WO2010047207A1 - 制御装置及び制御方法 - Google Patents

制御装置及び制御方法 Download PDF

Info

Publication number
WO2010047207A1
WO2010047207A1 PCT/JP2009/066748 JP2009066748W WO2010047207A1 WO 2010047207 A1 WO2010047207 A1 WO 2010047207A1 JP 2009066748 W JP2009066748 W JP 2009066748W WO 2010047207 A1 WO2010047207 A1 WO 2010047207A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
charge
charging
power
turned
Prior art date
Application number
PCT/JP2009/066748
Other languages
English (en)
French (fr)
Inventor
善朗 中曽
隆市 釜賀
Original Assignee
富士通テン株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通テン株式会社, トヨタ自動車株式会社 filed Critical 富士通テン株式会社
Priority to CN2009801006549A priority Critical patent/CN102106055B/zh
Priority to US12/682,823 priority patent/US8179086B2/en
Priority to EP09821905.8A priority patent/EP2341596B1/en
Publication of WO2010047207A1 publication Critical patent/WO2010047207A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/30Preventing theft during charging
    • B60L2270/36Preventing theft during charging of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a control device and a control method for charging a power storage device for driving a vehicle mounted on a vehicle.
  • electric vehicles In recent years, electric vehicles, hybrid vehicles, fuel cell vehicles, etc. have attracted attention as environmentally friendly vehicles. These vehicles are equipped with an electric motor that generates a driving force and a power storage device that stores electric power supplied to the electric motor.
  • the hybrid vehicle is further equipped with an internal combustion engine as a power source in addition to the electric motor, and the fuel cell vehicle is equipped with a fuel cell as a DC power source for driving the electric motor.
  • a vehicle capable of directly charging a power storage device for driving an electric motor mounted on such a vehicle from an ordinary household power source is known. For example, by connecting a commercial power outlet provided in a house and a charging port provided in a vehicle with a charging cable, power is supplied from a general household power source to the power storage device.
  • a vehicle that can directly charge a power storage device mounted on the vehicle from a power source outside the vehicle is referred to as a “plug-in vehicle”.
  • Non-Patent Document 1 SA Electric Vehicle Conductive Charge Coupler
  • Non-Patent Document 2 General Requirements for Conductive Charging Systems for Electric Vehicles
  • a control pilot is defined as a control line that connects an EVSE (Electric Vehicle Supply Equipment) control circuit that supplies power to the vehicle from the premises wiring and a vehicle grounding unit via a control circuit on the vehicle side. Based on the pilot signal communicated via the line, the connection state of the charging cable, the availability of power supply from the power source to the vehicle, the rated current of the EVSE, and the like are determined.
  • EVSE Electric Vehicle Supply Equipment
  • the connector of the charging cable is provided with a connection switch for detecting that the connector is inserted into the charging inlet on the vehicle side, and a PISW signal, which is a status signal of the connection switch, is stored in the vehicle. Is input to a control device that controls charging.
  • the vehicle-side control device includes a CPU that functions as a power supply control unit that controls a power supply for controlling the vehicle system, and a CPU that functions as a charge control unit that controls charging of the power storage device.
  • the charging control unit determines whether or not charging is possible based on a charging mode signal input from the power control unit and controls charging of the power storage device, and the power control unit performs charging input from the charging control unit. Based on the completion signal, it is determined whether charging is in progress or charging is complete, and the control power supply is controlled.
  • the power supply control unit detects a rising edge (hereinafter referred to as “on edge”) of the PISW signal generated when the connector of the charging cable is inserted into the charging inlet on the vehicle side, the charging cable Is connected to the vehicle side, the charging mode signal is turned on to start the charging control unit, and when it is detected that the charging completion signal output from the charging control unit is turned on, it is determined that charging is finished.
  • the charging mode signal is turned off.
  • the charging control unit charges the power storage device mounted on the vehicle with the power supplied from the external power supply via the charging cable, and charging is performed. It was configured to turn on the charging completion signal when finished.
  • the control pilot signal is interrupted and charging is interrupted, but the plug connects to the external power supply again.
  • the control device cannot detect the ON edge of the PISW signal.
  • the control pilot signal is interrupted and charging is interrupted.
  • the on-edge of the PISW signal cannot be detected.
  • the control pilot signal which is a control signal output from the signal generation unit which is a control circuit incorporated in the charging cable
  • the power supply control unit When the on-edge is detected, the charging mode signal is turned on to activate the charging control unit.
  • the power control section can detect the on-edge of the control pilot signal.
  • the power control unit can detect the on-edge of the control pilot signal when the power failure is restored. It becomes like this.
  • the charge control unit activated by the power supply control unit charges the power storage device with power supplied from the external power supply, and when charging is completed, turns on the charge completion signal and outputs it to the power supply control unit, and detects the charge completion signal
  • the power supply control unit is configured to turn off the charging mode signal.
  • the charge control unit terminates the charging of the power storage device halfway and turns on the charge completion signal. It was comprised so that it might output to a power supply control part.
  • An object of the present invention is to provide a control device and a control method capable of properly restarting charging even when the connector of the charging cable is repeatedly inserted and removed in view of the above-described problems.
  • a first characteristic configuration of a control device is a control device that charges a power storage device mounted on a vehicle with electric power supplied from a power supply external to the vehicle via a charging cable.
  • the charging control signal is turned on when the signal generated from the signal generator provided in the charging cable and the signal corresponding to the power supply state from the power source changes from a state where there is no change for a certain time.
  • it includes a charge control unit for turning off the completion signal.
  • the charging completion signal indicating that charging is terminated is turned on by the charging control unit, and the charging completion signal
  • the charging mode signal is turned off by the power supply control unit that detects that is turned on.
  • the charge control unit that has turned on the charge completion signal turns off the charge completion signal when the power supply control unit detects that the charge mode signal has been turned off.
  • the charging completion signal is already reset by the power control unit when the power control unit turns on the charging mode signal again. It is possible to avoid an inconvenient situation in which the charge mode signal is reset by erroneously determining that the charging has ended.
  • FIG. 1 is an overall configuration diagram of a plug-in hybrid vehicle shown as an example of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is an alignment chart of the power split mechanism.
  • FIG. 3 is an overall configuration diagram of the electronic control device provided in the plug-in hybrid vehicle shown in FIG.
  • FIG. 4 is a schematic configuration diagram of an electronic control device and a controlled device related to charge control of the power storage device.
  • FIG. 5 is a circuit diagram for explaining in detail an electronic control unit related to charge control of the power storage device shown in FIG.
  • FIG. 6 is a circuit diagram of a peripheral circuit related to signal line disconnection detection control.
  • FIG. 7 is a timing chart of control signals and switches related to charge control of the power storage device.
  • FIG. 1 is an overall configuration diagram of a plug-in hybrid vehicle shown as an example of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is an alignment chart of the power split mechanism.
  • FIG. 3 is an overall configuration diagram of the electronic control device provided in the
  • FIG. 8A is an explanatory diagram showing a duty cycle with respect to the current capacity of the charging cable
  • FIG. 8B is a waveform diagram of a pilot signal generated by the signal generator.
  • FIG. 9 is a flowchart for explaining the power control step and the charge control step.
  • a hybrid vehicle 1 (hereinafter referred to as a “plug-in hybrid vehicle”) that is an example of a plug-in vehicle that can directly charge a high-voltage power storage device 50 mounted on the vehicle from a power source outside the vehicle.
  • a plug-in hybrid vehicle Is provided with an engine 10, a first MG (MotorMoGenerator) 11, and a second MG (Motor Generator) 12 as power sources.
  • the plug-in hybrid vehicle 1 has the engine 100, the first MG 110, and the second MG 120 connected to the power split mechanism 130 so that the plug-in hybrid vehicle 1 can be driven by driving force from at least one of the engine 100 and the second MG 120.
  • 1st MG11 and 2nd MG12 are comprised with an alternating current rotating electrical machine, for example, a three phase alternating current synchronous rotating machine provided with a U phase coil, a V phase coil, and a W phase coil is used.
  • an alternating current rotating electrical machine for example, a three phase alternating current synchronous rotating machine provided with a U phase coil, a V phase coil, and a W phase coil is used.
  • the power split mechanism 13 includes a sun gear, a pinion gear, a carrier, and a ring gear, and is configured by a planetary gear mechanism in which the pinion gear engages with the sun gear and the ring gear.
  • the carrier that supports the pinion gear so as to rotate is connected to the crankshaft of the engine 10, the sun gear is connected to the rotating shaft of the first MG 11, and the ring gear is connected to the rotating shaft of the second MG 12 and the speed reducer 14.
  • the plug-in hybrid vehicle 1 controls a hybrid vehicle ECU (hereinafter referred to as “HVECU”) 2 and an engine 10 that collectively control the power of the vehicle and function as a control device according to the present invention.
  • a plurality of electronic control devices such as an engine ECU 4 that controls the braking mechanism 9, a brake ECU 9 that controls the anti-theft function, and an anti-theft function, and a power storage device 50 based on commands from the HVECU 2.
  • the charging controlled device 5 for charging is mounted.
  • Each ECU incorporates a single or a plurality of microcomputers equipped with a CPU, ROM, and RAM.
  • a first power supply system 81, a second power supply system 82, and a third power supply system 83 are supplied with power from a low-voltage power storage device 8 (for example, DC 12 V) in order to supply electric power to each ECU.
  • the three power feeding systems are provided.
  • the first power supply system 81 is a power supply system that is directly supplied with power from the low-voltage power storage device 8 even when the ignition switch IGSW is in an OFF state.
  • the first power feeding system 81 is connected to a body monitoring ECU such as the anti-theft ECU 6 and the HVECU 2.
  • the second power supply system 82 is a power supply system that is supplied with power from the low-voltage power storage device 8 via the power supply relay RY2 when the ignition switch IGSW is in the ON state.
  • the second power feeding system 82 is connected to an ECU for controlling a power train system such as the engine ECU 4 and the brake ECU 9 and an ECU for controlling a body system such as a wiper and a door mirror.
  • the third power supply system 83 is a power supply system that is supplied with power from the low-voltage power storage device 8 via the power supply relay RY3.
  • the third power feeding system 83 is connected to ECUs related to charge control of the power storage device 50 such as the HVECU 2 and the charge controlled device 5.
  • the power train ECU and the charging ECU are connected to each other by a CAN (Controller Area Network) bus, the body ECU is connected to each other by a LIN (Local Interconnect Network) bus, and the CAN bus and the LIN bus are They are connected to each other through a gateway. That is, each ECU is configured to be able to transmit and receive necessary control information via these communication buses.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • Each ECU is equipped with a DC regulator that generates a predetermined level of control voltage (for example, DC5V) from a DC12V DC voltage supplied from the low-voltage power storage device 8, and a CPU in which the output voltage of the DC regulator is provided in each ECU.
  • a predetermined level of control voltage for example, DC5V
  • DC5V a predetermined level of control voltage supplied from the low-voltage power storage device 8
  • a CPU in which the output voltage of the DC regulator is provided in each ECU.
  • the HVECU 2 controls the power supply state from the low-voltage power storage device 8 via the second power supply system 82 and the third power supply system 83 based on the operation of the ignition switch IGSW.
