WO2010047278A1 - 熱伝導シート、その製造方法及びこれを用いた放熱装置 - Google Patents

熱伝導シート、その製造方法及びこれを用いた放熱装置 Download PDF

Info

Publication number
WO2010047278A1
WO2010047278A1 PCT/JP2009/067901 JP2009067901W WO2010047278A1 WO 2010047278 A1 WO2010047278 A1 WO 2010047278A1 JP 2009067901 W JP2009067901 W JP 2009067901W WO 2010047278 A1 WO2010047278 A1 WO 2010047278A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
plate
sheet
nitride particles
conductive sheet
Prior art date
Application number
PCT/JP2009/067901
Other languages
English (en)
French (fr)
Inventor
鈴木 雅彦
吉川 徹
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP09821975.1A priority Critical patent/EP2343332A4/en
Priority to CN200980141752.7A priority patent/CN102197069B/zh
Priority to JP2010534788A priority patent/JP5882581B2/ja
Priority to US13/125,308 priority patent/US20110192588A1/en
Publication of WO2010047278A1 publication Critical patent/WO2010047278A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing

Definitions

  • the present invention relates to a heat conductive sheet, a manufacturing method thereof, and a heat dissipation device using the same.
  • a heat transfer grease or heat transfer sheet is sandwiched and adhered between a heating element such as a semiconductor package and a heat dissipation element made of aluminum or copper to transfer heat to the outside.
  • a heating element such as a semiconductor package
  • a heat dissipation element made of aluminum or copper to transfer heat to the outside.
  • the heat conductive sheet is superior to the heat conductive grease. For this reason, various developments for heat conductive sheets have been studied.
  • thermally conductive composite compositions in which thermally conductive inorganic particles are blended in a matrix material and molded products thereof have been proposed.
  • Substances used as thermally conductive inorganic particles are roughly classified into electrically conductive substances such as carbon, silver and copper, and electrically insulating substances such as alumina, silica, aluminum nitride and boron nitride. .
  • electrically conductive substances may cause a short circuit when they are used in the vicinity of the wiring, an electrically insulating substance is often used.
  • a sheet composed of a thermally conductive composite material composition in which such electrically insulating and thermally conductive inorganic particles are blended in a matrix material for example, in Patent Document 1, the particle thickness exceeds 1.4 ⁇ m.
  • Patent Document 2 discloses a thermally conductive sheet made of a polymer composition filled with boron nitride powder, in which the boron nitride powder is magnetically oriented in a certain direction.
  • Patent Document 3 a plurality of primary sheets molded from a kneaded product of a binder resin made of a thermoplastic resin and inorganic filler particles are laminated, and the obtained laminate is perpendicular to the lamination surface. Discloses a thermally conductive sheet obtained by slicing in any direction.
  • thermal conductive sheets have been applied to various heat radiating devices, and it has become necessary to add not only high thermal conductivity but also performance such as unevenness absorption and stress relaxation to the thermal conductive sheet.
  • the thermal conductive sheet relaxes the thermal stress caused by the distortion of each surface of the heating element and the radiator, absorption of irregularities, and the difference in thermal expansion coefficient. Function is required.
  • high thermal conductivity that can transfer heat even when the film is formed as a thick film to some extent, and high flexibility that can be in close contact with the surfaces of the heating element and the heat dissipation element.
  • it is difficult for the conventional heat conductive sheet to achieve both flexibility and heat conductivity at a high level further development is required.
  • the thermal conductivity is improved only by means of blending thermally conductive inorganic particles in the matrix material. Therefore, in order to achieve high thermal conductivity by such means, it is necessary to increase the blending amount of the heat conductive inorganic particles to an amount close to the closest packing to form a sufficient heat conduction path.
  • the compounding amount of the inorganic particles is increased, the flexibility of the heat conductive sheet is lost, and as a result, the function of absorbing irregularities and relaxing thermal stress tends to be impaired.
  • thermally conductive sheet disclosed in Patent Document 2 in addition to the above-mentioned means, a means for magnetically orienting boron nitride powder in a certain direction is adopted, so that fewer thermally conductive inorganic particles There is a possibility that high thermal conductivity can be achieved with a blending amount of. However, there is room for improvement in terms of productivity, cost, energy efficiency, and the like during sheet manufacturing.
  • thermally conductive sheet disclosed in Patent Document 3 is more advantageous in terms of productivity, cost, energy efficiency, and the like at the time of sheet manufacture than the above-mentioned means, but considerations regarding flexibility are not necessarily taken into account. Not enough. In particular, there is room for improvement due to lack of consideration for slicing a flexible sheet laminate at the time of sheet manufacture and inefficient production methods such as impregnation with a plasticizer later.
  • an object of the present invention is to provide an electrically insulating thermal conductive sheet having additional characteristics such as flexibility while maintaining high thermal conductivity.
  • a method for easily and reliably manufacturing such a heat conductive sheet, and a heat dissipating device using such a heat conductive sheet, having a high heat dissipating capability and having a low risk of short-circuiting nearby circuits are provided. For the purpose.
  • the present inventors have aligned the plate-like boron nitride particles of a specific size in the heat conduction sheet in the major axis direction with respect to the thickness direction of the sheet, It has been found that by dispersing in a specific binder resin, a thermal conductive sheet having not only high thermal conductivity but also properties such as flexibility and stress relaxation can be obtained.
  • the present invention is as follows.
  • the composition comprises an organic polymer having plate-like boron nitride particles (A) having an average particle size of more than 10 ⁇ m and 60 ⁇ m or less and a glass transition temperature (Tg) of 50 ° C. or less.
  • Compound (B) The plate-shaped boron nitride particles (A) are contained in the composition in an amount of 45 to 75% by volume and are oriented in the major axis direction with respect to the thickness direction of the sheet. Sheet.
  • a method for producing a heat conductive sheet in which the plate-like boron nitride particles are oriented in the major axis direction with respect to the thickness direction of the sheet A composition containing 45 to 75% by volume of plate-like boron nitride particles (A) having an average particle size of more than 10 ⁇ m and 60 ⁇ m or less and an organic polymer compound (B) having a glass transition temperature (Tg) of 50 ° C. or less is prepared.
  • a composition containing 45 to 75% by volume of plate-like boron nitride particles (A) having an average particle size of more than 10 ⁇ m and 60 ⁇ m or less and an organic polymer compound (B) having a glass transition temperature (Tg) of 50 ° C. or less is prepared.
  • composition to form a primary sheet in which the plate-like boron nitride particles are oriented in a direction substantially parallel to the main surface; Winding the primary sheet around the orientation direction of the plate-like boron nitride particles as an axis to form a molded body having a multilayer structure; Slicing the molded body at an angle of 0 degrees to 30 degrees with respect to a normal line coming out from the main surface thereof.
  • the slicing step is performed in a temperature range of Tg + 50 ° C. (temperature higher by 50 ° C. than the glass transition temperature) to Tg ⁇ 20 ° C. (temperature lower by 20 ° C. than the glass transition temperature) of the organic polymer compound (B).
  • Tg + 50 ° C. temperature higher by 50 ° C. than the glass transition temperature
  • Tg ⁇ 20 ° C. temperature lower by 20 ° C. than the glass transition temperature
  • a heat dissipation device having a structure in which the heat conductive sheet according to any one of (1) to (4) is interposed between a heat generating element and a heat dissipating element.
  • the heat conductive sheet of the present invention has both high heat conductivity and high flexibility, is electrically insulating, and can easily add performance such as flame retardancy and water resistance as required. Therefore, it is possible to realize efficient heat dissipation from the heat generating part by applying them to the heat dissipation application near the electric / electronic circuit, for example.
  • the method for producing a heat conductive sheet of the present invention has both high heat conductivity and high flexibility, which is advantageous in terms of productivity, cost, energy efficiency, and certainty as compared with the conventional method. It is possible to provide a heat conductive sheet.
  • the possibility of causing a short circuit near the circuit becomes extremely low, and it is possible to realize complete and efficient heat dissipation.
  • the heat conductive sheet of the present invention comprises a composition, and the composition has plate-like boron nitride particles (A) having an average particle size of more than 10 ⁇ m and 60 ⁇ m or less, and an organic polymer having a glass transition temperature (Tg) of 50 ° C. or less.
  • Compound (B) The plate-like boron nitride particles (A) are contained in the composition in an amount of 45 to 75% by volume and are oriented in the major axis direction with respect to the thickness direction of the sheet.
  • the average particle diameter of the plate-like boron nitride particles (A) is in the range of more than 10 ⁇ m and not more than 60 ⁇ m, and preferably 15 to 50 ⁇ m. If the average particle size is greater than 10 ⁇ m, the sheet can be prevented from becoming brittle, and if it is 60 ⁇ m or less, the smoothness and adhesion of the sheet are sufficiently effective.
  • the average particle diameter of the plate-like boron nitride particles is a value of D50 when measured by a laser diffraction / scattering method.
  • boron nitride particles other than the plate shape can be added as necessary.
  • plate-like means that the layer has a hexagonal crystal structure and the particle shape is like a plate. Specifically, the ratio (a / c) of each side in the direction parallel to the layer (a-axis direction) and the direction perpendicular to the layer (c-axis direction) (a / c) is 1.5 or more in the present invention. “Plate”.
  • Examples of the shape of boron nitride particles other than “plate-like” include spherical aggregates obtained by agglomerating plate shapes, amorphous aggregates, granules obtained by pulverizing hexagonal boron nitride, and the like.
  • a crystal structure of boron nitride particles other than “plate-like” in addition to hexagonal (h-BN), cubic (c-BN), wurtzite (w-BN), There are a rhombohedral system (r-BN), a disordered layer structure system (t-BN), and the like, and boron nitride having these crystal structures can also be used.
  • the compounding amount of the plate-like boron nitride particles (A) is in the range of 45 to 75% by volume based on the volume of the composition.
  • the blending amount is 45% by volume or more, a sufficient thermal conductivity is obtained, and when the blending amount is 75% by volume or less, the composition has excellent cohesive strength, and sheet formation is easy.
  • the blending amount (volume%) of the plate-like boron nitride particles (A) is a value determined by the following formula.
  • Aw / Ad Mass composition (mass%) of plate-like boron nitride particles (A) Bw: mass composition (mass%) of the organic polymer compound (B) Cw: mass composition (mass%) of other optional components (C) Ad: Specific gravity of the plate-like boron nitride particles (A) (In the present invention, Ad is calculated as 2.3).
  • Bd Specific gravity of organic polymer compound
  • Cd Specific gravity of other optional component
  • the angle of the plate-like boron nitride particles with respect to the sheet surface in the major axis direction (a-axis direction) Means the average value of 70 degrees to 90 degrees.
  • the plate-like boron nitride particles (A) that can be used in the composition constituting the heat conductive sheet of the present invention have a shape (plate shape) advantageous for orientation.
  • the plate-like boron nitride particles are oriented in the major axis direction (a-axis direction) of the plate-like boron nitride particles with respect to the thickness of the sheet.
  • the “major axis direction” is a direction parallel to the layer (a-axis direction).
  • plate-like boron nitride particles (A) of the present invention “PT-110 (trade name)” (Momentive Performance Materials Japan G.K., average particle size 45 ⁇ m) , “HP-1CAW (trade name)” (manufactured by Mizushima alloy iron, average particle size 16 ⁇ m), “PT-110 Plus (trade name)” (manufactured by Momentive Performance Materials Japan, average particle size 45 ⁇ m), “HP -1CA (trade name) "(manufactured by Mizushima alloy iron, average particle size 16 ⁇ m).
  • the present invention is not limited to the above, and any plate-like boron nitride particles having a “plate-like” shape and an average particle diameter of more than 10 ⁇ m and 60 ⁇ m or less can be used.
  • any plate-like boron nitride particles having a “plate-like” shape and an average particle diameter of more than 10 ⁇ m and 60 ⁇ m or less can be used.
  • the average particle size is outside the range of more than 10 ⁇ m and 60 ⁇ m or less, it can be adjusted within a specific average particle size range by removing particles that are too large or too small by crushing, sieving, etc. Is possible.
  • the organic polymer compound (B) can be used without any particular limitation as long as the glass transition temperature (Tg) is 50 ° C. or lower.
  • Specific examples of the organic polymer compound (B) include poly (meth) acrylate polymer compounds (so-called acrylic rubbers), polydimethylsiloxane, which contain butyl acrylate, 2-ethylhexyl acrylate and the like as main raw material components.
