WO2010047354A1 - ポリアミド系多層延伸フィルム - Google Patents

ポリアミド系多層延伸フィルム Download PDF

Info

Publication number
WO2010047354A1
WO2010047354A1 PCT/JP2009/068143 JP2009068143W WO2010047354A1 WO 2010047354 A1 WO2010047354 A1 WO 2010047354A1 JP 2009068143 W JP2009068143 W JP 2009068143W WO 2010047354 A1 WO2010047354 A1 WO 2010047354A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyamide
stretched film
multilayer stretched
based multilayer
Prior art date
Application number
PCT/JP2009/068143
Other languages
English (en)
French (fr)
Inventor
徳男 上原
直之 丸市
博幸 吉崎
淳 中川
Original Assignee
グンゼ株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グンゼ株式会社, 三菱化学株式会社 filed Critical グンゼ株式会社
Priority to EP09822051A priority Critical patent/EP2340934B1/en
Priority to US13/123,923 priority patent/US8999466B2/en
Priority to CN200980142486.XA priority patent/CN102196910B/zh
Priority to JP2010534834A priority patent/JP5468010B2/ja
Publication of WO2010047354A1 publication Critical patent/WO2010047354A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7248Odour barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1303Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component

Definitions

  • the present invention relates to a polyamide-based multilayer stretched film having excellent dimensional stability and fragrance retaining property while maintaining excellent toughness and excellent handleability.
  • the present invention also relates to a polyamide-based multilayer stretched film having excellent dimensional stability, fragrance retention, and curl resistance while maintaining excellent toughness.
  • polyamide-based films containing nylon resin are widely used in various directions as films having gas barrier properties, toughness, pinhole resistance, and the like.
  • a multilayer film laminated with polyester / polyamide / polyester is disclosed in order to impart dimensional stability and aroma retention to such a polyamide film (see, for example, Patent Documents 1 and 2).
  • the multilayer films described in Patent Documents 1 and 2 have excellent characteristics as described above.
  • a packaging film is prepared by laminating a sealing layer made of an olefin resin or the like on the multilayer film described in Patent Documents 1 and 2 by a dry laminating method or the like, the lamination strength of the multilayer film and the sealing layer is increased.
  • it peeled off between the polyester / polyamide layers on the side where the seal layer was laminated, and the laminate strength could not be measured.
  • the quality of the packaging film could not be confirmed if the laminate strength could not be measured. Therefore, a film in which polyamide and polyester are laminated with excellent laminating properties has been desired.
  • polyamide-based multilayer stretched film comprising a polyamide resin layer (X) / polyamide resin layer (Y), wherein the (Y) layer contains an amorphous polyamide.
  • Patent Document 3 describes that the multilayer film is excellent in heat resistance, transparency, gas barrier properties and pinhole resistance.
  • the packaging film is required to have high fragrance retention.
  • higher thermal dimensional stability is required.
  • Polyamide-based multilayer stretched films are distributed in the market as packaging films for foods, etc., but pinholes may occur due to wear during transportation, transportation, etc.
  • the excellent gas barrier properties of the multilayer film due to the pinholes was the result of inhibition. Therefore, a multilayer film having excellent bending resistance has been desired in the market.
  • An object of the present invention is to provide a polyamide-based multilayer stretched film that has excellent bending resistance, thermal dimensional stability, fragrance retention, and the like, and can measure the laminate strength when a seal layer is laminated.
  • Another object of the present invention is to provide a polyamide-based multilayer stretched film having excellent bending resistance, thermal dimensional stability, fragrance retention, curling resistance, and the like.
  • the present invention provides the following polyamide-based multilayer stretched film.
  • Item 1 A polyamide-based multilayer stretched film obtained by biaxially stretching a multilayer laminate having three layers of polyester layer (A layer) / adhesive layer (B layer) / polyamide layer (C layer), (A) the layer contains crystalline polyester; (B) the layer contains a modified polyester elastomer, (C) the layer contains an aliphatic polyamide, (C) The thickness of the layer is 5 ⁇ m or more, A polyamide-based multilayer stretched film configured such that a seal layer is laminated on the (C) layer by a laminating method after biaxially stretching the multilayer laminate.
  • Polyamide-based multilayer stretched film obtained by biaxially stretching a multilayer laminate having at least four layers of polyester layer (A layer) / adhesive layer (B layer) / polyamide layer (C layer) / polyamide layer (D layer) Because (A) the layer contains crystalline polyester; (B) the layer contains a modified polyester elastomer, (C) the layer contains an aliphatic polyamide, (D) the layer contains an aromatic polyamide; The total thickness of the (C) layer and the (D) layer is 5 ⁇ m or more, A polyamide-based multilayer stretched film configured such that a seal layer is laminated on the (D) layer by a laminating method after biaxially stretching the multilayer laminate.
  • Item 4 Item (1) or (2) above, wherein the aliphatic polyamide in layer (C) is at least one selected from the group consisting of nylon-6, a copolymer of nylon-6 and nylon-6,6, and a mixture thereof.
  • Item 5 The polyamide-based multilayer stretched film according to Item 1 or 2, wherein the layer (C) further contains an aromatic polyamide in a proportion of 1 wt% or more and less than 50 wt%.
  • Item 6 The polyamide-based multilayer stretched film according to Item 1, wherein the layer (C) further contains an aromatic polyamide in a proportion of 50 to 90% by weight.
  • Item 7 The polyamide-based multilayer stretched film according to Item 5, wherein the aromatic polyamide is polymetaxylene adipamide or amorphous nylon.
  • Item 8 The polyamide-based multilayer stretched film according to Item 6, wherein the aromatic polyamide is polymetaxylene adipamide or amorphous nylon.
  • Item 9 The polyamide-based multilayer stretched film according to Item 2, wherein the aromatic polyamide is polymetaxylene adipamide.
  • Item 10 The polyamide-based multilayer stretched film according to item 1 or 2, wherein the surface on the side opposite to the (A) layer side is subjected to corona discharge treatment.
  • Item 11 The polyamide-based multilayer stretched film according to item 1, wherein the total film thickness is 20 to 50 ⁇ m.
  • Item 12. 3 The polyamide-based multilayer stretched film according to item 2, wherein the total film thickness is 10 to 50 ⁇ m.
  • Item 13 A packaging film obtained by laminating a sealing layer on the (C) layer of the polyamide-based multilayer stretched film according to Item 1 above.
  • Item 14 A packaging film obtained by laminating a seal layer on the (D) layer of the polyamide-based multilayer stretched film according to Item 2 above.
  • the seal layer is composed of at least one resin selected from the group consisting of linear low density polyethylene, low density polyethylene, unstretched polypropylene, and ethylene vinyl acetate copolymer.
  • the packaging film as described.
  • Item 16 A packaging bag obtained by making the packaging film according to Item 13 or 14 into a bag shape and heat-sealing the sealing layer surfaces.
  • Item 17. A package comprising the packaging bag according to Item 16 filled with contents.
  • the polyamide-based multilayer stretched film of the present invention is excellent in bending resistance, thermal dimensional stability, aroma retention, and the like. Further, the polyamide-based multilayer stretched film of the present invention has a total film thickness of 20 ⁇ m or more, or (C) layer in a proportion of 50 to 90% by weight of aromatic polyamide and 10 to 50% by weight of aliphatic polyamide. When contained, it also has excellent curl resistance. Furthermore, when the sealing layer is laminated on the (C) layer of the polyamide-based multilayer stretched film of the present invention, the laminate strength between the polyamide-based multilayer stretched film and the seal layer can be measured.
  • Another embodiment of the polyamide-based multilayer stretched film of the present invention has excellent bending resistance, laminate strength, thermal dimensional stability, aroma retention, and curl resistance.
  • the multilayer stretched film of the present invention having such excellent characteristics is suitably used as a packaging film.
  • polyamide-based multilayer stretched film of the present invention is A polyamide-based multilayer stretched film obtained by biaxially stretching a multilayer laminate having three layers of polyester layer (A layer) / adhesive layer (B layer) / polyamide layer (C layer), (A) the layer contains crystalline polyester; (B) the layer contains a modified polyester elastomer, (C) the layer contains an aliphatic polyamide, (C) The thickness of the layer is 5 ⁇ m or more, A polyamide-based multilayer stretched film (hereinafter referred to as a polyamide-based multilayer stretched film 1), which is configured so that a seal layer is laminated on the (C) layer by biaxial stretching after biaxial stretching of the multilayer laminate, or , Polyamide-based multilayer stretched film obtained by biaxially stretching a multilayer laminate having at least four layers of polyester layer (A layer) / adhesive layer (B layer) / polyamide layer (C layer) / polyamide layer (D layer) Because (A) the layer contains
  • the polyamide-based multilayer stretched films 1 and 2 may be simply referred to as multilayer stretched films 1 and 2.
  • the (A) layer imparts functions such as dimensional stability, aroma retention, and heat resistance to the multilayer stretched film.
  • the layer contains crystalline polyester as a main component.
  • the crystalline polyester is not particularly limited as long as it can impart functions such as dimensional stability, fragrance retention, and heat resistance to the polyamide-based multilayer stretched film of the present invention.
  • polycarboxylic acid and diol are combined with each other. What is obtained by making it condense is mentioned.
  • dicarboxylic acid examples include o-phthalic acid, terephthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, octyl succinic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, fumaric acid, maleic acid, itaconic acid , Decamethylene carboxylic acid, anhydrides and lower alkyl esters thereof; 5-sulfoisophthalic acid, 2-sulfoisophthalic acid, 4-sulfoisophthalic acid, 3-sulfophthalic acid, dialkyl 5-sulfoisophthalate, 2-sulfoisophthalic acid Examples thereof include dialkyl, dialkyl 4-sulfoisophthalate, dialkyl 3-sulfoisophthalate, and sulfo group-containing dicarboxylic acids such as sodium salts and potassium salts thereof.
  • diol examples include ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,5-pentanediol, 1,6-hexanediol, dipropylene glycol, triethylene glycol, and tetraethylene glycol.
  • PET polyethylene terephthalate
  • the component derived from dicarboxylic acid is terephthalic acid and the component derived from diol is ethylene glycol
  • the component derived from dicarboxylic acid is terephthalic acid (99 to 80 mol%) and isophthalic acid ( 1-20 mol%)
  • isophthalic acid copolymerized polyethylene terephthalate in which the component derived from diol is ethylene glycol
  • the component derived from dicarboxylic acid is terephthalic acid (99.5-90 mol%) and 5-sodium sulfoisophthalic acid ( 0.5 to 10 mol%)
  • a sulfoisophthalic acid copolymerized polyethylene terephthalate whose component derived from a diol is ethylene glycol is preferable from the viewpoint of dimensional stability, aroma retention, heat resistance, etc., more preferably Consists of terephthalic acid and ethylene glycol
  • Such crystalline polyester is commercially available.
  • Belpet-EFG6C, Belpet PIFG5 both manufactured by Bell Polyester Products Co., Ltd.
  • the like are used as the crystalline polyester constituting the layer (A). be able to.
  • the crystalline polyester used for the (A) layer may be only one kind, or may be used by blending two or more kinds as necessary. Alternatively, it is possible to provide two or more layers (A).
  • the (A) layer may contain a resin compatible with the crystalline polyester as necessary, but the content of the crystalline polyester relative to the total weight of the components constituting the (A) layer is 50 % By weight or more, preferably 70% by weight or more.
  • Examples of the resin compatible with the crystalline polyester include amorphous polyester.
  • Amorphous polyester is a polyester in which the heat of fusion is not observed in differential scanning calorimetry based on JIS K 7121. Specific examples include polyesters in which the component derived from dicarboxylic acid is terephthalic acid, and the components derived from diol are ethylene glycol (20 to 80 mol%) and cyclohexanedimethanol (80 to 20 mol%); components derived from dicarboxylic acid Polyester composed of terephthalic acid (20 to 80 mol%) and isophthalic acid (80 to 20 mol%) and ethylene glycol as a component derived from diol is suitable.
  • Such an amorphous polyester is commercially available.
  • Eastar Copolyester 6763 manufactured by Eastman Chemical
  • the like can be used as the amorphous polyester.
  • a known inorganic or organic additive or the like can be appropriately blended in the layer (A) as necessary within a range not impairing the effects of the present invention.
  • an antiblocking agent, a nucleating agent, a water repellent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a colorant, a pigment, a dye, and the like can be appropriately blended.
  • the (B) layer is formed for the purpose of adhering the (A) layer and the (C) layer described later, and after adhering both by interposing the (B) layer.
  • the interlaminar strength of the material is dramatically improved.
  • a modified polyester elastomer can be used for the (B) layer of the multilayer stretched film of the present invention.
  • a polyester elastomer is modified with a modifier.
  • the polyester elastomer is preferably a saturated polyester elastomer, and particularly preferably a saturated polyester elastomer containing a polyalkylene ether glycol segment.
  • a saturated polyester-based elastomer containing a polyalkylene ether glycol segment for example, a block copolymer composed of an aromatic polyester as a hard segment and a polyalkylene ether glycol or an aliphatic polyester as a soft segment is preferable.
  • a polyester polyether block copolymer having a polyalkylene ether glycol as a soft segment is more preferable.
  • the polyester polyether block copolymer includes (i) an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, and (ii) an aromatic dicarboxylic acid and / or an aliphatic dicarboxylic acid or an alkyl ester thereof. And (iii) polyalkylene ether glycol as a raw material, and those obtained by polycondensation of oligomers obtained by esterification reaction or transesterification reaction are preferred.
  • aliphatic and / or alicyclic diol having 2 to 12 carbon atoms for example, those generally used as a raw material for polyester, particularly as a raw material for polyester elastomer, can be used.
  • Specific examples include ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
  • 1,4-butanediol or ethylene glycol is preferable, and 1,4-butanediol is particularly preferable.
  • These diols may be used alone or in combination of two or more.
  • aromatic dicarboxylic acid those generally used as raw materials for polyesters, particularly polyester elastomers, can be used. Specific examples include terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid. Among these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is particularly preferable. These aromatic dicarboxylic acids may be used alone or in combination of two or more.
  • alkyl ester of the aromatic dicarboxylic acid examples include dimethyl ester and diethyl ester of the aromatic dicarboxylic acid. Among these, dimethyl terephthalate and 2,6-dimethyl naphthalene dicarboxylate are preferable.
  • the aliphatic dicarboxylic acid is preferably cyclohexane dicarboxylic acid, and the alkyl ester is preferably dimethyl ester or diethyl ester.
  • a small amount of a trifunctional alcohol, tricarboxylic acid or ester thereof may be copolymerized, and an aliphatic dicarboxylic acid such as adipic acid or a dialkyl ester thereof may be used as a copolymerization component.
  • polyalkylene ether glycol examples include polyethylene glycol, poly (1,2- and / or 1,3-propylene ether) glycol, poly (tetramethylene ether) glycol, poly (hexamethylene ether) glycol, and the like. .
  • the preferable lower limit of the number average molecular weight of the polyalkylene ether glycol is 400, and the preferable upper limit is 6000.
  • the block property of the copolymer becomes high, and by setting it to 6000 or less, phase separation in the system hardly occurs and polymer physical properties are easily developed.
  • a more preferred lower limit is 500, a more preferred upper limit is 4000, a still more preferred lower limit is 600, and a still more preferred upper limit is 3000.
  • the number average molecular weight means that measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the GPC calibration can be performed by using, for example, a POLYTETRAHYDROFURAN calibration kit (manufactured by POLYMER, LABORATORIES, UK).
  • the polyester elastomer may coexist with rubber components such as natural rubber and synthetic rubber (for example, polyisoprene rubber) and softeners such as process oil.
  • rubber components such as natural rubber and synthetic rubber (for example, polyisoprene rubber) and softeners such as process oil.
  • the softener may be paraffinic, naphthenic, or aromatic. Moreover, in the range which does not impair the effect of this invention, you may add other components, such as resin other than the above, rubber
  • Examples of the filler include calcium carbonate, talc, silica, kaolin, clay, diatomaceous earth, calcium silicate, mica, asbestos, alumina, barium sulfate, aluminum sulfate, calcium sulfate, magnesium carbonate, carbon fiber, glass fiber, and glass bulb. , Molybdenum sulfide, graphite, shirasu balloon and the like.
  • Examples of the additive include a heat resistance stabilizer, a weather resistance stabilizer, a colorant, an antistatic agent, a flame retardant, a nucleating agent, a lubricant, a slip agent, and an antiblocking agent.
  • heat-resistant stabilizer for example, known ones such as phenol, phosphorus and sulfur can be used.
  • weather resistance stabilizer known ones such as hindered amines and triazoles can be used.
  • the colorant include carbon black, titanium white, zinc white, red pepper, azo compound, nitroso compound, and phthalocyanine compound.
  • known antistatic agents, flame retardants, nucleating agents, lubricants, slip agents, antiblocking agents and the like can be used.
  • polyester elastomers examples include “Primalloy” (manufactured by Mitsubishi Chemical Corporation), “Perprene” (manufactured by Toyobo Co., Ltd.), “Hytrel” (manufactured by Toray DuPont), and the like.
  • the content of the polyalkylene ether glycol component is preferably 5% by weight, and preferably 90% by weight. is there. When it is 5% by weight or more, it is excellent in flexibility and impact resistance, and when it is 90% by weight or less, it is excellent in hardness and mechanical strength. A more preferred lower limit is 30% by weight, a more preferred upper limit is 80% by weight, and a still more preferred lower limit is 55% by weight.
  • the content of the polyalkylene ether glycol component can be calculated based on the chemical shift of the hydrogen atom and its content using nuclear magnetic resonance spectroscopy (NMR).
  • the modification reaction for obtaining the modified polyester elastomer is performed, for example, by reacting the polyester elastomer with an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid as a modifier.
  • a radical generator is preferably used.
  • a graft reaction in which an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid or a derivative thereof is added to a polyester elastomer mainly occurs, but a decomposition reaction also occurs.
  • the modified polyester elastomer may have a lower molecular weight and a lower melt viscosity.
  • the modification reaction it is considered that a transesterification reaction or the like usually occurs as another reaction, and the reaction product obtained is generally a composition containing unreacted raw materials and the like.
  • the content of the modified polyester elastomer in the obtained reaction product is 10% by weight or more, more preferably 30% by weight or more, and the content of the modified polyester elastomer is further preferably 100% by weight.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid include unsaturated carboxylic acids such as acrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid; succinic acid 2 -Octen-1-yl anhydride, 2-dodecen-1-yl anhydride, succinic acid 2-octadecene-1-yl anhydride, maleic anhydride, 2,3-dimethylmaleic anhydride, bromomalein Acid anhydride, dichloromaleic acid anhydride, citraconic acid anhydride, itaconic acid anhydride, 1-butene-3,4-dicarboxylic acid anhydride, 1-cyclopentene-1,2-dicarboxylic acid anhydride, 1,2, 3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydr
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid can be appropriately selected according to the copolymer containing the polyalkylene ether glycol segment to be modified and the modification conditions. Good.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid can be used by dissolving in an organic solvent or the like.
  • radical generator examples include t-butyl hydroperoxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-bis ( (Tert-butyloxy) hexane, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxybenzoate, benzoyl peroxide, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene
  • Organic and inorganic peroxides such as dibutyl peroxide, methyl ethyl ketone peroxide, potassium peroxide, hydrogen peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (isobutylamide) dihalide, 2,2'-azobis [2-methyl-N- (2- Rokishiechiru) propionamide], azo compounds such as azodi -t-
  • the radical generator can be appropriately selected according to the type of polyester elastomer used in the modification reaction, the type of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and the modification conditions, and two or more types can be used in combination. May be. Furthermore, the radical generator can be used by dissolving in an organic solvent or the like.
  • the preferable lower limit of the amount of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is 0.01 parts by weight with respect to 100 parts by weight of the polyester elastomer, and the preferable upper limit is 30.0 parts by weight.