  • the HVECU 2 includes a first microcomputer in which a sub CPU 22 that functions as a power supply control unit is incorporated, and a second microcomputer in which a main CPU 21 that functions as a travel control unit and a charge control unit is incorporated.
  • the two microcomputers are provided with ROMs 221 and 211 that store respective control programs, and RAMs 222 and 212 that are used as working areas during the respective controls.
  • the first microcomputer and the second microcomputer are provided with a DMA controller so that the CPUs 22 and 21 can read information stored in the RAMs 212 and 222, respectively, and a predetermined period (for example, via the DMA controller). , 8 msec).
  • the main CPU 21 is provided with a non-volatile memory for saving important control data from the RAM when the power is turned off.
  • information related to charging control such as the SOC of the power storage device 50 detected by the SOC detection device 51, information related to an abnormality output from each ECU when an abnormality occurs, and the like are stored for backup. .
  • the sub CPU 22 is constantly supplied with power from the first power supply system 81 via the regulator 23.
  • the ignition switch IGSW is turned on while the power supply relay RY2 is turned off, the sub CPU 22 turns on the power supply relay RY2 by turning on the field effect transistor (hereinafter referred to as “FET”) FET1. Then, power supply from the low-voltage power storage device 8 to the second power supply system 82 is started, and the power supply state is maintained.
  • FET field effect transistor
  • each ECU connected to the second power feeding system 82 is activated, and an intended control operation is executed.
  • a high-level control signal is input from the second power supply system 82 to one input terminal of the OR circuit 25 via the diode D4.
  • the main CPU 21 when the ignition switch IGSW is turned on, the main CPU 21 is also powered by the third power feeding system 83 via the regulator 24 and is activated.
  • the main CPU 21 outputs a high level signal to the other input terminal of the OR circuit 25, and maintains the power relay RY3 on.
  • the main CPU 21 When the sub CPU 22 detects that the ignition switch IGSW is turned off while the power supply relay RY2 is closed, and the information is transmitted to the main CPU 21, the main CPU 21 turns the ignition switch IGSW through the CAN bus. Is transmitted to prompt the shutdown processing of each ECU connected to the second power feeding system 82.
  • the main CPU 21 recognizes the end of the shutdown process of each ECU via the CAN bus, and when it finishes its own shutdown process, outputs a high level signal to the other input terminal of the OR circuit 25, and further sub CPU 22 By turning off the power supply relay RY2 via the power supply state, the power supply state to the second power supply system 82 and the third power supply system 83 is stopped.
  • the shutdown process refers to a process of stopping various actuators that are being driven, a process of saving control data such as SOC in a non-volatile memory, etc., when the ignition switch IGSW is turned off. Stop processing and saving processing of engine control data including various learning data such as air-fuel ratio to a non-volatile memory.
  • the sub CPU 22 shifts to the standby state which is the low power consumption mode after turning off the power supply relay RY2.
  • the standby state is a state in which the CPU executes a stop instruction or a halt instruction.
  • the sub CPU 22 When the ignition switch IGSW signal is input to the interrupt terminal PIG of the sub CPU 22 that has shifted to the standby state, the sub CPU 22 returns from the standby state to the normal operation state, and turns on the FET 1 to turn on the power relay RY2. Turn on. That is, the ignition switch IGSW signal becomes a wake-up signal for returning the sub CPU 22 that has entered the standby state to the normal state.
  • the ignition switch IGSW may be either a momentary switch or an alternate switch.
  • the HVECU 2 stores the current state in the RAM as flag data, and the operation of the switch Whether it is turned on or off at the edge may be determined based on the flag data.
  • a switch that rotates by inserting a key into a conventional key cylinder may be used.
  • the HVECU 2 controls the vehicle on the basis of the driver's accelerator operation or the like.
  • the HVECU 2 monitors the state of charge of the power storage device 50 (hereinafter referred to as “SOC (State Of Charge)”) via the SOC detection device 51 (see FIG. 4), and for example, the SOC is lower than a predetermined value.
  • SOC State Of Charge
  • the electric power generated by the first MG 11 is converted from alternating current to direct current through the inverter and is stored in the power storage device 50 after the voltage is adjusted through the converter. At this time, part of the power generated by the engine 10 is transmitted to the drive wheels 16 via the power split mechanism 13 and the speed reducer 14.
  • HVECU 2 assists the power of engine 10 by driving second MG 12 using at least one of the electric power stored in power storage device 50 or the electric power generated by first MG 11 when the SOC is within a predetermined range.
  • the driving force of the second MG 12 is transmitted to the driving wheel 16 via the speed reducer 14.
  • HVECU 2 stops engine 10 via engine ECU 4 and drives second MG 12 using electric power stored in power storage device 50.
  • the HVECU 2 controls the second MG 12 driven by the drive wheels 16 via the speed reducer 14 as a generator, and stores the electric power generated by the second MG 12 in the power storage device 50. That is, the second MG 12 is used as a regenerative brake that converts braking energy into electric power.
  • the HVECU 2 controls the engine 10, the first MG 11 and the second MG 12 based on the required torque of the vehicle calculated based on the operation amount of the accelerator pedal, the SOC of the power storage device 50, and the like.
  • FIG. 1 shows the case where the driving wheel 16 by the second MG 12 is a front wheel
  • the rear wheel may be used as the driving wheel 16 instead of the front wheel
  • both the front wheel and the rear wheel may be used as the driving wheel 16.
  • the high-voltage power storage device 50 is a chargeable / dischargeable DC power source, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the voltage of the power storage device 50 is, for example, about 200V.
  • the power storage device 50 is configured to be charged with electric power supplied from a power source outside the vehicle, in addition to electric power generated by the first MG 11 and the second MG 12.
  • the power buffer is capable of temporarily storing power generated by the first MG 11 and the second MG 12 and power from a power source outside the vehicle and supplying the stored power to the second MG 12, the type and configuration of the power storage device is limited. is not.
  • the high-voltage power storage device 50 is connected to the converter 15 via the system main relay SMR, and the output voltage adjusted to a predetermined DC voltage by the converter 15 is the first inverter 17 or the second inverter 18. After being converted into an alternating voltage in step (1), the first MG 11 or the second MG 12 is applied.
  • Converter 15 includes a reactor, two npn transistors that are power switching elements, and two diodes.
  • Reactor has one end connected to the positive electrode side of power storage device 50 and the other end connected to a connection node of two npn-type transistors.
  • Two npn transistors are connected in series, and a diode is connected in antiparallel to each npn transistor.
  • npn-type transistor for example, an IGBT (Insulated Gate Bipolar Transistor) can be preferably used.
  • a power switching element such as a power MOSFET (Metal / Oxide / Semiconductor / Field-Effect / Transistor) may be used.
  • the first inverter 17 includes a U-phase arm, a V-phase arm, and a W-phase arm connected in parallel to each other.
  • Each phase arm includes two npn-type transistors connected in series, and a diode is connected in antiparallel to each npn-type transistor.
  • a connection node of two npn transistors constituting each phase arm is connected to a corresponding coil end of the first MG 11.
  • the first inverter 17 converts the DC power supplied from the converter 15 into AC power and supplies it to the first MG 11, or converts the AC power generated by the first MG 11 into DC power and supplies it to the converter 15.
  • the second inverter 18 is also configured in the same manner as the first inverter 17, and the connection node of the two npn transistors constituting each phase arm is connected to the corresponding coil end of the second MG 12.
  • Second inverter 18 converts the DC power supplied from converter 15 into AC power and supplies it to second MG 12, or supplies AC power generated by second MG 12 to DC current and supplies it to converter 15. .
  • the HVECU 2 controls the first MG 11 and the second MG based on the driver's accelerator operation or the like.
  • HVECU 2 controls the power switching element of converter 15 to boost the output voltage of power storage device 50 to a predetermined level, and controls each phase arm of second inverter 18 to drive second MG 12.
  • the HVECU 2 controls each phase arm of the first inverter 17 to convert the generated power from the first MG 11 into DC power, and the converter 15 steps down to charge the power storage device 50.
  • the plug-in hybrid vehicle 1 includes a charging inlet 7 for connecting a charging cable 3 for supplying charging power from a power supply outside the vehicle to the power storage device 50.
  • the charging inlet 7 is provided at the rear part of the vehicle body, but it may be provided at the front part of the vehicle body.
  • Charge controlled device 5 detects SOC of power storage device 50 and outputs a detection signal to HVECU 2, system main relay SMR connecting power storage device 50 and a load circuit, AC power supplied from the outside of the vehicle And an AC / DC converter 52 that converts AC power supplied from outside the vehicle into DC power.
  • the electric power supplied from the outside of the vehicle through the charging cable 3 is converted into DC power by the AC / DC converter 52 which is a charging circuit through the LC filter 54 and then charged to the high-voltage power storage device 50.
  • the charging cable 3 is provided with a plug 32 connected to an external power source, for example, a commercial power outlet provided in a house, on one end side, and an attachment 34 provided with a connector 33 connected to the charging inlet 7 on the other end side. It has been.
  • the charging cable 3 includes a power cable 31 that supplies AC power from a commercial power source and a CCID (Charging Circuit Interrupt Device) 36, and the CCID 36 includes the power cable 31.
  • the relay 361 for intermittently supplying the AC power and the signal generation unit 362 are incorporated.
  • the signal generator 362 detects a pulse signal indicating the rated current of the power cable 31 (hereinafter referred to as “control pilot signal” or “CPLT signal”), and detects the signal level of the control pilot signal.
  • a circuit block such as a voltage detector 364 is provided. These circuit blocks incorporate a CPU, a ROM, a RAM, and the like that are operated by power supplied from an external power source.
  • the control pilot signal output from the signal generator 362 is a signal whose state changes in accordance with the state of power supply from the external power source, and is a signal used to execute a series of charging processes between the CCID 36 and the HVECU 2. is there.
  • the connector 33 incorporates a switch 332 having one end grounded, and a connection determination circuit 331 including a resistor R10 connected in series to the switch 332.
  • the output of the connection determination circuit 331 is input to the HVECU 2 as the cable connection signal PISW.
  • the attachment 34 is provided with a mechanical lock mechanism so that the connector 33 inserted into the charging inlet 7 is not detached, and an operation unit 35 including an operation button for releasing the lock mechanism.
  • the lock mechanism is released and the connector 33 can be detached by pressing the operation button.
  • the switch 332 of the connection determination circuit 331 is turned off in conjunction with the operation of the operation button.
  • the switch 332 returns to the on state.
  • the connector 33 of the charging cable 3 includes a pair of power line terminal pins connected to the power cable 31, a ground terminal pin, a terminal pin of the signal line L1 that outputs a control pilot signal, and a connection determination circuit.
  • a terminal pin of a cable connection signal line output from 331 is provided.
  • the charging inlet 7 is provided with a plurality of terminal pins respectively connected to each terminal pin provided on the connector 33, and a disconnection detection terminal pin short-circuited with the control pilot signal terminal.
  • the disconnection detection terminal pin is a signal pin used for detecting disconnection or short circuit of the signal line L2 on the vehicle side to which the control pilot signal is communicated.
  • the main CPU 21 executes charging control from the power supply outside the vehicle to the power storage device 50 mounted on the vehicle via the charging cable 3 in addition to the vehicle traveling control described above.
  • the HVECU 2 is provided with a first interface circuit 26, a second interface circuit 27, and a disconnection short circuit detection circuit 28 as peripheral circuits of the main CPU 21.
  • the first interface circuit 26 includes a buffer circuit for inputting a control pilot signal input via the diode D1, a first step-down circuit including a resistor R7 and a switch SW1 for reducing the signal level of the control pilot signal, a resistor R8, A second step-down circuit composed of the switch SW2 is provided.
  • the main CPU 21 detects the signal level of the control pilot signal output from the charging inlet 7 via the buffer circuit of the first interface circuit 26, and the signal level is detected by the first step-down circuit and / or the second step-down circuit. Change in two steps.
  • the second interface circuit 27 When the signal level of the control pilot signal input via the diode D2 becomes a negative level, the second interface circuit 27 inputs a low level signal to the main CPU 21, and when the signal level of the control pilot signal becomes a positive level, A resistance circuit (R1, R2, R3) for inputting a high-level control signal to the main CPU 21 and a buffer circuit are provided.
  • the disconnection short circuit detection circuit 28 includes a switch SW3 that is connected to the disconnection detection terminal pin and grounds the disconnection detection terminal pin via a resistor R9.
  • the main CPU 21 controls the switch SW3 to detect disconnection or short circuit of the signal line L2 on the vehicle side.
  • the main CPU 21 controls the engine 10, the first MG 11 and the second MG 12 based on the above-described required torque of the vehicle, the SOC of the power storage device 50, etc. Run control.
  • the main CPU 21 detects the cable connection signal PISW output from the connection determination circuit 331 and determines that the charging cable 3 is not connected, the main CPU 21 switches the switch SW3 of the disconnection short circuit detection circuit 28 to ON or OFF. Thus, it is configured to determine whether or not the signal line L2 on the vehicle side is disconnected or short-circuited.
  • the main CPU 21 determines that the signal line L2 is short-circuited, and the voltage of the signal line L2 when the switch SW3 is turned on. If the value is high level, it is determined that the signal line L2 is disconnected.
  • the plug-in charging process described later is allowed, and if the signal line L2 is abnormal, the plug-in charging process is prohibited and the monitor for reporting the abnormality is turned on.
  • the resistor R9 is a protective resistor for the switch SW3 and is set to a sufficiently small resistance value.
  • the HVECU 2 is provided with an edge detection circuit 29 that detects the on-edge of the control pilot signal as a peripheral circuit of the sub CPU 22.
  • the edge detection circuit 29 includes resistors R4, R5, and R6 that detect rising edges (hereinafter, referred to as “on edges”) of the control pilot signal, and the output of the edge detection circuit 29 is assigned for wakeup of the sub CPU 22. Connected to the lead-in terminal WU.
  • the sub CPU 22 is charged when the signal output from the signal generator 362 provided in the charging cable 3 and the signal corresponding to the power supply state from the power supply outside the vehicle changes from a state without change for a certain time.
  • the main CPU 21 is activated by turning on the signal, and the charging mode signal is turned off when the charging completion signal turned on by the main CPU 21 is detected.
  • the main CPU 21 charges the power storage device 50 via the charging cable 3 when detecting the charging mode signal turned on by the sub CPU 22, turns on the charging completion signal when the charging is completed, and thereafter When the sub CPU 22 detects that the charging mode signal is turned off, the charging completion signal is turned off.
  • the plug 32 of the charging cable 3 is connected to the outlet of the external power source and the connector 33 of the charging cable 3 is attached to the charging inlet 7 while the sub CPU 22 is in the standby state. Then, a control pilot signal having a DC voltage V1 (for example, + 12V) is output from the signal generator 362 (time t0 in FIG. 7).
  • V1 for example, + 12V
  • the sub CPU 22 wakes up at the on-edge of the control pilot signal input to the interrupt terminal WU.
  • the charging mode signal is DMA-transferred to the main CPU 21 (FIG. 9, SA3).
  • the main CPU 21 detecting this (FIG. 9, SB2) outputs a high level signal to the other input terminal of the OR circuit 25, and maintains the ON state of the power supply relay RY3 (FIG. 9, SB3).
  • a charging process to the high-voltage power storage device 50 that is, a charging control step is started via the control device 5 (FIG. 9, SB4).
  • the charge completion signal DMA-transferred from the main CPU 21 to the sub CPU 22 is stored in the RAM 212 in the initial state after being reset to off.
  • the main CPU 21 may be configured to detect the control signal output from the sub CPU 2 to the OR circuit 25 as a charge mode signal.
  • the main CPU 21 When the main CPU 21 detects the voltage V1 (+ 12V) of the control pilot signal at time t1, the main CPU 21 turns on the switch SW2 of the second step-down circuit to step down the voltage level of the control pilot signal from V1 to V2 (for example, + 9V). To do.
  • the signal generation unit 362 When the signal generation unit 362 detects that the signal level of the control pilot signal has decreased from V1 to V2 via the voltage detection unit 364 at time t2, the signal generation unit 362 uses a predetermined frequency (with a predetermined duty cycle generated by the oscillation unit 363). For example, a 1 kHz pulse signal is output as a control pilot signal.
  • the signal level of the control pilot signal output from the signal generator 362 is ⁇ V1, but the upper limit level is stepped down to V2 by the second step-down circuit provided in the HVECU2.
  • the duty cycle of the control pilot signal is a value set based on the current capacity that can be supplied from the external power source to the vehicle via the charging cable 3, and is for each charging cable. Is set in advance. For example, 20% is set for a charging cable with a current capacity of 12A, and 40% is set for a charging cable with a current capacity of 24A.
  • the main CPU 21 detects the duty cycle of the control pilot signal, recognizes the current capacity of the charging cable 3, closes the system main relay SMR (see FIG. 4) at time t3, and With the switch SW2 of the step-down circuit turned on, the switch SW1 of the first step-down circuit is further turned on to step down the voltage level of the control pilot signal from V2 to V3 (for example, + 6V).
  • the signal generator 362 When the signal generator 362 detects that the signal level of the control pilot signal has dropped from V2 to V3, the signal generator 362 turns on the relay 361 and supplies AC power from the power cable 31 to the vehicle side.
  • the main CPU 21 controls the AC / DC converter 52 (see FIG. 4) to charge the power storage device 50 based on the SOC or the like input via the SOC detection device 51 provided in the charge controlled device 5. To do.
  • the main CPU 21 When the main CPU 21 detects that the SOC of the power storage device 50 has reached a predetermined level at time t4, the main CPU 21 stores the SOC level in the RAM 212 and the nonvolatile memory, and stops the AC / DC converter 52 (FIG. 9, SB5). ).
  • the main CPU 21 opens the system main relay SMR (see FIG. 4), turns off the switch SW1 of the first step-down circuit, and boosts the voltage level from V3 to V2.
  • the signal generator 362 When the signal generator 362 detects that the control pilot signal has increased from V3 to V2, the signal generator 362 turns off the relay 361 and stops the supply of AC power to the vehicle.
  • the main CPU 21 turns off the switch SW2 of the second step-down circuit, returns the level of the control pilot signal to the original V1, and sets the charge completion signal stored in the RAM 212 to on (FIG. 9, SB6). ).
  • the control pilot signal stops oscillating, but it takes about 2 seconds for the control pilot signal to stop oscillating completely.
  • the sub CPU 22 detects that the oscillation of the control pilot signal input to the interrupt terminal WU has stopped at time t6, and stores it in the RAM 222 at time t7 when the state continues for a predetermined period (for example, 2 seconds).
  • the charged charging mode signal is reset to OFF (FIG. 9, SA6).
  • the sub CPU 22 outputs a low-level control signal to one input terminal of the OR circuit 25, turns off the power supply relay RY3 (FIG. 9, SA7), and returns to the standby state (FIG. 9, SA8).
  • the main CPU 21 When the main CPU 21 detects that the charging mode signal DMA-transferred from the sub CPU 22 is OFF at time t8 (FIG. 9, SB7), the main CPU 21 resets the charging completion signal stored in the RAM 212 to OFF (FIG. 9, SB8) Further, a shutdown process is performed in which data related to charging such as SOC stored in the RAM 212 is stored in the nonvolatile memory (FIG. 9, SB9).
  • the main CPU 21 outputs a low-level control signal to the other input terminal of the OR circuit 25, and turns off the power supply relay RY3 (FIG. 9, SB10).
  • the charging mode signal is turned on to start the charging control step by the main CPU 21.
  • the power control step for turning off the charge mode signal is executed by the sub CPU 22.
  • the power storage device mounted on the vehicle is charged by the electric power supplied from the external power source of the vehicle via the charging cable, and when the charging is completed, the charging completion signal is output.
  • the power supply control step detects that the charge mode signal is turned off after turning on and turning on the charge completion signal, the main CPU 21 executes a charge control step for turning off the charge completion signal.
  • the main CPU 21 detects that the power supply from the external power supply has stopped, such as when the connector of the charging cable 3 is disconnected from the vehicle, during the execution of the above-described charging control step, the charging is completed.
  • the signal is set to ON and the sub CPU 22 detects that the DMA-completed charge completion signal is turned ON, the sub CPU 22 is configured to reset the charge mode signal to OFF.
  • the main CPU 21 resets the charging completion signal to OFF when it detects that the charging mode signal has been reset to OFF when the charging completion signal is in the ON state, as in the control at time t8 described above. It is configured as follows.
  • the charging completion signal in the on state is immediately turned off by the main CPU 21, and the power supply to the main CPU 21 is completed after the charging control is finished.
  • the charging completion signal is not held in the ON state until the battery is stopped.
  • the sub CPU 22 detects the ON edge of the control pilot signal and outputs the ON charging mode signal to the main CPU 21, the charging completion signal transferred from the main CPU 21 is turned OFF, so the charging is completed. This is because there is no misjudgment.
  • the sub CPU 22 In the state where the oscillation of the control pilot signal is not completely stopped (the state at time t5 in FIG. 7), the sub CPU 22 immediately sends the charge mode signal based on the on-state charge completion signal DMA-transferred from the main CPU 21. When the state is turned off to shift to the standby state, the sub CPU 22 may wake up at the subsequent ON edge of the control pilot signal, and an inconvenient situation may occur in which the charging mode signal is set to ON.
  • the sub CPU 22 is configured to turn off the charging mode signal after detecting that the oscillation of the control pilot signal is stopped when detecting that the charging completion signal is turned on in the charging control step. Yes.
  • the present invention is applied to a series / parallel type hybrid vehicle in which the power of the engine 10 is divided by the power split mechanism 13 and can be transmitted to the drive wheels 160 and the first MG 11 has been described.
  • the present invention can also be applied to other types of hybrid vehicles.
  • the present invention can also be applied to a so-called series type hybrid vehicle that uses the engine 10 only to drive the first MG 11 and generates the driving force of the vehicle only by the second MG 12.
  • the present invention is applied to a hybrid vehicle in which only regenerative energy is recovered as electric energy among kinetic energy generated by the engine 10, a motor-assisted hybrid vehicle in which a motor assists the engine as necessary with the engine as a main power, and the like. Is also applicable.
  • Plug-in hybrid vehicle 2 HVECU (electronic control unit) 3: Charging cable 5: Charge controlled device 7: Charging inlet 8: Low-voltage power storage device 10: Engine 11: First MG (Motor Generator) 12: Second MG (Motor Generator) 13: Power split mechanism 14: Reducer 15: Converter 16: Drive wheel 17: First inverter 18: Second inverter 21: Main CPU 22: Sub CPU 23: Regulator (first feeding system) 24: Regulator (third feeding system) 25: OR element (HVECU) 26: First interface circuit (HVECU) 27: Second interface circuit (HVECU) 28: Ground circuit 29: Edge detection circuit (HVECU) 31: Power cable 32: Plug 33: Connector 35: Operation unit 36: CCID (Charging Circuit Interrupt Device) 50: Power storage device 51: SOC detection device 52: AC / DC converter 53: LC filter 331: Connection determination circuit (connector) 332: Switch (connector) 361: Relay (CCID) 362: signal generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 充電ケーブルのコネクタの挿脱が繰り返された場合でも適正に充電を再開できるように、制御装置は、車両外部の電源と車両を接続する充電ケーブルに備えられた信号生成部から出力され、電源からの電力供給状態に応じた信号が、一定時間変化がない状態から変化した場合に充電モード信号をオンして充電制御部を起動し、充電制御部によりオンされた充電完了信号を検出する場合に充電モード信号をオフする電源制御部と、電源制御部によりオンされた充電モード信号を検出する場合に充電ケーブルを介して車両に備えた蓄電装置を充電し、充電が終了した場合に充電完了信号をオンして、その後に電源制御部により充電モード信号がオフされたことを検出した場合に充電完了信号をオフする充電制御部とを備えている。

Description

制御装置及び制御方法
 本発明は、車両に搭載された車両駆動用の蓄電装置を充電するための制御装置及び制御方法に関する。
 環境に配慮した車両として、電気自動車やハイブリッド自動車、燃料電池自動車などが近年注目されている。これらの車両には、走行駆動力を発生する電動機と、その電動機に供給される電力を蓄える蓄電装置とが搭載されている。ハイブリッド自動車には、動力源として電動機に加えてさらに内燃機関が搭載され、燃料電池自動車には、電動機駆動用の直流電源として燃料電池が搭載されている。
 このような車両に搭載された電動機駆動用の蓄電装置を、一般家庭の電源から直接充電することが可能な車両が知られている。例えば、家屋に設けられた商用電源のコンセントと車両に設けられた充電口とを充電ケーブルで接続することにより、一般家庭の電源から蓄電装置へ電力が供給される。このように車両外部の電源から車両に搭載された蓄電装置を直接充電することが可能な車両を「プラグイン車」と称する。
 プラグイン車の規格は、アメリカ合衆国では「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ」(非特許文献1)により制定され、日本では「電気自動車用コンダクティブ充電システム一般要求事項」(非特許文献2)により制定されている。
 「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ」及び「電気自動車用コンダクティブ充電システム一般要求事項」では、一例として、コントロールパイロットに関する規格が定められている。コントロールパイロットは、構内配線から車両へ電力を供給するEVSE(Electric Vehicle Supply Equipment)の制御回路と車両の接地部とを車両側の制御回路を介して接続する制御線と定義されており、この制御線を介して通信されるパイロット信号に基づいて、充電ケーブルの接続状態や電源から車両への電力供給の可否、EVSEの定格電流などが判断される。
 充電ケーブルのコネクタには、当該コネクタが車両側の充電インレットに挿入されたことを検知するための接続スイッチが設けられ、当該接続スイッチの状態信号であるPISW信号が、車両に搭載された蓄電装置を充電制御する制御装置に入力されている。
 車両側の制御装置は、車両システムの制御用の電源を制御する電源制御部として機能するCPUと、蓄電装置を充電制御する充電制御部として機能するCPUを備えている。
 充電制御部は、電源制御部から入力される充電モード信号に基づいて充電可能な状態か否かを判断して蓄電装置の充電を制御し、電源制御部は、充電制御部から入力される充電完了信号に基づいて充電実行中であるか充電完了したかを判断して制御用の電源を制御する。
 具体的に説明すると、電源制御部は、充電ケーブルのコネクタが車両側の充電インレットに挿入されることにより発生するPISW信号の立ち上がりエッジ(以下、「オンエッジ」と記す。)を検出すると、充電ケーブルが車両側に接続されたと判定して、充電モード信号をオンして充電制御部を起動し、充電制御部から出力される充電完了信号がオンしたことを検知すると、充電が終了したと判断して充電モード信号をオフするように構成されていた。
 これに対応して、充電制御部は、電源制御部により充電モード信号がオンされると、充電ケーブルを介して外部電源から供給される電力により車両に搭載された蓄電装置を充電し、充電が終了すると充電完了信号をオンするように構成されていた。
特開平10-304582号公報
「エスエーイー エレクトリック ビークル コンダクティブ チャージ カプラ(SAE Electric Vehicle Conductive Charge Coupler)」、(アメリカ合衆国)、エスエーイー規格(SAE Standards)、エスエーイー インターナショナル(SAE International)、2001年11月 「電気自動車用コンダクティブ充電システム一般要求事項」、日本電動車両協会規格(日本電動車両規格)、2001年3月29日
 上述した制御装置では、電源制御部がPISW信号のオンエッジを検出することにより、充電制御部による充電制御が開始されるため、電源制御部がPISW信号のオンエッジを検出することができなければ、蓄電装置への充電が行なわれないという不都合があった。
 例えば、充電ケーブルが車両に接続されて充電が開始された後に、充電ケーブルのプラグが外部電源から引き抜かれると、コントロールパイロット信号が途絶して充電が中断されるが、プラグが再度外部電源に接続されても、制御装置がPISW信号のオンエッジを検出することができない。
 また、充電ケーブルが車両に接続されて充電が開始された後に、外部電源に停電が発生すると、コントロールパイロット信号が途絶して充電が中断されるが、その後停電が復旧しても、制御装置がPISW信号のオンエッジを検出することができない。
 このような場合に充電制御を再開するためは、一端車両から充電ケーブルを取り外して、再度充電ケーブルのコネクタを車両側の充電インレットに挿入するという煩雑な操作が必要であった。
 そこで、電源制御部は、PISW信号に代えて、充電ケーブルに組み込まれた制御回路である信号生成部から出力される制御信号であるコントロールパイロット信号が、一定時間変化がない状態から変化した場合のオンエッジを検出すると、充電モード信号をオンして充電制御部を起動するように構成されていた。
 このような構成によれば、充電ケーブルが車両に接続されて充電が開始された後に、充電ケーブルのプラグが外部電源から引き抜かれ、コントロールパイロット信号が途絶して充電が中断しても、プラグが再度外部電源に接続されると、電源制御部によりコントロールパイロット信号のオンエッジが検出できるようになる。
 また、充電ケーブルが車両に接続されて充電が開始された後に、外部電源に停電が発生して充電が中断しても、その後停電が復旧すると、電源制御部によりコントロールパイロット信号のオンエッジが検出できるようになる。
 電源制御部により起動された充電制御部は、外部電源から供給される電力により蓄電装置を充電し、充電が終了すると充電完了信号をオンして電源制御部に出力し、充電完了信号を検出した電源制御部は、充電モード信号をオフするように構成されていた。
 さらに、充電制御部により蓄電装置が充電されている間に充電ケーブルのコネクタが車両から引き抜かれると、充電制御部は、蓄電装置への充電を途中で終了して、充電完了信号をオンして電源制御部に出力するように構成されていた。
 そして、充電制御部から出力される当該充電完了信号は、充電制御が終了した後、充電制御部への給電が停止されるまで保持されていた。
 そのため、充電途中で充電ケーブルのコネクタが車両から引き抜かれ、その後充電制御部への給電が停止されるまでの間に、当該コネクタが車両の充電インレットに再接続された場合に、充電を再開できないという問題がった。
 電源制御部が、コントロールパイロット信号のオンエッジを検出して、充電制御部に充電モード信号を出力しても、充電制御部から出力されているオン状態の充電完了信号を検出すると、充電が終了したと判断して当該充電モード信号をオフするように動作するため、充電を再開できないのである。
 本発明の目的は、上述した問題に鑑み、充電ケーブルのコネクタの挿脱が繰り返された場合でも適正に充電を再開できる制御装置及び制御方法を提供する点にある。
 上述の目的を達成するため、本発明による制御装置の第一の特徴構成は、車両外部の電源から充電ケーブルを介して供給される電力により車両に搭載される蓄電装置を充電する制御装置であって、前記充電ケーブルに備えられた信号生成部から出力され、前記電源からの電力供給状態に応じた信号が、一定時間変化がない状態から変化した場合に充電モード信号をオンして充電制御部を起動し、充電制御部によりオンされた充電完了信号を検出する場合に充電モード信号をオフする電源制御部と、電源制御部によりオンされた充電モード信号を検出する場合に前記充電ケーブルを介して前記蓄電装置を充電し、充電が終了した場合に充電完了信号をオンして、その後に電源制御部により充電モード信号がオフされたことを検出した場合に充電完了信号をオフする充電制御部と、を備えている点にある。
 つまり、充電ケーブルのコネクタが車両から離脱された場合等、充電中に外部電源からの電力供給が停止した場合に、充電制御部により充電を終了する旨の充電完了信号がオンされ、充電完了信号がオンされたことを検出した電源制御部により充電モード信号がオフされる。
 充電完了信号をオンにした充電制御部は、電源制御部により充電モード信号がオフされたことを検出すると充電完了信号をオフする。
 従って、充電ケーブルのコネクタの挿脱が繰り返された場合に、電源制御部が充電モード信号を再度オンした時点で、既に電源制御部により充電完了信号がリセットされているので、電源制御部による充電が終了しているとの誤判定をして充電モード信号をリセットするような不都合な事態を回避できる。
 以上説明した通り、本発明によれば、充電ケーブルのコネクタの挿脱が繰り返された場合でも適正に充電を再開できる制御装置及び制御方法を提供することができるようになった。
図1は本発明の実施形態による車両の一例として示されるプラグインハイブリッド車の全体構成図である。 図2は動力分割機構の共線図である。 図3は図1に示すプラグインハイブリッド車に備えられた電子制御装置の全体構成図である。 図4は蓄電装置の充電制御に関わる電子制御装置及び被制御装置の概略構成図である。 図5は図4に示す蓄電装置の充電制御に関わる電子制御装置を詳細に説明するための回路図である。 図6は信号線の断線の検出制御に関連する周辺回路の回路図である。 図7は蓄電装置の充電制御に関わる制御信号とスイッチのタイミングチャートである。 図8(a)は充電ケーブルの電流容量に対するデューティサイクルを示す説明図であり、図8(b)は信号生成部によって生成されるパイロット信号の波形図である。 図9は電源制御ステップ及び充電制御ステップを説明するフローチャートである。
 以下、本発明による制御装置をプラグイン車に適用した場合の実施形態について説明する。
 図1に示すように、車両外部の電源から車両に搭載された高圧の蓄電装置50を直接充電することが可能なプラグイン車の一例であるハイブリッド車1(以下、「プラグインハイブリッド車」と記す。)は、動力源としてエンジン10、第1MG(Motor Generator)11、第2MG(Motor Generator)12を備えている。
 プラグインハイブリッド車1は、エンジン100及び第2MG120の少なくとも一方からの駆動力によって走行可能なように、エンジン100、第1MG110及び第2MG120が動力分割機構130に連結されている。
 第1MG11及び第2MG12は交流回転電機で構成され、例えば、U相コイル、V相コイル及びW相コイルを備える三相交流同期回転機が用いられる。
 動力分割機構13は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含み、ピニオンギヤがサンギヤ及びリングギヤと係合する遊星歯車機構で構成されている。
 ピニオンギヤを自転可能に支持するキャリアが、エンジン10のクランクシャフトに連結され、サンギヤが第1MG11の回転軸に連結され、リングギヤが第2MG12の回転軸及び減速機14に連結されている。
 図2に示すように、遊星歯車機構は、サンギヤ、リングギヤ、及びキャリアのうちの何れか二つについて回転数が決定されると、残り一つの回転数は一定に定まり、エンジン10、第1MG11、及び第2MG12の回転数が共線図上に直線で結ばれるように関係付けられている。
 図3に示すように、プラグインハイブリッド車1には、車両の動力を統括制御し、本発明による制御装置として機能するハイブリッドビークルECU(以下、「HVECU」と記す。)2、エンジン10を制御するエンジンECU4、制動機構を制御するブレーキECU9、盗難防止機能を実現する防盗ECU6等の複数の電子制御装置(以下、「ECU」と記す。)、及び、HVECU2からの指令に基づいて蓄電装置50を充電する充電被制御装置5が搭載されている。
 各ECUには、CPU、ROM、RAMを備えた単一または複数のマイクロコンピュータが組み込まれている。
 プラグインハイブリッド車1には、各ECUに電力を供給するために、低圧の蓄電装置8(例えば、DC12V)から給電される第一給電系統81、第二給電系統82、及び第三給電系統83の三つの給電系統が備えられている。
 第一給電系統81は、イグニッションスイッチIGSWがオフ状態であっても、低圧の蓄電装置8から直接給電される給電系統である。第一給電系統81には、防盗ECU6等のボディ監視系のECU、及びHVECU2が接続されている。
 第二給電系統82は、イグニッションスイッチIGSWがオン状態の場合に、低圧の蓄電装置8から電源リレーRY2を介して給電される給電系統である。第二給電系統82には、エンジンECU4、ブレーキECU9等のパワートレーン系を制御するECUや、ワイパーやドアミラー等のボディ系を制御するECUが接続されている。
 第三給電系統83は、低圧の蓄電装置8から電源リレーRY3を介して給電される給電系統である。第三給電系統83には、HVECU2、充電被制御装置5等、蓄電装置50の充電制御に関連するECUが接続されている。
 パワートレーン系ECU及び充電系ECUは、CAN(Controller Area Network)バスで相互に接続され、ボディ系のECUはLIN(Local Interconnect Network)バスで相互に接続され、さらに、CANバスとLINバスは、ゲートウェイを介して相互に接続されている。即ち、これらの通信バスを介して、各ECUが、互いに必要な制御情報を送受信できるように構成されている。
 各ECUには、低圧の蓄電装置8から供給されるDC12Vの直流電圧から所定レベルの制御電圧(例えばDC5V)を生成するDCレギュレータが搭載され、DCレギュレータの出力電圧が各ECUに備えられたCPU等の制御回路に供給される。
 HVECU2は、イグニッションスイッチIGSWの操作に基づいて、低圧の蓄電装置8から第二給電系統82及び第三給電系統83を介した給電状態を制御する。
 HVECU2は、電源制御部として機能するサブCPU22が組み込まれた第1マイクロコンピュータと、走行制御部及び充電制御部として機能するメインCPU21が組み込まれた第2マイクロコンピュータを備えている。
 二つのマイクロコンピュータには、夫々の制御プログラムが格納されたROM221,211と、夫々の制御時のワーキング領域として用いられるRAM222,212が設けられている。
 さらに、第1マイクロコンピュータ及び第2マイクロのコンピュータは、各CPU22,21が相互にRAM212、222に記憶された情報を読み取り可能なようにDMAコントローラが設けられ、DMAコントローラを介して所定周期(例えば、8msec)で通信可能なDMA通信線で接続されている。尚、メインCPU21には、電源オフ時に重要な制御データをRAMから退避するための不揮発性メモリが設けられている。
 RAM212及び不揮発性メモリには、SOC検出装置51で検出される蓄電装置50のSOC等の充電制御に関する情報や、異常発生時に各ECUから出力された異常に関する情報等がバックアップのために記憶される。
 サブCPU22は、第一給電系統81からレギュレータ23を介して常時給電されている。サブCPU22は、電源リレーRY2がオフされている状態で、イグニッションスイッチIGSWがオン操作されると、電界効果トランジスタ(以下、「FET」と記す。)FET1をオン制御することにより電源リレーRY2をオンして、低圧の蓄電装置8から第二給電系統82への給電を開始し、給電状態を維持する。
 電源リレーRY2がオンされると、第二給電系統82に接続された各ECUが起動して夫々所期の制御動作が実行される。
 第二給電系統82からの給電が開始されると、第二給電系統82からダイオードD4を介してOR回路25の一方の入力端子にハイレベルの制御信号が入力される。
 このときOR回路25から出力されるハイレベルの信号でFET2がオンすることにより、電源リレーRY3がオンし、低圧の蓄電装置8から第三給電系統83へも給電が開始される。
 従って、イグニッションスイッチIGSWがオン操作されると、メインCPU21も、第三給電系統83からレギュレータ24を介して給電されて起動する。メインCPU21は、OR回路25の他方の入力端子にハイレベルの信号を出力して、電源リレーRY3のオン状態を維持する。
 電源リレーRY2が閉じられている状態で、イグニッションスイッチIGSWがオフ操作されたことがサブCPU22により検出され、当該情報がメインCPU21に伝達されると、メインCPU21は、CANバスを介してイグニッションスイッチIGSWがオフされたことを送信して、第二給電系統82に接続されている各ECUのシャットダウン処理を促す。
 メインCPU21は、CANバスを介して各ECUのシャットダウン処理の終了を認識し、且つ、自身のシャットダウン処理を終えると、OR回路25の他方の入力端子にハイレベルの信号を出力し、さらにサブCPU22を介して電源リレーRY2をオフさせることにより、第二給電系統82及び第三給電系統83への給電状態を停止する。
 シャットダウン処理とはイグニッションスイッチIGSWのオフに伴って、駆動中の各種のアクチュエータの停止処理や、SOC等の制御データの不揮発性メモリへの退避処理等をいい、例えばエンジンECU4であれば、エンジン10の停止処理、空燃比等の各種の学習データを含むエンジン制御用のデータの不揮発性メモリへの退避処理をいう。
 サブCPU22は、電源リレーRY2をオフした後、低消費電力モードである待機状態に移行する。待機状態とは、CPUがストップ命令またはホールト命令を実行した状態である。
 待機状態に移行しているサブCPU22の割込端子PIGにイグニッションスイッチIGSW信号が入力されると、サブCPU22は待機状態から通常の動作状態に復帰して、FET1をオン制御して電源リレーRY2をオンする。つまり、イグニッションスイッチIGSW信号が、待機状態に移行したサブCPU22を通常状態に復帰させるウェイクアップ信号となる。
 尚、イグニッションスイッチIGSWは、モーメンタリスイッチまたはオルタネートスイッチの何れの型式のスイッチであってもよく、モーメンタリスイッチを用いる場合には、HVECU2が現在の状態をフラグデータとしてRAMに保持し、そのスイッチの操作エッジでオンされたのかオフされたのかをフラグデータに基づいて判断すればよい。また、従来のキーシリンダにキーを挿入して回転操作するスイッチであってもよい。
 以下では、イグニッションスイッチIGSWがオンされた後に、HVECU2による車両の走行制御について詳述する。HVECU2は、イグニッションスイッチIGSWがオン操作され、電源リレーRY2,RY3を閉じた後、運転者のアクセル操作等に基づいて車両を走行制御する。
 HVECU2は、SOC検出装置51(図4参照)を介して蓄電装置50の充電状態(以下、「SOC(State Of Charge)」と記す。)を監視し、例えばSOCが予め定められた値よりも低くなると、エンジンECU4を介してエンジン10を始動し、動力分割機構13を介して駆動される第1MG11の発電電力を蓄電装置50に蓄える。
 詳述すると、第1MG11によって発電された電力は、インバータを介して交流から直流に変換され、コンバータを介して電圧が調整された後に蓄電装置50に蓄えられる。このとき、エンジン10で発生した動力の一部は動力分割機構13及び減速機14を介して駆動輪16へ伝達される。
 また、HVECU2は、SOCが所定範囲内にあるとき、蓄電装置50に蓄えられた電力または第1MG11により発電された電力の少なくとも一方を用いて第2MG12を駆動し、エンジン10の動力をアシストする。第2MG12の駆動力は減速機14を介して駆動輪16に伝達される。
 さらに、HVECU2は、SOCが予め定められた値よりも高くなると、エンジンECU4を介してエンジン10を停止し、蓄電装置50に蓄えられた電力を用いて第2MG12を駆動する。
 一方、車両の制動時等に、HVECU2は、減速機14を介して駆動輪16により駆動される第2MG12を発電機として制御し、第2MG12により発電された電力を蓄電装置50に蓄える。つまり、第2MG12は、制動エネルギーを電力に変換する回生ブレーキとして用いられる。
 つまり、HVECU2は、アクセルペダルの操作量に基づいて算出される車両の要求トルクと、蓄電装置50のSOC等に基づいて、エンジン10、第1MG11及び第2MG12を制御する。
 図1では、第2MG12による駆動輪16が前輪である場合を示しているが、前輪に替えて後輪を駆動輪16としてもよく、前輪と後輪の双方を駆動輪16としてもよい。
 高圧の蓄電装置50は充放電可能な直流電源であり、例えば、ニッケル水素やリチウムイオン等の二次電池で構成されている。蓄電装置50の電圧は、例えば200V程度である。蓄電装置50には、第1MG11及び第2MG12によって発電される電力に加えて、車両外部の電源から供給される電力により充電されるように構成されている。
 蓄電装置50として、大容量のキャパシタを採用することも可能である。第1MG11及び第2MG12による発電電力や車両外部の電源からの電力を一時的に蓄え、その蓄えた電力を第2MG12へ供給可能な電力バッファであれば、蓄電装置の種類や構成が制限されるものではない。
 図4に示すように、高圧の蓄電装置50がシステムメインリレーSMRを介してコンバータ15に接続され、コンバータ15で所定の直流電圧に調整された出力電圧が、第1インバータ17または第2インバータ18で交流電圧に変換された後に、第1MG11または第2MG12に印加されるように構成されている。
 コンバータ15は、リアクトルと、電力スイッチング素子である2つのnpn型トランジスタと、2つのダイオードとを含む。リアクトルは、蓄電装置50の正極側に一端が接続され、2つのnpn型トランジスタの接続ノードに他端が接続されている。2つのnpn方トランジスタは直列に接続され、各npn型トランジスタにダイオードが逆並列に接続されている。
 npn型トランジスタとして、例えばIGBT(Insulated Gate Bipolar Transistor)を好適に用いることができる。また、npn型トランジスタに代えて、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いることも可能である。
 第1インバータ17は、互いに並列に接続されたU相アーム、V相アーム、及びW相アームを備えている。各相アームは、直列に接続された2つのnpn型トランジスタを含み、各npn型トランジスタにはダイオードが逆並列に接続されている。各相アームを構成する2つのnpn型トランジスタの接続ノードが、第1MG11の対応するコイル端に接続されている。
 第1インバータ17は、コンバータ15から供給される直流電力を交流電力に変換して第1MG11へ供給し、或いは、第1MG11により発電された交流電力を直流電力に変換してコンバータ15へ供給する。
 第2インバータ18も、第1インバータ17と同様に構成され、各相アームを構成する2つのnpn型トランジスタの接続ノードが、第2MG12の対応するコイル端に接続されている。
 第2インバータ18は、コンバータ15から供給される直流電力を交流電力に変換して第2MG12へ供給し、或は、第2MG12により発電された交流電力を直流電流に電力してコンバータ15へ供給する。
 HVECU2は、イグニッションスイッチIGSWがオン操作されると、運転者のアクセル操作等に基づいて、第1MG11や第2MGを制御する。
 例えば、HVECU2は、コンバータ15の電力スイッチング素子を制御して蓄電装置50の出力電圧を所定レベルに昇圧し、第2インバータ18の各相アームを制御して第2MG12を駆動する。
 例えば、HVECU2は、第1インバータ17の各相アームを制御して、第1MG11からの発電電力を直流電力に変換し、コンバータ15で降圧して蓄電装置50を充電する。
 図1及び図4に示すように、プラグインハイブリッド車1には、車両外部の電源から蓄電装置50へ充電電力を供給するための充電ケーブル3を接続するための充電インレット7を備えている。尚、図1では、充電インレット7が車体後部に設けられているが、車体前部に設けられるものであってもよい。
 充電被制御装置5は、蓄電装置50のSOCを検出してHVECU2へ検出信号を出力するSOC検出装置51、蓄電装置50と負荷回路を接続するシステムメインリレーSMR、車両外部から供給される交流電力のノイズを除去するLCフィルタ54、車両外部から供給される交流電力を直流電力に変換するAC/DCコンバータ52を備えている。
 充電ケーブル3を介して車両外部から供給される電力は、LCフィルタ54を介して充電回路であるAC/DCコンバータ52により直流電力に変換された後に、高圧の蓄電装置50に充電される。
 充電ケーブル3は、一端側に外部電源、例えば家屋に設けられた商用電源の電源コンセントと接続するプラグ32が設けられ、他端側に充電インレット7と接続するコネクタ33を備えたアタッチメント34が設けられている。
 図1及び図5に示すように、充電ケーブル3は、商用電源からの交流電力を供給する電力ケーブル31と、CCID(Charging Circuit Interrupt Device)36で構成され、CCID36には、電力ケーブル31を介した交流電力の供給を断続するリレー361と、信号生成部362が組み込まれている。
 信号生成部362は、電力ケーブル31の定格電流を示すパルス信号(以下、「コントロールパイロット信号」または「CPLT信号」と記す。)を生成する発振部363と、コントロールパイロット信号の信号レベルを検出する電圧検知部364等の回路ブロックを備えている。これらの回路ブロックは、外部電源から供給される電力によって動作するCPU,ROM,RAM等が組み込まれている。
 信号生成部362から出力されるコントロールパイロット信号は、外部電源からの電力供給状態に応じて状態が変化する信号で、CCID36とHVECU2との間で一連の充電処理を実行するために用いられる信号である。
 コネクタ33には、一端が接地されたスイッチ332と、スイッチ332に直列に接続された抵抗R10を備えた接続判定回路331が組み込まれている。接続判定回路331の出力が、ケーブル接続信号PISWとしてHVECU2に入力される。
 アタッチメント34には、充電インレット7に挿入されたコネクタ33が離脱しないように機械的なロック機構が設けられ、当該ロック機構を解除するための操作ボタンでなる操作部35が設けられている。
 充電インレット7から充電ケーブル3のコネクタ33を離脱させる際に、当該操作ボタンを押圧操作することにより、ロック機構が解除されてコネクタ33を離脱させることができる。当該操作ボタンが押圧操作されると、操作ボタンの操作に連動して接続判定回路331のスイッチ332がオフ状態となり、操作ボタンの押圧操作が解除されるとスイッチ332がオン状態に復帰する。
 図5に示すように、充電ケーブル3のコネクタ33には、電力ケーブル31と接続された一対の電力線の端子ピンと、グランド端子ピンと、コントロールパイロット信号を出力する信号線L1の端子ピンと、接続判定回路331から出力されるケーブル接続信号線の端子ピンが設けられている。
 充電用インレット7には、コネクタ33に設けた各端子ピンと夫々接続する複数の端子ピンと、コントロールパイロット信号端子と短絡された断線検出端子ピンが設けられている。
 断線検出端子ピンは、コントロールパイロット信号が通信される車両側の信号線L2の断線または短絡を検出するために用いられる信号ピンである。
 メインCPU21は、上述した車両の走行制御に加えて、充電ケーブル3を介して、車両外部の電源から車両に搭載された蓄電装置50への充電制御を実行する。
 図5に示すように、HVECU2には、メインCPU21の周辺回路として、第一インタフェース回路26と第二インタフェース回路27と断線短絡検出回路28が設けられている。
 第一インタフェース回路26は、ダイオードD1を介して入力されるコントロールパイロット信号を入力するバッファ回路と、コントロールパイロット信号の信号レベルを低下させる抵抗R7及びスイッチSW1でなる第一降圧回路と、抵抗R8及びスイッチSW2でなる第二降圧回路を備えている。
 メインCPU21は、充電インレット7から出力されるコントロールパイロット信号の信号レベルを、第一インタフェース回路26のバファ回路を介して検出するとともに、第一降圧回路及び/または第二降圧回路により当該信号レベルを二段階に変化させる。
 第二インタフェース回路27は、ダイオードD2を介して入力されるコントロールパイロット信号の信号レベルがマイナスレベルになると、メインCPU21にローレベルの信号を入力し、コントロールパイロット信号の信号レベルがプラスレベルになると、メインCPU21にハイレベルの制御信号を入力する抵抗回路(R1,R2,R3)とバッファ回路を備えている。
 断線短絡検出回路28は、断線検出端子ピンと接続され、抵抗R9を介して断線検出端子ピンを接地するスイッチSW3を備えている。
 メインCPU21は、スイッチSW3を制御して車両側の信号線L2の断線または短絡を検出する。
 既に説明したように、イグニッションスイッチIGSWがオンされると、メインCPU21は、上述した車両の要求トルクと蓄電装置50のSOC等に基づいて、エンジン10、第1MG11及び第2MG12を制御し、車両の走行制御を行う。
 このとき、メインCPU21は、接続判定回路331から出力されるケーブル接続信号PISWを検知して、充電ケーブル3が接続されていないと判断すると、断線短絡検出回路28のスイッチSW3をオンまたはオフに切り替えて、車両側の信号線L2が断線または短絡しているか否かを判別するように構成されている。
 図6に示すように、信号線L2が正常であれば、スイッチSW3をオフしたときに、電源から抵抗R1,R2,R3,ダイオードD2,D1,抵抗R4,R5を介して車両アースに流れる電流経路のうち、抵抗R4,R5により生じるハイレベルの電圧がメインCPU21に入力される。
 信号線L2が短絡していれば、スイッチSW3をオフしたときに、ローレベルの電圧がメインCPU21に入力される。
 また、信号線L2が正常であれば、スイッチSW3をオンしたときに、電源から抵抗R1,R2,R3,ダイオードD2,抵抗R9,スイッチSW3を介して車両アースに流れる電流経路のうち、抵抗R9により生じるローレベルの電圧がメインCPU21に入力される。
 信号線L2が断線していれば、スイッチSW3をオンしても、ハイレベルの電圧がメインCPU21に入力される。
 メインCPU21は、スイッチSW3をオフしたときに信号線L2の電圧値がハイレベルであり、スイッチSW3をオンしたときに信号線L2の電圧値がローレベルであれば、信号線L2が正常であると判定する。
 さらに、メインCPU21は、スイッチSW3をオフしたときに信号線L2の電圧値がローレベルであれば、信号線L2が短絡していると判定し、スイッチSW3をオンしたときに信号線L2の電圧値がハイレベルであれば、信号線L2が断線していると判定する。
 信号線L2が正常であれば、後述のプラグイン充電処理が許容され、信号線L2が異常であれば、プラグイン充電処理が禁止され、異常を報知するモニタが点灯される。
 尚、抵抗R9は、スイッチSW3の保護抵抗であり、十分に小さい抵抗値に設定されている。
 さらに、HVECU2には、サブCPU22の周辺回路として、コントロールパイロット信号のオンエッジを検出するエッジ検出回路29が設けられている。
 エッジ検出回路29は、コントロールパイロット信号の立ち上がりエッジ(以下、「オンエッジ」と記す。)を検出する抵抗R4,R5,R6を備え、当該エッジ検出回路29の出力がサブCPU22のウェイクアップ用の割込端子WUに接続されている。
 HVECU2により実行され、車両外部の電源から充電ケーブル3を介して供給される電力により車両に搭載される蓄電装置50を充電する充電制御について説明する。
 本発明によるサブCPU22は、充電ケーブル3に備えられた信号生成部362から出力され、車両外部の電源からの電力供給状態に応じた信号が、一定時間変化がない状態から変化した場合に充電モード信号をオンしてメインCPU21を起動し、メインCPU21によりオンされた充電完了信号を検出する場合に充電モード信号をオフするように構成されている。
 本発明によるメインCPU21は、サブCPU22によりオンされた充電モード信号を検出する場合に充電ケーブル3を介して蓄電装置50を充電し、充電が終了した場合に充電完了信号をオンして、その後にサブCPU22により充電モード信号がオフされたことを検出した場合に充電完了信号をオフするように構成されている。
 以下、詳述する。図7及び図9に示すように、サブCPU22が待機状態に移行している状態で、充電ケーブル3のプラグ32が外部電源のコンセントに接続され、充電ケーブル3のコネクタ33が充電インレット7に装着されると、信号生成部362から直流の電圧V1(例えば、+12V)のコントロールパイロット信号が出力される(図7の時刻t0)。
 図3及び図5に示すように、サブCPU22の割込端子WUに、信号線L1,L2を介して直流電圧V1のコントロールパイロット信号が入力されると、信号レベルが一定時間変化していない状態から電圧V1に変化すると、サブCPU22は待機状態から通常の動作状態に復帰する(図9、SA1)。
 つまり、サブCPU22は、割込端子WUに入力されているコントロールパイロット信号のオンエッジでウェイクアップする。
 待機状態から通常の動作状態に復帰したサブCPU22が、OR回路25の一方の入力端子にハイレベルの制御信号を出力すると、OR回路25の出力信号によりオンされたFET2により電源リレーRY3がオンされる(図9、SA2)。
 電源リレーRY3を介して第三給電系統83に接続された負荷に給電が開始されると、メインCPU21が起動する(図9、SB1)。
 サブCPU22は、充電制御の実行を要求するための充電モード信号をオンにセットしてRAM222に記憶すると、当該充電モード信号がメインCPU21にDMA転送される(図9、SA3)。
 これを検知したメインCPU21は(図9、SB2)、OR回路25の他方の入力端子にハイレベルの信号を出力して、電源リレーRY3のオン状態を維持し(図9、SB3)、充電被制御装置5を介して高圧の蓄電装置50への充電処理、つまり充電制御ステップを開始する(図9、SB4)。メインCPU21からサブCPU22にDMA転送される充電完了信号は、オフにリセットされた初期状態でRAM212に記憶されている。
 尚、メインCPU21は、サブCPU2からOR回路25に出力された制御信号を充電モード信号として検知するように構成してもよい。
 メインCPU21は、時刻t1で、コントロールパイロット信号の電圧V1(+12V)を検出すると、第二降圧回路のスイッチSW2をオンして、コントロールパイロット信号の電圧レベルをV1からV2(例えば、+9V)に降圧する。
 信号生成部362は、時刻t2で、電圧検知部364を介してコントロールパイロット信号の信号レベルがV1からV2に低下したことを検知すると、発振部363で発生させた所定のデューティサイクルで所定周波数(例えば1KHz)のパルス信号を、コントロールパイロット信号として出力する。
 尚、信号生成部362から出力されるコントロールパイロット信号の信号レベルは、±V1であるが、上限レベルはHVECU2に備えた第二降圧回路によりV2に降圧されている。
 図8(a),(b)に示すように、コントロールパイロット信号のデューティサイクルは、外部電源から充電ケーブル3を介して車両へ供給可能な電流容量に基づいて設定される値で、充電ケーブル毎に予め設定されている。例えば、電流容量が12Aの充電ケーブルでは20%、電流容量が24Aの充電ケーブルでは40%に設定されている。
 図7に戻り、メインCPU21は、コントロールパイロット信号のデューティサイクルを検出して、当該充電ケーブル3の電流容量を認識し、時刻t3で、システムメインリレーSMR(図4参照)を閉じて、第二降圧回路のスイッチSW2をオンした状態で、さらに第一降圧回路のスイッチSW1をオンして、コントロールパイロット信号の電圧レベルをV2からV3(例えば、+6V)に降圧する。
 信号生成部362は、コントロールパイロット信号の信号レベルがV2からV3に低下したことを検出すると、リレー361をオンして電力ケーブル31から車両側に交流電力を供給する。
 メインCPU21は、その後、充電被制御装置5に備えられたSOC検出装置51を介して入力されたSOC等に基づいて、AC/DCコンバータ52(図4参照)を制御して蓄電装置50を充電する。
 メインCPU21は、時刻t4で、蓄電装置50のSOCが所定レベルに達したことを検出すると、SOCのレベルをRAM212及び不揮発性メモリに記憶し、AC/DCコンバータ52を停止する(図9、SB5)。
 メインCPU21は、システムメインリレーSMR(図4参照)を開放し、第一降圧回路のスイッチSW1をオフして、電圧レベルをV3からV2に昇圧する。
 信号生成部362は、コントロールパイロット信号がV3からV2に上昇したことを検出すると、リレー361をオフして車両側への交流電力の供給を停止する。
 メインCPU21は、時刻t5で、第二降圧回路のスイッチSW2をオフして、コントロールパイロット信号のレベルを当初のV1に戻し、RAM212に記憶された充電完了信号をオンにセットする(図9、SB6)。
 信号生成部362は、コントロールパイロット信号がV2からV1に上昇したことを検出すると、コントロールパイロット信号の発振を停止するが、コントロールパイロット信号が完全に発振が停止するまでに2秒程度かかる。
 サブCPU22は、メインCPU21からDMA転送されたオン状態の充電完了信号を検出すると、コントロールパイロット信号の発振が停止するまで待機する(図9、SA5)。
 サブCPU22は、時刻t6で、割込端子WUに入力されたコントロールパイロット信号の発振が停止したことを検知し、その状態が所定期間(例えば、2秒間)継続すると、時刻t7で、RAM222に記憶した充電モード信号をオフにリセットする(図9、SA6)。
 続いて、サブCPU22は、ローレベルの制御信号をOR回路25の一方の入力端子に出力して電源リレーRY3をオフして(図9、SA7)、待機状態へ戻る(図9、SA8)。
 メインCPU21は、時刻t8で、サブCPU22からDMA転送された充電モード信号がオフ状態であることを検出すると(図9、SB7)、RAM212に記憶した充電完了信号をオフにリセットし(図9、SB8)、さらに、RAM212に記憶されたSOC等の充電に関連するデータを不揮発性メモリに格納するシャットダウン処理を行なう(図9、SB9)。
 その後、メインCPU21は、ローレベルの制御信号をOR回路25の他方の入力端子に出力して、電源リレーRY3をオフする(図9、SB10)。
 つまり、充電ケーブル3に備えた信号生成部362から出力されるコントロールパイロット信号が一定時間変化がない状態から変化したことを検出すると、充電モード信号をオンしてメインCPU21による充電制御ステップを起動し、充電制御ステップでオンされた充電完了信号を検出すると充電モード信号をオフする電源制御ステップが、サブCPU22により実行される。
 また、電源制御ステップでオンされた充電モード信号を検出すると、充電ケーブルを介して車両の外部電源から供給される電力により車両に搭載される蓄電装置を充電し、充電が終了すると充電完了信号をオンして、充電完了信号をオンした後に電源制御ステップにより充電モード信号がオフされたことを検出すると、充電完了信号をオフする充電制御ステップが、メインCPU21により実行される。
 さらに、本発明では、メインCPU21は、上述の充電制御ステップの実行中に、充電ケーブル3のコネクタが車両から離脱された場合等、外部電源からの電力供給が停止したことを検出すると、充電完了信号をオンにセットし、サブCPU22はDMA転送された充電完了信号がオンされたことを検出すると、充電モード信号をオフにリセットするように構成されている。
 そして、メインCPU21は、上述の時刻t8での制御と同様に、充電完了信号がオン状態であるときに、充電モード信号がオフにリセットされたことを検出すると、充電完了信号をオフにリセットするように構成されている。
 従って、本発明によれば、サブCPU22からDMA転送される充電モード信号がオフされると、メインCPU21によりオン状態にある充電完了信号が直ちにオフされ、充電制御が終了した後メインCPU21への給電が停止されるまで充電完了信号がオン状態に保持されることがない。
 そのため、充電途中で充電ケーブル3のコネクタが車両から引き抜かれ、その後メインCPU21への給電が停止されるまでの間に、当該コネクタが車両の充電インレットに再接続された場合であっても、確実に充電を再開することができるようになる。
 サブCPU22が、コントロールパイロット信号のオンエッジを検出して、メインCPU21にオン状態の充電モード信号を出力したときに、メインCPU21からDMA転送される充電完了信号がオフされているため、充電が終了したと誤判断することがないからである。
 尚、コントロールパイロット信号の発振が完全に停止していない状態(図7の時刻t5の状態)で、メインCPU21からDMA転送されたオン状態の充電完了信号に基づいて、サブCPU22が直ちに充電モード信号をオフして待機状態に移行すると、その後のコントロールパイロット信号のオンエッジでサブCPU22がウェイクアップして、充電モード信号をオンにセットするという不都合な事態が発生する虞がある。
 そのため、本発明では、サブCPU22は、充電制御ステップで充電完了信号がオンされたことを検出すると、コントロールパイロット信号の発振が停止したことを検出した後に充電モード信号をオフするように構成されている。
 上述の実施形態では、本発明が、動力分割機構13によりエンジン10の動力を分割して駆動輪160と第1MG11とに伝達可能なシリーズ/パラレル型のハイブリッド車に適用される場合を説明したが、本発明は、その他の形式のハイブリッド車にも適用可能である。
 例えば、本発明は、第1MG11を駆動するためにのみエンジン10を用い、第2MG12でのみ車両の駆動力を発生する、所謂シリーズ型のハイブリッド車にも適用可能である。
 また、本発明は、エンジン10で生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車や、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車等にも適用可能である。
 さらに、エンジン10を備えずに電力で走行するモータのみを備えた電気自動車や、燃料電池を搭載した車両であっても、外部電力により充電可能な蓄電装置を備えている全てのプラグイン車に適用可能である。
 上述の実施形態は何れも一具体例であり、各部の具体的な回路構成、制御構成は、本発明の作用効果を奏する範囲で適宜変更設計可能である。
1:プラグインハイブリッド車
2:HVECU(電子制御装置)
3:充電ケーブル
5:充電被制御装置
7:充電インレット
8:低圧の蓄電装置
10:エンジン
11:第1MG(Motor Generator)
12:第2MG(Motor Generator)
13:動力分割機構
14:減速機
15:コンバータ
16:駆動輪
17:第1インバータ
18:第2インバータ
21:メインCPU
22:サブCPU
23:レギュレータ(第一給電系統)
24:レギュレータ(第三給電系統)
25:論理和素子(HVECU)
26:第一インタフェース回路(HVECU)
27:第二インタフェース回路(HVECU)
28:接地回路
29:エッジ検出回路(HVECU)
31:電力ケーブル
32:プラグ
33:コネクタ
35:操作部
36:CCID(Charging Circuit Interrupt Device)
50:蓄電装置
51:SOC検出装置
52:AC/DCコンバータ
53:LCフィルタ
331:接続判定回路(コネクタ)
332:スイッチ(コネクタ)
361:リレー(CCID)
362:信号生成部(CCID)
363:発振部(信号生成部)
364:電圧検知部(信号生成部)
IGSW:イグニッションスイッチ
L2:信号線(車両側)
PISW:ケーブル接続信号
RY2:電源リレー(第二給電系統)
RY3:電源リレー(第三給電系統)
SMR:システムメインリレー(充電被制御装置)
SW1:スイッチ(第一降圧回路)
SW2:スイッチ(第二降圧回路)
SW3:スイッチ(断線検出回路)
WU:割込端子(オンエッジ信号)

Claims (5)

  1.  車両外部の電源から充電ケーブルを介して供給される電力により車両に搭載される蓄電装置を充電する制御装置であって、
     前記充電ケーブルに備えられた信号生成部から出力され、前記電源からの電力供給状態に応じた信号が、一定時間変化がない状態から変化した場合に充電モード信号をオンして充電制御部を起動し、充電制御部によりオンされた充電完了信号を検出する場合に充電モード信号をオフする電源制御部と、
     電源制御部によりオンされた充電モード信号を検出する場合に前記充電ケーブルを介して前記蓄電装置を充電し、充電が終了した場合に充電完了信号をオンして、その後に電源制御部により充電モード信号がオフされたことを検出した場合に充電完了信号をオフする充電制御部と、
    を備えている制御装置。
  2.  電源制御部は、充電制御部から出力される充電完了信号がオンにされたことを検出すると、制御信号の発振が停止した後に充電モード信号をオフすることを特徴とする請求項1記載の制御装置。
  3.  充電制御部は、電源制御部により充電モード信号がオフされたことを検出すると、充電完了信号をオフするとともに、充電に関連するデータをメモリに格納するシャットダウン処理を実行した後停止し、シャットダウン処理の実行中に充電モード信号がオンされたことを検出すると、再度、前記蓄電装置を充電することを特徴とする請求項1または2記載の制御装置。
  4.  車両外部の電源から充電ケーブルを介して供給される電力により車両に搭載される蓄電装置を充電する制御方法であって、
     前記充電ケーブルに備えられた信号生成部から出力され、前記電源からの電力供給状態に応じた信号が、一定時間変化がない状態から変化した場合に充電モード信号をオンして充電制御ステップを起動し、充電制御ステップでオンされた充電完了信号を検出する場合に充電モード信号をオフする電源制御ステップと、
     電源制御ステップでオンされた充電モード信号を検出する場合に前記充電ケーブルを介して前記蓄電装置を充電し、充電が終了した場合に充電完了信号をオンして、その後に電源制御ステップにより充電モード信号がオフされたことを検出した場合に充電完了信号をオフする充電制御ステップと、
    を備えている制御方法。
  5.  電源制御ステップは、充電制御ステップで充電完了信号がオンされたことを検出すると、制御信号の発振が停止した後に充電モード信号をオフすることを特徴とする請求項4記載の制御方法。
PCT/JP2009/066748 2008-10-23 2009-09-28 制御装置及び制御方法 WO2010047207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801006549A CN102106055B (zh) 2008-10-23 2009-09-28 控制装置及控制方法
US12/682,823 US8179086B2 (en) 2008-10-23 2009-09-28 Control apparatus and control method
EP09821905.8A EP2341596B1 (en) 2008-10-23 2009-09-28 Control device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008272583A JP5185065B2 (ja) 2008-10-23 2008-10-23 制御装置及び制御方法
JP2008-272583 2008-10-23

Publications (1)

Publication Number Publication Date
WO2010047207A1 true WO2010047207A1 (ja) 2010-04-29

Family

ID=42119252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066748 WO2010047207A1 (ja) 2008-10-23 2009-09-28 制御装置及び制御方法

Country Status (5)

Country Link
US (1) US8179086B2 (ja)
EP (1) EP2341596B1 (ja)
JP (1) JP5185065B2 (ja)
CN (1) CN102106055B (ja)
WO (1) WO2010047207A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089532A (ja) * 2012-10-29 2014-05-15 Fujitsu Ten Ltd 制御システム
JP5681178B2 (ja) * 2010-06-04 2015-03-04 本田技研工業株式会社 車両の制御装置
CN110696638A (zh) * 2019-10-25 2020-01-17 桂林客车发展有限责任公司 一种电动汽车增程器控制方法
US10792989B2 (en) 2016-10-26 2020-10-06 Audi Ag Hybrid drivetrain for a hybrid-drive motor vehicle
US10864814B2 (en) 2016-10-26 2020-12-15 Audi Ag Hybrid drive train for a hybrid-drive motor vehicle
US10882387B2 (en) 2016-10-26 2021-01-05 Audi Ag Hybrid drive train for a hybrid-drive motor vehicle
US10883574B2 (en) 2016-10-26 2021-01-05 Audi Ag Hybrid drive train for a hybrid-driven motor vehicle
US11420513B2 (en) 2016-10-26 2022-08-23 Audi Ag Hybrid drive train for a hybrid-driven motor vehicle

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493025B2 (en) * 2010-02-23 2013-07-23 Optimization Technologies, Inc. Electric vehicle charging station advertising systems
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
DE102010042328A1 (de) * 2010-10-12 2012-04-12 Robert Bosch Gmbh Verfahren zum Überwachen des Ladebetriebs eines Energiespeichers in einem Fahrzeug und Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug
JP5506052B2 (ja) 2010-12-28 2014-05-28 トヨタ自動車株式会社 車両用充電装置
JP5817186B2 (ja) * 2011-04-07 2015-11-18 トヨタ自動車株式会社 車両の制御装置および車両
US9399402B2 (en) 2011-04-21 2016-07-26 Lear Corporation Proximity detection circuit for on-board vehicle charger
JP2012257432A (ja) * 2011-06-10 2012-12-27 Asti Corp 車両用充電器
US9045051B2 (en) * 2011-07-13 2015-06-02 Control Module, Inc. System for identifying an electric vehicle connected to electric vehicle service equipment
US9211798B2 (en) 2011-07-28 2015-12-15 Lear Corporation Multistage power supply system and method for providing uninterrupted power to vehicle circuitry
US8466656B2 (en) 2011-09-09 2013-06-18 General Electric Company Charging devices and methods for charging electrically powered vehicles
US9233611B2 (en) 2011-11-10 2016-01-12 Lear Corporation Proximity detection circuit having short protection
JP5832249B2 (ja) * 2011-11-14 2015-12-16 Asti株式会社 車両用充電器
JP5692021B2 (ja) * 2011-11-25 2015-04-01 日立金属株式会社 車両用充電装置
GB2501480B (en) * 2012-04-24 2017-03-15 Nissan Motor Mfg (Uk) Ltd Electrical supply equipment
US9333864B2 (en) 2012-05-31 2016-05-10 Lear Corporation Wake-by-control pilot circuit for onboard battery charger
JP5790884B2 (ja) * 2012-08-01 2015-10-07 トヨタ自動車株式会社 外部給電コネクタ、車両および外部給電システム
US9436944B2 (en) 2012-08-29 2016-09-06 Optimization Technologies, Inc. Electric vehicle charging station mobile device payment system
JP2014060893A (ja) * 2012-09-19 2014-04-03 Panasonic Corp 充電装置
US8897943B2 (en) * 2013-03-15 2014-11-25 Deere & Company Battery electric hybrid drive for a combine harvester
DE102013004638A1 (de) * 2013-03-16 2014-09-18 Volkswagen Aktiengesellschaft Schaltung und Verfahren zur Signalübertragung
DE102013210707A1 (de) * 2013-06-07 2014-12-11 Bayerische Motoren Werke Aktiengesellschaft Stromloses Ziehen eines Ladesteckers
JP5931833B2 (ja) * 2013-11-05 2016-06-08 三菱重工業株式会社 充電装置、車両充電システム、充電方法、及びプログラム
US9573476B2 (en) * 2014-06-09 2017-02-21 GM Global Technology Operations LLC Method and apparatus for controller wakeup using control pilot signal from charge port
DE102014213757A1 (de) * 2014-07-15 2016-01-21 Bayerische Motoren Werke Aktiengesellschaft Diebstahlschutzmaßnahme für Ladekabel
KR101567239B1 (ko) * 2014-10-02 2015-11-13 현대자동차주식회사 차량용 충전기 및 그 제어파일럿 신호 검출 방법
DE102015206047A1 (de) * 2015-04-02 2016-10-06 Volkswagen Aktiengesellschaft Adapter für ein Ladestecksystem
JP6569122B2 (ja) * 2015-08-05 2019-09-04 株式会社オートネットワーク技術研究所 車載充電システム
JP6344350B2 (ja) * 2015-09-18 2018-06-20 横河電機株式会社 制御装置
KR101866059B1 (ko) * 2016-09-26 2018-06-11 현대자동차주식회사 차량 배터리 충전 시스템 및 방법
DE102016218599A1 (de) * 2016-09-27 2018-03-29 Robert Bosch Gmbh Stromrichter, elektrisches Antriebssystem und Verfahren zum Aufladen eines elektrischen Energiespeichers
DE112018003011T5 (de) * 2017-06-14 2020-03-05 Hitachi Automotive Systems, Ltd. Steuervorrichtung für fahrzeugmontierte Einrichtung
US11228190B2 (en) 2018-12-04 2022-01-18 Cohelios, Llc Mobile power system with bidirectional AC-DC converter and related platforms and methods
JP7047744B2 (ja) * 2018-12-13 2022-04-05 トヨタ自動車株式会社 充電制御装置及びそれを備える車両
JP7234960B2 (ja) * 2020-02-07 2023-03-08 トヨタ自動車株式会社 電動車両および電動車両の制御方法
CN113608003A (zh) * 2021-06-25 2021-11-05 无锡芯朋微电子股份有限公司 一种电压检测电路、电源系统及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123519A (ja) * 1993-10-18 1995-05-12 Toyota Motor Corp 充電制御装置および接続装置
JPH10178701A (ja) * 1996-12-18 1998-06-30 Honda Motor Co Ltd 電気自動車における充電ケーブルの異常検出装置
JPH10304582A (ja) 1997-04-25 1998-11-13 Toyota Motor Corp インダクティブ充電装置およびインダクティブ充電システム
JP2007228695A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 充電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709202A (en) * 1982-06-07 1987-11-24 Norand Corporation Battery powered system
JPH06343205A (ja) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd 電気自動車の充電装置
JP3724226B2 (ja) * 1998-10-07 2005-12-07 日産自動車株式会社 バッテリ充電システム
US7177690B2 (en) * 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) * 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
JP4014212B2 (ja) * 2003-11-19 2007-11-28 富士通テン株式会社 電子制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123519A (ja) * 1993-10-18 1995-05-12 Toyota Motor Corp 充電制御装置および接続装置
JPH10178701A (ja) * 1996-12-18 1998-06-30 Honda Motor Co Ltd 電気自動車における充電ケーブルの異常検出装置
JPH10304582A (ja) 1997-04-25 1998-11-13 Toyota Motor Corp インダクティブ充電装置およびインダクティブ充電システム
JP2007228695A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 充電装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"General Requirements for Electric Vehicle Conductive Charging System", JAPAN ELECTRIC VEHICLE ASSOCIATION STANDARD, 29 March 2001 (2001-03-29)
"SAE Electric Vehicle Conductive Charge Coupler", SAE STANDARDS, SAE INTERNATIONAL, November 2001 (2001-11-01)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5681178B2 (ja) * 2010-06-04 2015-03-04 本田技研工業株式会社 車両の制御装置
US9203120B2 (en) 2010-06-04 2015-12-01 Honda Motor Co., Ltd. Control apparatus for vehicle
JP2014089532A (ja) * 2012-10-29 2014-05-15 Fujitsu Ten Ltd 制御システム
US9889762B2 (en) 2012-10-29 2018-02-13 Fujitsu Ten Limited Control system for charging vehicle battery in response to an unstable state
US10792989B2 (en) 2016-10-26 2020-10-06 Audi Ag Hybrid drivetrain for a hybrid-drive motor vehicle
US10864814B2 (en) 2016-10-26 2020-12-15 Audi Ag Hybrid drive train for a hybrid-drive motor vehicle
US10882387B2 (en) 2016-10-26 2021-01-05 Audi Ag Hybrid drive train for a hybrid-drive motor vehicle
US10883574B2 (en) 2016-10-26 2021-01-05 Audi Ag Hybrid drive train for a hybrid-driven motor vehicle
US11420513B2 (en) 2016-10-26 2022-08-23 Audi Ag Hybrid drive train for a hybrid-driven motor vehicle
CN110696638A (zh) * 2019-10-25 2020-01-17 桂林客车发展有限责任公司 一种电动汽车增程器控制方法

Also Published As

Publication number Publication date
JP2010104133A (ja) 2010-05-06
EP2341596B1 (en) 2020-04-22
CN102106055A (zh) 2011-06-22
US8179086B2 (en) 2012-05-15
JP5185065B2 (ja) 2013-04-17
CN102106055B (zh) 2013-05-08
EP2341596A4 (en) 2017-03-08
EP2341596A1 (en) 2011-07-06
US20110057611A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2010047207A1 (ja) 制御装置及び制御方法
WO2010044317A1 (ja) 制御装置及び充電制御方法
JP4726939B2 (ja) 制御システム、制御装置、及びケーブル接続状態判定方法
US8258744B2 (en) Charging control apparatus for vehicle
JP5399780B2 (ja) プラグイン車両の制御装置及び制御方法
JP5301948B2 (ja) 制御装置
RU2428328C1 (ru) Устройство и способ для активации системы транспортного средства
JP2010148213A (ja) 充電制御システム、制御装置、充電制御方法及び制御方法
JP2009100569A (ja) 車両および充電ケーブル
JP2010022163A (ja) 充電ケーブル、充電制御装置、及び車両充電システム
JP2011024317A (ja) 制御装置及び制御方法
JP2011004448A (ja) 充電ケーブル、電子制御装置、及び充電ケーブルの異常検知方法
JP2012085481A (ja) 電動車両
JP2009278706A (ja) 電動車両の充電装置
JP2012249384A (ja) 車両
JP5136602B2 (ja) 電子制御装置
JP2010104141A (ja) 制御装置、充電制御装置、及び充電制御システム
JP2010081661A (ja) 制御装置
JP2010239670A (ja) 車両の制御装置及び制御方法
JP2010148159A (ja) 制御装置、及び、制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100654.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12682823

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009821905

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE