline et medicaments
Abdullayev New strategy toward the synthesis of therapeutic glyconanomaterials
MATEU FERRANDO SYNTHESIS OF SMART GLYCOSIDES TO ENHANCE GLYCO-NANOMATERIALS CIRCULATION HALF-TIME
Santi Synthesis of carbohydrate antigens and their structural analogues for vaccines development
NZ613614B2 (en) Sphingoglycolipid compounds and uses

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143626.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010535655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009823291

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13126842

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117011968

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3651/CHENP/2011

Country of ref document: IN