  • a polymer compound having a main structure (so-called silicone resin), a polymer compound having a polyisoprene structure (so-called isoprene rubber, natural rubber), a polymer compound containing polychloroprene as a main raw material component (polychloroprene, Examples thereof include so-called neoprene rubber), and a polymer compound having a polybutadiene structure as a main structure (so-called butadiene rubber).
  • poly (meth) acrylate polymer compounds containing butyl acrylate or 2-ethylhexyl acrylate as a main raw material component are easy to obtain high flexibility, chemical stability and It is preferable because it is excellent in processability, is easy to control the tackiness, and is relatively inexpensive.
  • Glass transition temperature (Tg) can be measured with a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • ARES-2KSTD manufactured by TA Instruments can be used as the dynamic viscoelasticity measuring device (DMA).
  • the measurement conditions are a temperature rising rate: 5 ° C./min and a measurement frequency: 1.0 Hz.
  • poly (meth) acrylate polymer compound examples include copolymers of monomers selected from butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, etc., and acrylic acid, acrylonitrile, hydroxyethyl acrylate.
  • the organic polymer compound (B) preferably has a weight average molecular weight of 10,000 to 1,000,000.
  • the weight average molecular weight can be measured by gel permeation chromatography using a standard polystyrene calibration curve.
  • acrylic ester copolymer resin “HTR-280DR (trade name)” manufactured by Nagase ChemteX Corporation (acrylic acid Butyl / acrylonitrile / acrylic acid copolymer, Mw: 900,000, Tg: ⁇ 37 ° C., 30 mass% toluene / ethyl acetate 1: 1 solution) and the like.
  • the blending amount of the organic polymer compound (B) in the heat conductive sheet of the present invention is preferably 10 to 40% by volume. There exists a tendency for sufficient sheet
  • the composition which comprises the heat conductive sheet of this invention uses the above-mentioned plate-like boron nitride particle (A) and an organic polymer compound (B) as a component, it adds various additives as needed. Is also possible.
  • a flame retardant (C) in addition to the above-mentioned two components (A) and (B) for the purpose of improving the flame retardance of the heat conductive sheet.
  • seat comprised from the composition containing a phosphate ester type
  • the content of the flame retardant (C) is preferably in the range of 5 to 50% by volume of the composition, and more preferably in the range of 10 to 40% by volume. If content of a flame retardant (C) is 5 volume% or more, sufficient flame retardance can be obtained in a heat conductive sheet. If it is 50 volume% or less, it can prevent that the intensity
  • a toughness improving agent such as urethane acrylate, a silane coupling agent, a titanium coupling agent and an acid anhydride improving agent such as an acid anhydride, if necessary. It is also possible to add various additives such as wetting improvers such as surfactants and fluorosurfactants, antifoaming agents such as silicone oil, and ion trapping agents such as inorganic ion exchangers.
  • the shape of the heat conductive sheet of the present invention can be formed into a shape according to various applications to which the heat conductive sheet is applied within the range in which the desired orientation of the plate-like boron nitride particles described above can be achieved. is there. Although it does not specifically limit, in this invention, it is preferable to form a heat conductive sheet from the molded object which has a multilayer structure. By forming the heat conductive sheet from a multilayer structure, it is advantageous for the orientation of the plate-like boron nitride particles, and the density of the plate-like boronitride particles is improved, and the heat conduction efficiency can be improved. .
  • the manufacturing method of the heat conductive sheet of this invention is mentioned later.
  • the sheets composed of the above composition have an adhesive force because they contain an organic polymer having a glass transition temperature (Tg) of 50 ° C. or lower. Therefore, in the present invention, it is preferable to protect the adhesive surface prior to the use of the heat conductive sheet.
  • the adhesive surface is protected by, for example, providing a protective film on the adhesive surface when a sheet is formed using the above-described composition.
  • the material for the protective film examples include resins such as polyethylene, polyester, polypropylene, polyethylene terephthalate, polyimide, polyetherimide, polyether naphthalate, and methylpentene film, coated paper, coated cloth, and metals such as aluminum.
  • These protective films may be a multilayer film composed of two or more kinds of films, and a film whose surface is treated with a release agent such as silicone or silica is preferably used.
  • the manufacturing method of a heat conductive sheet is also within the scope of the present invention.
  • the manufacturing method of the heat conductive sheet of the present invention in which the plate-like boron nitride particles are oriented in the major axis direction with respect to the thickness direction of the sheet includes the following steps.
  • a composition comprising 45 to 75% by volume of plate-like boron nitride particles (A) having an average particle size of more than 10 ⁇ m and 60 ⁇ m or less, and an organic polymer compound (B) having a glass transition temperature (Tg) of 50 ° C. or less.
  • Preparing a product (B) using the composition, forming a primary sheet in which the plate-like boron nitride particles are oriented in a direction substantially parallel to a main surface; (C1) a step of laminating the primary sheets to form a molded body having a multilayer structure; (D) A step of slicing the molded body at an angle of 0 degree to 30 degrees with respect to a normal line emerging from the main surface.
  • the primary sheet may be wound around the orientation direction of the plate-like boron nitride particles as an axis to form a molded body having a multilayer structure.
  • the composition constituting the heat conductive sheet can be prepared by uniformly mixing the predetermined plate-like boron nitride particles (A) and the predetermined organic polymer compound (B). Any method may be used. Although not particularly limited, for example, a solution is formed by previously dissolving the organic polymer compound (B) in a solvent, and the plate-like boron nitride particles (A) and the flame retardant (C) are added to the solution. It is possible to prepare a composition by a method of adding additives, mixing and stirring and then drying, or a method of mixing each component using roll kneading, kneader, brabender, or extruder. .
  • the solvent for dissolving the organic polymer compound (B) is not particularly limited as long as it can be removed by drying after mixing and stirring.
  • acetone methyl ethyl ketone, methyl butyl ketone, hexane, cyclohexane, ethyl acetate Butyl acetate, benzene, toluene, xylene and the like.
  • a conventional film forming technique can be applied, but at least one forming method selected from the group consisting of rolling, pressing, extrusion, and coating is used. It is preferable to carry out using.
  • the plate-like boron nitride particles can be more reliably oriented in a direction substantially parallel to the main surface.
  • pressure is applied during sheet forming, so that the plate-like boron nitride particles tend to come into contact with each other, and high thermal conductivity tends to be easily achieved.
  • the thinner one is preferable from the viewpoint of thermal conductivity. When the thickness of the sheet is increased, the orientation of the particles becomes insufficient, and the thermal conductivity of the finally obtained thermal conductive sheet tends to deteriorate.
  • the state where the plate-like boron nitride particles (A) are oriented in a direction substantially parallel to the main surface of the sheet means that the plate-like boron nitride particles (A) are lying on the main surface of the sheet.
  • the orientation of the plate-like boron nitride particles (A) in the sheet plane is controlled by adjusting the flowing direction of the composition when the composition is molded. That is, the orientation of the plate-like boron nitride particles (A) is controlled by adjusting the direction in which the composition is passed through a rolling roll, the direction in which the composition is pressed, the direction in which the composition is extruded, and the direction in which the composition is applied. Is done.
  • the plate-like boron nitride particles (A) are basically anisotropic particles
  • the plate-like boron nitride particles (A) are usually formed by rolling, press-molding, extruding or coating the composition. The orientation of A) is aligned.
  • the confirmation of “the state in which the plate-like boron nitride particles (A) are oriented in a direction substantially parallel to the main surface of the sheet” is the above-mentioned “orientation in the major axis direction (a direction) relative to the thickness direction of the sheet”.
  • the cross section of the sheet is observed by observing 50 arbitrary particles using SEM.
  • the cross section of the primary sheet is observed using an SEM, and the angle of the arbitrary 50 particles with respect to the primary sheet surface in the major axis direction (a direction) of the plate-like boron nitride particles (when it is 90 degrees or more)
  • the average value of the complementary angle is within the range of 0 to 20 degrees.
  • the step of forming the molded body having the multilayer structure (c1) can be carried out by laminating the primary sheet obtained in the previous step.
  • the form of lamination is not particularly limited. For example, it is not limited to a form in which a plurality of independent sheets are sequentially stacked, and a form in which one sheet is folded without cutting its end may be used.
  • (c2) process is mentioned as another form of the lamination
  • the primary sheet is wound around the orientation direction of the plate-like boron nitride particles to form a formed body having a multilayer structure.
  • the shape of the winding is not limited to the shape of the molded body being cylindrical, but may be other shapes such as a rectangular tube.
  • the shape of the molded body can be any shape as long as there is no inconvenience when slicing the molded body at an angle of 0 to 30 degrees with respect to the normal line from the main surface in the subsequent step (d). Good.
  • the shape of each sheet is formed into a circular shape, and a cylindrical shaped body is produced by laminating them, and the subsequent slicing in the step (d) may be performed by a method such as “wig removal”. Is possible.
  • the pressure during lamination and the tensile force during winding are performed later. It is desirable to adjust so that the orientation of the sheet is weak enough not to collapse and is strong enough to allow the sheets in the molded body to be appropriately bonded to each other. Usually, it is possible to obtain sufficient adhesion between the sheets by adjusting the tensile force when forming the molded body. However, when the adhesive force between the sheets is insufficient, lamination or winding may be performed after thinly applying a solvent or an adhesive to the sheet surface.
  • the step (d) of slicing the molded body is performed by slicing the molded body at an angle of 0 degree to 30 degrees with respect to the normal line exiting from the main surface so that the sheet has a predetermined thickness.
  • the cutting tool which can be used at the time of a slice is not specifically limited, It is preferable to use a slicer, a cannula, etc. provided with a sharp blade. By using a cutting tool provided with a sharp blade, it is possible to easily produce a sheet having a small thickness, in which the particle orientation in the vicinity of the surface of the sheet obtained after slicing is hardly disturbed.
  • the thermal conductivity of the obtained thermal conductive sheet is good.
  • the molded body When the slicing angle is 30 degrees or less, the thermal conductivity of the obtained thermal conductive sheet is good.
  • the molded body When the slicing angle is 30 degrees or less, the thermal conductivity of the obtained thermal conductive sheet is good.
  • the molded body When the slicing angle is 30 degrees or less, the thermal conductivity of the obtained thermal conductive sheet is good.
  • the molded body When the molded body is a laminated body, it may be sliced (within the above angle range) so as to be perpendicular or substantially perpendicular to the lamination direction of the primary sheet. Further, when the molded body is a wound body, it may be sliced (within the above angle range) so as to be perpendicular or substantially perpendicular to the winding axis. As described above, in the case of a columnar molded body in which circular primary sheets are laminated, they may be sliced like a wig within the above angle
  • the slicing step is performed in the range of a temperature (Tg + 50 ° C.) 50 ° C. higher than the glass transition temperature (Tg) of the composition constituting the heat conductive sheet to a temperature 20 ° C. lower than Tg (Tg ⁇ 20 ° C.). It is preferable to do.
  • Tg + 50 ° C. or lower not only does the molded body become flexible and it becomes difficult to perform slicing, but also the orientation of particles in the heat conductive sheet is prevented from being disturbed.
  • a more preferable temperature for slicing is in the temperature range of Tg + 40 ° C. to Tg ⁇ 10 ° C.
  • preferable sheet thickness it is 200 times or less (preferably 100 times or less) of the average particle diameter or more of the average particle diameter of the boron nitride particle contained.
  • the average particle size is greater than or equal to the average particle size, it is considered that boron nitride particles can be prevented from falling off the sheet.
  • the average particle size is 200 times or less, the number of passes through the boron nitride particles is reduced, and the thermal conductivity is improved.
  • the present invention also includes a heat dissipation device.
  • the heat dissipating device of the present invention has a structure in which the heat conductive sheet of the present invention is interposed between the heat generating body and the heat dissipating body.
  • the heating element that can be used in the heat dissipation device of the present invention has at least a surface temperature that does not exceed 200 ° C., and the temperature at which the heat conductive sheet of the present invention can be suitably used is in the range of ⁇ 10 ° C. to 120 ° C. is there.
  • the surface of the heating element exceeds 200 ° C., for example, in the vicinity of the nozzle of a jet engine, around the inside of a kiln pot, around the inside of a blast furnace, around the inside of a reactor, outer space shell, Since there is a high possibility that the organic polymer compound in the sheet is decomposed, it tends to be unsuitable.
  • the heating element suitable for the heat dissipation device of the present invention include a semiconductor package, a display, an LED, and an electric lamp.
  • the radiator that can be used in the radiator of the present invention is not particularly limited, and may be a typical one applied to the radiator.
  • a heat sink using aluminum or copper fins or plates, an aluminum or copper block connected to a heat pipe, an aluminum or copper block in which cooling liquid is circulated by a pump, a Peltier element and this Examples include aluminum and copper blocks.
  • materials with thermal conductivity of 20 W / mK or more such as metals such as silver, iron, indium, graphite, diamond, aluminum nitride, boron nitride, silicon nitride, silicon carbide, aluminum oxide, etc. Those utilized are also preferred.
  • the heat dissipating device of the present invention is established by installing the heat conductive sheet of the present invention between the above-mentioned heat generating body and the heat dissipating body and fixing each surface in contact.
  • the heat conductive sheet is not particularly limited as long as it can be fixed in a state where the contact surfaces are sufficiently adhered, and any method may be used. However, from the viewpoint of maintaining sufficient contact between the contact surfaces, a method in which the pressing force is maintained is preferable. For example, the method of screwing using a spring and the method of inserting
  • thermal conductivity as an index of thermal conductivity in each example was obtained by the following method.
  • the heat conductive sheet to be measured was cut into a size of 1 cm ⁇ 1 cm with a cutter, and the cut piece was placed so that one surface was in contact with the transistor (2SC2233) and the other surface was in contact with the aluminum heat dissipation block, thereby preparing a test sample. .
  • current is passed through the test sample to measure the temperature of the transistor (T1, unit ° C) and the temperature of the heat dissipation block (T2, unit ° C). From the measured value and the applied power (W, unit W), The thermal resistance (X, unit ° C / W) was measured according to the following formula.
  • Example 1 (A) Plate-like boron nitride particles “PT-110 (trade name)” (Momentive Performance Materials Japan GK, average particle size 45 ⁇ m) 15.00 g, (B) Acrylate ester copolymer resin “HTR-” 811DR (trade name) ”(manufactured by Nagase ChemteX, butyl acrylate / ethyl acrylate / 2-hydroxyethyl methacrylate copolymer, Mw: 420,000, Tg: ⁇ 29.4 ° C.), 1.96 g, and (C ) 1.40 g of phosphate ester flame retardant “CR-741 (trade name)” (manufactured by Daihachi Chemical) was heated to 120 ° C. and kneaded to prepare a composition.
  • phosphate ester flame retardant “CR-741 (trade name)
  • the blending ratio of the composition calculated from the specific gravity of the raw materials is: (A) 70% by volume of plate-like boron nitride particles, (B) 17.5% by volume of acrylate copolymer resin, and (C) phosphate ester
  • the flame retardant was 12.5% by volume.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value was determined to be 5 degrees, and the long axis direction of the plate-like boron nitride particles was observed to be oriented in a direction substantially parallel to the main surface of the primary sheet.
  • Each primary sheet thus obtained was cut into a size of 2 cm ⁇ 2 cm with a cutter, and 37 sheets thereof were laminated, and lightly pressed by hand to bond the layers of each primary sheet to obtain a molded body having a thickness of 1.1 cm. It was. After cooling this molded body with dry ice, at a temperature of ⁇ 10 ° C., a laminated section of 1.1 cm ⁇ 2 cm was shaved with a plane (sliced at an angle of 5 degrees with respect to the normal line coming out from the primary sheet surface), and the size was A heat conductive sheet of Example 1 having a size of 1.1 cm ⁇ 2 cm ⁇ 0.51 mm was obtained.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • SEM scanning electron microscope
  • the adhesiveness of the obtained heat conductive sheet was good, and when the heat conductivity was evaluated, it showed a good value of 25.9 W / mK.
  • Example 2 (A) Plate-form boron nitride particles 13.08 g (60% by volume), (B) Acrylic ester copolymer resin 2.56 g (22.5% by volume), and (C) Phosphate ester flame retardant A heat conductive sheet of Example 2 was obtained under the same conditions as in Example 1 except that it was used in an amount of 1.99 g (17.5% by volume).
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value of the angle was measured and found to be 3 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was determined to be 88 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained heat conductive sheet was good, and when the heat conductivity was evaluated, it showed a good value of 26.9 W / mK.
  • Example 3 The raw materials were (A) 11.25 g (50% by volume) of plate-like boron nitride particles, (B) 3.24 g (27.5% by volume) of an acrylate copolymer resin, and (C) a phosphate ester flame retardant.
  • a heat conductive sheet of Example 3 was obtained under the same conditions as in Example 1 except that it was used in an amount of 2.64 g (22.5% by volume).
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value was measured and the average value was 10 degrees. It was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was found to be 82 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in the thickness direction of the heat conductive sheet.
  • the adhesion of the obtained heat conductive sheet was good, and when the heat conductivity was evaluated, it showed a good value of 15.8 W / mK.
  • Example 4 The raw materials are: (A) 10.86 g (45% by volume) of plate-like boron nitride particles, (B) 3.78 g (30.0% by volume) of an acrylate copolymer resin, and (C) a phosphate ester flame retardant.
  • a heat conductive sheet of Example 4 was obtained under the same conditions as in Example 1 except that 3.15 g (25.0% by volume) was used.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles When the average value of the angle was measured, the major axis direction of the plate-like boron nitride particles was found to be oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured, and the average value was determined to be 72 degrees. It was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained heat conductive sheet was good, and when the thermal conductivity was evaluated, it showed an excellent value of 10.7 W / mK.
  • Example 5 The same conditions as in Example 3 except that the raw material (A) plate-like boron nitride particles used were plate-like boron nitride particles “HP-1CAW (trade name)” (manufactured by Mizushima Alloy Iron, average particle size 16 ⁇ m). Thus, a heat conductive sheet of Example 5 was obtained.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles When the average value of the angle was measured, the average value was 14 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was determined to be 78 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained heat conductive sheet was good, and when the heat conductivity was evaluated, it showed a good value of 14.4 W / mK.
  • Example 6 The same conditions as in Example 2 except that the raw material (A) plate-like boron nitride particles used were plate-like boron nitride particles “HP-1CAW (trade name)” (manufactured by Mizushima Alloy Iron, average particle size 16 ⁇ m). Thus, a heat conductive sheet of Example 6 was obtained.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles When the average value of the angle was measured, the average value was 14 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was determined to be 78 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was oriented in the thickness direction of the heat conductive sheet.
  • the adhesion of the obtained heat conductive sheet was generally good, and when the heat conductivity was evaluated, it showed a good value of 11.9 W / mK.
  • Comparative Example 1 As raw materials, (A) plate-like boron nitride particles 10.49 g (40% by volume), (B) acrylate copolymer resin 4.44 g (32.5% by volume), and (C) phosphate ester-based difficulty A heat conductive sheet of Comparative Example 1 was obtained under the same conditions as in Example 1 except that 3.76 g (27.5% by volume) of the fuel was used.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value of the angle was measured and the average value was 30 degrees. It was confirmed that the major axis direction of the plate-like boron nitride particles was not oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • SEM scanning electron microscope
  • the adhesiveness of the obtained thermal conductive sheet was good, but when the thermal conductivity was evaluated, it showed a value of 8.1 W / mK, which was not good.
  • Comparative Example 2 As raw materials, (A) 7.83 g (30% by volume) of plate-like boron nitride particles, (B) 5.10 g (37.5% by volume) of an acrylate copolymer resin, and (C) a phosphate ester-based difficulty A heat conductive sheet of Comparative Example 2 was obtained under the same conditions as in Example 1 except that 4.42 g (32.5% by volume) of the flame retardant was used.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value was found to be 41 degrees, and it was found that the long axis direction of the plate-like boron nitride particles was not oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was determined to be 52 degrees.
  • the major axis direction of the plate-like boron nitride particles is slightly oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained thermal conductive sheet was good, but when the thermal conductivity was evaluated, it showed a value of 7.2 W / mK, which was not good.
  • Comparative Example 4 Comparative Example 4 was carried out under the same conditions as in Comparative Example 2 except that “HP-1CAW (trade name)” (made by Mizushima Alloy Iron, average particle diameter of 16 ⁇ m) was used as the raw material (A) plate-like boron nitride particles. A heat conductive sheet was obtained.
  • HP-1CAW trade name
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value was determined to be 39 degrees, and it was found that the major axis direction of the plate-like boron nitride particles was not oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured, and the average value was found to be 55 degrees.
  • the major axis direction of the plate-like boron nitride particles was slightly oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained thermal conductive sheet was good, but when the thermal conductivity was evaluated, it showed a value of 8.7 W / mK, which was not good.
  • Comparative Example 5 Instead of the raw material (A) plate-like boron nitride particles, plate-like boron nitride particles “HP-1 (trade name)” (manufactured by Mizushima alloy iron, average particle size 10 ⁇ m) were used, and the same as in Example 3. In order to prepare the composition, the mixture was heated to 120 ° C. and kneaded. However, the composition was poor in cohesiveness and did not form a sheet, so that the heat conductive sheet of Comparative Example 5 could not be obtained.
  • HP-1 trade name
  • Comparative Example 6 A composition similar to that of Example 2 using spherical boron nitride particles “FS-3 (trade name)” (manufactured by Mizushima alloy iron, average particle size 50 ⁇ m) instead of the raw material (A) plate-like boron nitride particles However, since the composition was poor in cohesiveness and did not form a sheet, the heat conductive sheet of Comparative Example 6 could not be obtained.
  • FS-3 trade name
  • Tables 1 and 2 show the main points of the examples and comparative examples described above.
  • Comparative Example 7 As in Example 3, using plate-like boron nitride particles “HP-40 (trade name)” (manufactured by Mizushima Alloy Iron, average particle size of 6.9 ⁇ m) instead of the raw material (A) plate-like boron nitride particles In order to prepare such a composition, the composition was heated and kneaded at 120 ° C., but the composition was poor in agglomeration and did not form a sheet, so that the heat conductive sheet of Comparative Example 7 could not be obtained.
  • HP-40 trade name
  • Comparative Example 8 In the same manner as in Comparative Example 1, instead of the raw material (A) plate-like boron nitride particles, plate-like boron nitride particles “HP-40 (trade name)” (manufactured by Mizushima Alloy Iron, average particle size 6.9 ⁇ m) were used. Under the conditions, a heat conductive sheet of Comparative Example 4 was obtained.
  • the cross section of the obtained primary sheet was observed using an SEM (scanning electron microscope), and the surface of the primary sheet in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles The average value was determined to be 37 degrees, and it was confirmed that the major axis direction of the plate-like boron nitride particles was not oriented in a direction substantially parallel to the main surface of the primary sheet.
  • the cross section of the obtained heat conductive sheet was observed using an SEM (scanning electron microscope), and the heat conduction in the major axis direction of the plate-like boron nitride particles from the direction seen for any 50 plate-like boron nitride particles.
  • the angle with respect to the sheet surface was measured and the average value was determined to be 57 degrees, and the major axis direction of the plate-like boron nitride particles was slightly oriented in the thickness direction of the heat conductive sheet.
  • the adhesiveness of the obtained heat conductive sheet was good, but when the heat conductivity was evaluated, it was 7.0 W / mK, which was not a good value.
  • the heat conductive sheet of the present invention has both high heat conductivity and high flexibility, is electrically insulating, and can easily add performance such as flame retardancy and water resistance as required. . Therefore, it is possible to realize efficient heat dissipation from the heat generating part by applying them to the heat dissipation application near the electric / electronic circuit, for example.
  • the method for producing a heat conductive sheet according to the present invention is advantageous in terms of productivity, cost, energy efficiency, and certainty compared with the conventional method, and has a high heat conductivity and high flexibility.
  • a conductive sheet can be provided.
  • the possibility of causing a short circuit near the circuit becomes extremely low, and it becomes possible to realize complete and efficient heat dissipation.

Abstract

 組成物からなる熱伝導シートにおいて、前記組成物が、平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含有し、 前記板状窒化ホウ素粒子(A)が、前記組成物中に45~75体積%の範囲で含有され、且つシートの厚み方向に対しその長軸方向で配向した熱伝導シートとする。それにより、高い熱伝導性を維持する一方で、柔軟性等の追加特性を有する電気絶縁性の熱伝導シートを提供する。

Description

熱伝導シート、その製造方法及びこれを用いた放熱装置
 本発明は、熱伝導シート、その製造方法及びこれを用いた放熱装置に関する。
近年、多層配線板及び半導体パッケージにおける配線密度や電子部品の搭載密度が高まり、また半導体素子の高集積化が進み、そのような発熱体の単位面積あたりの発熱量は大きくなってきている。そのため、発熱体からの熱放散効率を向上させる技術が望まれている。
 熱放散の一般的な方法として、半導体パッケージのような発熱体とアルミや銅からなる放熱体との間に熱伝導グリース又は熱伝導シートを挟み密着させて、外部に熱を伝達する方法が採用されている。放熱装置を組み立てる際の作業性の観点では、熱伝導グリースよりも熱伝導シートの方が優れている。そのため、熱伝導シートに向けた様々な開発が検討されている。
 例えば、熱伝導性を向上させる目的で、マトリックス材料中に熱伝導性の無機粒子を配合した様々な熱伝導性複合材料組成物及びその成形加工品が提案されている。熱伝導性の無機粒子として使用される物質は、カーボン、銀及び銅等の電気伝導性を有する物質と、アルミナ、シリカ、窒化アルミ及び窒化ホウ素等の電気絶縁性の物質とに大別される。しかし、電気伝導性の物質は、それらを配線の近傍に使用すると回路をショートさせる可能性があるため、多くの場合、電気絶縁性の物質が使用される。
 そのような電気絶縁性で熱伝導性の無機粒子をマトリックス材料中に配合させた熱伝導性複合材料組成物から構成されるシートとして、例えば、特許文献1では、粒子厚みが1.4μm超で、且つ比表面積が2.6m/g未満の窒化ホウ素粉末をシリコーンゴムに配合した組成物からなる絶縁放熱シートを開示している。
 また、特許文献2では、窒化ホウ素粉末が充填された高分子組成物からなる熱伝導性シートであって、窒化ホウ素粉末が一定方向に磁場配向した熱伝導性シートを開示している。
 さらに、特許文献3では、熱可塑性の樹脂からなるバインダ樹脂と無機充填材の粒子との混練物から成形した複数枚の一次シートを積層し、その得られた積層体を積層面に対して垂直な方向にスライシングすることによって得られる熱伝導性シートを開示している。
 近年、熱伝導シートは様々な放熱装置に適用されており、高い熱伝導性だけでなく、熱伝導シートに凹凸の吸収及び応力緩和等の性能を追加する必要性が生じてきている。例えば、ディスプレイパネルのような大面積の発熱体からの放熱に適用する場合、熱伝導シートに発熱体及び放熱体の各表面の歪みや凹凸の吸収、熱膨張率の違いによって生じる熱応力を緩和する機能が要求されている。その他、ある程度の厚膜として構成した場合にも伝熱可能な高い熱伝導性、また発熱体及び放熱体の各表面に密着可能な高い柔軟性も要求されている。しかし、従来の熱伝導シートでは、柔軟性と熱伝導性とを高いレベルで両立することは困難であるため、さらなる開発が必要とされている。
特許第3209839号公報 特開2002-080617号公報 特開2002-026202号公報
 例えば、特許文献1に開示された放熱伝導シートでは、熱伝導性の無機粒子をマトリックス材料中に配合する手段のみで熱伝導率を向上させている。そのため、そのような手段によって高い熱伝導率を達成するためには、熱伝導性の無機粒子の配合量を最密充填に近い量まで多くして充分な熱伝導パスを形成しなければならない。しかし、無機粒子の配合量を高めるにつれ熱伝導シートの柔軟性が失われ、その結果、凹凸の吸収、熱応力緩和の機能が損なわれてしまう傾向がある。
 これに対し、特許文献2に開示された熱伝導性シートでは、上述の手段に加えて、窒化ホウ素粉末を一定方向に磁場配向させる手段を採用しているため、より少ない熱伝導性の無機粒子の配合量で高い熱伝導性を達成できる可能性はある。しかし、シート製造時の生産性、コスト、エネルギー効率等について、改善の余地がある。
 また、特許文献3に開示された熱伝導性シートでは、上述の手段と比較して、シート製造時の生産性、コスト、エネルギー効率等の点でより優位にあるが、柔軟性に関する配慮が必ずしも充分ではない。特に、シート製造時に柔軟なシート積層体をスライスすることに向けた配慮に欠け、可塑剤を後から含浸する等の非効率な生産方法を採用しており、改善の余地がある。
 上述のように、熱伝導シートに向けて様々な検討がなされているが、高い熱伝導性だけでなく、シートに柔軟性及び応力緩和等の特性を簡便且つ確実に追加するという観点では、いずれの方法も満足のいくものではない。
 本発明はこのような状況に鑑みて、高い熱伝導性を維持する一方で、柔軟性等の追加特性を有する電気絶縁性の熱伝導シートを提供することを目的とする。また、そのような熱伝導シートを簡便且つ確実に製造する方法、さらにそのような熱伝導シートを使用して、高い放熱能力を持ち、且つ近傍の回路をショートさせるリスクの少ない放熱装置を提供することを目的とする。
 本発明者等は上記課題を解決すべく鋭意検討を重ねた結果、熱伝導シートにおいて特定の大きさの板状窒化ホウ素粒子をシートの厚み方向に対してその長軸方向で配向するように、特定のバインダ樹脂に分散させることで、高い熱伝導性だけでなく、柔軟性及び応力緩和等の特性を有する熱伝導シートが得られることを見出した。
 すなわち本発明は以下の通りである。
(1)組成物からなる熱伝導シートにおいて、前記組成物が、平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含有し、
前記板状窒化ホウ素粒子(A)が、前記組成物中に45~75体積%の範囲で含有され、且つシートの厚み方向に対しその長軸方向で配向していることを特徴とする熱伝導シート。
(2)前記有機高分子化合物(B)が、ポリ(メタ)アクリル酸エステル系高分子化合物であることを特徴とする上記(1)に記載の熱伝導シート。
(3)さらに、難燃剤(C)を組成物の5~50体積%の範囲で含有することを特徴とする上記(1)又は(2)に記載の熱伝導シート。
(4)前記難燃剤(C)がリン酸エステル系難燃剤であることを特徴とする上記(3)に記載の熱伝導シート。
(5)板状窒化ホウ素粒子がシートの厚み方向に対しその長軸方向で配向している熱伝導シートの製造方法であって、
平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)45~75体積%と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含む組成物を調製する工程と、
前記組成物を用いて、前記板状窒化ホウ素粒子が主たる面に対してほぼ平行な方向に配向した一次シートを形成する工程と、
前記一次シートを積層して多層構造を有する成形体を形成する工程と、
前記成形体をその主面から出る法線に対して0度~30度の角度でスライスする工程と、
を有する熱伝導シートの製造方法。
(6)板状窒化ホウ素粒子がシートの厚み方向に対しその長軸方向で配向している熱伝導シートの製造方法であって、
平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)45~75体積%と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含む組成物を調製する工程と、
前記組成物を用いて、前記板状窒化ホウ素粒子が主たる面に対してほぼ平行な方向に配向した一次シートを形成する工程と、
前記一次シートを前記板状窒化ホウ素粒子の配向方向を軸にして捲回して多層構造を有する成形体を形成する工程と、
前記成形体をその主面から出る法線に対して0度~30度の角度でスライスする工程と、を有する熱伝導シートの製造方法。
(7)前記一次シートを形成する工程が、圧延、プレス、押出及び塗工からなる群から選択される少なくとも1つの成形方法を用いて実施されることを特徴とする上記(5)又は(6)に記載の熱伝導シートの製造方法。
(8)前記一次シートを形成する工程が、少なくとも圧延又はプレスのいずれかの成形方法を用いて実施されることを特徴とする上記(6)に記載の熱伝導シートの製造方法。
(9)前記スライスする工程が、有機高分子化合物(B)のTg+50℃(ガラス転移温度よりも50℃高い温度)~Tg-20℃(ガラス転移温度よりも20℃低い温度)の温度範囲で実施されることを特徴とする上記(5)~(8)のいずれか一つに記載の熱伝導シートの製造方法。
(10)発熱体と放熱体との間に上記(1)~(4)のいずれか一つに記載の熱伝導シートを介在させた構造を有することを特徴とする放熱装置。
 本発明の熱伝導シートは、高い熱伝導性と高い柔軟性とを併せ持ち、且つ電気絶縁性であり、必要に応じて難燃性、耐水性等の性能を容易に追加することが可能であるため、それらを例えば電気・電子回路近傍の放熱用途に適用して、発熱部からの効率の良い放熱を実現することが可能となる。
 また、本発明の熱伝導シートの製造方法によれば、従来法と比較して、生産性、コスト、エネルギー効率、及び確実性の点で有利に、高い熱伝導性と高い柔軟性とを併せ持った熱伝導シートを提供することが可能となる。
 さらに、本発明の放熱装置によれば、回路近傍でショートを起こす可能性が極めて低くなり、完全且つ効率の良い放熱を実現することが可能となる。
 本願の開示は、2008年10月21日に出願された特願2008-270849号に記載の主題及び2009年3月3日に出願された特願2009-049334号と関連しており、それらの開示内容は引用によりここに援用される。
 以下、本発明について詳細に説明する。
<熱伝導シート>
 本発明の熱伝導シートは組成物からなり、前記組成物が、平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含有し、
前記板状窒化ホウ素粒子(A)が、前記組成物中に45~75体積%の範囲で含有され、且つシートの厚み方向に対しその長軸方向で配向していることを特徴とする。
 本発明において、板状窒化ホウ素粒子(A)の平均粒径は、10μm超60μm以下の範囲であり、15~50μmであることが好ましい。平均粒径が10μmより大きければ、シートが脆くなることを防ぐことができ、60μm以下であればシートの平滑性及び密着性に十分効果がある。
 本発明において、この範囲の平均粒径の板状窒化ホウ素粒子(A)を含有していればよく、必要に応じてこの範囲外の平均粒径の窒化ホウ素粒子を添加することも可能である。
 板状窒化ホウ素粒子の平均粒径は、レーザー回折・散乱法により測定したときのD50の値とする。
 また、粒子形状に関しても、必要に応じて板状以外の窒化ホウ素粒子を添加することも可能である。
 なお、本発明において「板状」とは、層状で六方晶の結晶構造を有しており、粒子形状が板のような形状であることをいう。具体的には、層に平行な方向(a軸方向)と層に垂直な方向(c軸方向)のそれぞれの辺の比率(a/c)が1.5以上のものを、本発明において「板状」とする。
 「板状以外」の窒化ホウ素粒子の形状としては、板状を凝集した球塊状、不定形凝集体、六方晶窒化ホウ素を粉砕した顆粒状等が挙げられる。具体的には、「板状以外」の窒化ホウ素粒子の結晶の構造として六方晶系(h-BN)の他には、立方晶系(c-BN)、ウルツ鉱系(w-BN)、菱面体晶系(r-BN)、乱層構造系(t-BN)等があり、それらの結晶構造を有する窒化ホウ素を用いることも可能である。
 板状窒化ホウ素粒子(A)の配合量は、組成物の体積を基準として、45~75体積%の範囲である。配合量が45体積%以上であると、熱伝導性率が十分得られ、配合量が75体積%以下であると組成物の凝集力に優れるためシート形成が容易である。
 本発明において板状窒化ホウ素粒子(A)の配合量(体積%)は次式により求めた値である。
 板状窒化ホウ素粒子(A)の含有量(体積%)=
 (Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+・・・)×100
Aw:板状窒化ホウ素粒子(A)の質量組成(質量%)
Bw:有機高分子化合物(B)の質量組成(質量%)
Cw:その他の任意成分(C)の質量組成(質量%)
Ad:板状窒化ホウ素粒子(A)の比重(本発明においてAdは2.3で計算する。)
Bd:有機高分子化合物(B)の比重
Cd:その他の任意成分(C)の比重
 本発明において「シートの厚み方向に対して長軸方向(a軸方向)で配向」とは、シート断面をSEM(走査型電子顕微鏡)を用いて任意の粒子50個について観察した際に、板状窒化ホウ素粒子の長軸方向(a軸方向)のシート表面に対する角度(90度以上となる場合は補角を採用する)の平均値が70度~90度の範囲となる状態を意味する。本発明の熱伝導シートを構成する組成物に使用可能な板状窒化ホウ素粒子(A)は、配向に有利な形状(板状)を有する。板状窒化ホウ素粒子は、シートの厚みに対して板状窒化ホウ素粒子の長軸方向(a軸方向)で配向する。
 なお、「長軸方向」とは、層に平行な方向(a軸方向)のことである。
 本発明では、板状窒化ホウ素粒子(A)が上述のような配向を示さなければ、充分な熱伝導性を得ることができない。上述のような配向を示すようにするためには、本発明の熱伝導シートの製造方法により作製すればよい。詳細は後述する。
 特に限定するものではないが、本発明の板状窒化ホウ素粒子(A)の具体例としては、「PT-110(商品名)」(モーメンティブパフォーマンスマテリアルズジャパン合同会社製、平均粒径45μm)、「HP-1CAW(商品名)」(水島合金鉄製、平均粒径16μm)、「PT-110 Plus(商品名)」(モーメンティブパフォーマンスマテリアルズジャパン合同会社製、平均粒径45μm)、「HP-1CA(商品名)」(水島合金鉄製、平均粒径16μm)等が挙げられる。
 また、上記に限らず「板状」の形状を有し、平均粒径が10μm超60μm以下の板状窒化ホウ素粒子であれば使用可能である。例えば、凝集体(板状が複数凝集した形状)のようなものを、粉砕、解砕等により板状の粒子として得ることも可能である。また、平均粒径が10μm超60μm以下の範囲外の場合は、粉砕する、篩にかける等で大きすぎる粒子や小さすぎる粒子を取り除くことによって、特定の平均粒径の範囲内に調整することが可能である。
 一方、有機高分子化合物(B)は、ガラス転移温度(Tg)が50℃以下となる有機高分子化合物であれば、特に限定なく使用することが可能である。有機高分子化合物(B)の具体例としては、アクリル酸ブチル、アクリル酸2-エチルヘキシル等を主要な原料成分としたポリ(メタ)アクリル酸エステル系高分子化合物(いわゆるアクリルゴム)、ポリジメチルシロキサン構造を主構造に有する高分子化合物(いわゆるシリコーン樹脂)、ポリイソプレン構造を主構造に有する高分子化合物(いわゆるイソプレンゴム、天然ゴム)、クロロプレンを主要な原料成分とした高分子化合物(ポリクロロプレン、いわゆるネオプレンゴム)、ポリブタジエン構造を主構造に有する高分子化合物(いわゆるブタジエンゴム)等、一般に「ゴム」と総称される柔軟な有機高分子化合物が挙げられる。これらの中では、特に、アクリル酸ブチル、又はアクリル酸2-エチルヘキシル等を主な原料成分としたポリ(メタ)アクリル酸エステル系高分子化合物が、高い柔軟性を得やすく、化学的安定性及び加工性に優れ、さらに粘着性をコントロールしやすく、比較的廉価であるため好ましい。
 ガラス転移温度(Tg)は、動的粘弾性測定装置(DMA)で測定できる。動的粘弾性測定装置(DMA)としては、例えば、TAインストゥルメンツ社製のARES-2KSTDを用いることができる。測定条件としては、昇温速度:5℃/分、測定周波数:1.0Hzとする。
 ポリ(メタ)アクリル酸エステル系高分子化合物としては、アクリル酸ブチル、アクリル酸エチル、アクリル酸2-エチルヘキシル等から選ばれるモノマーの共重合体(ホモポリマー)に、アクリル酸、アクリロニトリル、ヒドロキシエチルアクリレート等を共重合し、-COOH基、-CN基、-OH基等の極性基を導入した構造を有する、Tgが-30℃以下となるような共重合体がより好ましい。
 本発明において有機高分子化合物(B)は、重量平均分子量が1万~100万であることが好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより、標準ポリスチレンの検量線を用いて測定することができる。
 特に限定するものではないが、本発明で好適に使用できる化合物として、例えば、ナガセケムテックス(株)製のアクリル酸エステル共重合樹脂「HTR-811DR(商品名)」(アクリル酸ブチル/アクリル酸エチル/アクリル酸2-エチルヘキシル共重合体、Mw:42万、Tg:-43℃固形)、ナガセケムテックス(株)製のアクリル酸エステル共重合樹脂「HTR-280DR(商品名)」(アクリル酸ブチル/アクリロニトリル/アクリル酸共重合体、Mw:90万、Tg:-37℃、30質量%トルエン/酢酸エチル=1:1溶液)等が挙げられる。
 本発明の熱伝導シートにおける有機高分子化合物(B)の配合量は、10~40体積%が好ましい。10体積%以上であると、充分なシート強度が得られる傾向がある。40体積%以下であれば、充分な量の窒化ホウ素粒子を含有することができ、充分な熱伝導性が得られる傾向がある。
 本発明の熱伝導シートを構成する組成物は、上述の板状窒化ホウ素粒子(A)と有機高分子化合物(B)とを成分とするが、必要に応じて、各種添加剤を追加することも可能である。本発明の好ましい形態では、熱伝導シートの難燃性を向上させる目的で、上述の2成分(A)及び(B)に加えて、難燃剤(C)を使用することが好ましい。特に限定するものではないが、リン酸エステル系難燃剤を含有する組成物から構成されるシートは、難燃性及び柔軟性の観点だけでなく、生産性及びコスト面でも有利である。
 難燃剤(C)の含有量は、組成物の5~50体積%の範囲とすることが好ましく、10~40体積%の範囲とすることがより好ましい。難燃剤(C)の含有量が5体積%以上であれば、熱伝導シートにおいて充分な難燃性を得ることができる。50体積%以下であれば、シートの強度が低下することを防ぐことができる。
 その他、本発明の熱伝導シートを構成する組成物には、必要に応じて、ウレタンアクリレート等の靭性改良剤、シランカップリング剤、チタンカップリング剤及び酸無水物等の接着力向上剤、ノニオン系界面活性剤及びフッ素系界面活性剤等の濡れ向上剤、シリコーン油等の消泡剤、ならびに無機イオン交換体等のイオントラップ剤といった各種添加剤を添加することも可能である。
 本発明の熱伝導シートの形状は、先に説明した所望の板状窒化ホウ素粒子の配向を達成できる範囲内で、熱伝導シートが適用される各種用途に応じた形状に成形することが可能である。特に限定するものではないが、本発明では、熱伝導シートを、多層構造を有する成形体から形成することが好ましい。熱伝導シートを多層構造の成形体から形成することによって、板状窒化ホウ素粒子の配向に有利となり、また板状窒化ホウ素粒子の密度が向上することによって熱伝導効率を向上させることが可能となる。本発明の熱伝導シートの製造方法については後述する。
 上述の組成物から構成されるシートは、ガラス転移温度(Tg)が50℃以下の有機高分子を含有するためにその多くが粘着力を有する。そのため、本発明では熱伝導シートの使用に先立ち、粘着面を保護しておくことが好ましい。粘着面の保護は、例えば、上述の組成物を使用してシートを形成する際に、その粘着面に保護フィルムを設けることによって実施される。
 保護フィルムの材質としては、例えば、ポリエチレン、ポリエステル、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリエーテルイミド、ポリエーテルナフタレート、メチルペンテンフィルム等の樹脂、コート紙、コート布、アルミ等の金属が挙げられる。これら保護フィルムは、2種以上のフィルムから構成される多層フィルムであってもよく、フィルムの表面がシリコーン系、シリカ系等の離型剤等で処理されたものが好ましく使用される。
<熱伝導シートの製造方法>
 上記の熱伝導シートの製造方法に関しても本発明の範囲内である。
 板状窒化ホウ素粒子がシートの厚み方向に対しその長軸方向で配向している、本発明の熱伝導シートの製造方法は、下記工程を含む。
(a)平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)45~75体積%と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含む組成物を調製する工程と、
(b)前記組成物を用いて、前記板状窒化ホウ素粒子が主たる面に対してほぼ平行な方向に配向した一次シートを形成する工程と、
(c1)前記一次シートを積層して多層構造を有する成形体を形成する工程と、
(d)前記成形体をその主面から出る法線に対して0度~30度の角度でスライスする工程。
 上記(c1)工程に代えて、
(c2)前記一次シートを前記板状窒化ホウ素粒子の配向方向を軸にして捲回して多層構造を有する成形体を形成する工程とすることも可能である。
 以下、各工程について説明する。
 上記(a)工程において、熱伝導シートを構成する組成物の調製は、所定の板状窒化ホウ素粒子(A)と所定の有機高分子化合物(B)とを均一に混合することが可能であれば、いかなる方法を用いて実施してもよい。特に限定されるものではないが、例えば、予め有機高分子化合物(B)を溶剤に溶かして溶液を形成し、その溶液に前記板状窒化ホウ素粒子(A)及び難燃剤(C)等その他の添加剤を加え、それらを混合、攪拌した後に乾燥する方法、又はロール混練、ニーダー、ブラベンダ、あるいは押出機を使用して各成分を混合する方法等で、組成物を調製することが可能である。
 有機高分子化合物(B)を溶かすための溶剤としては、混合、攪拌後の乾燥で除去できるものであれば特に制限はないが、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、ヘキサン、シクロヘキサン、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン等が挙げられる。
 上記(b)の一次シートを形成する工程には、慣用の成膜技術を適用することが可能であるが、圧延、プレス、押出及び塗工からなる群から選択される少なくとも1つの成形方法を用いて実施することが好ましい。成形方法として、少なくとも圧延及びプレスのいずれかを選択することによって、板状窒化ホウ素粒子をより確実に、主たる面に対してほぼ平行な方向に配向させることが可能となる。また、それらの方法を選択した場合、シート成形時に圧力が加わることによって、板状窒化ホウ素粒子同士が接触しやすくなり、高い熱伝導性を実現し易くなる傾向がある。なお、成形される各シートの厚さは、熱伝導性の観点から、より薄い方が好ましい。シートの厚みが、厚くなると粒子の配向が不充分となり、最終的に得られる熱伝導シートの熱伝導性が悪くなる傾向がある。
 なお、「前記板状窒化ホウ素粒子(A)がシートの主たる面に関してほぼ平行な方向に配向した状態」とは、前記板状窒化ホウ素粒子(A)がシートの主たる面に関して寝ているように配向した状態をいう。シート面内での板状窒化ホウ素粒子(A)の向きは、前記組成物を成形する際に、組成物の流れる方向を調整することによってコントロールされる。つまり、組成物を圧延ロールに通す方向、組成物をプレスする方向、組成物を押出す方向、組成物を塗工する方向を調整することで、板状窒化ホウ素粒子(A)の向きがコントロールされる。
 前記板状窒化ホウ素粒子(A)は、基本的に異方性を有する粒子であるため、組成物を圧延成形、プレス成形、押出成形又は塗工することにより、通常、板状窒化ホウ素粒子(A)の向きは揃って配置される。
 「前記板状窒化ホウ素粒子(A)がシートの主たる面に関してほぼ平行な方向に配向した状態」の確認は、前述の「シートの厚み方向に対して長軸方向(a方向)で配向」の確認方法と同様に、シート断面をSEMを用いて任意の粒子50個について観察することにより行う。具体的には、一次シート断面をSEMを用いて観察し、任意の粒子50個について、板状窒化ホウ素粒子の長軸方向(a方向)の一次シート表面に対する角度(90度以上となる場合は補角を採用する)の平均値が0~20度の範囲となっているか確認する。
 上記(c1)の多層構造を有する成形体を形成する工程は、先の工程で得られた一次シートを積層することによって実施することが可能である。積層の形態は、特に限定されるものではなく、例えば、独立した複数のシートを順に重ね合わせる形態に限らず、一枚のシートをその端を切断せずに折りたたむ形態であってもよい。
 また、上記(c1)工程における積層の別の形態として、(c2)工程が挙げられる。具体的には、多層構造を有する成形体を形成する方法として、前記一次シートを前記板状窒化ホウ素粒子の配向方向を軸にして捲回して多層構造を有する成形体を形成する。
 捲回の形態は成形体の形状が円筒形となるものに限らず、角筒形等他の形状となるものであってもよい。成形体の形状は、後の(d)工程で、主面からでる法線に対し、0度~30度の角度で成形体をスライスする際に不都合が生じなければ、いかなる形状であってもよい。例えば、各シートの形状を円形に成形し、それらを積層することによって円柱状の成形体を作製し、その後の(d)工程でのスライスを「かつら剥き」のような方法で実施することも可能である。
 上記(c1)工程、又は上記(c2)工程における積層時の圧力や捲回時の引っ張り力は、後に実施される(d)スライス工程において、成形体のスライス面が潰れて板状窒化ホウ素粒子の配向が崩れない程度に弱く、且つ成形体における各シート同士が適度に接着する程度に強くなるように調整することが望ましい。通常、成形体を形成時の引っ張り力を調整することによって、各シート間の充分な接着を得ることが可能である。しかし、各シート間の接着力が不足する場合、溶剤又は接着剤等をシート表面に薄く塗布した後に積層又は捲回を実施してもよい。
 上記(d)成形体をスライスする工程は、成形体をその主面から出る法線に対して0度~30度の角度で、シートが所定の厚さを有するようにスライスすることによって実施される。スライス時に使用可能な切断具は、特に限定されるものではないが、鋭利な刃を備えたスライサー及びカンナ等を使用することが好ましい。鋭利な刃を備えた切断具を使用することによって、スライス後に得られるシートの表面近傍の粒子配向が乱れ難く、且つ厚みの薄いシートを容易に作製することが可能となる。
 前記スライスする角度が30度以下の場合、得られた熱伝導シートの熱伝導率が良好である。前記成形体が積層体である場合は、一次シートの積層方向とは垂直もしくはほぼ垂直となるように(上記角度の範囲内で)スライスすればよい。また、前記成形体が捲回体である場合は捲回の軸に対して垂直もしくはほぼ垂直となるように(上記角度の範囲内で)スライスすればよい。上述したように、円形状の一次シートを積層した円柱状の成形体の場合は、上記角度の範囲内でかつら剥きのようにスライスしてもよい。
 (d)スライス工程は、熱伝導シートを構成する組成物のガラス転移温度(Tg)よりも50℃高い温度(Tg+50℃)~Tgよりも20℃低い温度(Tg-20℃)の範囲で実施することが好ましい。スライス時の温度がTg+50℃以下であると、成形体が柔軟になってスライスが実施し難くなることを防ぐだけでなく、熱伝導シート内の粒子の配向が乱れることも防ぐ。一方、スライス時の温度がTg-20℃以上であると、成形体が固く脆くなり、スライスが実施し難くなることもなく、スライス直後に熱伝導シートが割れることを回避しやすい。スライスを実施するより好ましい温度は、Tg+40℃~Tg-10℃の温度範囲である。
 なお、好ましいシート厚みとしては、含まれる窒化ホウ素粒子の平均粒径以上、平均粒径の200倍以下(好ましくは100倍以下)である。平均粒径以上の場合、窒化ホウ素粒子がシートからの脱落を防ぐことが可能になると考えられる。平均粒径の200倍以下の場合、窒化ホウ素粒子を介するパス数が少なくなるため、熱伝導性が良好になる。
<放熱装置>
 本発明は放熱装置も範囲内である。本発明の放熱装置は、発熱体と放熱体との間に本発明の熱伝導シートを介在させた構造を有する。
 本発明の放熱装置に使用可能な発熱体としては、少なくともその表面温度が200℃を超えないものであり、本発明の熱伝導シートを好適に使用できる温度は-10℃~120℃の範囲である。発熱体の表面が200℃を超える可能性が高い、例えば、ジェットエンジンのノズル近傍、窯陶釜内部周辺、溶鉱炉内部周辺、原子炉内部周辺、宇宙船外殻等における放熱装置への適用は、シート内の有機高分子化合物が分解してしまう可能性が高いので適さない傾向がある。本発明の放熱装置に好適な発熱体としては、例えば、半導体パッケージ、ディスプレイ、LED、電灯等が挙げられる。
 一方、本発明の放熱装置に使用可能な放熱体は、特に限定されるものではなく、放熱装置に適用される代表的なものであってよい。例えば、アルミや銅製のフィン又は板等を利用したヒートシンク、ヒートパイプに接続されているアルミや銅製のブロック、内部に冷却液体をポンプで循環させているアルミや銅製のブロック、ペルチェ素子及びこれを備えたアルミや銅製のブロック等が挙げられる。
 アルミや銅に代わって、熱伝導率20W/mK以上の素材、例えば、銀、鉄、インジウム等の金属、黒鉛、ダイヤモンド、窒化アルミ、窒化ホウ素、窒化珪素、炭化珪素、酸化アルミ等の素材を利用したものも好ましい。
 本発明の放熱装置は、上述の発熱体と放熱体との間に本発明の熱伝導シートを設置し、各々の面を接触させて固定することによって成立する。熱伝導シートの固定は、各接触面を十分に密着させた状態で固定できる方法であれば、特に限定されずに、如何なる方法を用いてもよい。但し、各接触面の十分な密着を持続させる観点から、押し付け力が持続するような方法が好ましい。例えば、ばねを用いてねじ止めする方法、クリップを用いて挟み込む方法が挙げられる。本発明の放熱装置によれば、高い放熱効率を達成することが可能であり、且つ近傍の回路をショートさせるリスクが少ない。
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 なお、各実施例において熱伝導性の指標とした熱伝導率は、以下の方法により求めた。
(熱伝導率の測定)
 測定する熱伝導シートを1cm×1cmの大きさにカッターで切断し、その切断片を一方の面がトランジスタ(2SC2233)、他方の面がアルミニウム放熱ブロックに接するように配置し、試験サンプルを作製した。次いで、トランジスタを押し付けながら、試験サンプルに電流を通じ、トランジスタの温度(T1、単位℃)及び放熱ブロックの温度(T2、単位℃)を測定し、測定値及び印可電力(W、単位W)から、下式に沿って、熱抵抗(X、単位℃/W)を測定した。
Figure JPOXMLDOC01-appb-M000001
 得られた熱抵抗(X)、切断片の膜厚(d、単位μm)、及び熱伝導率の既知試料による補正係数Cから、下式に沿って、熱伝導率(Tc、単位W/mK)を見積もった。
Figure JPOXMLDOC01-appb-M000002
(実施例1)
 (A)板状の窒化ホウ素粒子「PT-110(商品名)」(モーメンティブパフォーマンスマテリアルズジャパン合同会社製、平均粒径45μm)15.00g、(B)アクリル酸エステル共重合樹脂「HTR-811DR(商品名)」(ナガセケムテックス製、アクリル酸ブチル/アクリル酸エチル/メタクリル酸2-ヒドロキシエチル共重合体、Mw:42万、Tg:-29.4℃)1.96g、及び(C)リン酸エステル系難燃剤「CR-741(商品名)」(大八化学製)1.40gを、120℃に加熱して混練することによって組成物を調製した。
 原料の比重から計算される組成物の配合比は、(A)板状の窒化ホウ素粒子70体積%、(B)アクリル酸エステル共重合樹脂17.5体積%、及び(C)リン酸エステル系難燃剤12.5体積%であった。
 先に調製した組成物1gを離型処理したPETフィルムで挟み込み、5cm×10cmのツール面を有するプレスを用いて、ツール圧10MPa、ツール温度120℃の条件下で、10秒間にわたってプレスすることにより、厚さが0.3mmの一次シートを得た。この操作を繰り返すことによって、多数枚の一次シートを作製した。
 なお、一次シートにおいて、「板状窒化ホウ素粒子(A)がシートの主たる面に関してほぼ平行な方向に配向した状態」の確認は、以下のようにして行った。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ5度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた各一次シートを2cm×2cmの寸法にカッターで切り出し、その37枚を積層し、手で軽く押さえて各一次シートの層間を接着させることにより、厚さ1.1cmの成形体を得た。この成形体をドライアイスで冷却した後、-10℃の温度において、1.1cm×2cmの積層断面をカンナで削り(一次シート面から出る法線に対し5度の角度でスライス)、サイズが1.1cm×2cm×0.51mmの実施例1の熱伝導シートを得た。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ85度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性は良好であり、熱伝導率を評価したところ、25.9W/mKと良好な値を示した。
(実施例2)
 原料を(A)板状の窒化ホウ素粒子13.08g(60体積%)、(B)アクリル酸エステル共重合樹脂2.56g(22.5体積%)、及び(C)リン酸エステル系難燃剤1.99g(17.5体積%)の量で用いた以外は、実施例1と同様の条件により、実施例2の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ3度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ88度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性は良好であり、熱伝導率を評価したところ、26.9W/mKと良好な値を示した。
(実施例3)
 原料を(A)板状の窒化ホウ素粒子11.25g(50体積%)、(B)アクリル酸エステル共重合樹脂3.24g(27.5体積%)、及び(C)リン酸エステル系難燃剤2.64g(22.5体積%)の量で用いた以外は、実施例1と同様の条件により、実施例3の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ10度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ82度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性は良好であり、熱伝導率を評価したところ、15.8W/mKと良好な値を示した。
(実施例4)
 原料を(A)板状の窒化ホウ素粒子10.86g(45体積%)、(B)アクリル酸エステル共重合樹脂3.78g(30.0体積%)、及び(C)リン酸エステル系難燃剤3.15g(25.0体積%)の量で用いた以外は、実施例1と同様の条件により、実施例4の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ16度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ72度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性は良好であり、熱伝導率を評価したところ、10.7W/mKとまずまず良好な値を示した。
(実施例5)
 原料の(A)板状の窒化ホウ素粒子に、板状窒化ホウ素粒子「HP-1CAW(商品名)」(水島合金鉄製、平均粒径16μm)を用いた以外は、実施例3と同様の条件により、実施例5の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ14度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ78度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性は良好であり、熱伝導率を評価したところ、14.4W/mKと良好な値を示した。
(実施例6)
 原料の(A)板状の窒化ホウ素粒子に、板状窒化ホウ素粒子「HP-1CAW(商品名)」(水島合金鉄製、平均粒径16μm)を用いた以外は、実施例2と同様の条件により、実施例6の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ14度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ78度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向に配向していることが認められた。
 得られた熱伝導シートの密着性はおおむね良好であり、熱伝導率を評価したところ、11.9W/mKと良好な値を示した。
(比較例1)
 原料として、(A)板状の窒化ホウ素粒子10.49g(40体積%)、(B)アクリル酸エステル共重合樹脂4.44g(32.5体積%)、及び(C)リン酸エステル系難燃剤3.76g(27.5体積%)の量で用いた以外は、実施例1と同様の条件により、比較例1の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ30度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していないことが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ66度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向にやや配向している。
 得られた熱伝導シートの密着性は良好であったが、熱伝導率を評価したところ、8.1W/mKと良好とは言えない値を示した。
(比較例2)
 原料として、(A)板状の窒化ホウ素粒子7.83g(30体積%)、(B)アクリル酸エステル共重合樹脂5.10g(37.5体積%)、及び(C)リン酸エステル系難燃剤4.42g(32.5体積%)の量で用いた以外は、実施例1と同様の条件により、比較例2の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ41度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していないことが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ52度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向にやや配向している。
 得られた熱伝導シートの密着性は良好であったが、熱伝導率を評価したところ、7.2W/mKと良好とは言えない値を示した。
(比較例3)
 原料として、(A)板状の窒化ホウ素粒子15.35g(80体積%)、(B)アクリル酸エステル共重合樹脂1.25g(12.5体積%)、及び(C)リン酸エステル系難燃剤0.75g(7.5体積%)の量で用いて、実施例1と同様な組成物を調製するために、120℃に加熱して混練したが、組成物は凝集性に乏しく、シート状にはならなかったため、比較例3の熱伝導シートを得ることが出来なかった。
(比較例4)
 原料の(A)板状の窒化ホウ素粒子に、「HP-1CAW(商品名)」(水島合金鉄製、平均粒径16μm)を用いた以外は、比較例2と同様の条件により、比較例4の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ39度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していないことが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ55度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向にやや配向している。
 得られた熱伝導シートの密着性は良好であったが、熱伝導率を評価したところ、8.7W/mKと良好とは言えない値を示した。
(比較例5)
 原料の(A)板状の窒化ホウ素粒子に代えて、板状の窒化ホウ素粒子「HP-1(商品名)」(水島合金鉄製、平均粒径10μm)を用いて、実施例3と同様な組成物を調製するために、120℃に加熱して混練したが、組成物は凝集性に乏しく、シート状にはならなかったため、比較例5の熱伝導シートを得ることが出来なかった。
(比較例6)
 原料の(A)板状の窒化ホウ素粒子に代えて球状の窒化ホウ素粒子「FS-3(商品名)」(水島合金鉄製、平均粒径50μm)を用いて、実施例2と同様な組成物を調製するために、120℃に加熱して混練したが、組成物は凝集性に乏しく、シート状にはならなかったため、比較例6の熱伝導シートを得ることが出来なかった。
 先に記載した各実施例及び各比較例の要点を表1及び表2に示す。
(比較例7)
 原料の(A)板状の窒化ホウ素粒子に代えて板状の窒化ホウ素粒子「HP-40(商品名)」(水島合金鉄製、平均粒径6.9μm)を用いて、実施例3と同様な組成物を調製するために、120℃に加熱して混練したが、組成物は凝集性に乏しく、シート状にはならなかったため、比較例7の熱伝導シートを得ることが出来なかった。
(比較例8)
 原料の(A)板状の窒化ホウ素粒子に代えて板状の窒化ホウ素粒子「HP-40(商品名)」(水島合金鉄製、平均粒径6.9μm)を用いて、比較例1と同様の条件により、比較例4の熱伝導シートを得た。
 得られた一次シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の一次シート表面に対する角度を測定し、その平均値を求めたところ37度であり、板状窒化ホウ素粒子の長軸方向は一次シートの主たる面に関してほぼ平行な方向に配向していないことが認められた。
 得られた熱伝導シートの断面をSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の板状窒化ホウ素粒子について見えている方向から板状窒化ホウ素粒子の長軸方向の熱伝導シート表面に対する角度を測定し、その平均値を求めたところ57度であり、板状窒化ホウ素粒子の長軸方向は熱伝導シートの厚み方向にやや配向している。
 得られた熱伝導シートの密着性は良好であったが、熱伝導率を評価したところ、7.0W/mKと良好とは言えない値を示した。
(比較例9)
 原料の(A)板状の窒化ホウ素粒子に、板状窒化ホウ素粒子「HP-1CAW(商品名)」(水島合金鉄製、平均粒子径16μm)を用い、(A)板状の窒化ホウ素粒子粉末15.35g(80体積%)、(B)アクリル酸エステル共重合樹脂1.25g(12.5体積%)、及び(C)リン酸エステル系難燃剤0.75g(7.5体積%)の量で用いて、実施例1と同様な組成物を調製するために、120℃に加熱して混練したが、組成物は凝集性に乏しく、シート状にはならなかったため、比較例9の熱伝導シートを得ることが出来なかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の熱伝導シートは、高い熱伝導性と高い柔軟性とを併せ持ち、且つ電気絶縁性であり、必要に応じて難燃性、耐水性等の性能を容易に追加することが可能である。そのため、それらを例えば電気・電子回路近傍の放熱用途に適用して、発熱部からの効率の良い放熱を実現することが可能となる。また、本発明の熱伝導シートの製造方法により、従来法と比較して、生産性、コスト、エネルギー効率、及び確実性の点で有利に、高い熱伝導性と高い柔軟性とを併せ持った熱伝導シートを提供することが可能となる。
 さらに、本発明の放熱装置により、回路近傍でショートを起こす可能性が極めて低くなり、完全且つ効率の良い放熱を実現することが可能となる。

Claims (10)

  1.  組成物からなる熱伝導シートにおいて、前記組成物が、平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含有し、
    前記板状窒化ホウ素粒子(A)が、前記組成物中に45~75体積%の範囲で含有され、且つシートの厚み方向に対しその長軸方向で配向していることを特徴とする熱伝導シート。
  2.  前記有機高分子化合物(B)が、ポリ(メタ)アクリル酸エステル系高分子化合物であることを特徴とする請求項1に記載の熱伝導シート。
  3.  さらに、難燃剤(C)を組成物の5~50体積%の範囲で含有することを特徴とする請求項1又は2に記載の熱伝導シート。
  4.  前記難燃剤(C)がリン酸エステル系難燃剤であることを特徴とする請求項3に記載の熱伝導シート。
  5.  板状窒化ホウ素粒子がシートの厚み方向に対しその長軸方向で配向している熱伝導シートの製造方法であって、
    平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)45~75体積%と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含む組成物を調製する工程と、
    前記組成物を用いて、前記板状窒化ホウ素粒子が主たる面に対してほぼ平行な方向に配向した一次シートを形成する工程と、
    前記一次シートを積層して多層構造を有する成形体を形成する工程と、
    前記成形体をその主面から出る法線に対して0度~30度の角度でスライスする工程と、
    を有する熱伝導シートの製造方法。
  6.  板状窒化ホウ素粒子がシートの厚み方向に対しその長軸方向で配向している熱伝導シートの製造方法であって、
    平均粒径10μm超60μm以下の板状窒化ホウ素粒子(A)45~75体積%と、50℃以下のガラス転移温度(Tg)を有する有機高分子化合物(B)と、を含む組成物を調製する工程と、
    前記組成物を用いて、前記板状窒化ホウ素粒子が主たる面に対してほぼ平行な方向に配向した一次シートを形成する工程と、
    前記一次シートを前記板状窒化ホウ素粒子の配向方向を軸にして捲回して多層構造を有する成形体を形成する工程と、
    前記成形体をその主面から出る法線に対して0度~30度の角度でスライスする工程と、
    を有する熱伝導シートの製造方法。
  7.  前記一次シートを形成する工程が、圧延、プレス、押出及び塗工からなる群から選択される少なくとも1つの成形方法を用いて実施されることを特徴とする請求項5又は6に記載の熱伝導シートの製造方法。
  8.  前記一次シートを形成する工程が、少なくとも圧延又はプレスのいずれかの成形方法を用いて実施されることを特徴とする請求項6に記載の熱伝導シートの製造方法。
  9.  前記スライスする工程が、有機高分子化合物(B)のTg+50℃(ガラス転移温度よりも50℃高い温度)~Tg-20℃(ガラス転移温度よりも20℃低い温度)の温度範囲で実施されることを特徴とする請求項5~8のいずれか一項に記載の熱伝導シートの製造方法。
  10.  発熱体と放熱体との間に請求項1~4のいずれか一項に記載の熱伝導シートを介在させた構造を有することを特徴とする放熱装置。
PCT/JP2009/067901 2008-10-21 2009-10-16 熱伝導シート、その製造方法及びこれを用いた放熱装置 WO2010047278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09821975.1A EP2343332A4 (en) 2008-10-21 2009-10-16 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes same
CN200980141752.7A CN102197069B (zh) 2008-10-21 2009-10-16 导热片材、其制造方法以及使用了该导热片材的散热装置
JP2010534788A JP5882581B2 (ja) 2008-10-21 2009-10-16 熱伝導シート、その製造方法及びこれを用いた放熱装置
US13/125,308 US20110192588A1 (en) 2008-10-21 2009-10-16 Heat conducting sheet, manufacturing method thereof, and heat radiator that utilizes the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-270849 2008-10-21
JP2008270849 2008-10-21
JP2009-049334 2009-03-03
JP2009049334 2009-03-03

Publications (1)

Publication Number Publication Date
WO2010047278A1 true WO2010047278A1 (ja) 2010-04-29

Family

ID=42119319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067901 WO2010047278A1 (ja) 2008-10-21 2009-10-16 熱伝導シート、その製造方法及びこれを用いた放熱装置

Country Status (7)

Country Link
US (1) US20110192588A1 (ja)
EP (1) EP2343332A4 (ja)
JP (3) JP5882581B2 (ja)
KR (1) KR20110085991A (ja)
CN (2) CN104086929A (ja)
TW (1) TWI500752B (ja)
WO (1) WO2010047278A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074303A (ja) * 2009-10-01 2011-04-14 Hitachi Chem Co Ltd 樹脂シート、その製造方法およびこれを用いたサーマルモジュール
JP2011230472A (ja) * 2010-04-30 2011-11-17 Hitachi Chem Co Ltd 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
JP2012158695A (ja) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd 熱伝導シート及び放熱装置
JP2012255055A (ja) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology 無機有機複合組成物からなる複合材料及びその製造方法
JP2013177565A (ja) * 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シートの製造方法
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
JP2015061924A (ja) * 2014-12-02 2015-04-02 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP2016079353A (ja) * 2014-10-22 2016-05-16 株式会社Kri 高熱伝導有機無機コンポジット材料、その製造方法及び有機無機コンポジット膜
JPWO2018030430A1 (ja) * 2016-08-08 2019-03-22 積水化学工業株式会社 熱伝導シート及びその製造方法
US20200031723A1 (en) * 2017-03-29 2020-01-30 Denka Company Limited Thermal conductive member and heat dissipation structure including the same
US10913879B2 (en) 2014-02-24 2021-02-09 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
JP2021128940A (ja) * 2015-08-06 2021-09-02 国立大学法人豊橋技術科学大学 複合絶縁板および複合絶縁板の製造方法
JP2022060242A (ja) * 2017-06-02 2022-04-14 日本ゼオン株式会社 熱伝導シート及びその製造方法
US11618247B2 (en) 2019-11-01 2023-04-04 Sekisui Polymatech Co., Ltd. Thermally conductive sheet and production method for same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201203477A (en) 2010-01-29 2012-01-16 Nitto Denko Corp Power module
US8592844B2 (en) * 2010-01-29 2013-11-26 Nitto Denko Corporation Light-emitting diode device
JP2012049493A (ja) 2010-01-29 2012-03-08 Nitto Denko Corp 撮像部品
TW201131716A (en) * 2010-01-29 2011-09-16 Nitto Denko Corp Thermal conductive sheet, light-emitting diode mounting substrate, and thermal conductive adhesive sheet
JP5788760B2 (ja) * 2011-10-19 2015-10-07 日東電工株式会社 熱伝導性シート、led実装用基板およびledモジュール
TWI707897B (zh) * 2012-07-07 2020-10-21 日商迪睿合股份有限公司 導熱性片
CN103434255A (zh) * 2013-07-30 2013-12-11 安徽丹凤电子材料股份有限公司 一种玻璃纤维布的制备工艺
JP6313766B2 (ja) * 2013-08-14 2018-04-18 デンカ株式会社 窒化ホウ素−樹脂複合体回路基板、窒化ホウ素−樹脂複合体放熱板一体型回路基板
KR102335771B1 (ko) * 2014-12-01 2021-12-06 삼성전자주식회사 열전도 필름을 가진 반도체 패키지
EP3412733B1 (en) * 2016-02-01 2021-10-20 Bando Chemical Industries, Ltd. Thermally conductive molded resin article
CN107022196A (zh) * 2016-02-02 2017-08-08 中兴通讯股份有限公司 导热材料、其制备方法及导热件
CN107189091A (zh) * 2016-03-15 2017-09-22 Bgt材料有限公司 六方氮化硼薄片的制造方法
EP3575369A4 (en) * 2017-01-30 2020-09-02 Sekisui Chemical Co., Ltd. RESIN AND LAMINATE MATERIAL
WO2019117064A1 (ja) * 2017-12-12 2019-06-20 積水化学工業株式会社 熱伝導シート
CN109988409B (zh) 2017-12-29 2021-10-19 广东生益科技股份有限公司 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
CN110157153B (zh) * 2018-02-11 2022-02-08 中国科学院深圳先进技术研究院 一种环氧树脂/有序氮化硼复合材料及其制备方法
EP3733753A1 (en) 2019-05-03 2020-11-04 3M Innovative Properties Company Film usable for roll-to-roll processing of flexible electronic devices comprising a composite material of a polymer and boron nitride
KR102393856B1 (ko) * 2019-12-27 2022-05-02 가천대학교 산학협력단 열전도도가 향상된 레이저프린터 정착롤러용 실리콘 고무 조성물 및 그 제조 방법
CN112040722B (zh) * 2020-08-17 2021-05-18 苏州鸿凌达电子科技有限公司 一种高热通量石墨导热膜模组堆叠方法
US20220347990A1 (en) * 2021-04-29 2022-11-03 GM Global Technology Operations LLC Flexible sheet of polyethylene terephthalate and heat-activated adhesive, and thermal cooling structure using the same
US20230132495A1 (en) * 2021-10-14 2023-05-04 Saint-Gobain Ceramics & Plastics, Inc. Composite body having high thermal conductivity and method of making the composite body
WO2023180866A1 (en) * 2022-03-24 2023-09-28 3M Innovative Properties Company Sheet comprising a composite material of a polymer and hexagonal boron nitride particles and processes for producing the same
WO2023189776A1 (ja) * 2022-03-29 2023-10-05 日東電工株式会社 温度調節モジュール

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209839B2 (ja) 1993-10-12 2001-09-17 電気化学工業株式会社 絶縁放熱シート
JP2002026202A (ja) 2000-06-29 2002-01-25 Three M Innovative Properties Co 熱伝導性シート及びその製造方法
JP2002080617A (ja) 2000-09-06 2002-03-19 Polymatech Co Ltd 熱伝導性シート
JP2002164481A (ja) * 2000-11-13 2002-06-07 Three M Innovative Properties Co 熱伝導性シート
JP2008270849A (ja) 2008-08-15 2008-11-06 Fujitsu Microelectronics Ltd 焦点計測方法及び装置
JP2008280496A (ja) * 2007-04-11 2008-11-20 Hitachi Chem Co Ltd 熱伝導シート、その製造方法およびこれを用いた放熱装置
JP2009049334A (ja) 2007-08-23 2009-03-05 Shibuya Kogyo Co Ltd 導電性ボールの搭載装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3568401B2 (ja) * 1998-11-18 2004-09-22 電気化学工業株式会社 高熱伝導性シート
JP3288029B2 (ja) * 2000-03-08 2002-06-04 北川工業株式会社 成形体、並びに、熱伝導材及びその製造方法
JP2002371192A (ja) * 2001-06-15 2002-12-26 Hitachi Chem Co Ltd 放熱フィルム及び放熱板
JP2004051852A (ja) * 2002-07-22 2004-02-19 Polymatech Co Ltd 熱伝導性高分子成形体及びその製造方法
US6956739B2 (en) * 2002-10-29 2005-10-18 Parker-Hannifin Corporation High temperature stable thermal interface material
JP4474607B2 (ja) * 2002-11-12 2010-06-09 アキレス株式会社 熱伝導性樹脂成形体用組成物およびそれから得られる成形体
KR100731279B1 (ko) * 2003-05-19 2007-06-21 니폰 쇼쿠바이 컴파니 리미티드 열전도성 재료용 수지 조성물 및 열전도성 재료
US20060275608A1 (en) * 2005-06-07 2006-12-07 General Electric Company B-stageable film, electronic device, and associated process
US20070179232A1 (en) * 2006-01-30 2007-08-02 National Starch And Chemical Investment Holding Corporation Thermal Interface Material
JP2008053843A (ja) * 2006-08-22 2008-03-06 Olympus Imaging Corp 動画記録可能なデジタルカメラ
US20100073882A1 (en) * 2006-11-01 2010-03-25 Tooru Yoshikawa Thermally conductive sheet, process for producing the same, and radiator utilizing thermally conductive sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209839B2 (ja) 1993-10-12 2001-09-17 電気化学工業株式会社 絶縁放熱シート
JP2002026202A (ja) 2000-06-29 2002-01-25 Three M Innovative Properties Co 熱伝導性シート及びその製造方法
JP2002080617A (ja) 2000-09-06 2002-03-19 Polymatech Co Ltd 熱伝導性シート
JP2002164481A (ja) * 2000-11-13 2002-06-07 Three M Innovative Properties Co 熱伝導性シート
JP2008280496A (ja) * 2007-04-11 2008-11-20 Hitachi Chem Co Ltd 熱伝導シート、その製造方法およびこれを用いた放熱装置
JP2009049334A (ja) 2007-08-23 2009-03-05 Shibuya Kogyo Co Ltd 導電性ボールの搭載装置
JP2008270849A (ja) 2008-08-15 2008-11-06 Fujitsu Microelectronics Ltd 焦点計測方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343332A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074303A (ja) * 2009-10-01 2011-04-14 Hitachi Chem Co Ltd 樹脂シート、その製造方法およびこれを用いたサーマルモジュール
JP2011230472A (ja) * 2010-04-30 2011-11-17 Hitachi Chem Co Ltd 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
JP2012158695A (ja) * 2011-02-01 2012-08-23 Hitachi Chemical Co Ltd 熱伝導シート及び放熱装置
JP2012255055A (ja) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology 無機有機複合組成物からなる複合材料及びその製造方法
JP2013177565A (ja) * 2012-02-08 2013-09-09 Nitto Denko Corp 熱伝導性シートの製造方法
US10087112B2 (en) 2013-06-03 2018-10-02 Denka Company Limited Resin-impregnated boron nitride sintered body and use for same
KR20160016857A (ko) 2013-06-03 2016-02-15 덴카 주식회사 수지 함침 질화 붕소 소결체 및 그 용도
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
US10377676B2 (en) 2013-06-03 2019-08-13 Denka Company Limited Resin-impregnated boron nitride sintered body and use for same
US10913879B2 (en) 2014-02-24 2021-02-09 Henkel IP & Holding GmbH Thermally conductive pre-applied underfill formulations and uses thereof
JP2016079353A (ja) * 2014-10-22 2016-05-16 株式会社Kri 高熱伝導有機無機コンポジット材料、その製造方法及び有機無機コンポジット膜
JP2015061924A (ja) * 2014-12-02 2015-04-02 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP7174973B2 (ja) 2015-08-06 2022-11-18 国立大学法人豊橋技術科学大学 複合絶縁板および複合絶縁板の製造方法
JP2021128940A (ja) * 2015-08-06 2021-09-02 国立大学法人豊橋技術科学大学 複合絶縁板および複合絶縁板の製造方法
JPWO2018030430A1 (ja) * 2016-08-08 2019-03-22 積水化学工業株式会社 熱伝導シート及びその製造方法
JP2020205426A (ja) * 2016-08-08 2020-12-24 積水化学工業株式会社 熱伝導シート及びその製造方法
JP7168617B2 (ja) 2016-08-08 2022-11-09 積水化学工業株式会社 熱伝導シート及びその製造方法
US11034623B2 (en) * 2017-03-29 2021-06-15 Denka Company Limited Thermal conductive member and heat dissipation structure including the same
US20200031723A1 (en) * 2017-03-29 2020-01-30 Denka Company Limited Thermal conductive member and heat dissipation structure including the same
JP2022060242A (ja) * 2017-06-02 2022-04-14 日本ゼオン株式会社 熱伝導シート及びその製造方法
JP7334809B2 (ja) 2017-06-02 2023-08-29 日本ゼオン株式会社 熱伝導シート及びその製造方法
US11618247B2 (en) 2019-11-01 2023-04-04 Sekisui Polymatech Co., Ltd. Thermally conductive sheet and production method for same

Also Published As

Publication number Publication date
EP2343332A4 (en) 2017-03-01
KR20110085991A (ko) 2011-07-27
TWI500752B (zh) 2015-09-21
US20110192588A1 (en) 2011-08-11
JP5882581B2 (ja) 2016-03-09
JP2014239227A (ja) 2014-12-18
CN104086929A (zh) 2014-10-08
CN102197069B (zh) 2016-12-21
EP2343332A1 (en) 2011-07-13
TW201026836A (en) 2010-07-16
JPWO2010047278A1 (ja) 2012-03-22
JP2016222925A (ja) 2016-12-28
CN102197069A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5882581B2 (ja) 熱伝導シート、その製造方法及びこれを用いた放熱装置
JP5407120B2 (ja) 熱伝導シート、その製造方法およびこれを用いた放熱装置
JP6341303B2 (ja) 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP5560630B2 (ja) 熱伝導シート、この熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
JP5423455B2 (ja) 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP5316254B2 (ja) 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
JP4743344B2 (ja) 放熱シート及び放熱装置
JP5740864B2 (ja) 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP5915525B2 (ja) 伝熱シート、伝熱シートの作製方法、及び放熱装置
WO2014208408A1 (ja) 熱伝導性シート、及びその製造方法、並びに半導体装置
JP5516034B2 (ja) 絶縁性の高い熱伝導シート及びこれを用いた放熱装置
JP2009149831A (ja) 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP5454300B2 (ja) 熱伝導シート、その製造方法及びこれを用いた放熱装置
JP5678596B2 (ja) 伝熱シート、伝熱シートの作製方法、及び放熱装置
US20240120254A1 (en) Thermally-conductive sheet and electronic device
JP2011184663A (ja) 熱伝導シート、その製造方法及びこれを用いた放熱装置
JP7131142B2 (ja) 熱伝導シート
WO2022176823A1 (ja) 熱伝導シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141752.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010534788

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117008897

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13125308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009821975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009821975

Country of ref document: EP