  • the amount is 0.01 parts by weight or more, the modification reaction can be sufficiently performed, and when the amount is 30.0 parts by weight or less, it is economically advantageous.
  • a more preferred lower limit is 0.05 parts by weight
  • a more preferred upper limit is 5.0 parts by weight
  • a still more preferred lower limit is 0.10 parts by weight
  • a still more preferred upper limit is 1.0 part by weight.
  • the preferable lower limit of the blending amount of the radical generator is 0.001 part by weight with respect to 100 parts by weight of the polyester elastomer, and the preferable upper limit is 3.00 part by weight.
  • the amount is 0.001 part by weight or more, the modification reaction is likely to occur, and when the amount is 3.00 part by weight or less, the material strength is less likely to decrease due to low molecular weight (decrease in viscosity) during modification.
  • a more preferred lower limit is 0.005 parts by weight, a more preferred upper limit is 0.50 parts by weight, a still more preferred lower limit is 0.010 parts by weight, a still more preferred upper limit is 0.20 parts by weight, and a particularly preferred upper limit is 0.10 parts by weight. Part.
  • reaction methods such as a melt-kneading reaction method, a solution reaction method, a suspension-dispersion reaction can be used. Reaction methods are preferred.
  • melt kneading reaction method the above-described components are uniformly mixed at a predetermined blending ratio, and then melt kneaded.
  • Henschel mixer, ribbon blender, V-type blender, etc. can be used for mixing each component, and Banbury mixer, kneader, roll, uniaxial or biaxial multi-screw kneading extruder etc. are used for melt-kneading. can do.
  • the preferable lower limit of the kneading temperature when the melt kneading is performed is 100 ° C.
  • the preferable upper limit is 300 ° C.
  • thermal deterioration of the resin can be prevented.
  • a more preferred lower limit is 120 ° C.
  • a more preferred upper limit is 280 ° C.
  • a still more preferred lower limit is 150 ° C.
  • a still more preferred upper limit is 250 ° C.
  • the preferable lower limit of the modification rate (graft amount) of the modified polyester elastomer is 0.01% by weight, and the preferable upper limit is 10.0% by weight.
  • the content is 0.01% by weight or more, the affinity with the polyester is increased, and when the content is 10.0% by weight or less, a decrease in strength due to molecular deterioration during modification can be reduced.
  • a more preferred lower limit is 0.03% by weight, a more preferred upper limit is 7.0% by weight, a still more preferred lower limit is 0.05% by weight, and a still more preferred upper limit is 5.0% by weight.
  • the modification rate (graft amount) of the modified polyester elastomer can be determined from the spectrum obtained by H 1 -NMR measurement according to the following formula (1).
  • an instrument used for the H 1 -NMR measurement for example, “GSX-400” (manufactured by JEOL Ltd.) can be used.
  • A represents an integral value at 7.8 to 8.4 ppm
  • B represents an integral value at 1.2 to 2.2 ppm
  • C represents an integral value at 2.4 to 2.9 ppm.
  • Primalloy AP IF203 (density: 1.09, melting point 180 ° C., manufactured by Mitsubishi Chemical Corporation) is exemplified.
  • the (C) layer constituting the inner surface layer in the present invention is located in the innermost layer of the multilayer stretched film of the present invention, and the multilayer stretched film has functions such as flex resistance and impact resistance. It is given.
  • the (C) layer contains an aliphatic polyamide.
  • Aliphatic polyamide examples include aliphatic nylon and copolymers thereof. Specifically, polycapramide (nylon-6), poly- ⁇ -aminoheptanoic acid (nylon-7), poly- ⁇ -aminononanoic acid (nylon-9), polyundecanamide (nylon-11), polylauryllactam ( Nylon-12), polyethylenediamine adipamide (nylon-2,6), polytetramethylene adipamide (nylon-4,6), polyhexamethylene adipamide (nylon-6,6), polyhexamethylene Bacamide (nylon-6,10), polyhexamethylene dodecamide (nylon-6,12), polyoctamethylene adipamide (nylon-8,6), polydecamethylene adipamide (nylon-10,8) , Caprolactam / lauryl lactam copolymer (nylon-6 / 12), caprolactam / ⁇ -aminononanoic acid copoly
  • Preferred aliphatic polyamides include nylon-6, nylon-6,6, nylon-6 / 6,6 (a copolymer of nylon 6 and nylon 6,6), more preferably nylon-6, nylon- 6/6, 6 and more preferably nylon-6.
  • a combination of nylon-6 and nylon-6 / 6,6 (weight ratio of about 50:50 to 95: 5) is preferable.
  • the aromatic polyamide (C) layer contains the above aliphatic polyamide as an essential component, but an aromatic polyamide may be added if necessary. By adding an aromatic polyamide, depending on the blending amount, it is possible to impart excellent curl resistance to the multilayer stretched film of the present invention.
  • aromatic polyamide for example, an aromatic diamine such as metaxylenediamine and paraxylenediamine and a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof can be used.
  • a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof
  • examples thereof include crystalline aromatic polyamides obtained by a condensation reaction.
  • a crystalline aromatic polyamide such as polymetaxylene adipamide (MXD-nylon) is preferred. Specific examples include S-6007 and S-6011 (both manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • an amorphous aromatic polyamide obtained by a polycondensation reaction between an aliphatic diamine such as hexamethylenediamine and a dicarboxylic acid such as terephthalic acid or isophthalic acid or a derivative thereof may be used.
  • a copolymer of hexamethylene diamine-terephthalic acid-hexamethylene diamine-isophthalic acid include sealer PA (manufactured by Mitsui DuPont Polychemical Co., Ltd.) and the like.
  • preferable combinations of aliphatic polyamide and aromatic polyamide include a combination of nylon-6 and MXD-nylon, and a combination of nylon-6 and amorphous aromatic polyamide (amorphous nylon). .
  • the content of the aromatic polyamide may be appropriately selected from the above numerical range depending on the physical properties to be imparted. it can. For example, if the aromatic polyamide is adjusted so as to be contained in an amount of 1 wt% or more and less than 50 wt%, preferably 1 to 25 wt%, more preferably 1 wt% or more and less than 25 wt%, The function of the (C) layer such as impact resistance is not impaired. In addition to functions such as flex resistance and impact resistance, when imparting curl resistance, the aromatic polyamide is adjusted to contain 50 to 90% by weight, preferably 60 to 80% by weight. To do. In addition, in the layer (C) of the present invention, by setting the content of the aliphatic polyamide to 10% by weight or more, preferably 20% by weight or more, sufficient laminate strength when laminating the seal layer can be maintained. Is possible.
  • the layer (C) may be composed of the above-mentioned polyamide-based resin, but contains a known flex resistance improver, an inorganic or organic additive, etc., as necessary, as long as the effects of the present invention are not impaired. can do.
  • bending resistance improver examples include polyolefins, polyester elastomers, polyamide elastomers, and the like, which can be appropriately blended in the range of about 0.5 to 10% by weight.
  • inorganic or organic additives include antiblocking agents, nucleating agents, water repellents, antioxidants, heat stabilizers, lubricants, antistatic agents and the like.
  • antiblocking agent silica, talc, kaolin and the like can be appropriately blended in the range of about 100 to 5000 ppm.
  • the polyamide-based multilayer stretched film 1 of the present invention is a three-layer laminate laminated by biaxial stretching in the order of (A) layer / (B) layer / (C) layer with the (A) layer as an outer layer. It has a structure and preferably consists of only the three layers. Moreover, the polyamide-based multilayer stretched film 1 of the present invention is configured such that a seal layer is laminated on the (C) layer after biaxial stretching of the multilayer laminate.
  • the total film thickness of the polyamide-based multilayer stretched film of the present invention having such a layer structure can be appropriately set according to the application and is not particularly limited, but is usually about 6.5 to 50 ⁇ m, preferably 10 to 30 ⁇ m. Degree.
  • the film thickness of each layer is usually as follows.
  • the layer is 1 ⁇ m or more, preferably about 1 to 15 ⁇ m, more preferably about 2 to 12 ⁇ m.
  • excellent functions such as dimensional stability, aroma retention, and heat resistance can be imparted to the multilayer film of the present invention.
  • the thickness of the layer is about 0.5 to 5 ⁇ m, preferably about 0.5 to 2.5 ⁇ m. If the (B) layer is 0.5 ⁇ m or more, the film thickness can be easily controlled, and if it is 5 ⁇ m or less, the production cost can be suppressed while providing sufficient adhesive strength.
  • the thickness of the layer is 5 ⁇ m or more, preferably about 5 to 35 ⁇ m, more preferably about 7 to 20 ⁇ m.
  • excellent functions such as flex resistance and impact resistance can be imparted to the multilayer stretched film of the present invention.
  • the ratio of the thickness of each layer is such that (A) layer is 1, the (B) layer is 0.05 to 2.0, preferably 0.2 to 1.0.
  • the (C) layer is 0.8 to 12.0, preferably 1.0 to 10.0, more preferably 1.5 to 8.0.
  • the multilayer stretched film of the present invention has a total film thickness of 20 ⁇ m or more, preferably 20 to 50 ⁇ m, more preferably 25 to 50 ⁇ m, and even more preferably 35 to 50 ⁇ m.
  • a total film thickness of 20 ⁇ m or more, preferably 20 to 50 ⁇ m, more preferably 25 to 50 ⁇ m, and even more preferably 35 to 50 ⁇ m.
  • the curl resistance can be improved by adjusting the content of the aromatic polyamide in the layer (C) to be in the range of 50 to 90% by weight as described above. Can be granted.
  • Example 1 The preferable aspect of the multilayer stretched film 1 of this invention is illustrated below.
  • (A) layer is made of polyethylene terephthalate (film thickness 2-9 ⁇ m);
  • (B) layer is made of modified polyester elastomer (maleic anhydride-modified poly (tetramethylene ether) glycol / polyester block copolymer) (film thickness)
  • the layer (C) is nylon-6 (film thickness 5.5 to 12.5 ⁇ m), and the total film thickness is about 15 ⁇ m (about 10 to 20 ⁇ m).
  • the layer (A) is made of polyethylene terephthalate (film thickness 2 to 14 ⁇ m); the layer (B) is made of a modified polyester elastomer (maleic anhydride-modified poly (tetramethylene ether) glycol / polyester block copolymer) (film thickness).
  • the layer (C) is nylon-6 (film thickness 10.5 to 22.5 ⁇ m), and the total film thickness is about 25 ⁇ m (about 20 to 30 ⁇ m).
  • Example 3 (A) layer is made of polyethylene terephthalate (film thickness 2 to 12 ⁇ m);
  • (B) layer is a modified polyester elastomer (maleic anhydride-modified poly (tetramethylene ether) glycol / polyester block copolymer) (film thickness 0.
  • (C) layer is made of nylon-6 and MXD nylon, the content of nylon-6 is 80 to 95% by weight, the content of MXD nylon is 5 to 20% by weight (film thickness 7 to 5) 22.5 ⁇ m).
  • Example 4 (A) Layer is made of polyethylene terephthalate (film thickness 2-12 ⁇ m); (B) Layer is made of a modified polyester elastomer (maleic anhydride-modified poly (tetramethylene ether) glycol / polyester block copolymer) (film thickness) (C) The layer is made of nylon-6 and MXD nylon, the content of nylon-6 is 20 to 40% by weight, and the content of MXD nylon is 60 to 80% by weight (film thickness) 7 to 22.5 ⁇ m).
  • a gas barrier layer, a seal layer and the like can be further provided on the polyamide-based multilayer stretched film 1 of the present invention as necessary.
  • the (A) layer / (B) layer / (C) layer / sealing layer is the packaging film of the present invention, and the packaging film of the present invention will be described later.
  • a film provided with a gas barrier layer, for example, (A) layer / (B) layer / (C) layer / gas barrier layer / (C) layer is referred to as a polyamide-based multilayer stretched film 1 ′.
  • the gas barrier layer is a layer with low gas permeability such as oxygen, nitrogen, carbon dioxide.
  • gas permeability such as oxygen, nitrogen, carbon dioxide.
  • Specific examples include ethylene-vinyl alcohol copolymers and aromatic polyamides.
  • the ethylene-vinyl alcohol copolymer is obtained by saponification of an ethylene-vinyl acetate copolymer.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is 20 to 70 mol%, preferably 25 to 50 mol%.
  • the thermal stability is poor and the moldability is deteriorated, and foreign matters such as gels are easily generated in extrusion melt molding, and the film is easily broken in stretch molding.
  • the ethylene content exceeds 70 mol%, sufficient barrier properties cannot be obtained.
  • the ethylene-vinyl alcohol copolymer may be copolymerized or blended with other known components that do not significantly reduce gas barrier properties.
  • the ethylene-vinyl alcohol copolymer may be a blend of ethylene-vinyl alcohol copolymers having different compositions.
  • Examples of commercially available ethylene-vinyl alcohol copolymers include “EVAL” (manufactured by Kuraray Co., Ltd.), “Soarnol” (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), and the like.
  • aromatic polyamide for example, an aromatic diamine such as metaxylenediamine and paraxylenediamine and a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof can be used.
  • a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof
  • examples thereof include crystalline aromatic polyamides obtained by a condensation reaction.
  • a crystalline aromatic polyamide such as polymetaxylene adipamide (MXD-nylon) is preferred. Specific examples include S6007 and S6011 (both manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • the thickness of the gas barrier layer is not particularly limited, and can be appropriately adjusted within a range not impairing the effects of the present invention.
  • Packaging film of the present invention comprises (A) layer / (B) layer / (C) layer / sealing layer.
  • any layer having a sealing property may be used, and a layer having a melting point lower than that of the resin constituting the polyamide layer is preferably used.
  • the melting point can be obtained by differential scanning calorimetry based on JIS K7121.
  • sealing layer examples include polyethylene such as LLDPE (linear low density polyethylene), LDPE (low density polyethylene), and HDPE (high density polyethylene); polypropylene such as CPP (unstretched polypropylene); EVA (ethylene vinyl acetate co-polymer). Polymer), EAA (ethylene-acrylic acid copolymer), EMAA (ethylene-methacrylic acid copolymer), EMA (ethylene-methyl acrylate copolymer), EEA (ethylene-ethyl acrylate copolymer), EMMA ( Ethylene-methyl methacrylate copolymer), a layer composed of polyolefin such as ionomer can be employed. These resins may be used alone or in combination of two or more.
  • the seal layer is laminated on the (C) layer by a laminating method after biaxial stretching of the multilayer laminate.
  • Examples of the laminating method include a dry laminating method and an extrusion laminating method.
  • the dry laminating method is a method in which an adhesive is applied to the polyamide-based multilayer stretched film of the present invention, a seal layer film is laminated on the adhesive, and the polyamide-based multilayer stretched film and the seal layer are laminated.
  • the extrusion laminating method includes a method in which the resin constituting the seal layer is eluted from the extruder and laminated on the polyamide multilayer stretched film of the present invention as a seal layer, or the polyamide multilayer stretched film and the seal layer of the present invention.
  • a resin such as polyethylene
  • a polyamide-based multilayer stretched film and a seal layer are laminated and laminated.
  • the lamination conditions are not particularly limited, and the conditions usually employed in this field can be appropriately selected.
  • seal layer As the seal layer, a commercially available one can be suitably used.
  • U. X. FCS film thickness: 50 ⁇ m, manufactured by Tosero
  • the thickness of the seal layer is not particularly limited, but is preferably 20 to 150 ⁇ m, for example, and more preferably 30 to 120 ⁇ m. It is preferable that the thickness of the sealing layer be within the above range because a sealing strength sufficient to protect the contents can be obtained when the sealing layer surfaces are heat sealed to form a packaging film.
  • the packaging film can be obtained by making the packaging film into a bag shape and heat-sealing the sealing layer surfaces.
  • the heat seal condition can be set as appropriate depending on the type and thickness of the material forming the seal layer, and is not particularly limited.
  • an aluminum foil layer is formed between the (C) layer and the sealing layer ((A) layer / (B) layer / (C) Layer / aluminum foil layer / seal layer).
  • the aluminum foil used in this case is not particularly limited, but for example, an aluminum foil having a thickness of about 6 to 10 ⁇ m is preferable.
  • the (C) layer imparts functions such as flex resistance and impact resistance to the multilayer stretched film of the present invention.
  • the (C) layer contains an aliphatic polyamide.
  • Aliphatic polyamide examples include the same as those described in (3-1) of the (C) layer of the polyamide-based multilayer stretched film 1.
  • preferable aliphatic polyamides include nylon-6, nylon-6,6, nylon-6 / 6,6 (a copolymer of nylon 6 and nylon 6,6), and more preferably nylon- 6, nylon-6 / 6,6, more preferably nylon-6.
  • a combination of nylon-6 and nylon-6 / 6,6 is preferable.
  • the aromatic polyamide (C) layer contains the above aliphatic polyamide as an essential component, but an aromatic polyamide may be added if necessary. By adding an aromatic polyamide, depending on the blending amount, it is possible to impart excellent curl resistance to the multilayer stretched film of the present invention.
  • aromatic polyamide examples include the same polyamides as described in (3-2) of the (C) layer of the polyamide-based multilayer stretched film 1.
  • preferable combinations of aliphatic polyamide and aromatic polyamide include a combination of nylon-6 and MXD-nylon, and a combination of nylon-6 and amorphous aromatic polyamide (amorphous nylon). .
  • the content of the aromatic polyamide can be appropriately selected from the above numerical range depending on the properties to be imparted. it can. For example, if the aromatic polyamide is adjusted so as to be contained in an amount of 1 wt% or more and less than 50 wt%, preferably 1 to 25 wt%, more preferably 1 wt% or more and less than 25 wt%, The function of the (C) layer such as impact resistance is not impaired.
  • the layer (C) of the present invention by setting the content of the aliphatic polyamide to 10% by weight or more, preferably 20% by weight or more, sufficient laminate strength when laminating the seal layer can be maintained. Is possible.
  • the layer (C) may be composed of the above-mentioned polyamide-based resin, but contains a known flex resistance improver, an inorganic or organic additive, etc., as necessary, as long as the effects of the present invention are not impaired. can do.
  • a bending resistance improving agent and an inorganic or organic additive the thing similar to what was demonstrated in the column of the (C) layer of the polyamide-type multilayer stretched film 1 can be mentioned.
  • the (D) layer imparts a curl resistance function to the multilayer stretched film.
  • the layer (D) contains an aromatic polyamide.
  • aromatic polyamide for example, an aromatic diamine such as metaxylenediamine and paraxylenediamine and a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof can be used.
  • a dicarboxylic acid such as adipic acid, suberic acid, sebacic acid, cyclohexanedicarboxylic acid, terephthalic acid, and isophthalic acid or a derivative thereof
  • examples thereof include crystalline aromatic polyamides obtained by a condensation reaction.
  • a crystalline aromatic polyamide such as polymetaxylene adipamide (MXD-nylon) is preferred. Specific examples include S-6007 and S-6011 (both manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • the layer may further contain an aliphatic polyamide. This makes it possible to improve pinhole resistance.
  • the aliphatic polyamide those described in the column of the (C) layer can be used.
  • the layer (D) contains an aliphatic polyamide, the content of the aliphatic polyamide is 1 to 70% by weight, preferably 1 to 50% by weight, more preferably 1 to 40% by weight.
  • the layer (D) may be composed of the above-mentioned polyamide-based resin, but contains a known flex resistance improver, an inorganic or organic additive, etc., as necessary within the range not impairing the effects of the present invention. can do.
  • bending resistance improver examples include polyolefins, polyester elastomers, polyamide elastomers, and the like, which can be appropriately blended in the range of about 0.5 to 10% by weight.
  • inorganic or organic additives include anti-blocking agents, nucleating agents, water repellents, antioxidants, heat stabilizers, metal soaps, and the like.
  • antiblocking agent silica, talc, kaolin and the like can be appropriately blended in the range of about 100 to 5000 ppm.
  • the polyamide-based multilayer stretched film of the present invention has at least four layers of (A) layer, (B) layer, (C) layer and (D) layer.
  • the outer layer is laminated in the order of (A) layer / (B) layer / (C) layer / (D) layer.
  • the polyamide-based multilayer stretched film 2 is configured such that after the multilayer laminate is biaxially stretched, a seal layer is laminated on the (D) layer by a laminating method.
  • the total film thickness of the polyamide-based multilayer stretched film 2 of the present invention can be appropriately set according to the application and is not particularly limited, but is usually about 6.5 to 50 ⁇ m, preferably 10 to 50 ⁇ m, more preferably 10 to It is about 30 ⁇ m.
  • the film thickness of each layer is usually as follows.
  • the thickness of the layer is preferably 1 ⁇ m or more, more preferably about 1 to 15 ⁇ m, and still more preferably about 2 to 12 ⁇ m.
  • excellent functions such as dimensional stability, aroma retention, and heat resistance can be imparted to the multilayer stretched film of the present invention.
  • the thickness of the layer is preferably about 0.5 to 5 ⁇ m, more preferably about 0.5 to 2.5 ⁇ m. If the (B) layer is 0.5 ⁇ m or more, the film thickness can be easily controlled, and if it is 5 ⁇ m or less, the production cost can be suppressed while providing sufficient adhesive strength.
  • the thickness of the layer is preferably 4 ⁇ m or more, more preferably about 4 to 35 ⁇ m, and still more preferably about 6 to 20 ⁇ m.
  • excellent functions such as flex resistance and impact resistance can be imparted to the multilayer stretched film of the present invention.
  • the thickness of the layer is preferably 1 ⁇ m or more, more preferably about 1 to 10 ⁇ m, and still more preferably about 1 to 5 ⁇ m.
  • excellent functions such as curl resistance and laminate suitability can be imparted to the multilayer stretched film of the present invention.
  • the total thickness of the (C) layer and the (D) layer is 5 ⁇ m or more, preferably about 5 to 45 ⁇ m, and more preferably about 7 to 25 ⁇ m.
  • excellent functions such as flex resistance and impact resistance can be imparted to the multilayer stretched film of the present invention.
  • the preferable aspect of the multilayer stretched film 2 of this invention is illustrated below.
  • the layer (A) is made of polyethylene terephthalate (film thickness 2-12 ⁇ m); the layer (B) is made of maleic anhydride-modified poly (tetramethylene ether) glycol / polyester block copolymer (film thickness 0.5-2.
  • (C) layer is made of nylon-6 (film thickness: 7-20 ⁇ m);
  • (D) layer is made of MXD nylon and nylon-6, the content of MXD nylon is 60-80% by weight, nylon-6 Is 20 to 40% by weight (film thickness 1 to 5 ⁇ m).
  • the multilayer stretched film 2 of the present invention can be provided with an adhesive layer, a gas barrier layer, a seal layer, and the like as necessary.
  • the sealing layer the (A) layer, (B) layer, (C) layer, and (D) layer are laminated by biaxial stretching, and then laminated on the (D) layer by a laminating method.
  • the multilayer stretched film of the present invention may be composed of the above-mentioned four-layer structure, but may have a structure of five or more layers as necessary.
  • Specific layer configurations include (A) layer / (B) layer / (C) layer / (D) layer, (A) layer / (B) layer / (C) layer / gas barrier layer / (C) layer / (D) layer, (A) layer / (B) layer / (C) layer / gas barrier layer / (D) layer, (A) layer / (B) layer / gas barrier layer / (C) layer / (D) layer , (A) layer / (B) layer / gas barrier layer / (C) layer / (D) layer , (A) layer / (B) layer / (C) layer / (D) layer / sealing layer.
  • Examples of the adhesive layer include a layer using a known adhesive. Between the (A) layer and (B) layer, between the (B) layer and (C) layer, (C) layer and (D ) Layer, or between any of the layers (A) to (D) and the gas barrier layer.
  • the gas barrier layer is a layer with low gas permeability such as oxygen, nitrogen, carbon dioxide.
  • gas permeability such as oxygen, nitrogen, carbon dioxide.
  • Specific examples include ethylene-vinyl alcohol copolymers and aromatic polyamides.
  • Examples of the ethylene-vinyl alcohol copolymer and aromatic polyamide include the same ones as described in (4) of the polyamide-based multilayer stretched film 1.
  • sealing layer the same ones as described in (4) of the polyamide-based multilayer stretched film 1 can be exemplified.
  • the thickness of the adhesive layer or gas barrier layer is not particularly limited, and can be appropriately adjusted within a range not impairing the effects of the present invention.
  • the packaging film of the present invention has a sealing layer on the (D) layer. Specifically, the (A) layer / (B) layer / (C) layer / (D ) Layer / seal layer.
  • a laminating method As a method of laminating the seal layer on the (D) layer, a laminating method can be adopted, and a dry laminating method, an extrusion laminating method, etc. can be exemplified.
  • the dry laminating method is a method in which an adhesive is applied to the polyamide-based multilayer stretched film of the present invention, a seal layer film is laminated on the adhesive, and the polyamide-based multilayer stretched film and the seal layer are laminated.
  • the extrusion laminating method includes a method in which the resin constituting the seal layer is eluted from the extruder and laminated on the polyamide multilayer stretched film of the present invention as a seal layer, or the polyamide multilayer stretched film and the seal layer of the present invention.
  • a resin such as polyethylene
  • a polyamide-based multilayer stretched film and a seal layer are laminated and laminated.
  • the lamination conditions are not particularly limited, and the conditions usually employed in this field can be appropriately selected.
  • seal layer As the seal layer, a commercially available one can be suitably used.
  • U. X. FCS film thickness: 50 ⁇ m, manufactured by Tosero
  • the thickness of the seal layer is not particularly limited, but is preferably 20 to 150 ⁇ m, for example, and more preferably 30 to 120 ⁇ m. It is preferable that the thickness of the sealing layer be within the above range because a sealing strength sufficient to protect the contents can be obtained when the sealing layer surfaces are heat sealed to form a packaging film.
  • the packaging film can be obtained by making the packaging film into a bag shape and heat-sealing the sealing layer surfaces.
  • the heat seal condition can be set as appropriate depending on the type and thickness of the material forming the seal layer, and is not particularly limited.
  • an aluminum foil layer is formed between the (D) layer and the sealing layer ((A) layer / (B) layer / (C) Layer / (D) layer / aluminum foil layer / sealing layer).
  • the aluminum foil used in this case is not particularly limited, but for example, an aluminum foil having a thickness of about 6 to 10 ⁇ m is preferable.
  • the polyamide-based multilayer stretched films 1 and 2 of the present invention are laminated by biaxial stretching so that the above-described layer configuration is obtained.
  • a flat multilayer film is obtained by coextrusion on a chill roll in which cooling water circulates from a T die so that the layers are arranged in order.
  • the obtained film is stretched longitudinally by 2.5 to 4.5 times by a roll stretching machine at 50 to 100 ° C., and further stretched by 2.5 to 5 times by a tenter stretching machine in an atmosphere at 90 to 150 ° C.
  • the film can be stretched and subsequently heat-treated in the atmosphere at 100 to 240 ° C. with the same tenter.
  • the multilayer stretched film of the present invention may be subjected to simultaneous biaxial stretching and sequential biaxial stretching, and the obtained multilayer stretched film can be subjected to corona discharge treatment on both surfaces or one surface thereof, if necessary.
  • the surface opposite to the (A) layer side refers to the surface on the (C) layer side in the polyamide-based multilayer stretched film 1, and refers to the (D) layer-side surface in the polyamide-based multilayer stretched film 2.
  • corona discharge treatment there is a method in which corona discharge is generated by applying a high voltage of several thousand volts between a grounded metal roll and a knife-like electrode placed at intervals of several millimeters. The film is passed between the electrode and the roll during discharge at high speed. At this time, the surface of the film is subjected to corona discharge treatment, and the affinity for adhesives, inks, paints and the like is improved.
  • the degree of processing can be set by controlling the discharge current.
  • the wetting tension of the surface after the corona discharge treatment is 46 mN / m or more, more preferably 50 mN / m or more as measured according to the method of JIS K 6768.
  • polyamide-based multilayer stretched film 1 of the present invention produced as described above has excellent bending resistance, laminate strength, thermal dimensional stability, and aroma retention, and has a laminate strength when the seal layer is laminated. Therefore, it is preferably used as a packaging film.
  • the polyamide-based multilayer stretched film 1 of the present invention is excellent in abrasion resistance due to bending. Specifically, the number of pinholes generated in normal temperature (23 ° C.) ⁇ 1,000 gelboflex tests is 20/300 cm 2 or less, and further 10/300 cm 2 or less. Yes. Evaluation of pinholes by bending is as described in Test Example 1.
  • the polyamide-based multilayer stretched film 1 of the present invention has excellent thermal dimensional stability. Evaluation of thermal dimensional stability is as described in Test Example 1. Under such measurement conditions, the polyamide-based multilayer stretched film of the present invention has a shrinkage of 3% or less, preferably 2.5% or less.
  • the multilayer stretched film 1 of the present invention has excellent fragrance retention.
  • the evaluation method of fragrance retention is as described in Test Example 1.
  • the polyamide-based multilayer stretched film 1 of the present invention is excellent in curling resistance, and is particularly contained when the total film thickness is 20 ⁇ m or more, preferably 25 to 50 ⁇ m, more preferably 35 to 50 ⁇ m, or in the layer (B).
  • the aromatic polyamide is 50 to 90% by weight, preferably 60 to 80% by weight, particularly excellent curling resistance can be imparted.
  • the mat area is 30 cm 2 or less, preferably 20 cm 2 or less, more preferably 10 cm 2 or less. Moreover, if it is 75 cm ⁇ 2 > or less, Preferably it is 70 cm ⁇ 2 > or less, it is a level which is satisfactory practically.
  • the polyamide-based multilayer stretched film 1 of the present invention has the above characteristics, it is suitably used as a packaging film.
  • a packaging film is produced by laminating a seal layer on the (C) layer side of the film.
  • the laminate strength is measured by measuring the polyamide-based multilayer stretched film of the present invention and the sealing layer in a packaging film by a T-shaped peeling method.
  • the polyamide-based multilayer stretched film of the present invention does not peel between the (A) layer and the (B) layer at the time of peeling, but peels between the polyamide-based multilayer stretched film and the sealing layer.
  • the sealing layer may be a resin film having heat sealing properties, and the material of the sealing layer can be used.
  • a method of laminating the polyamide-based multilayer film and the seal layer a known method can be adopted.
  • the polyamide-based multilayer stretched film 1 of the present invention Since the polyamide-based multilayer stretched film 1 of the present invention has the above characteristics, it is suitably used as a packaging film.
  • a sealing film is laminated on the (C) layer side of the film to produce a packaging film. This is formed into a bag shape with the outer layer ((A) layer) facing outside, and the sealing layer surfaces are heat sealed to form a bag shape to produce a packaging bag.
  • polyamide-based multilayer stretched film 2 of the present invention produced as described above has excellent bending resistance, thermal dimensional stability, aroma retention, and curl resistance. It is suitably used as a film.
  • the polyamide-based multilayer stretched film 2 of the present invention is excellent in abrasion resistance due to bending. Specifically, the number of pinholes generated in normal temperature (23 ° C.) ⁇ 1,000 gelboflex tests is 10/300 cm 2 or less, and further 5/300 cm 2 or less. ing. Evaluation of pinholes by bending is as described in Test Example 1.
  • the polyamide-based multilayer stretched film 2 of the present invention has excellent thermal dimensional stability.
  • the multilayer stretched film 2 of the present invention has excellent fragrance retention.
  • the evaluation method of fragrance retention is as described in Test Example 1.
  • the polyamide-based multilayer stretched film 2 of the present invention has excellent curl resistance.
  • the evaluation of curling resistance is as described in Test Example 1.
  • the mat area is 30 cm 2 or less, preferably 20 cm 2 or less, more preferably 10 cm 2 or less.
  • the polyamide-based multilayer stretched film 2 of the present invention Since the polyamide-based multilayer stretched film 2 of the present invention has the above characteristics, it is suitably used as a packaging film.
  • a sealing film is laminated on one surface of the film to produce a packaging film. This is formed into a bag shape with the outermost layer facing outward, and the sealing layer surfaces are heat-sealed and processed into a bag shape to produce a packaging bag.
  • the packaging bag obtained using the polyamide-based multilayer stretched film 1 or 2 is filled with the contents to obtain a package.
  • Examples of the form of the packaging bag include bag-like forms such as a three-sided seal form, an envelope form, a closet form, and a flat bottom form, a standing pouch, a spout pouch, and a refill pouch.
  • bag-like forms such as a three-sided seal form, an envelope form, a closet form, and a flat bottom form, a standing pouch, a spout pouch, and a refill pouch.
  • the polyamide-based multilayer stretched film of the present invention has high transparency, it is easy to visually check the contents when packaged.
  • Example 1-1 Crystalline polyester “Belpet-EFG6C” (manufactured by Bell Polyester Products) is used as the layer, and modified polyester elastomer “Primalloy AP IF203” (manufactured by Mitsubishi Chemical Corporation) is used as the (B) layer.
  • As the layer (C) aliphatic polyamide nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries) was used.
  • Resin constituting each layer is coextruded on a chill roll in which cooling water circulates from a T die so that the order of (A) layer / (B) layer / (C) layer is obtained, and a flat three-layer film is obtained. It was.
  • This three-layer film was longitudinally stretched 2.7 times by a 65 ° C. roll stretcher, then stretched 4.0 times by a tenter stretcher at 110 ° C. atmosphere, and further in a 210 ° C. atmosphere by the same tenter. And a polyamide-based multilayer stretched film having a thickness of 15 ⁇ m was obtained.
  • the thickness of each layer is as shown in Table 1 below.
  • Example 1-2 Crystalline polyester “Belpet-PIFG5” (manufactured by Bell Polyester Products) is used for the layer (A), and nylon-6 “UBE nylon-1022B” (Ube Industries, Ltd.) is used as the aliphatic polyamide resin for the (C) layer. )) 90% by weight, similar to Example 1-1, except that a resin blended with 10% by weight of amorphous nylon “Sealer PA” (Mitsui / DuPont Polychemical Co., Ltd.) is used as the aromatic polyamide resin. Thus, a multilayer stretched film was produced. The thickness of each layer is as shown in Table 1 below.
  • Example 1-3 Nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries) as the aliphatic polyamide resin of layer (C) 90% by weight, amorphous nylon “Sealer PA” as the aromatic polyamide resin (Mitsui / DuPont Polychemical Co., Ltd.)
  • a multilayer stretched film was produced in the same manner as in Example 1-1 except that a resin containing 10% by weight was used.
  • the thickness of each layer is as shown in Table 1 below.
  • Example 1-4 Nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries Co., Ltd.) 30% by weight as an aliphatic polyamide resin of layer (C) MXD nylon “S6007” (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as an aromatic polyamide resin
  • C Nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries Co., Ltd.) 30% by weight as an aliphatic polyamide resin of layer (C) MXD nylon “S6007” (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as an aromatic polyamide resin
  • a multilayer stretched film was produced in the same manner as in Example 1-1 except that a resin containing 70% by weight was used.
  • the thickness of each layer is as shown in Table 1 below.
  • Examples 1-5 to 1-8 For the multilayer stretched films of Examples 1-5 to 1-8, multilayer stretched films were produced in the same manner as in Example 1-1 except that the thickness of each layer was changed as described in Table 1 below.
  • Comparative Example 1-1 A multilayer stretched film was produced in the same manner as in Example 1-4, except that the thickness of each layer was changed as described in Table 1 below.
  • Comparative Example 1-2 A multilayer stretched film in the same manner as in Example 1-1 except that an aromatic polyamide resin (MXD nylon “S6007” (manufactured by Mitsubishi Gas Chemical Co., Inc.)) is used as the layer instead of the aliphatic polyamide. Manufactured.
  • the thickness of each layer is as shown in Table 1 below.
  • Comparative Example 1-3 A film having a thickness of 15 ⁇ m was produced in the same manner as in Example 1-1 using nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries) as the aliphatic polyamide resin.
  • Comparative Example 1-4 A film having a thickness of 12 ⁇ m was produced in the same manner as Example 1-1 using crystalline polyester “Belpet-EFG6C” (manufactured by Bell Polyester Products).
  • Comparative Example 1-5 A multilayer stretched film was prepared in the same manner as in Example 1-1 except that the resins constituting each layer were laminated in the order of (A) / (B) / (C) / (B) / (A). Manufactured. The thickness of each layer is as shown in Table 2 below.
  • Examples 1-1 to 1-8, Comparative Examples 1-1 and 1-2 are on the C layer side, Comparative Example 1-3 is on one side of the A layer, and Comparative Example 1-4 is on one side of the C layer.
  • the layer A side was subjected to a corona discharge treatment (treatment strength: 12 W ⁇ min / m 2 ).
  • Example 1 The multilayer stretched films obtained in Examples 1-1 to 1-8 and Comparative Examples 1-1 to 1-5 were evaluated for flex resistance, thermal dimensional stability, aroma retention, curl resistance, and laminate characteristics. . The results are shown in Table 3.
  • a cross cut was made in the diagonal of the square, and the area of the mat that could be confirmed by curling the film when observed from directly above was measured.
  • the area of the mat was measured by taking an image taken with a digital camera into a computer and using image analysis software NIH Image (National Institute of Health). The case where the measured area value was 30 cm 2 or less was considered to have good curl resistance.
  • Dry lamination was performed as follows using the obtained polyamide-based multilayer stretched film.
  • the dry coating amount is 4.0 g / m 2 -dry.
  • a sealing layer (TUX FCS 50 ⁇ m manufactured by Tosero Co., Ltd.) was laminated and pressure-bonded with a nip roll at 40 ° C. Heat curing was performed at 40 ° C. for 48 hours to obtain a packaging film.
  • the polyamide-based multilayer stretched film and the seal layer were peeled off by a T-shaped peeling method and evaluated according to the following evaluation criteria.
  • A Peel between the polyamide-based multilayer stretched film and the seal layer at the time of peeling.
  • B Peel between the layers of the polyamide-based multilayer stretched film.
  • Table 3 shows that the multilayer stretched films of Examples 1-1 to 1-8 all have excellent bending resistance, thermal dimensional stability, aroma retention, and laminate characteristics. In addition, even when compared with the stretched film of Comparative Example 1-4 made of crystalline polyester, it was shown that it had the same fragrance retention property.
  • the stretched film of Comparative Example 1-3 made of aliphatic polyamide was inferior in thermal dimensional stability and aroma retention.
  • the multilayer stretched film of the present invention having a total film thickness of 25 ⁇ m has excellent curl resistance even if it is an asymmetric three-layer film. It was shown that On the other hand, in Example 1-4 in which the (C) layer was formed of a predetermined amount of aliphatic polyamide and aromatic polyamide, excellent curl resistance was exhibited even when the total film thickness was 15 ⁇ m.
  • the multilayer stretched film of Comparative Example 1-1 in which the film thickness of the (C) layer was 3 ⁇ m was inferior in flex resistance and curl resistance.
  • the film of Comparative Example 1-2 in which the (C) layer was formed of only aromatic polyamide was inferior in flex resistance.
  • the multilayer stretched film when the total film thickness is 25 ⁇ m, or when the layer (C) contains a predetermined amount (70% by weight) of aromatic polyamide, it is also shown that it has excellent curl resistance. It was done.
  • Example 2-1 Crystalline polyester “Belpet-EFG6C” (manufactured by Bell Polyester Products) is used as the layer, and modified polyester elastomer “Primalloy AP IF203” (manufactured by Mitsubishi Chemical Corporation) is used as the (B) layer.
  • C The aliphatic polyamide resin nylon-6 “UBE nylon-1022B” (manufactured by Ube Industries) is used as the layer (C), and the aromatic polyamide MXD nylon “S6007” (Mitsubishi Gas Chemical Co., Ltd.) is used as the layer (D).
  • each layer is coextruded on a chill roll in which cooling water circulates from a T die so that the order of (A) layer / (B) layer / (C) layer / (D) layer is obtained.
  • a four-layer film was obtained. This three-layer film was longitudinally stretched 2.7 times by a 65 ° C. roll stretcher, then stretched 4.0 times by a tenter stretcher at 110 ° C. atmosphere, and further in a 210 ° C. atmosphere by the same tenter. And a four-layer film having a thickness of 15 ⁇ m was obtained.
  • the thickness of each layer is as shown in Table 4.
  • Example 2-2 Crystalline polyester “Belpet-PIFG5” (manufactured by Bell Polyester Products Co., Ltd.) is used as the layer, and aliphatic polyamide resin nylon-6 “UBE nylon-1022B” (Ube Industries, Ltd.) is used as the (C) layer. 90% by weight, aromatic polyamide resin amorphous nylon “Sealer PA” (Mitsui / DuPont Polychemical Co., Ltd.) 10% by weight, (D) aromatic polyamide MXD nylon “S6007” (Mitsubishi) A multilayer stretched film was produced in the same manner as in Example 2-1, except that Gas Chemical Co., Ltd. was used. The thickness of each layer is as shown in Table 4 below.
  • Example 2-3 (D) Aromatic polyamide MXD nylon “S6007” (Mitsubishi Gas Chemical Co., Ltd.) 50 wt%, aliphatic polyamide resin nylon-6 “UBE nylon-1022B” (Ube Industries, Ltd.) 50 wt% A multi-layer stretched film was produced in the same manner as in Example 2-1, except that a resin blended with was used. The thickness of each layer is as shown in Table 4 below.
  • Examples 2-4 to 2-6 For the multilayer stretched films of Examples 2-4 to 2-6, multilayer stretched films were produced in the same manner as in Example 2-1, except that the thickness of each layer was changed as described in Table 4 below.
  • Comparative Example 2-1 A multilayer stretched film was produced in the same manner as in Example 2-1, except that the thickness of each layer was changed as described in Table 4 below.
  • Example 2-2 Using the same components as in Example 2-1, a multilayer stretched film laminated in the order of (A) layer / (B) layer / (D) layer / (C) layer was produced. The production method followed the conditions described in Example 2-1. The thickness of each layer is as shown in Table 4 below.
  • Comparative Example 2-1 (D) layer side, Comparative Example 2-2 was subjected to corona discharge treatment (treatment strength: 12 W ⁇ min / m 2 ) on the (C) layer side. went.
  • Examples 2-1 to 2-6 all exhibited excellent bending resistance, thermal dimensional stability, aroma retention, and curl resistance.
  • the multilayer stretched film of Comparative Example 2-1 in which the thickness of the (C) layer was 2 ⁇ m was inferior in bending resistance.
  • the multilayer stretched film of Comparative Example 2-2 in which the order of the (C) layer and the (D) layer was switched also had poor curl resistance.

Landscapes

  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

 本発明は、耐屈曲性、熱寸法安定性、保香性等に優れ、かつシール層をラミネートした時にラミネート強度の測定が可能となるポリアミド系多層延伸フィルムを提供することを目的とする。具体的には、ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)の3層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、 (A)層が結晶性ポリエステルを含有し、 (B)層が変性ポリエステル系エラストマーを含有し、 (C)層が脂肪族ポリアミドを含有し、 (C)層の厚みが5μm以上であり、 該多層積層体を2軸延伸後に該(C)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルムである。

Description

ポリアミド系多層延伸フィルム
 本発明は、優れた強靱性を保持しつつ、優れた寸法安定性及び保香性を有し、取り扱い性に優れたポリアミド系多層延伸フィルムに関する。また、本発明は、優れた強靱性を保持しつつ、優れた寸法安定性及び保香性、耐カール性を有するポリアミド系多層延伸フィルムに関する。
 従来からナイロン樹脂を含むポリアミド系フィルムは、ガスバリア性、強靭性、耐ピンホール性等を有するフィルムとして各方面で多用されている。
 このようなポリアミドフィルムに寸法安定性や保香性を付与するために、ポリエステル/ポリアミド/ポリエステルと積層した多層フィルムが開示されている(例えば、特許文献1~2参照)。
 特許文献1、2に記載された多層フィルムは、上記の様な優れた特性を有する。しかしながら、例えば、特許文献1、2に記載された多層フィルムに、オレフィン系樹脂等からなるシール層をドライラミネート法等で積層して包装フィルムを作製した場合、多層フィルムとシール層のラミネート強度を測定しようとすると、シール層を積層している側のポリエステル/ポリアミドの層間で剥離し、ラミネート強度が測定できないことがあった。ラミネート強度が測定できないと包装フィルムの品質の確認ができない、という問題点があった。そのためラミネート特性に優れた、ポリアミドとポリエステルが積層されたフィルムが望まれていた。
 また、ポリアミド樹脂層(X)/ポリアミド樹脂層(Y)からなる多層延伸フィルムであって、該(Y)層が非晶性ポリアミドを含有することを特徴とする、ポリアミド系多層延伸フィルムが開示されている(例えば、特許文献3参照)。
 特許文献3に記載された多層フィルムは、耐熱性、透明性、ガスバリアー性及び耐ピンホール性に優れることが記載されている。しかしながら、例えば、食品等の包装フィルムに用いた場合には、内容物の臭いが漏れたりする問題を有していた。これでは、内容物の変質や商品価値の低下につながり好ましくない。そのため、包装フィルムには、高い保香性が要求される。さらに、より過酷なボイル処理やレトルト処理用の包装フィルムとして用いた場合には、より高い熱寸法安定性が要求される。
 また、ポリアミド系多層延伸フィルムは食品等の包装フィルムとして市場に流通するが、その搬送、運搬等における摩耗によりピンホールを生じる場合があり、このピンホールのために該多層フィルムの優れたガスバリア性が阻害される結果となっていた。そのため、市場においては優れた耐屈曲性を有する多層フィルムが望まれていた。
特開2008-74008号公報 特開2008-100496号公報 特開平8-118569号公報
 本発明は、耐屈曲性、熱寸法安定性、保香性等に優れ、かつシール層をラミネートした時にラミネート強度の測定が可能となるポリアミド系多層延伸フィルムを提供することを目的とする。また、本発明は、耐屈曲性、熱寸法安定性、保香性、耐カール性等に優れたポリアミド系多層延伸フィルムを提供することを目的とする。
 本発明者らは、鋭意検討を行った結果、
1)ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)の3層を有する多層積層体を2軸延伸することによって得られる多層延伸フィルム、
2)ポリエステル層(A層)、接着層(B層)、ポリアミド層(C層)及びポリアミド層(D層)の少なくとも4層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであれば、上記課題を解決し得ることを見出した。本発明は、このような知見に基づき、さらに研究を重ねた結果完成されたものである。
 すなわち、本発明は以下のポリアミド系多層延伸フィルムを提供する。
項1.ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)の3層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
 (A)層が結晶性ポリエステルを含有し、
 (B)層が変性ポリエステル系エラストマーを含有し、
 (C)層が脂肪族ポリアミドを含有し、
 (C)層の厚みが5μm以上であり、
該多層積層体を2軸延伸後に該(C)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム。
  項2.ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)/ポリアミド層(D層)の少なくとも4層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
 (A)層が結晶性ポリエステルを含有し、
 (B)層が変性ポリエステル系エラストマーを含有し、
 (C)層が脂肪族ポリアミドを含有し、
 (D)層が芳香族ポリアミドを含有し、
 (C)層と(D)層の総厚みが5μm以上であり、
該多層積層体を2軸延伸後に該(D)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム。
 項3.(A)層に含まれる結晶性ポリエステルが、ポリエチレンテレフタレート又はイソフタル酸共重合ポリエチレンテレフタレートである、上記項1又は2に記載のポリアミド系多層延伸フィルム。
 項4.(C)層の脂肪族ポリアミドが、ナイロン-6、ナイロン-6とナイロン-6,6との共重合体、及びその混合物からなる群より選択される少なくとも1種である、上記項1又は2に記載のポリアミド系多層延伸フィルム。
 項5.前記(C)層が、さらに芳香族ポリアミドを1重量%以上50重量%未満の割合で含有する、上記項1又は2に記載のポリアミド系多層延伸フィルム。
 項6.前記(C)層が、さらに芳香族ポリアミドを50~90重量%の割合で含有する、上記項1に記載のポリアミド系多層延伸フィルム。
 項7.前記芳香族ポリアミドが、ポリメタキシレンアジパミド又はアモルファスナイロンである、上記項5に記載のポリアミド系多層延伸フィルム。
 項8.前記芳香族ポリアミドが、ポリメタキシレンアジパミド又はアモルファスナイロンである、上記項6に記載のポリアミド系多層延伸フィルム。
 項9.前記芳香族ポリアミドが、ポリメタキシレンアジパミドである、上記項2に記載のポリアミド系多層延伸フィルム。
 項10.前記(A)層側と反対側の表面にコロナ放電処理が施されていることを特徴とする上記項1又は2に記載のポリアミド系多層延伸フィルム。
 項11.総膜厚が20~50μmである上記項1に記載のポリアミド系多層延伸フィルム。
 項12.総膜厚が10~50μmである上記項2に記載のポリアミド系多層延伸フィルム。
 項13.上記項1に記載のポリアミド系多層延伸フィルムの(C)層上に、シール層をラミネートしてなる包装用フィルム。
 項14.上記項2に記載のポリアミド系多層延伸フィルムの(D)層上に、シール層をラミネートしてなる包装用フィルム。
 項15.シール層が、直鎖状低密度ポリエチレン、低密度ポリエチレン、無延伸ポリプロピレン及びエチレン酢酸ビニル共重合体からなる群より選択される少なくともいずれか1種の樹脂で構成される、上記項13又は14に記載の包装用フィルム。
 項16.上記項13又は14に記載の包装用フィルムを袋状にして、シール層面同士をヒートシールして得られる包装用袋。
 項17.上記項16に記載の包装用袋に内容物を充填してなる包装物。
 本発明のポリアミド系多層延伸フィルムは、耐屈曲性、熱寸法安定性、保香性等に優れるものである。また、本発明のポリアミド系多層延伸フィルムは、20μm以上の総膜厚を有する場合、又は(C)層に芳香族ポリアミドを50~90重量%、脂肪族ポリアミドを10~50重量%の割合で含有する場合には、優れた耐カール性をも有するものである。さらに、本発明のポリアミド系多層延伸フィルムの(C)層上にシール層をラミネートした場合、ポリアミド系多層延伸フィルムとシール層間のラミネート強度の測定が可能である。
 別の態様の本発明のポリアミド系多層延伸フィルムは、優れた耐屈曲性、ラミネート強度、熱寸法安定性、保香性及び耐カール性を有している。
 このような優れた特徴を有する本発明の多層延伸フィルムは、包装用フィルムとして好適に用いられる。
 1.ポリアミド系多層延伸フィルム
 本発明のポリアミド系多層延伸フィルムは、
 ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)の3層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
 (A)層が結晶性ポリエステルを含有し、
 (B)層が変性ポリエステル系エラストマーを含有し、
 (C)層が脂肪族ポリアミドを含有し、
 (C)層の厚みが5μm以上であり、
該多層積層体を2軸延伸後に該(C)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム(以下、ポリアミド系多層延伸フィルム1という)、又は、
 ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)/ポリアミド層(D層)の少なくとも4層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
 (A)層が結晶性ポリエステルを含有し、
 (B)層が変性ポリエステル系エラストマーを含有し、
 (C)層が脂肪族ポリアミドを含有し、
 (D)層が芳香族ポリアミドを含有し、
 (C)層と(D)層の総厚みが5μm以上であり、
該多層積層体を2軸延伸後に該(D)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム(以下、ポリアミド系多層延伸フィルム2という)である。
 以下、本発明のポリアミド系多層延伸フィルム1、2の各構成について詳述する。なお、以下、ポリアミド系多層延伸フィルム1、2を、単に多層延伸フィルム1、2と略記することがある。
 1.1 ポリアミド系多層延伸フィルム1
 (1)(A)層
 本発明において(A)層は、多層延伸フィルムに寸法安定性、保香性、耐熱性等の機能を付与する。
 (A)層は、結晶性ポリエステルを主成分として含有する。結晶性ポリエステルとしては、本発明のポリアミド系多層延伸フィルムに寸法安定性、保香性、耐熱性等の機能を付与し得るものであれば特に限定されず、例えば、ジカルボン酸とジオールとを重縮合させることにより得られるものが挙げられる。
 ジカルボン酸としては、例えば、o-フタル酸、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、フマル酸、マレイン酸、イタコン酸、デカメチレンカルボン酸、これらの無水物及び低級アルキルエステル;5-スルホイソフタル酸、2-スルホイソフタル酸、4-スルホイソフタル酸、3-スルホフタル酸、5-スルホイソフタル酸ジアルキル、2-スルホイソフタル酸ジアルキル、4-スルホイソフタル酸ジアルキル、3-スルホイソフタル酸ジアルキル及びこれらのナトリウム塩、カリウム塩等のスルホン基含有ジカルボン酸等が挙げられる。
 ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、ネオペンチルグリコール(2,2-ジメチルプロパン-1,3-ジオール)、1,2-ヘキサンジオール、2,5-ヘキサンジオール、2-メチル-2、4-ペンタンジオール、3-メチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール等の脂肪族ジオール類;2,2-ビス(4-ヒドロキシシクロへキシル)プロパン、2,2-ビス(4-ヒドロキシシクロへキシル)プロパンのアルキレンオキサイド付加物、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール類;1,3-ジヒドロキシブタンスルホン酸、1,4-ジヒドロキシブタンスルホン酸等のスルホン基含有ジオール等が挙げられる。
 この中でも特に、ジカルボン酸に由来する成分がテレフタル酸、ジオールに由来する成分がエチレングリコールであるポリエチレンテレフタレート(PET);ジカルボン酸に由来する成分がテレフタル酸(99~80モル%)及びイソフタル酸(1~20モル%)、ジオールに由来する成分がエチレングリコールであるイソフタル酸共重合ポリエチレンテレフタレート;ジカルボン酸に由来する成分がテレフタル酸(99.5~90モル%)及び5-ナトリウムスルホイソフタル酸(0.5~10モル%)、ジオールに由来する成分がエチレングリコールであるスルホイソフタル酸共重合ポリエチレンテレフタレート等が、寸法安定性、保香性、耐熱性等の点から好適であり、より好ましくはテレフタル酸とエチレングリコールからなるポリエチレンテレフタレート(PET)である。
 このような結晶性ポリエステルは商業的に入手可能であり、例えば、ベルペット-EFG6C、ベルペットPIFG5(いずれも(株)ベルポリエステルプロダクツ製)等を(A)層を構成する結晶性ポリエステルとして用いることができる。
 なお、(A)層に用いられる結晶性ポリエステルは1種のみでも良いし、必要に応じ2種以上をブレンドして用いてもよい。或いは(A)層を2層以上設けることも可能である。
 また、(A)層は、必要に応じ結晶性ポリエステルと相溶性のある樹脂を含有していても良いが、(A)層を構成する成分の総重量に対する結晶性ポリエステルの含有量は、50重量%以上、好ましくは70重量%以上である。
 結晶性ポリエステルと相溶性のある樹脂としては非晶性ポリエステル等が例示できる。非晶性ポリエステルとはJIS K 7121に基づく示差走査熱量測定において融解熱量が観察されないポリエステルである。具体例として、ジカルボン酸に由来する成分がテレフタル酸、ジオールに由来する成分がエチレングリコール(20~80モル%)及びシクロヘキサンジメタノール(80~20モル%)であるポリエステル;ジカルボン酸に由来する成分がテレフタル酸(20~80モル%)及びイソフタル酸(80~20モル%)、ジオールに由来する成分としてエチレングリコールからなるポリエステルが好適である。このような非晶性ポリエステルは商業的に入手可能であり、例えば、Eastar Copolyester 6763(イーストマンケミカル製)等を非晶性ポリエステルとして用いることができる。
 また、本発明の効果を損なわない範囲で必要に応じて、(A)層に公知の無機または有機添加剤等を適宜配合することができる。無機または有機添加剤としては、アンチブロッキング剤、核剤、撥水剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、着色剤、顔料、染料等を適宜配合することができる。
 (2)(B)層
 本発明において(B)層は、上記(A)層と後述する(C)層を接着させる目的で形成され、(B)層を介在させることによって、両者の接着後の層間強度が飛躍的に向上する。本発明の多層延伸フィルムの(B)層には変性ポリエステル系エラストマーを用いることができる。
 (B)層を構成する変性ポリエステル系エラストマーとしては、ポリエステル系エラストマーを、変性剤を用いて変性したものである。
 上記ポリエステル系エラストマーは、飽和ポリエステル系エラストマーであることが好ましく、特に、ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系エラストマーであることが好ましい。ポリアルキレンエーテルグリコールセグメントを含有する飽和ポリエステル系エラストマーとしては、例えば、ハードセグメントである芳香族ポリエステルと、ソフトセグメントであるポリアルキレンエーテルグリコールや脂肪族ポリエステルとからなるブロック共重合体が好ましい。更に、ソフトセグメントとしてポリアルキレンエーテルグリコールを有するポリエステルポリエーテルブロック共重合体がより好ましい。
 上記ポリエステルポリエーテルブロック共重合体としては、(i)炭素原子数2~12の脂肪族及び/又は脂環族ジオールと、(ii)芳香族ジカルボン酸及び/又は脂肪族ジカルボン酸又はそのアルキルエステルと、(iii)ポリアルキレンエーテルグリコールとを原料とし、エステル化反応又はエステル交換反応により得られたオリゴマーを重縮合させたものが好ましい。
 上記炭素原子数2~12の脂肪族及び/又は脂環族ジオールとしては、例えば、ポリエステルの原料、特にポリエステル系エラストマーの原料として一般に用いられるものを用いることができる。具体的には、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。これらの中では、1,4-ブタンジオール又はエチレングリコールが好ましく、特に1,4-ブタンジオールが好ましい。これらのジオールは単独で用いてもよく、2種以上を併用してもよい。
 上記芳香族ジカルボン酸としては、ポリエステルの原料、特にポリエステル系エラストマーの原料として一般的に用いられているものを用いることができる。具体的には、例えば、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。これらの中では、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、特にテレフタル酸が好ましい。これらの芳香族ジカルボン酸は単独で用いてもよく、2種以上を併用してもよい。
 上記芳香族ジカルボン酸のアルキルエステルとしては、上記芳香族ジカルボン酸のジメチルエステルやジエチルエステル等が挙げられる。これらの中でも、ジメチルテレフタレート及び2,6-ジメチルナフタレンジカルボキシレートが好ましい。
 上記脂肪族ジカルボン酸としては、シクロヘキサンジカルボン酸等が好ましく、そのアルキルエステルとしては、ジメチルエステルやジエチルエステル等が好ましい。また、上記の成分以外に3官能のアルコールやトリカルボン酸又はそのエステルを少量共重合させてもよく、更に、アジピン酸等の脂肪族ジカルボン酸又はそのジアルキルエステルを共重合成分として用いてもよい。
 上記ポリアルキレンエーテルグリコールとしては、例えば、ポリエチレングリコール、ポリ(1,2-及び/又は1,3-プロピレンエーテル)グリコール、ポリ(テトラメチレンエーテル)グリコール、ポリ(ヘキサメチレンエーテル)グリコール等が挙げられる。
 上記ポリアルキレンエーテルグリコールの数平均分子量の好ましい下限は400、好ましい上限は6000である。400以上とすることで、共重合体のブロック性が高くなり、6000以下とすることで、系内での相分離が起こり難く、ポリマー物性が発現しやすくなる。より好ましい下限は500、より好ましい上限は4000、更に好ましい下限は600、更に好ましい上限は3000である。
 なお、本明細書において、数平均分子量とはゲル浸透クロマトグラフィー(GPC)で測定されたものをいう。また、上記GPCのキャリブレーションは、例えば、POLYTETRAHYDROFURANキャリブレーションキット(英国POLYMER LABORATORIES社製)を使用することにより行うことができる。
 上記ポリエステル系エラストマーには、天然ゴム、合成ゴム(例えば、ポリイソプレンゴム)等のゴム成分及びプロセスオイル等の軟化剤を共存させてもよい。上記軟化剤を共存させることで、ゴム成分の可塑化促進や得られる熱可塑性樹脂組成物の流動性を向上させることができる。
 上記軟化剤は、パラフィン系、ナフテン系、芳香族系のいずれであってもよい。また、本発明の効果を損なわない範囲において、該樹脂成分及びゴム成分に上記以外の樹脂やゴム、フィラー、添加剤等他の成分を添加してもよい。
 上記フィラーとしては、例えば、炭酸カルシウム、タルク、シリカ、カオリン、クレー、ケイソウ土、珪酸カルシウム、雲母、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、炭酸マグネシウム、炭素繊維、ガラス繊維、ガラス球、硫化モリブデン、グラファイト、シラスバルーン等を挙られる。また、添加剤としては、例えば、耐熱安定剤、耐候安定剤、着色剤、帯電防止剤、難燃剤、核剤、滑剤、スリップ剤、ブロッキング防止剤等が挙げられる。
 上記耐熱安定剤としては、例えば、フェノール系、リン系、硫黄系等の公知のものを使用することができる。上記耐候安定剤としてはヒンダードアミン系、トリアゾール系等の公知のものを使用することができる。上記着色剤としてはカーボンブラック、チタンホワイト、亜鉛華、べんがら、アゾ化合物、ニトロソ化合物、フタロシアニン化合物等が挙げられる。また、帯電防止剤、難燃剤、核剤、滑剤、スリップ剤、ブロッキング防止剤等についてもいずれも公知のものが使用可能である。
 上記ポリエステル系エラストマーの市販品としては、「プリマロイ」(三菱化学(株)製)、「ペルプレン」(東洋紡績(株)製)、「ハイトレル」(東レ・デュポン社製)等が挙げられる。
 上記ポリエステル系エラストマーとして、ポリエステルとポリアルキレンエーテルグリコールとからなるポリエステルポリエーテルブロック共重合体を用いる場合、ポリアルキレンエーテルグリコール成分の含有量は、好ましい下限が5重量%、好ましい上限が90重量%である。5重量%以上であると、柔軟性及び耐衝撃性に優れるものとなり、90重量%以下であると、硬度及び機械強度に優れるものとなる。より好ましい下限は30重量%、より好ましい上限は80重量%であり、更に好ましい下限は55重量%である。なお、ポリアルキレンエーテルグリコール成分の含有量は核磁気共鳴スペクトル法(NMR)を用い、水素原子の化学シフトとその含有量に基づいて算出することができる。
 変性ポリエステル系エラストマーを得るための変性反応は、例えば、ポリエステル系エラストマーに変性剤としてのα,β-エチレン性不飽和カルボン酸を反応させることによって行われる。変性反応に際してはラジカル発生剤を使用することが好ましい。変性反応においては、ポリエステル系エラストマーにα,β-エチレン性不飽和カルボン酸やその誘導体が付加するグラフト反応が主として起こるが、分解反応も起こる。その結果、変性ポリエステル系エラストマーは、分子量が低下して溶融粘度が低くなる場合がある。また、変性反応においては、通常、他の反応として、エステル交換反応等も起こるものと考えられ、得られる反応物は、一般的には、未反応原料等を含む組成物となる。このような場合、得られる反応物中の変性ポリエステル系エラストマーの含有率は10重量%以上、より好ましくは30重量%以上、変性ポリエステル系エラストマーの含有率が100重量%であることが更に好ましい。
 上記α,β-エチレン性不飽和カルボン酸としては、例えば、アクリル酸、マレイン酸、フマル酸、テトラヒドロフマル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸等の不飽和カルボン酸;コハク酸2-オクテン-1-イル無水物、コハク酸2-ドデセン-1-イル無水物、コハク酸2-オクタデセン-1-イル無水物、マレイン酸無水物、2,3-ジメチルマレイン酸無水物、ブロモマレイン酸無水物、ジクロロマレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、1-ブテン-3,4-ジカルボン酸無水物、1-シクロペンテン-1,2-ジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、exo-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、endo-ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸無水物等の不飽和カルボン酸無水物が挙げられる。これらの中でも、反応性が高いことから、酸無水物が好ましい。上記α,β-エチレン性不飽和カルボン酸は、変性すべきポリアルキレンエーテルグリコールセグメントを含有する共重合体や変性条件に応じて適宜選択することができ、また、2種以上を併用してもよい。なお、上記α,β-エチレン性不飽和カルボン酸は有機溶剤等に溶解して使用することもできる。
 上記ラジカル発生剤としては、例えば、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルへキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(ターシャリーブチルオキシ)ヘキサン、3,5,5-トリメチルへキサノイルパーオキサイド、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ジクミルパーオキサイド、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、ジブチルパーオキサイド、メチルエチルケトンパーオキサイド、過酸化カリウム、過酸化水素等の有機及び無機の過酸化物、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(イソブチルアミド)ジハライド、2,2′-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、アゾジ-t-ブタン等のアゾ化合物、ジクミル等の炭素ラジカル発生剤等が挙げられる。
 上記ラジカル発生剤は、変性反応に使用するポリエステル系エラストマーの種類、α,β-エチレン性不飽和カルボン酸の種類及び変性条件に応じて適宜選択することができ、また、2種以上を併用してもよい。更に、ラジカル発生剤は有機溶剤等に溶解して使用することもできる。
 上記α,β-エチレン性不飽和カルボン酸の配合量の好ましい下限は、ポリエステル系エラストマー100重量部に対して0.01重量部、好ましい上限は30.0重量部である。0.01重量部以上とすることで、変性反応を充分に行うことができ、30.0重量部以下とすることで、経済的に有利なものとなる。より好ましい下限は0.05重量部、より好ましい上限は5.0重量部、更に好ましい下限は0.10重量部、更に好ましい上限は1.0重量部である。
 上記ラジカル発生剤の配合量の好ましい下限は、ポリエステル系エラストマー100重量部に対して0.001重量部、好ましい上限は3.00重量部である。0.001重量部以上とすることで、変性反応が起きやすくなり、3.00重量部以下とすることで、変性時の低分子量化(粘度低下)による材料強度の低下が起こりにくくなる。より好ましい下限は0.005重量部、より好ましい上限は0.50重量部、更に好ましい下限は0.010重量部、更に好ましい上限は0.20重量部であり、特に好ましい上限は0.10重量部である。
 上記変性ポリエステル系エラストマーを得るための変性反応としては、溶融混練反応法、溶液反応法、懸濁分散反応等の公知の反応方法を使用することができるが、通常は安価であることから溶融混練反応法が好ましい。
 上記溶融混練反応法による方法では、上述した各成分を所定の配合比にて均一に混合した後、溶融混練を行う。各成分の混合には、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー等を使用することができ、溶融混練には、バンバリーミキサー、ニーダー、ロール、一軸又は二軸等の多軸混練押出機等を使用することができる。
 上記溶融混練を行う場合の混練温度の好ましい下限は100℃、好ましい上限は300℃である。上記範囲内とすることで、樹脂の熱劣化を防止することができる。より好ましい下限は120℃、より好ましい上限は280℃、更に好ましい下限は150℃、更に好ましい上限は250℃である。
 上記変性ポリエステル系エラストマーの変性率(グラフト量)の好ましい下限は0.01重量%、好ましい上限は10.0重量%である。0.01重量%以上であることで、ポリエステルとの親和性が高くなり、10.0重量%以下であることで、変性時の分子劣化による強度低下を小さくすることができる。より好ましい下限は0.03重量%、より好ましい上限は7.0重量%であり、更に好ましい下限は0.05重量%、更に好ましい上限は5.0重量%である。
 上記変性ポリエステル系エラストマーの変性率(グラフト量)は、H-NMR測定により得られるスペクトルから、下記の式(1)に従って求めることができる。なお、上記H-NMR測定に使用する機器としては、例えば、「GSX-400」(日本電子(株)製)等を用いることができる。
Figure JPOXMLDOC01-appb-M000001
式(1)中、Aは7.8~8.4ppmにおける積分値、Bは1.2~2.2ppmにおける積分値、Cは2.4~2.9ppmにおける積分値を表す。
 具体的には、プリマロイAP IF203(密度:1.09、融点180℃、三菱化学(株)製)等が例示される。
 (3)(C)層
 本発明において内面層を構成する(C)層は、本発明の多層延伸フィルムの最内層に位置し、該多層延伸フィルムに耐屈曲性、耐衝撃性等の機能を付与するものである。(C)層は、脂肪族ポリアミドを含有する。
 (3-1)脂肪族ポリアミド
 脂肪族ポリアミドとしては、脂肪族ナイロン及びその共重合体が挙げられる。具体的には、ポリカプラミド(ナイロン-6)、ポリ-ω-アミノヘプタン酸(ナイロン-7)、ポリ-ω-アミノノナン酸(ナイロン-9)、ポリウンデカンアミド(ナイロン-11)、ポリラウリルラクタム(ナイロン-12)、ポリエチレンジアミンアジパミド(ナイロン-2,6)、ポリテトラメチレンアジパミド(ナイロン-4,6)、ポリヘキサメチレンアジパミド(ナイロン-6,6)、ポリヘキサメチレンセバカミド(ナイロン-6,10)、ポリヘキサメチレンドデカミド(ナイロン-6,12)、ポリオクタメチレンアジパミド(ナイロン-8,6)、ポリデカメチレンアジパミド(ナイロン-10,8)、カプロラクタム/ラウリルラクタム共重合体(ナイロン-6/12)、カプロラクタム/ω-アミノノナン酸共重合体(ナイロン-6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン-6/6,6)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン-12/6,6)、エチレンジアミンアジパミド/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン-2,6/6,6)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン-6,6/6,10)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン-6/6,6/6,10)などを例示でき、これらのうち、2種以上の脂肪族ポリアミドを混合しても良い。
 好ましい脂肪族ポリアミドとしては、ナイロン-6、ナイロン-6,6、ナイロン-6/6,6(ナイロン6とナイロン6,6の共重合体)が挙げられ、より好ましくはナイロン-6、ナイロン-6/6,6であり、さらに好ましくはナイロン-6である。2種以上の脂肪族ポリアミドとしてはナイロン-6とナイロン-6/6,6の組み合わせ(重量比で50:50~95:5程度)が好ましい。
 (3-2)芳香族ポリアミド
 (C)層は、上記脂肪族ポリアミドを必須成分として含有するが、必要に応じて芳香族ポリアミドを添加してもよい。芳香族ポリアミドを添加することによって、配合量によっては、本発明の多層延伸フィルムに優れた耐カール性を付与することもできる。
 芳香族ポリアミドとしては、例えば、メタキシレンジアミン、パラキシレンジアミン等の芳香族ジアミンと、アジピン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸等のジカルボン酸又はその誘導体との重縮合反応で得られる結晶性芳香族ポリアミドが挙げられる。好ましくは、ポリメタキシレンアジパミド(MXD-ナイロン)等の結晶性芳香族ポリアミドである。具体例としては、S-6007、S-6011(いずれも三菱ガス化学(株)製)が例示される。
 或いは、ヘキサメチレンジアミン等の脂肪族ジアミンとテレフタル酸、イソフタル酸等のジカルボン酸又はその誘導体との重縮合反応で得られる非晶性芳香族ポリアミド(アモルファスナイロン)が挙げられる。好ましくはヘキサメチレンジアミン-テレフタル酸-ヘキサメチレンジアミン-イソフタル酸の共重合体等である。具体例としては、シーラーPA(三井・デュポンポリケミカル(株)製)等が例示される。
 本発明の(C)層として、脂肪族ポリアミドと芳香族ポリアミドの好ましい組み合わせは、ナイロン-6とMXD-ナイロンの組み合わせ、ナイロン-6と非晶性芳香族ポリアミド(アモルファスナイロン)の組み合わせが挙げられる。
 (3-3) 芳香族ポリアミドの含有量
 本発明の(C)層に芳香族ポリアミドを添加する場合、芳香族ポリアミドの含有量は、付与される物性によって上記数値範囲内から適宜選択することができる。例えば、芳香族ポリアミドが1重量%以上50重量%未満、好ましくは1~25重量%、より好ましくは1重量%以上25重量%未満の割合で含有されるように調整すれば、耐屈曲性、耐衝撃性等の(C)層の機能を損なうことがない。また、耐屈曲性、耐衝撃性等の機能に加え、耐カール性を付与する場合は、芳香族ポリアミドが50~90重量%、好ましくは60~80重量%の割合で含有されるように調整する。また、本発明の(C)層において、脂肪族ポリアミドの含有量を10重量%以上、好ましくは20重量%以上にすることによって、シール層をラミネートする場合の十分なラミネート強度を保持することも可能である。
 (C)層は、上記ポリアミド系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、公知の耐屈曲性改良剤、無機または有機添加剤等を配合することができる。
 耐屈曲性改良剤としては、ポリオレフィン類、ポリエステルエラストマー、ポリアミドエラストマー等が挙げられ、0.5~10重量%程度の範囲で適宜配合することができる。
 無機または有機添加剤としては、アンチブロッキング剤、核剤、撥水剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤等が挙げられる。例えば、アンチブロッキング剤であれば、シリカ、タルク、カオリン等を100~5000ppm程度の範囲で適宜配合することができる。
 (4)層構成
 本発明のポリアミド系多層延伸フィルム1は、(A)層を外層として(A)層/(B)層/(C)層の順に2軸延伸によって積層された、3層の構成を有するものであり、前記3層のみからなることが好ましい。また、本発明のポリアミド系多層延伸フィルム1は、多層積層体を2軸延伸後に該(C)層上にシール層がラミネート法により積層されるように構成されてなるものである。
 このような層構成を有する本発明のポリアミド系多層延伸フィルムの総膜厚は、用途にあわせて適宜設定することができ、特に限定されないが、通常6.5~50μm程度、好ましくは10~30μm程度である。
 また、各層の膜厚は、通常、以下の通りである。
 (A)層は1μm以上、好ましくは1~15μm程度、より好ましくは2~12μm程度である。(A)層の厚みが1μm以上であることによって、寸法安定性、保香性、耐熱性等の優れた機能が本発明の多層フィルムに付与され得る。
 (B)層の厚みは0.5~5μm程度、好ましくは0.5~2.5μm程度である。(B)層が0.5μm以上であれば膜厚のコントロールがしやすく、5μm以下であれば十分な接着強度を付与しつつ、生産コストを抑えることができる。
 (C)層の厚みは5μm以上、好ましくは5~35μm程度、より好ましくは7~20μm程度である。(C)層の厚みが5μm以上であれば、耐屈曲性、耐衝撃性等の優れた機能が本発明の多層延伸フィルムに付与され得る。
 また、本発明のポリアミド系多層延伸フィルムにおいて、各層の厚みの比率は、(A)層を1とすると、(B)層は0.05~2.0、好ましくは0.2~1.0、(C)層は0.8~12.0、好ましくは1.0~10.0、より好ましくは1.5~8.0である。
 さらに、本発明の多層延伸フィルムは、総膜厚を20μm以上、好ましくは20~50μm、より好ましくは25~50μm、さらに好ましくは35~50μmとすることによって、(C)層が脂肪族ポリアミドからなる場合や、芳香族ポリアミドの含有量が前記50~90重量%の範囲外であっても優れた耐カール性を付与することができる。逆に、総膜厚20μm未満であっても、(C)層における芳香族ポリアミドの含有量を前述のように50~90重量%の範囲内になるように調整することで、耐カール性の付与することができる。
 本発明の多層延伸フィルム1の好ましい態様を下記に例示する。
例1.(A)層がポリエチレンテレフタレートからなり(膜厚2~9μm);(B)層が変性ポリエステル系エラストマー(無水マレイン酸変性ポリ(テトラメチレンエーテル)グリコール/ポリエステルブロック共重合体)からなり(膜厚0.5~2.5μm);(C)層がナイロン-6(膜厚5.5~12.5μm)であり、総膜厚が15μm程度(10~20μm程度)である。
例2.(A)層がポリエチレンテレフタレートからなり(膜厚2~14μm);(B)層が変性ポリエステル系エラストマー(無水マレイン酸変性ポリ(テトラメチレンエーテル)グリコール/ポリエステルブロック共重合体)からなり(膜厚0.5~3.5μm);(C)層がナイロン-6(膜厚10.5~22.5μm)であり、総膜厚が25μm程度(20~30μm程度)である。
例3.(A)層がポリエチレンテレフタレートからなり(膜厚2~12μm);(B)層が変性ポリエステル系エラストマー(無水マレイン酸変性ポリ(テトラメチレンエーテル)グリコール/ポリエステルブロック共重合体)(膜厚0.5~3.5μm);(C)層がナイロン-6及びMXDナイロンからなり、ナイロン-6の含有量が80~95重量%、MXDナイロンの含有量が5~20重量%(膜厚7~22.5μm)である。
例4.(A)層がポリエチレンテレフタレートからなり(膜厚2~12μm);(B)層が変性ポリエステル系エラストマー(無水マレイン酸変性ポリ(テトラメチレンエーテル)グリコール/ポリエステルブロック共重合体)からなり(膜厚0.5~3.5μm);(C)層がナイロン-6及びMXDナイロンからなり、ナイロン-6の含有量が20~40重量%、MXDナイロンの含有量が60~80重量%(膜厚7~22.5μm)である。
 また、本発明のポリアミド系多層延伸フィルム1に、さらに、ガスバリア層、シール層などを必要に応じて設けることもできる。(A)層/(B)層/(C)層/シール層は、本発明の包装用フィルムであり、本発明の包装用フィルムについては後述する。また、ガスバリア層を設けたフィルム、例えば、(A)層/(B)層/(C)層/ガスバリア層/(C)層については、ポリアミド系多層延伸フィルム1’という。
 ガスバリア層とは酸素、窒素、二酸化炭素等のガスの透過性の低い層である。具体例として、エチレン-ビニルアルコール系共重合体や芳香族ポリアミド等が挙げられる。
 エチレン-ビニルアルコール系共重合体とは、エチレン-酢酸ビニル共重合体のケン化によって得られるものである。エチレン-ビニルアルコール系共重合体のエチレン含有量は20~70モル%、好ましくは25~50モル%が好ましい。エチレン含有量が20モル%を下回ると熱安定性が悪く成形性が悪くなり、押出溶融成形においてゲル等の異物が発生しやすくなったり、延伸成形においてフィルムが破れやすくなる。エチレン含有量が70モル%を上回ると十分なバリア性を得られなくなる。またエチレン-ビニルアルコール系共重合体において、ガスバリア性が著しく低下しないような公知の他の成分が共重合されていたり、ブレンドされていても良い。またエチレン-ビニルアルコール系共重合体は組成が異なるエチレン-ビニルアルコール系共重合体をブレンドしているものであっても良い。エチレン-ビニルアルコール系共重合体の市販品としては、「エバール」((株)クラレ製)、「ソアノール」(日本合成化学工業(株)製)等が挙げられる。
 芳香族ポリアミドとしては、例えば、メタキシレンジアミン、パラキシレンジアミン等の芳香族ジアミンと、アジピン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸等のジカルボン酸又はその誘導体との重縮合反応で得られる結晶性芳香族ポリアミドが挙げられる。好ましくは、ポリメタキシレンアジパミド(MXD-ナイロン)等の結晶性芳香族ポリアミドである。具体例としては、S6007、S6011(何れも三菱ガス化学(株)製)が例示される。
 ガスバリア層の厚みは特に限定されるものではなく、本発明の効果を損なわない範囲内で適宜調整することができる。
 (5)包装用フィルム
 本発明の包装用フィルムは、(A)層/(B)層/(C)層/シール層からなる。
 シール層としては、シール性を有する層であればよく、好ましくはポリアミド層を構成する樹脂よりも融点の低いものが用いられる。融点はJIS K 7121に基づく示差走査熱量測定によって得ることができる。
 シール層としては、例えば、LLDPE(直鎖状低密度ポリエチレン)、LDPE(低密度ポリエチレン)、HDPE(高密度ポリエチレン)等のポリエチレン;CPP(無延伸ポリプロピレン)等のポリプロピレン;EVA(エチレン酢酸ビニル共重合体)、EAA(エチレン-アクリル酸共重合体)、EMAA(エチレン-メタクリル酸共重合体)、EMA(エチレン-メチルアクリレート共重合体)、EEA(エチレン-エチルアクリレート共重合体)、EMMA(エチレン-メチルメタアクリレート共重合体)、アイオノマー等のポリオレフィンによって構成される層を採用することができる。これらの樹脂は、1種単独で用いてもよいが、2種以上を組み合わせて用いることもできる。
 シール層は、多層積層体を2軸延伸後、(C)層上にラミネート法により積層する。
 ラミネート法としては、ドライラミネート法や押出ラミネート法等を例示できる。ドライラミネート法は本発明のポリアミド系多層延伸フィルムに接着剤を塗布し、接着剤上にシール層のフィルムをラミネートしてポリアミド系多層延伸フィルムとシール層を積層させる方法である。また、押出ラミネート法は、シール層を構成する前記樹脂を押出機から溶出させ、本発明のポリアミド系多層延伸フィルム上にシール層として積層する方法や、本発明のポリアミド系多層延伸フィルムとシール層のフィルムの間に押出機からポリエチレン等の樹脂を溶出させ、ポリアミド系多層延伸フィルムとシール層をラミネートして積層させる方法である。押出ラミネート法でシール層を積層する場合、本発明のポリアミド系多層延伸フィルムには事前にアンカーコート処理を施しておくことが好ましい。
 ラミネート条件については、特に限定されるものではなく、通常この分野において採用されている条件を適宜選択することができる。
 シール層としては、市販のものも好適に使用することができ、例えば、T.U.X. FCS(膜厚:50μm、東セロ(株)製)等を挙げることができる。
 シール層の厚みは、特に限定されるものではないが、例えば、20~150μmであることが好ましく、30~120μmであることがより好ましい。シール層の厚みが前記範囲内にあることで、シール層面同士をヒートシールして包装用フィルムとした際に、内容物を保護するのに十分なシール強度を得ることができるため好ましい。
 また、得られた前記包装用フィルムを袋状にして、シール層面同士をヒートシールすることで包装用袋を得ることができる。
 ヒートシール条件としては、シール層を形成する材料の種類や厚みによって適宜設定することができるものであり、特に限定されるものではない。
 また、本発明の包装用フィルムに高いバリア性が要求される場合には、(C)層とシール層との間にアルミ箔層を形成((A)層/(B)層/(C)層/アルミ箔層/シール層)することもできる。
 この場合に用いるアルミ箔としては、特に限定されるものではないが、例えば、厚み6~10μm程度のアルミ箔であることが好ましい。
 1.2 ポリアミド系多層延伸フィルム2
 (1)(A)層
 (A)層は、ポリアミド系多層延伸フィルム1と同様である。
 (2)(B)層
 (B)層は、ポリアミド系多層延伸フィルム1と同様である。
 (3)(C)層
 本発明において(C)層は、本発明の多層延伸フィルムに耐屈曲性、耐衝撃性等の機能を付与するものである。(C)層は、脂肪族ポリアミドを含有する。
 (3-1)脂肪族ポリアミド
 脂肪族ポリアミドとしては、ポリアミド系多層延伸フィルム1の(C)層の(3-1)で説明したものと同様のものを挙げることができる。これらの中でも、好ましい脂肪族ポリアミドとしては、ナイロン-6、ナイロン-6,6、ナイロン-6/6,6(ナイロン6とナイロン6,6の共重合体)が挙げられ、より好ましくはナイロン-6、ナイロン-6/6,6であり、さらに好ましくはナイロン-6である。2種以上の脂肪族ポリアミドとしてはナイロン-6とナイロン-6/6,6の組み合わせ(重量比で50:50~95:5程度)が好ましい。
 (3-2)芳香族ポリアミド
 (C)層は、上記脂肪族ポリアミドを必須成分として含有するが、必要に応じて芳香族ポリアミドを添加してもよい。芳香族ポリアミドを添加することによって、配合量によっては、本発明の多層延伸フィルムに優れた耐カール性を付与することもできる。
 芳香族ポリアミドとしては、ポリアミド系多層延伸フィルム1の(C)層の(3-2)で説明したものと同様のものを挙げることができる。本発明の(C)層として、脂肪族ポリアミドと芳香族ポリアミドの好ましい組み合わせは、ナイロン-6とMXD-ナイロンの組み合わせ、ナイロン-6と非晶性芳香族ポリアミド(アモルファスナイロン)の組み合わせが挙げられる。
 (3-3)芳香族ポリアミドの含有量
 本発明の(C)層に芳香族ポリアミドを添加する場合、芳香族ポリアミドの含有量は、付与される物性によって上記数値範囲内から適宜選択することができる。例えば、芳香族ポリアミドが1重量%以上50重量%未満、好ましくは1~25重量%、より好ましくは1重量%以上25重量%未満の割合で含有されるように調整すれば、耐屈曲性、耐衝撃性等の(C)層の機能を損なうことがない。また、本発明の(C)層において、脂肪族ポリアミドの含有量を10重量%以上、好ましくは20重量%以上にすることによって、シール層をラミネートする場合の十分なラミネート強度を保持することも可能である。
 (C)層は、上記ポリアミド系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、公知の耐屈曲性改良剤、無機または有機添加剤等を配合することができる。耐屈曲性改良剤、無機または有機添加剤の種類及び配合量については、ポリアミド系多層延伸フィルム1の(C)層の欄で説明したものと同様のものを挙げることができる。
 (4)(D)層
 本発明において(D)層は、該多層延伸フィルムに耐カール性の機能を付与するものである。(D)層は、芳香族ポリアミドを含有する。
 芳香族ポリアミドとしては、例えば、メタキシレンジアミン、パラキシレンジアミン等の芳香族ジアミンと、アジピン酸、スベリン酸、セバシン酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸等のジカルボン酸又はその誘導体との重縮合反応で得られる結晶性芳香族ポリアミドが挙げられる。好ましくは、ポリメタキシレンアジパミド(MXD-ナイロン)等の結晶性芳香族ポリアミドである。具体例としては、S-6007、S-6011(いずれも三菱ガス化学(株)製)が例示される。
 (D)層には脂肪族ポリアミドを更に含有しても良い。これによって耐ピンホール性を向上させることが可能となる。脂肪族ポリアミドとしては、上記(C)層の欄に記載のものを用いることができる。(D)層に脂肪族ポリアミドを含有させる場合、脂肪族ポリアミドの含有量は1~70重量%、好ましくは1~50重量%、より好ましくは1~40重量%である。
 (D)層は、上記ポリアミド系樹脂からなるものであってもよいが、本発明の効果を損なわない範囲で必要に応じて、公知の耐屈曲性改良剤、無機または有機添加剤等を配合することができる。
 耐屈曲性改良剤としては、ポリオレフィン類、ポリエステルエラストマー、ポリアミドエラストマー等が挙げられ、0.5~10重量%程度の範囲で適宜配合することができる。
 無機または有機添加剤としては、アンチブロッキング剤、核剤、撥水剤、酸化防止剤、熱安定剤、金属石鹸等が挙げられる。例えば、アンチブロッキング剤であれば、シリカ、タルク、カオリン等を100~5000ppm程度の範囲で適宜配合することができる。
 (5)層構成
 本発明のポリアミド系多層延伸フィルムは、(A)層、(B)層、(C)層及び(D)層の少なくとも4層を有し、好ましくは(A)層を最外層として、(A)層/(B)層/(C)層/(D)層の順に積層されてなる。また、ポリアミド系多層延伸フィルム2は、多層積層体を2軸延伸後に、(D)層上にシール層がラミネート法により積層されるように構成されてなるものである。
 本発明のポリアミド系多層延伸フィルム2の総膜厚は、用途にあわせて適宜設定することができ、特に限定されないが、通常6.5~50μm程度、好ましくは10~50μm、より好ましくは10~30μm程度である。
 また、各層の膜厚は、通常、以下の通りである。
 (A)層の厚みは、好ましくは1μm以上、より好ましくは1~15μm程度、さらに好ましくは2~12μm程度である。(A)層の厚みが1μm以上であることによって、寸法安定性、保香性、耐熱性等の優れた機能が本発明の多層延伸フィルムに付与され得る。
 (B)層の厚みは、好ましくは0.5~5μm程度、より好ましくは0.5~2.5μm程度である。(B)層が0.5μm以上であれば膜厚のコントロールがしやすく、5μm以下であれば十分な接着強度を付与しつつ、生産コストを抑えることができる。
 (C)層の厚みは、好ましくは4μm以上、より好ましくは4~35μm程度、さらに好ましくは6~20μm程度である。(C)層の厚みが4μm以上であれば、耐屈曲性、耐衝撃性等の優れた機能が本発明の多層延伸フィルムに付与され得る。
 (D)層の厚みは、好ましくは1μm以上、より好ましくは1~10μm程度、さらに好ましくは1~5μm程度である。(D)層の厚みが1μm以上であれば、耐カール性、ラミネート適性等の優れた機能が本発明の多層延伸フィルムに付与され得る。
 また、(C)層と(D)層の総厚みは5μm以上であり、好ましくは5~45μm程度、さらに好ましくは、7~25μm程度である。(C)層と(D)層の総厚みが5μm以上であれば、耐屈曲性、耐衝撃性等の優れた機能が本発明の多層延伸フィルムに付与され得る。
 本発明の多層延伸フィルム2の好ましい態様を下記に例示する。
(A)層がポリエチレンテレフタレートからなり(膜厚2~12μm);(B)層が無水マレイン酸変性ポリ(テトラメチレンエーテル)グリコール/ポリエステルブロック共重合体からなり(膜厚0.5~2.5μm);(C)層がナイロン-6(膜厚7~20μm)からなり;(D)層がMXDナイロン及びナイロン-6からなり、MXDナイロンの含有量が60~80重量%、ナイロン-6の含有量が20~40重量%(膜厚1~5μm)である。
 また、本発明の多層延伸フィルム2は、その他にも接着層やガスバリア層、シール層などを必要に応じて設けることもできる。シール層を設ける場合は、(A)層、(B)層、(C)層及び(D)層が2軸延伸によって積層された後、(D)層上にラミネート法により積層する。
 また、本発明の多層延伸フィルムは、前記4層構成からなるものであってもよいが、必要に応じて5層以上の構成を有していてもよい。
 具体的な層構成として、(A)層/(B)層/(C)層/(D)層、(A)層/(B)層/(C)層/ガスバリア層/(C)層/(D)層、(A)層/(B)層/(C)層/ガスバリア層/(D)層、(A)層/(B)層/ガスバリア層/(C)層/(D)層、(A)層/(B)層/(C)層/(D)層/シール層などが挙げられる。ただし、4層構成以外の場合であっても、フィルムの外側に(A)層、内側に(D)層となるように配置する。これらの中でも、(D)層上にシール層を有するものは、本発明の包装用フィルムであり、本発明の包装用フィルムについては後述する。
 接着層としては、公知の接着剤を用いた層を挙げることができ、(A)層と(B)層の間、(B)層と(C)層の間、(C)層と(D)層の間、もしくは、(A)~(D)層のいずれかの層とガスバリア層の間に形成することができる。
 ガスバリア層とは酸素、窒素、二酸化炭素等のガスの透過性の低い層である。具体例として、エチレン-ビニルアルコール系共重合体や芳香族ポリアミド等が挙げられる。
 エチレン-ビニルアルコール系共重合体、芳香族ポリアミドとしては、ポリアミド系多層延伸フィルム1の(4)で説明したものと同様のものを挙げることができる。
 また、シール層としても、ポリアミド系多層延伸フィルム1の(4)で説明したものと同様のものを挙げることができる。
 接着層又はガスバリア層の厚みは特に限定されるものではなく、本発明の効果を損なわない範囲内で適宜調整することができる。
 (6)包装用フィルム
 本発明の包装用フィルムは、(D)層上にシール層を有するものであり、具体的には、(A)層/(B)層/(C)層/(D)層/シール層などが挙げられる。
 シール層を(D)層上に積層する方法としては、ラミネート法を採用することができ、ドライラミネート法や押出ラミネート法等を例示できる。ドライラミネート法は本発明のポリアミド系多層延伸フィルムに接着剤を塗布し、接着剤上にシール層のフィルムをラミネートしてポリアミド系多層延伸フィルムとシール層を積層させる方法である。また、押出ラミネート法は、シール層を構成する前記樹脂を押出機から溶出させ、本発明のポリアミド系多層延伸フィルム上にシール層として積層する方法や、本発明のポリアミド系多層延伸フィルムとシール層のフィルムの間に押出機からポリエチレン等の樹脂を溶出させ、ポリアミド系多層延伸フィルムとシール層をラミネートして積層させる方法である。押出ラミネート法でシール層を積層する場合、本発明のポリアミド系多層延伸フィルムには事前にアンカーコート処理を施しておくことが好ましい。
 ラミネート条件については、特に限定されるものではなく、通常この分野において採用されている条件を適宜選択することができる。
 シール層としては、市販のものも好適に使用することができ、例えば、T.U.X. FCS(膜厚:50μm、東セロ(株)製)等を挙げることができる。
 シール層の厚みは、特に限定されるものではないが、例えば、20~150μmであることが好ましく、30~120μmであることがより好ましい。シール層の厚みが前記範囲内にあることで、シール層面同士をヒートシールして包装用フィルムとした際に、内容物を保護するのに十分なシール強度を得ることができるため好ましい。
 また、得られた前記包装用フィルムを袋状にして、シール層面同士をヒートシールすることで包装用袋を得ることができる。
 ヒートシール条件としては、シール層を形成する材料の種類や厚みによって適宜設定することができるものであり、特に限定されるものではない。
 また、本発明の包装用フィルムに高いバリア性が要求される場合には、(D)層とシール層との間にアルミ箔層を形成((A)層/(B)層/(C)層/(D)層/アルミ箔層/シール層)することもできる。
 この場合に用いるアルミ箔としては、特に限定されるものではないが、例えば、厚み6~10μm程度のアルミ箔であることが好ましい。
 2.製造方法
 本発明のポリアミド系多層延伸フィルム1、2は、上記の層構成となるように各層を2軸延伸によって積層する。
 本発明の多層延伸フィルムの製造方法は、例えば、まず、各層の順になるように、Tダイスより冷却水が循環するチルロール上に共押出せしめ、フラット状の多層フィルムを得る。得られたフィルムは、例えば、50~100℃のロール延伸機により2.5~4.5倍に縦延伸し、更に90~150℃の雰囲気のテンター延伸機により2.5~5倍に横延伸し、引き続いて同テンターにより100~240℃雰囲気中で熱処理して得ることができる。
 本発明の多層延伸フィルムは、同時二軸延伸、逐次二軸延伸しても良く、得られた多層延伸フィルムは、必要ならばその両表面又は片表面にコロナ放電処理を施すこともできる。また、片表面にコロナ放電処理を施す場合は、(A)層側と反対側の表面にコロナ放電処理を施すことが好ましい。ここで、(A)層側と反対側の表面とは、ポリアミド系多層延伸フィルム1においては(C)層側の表面を指し、ポリアミド系多層延伸フィルム2においては(D)層側表面を指す。
 コロナ放電処理としては、接地された金属ロールと、それに数ミリの間隔で置かれたナイフ状の電極の間に数千ボルトの高電圧かけてコロナ放電を発生させて処理する方法が挙げられる。この放電中の電極とロールとの間を高速でフィルムを通過させる。この時にフィルムの表面はコロナ放電処理され、接着剤、インク、塗料などに対する親和性が向上する。ここで、放電電流を制御することにより処理の程度が設定できる。コロナ放電処理後の表面のぬれ張力は、JIS K 6768の方法に従い測定した値が46mN/m以上、より好ましくは50mN/m以上である。
 3.ポリアミド系多層延伸フィルムの特徴
 3.1 ポリアミド系多層延伸フィルム1
 上記のようにして製造される本発明のポリアミド系多層延伸フィルム1は、優れた耐屈曲性、ラミネート強度、熱寸法安定性、及び保香性を有し、かつシール層をラミネートした時にラミネート強度の測定が可能であることから、包装用フィルムとして好適に用いられる。
 [耐屈曲性]
 本発明のポリアミド系多層延伸フィルム1は、屈曲による耐摩耗性に優れている。具体的には、常温(23℃)×1,000回のゲルボフレックス試験で発生するピンホールの個数が20個/300cm以下、更に10個/300cm以下であるという特徴を有している。屈曲によるピンホールの評価は、試験例1に記載の通りである。
 [熱寸法安定性]
 本発明のポリアミド系多層延伸フィルム1は、優れた熱寸法安定性を有している。熱寸法安定性の評価は、試験例1に記載の通りである。かかる測定条件において本発明のポリアミド系多層延伸フィルムは収縮率が3%以下、好ましくは2.5%以下である。
 [保香性]
 本発明の多層延伸フィルム1は、優れた保香性を有する。保香性の評価方法は、試験例1に記載の通りである。
 [耐カール性]
 本発明のポリアミド系多層延伸フィルム1は、耐カール性にも優れ、特に総膜厚が20μm以上、好ましくは25~50μm、より好ましくは35~50μmの場合、又は(B)層に含有される芳香族ポリアミドが50~90重量%、好ましくは60~80重量%である場合に、特に優れた耐カール性を付与することができる。
 耐カール性の評価は、試験例1に記載の通りである。該測定において、マット面積が30cm以下、好ましくは20cm以下、更に好ましくは10cm以下である。また、75cm以下、好ましくは70cm以下であれば実用上問題のないレベルである。
 [ラミネート強度]
 本発明のポリアミド系多層延伸フィルム1は、上記の特徴を有しているため、包装用フィルムとして好適に用いられる。
 本発明のポリアミド系多層延伸フィルム1を包装用フィルムとする場合、該フィルムの(C)層側に、シール層をラミネートして、包装用フィルムを製造する。ラミネート強度の測定は、包装用フィルムにおいて、本発明のポリアミド系多層延伸フィルムとシール層をT字剥離法にて測定する。本発明のポリアミド系多層延伸フィルムは、剥離時に(A)層と(B)層間で剥離するのではなく、当該ポリアミド系多層延伸フィルムとシール層の間で剥離することから、ラミネート強度の測定が可能である。ここで、シール層としては、ヒートシール性を有する樹脂フィルムであればよく、上記シール層の素材を用いることができる。ポリアミド系多層フィルムとシール層とをラミネートする方法は、公知の方法を採用することができる。
 本発明のポリアミド系多層延伸フィルム1は、上記の特徴を有しているため、包装用フィルムとして好適に用いられる。本発明のポリアミド系多層延伸フィルムを包装用フィルムとする場合、該フィルムの(C)層側に、シール層をラミネートして、包装用フィルムを製造する。これを、外層((A)層))を外側に向けて袋状にして、シール層面同士をヒートシールして袋状に加工して包装用袋を製造する。
 3.2 ポリアミド系多層延伸フィルム2
 また、上記のようにして製造される本発明のポリアミド系多層延伸フィルム2は、優れた耐屈曲性、熱寸法安定性、保香性、及び耐カール性を有していることから、包装用フィルムとして好適に用いられる。
 [耐屈曲性]
 本発明のポリアミド系多層延伸フィルム2は、屈曲による耐摩耗性に優れている。具体的には、常温(23℃)×1,000回のゲルボフレックス試験で発生するピンホールの個数が10個/300cm以下、更に5個/300cm以下、であるという特徴を有している。屈曲によるピンホールの評価は、試験例1に記載の通りである。
 [熱寸法安定性]
 本発明のポリアミド系多層延伸フィルム2は、優れた熱寸法安定性を有している。熱寸法安定性の評価は、MD×TD=100mm×100mmのサンプルをレトルト処理(121℃×30分)し、処理後の収縮率を測定した。かかる測定条件において本発明のポリアミド系多層延伸フィルムは収縮率が3.0%以下、好ましくは2.5%以下である。
 [保香性]
 本発明の多層延伸フィルム2は、優れた保香性を有する。保香性の評価方法は、試験例1に記載の通りである。
 [耐カール性]
 本発明のポリアミド系多層延伸フィルム2は、優れた耐カール性を有している。耐カール性の評価は、試験例1に記載の通りである。該測定において、マット面積が30cm以下、好ましくは20cm以下、更に好ましくは10cm以下である。
 本発明のポリアミド系多層延伸フィルム2は、上記の特徴を有しているため、包装用フィルムとして好適に用いられる。本発明のポリアミド系多層延伸フィルム2を包装用フィルムとする場合、該フィルムの一方の面に、シール層をラミネートして、包装用フィルムを製造する。これを、最外層を外側に向けて袋状にして、シール層面同士をヒートシールして袋状に加工して包装用袋を製造する。
 ポリアミド系多層延伸フィルム1又は2を用いて得られた包装用袋に内容物を充填して包装物を得る。
 包装する内容物の種類に限定は無いが、特に、スープ、蒟蒻、漬物等の水物系の食品や、餅、ウィンナー、調味料等の重量のある食品、詰め替え用のシャンプー、リンス、ボディソープ、洗剤などの重量のある液体を包装する場合や米、氷等の袋の容積が大きいものの包装、醤油、酢などの臭気のきついものに、本発明の効果が顕著に発揮される。
 包装用袋の形態としては、例えば、3方シール形、封筒形、カゼット形、平底形等の袋状形態、スタンディングパウチ、スパウトパウチ、詰替えパウチ等が例示される。
 さらに、本発明のポリアミド系多層延伸フィルムは、高い透明性を有しているため、包装物としたとき内容物の目視が容易である。
 以下、実施例を挙げて、本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例1-1
 (A)層として結晶性ポリエステル「ベルペット-EFG6C」((株)ベルポリエステルプロダクツ製)を用い、(B)層として変性ポリエステル系エラストマー「プリマロイAP IF203」(三菱化学(株)製)を用い、(C)層として脂肪族ポリアミド ナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)を用いた。
 各層を構成する樹脂を、(A)層/(B)層/(C)層の順序になるように、Tダイスより冷却水が循環するチルロール上に共押出し、フラット状の3層フィルムを得た。この3層フィルムを、65℃のロール延伸機により2.7倍に縦延伸し、次いで110℃の雰囲気のテンター延伸機により4.0倍に横延伸し、さらに同テンターにより210℃の雰囲気中で熱処理して厚さ15μmのポリアミド系多層延伸フィルムを得た。各層の厚みは下記表1に記載の通りである。
 実施例1-2
 (A)層として結晶性ポリエステル「ベルペット-PIFG5」((株)ベルポリエステルプロダクツ製)を用い、(C)層の脂肪族ポリアミド樹脂としてナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)90重量%、芳香族ポリアミド樹脂としてアモルファスナイロン「シーラーPA」(三井・デュポンポリケミカル(株)製)10重量%を配合した樹脂を用いること以外は、実施例1-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表1に記載の通りである。
 実施例1-3
 (C)層の脂肪族ポリアミド樹脂としてナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)90重量%、芳香族ポリアミド樹脂としてアモルファスナイロン「シーラーPA」(三井・デュポンポリケミカル(株)製)10重量%を配合した樹脂を用いること以外は、実施例1-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表1に記載の通りである。
 実施例1-4
 (C)層の脂肪族ポリアミド樹脂としてナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)30重量%、芳香族ポリアミド樹脂としてMXDナイロン「S6007」(三菱ガス化学(株)製)70重量%を配合した樹脂を用いること以外は、実施例1-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表1に記載の通りである。
 実施例1-5~1-8
 実施例1-5~1-8の多層延伸フィルムは、各層厚みを下記表1に記載した通りに変更した以外は、実施例1-1と同様にして多層延伸フィルムを製造した。
 比較例1-1
 各層厚みを下記表1に記載した通りに変更した以外は、実施例1-4と同様にして多層延伸フィルムを製造した。
 比較例1-2
 (C)層として、脂肪族ポリアミドに代えて芳香族ポリアミド樹脂(MXDナイロン「S6007」(三菱ガス化学(株)製))を用いること以外は、実施例1-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表1に記載の通りである。
 比較例1-3
 脂肪族ポリアミド樹脂としてナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)を用いて実施例1-1と同様にして厚み15μmのフィルムを作製した。
 比較例1-4
 結晶性ポリエステル「ベルペット-EFG6C」((株)ベルポリエステルプロダクツ製)を用いて実施例1-1と同様にして厚み12μmのフィルムを作製した。
 比較例1-5
 各層を構成する樹脂を(A)/(B)/(C)/(B)/(A)の順序になるように積層すること以外は、実施例1-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表2に記載の通りである。
 実施例1-1~1-8、比較例1-1、1-2はC層側に、比較例1-3はA層の片面に、比較例1-4はC層の片面に、比較例1-5は、A層側に、コロナ放電処理(処理強度:12W・min/m)を行った。
 <試験例1>
 実施例1-1~1-8及び比較例1-1~1-5において得られた多層延伸フィルムについて、耐屈曲性、熱寸法安定性、保香性、耐カール性及びラミネート特性について評価した。結果を表3に示す。
 [耐屈曲性試験]
 屈曲によるピンホール性の評価(耐屈曲性)は、理化学工業(株)製のゲルボフレックステスターを用いて行った。その方法は、折り径150mm、長さ300mmの筒状に製袋した多層延伸フィルムをゲルボフレックステスターに装着し、捻り角度440°で62.5cmの直線水平運動を常温(23℃)条件下で1000回繰り返した後、浸透液を用いてピンホールの数を調べるものである。なお、ピンホール数の測定は、捻り屈曲を行ったサンプル中央部分の300cmの箇所で行った。3枚のサンプルについてピンホールの数を測定し、その平均値を結果として示す。
 [熱寸法安定性試験]
 熱寸法安定性の評価は、MD×TD=100mm×100mmのサンプルをレトルト処理(121℃×30分)し、処理後の収縮率を測定した。
 [保香性試験]
 各フィルムにて小袋(3cm×8cm)を作製し、それぞれ5mlずつ食酢(米酢、醸造酢)を充填して密封した。これをガラス瓶に入れて密封した。3日後の食酢臭を、評価基準に従って官能評価にて評価した(n=6)。表3中の数値は、平均値を表す。
 官能評価基準
 5:全く臭わない
 4:かすかに臭う
 3:少し臭う
 2:臭う
 1:強く臭う
 [耐カール性]
 23℃×50%RH雰囲気下にて24時間保管後、(A)層を上面(比較例1-4は、(C)層を上面)にし、マット上にてMD×TD=10cm×10cmの正方形の対角線に十字の切り込みを入れ、真上から観察したときにフィルムがカールすることによって確認できるマットの面積を測定した。マットの面積の測定はデジタルカメラにて撮影した画像をコンピューターに取り込み、画像解析ソフトNIH Image(National Institute of Health)にて行った。測定された面積の値が30cm以下である場合を、良好な耐カール性を有するものとした。
[ラミネート特性]
 得られたポリアミド系多層延伸フィルムを用いて次のようにしてドライラミネートを行った。フィルムのコロナ放電処理面側にリバースロールコーターにて、接着剤(大日精化工業(株)製 主剤:セイカボンドE-372、硬化剤:セイカボンドC-76-2.0、主剤:硬化剤:酢酸エチル=17:2:1000(重量比))を乾燥塗布量が4.0g/m-dryとなるように塗布する。60℃の熱風で乾燥した後、シール層(東セロ(株)製 T.U.X. FCS 50μm)を張り合わせ40℃のニップロールにて圧着した。40℃で48時間加熱養生を行い、包装用フィルムを得た。この包装用フィルムにおいて、ポリアミド系多層延伸フィルムとシール層をT字剥離法にて剥離させ、以下の評価基準により評価した。
 A:剥離時にポリアミド系多層延伸フィルムとシール層の間で剥離する、
 B:ポリアミド系多層延伸フィルムの層間で剥離する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3より、実施例1-1~1-8の多層延伸フィルムは、いずれも優れた耐屈曲性、熱寸法安定性、保香性及びラミネート特性を有していることが示された。また、結晶性ポリエステルからなる比較例1-4の延伸フィルムと比較しても、同等の保香性を有していることが示された。脂肪族ポリアミドからなる比較例1-3の延伸フィルムは熱寸法安定性、及び保香性に劣っていた。
 さらに、実施例1-5、1-7及び1-8の結果より、総膜厚が25μmである本発明の多層延伸フィルムは非対称の三層構成フィルムであっても優れた耐カール性が得られることが示された。一方、(C)層が所定量の脂肪族ポリアミドと芳香族ポリアミドで形成される実施例1-4の場合は、総膜厚が15μmであっても優れた耐カール性を示した。
 これに対し、(C)層の膜厚が3μmである比較例1-1の多層延伸フィルムは、耐屈曲性及び耐カール性に劣っていた。また、(C)層を芳香族ポリアミドのみによって形成した比較例1-2のフィルムは、耐屈曲性に劣っていた。
 以上の結果より、(A)層/(B)層/(C)層の順に積層された多層延伸フィルムであって、各層の厚みが(A)層2~12μm;(B)層1~2μm;(C)層7~17μmであり、(A)層が結晶性ポリエステル、(B)層が変性ポリエステル系エラストマー、(C)層が脂肪族ポリアミドからなる多層延伸フィルムは、優れた耐屈曲性、熱寸法安定性、保香性及びラミネート特性を有していることが示された。
 さらに、前記多層延伸フィルムにおいて、総膜厚が25μmの場合、又は(C)層が芳香族ポリアミドを所定量(70重量%)含有する場合には、優れた耐カール性をも有することが示された。
 実施例2-1
 (A)層として結晶性ポリエステル「ベルペット-EFG6C」((株)ベルポリエステルプロダクツ製)を用い、(B)層として変性ポリエステル系エラストマー「プリマロイAP IF203」(三菱化学(株)製)を用い、(C)層として脂肪族ポリアミド樹脂ナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)を用い、(D)層として芳香族ポリアミドMXDナイロン「S6007」(三菱ガス化学(株)製)70重量%、脂肪族ポリアミド樹脂ナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)30重量%を配合した樹脂を用いた。
 各層を構成する樹脂を、(A)層/(B)層/(C)層/(D)層の順序になるように、Tダイスより冷却水が循環するチルロール上に共押出し、フラット状の4層フィルムを得た。この3層フィルムを、65℃のロール延伸機により2.7倍に縦延伸し、次いで110℃の雰囲気のテンター延伸機により4.0倍に横延伸し、さらに同テンターにより210℃の雰囲気中で熱処理して厚さ15μmの4層フィルムを得た。各層の厚さは表4に記載の通りである。
 実施例2-2
 (A)層として結晶性ポリエステル「ベルペット-PIFG5」((株)ベルポリエステルプロダクツ製)を用い、(C)層として脂肪族ポリアミド樹脂ナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)90重量%、芳香族ポリアミド樹脂アモルファスナイロン「シーラーPA」(三井・デュポンポリケミカル(株)製)10重量%を配合した樹脂、(D)層として芳香族ポリアミドMXDナイロン「S6007」(三菱ガス化学(株)製)を用いること以外は、実施例2-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表4に記載の通りである。
 実施例2-3
 (D)層として芳香族ポリアミドMXDナイロン「S6007」(三菱ガス化学(株)製)50重量%、脂肪族ポリアミド樹脂ナイロン-6「UBEナイロン-1022B」(宇部興産(株)製)50重量%を配合した樹脂を用いること以外は実施例2-1と同様にして多層延伸フィルムを製造した。各層の厚みは下記表4に記載の通りである。
 実施例2-4~2-6
 実施例2-4~2-6の多層延伸フィルムは、各層厚みを下記表4に記載した通りに変更した以外は、実施例2-1と同様にして多層延伸フィルムを製造した。
 比較例2-1
 各層厚みを下記表4に記載した通りに変更した以外は、実施例2-1と同様にして多層延伸フィルムを製造した。
 比較例2-2
 実施例2-1と同様の成分を用いて、(A)層/(B)層/(D)層/(C)層の順で積層された多層延伸フィルムを製造した。製造方法は、上記実施例2-1に記載の条件に従った。各層の厚みは下記表4に記載の通りである。
 実施例2-1~2-6、比較例2-1(D)層側に、比較例2-2は(C)層側に、コロナ放電処理(処理強度:12W・min/m)を行った。
 実施例2-1~2-6及び比較例2-1~2-2において得られた多層延伸フィルムについて、上記試験例1と同様の方法で、耐屈曲性、熱寸法安定性、保香性及び耐カール性について評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5に示されるように、実施例2-1~2-6は、いずれも優れた耐屈曲性、熱寸法安定性、保香性、耐カール性を示した。
 これに対し、(C)層の厚みが2μmの比較例2-1の多層延伸フィルムは耐屈曲性が劣っていた。(C)層と(D)層の順番が入れ替わった比較例2-2の多層延伸フィルムについても、耐カール性が劣っていた。
 以上の結果より、(A)層/(B)層/(C)層/(D)層の順に積層された多層延伸フィルムであって、各層において、(A)層が結晶性ポリエステル、(B)層が変性ポリエステル系エラストマー、(C)層が脂肪族ポリアミドを含有し、(D)層において芳香族ポリアミド及び脂肪族ポリアミドを所定量含有する多層フィルムは、優れた耐屈曲性、ラミネート強度、熱寸法安定性、保香性及び耐カール性を有していることが示された。また、各層の厚みが(A)層3~12μm;(B)層1~2μm;(C)層6~13μm;(D)層2~4μmである多層延伸フィルムであれば、上記優れた効果を奏することが示された。

Claims (17)

  1.  ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)の3層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
     (A)層が結晶性ポリエステルを含有し、
     (B)層が変性ポリエステル系エラストマーを含有し、
     (C)層が脂肪族ポリアミドを含有し、
     (C)層の厚みが5μm以上であり、
    該多層積層体を2軸延伸後に該(C)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム。
  2.  ポリエステル層(A層)/接着層(B層)/ポリアミド層(C層)/ポリアミド層(D層)の少なくとも4層を有する多層積層体を2軸延伸することにより得られるポリアミド系多層延伸フィルムであって、
     (A)層が結晶性ポリエステルを含有し、
     (B)層が変性ポリエステル系エラストマーを含有し、
     (C)層が脂肪族ポリアミドを含有し、
     (D)層が芳香族ポリアミドを含有し、
     (C)層と(D)層の総厚みが5μm以上であり、
    該多層積層体を2軸延伸後に該(D)層上にシール層がラミネート法により積層されるように構成されてなる、ポリアミド系多層延伸フィルム。
  3.  (A)層に含まれる結晶性ポリエステルが、ポリエチレンテレフタレート又はイソフタル酸共重合ポリエチレンテレフタレートである、請求項1又は2に記載のポリアミド系多層延伸フィルム。
  4.  (C)層の脂肪族ポリアミドが、ナイロン-6、ナイロン-6とナイロン-6,6との共重合体、及びその混合物からなる群より選択される少なくとも1種である、請求項1又は2に記載のポリアミド系多層延伸フィルム。
  5.  前記(C)層が、さらに芳香族ポリアミドを1重量%以上50重量%未満の割合で含有する、請求項1又は2に記載のポリアミド系多層延伸フィルム。
  6.  前記(C)層が、さらに芳香族ポリアミドを50~90重量%の割合で含有する、請求項1に記載のポリアミド系多層延伸フィルム。
  7.  前記芳香族ポリアミドが、ポリメタキシレンアジパミド又はアモルファスナイロンである、請求項5に記載のポリアミド系多層延伸フィルム。
  8.  前記芳香族ポリアミドが、ポリメタキシレンアジパミド又はアモルファスナイロンである、請求項6に記載のポリアミド系多層延伸フィルム。
  9.  前記芳香族ポリアミドが、ポリメタキシレンアジパミドである、請求項2に記載のポリアミド系多層延伸フィルム。
  10.  前記(A)層側と反対側の表面にコロナ放電処理が施されていることを特徴とする請求項1又は2に記載のポリアミド系多層延伸フィルム。
  11.  総膜厚が20~50μmである請求項1に記載のポリアミド系多層延伸フィルム。
  12.  総膜厚が10~50μmである請求項2に記載のポリアミド系多層延伸フィルム。
  13.  請求項1に記載のポリアミド系多層延伸フィルムの(C)層上に、シール層をラミネートしてなる包装用フィルム。
  14.  請求項2に記載のポリアミド系多層延伸フィルムの(D)層上に、シール層をラミネートしてなる包装用フィルム。
  15.  シール層が、直鎖状低密度ポリエチレン、低密度ポリエチレン、無延伸ポリプロピレン及びエチレン酢酸ビニル共重合体からなる群より選択される少なくともいずれか1種の樹脂で構成される、請求項13又は14に記載の包装用フィルム。
  16.  請求項13又は14に記載の包装用フィルムを袋状にして、シール層面同士をヒートシールして得られる包装用袋。
  17.  請求項16に記載の包装用袋に内容物を充填してなる包装物。
PCT/JP2009/068143 2008-10-24 2009-10-21 ポリアミド系多層延伸フィルム WO2010047354A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09822051A EP2340934B1 (en) 2008-10-24 2009-10-21 Multilayer stretched polyamide film
US13/123,923 US8999466B2 (en) 2008-10-24 2009-10-21 Multilayer stretched polyamide film
CN200980142486.XA CN102196910B (zh) 2008-10-24 2009-10-21 多层拉伸聚酰胺膜
JP2010534834A JP5468010B2 (ja) 2008-10-24 2009-10-21 ポリアミド系多層延伸フィルム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-274775 2008-10-24
JP2008274784 2008-10-24
JP2008274775 2008-10-24
JP2008-274784 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010047354A1 true WO2010047354A1 (ja) 2010-04-29

Family

ID=42119391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068143 WO2010047354A1 (ja) 2008-10-24 2009-10-21 ポリアミド系多層延伸フィルム

Country Status (5)

Country Link
US (1) US8999466B2 (ja)
EP (1) EP2340934B1 (ja)
JP (1) JP5468010B2 (ja)
CN (1) CN102196910B (ja)
WO (1) WO2010047354A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154605A (ja) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd ボイル・レトルト処理用包装材料及びパウチ
JP2013240939A (ja) * 2012-05-21 2013-12-05 Gunze Ltd 冷間成形用多層延伸フィルム
JP2014108528A (ja) * 2012-11-30 2014-06-12 Gunze Ltd 冷間成形用多層延伸フィルム、冷間成形用多層フィルム、及び冷間成形体
JP2015054398A (ja) * 2013-09-10 2015-03-23 グンゼ株式会社 多層延伸フィルム
JP2017056691A (ja) * 2015-09-18 2017-03-23 大日本印刷株式会社 積層体
JP2019150965A (ja) * 2018-02-28 2019-09-12 大日本印刷株式会社 積層体及び該積層体で構成される袋

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010042342A1 (de) * 2010-10-12 2012-04-12 Huhtamaki Ronsberg Zn Der Huhtamaki Deutschland Gmbh & Co. Kg Tubenlaminatfolie mit wenigstens einer orientierten Barrierelage sowie wenigstens teilweise aus dieser gebildete Tubenverpackung
CN103507363A (zh) * 2013-10-20 2014-01-15 江苏申凯包装高新技术股份有限公司 可耐跌落复合包装袋
EP3063004B1 (en) 2013-11-01 2018-02-28 Cryovac, Inc. Delamination-resistant heat-shrinkable multilayer oxygen barrier film containing polyester
WO2017096211A1 (en) 2015-12-02 2017-06-08 Berry Plastics Corporation Peelable film for container lid
CN110436039A (zh) * 2019-08-13 2019-11-12 广州市精合致新材料科技有限公司 一种led-uv喷墨打印墨水的包装袋
WO2021200489A1 (ja) * 2020-03-30 2021-10-07 東洋紡株式会社 二軸延伸ポリアミドフィルム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034425A1 (en) * 1994-06-13 1995-12-21 Alliedsignal Inc. Retortable, high oxygen barrier polymeric films
JPH08118569A (ja) 1994-10-20 1996-05-14 Unitika Ltd 多層延伸フィルム
JP2007083476A (ja) * 2005-09-21 2007-04-05 Mitsubishi Gas Chem Co Inc ガスバリア性を有する積層体
JP2008074008A (ja) 2006-09-22 2008-04-03 Gunze Ltd ポリアミド系多層延伸フィルム
JP2008100496A (ja) 2006-09-21 2008-05-01 Gunze Ltd ポリアミド系多層フィルム
JP2008254286A (ja) * 2007-04-03 2008-10-23 Gunze Ltd ポリアミド系多層フィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170319A1 (en) * 2000-07-03 2002-01-09 Unichema Chemie B.V. Block copolyester
JP4053264B2 (ja) 2000-08-30 2008-02-27 三菱化学株式会社 積層成形体
JP2003287587A (ja) * 2002-03-27 2003-10-10 Toshiba Corp プラント保護計装装置
JP2004001252A (ja) * 2002-05-31 2004-01-08 Mitsubishi Chemicals Corp 延伸積層体
JP2005329627A (ja) * 2004-05-20 2005-12-02 Toyo Seikan Kaisha Ltd 耐層間剥離性に優れた多層構造体
EP1767348B1 (en) * 2005-09-21 2009-01-07 Mitsubishi Gas Chemical Company, Inc. Stretched polyamide films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034425A1 (en) * 1994-06-13 1995-12-21 Alliedsignal Inc. Retortable, high oxygen barrier polymeric films
JPH08118569A (ja) 1994-10-20 1996-05-14 Unitika Ltd 多層延伸フィルム
JP2007083476A (ja) * 2005-09-21 2007-04-05 Mitsubishi Gas Chem Co Inc ガスバリア性を有する積層体
JP2008100496A (ja) 2006-09-21 2008-05-01 Gunze Ltd ポリアミド系多層フィルム
JP2008074008A (ja) 2006-09-22 2008-04-03 Gunze Ltd ポリアミド系多層延伸フィルム
JP2008254286A (ja) * 2007-04-03 2008-10-23 Gunze Ltd ポリアミド系多層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2340934A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154605A (ja) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd ボイル・レトルト処理用包装材料及びパウチ
JP2013240939A (ja) * 2012-05-21 2013-12-05 Gunze Ltd 冷間成形用多層延伸フィルム
JP2014108528A (ja) * 2012-11-30 2014-06-12 Gunze Ltd 冷間成形用多層延伸フィルム、冷間成形用多層フィルム、及び冷間成形体
JP2015054398A (ja) * 2013-09-10 2015-03-23 グンゼ株式会社 多層延伸フィルム
JP2017056691A (ja) * 2015-09-18 2017-03-23 大日本印刷株式会社 積層体
JP2019150965A (ja) * 2018-02-28 2019-09-12 大日本印刷株式会社 積層体及び該積層体で構成される袋
JP2022019782A (ja) * 2018-02-28 2022-01-27 大日本印刷株式会社 積層体及び該積層体で構成される袋
JP7133139B2 (ja) 2018-02-28 2022-09-08 大日本印刷株式会社 積層体及び該積層体で構成される袋
JP7377464B2 (ja) 2018-02-28 2023-11-10 大日本印刷株式会社 積層体及び該積層体で構成される袋

Also Published As

Publication number Publication date
EP2340934A4 (en) 2012-02-01
US20110200770A1 (en) 2011-08-18
EP2340934B1 (en) 2013-03-06
CN102196910B (zh) 2014-11-12
US8999466B2 (en) 2015-04-07
CN102196910A (zh) 2011-09-21
JPWO2010047354A1 (ja) 2012-03-22
JP5468010B2 (ja) 2014-04-09
EP2340934A1 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP5468010B2 (ja) ポリアミド系多層延伸フィルム
JP4931651B2 (ja) ポリアミド系多層フィルム
JP5047571B2 (ja) ポリアミド延伸フィルム
JP5317928B2 (ja) バリア性多層延伸フィルム
JP5312295B2 (ja) バリア性多層延伸フィルム
JP4974628B2 (ja) ポリアミド系多層延伸フィルム
JP6161478B2 (ja) 多層延伸フィルム
JP5574585B2 (ja) ポリアミド系多層延伸フィルム
JP2015024593A (ja) 多層フィルムおよび包装体
JP5393121B2 (ja) ポリアミド系多層フィルム
JP5388515B2 (ja) 層間強度に優れた多層積層体
JP5355068B2 (ja) ポリアミド系多層フィルム
JP6155601B2 (ja) 包装材料及び包装容器
JP6315358B2 (ja) 包装材料及び包装容器
JP5100186B2 (ja) ポリアミド系多層フィルム
JP5430098B2 (ja) ポリアミド系多層延伸フィルム
JP5984646B2 (ja) 冷間成形用多層延伸フィルム、冷間成形用多層フィルム、及び冷間成形体
JP5979979B2 (ja) 冷間成形用多層延伸フィルム
JP2005329627A (ja) 耐層間剥離性に優れた多層構造体
JP6274823B2 (ja) 多層延伸フィルム
JP5979977B2 (ja) 冷間成形用多層延伸フィルム
JP2005126630A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142486.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13123923

Country of ref document: US

Ref document number: 2009822051

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010534834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE