WO2010047029A1 - 伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト - Google Patents

伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト Download PDF

Info

Publication number
WO2010047029A1
WO2010047029A1 PCT/JP2009/004094 JP2009004094W WO2010047029A1 WO 2010047029 A1 WO2010047029 A1 WO 2010047029A1 JP 2009004094 W JP2009004094 W JP 2009004094W WO 2010047029 A1 WO2010047029 A1 WO 2010047029A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber composition
belt
ethylene
rubber
Prior art date
Application number
PCT/JP2009/004094
Other languages
English (en)
French (fr)
Inventor
奥野茂樹
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2010534660A priority Critical patent/JP5315355B2/ja
Publication of WO2010047029A1 publication Critical patent/WO2010047029A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the present invention relates to a rubber composition for a transmission belt and a transmission belt using the same.
  • a belt body is formed of a rubber composition in which an ethylene- ⁇ -olefin elastomer is used as a raw material rubber and an unsaturated carboxylic acid metal salt is blended therein.
  • Patent Document 1 discloses a rubber composition for a transmission belt in which a synthetic rubber whose main chain is a fully saturated rubber is used as a raw rubber, and an organic peroxide and an ethylenically unsaturated carboxylic acid metal salt are blended with the raw rubber. ing.
  • Patent Document 2 discloses a rubber for a transmission belt in which EPDM having an ethylene content of 50 to 65% by mass is used as a raw rubber, and 32 to 100 parts by mass of an unsaturated carboxylic acid metal salt is blended with 100 parts by mass of the raw rubber. A composition is disclosed.
  • Patent Document 3 discloses a rubber composition for a transmission belt in which an ethylene- ⁇ -olefin elastomer is used as a raw rubber, and 1 to 30 parts by weight of an unsaturated carboxylic acid metal salt is blended with 100 parts by weight of the raw rubber. ing.
  • An object of the present invention is to stably perform a high load transmission over a long period of time by forming a pulley contact portion of a transmission belt with a rubber composition whose friction coefficient due to belt running is small.
  • the rubber composition for a power transmission belt of the present invention comprises an ethylene propylene diene monomer rubber (hereinafter referred to as “EPDM”) having an ethylene content of 66 to 85% by mass, an ethylene butene copolymer (hereinafter referred to as “EBM”), and an ethylene octene copolymer. (Hereinafter referred to as “EOM”) 32 to 100 parts by mass of ⁇ , ⁇ -unsaturated carboxylic acid metal salt with respect to 100 parts by mass of ethylene- ⁇ -olefin elastomer containing 5% by mass or more and less than 40% by mass in total. Parts are blended and no elastomer other than the ethylene- ⁇ -olefin elastomer is blended, or less than 10 parts by weight is blended.
  • EPDM ethylene propylene diene monomer rubber
  • EBM ethylene butene copolymer
  • EOM ethylene octene copolymer
  • the average ethylene content of EPDM contained in the ethylene- ⁇ -olefin elastomer is preferably 66 to 85% by mass.
  • the ethylene- ⁇ -olefin elastomer preferably contains 5 to 95% by mass of ethylene propylene rubber (hereinafter referred to as “EPM”).
  • the transmission belt of the present invention has a pulley contact portion formed of the above rubber composition for a transmission belt.
  • the rubber composition for a transmission belt includes an ethylene- ⁇ -olefin containing at least one of EPDM, EBM, and EOM having an ethylene content of 66 to 85% by mass in a total amount of 5% by mass or more and less than 40% by mass. While 100 to 100 parts by mass of the elastomer is mixed with 32 to 100 parts by mass of an ⁇ , ⁇ -unsaturated carboxylic acid metal salt, no elastomer other than the ethylene- ⁇ -olefin elastomer is blended or the blending amount is 10 Since the amount is less than part by mass, the change with time of the friction coefficient due to belt running is reduced. Moreover, since the pulley contact part is formed with the rubber composition for transmission belts, the transmission belt of this invention can perform high load transmission stably over a long period of time.
  • FIG. 1 shows a flat belt B according to the embodiment.
  • This flat belt B is suitably used for high load transmission applications, and specific applications include, for example, drive transmission applications for blowers, compressors, and generators.
  • the flat belt B is formed, for example, with a belt circumferential length of 60 to 4000 mm, a belt width of 3 to 100 mm, and a belt thickness of 0.3 to 10 mm.
  • the rubber composition for the transmission belt forming the belt body rubber layer 11 (hereinafter referred to as the transmission belt rubber composition R) is made of an ethylene- ⁇ -olefin elastomer as the raw rubber, and the ethylene- ⁇ -olefin elastomer is At least one of EPDM, EBM, and EOM having an ethylene content of 66 to 85% by mass is contained in a total amount of 5% by mass or more and less than 40% by mass.
  • the rubber composition R for a transmission belt has a coefficient of friction due to belt running when the total amount of EPDM, EBM, and EOM in which the ethylene content in the ethylene- ⁇ -olefin elastomer is 66 to 85% by mass is less than 5% by mass.
  • the stability over time deteriorates, whereas when it is 40% by mass or more, the cold resistance deteriorates.
  • EPDM having an ethylene content of 66 to 85% by mass examples include, for example, Nordel IP 4770R (ethylene content 70% by mass) manufactured by Dow Chemical, Nordel 4820P (ethylene content 85% by mass), and EP57F (ethylene content 66 manufactured by JSR). Mass%), EP51 (ethylene content 67 mass%), Lanxess Buna EP G6470 (ethylene content 70 mass%), and the like.
  • EBMs examples include Engage 7447 and Engage 7270 manufactured by Dow Chemical.
  • EOM examples include Engage 8130 and Engage 8003 manufactured by Dow Chemical.
  • examples of the elastomer other than EPDM, EBM, and EOM having an ethylene content of 66 to 85% by mass include EPDM and EPM having an ethylene content of less than 66% by mass. It is done.
  • the ethylene- ⁇ -olefin elastomer preferably contains 5 to 95% by mass of EPM, more preferably 5 to 90% by mass, and further preferably 5 to 70% by mass. preferable.
  • the raw rubber is formed of an ethylene- ⁇ -olefin elastomer containing 5 to 95% by mass of EPM, more excellent stability over time can be obtained.
  • EPM examples include EP11 manufactured by JSR, Esprene 201 manufactured by Sumitomo Chemical Co., Ltd., and the like.
  • the EPDM contained in the ethylene- ⁇ -olefin elastomer preferably has an average ethylene content of 66 to 85% by mass.
  • the average ethylene content of EPDM means the sum of the ethylene contents of each EPDM multiplied by the mass percentage of the EPDM.
  • the transmission belt rubber composition R may be composed of only an ethylene- ⁇ -olefin elastomer, but may contain an elastomer other than the ethylene- ⁇ -olefin elastomer for the purpose of imparting hydrophilicity or other properties. .
  • the transmission belt rubber composition R contains an elastomer other than the ethylene- ⁇ -olefin elastomer, the blending amount thereof is less than 10 parts by mass with respect to 100 parts by mass of the ethylene- ⁇ -olefin elastomer.
  • the amount of the elastomer other than the ethylene- ⁇ -olefin elastomer is too large, the mechanical properties and durability inherent in the ethylene- ⁇ -olefin elastomer may be adversely affected. Since it is less than 10 parts by mass with respect to 100 parts by mass of the ethylene- ⁇ -olefin elastomer, such an adverse effect does not occur.
  • elastomers other than ethylene- ⁇ -olefin elastomers include hydrogenated acrylonitrile rubber (H-NBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), and alkylated chlorosulfonated polyethylene. (ACSM), epichlorohydrin (ECO), butadiene rubber (BR), polyisoprene rubber (IR), chlorinated polyethylene (CM) and the like.
  • the rubber composition R for power transmission belts contains an ⁇ , ⁇ -unsaturated carboxylic acid metal salt as a co-crosslinking agent.
  • the blending amount of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt is 32 to 100 parts by weight, preferably 32 to 80 parts by weight, and preferably 32 to 70 parts by weight with respect to 100 parts by weight of the ethylene- ⁇ -olefin elastomer. More preferably, it is a part.
  • the blending amount of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt is less than 32 parts by mass, sufficient elastic modulus cannot be obtained, and high load transmission becomes unstable.
  • the amount is more than 100 parts by mass, the bending fatigue resistance is deteriorated, cracks are generated, and the belt may be decomposed.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid metal salt include zinc dimethacrylate, magnesium dimethacrylate, and zinc diacrylate.
  • the ⁇ , ⁇ -unsaturated carboxylic acid metal salt is contained in, for example, High Cross ZT manufactured by Seiko Chemical Co., SR636 manufactured by Sartomer.
  • examples of the compounding agent other than the ⁇ , ⁇ -unsaturated carboxylic acid metal salt include, for example, a crosslinking agent, a crosslinking assistant, a crosslinking accelerator, an anti-aging agent, Reinforcing materials, fillers, reinforcing agents, plasticizers, processing aids, stabilizers, colorants and the like can be mentioned.
  • a crosslinking agent such as a crosslinking agent, a crosslinking assistant, a crosslinking accelerator, an anti-aging agent, Reinforcing materials, fillers, reinforcing agents, plasticizers, processing aids, stabilizers, colorants and the like can be mentioned.
  • a crosslinking agent such as a crosslinking assistant, a crosslinking accelerator, an anti-aging agent, Reinforcing materials, fillers, reinforcing agents, plasticizers, processing aids, stabilizers, colorants and the like can be mentioned.
  • a crosslinking agent such as a crosslinking assistant, a crosslinking
  • the rubber composition R for the transmission belt may contain short fibers.
  • the short fibers include aramid short fibers, nylon short fibers, polyester short fibers, cotton short fibers, carbon short fibers, and the like.
  • the short fiber may be composed of a single species or a plurality of species.
  • the content of the short fiber is, for example, 1 to 10 parts by mass and preferably 2 to 5 parts by mass with respect to 100 parts by mass of the raw rubber.
  • the short fiber has a fiber length of 1 to 5 mm, for example.
  • the short fibers are preferably arranged so as to be oriented in the belt width direction. As a result, it is possible to prevent the rubber from flowing excessively during belt molding and disturbing the arrangement of the core wires 12.
  • the short fiber may be subjected to an adhesion treatment such as a treatment of heating after being immersed in an RFL aqueous solution or a treatment of being dried after being immersed in rubber paste.
  • an adhesion treatment such as a treatment of heating after being immersed in an RFL aqueous solution or a treatment of being dried after being immersed in rubber paste.
  • the short fibers may not be blended in the rubber layer other than the rubber layer holding the core wires 12, From the viewpoint of suppressing the occurrence of slip and abnormal noise during water, short fibers may be blended.
  • the rubber composition R for a transmission belt having the above configuration 32 to 100 parts by mass of an ⁇ , ⁇ -unsaturated carboxylic acid metal salt is blended with 100 parts by mass of the ethylene- ⁇ -olefin elastomer, and ethylene- ⁇ - Since an elastomer other than an olefin elastomer is not blended or less than 10 parts by mass is blended, a sufficiently high elastic modulus can be obtained, and a change with time of the friction coefficient due to belt running is reduced, and a high load transmission is possible. .
  • this rubber composition R for power transmission belts can be molded after preparing an uncrosslinked rubber composition by a conventionally known method.
  • an uncrosslinked rubber composition is obtained by, for example, charging an elastomer and a compounding agent into a closed kneader and kneading. Then, the prepared uncrosslinked rubber composition is subjected to belt molding and simultaneously heated and pressurized to be crosslinked to obtain a crosslinked rubber composition.
  • the flat belt B has a configuration in which a core wire 12 is embedded in the belt main body rubber layer 11 so as to form a spiral extending in the belt length direction and having a pitch in the belt width direction.
  • the belt main body rubber layer 11 is configured in a band shape having a horizontally long cross section.
  • the belt main body rubber layer 11 is formed of the above-described rubber composition R for power transmission belts.
  • the core wire 12 is made of twisted yarn such as aramid fiber, vinylon fiber, polyester fiber, polyketone fiber, carbon fiber, poly-p-phenylenebenzobisoxazole (PBO) fiber, glass fiber, and the like.
  • the core wire 12 has a core wire diameter of 0.1 to 3 mm.
  • the core wire 12 may be subjected to an adhesion process such as a process of heating after being immersed in an RFL aqueous solution in advance or a process of drying after being immersed in rubber paste.
  • the pulley contact portion is formed from the rubber composition for the transmission belt, in which the change in the friction coefficient due to belt running is small, so that high load transmission is stably performed over a long period of time. be able to.
  • the flat belt B can be manufactured by a conventionally known method.
  • the flat belt B has a single-layer structure of the belt main body rubber layer 11.
  • the present invention is not particularly limited thereto.
  • a laminated body of three layers of the core wire holding layer 23 in which the core wire 22 is embedded and the outer rubber layer 24 on the belt outer peripheral side may be used.
  • at least the inner rubber layer 21 serving as the pulley contact portion may be configured using the rubber composition of the present invention.
  • it is preferable that short fibers are blended in the core wire holding layer 23.
  • the inner rubber layer 21 and the outer rubber layer 24 may not be blended with short fibers in order to obtain a high coefficient of friction, and may be blended with short fibers in order to suppress slippage and abnormal noise generation when wet. Also good.
  • the belt outer peripheral side of the flat belt B may be covered with a reinforcing cloth.
  • the transmission belt is described as a flat belt, but it may be a friction transmission belt such as a V-belt or a V-ribbed belt, or a meshing transmission belt such as a toothed belt.
  • a friction transmission belt such as a V-belt or a V-ribbed belt
  • a meshing transmission belt such as a toothed belt.
  • the transmission belt is a V-ribbed belt
  • at least the rib pulley contact portion of the V-rib is formed of the transmission belt rubber composition R.
  • the transmission belt is a toothed belt
  • at least the toothed pulley contact portion of the tooth portion is formed of the rubber composition R for the transmission belt.
  • Test evaluation belt The flat belts of Examples 1 to 18 and Comparative Examples 1 to 8 below were produced. Each configuration is also shown in Tables 1 to 4.
  • a rubber composition for forming a belt main body rubber layer was prepared.
  • EPDM (1) Suditomo Chemical Co., Ltd., trade name: Esprene 301, ethylene content 62 mass%) 70 mass% and EPDM (2) (Dow Chemical Co., trade name: Nordel IP 4770R, ethylene content 70 mass%) 30
  • the material rubber kneaded at a rate of mass% is used as a raw rubber, and 100 parts by weight of this raw rubber, 50 parts by weight of carbon black (manufactured by Tokai Carbon Co., Ltd., trade name: Seast SO), process oil (manufactured by Nippon San Oil Co., Ltd., commercial product) Name: Thumper 2280) 5 parts by mass, zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name: 3 types of zinc oxide), 5 parts by mass, stearic acid (manufactured by Shin Nippon Chemical Co., Ltd., trade name: stearic acid (manu
  • a flat belt was produced using this uncrosslinked rubber composition as a belt body rubber, and this was designated as Example 1.
  • the flat belt had a belt width of 10 mm and a belt thickness of 1.0 mm, and the short fibers were provided so as to be oriented in the belt width direction.
  • the core wire is composed of aramid fiber (manufactured by Teijin Ltd., trade name: Technora) twisted yarn (890 dtex / 1 ⁇ 3, core wire diameter 0.58 mm, core wire winding pitch 0.65 mm) in the belt thickness direction. Just placed in the center.
  • Example 2 Except that the rubber composition forming the belt body rubber layer was kneaded at a ratio of 95 mass% of EPDM (1) and 5 mass% of EPDM (2) as a raw rubber, it had the same configuration as in Example 1. A flat belt was produced and used as Example 2. The raw rubber of this rubber composition had an EPDM average ethylene content of 62.4% by mass.
  • Example 3 The rubber composition forming the belt body rubber layer was kneaded at a ratio of 95% by mass of EPDM (1) and 5% by mass of EPDM (3) (manufactured by Dow Chemical, trade name: Nordel 4820P, ethylene content: 85% by mass). A flat belt having the same configuration as in Example 1 was produced except that the material rubber was used as raw material rubber. The raw rubber of this rubber composition had an average ethylene content of EPDM of 63.2% by mass.
  • Example 4 Except that the rubber composition forming the belt body rubber layer was kneaded at a ratio of 95% by mass of EPDM (1) and 5% by mass of EBM (product name: Engage 7467) as a raw rubber. Thus, a flat belt having the same configuration as in Example 1 was produced, and this was designated as Example 4. The raw rubber of this rubber composition had an average ethylene content of EPDM of 62% by mass.
  • Example 5 Except that the rubber composition forming the belt body rubber layer was kneaded at a ratio of 95% by mass of EPDM (1) and 5% by mass of EOM (product name: Engage 8003) as raw material rubber. A flat belt having the same configuration as that of Example 1 was produced. The raw rubber of this rubber composition had an average ethylene content of EPDM of 62% by mass.
  • the rubber composition forming the belt body rubber layer is a ratio of 5% by mass of EPM (manufactured by JSR, trade name: EP11, ethylene content 52% by mass), 65% by mass of EPDM (1) and 30% by mass of EPDM (2).
  • EPM manufactured by JSR, trade name: EP11, ethylene content 52% by mass
  • EPDM ethylene content 52% by mass
  • a flat belt having the same configuration as that of Example 1 was produced except that the rubber kneaded was used as a raw material rubber.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 64.5% by mass.
  • Example 7 Example 1 except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 10 mass% of EPM, 60 mass% of EPDM (1) and 30 mass% of EPDM (2) as a raw rubber. A flat belt having the same structure as that of Example 7 was produced. The raw rubber of this rubber composition had an average ethylene content of EPDM of 64.7% by mass.
  • Example 8 Example 1 except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 30 mass% EPM, 35 mass% EPDM (1) and 35 mass% EPDM (2) as a raw rubber. A flat belt having the same configuration as that of Example 8 was produced. The raw rubber of this rubber composition had an average ethylene content of EPDM of 66% by mass.
  • Example 9 Example 1 except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 50 mass% EPM, 25 mass% EPDM (1) and 25 mass% EPDM (2) as a raw rubber. A flat belt having the same structure as that of Example 9 was produced. The raw rubber of this rubber composition had an average ethylene content of EPDM of 66% by mass.
  • Example 10 A flat belt having the same configuration as in Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 70% by mass of EPM and 30% by mass of EPDM (2) as a raw rubber. This was designated Example 10.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 70% by mass.
  • Example 11 A flat belt having the same configuration as in Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 90% by mass of EPM and 10% by mass of EPDM (2) as raw material rubber. This was designated as Example 11.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 70% by mass.
  • Example 12 A flat belt having the same configuration as in Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 95% by mass of EPM and 5% by mass of EPDM (2) as raw material rubber. This was designated Example 12.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 70% by mass.
  • Example 13 A flat belt having the same configuration as in Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 95% by mass of EPM and 5% by mass of EPDM (3) as raw material rubber. This was designated as Example 13.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 85% by mass.
  • Example 14 A flat belt having the same configuration as that of Example 1 was prepared except that a rubber composition for forming the belt main body rubber layer was kneaded at a ratio of 95% by mass of EPM and 5% by mass of EBM was used as a raw rubber. Example 14 was taken.
  • Example 15 A flat belt having the same configuration as that of Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 95% by mass of EPM and 5% by mass of EOM as a raw rubber. Example 15 was taken.
  • Example 16> A flat belt having the same configuration as that of Example 8 was prepared except that the amount of the co-crosslinking agent in the rubber composition forming the belt main body rubber layer was 70 parts by mass. This rubber composition had a content of zinc dimethacrylate of 49 parts by mass.
  • Example 17 A flat belt having the same configuration as in Example 8 was prepared except that the blending amount of the co-crosslinking agent of the rubber composition forming the belt main body rubber layer was 142.9 parts by mass, and this was designated as Example 17.
  • This rubber composition had a zinc dimethacrylate content of 100 parts by mass.
  • Example 18 A flat belt having the same configuration as that of Example 16 was prepared except that 8 parts by mass of H-NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Zetpol 2020) was further added to the rubber composition forming the belt main body rubber layer. This was taken as Example 18.
  • H-NBR manufactured by Nippon Zeon Co., Ltd., trade name: Zetpol 2020
  • Example 19 32.2 parts by mass of zinc diacrylate (trade name: ACT ZA, manufactured by Kawaguchi Chemical Industry Co., Ltd.) instead of the co-crosslinking agent containing zinc dimethacrylate was added to the rubber composition forming the belt body rubber layer.
  • a flat belt having the same configuration as that of Example 6 was prepared, and this was taken as Example 19.
  • Example 20 32.2 parts by mass of magnesium dimethacrylate (trade name: High Cloth GT) instead of a co-crosslinking agent containing zinc dimethacrylate was added to the rubber composition forming the belt body rubber layer. Except for this, a flat belt having the same configuration as in Example 6 was produced.
  • magnesium dimethacrylate trade name: High Cloth GT
  • Example 3 A flat belt having the same configuration as in Example 1 was prepared except that the rubber composition forming the belt main body rubber layer was kneaded at a ratio of 50 mass% of EPM and 50 mass% of EPDM as raw material rubber. This was designated as Comparative Example 3.
  • the raw rubber of this rubber composition had an average ethylene content of EPDM of 70% by mass.
  • Example 7 A flat belt having the same configuration as in Example 8 was produced except that the amount of the co-crosslinking agent in the rubber composition forming the belt main body rubber layer was 150 parts by mass. This rubber composition had a zinc dimethacrylate content of 105 parts by mass.
  • FIG. 3 shows a pulley layout of the belt running test machine 30 used in the heat resistant running test. This belt running test machine 30 is also used in a cold running test described later.
  • the belt running test machine 30 is provided in a large diameter flat pulleys 31 and 32 having a pulley diameter of 120 mm (upper side is a driven pulley and lower side is a driving pulley) and are arranged in the middle in the vertical direction between them.
  • the driven flat pulley 33 having a small diameter of 50 mm is arranged so that the belt winding angle around the driven flat pulley 33 is 90 °.
  • Each of the flat belts (belt width 10 mm) of Examples 1 to 18 and Comparative Examples 1 to 8 was wound around the belt running test machine 30. Then, a load torque of 8.8 kW is applied to the large diameter flat pulley 31 and a dead weight of 98 N is applied to the small diameter flat pulley 33 to the side, and the driving flat pulley 32 is rotated clockwise at 4800 rpm at an ambient temperature of 120 ° C. The time until the flat belt was disassembled and travel became impossible was measured. The belt running was terminated when 500 hours passed from the start of the belt running.
  • a noise meter was installed at a position 50 mm above the large-diameter flat pulley 31 and a noise level of 5 dB or more was observed with respect to the noise level 1 minute after the start of belt running. , And evaluated as “abnormal noise generation”.
  • FIG. 4 shows a friction coefficient measuring device 40.
  • the friction coefficient measuring device 40 includes a flat pulley 42 having a pulley diameter of 60 mm and a load cell 41 provided on the side thereof.
  • the flat pulley 42 is made of an iron-based material S45C. Note that the test piece described later extends horizontally from the load cell 41 toward the flat pulley 42 and is then wound around the flat pulley 42, that is, provided so that the winding angle around the flat pulley 42 is 90 °. .
  • each test piece (flat belt) was fixed to the load cell 41 and wound around the flat pulley 42 on the load cell 41, and a weight 43 of 1.75 kg was attached to the other end and suspended. Subsequently, the flat pulley 42 is rotated at a rotational speed of 43 rpm in a direction in which the weight 43 is to be pulled down, and at 60 seconds after the start of rotation, the load cell 41 is placed between the load cell 41 of the test piece and the flat pulley 42. The tension Tt applied to the horizontal part was measured. The tension Ts applied to the vertical portion between the flat pulley 42 and the weight 43 of the test piece was 17.15 N corresponding to the weight of the weight 43.
  • the stability of the friction coefficient was evaluated by calculating the change over time of the friction coefficient from the value of the friction coefficient after 24 hours, after 100 hours, and after 500 hours.
  • ⁇ Cold resistance test> Each of the flat belts (belt width 10 mm) of Examples 1 to 18 and Comparative Examples 1 to 8 was wound around the belt running test machine 30. Then, a dead weight of 98 N was given to the small diameter flat pulley 33 on the side, and a cold running test was performed at an ambient temperature of ⁇ 45 ° C. In the cold resistance running test, the cycle was repeated for 5 seconds and stopped for 2 seconds for a total of 7 seconds until a crack occurred on the rubber surface of the belt. The belt running was terminated when 1000 cycles were repeated.
  • Table 9 shows the results of comparison of Examples 8, 16, and 17 and Comparative Examples 6 and 7 in which the content of zinc dimethacrylate was varied based on the results of Tables 5-7.
  • Examples 6 to 18 in which EPM is contained in the ethylene- ⁇ -olefin elastomer in an amount of 5% by mass or more are compared with Examples 1 to 5 in which EPM is not contained. Then, it turns out that the former has a smaller time-dependent change of a friction coefficient than the latter.
  • the present invention is useful for a rubber composition and a transmission belt using the rubber composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

伝動ベルト用ゴム組成物は、エチレン含量が66~85質量%のエチレンプロピレンジエンモノマーゴム、エチレンブテンコポリマー、及びエチレンオクテンコポリマーの少なくとも1種類を合計で5質量%以上40質量%未満含むエチレン-α-オレフィンエラストマー100質量部に対し、α,β-不飽和カルボン酸金属塩32~100質量部が配合され、エチレン-α-オレフィンエラストマー以外のエラストマーが配合されていない又は10質量部未満が配合されたものである。伝動ベルト(B)は、上記の伝動ベルト用ゴム組成物でプーリ接触部分が形成されている。

Description

伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト
 本発明は、伝動ベルト用ゴム組成物及びそれを用いた伝動ベルトに関する。
 近年、伝動ベルトは高負荷伝動が可能であることが要求されている。
 高負荷伝動を行う伝動ベルトとして、エチレン-α-オレフィンエラストマーを原料ゴムとしてこれに不飽和カルボン酸金属塩が配合されたゴム組成物でベルト本体を形成することが行われている。
 特許文献1には、主鎖が完全飽和ゴムである合成ゴムを原料ゴムとして、この原料ゴムに有機過酸化物及びエチレン性不飽和カルボン酸金属塩を配合した伝動ベルト用ゴム組成物が開示されている。
 特許文献2には、エチレン含量が50~65質量%のEPDMを原料ゴムとして、この原料ゴム100質量部に対して不飽和カルボン酸金属塩を32~100質量部が配合された伝動ベルト用ゴム組成物が開示されている。
 特許文献3には、エチレン-α-オレフィンエラストマーを原料ゴムとして、この原料ゴム100質量部に対して不飽和カルボン酸金属塩が1~30質量部配合された伝動ベルト用ゴム組成物が開示されている。
特開平4-339843号公報 国際公開第97/22662号パンフレット 国際公開第96/13544号パンフレット
 本発明は、ベルト走行による摩擦係数の経時変化の小さいゴム組成物で伝動ベルトのプーリ接触部分を形成することにより、長期に亘って安定して高負荷伝動を行うことを目的とする。
 本発明の伝動ベルト用ゴム組成物は、エチレン含量が66~85質量%のエチレンプロピレンジエンモノマーゴム(以下、「EPDM」という)、エチレンブテンコポリマー(以下、「EBM」という)、及びエチレンオクテンコポリマー(以下、「EOM」という)の少なくとも1種類を合計で5質量%以上40質量%未満含むエチレン-α-オレフィンエラストマー100質量部に対し、α,β-不飽和カルボン酸金属塩32~100質量部が配合され、エチレン-α-オレフィンエラストマー以外のエラストマーが配合されていない又は10質量部未満が配合されたものである。
 本発明の伝動ベルト用ゴム組成物は、上記エチレン-α-オレフィンエラストマーに含まれるEPDMの平均エチレン含量が66~85質量%であることが好ましい。
 また、本発明の伝動ベルト用ゴム組成物は、上記エチレン-α-オレフィンエラストマーはエチレンプロピレンゴム(以下、「EPM」という)を5~95質量%含むことが好ましい。
 本発明の伝動ベルトは、上記伝動ベルト用ゴム組成物でプーリ接触部分が形成されたものである。
 本発明によれば、伝動ベルト用ゴム組成物は、エチレン含量が66~85質量%のEPDM、EBM、及びEOMの少なくとも1種類を合計で5質量%以上40質量%未満含むエチレン-α-オレフィンエラストマー100質量部に対し、α,β-不飽和カルボン酸金属塩32~100質量部が配合されている一方で、エチレン-α-オレフィンエラストマー以外のエラストマーが配合されていない又はその配合量が10質量部未満と少ないので、ベルト走行による摩擦係数の経時変化が小さくなる。また、本発明の伝動ベルトは係る伝動ベルト用ゴム組成物でプーリ接触部分が形成されているので、長期に亘って安定して高負荷伝動を行うことができる。
実施形態に係る平ベルトの斜視図である。 他の実施形態に係る平ベルトの斜視図である。 耐熱走行試験及び耐寒走行試験のベルト走行試験機のプーリレイアウトを示す図である。 摩擦係数測定装置を示す図である。
 以下、実施形態を図面に基づいて説明する。
 図1は、実施形態に係る平ベルトBを示す。この平ベルトBは、高負荷伝動用途に好適に用いられるものであり、具体的用途としては、例えば、送風機やコンプレッサーや発電機の駆動伝達用途等が挙げられる。この平ベルトBは、例えば、ベルト周長60~4000mm、ベルト幅3~100mm及びベルト厚さ0.3~10mmに形成されている。
 まず、平ベルトBを形成している伝動ベルト用ゴム組成物について詳細に説明する。
 <伝動ベルト用ゴム組成物>
 ベルト本体ゴム層11を形成する伝動ベルト用ゴム組成物(以下、伝動ベルト用ゴム組成物Rとする。)は、原料ゴムがエチレン-α-オレフィンエラストマーであり、そのエチレン-α-オレフィンエラストマーはエチレン含量が66~85質量%のEPDM、EBM、及びEOMの少なくとも1種類を合計で5質量%以上40質量%未満含んでいる。伝動ベルト用ゴム組成物Rは、エチレン-α-オレフィンエラストマー中のエチレン含量が66~85質量%のEPDM、EBM、及びEOMの合計量が5質量%よりも小さいときはベルト走行による摩擦係数の経時安定性が悪くなり、一方、40質量%以上であるときは耐寒性が悪くなる。
 エチレン含量が66~85質量%のEPDMとしては、例えば、Dow Chemical社製のNordel IP 4770R(エチレン含量70質量%)、Nordel 4820P(エチレン含量85質量%)、JSR社製のEP57F(エチレン含量66質量%)、EP51(エチレン含量67質量%)、Lanxess社製のBuna EP G6470(エチレン含量70質量%)等が挙げられる。
 EBMとしては、例えば、Dow Chemical社製のエンゲージ7447、エンゲージ7270等が挙げられる。
 EOMとしては、例えば、Dow Chemical社製のエンゲージ8130、エンゲージ8003等が挙げられる。
 エチレン-α-オレフィンエラストマーに含まれるエラストマーのうち、エチレン含量が66~85質量%のEPDM、EBM、及びEOM以外のエラストマーとしては、例えば、エチレン含量が66質量%未満のEPDM、EPM等が挙げられる。これらのうち、エチレン-α-オレフィンエラストマーには、EPMを5~95質量%含まれていることが好ましく、5~90質量%であることがより好ましく、5~70質量%であることがさらに好ましい。伝動ベルト用ゴム組成物Rは、EPMを5~95質量%含んだエチレン-α-オレフィンエラストマーで原料ゴムが形成されているので、より優れた経時安定性を得ることができる。
 EPMとしては、例えば、JSR社製のEP11、住友化学社製のエスプレン201等が挙げられる。
 エチレン-α-オレフィンエラストマーに含まれているEPDMは、平均エチレン含量は66~85質量%であることが好ましい。ここで、EPDMの平均エチレン含量とは、各EPDMのエチレン含量にそのEPDMの質量百分率を乗じたものの総和を意味する。
 伝動ベルト用ゴム組成物Rは、エチレン-α-オレフィンエラストマーのみで構成されていてもよいが、親水性その他の性質を付与する目的でエチレン-α-オレフィンエラストマー以外のエラストマーを含んでいてもよい。伝動ベルト用ゴム組成物Rがエチレン-α-オレフィンエラストマー以外のエラストマーを含んでいる場合、その配合量はエチレン-α-オレフィンエラストマー100質量部に対して10質量部未満である。エチレン-α-オレフィンエラストマー以外のエラストマーの配合量が多いとエチレン-α-オレフィンエラストマーが本来有する機械特性や耐久性に悪影響を及ぼす虞があるが、伝動ベルト用ゴム組成物Rではその配合量がエチレン-α-オレフィンエラストマー100質量部に対して10質量部未満であるので、そのような悪影響は生じない。
 エチレン-α-オレフィンエラストマー以外のエラストマーとしては、例えば、水素添加アクリロニトリルゴム(H-NBR),クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、アルキル化クロロスルフォン化ポリエチレン(ACSM)、エピクロロヒドリン(ECO)、ブタジエンゴム(BR)、ポリイソプレンゴム(IR)、塩素化ポリエチレン(CM)等が挙げられる。
 伝動ベルト用ゴム組成物Rには、共架橋剤として、α,β-不飽和カルボン酸金属塩が配合されている。α,β-不飽和カルボン酸金属塩の配合量は、エチレン-α-オレフィンエラストマー100質量部に対して32~100質量部であり、32~80質量部であることが好ましく、32~70質量部であることがより好ましい。α,β-不飽和カルボン酸金属塩の配合量が32質量部よりも少ないと弾性率が十分に得られず、高負荷伝動が不安定となる。一方、100質量部よりも多いと耐曲疲労性が悪くなってクラックが発生し、ベルトが分解する虞がある。
 α,β-不飽和カルボン酸金属塩としては、例えば、ジメタクリル酸亜鉛、ジメタクリル酸マグネシウム、ジアクリル酸亜鉛等が挙げられる。α,β-不飽和カルボン酸金属塩は、例えば、精工化学社製のハイクロスZT、Sartomer社製のSR636等に含まれている。
 伝動ベルト用ゴム組成物Rに配合される配合剤のうち、α,β-不飽和カルボン酸金属塩以外の配合剤としては、例えば、架橋剤、架橋助剤、架橋促進剤、老化防止剤、補強材、充填材、増強剤、可塑剤、加工助剤、安定剤、着色剤等が挙げられる。なお、各配合剤については、単一種で構成されていても、また、複数種で構成されていても、いずれでもよい。
 また、伝動ベルト用ゴム組成物Rには、短繊維が含まれていてもよい。短繊維としては、例えば、アラミド短繊維、ナイロン短繊維、ポリエステル短繊維、綿短繊維、カーボン短繊維等が挙げられる。短繊維については、単一種で構成されていても、また、複数種で構成されていても、いずれでもよい。短繊維の含有量は、例えば、原料ゴム100質量部に対して1~10質量部であり、2~5質量部であることが好ましい。また、短繊維は、例えば繊維長が1~5mmである。この短繊維は、ベルト幅方向に配向するように配されていることが好ましい。これによりベルト成形時にゴムが過剰に流動して心線12の配置が乱れるのを抑止することができる。短繊維は、例えば、RFL水溶液に浸漬した後に加熱する処理やゴム糊に浸漬した後に乾燥させる処理等の接着処理が行われていてもよい。なお、心線12の配置の乱れを防ぐために短繊維を配合する観点からは、心線12を保持しているゴム層以外のゴム層には、短繊維は配合されていなくてもよく、被水時のスリップや異音の発生を抑制する観点からは、短繊維が配合されていてもよい。
 以上の構成の伝動ベルト用ゴム組成物Rによれば、エチレン-α-オレフィンエラストマー100質量部に対してα,β-不飽和カルボン酸金属塩32~100質量部が配合され、エチレン-α-オレフィンエラストマー以外のエラストマーが配合されていない又は10質量部未満が配合されているので、十分な高弾性率が得られると共にベルト走行による摩擦係数の経時変化が小さくなり、高負荷伝動が可能となる。
 なお、この伝動ベルト用ゴム組成物Rは、従来公知の方法によって未架橋ゴム組成物を調製した後に成形加工することができる。具体的には、例えば密閉式混練機に、材料のエラストマー及び配合剤を投入して混練して未架橋ゴム組成物を得る。そして、調製された未架橋ゴム組成物をベルト成形すると同時に加熱及び加圧することによって架橋し、架橋済みゴム組成物とする。
 <平ベルト>
 次に、平ベルトBの具体的な構成について説明する。平ベルトBは、ベルト本体ゴム層11に、ベルト長さ方向に延びると共にベルト幅方向にピッチを有する螺旋を形成するように心線12が埋設された構成のものである。
 ベルト本体ゴム層11は、断面横長矩形の帯状に構成されている。ベルト本体ゴム層11は、上述の伝動ベルト用ゴム組成物Rで形成されている。
 心線12は、例えば、アラミド繊維、ビニロン繊維、ポリエステル繊維、ポリケトン繊維、カーボン繊維、ポリ-p-フェニレンベンゾビスオキサゾール(PBO)繊維、ガラス繊維等の撚り糸で構成されている。心線12は、例えば、心線径が0.1~3mmである。心線12には、例えば、予めRFL水溶液に浸漬した後に加熱する処理やゴム糊に浸漬した後に乾燥させる処理等の接着処理が行われていてもよい。
 以上の構成の平ベルトBによれば、ベルト走行による摩擦係数の経時変化が小さい伝動ベルト用ゴム組成物でプーリ接触部分が形成されているので、長期に亘って安定して高負荷伝動を行うことができる。
 この平ベルトBは、従来公知の方法によって製造することができる。
 なお、本実施形態ではベルト本体ゴム層11の1層構造の平ベルトBとしたが、特にこれに限定されるものではなく、例えば、図2に示すように、ベルト内周側の内側ゴム層21、心線22が埋設された心線保持層23、及びベルト外周側の外側ゴム層24の3層の積層体であってもよい。この場合、少なくともプーリ接触部分となる内側ゴム層21が本発明のゴム組成物を用いて構成されていればよい。この場合、上述の通り、心線保持層23には短繊維が配合されていることが好ましい。内側ゴム層21及び外側ゴム層24には、高い摩擦係数を得るために短繊維を配合しなくてもよいし、被水時のスリップや異音発生を抑制するために短繊維を配合してもよい。また、平ベルトBのベルト外周側が補強布で被覆されていてもよい。
 また、本実施形態では伝動ベルトを平ベルトとして説明したが、VベルトやVリブドベルト等の摩擦伝動ベルトであっても、歯付ベルト等の噛み合い伝動ベルトであっても、いずれでもよい。例えば、伝動ベルトがVリブドベルトの場合、少なくともVリブのリブプーリ接触部分が伝動ベルト用ゴム組成物Rで形成されている。また、例えば、伝動ベルトが歯付ベルトの場合、少なくとも歯部の歯付プーリ接触部分が伝動ベルト用ゴム組成物Rで形成されている。
[試験評価]
 平ベルトについて行った試験評価について説明する。
 (試験評価用ベルト)
 以下の実施例1~18及び比較例1~8の平ベルトを作製した。それぞれの構成は表1~4にも示す。
 <実施例1>
 まず、ベルト本体ゴム層を形成するゴム組成物を調製した。EPDM(1)(住友化学社製、商品名:エスプレン301、エチレン含量62質量%)70質量%及びEPDM(2)(Dow Chemical社製、商品名:Nordel IP 4770R、エチレン含量70質量%)30質量%の割合で混練したものを原料ゴムとして、この原料ゴム100質量部に対し、カーボンブラック(東海カーボン社製、商品名:シーストSO)50質量部、プロセスオイル(日本サン石油社製、商品名:サンパー2280)5質量部、酸化亜鉛(堺化学工業社製、商品名:酸化亜鉛3種)5質量部、ステアリン酸(新日本理化社製、商品名:ステアリン酸50S)0.5質量部、老化防止剤(大内新興化学工業社製、商品名:ノクラックMB)2質量部、共架橋剤(川口化学工業社製、商品名:アクターZMA、ジメタクリル酸亜鉛を70質量%含有)46質量部、有機過酸化物(日本油脂社製、商品名:ペロキシモンF40)6質量部、及び、アラミド短繊維(帝人社製、商品名:テクノーラ3mmカットファイバー)3質量部を配合して混練機で混練し、未架橋ゴム組成物を得た。この未架橋ゴム組成物は、EPDMの平均エチレン含量が64.4質量%であった。また、ジメタクリル酸亜鉛の含有量は32.2質量部であった。
 この未架橋ゴム組成物をベルト本体ゴムとして平ベルトを作製し、これを実施例1とした。平ベルトは、ベルト幅10mm、ベルト厚さ1.0mmであり、短繊維はベルト幅方向に配向するように設けた。なお、心線をアラミド繊維(帝人社製、商品名:テクノーラ)の撚り糸(890dtex/1×3、心線径0.58mm、心線巻きピッチ0.65mm)で構成し、ベルト厚さ方向のちょうど中央に配置した。
 <実施例2>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)95質量%及びEPDM(2)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例2とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が62.4質量%であった。
 <実施例3>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)95質量%及びEPDM(3)(Dow Chemical社製、商品名:Nordel 4820P、エチレン含量85質量%)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例3とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が63.2質量%であった。
 <実施例4>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)95質量%及びEBM(Dow Chemical社製、商品名:エンゲージ7467)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例4とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が62質量%であった。
 <実施例5>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)95質量%及びEOM(Dow Chemical社製、商品名:エンゲージ8003)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例5とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が62質量%であった。
 <実施例6>
 ベルト本体ゴム層を形成するゴム組成物を、EPM(JSR社製、商品名:EP11、エチレン含量52質量%)5質量%、EPDM(1)65質量%及びEPDM(2)30質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例6とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が64.5質量%であった。
 <実施例7>
 ベルト本体ゴム層を形成するゴム組成物を、EPM10質量%、EPDM(1)60質量%及びEPDM(2)30質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例7とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が64.7質量%であった。
 <実施例8>
 ベルト本体ゴム層を形成するゴム組成物を、EPM30質量%、EPDM(1)35質量%及びEPDM(2)35質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例8とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が66質量%であった。
 <実施例9>
 ベルト本体ゴム層を形成するゴム組成物を、EPM50質量%、EPDM(1)25質量%及びEPDM(2)25質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例9とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が66質量%であった。
 <実施例10>
 ベルト本体ゴム層を形成するゴム組成物を、EPM70質量%及びEPDM(2)30質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例10とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が70質量%であった。
 <実施例11>
 ベルト本体ゴム層を形成するゴム組成物を、EPM90質量%及びEPDM(2)10質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例11とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が70質量%であった。
 <実施例12>
 ベルト本体ゴム層を形成するゴム組成物を、EPM95質量%及びEPDM(2)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例12とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が70質量%であった。
 <実施例13>
 ベルト本体ゴム層を形成するゴム組成物を、EPM95質量%及びEPDM(3)5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例13とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が85質量%であった。
 <実施例14>
 ベルト本体ゴム層を形成するゴム組成物を、EPM95質量%及びEBM5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例14とした。
 <実施例15>
 ベルト本体ゴム層を形成するゴム組成物を、EPM95質量%及びEOM5質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを実施例15とした。
 <実施例16>
 ベルト本体ゴム層を形成するゴム組成物の共架橋剤の配合量を70質量部としたことを除いて実施例8と同一構成の平ベルトを作製し、これを実施例16とした。このゴム組成物は、ジメタクリル酸亜鉛の含有量が49質量部であった。
 <実施例17>
 ベルト本体ゴム層を形成するゴム組成物の共架橋剤の配合量を142.9質量部としたことを除いて実施例8と同一構成の平ベルトを作製し、これを実施例17とした。このゴム組成物は、ジメタクリル酸亜鉛の含有量が100質量部であった。
 <実施例18>
 ベルト本体ゴム層を形成するゴム組成物にさらにH-NBR(日本ゼオン社製、商品名:Zetpol2020)を8質量部配合したことを除いて実施例16と同一構成の平ベルトを作製し、これを実施例18とした。
 <実施例19>
 ベルト本体ゴム層を形成するゴム組成物に、ジメタクリル酸亜鉛を含有する共架橋剤の代わりにジアクリル酸亜鉛(川口化学工業社製、商品名:アクターZA)を32.2質量部配合したことを除いて実施例6と同一構成の平ベルトを作製し、これを実施例19とした。
 <実施例20>
 ベルト本体ゴム層を形成するゴム組成物に、ジメタクリル酸亜鉛を含有する共架橋剤の代わりにジメタクリル酸マグネシウム(精工化学社製、商品名:ハイクロスGT)を32.2質量部配合したことを除いて実施例6と同一構成の平ベルトを作製し、これを実施例20とした。
 <比較例1>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(2)を原料ゴムとしたことを除いて実施例1と同一構成の平ベルトを作製し、これを比較例1とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が70質量%であった。
 <比較例2>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)50質量%及びEPDM(2)50質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを比較例2とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が66質量%であった。
 <比較例3>
 ベルト本体ゴム層を形成するゴム組成物を、EPM50質量%及びEPDM(2)50質量%の割合で混練したものを原料ゴムとしたことを除いて、実施例1と同一構成の平ベルトを作製し、これを比較例3とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が70質量%であった。
 <比較例4>
 ベルト本体ゴム層を形成するゴム組成物を、EPDM(1)を原料ゴムとしたことを除いて実施例1と同一構成の平ベルトを作製し、これを比較例4とした。このゴム組成物の原料ゴムは、EPDMの平均エチレン含量が62質量%であった。
 <比較例5>
 ベルト本体ゴム層を形成するゴム組成物を、EPMを原料ゴムとしたことを除いて実施例1と同一構成の平ベルトを作製し、これを比較例5とした。
 <比較例6>
 ベルト本体ゴム層を形成するゴム組成物の共架橋剤の配合量を44質量部としたことを除いて実施例8と同一構成の平ベルトを作製し、これを比較例6とした。このゴム組成物は、ジメタクリル酸亜鉛の含有量が30.8質量部であった。
 <比較例7>
 ベルト本体ゴム層を形成するゴム組成物の共架橋剤の配合量を150質量部としたことを除いて実施例8と同一構成の平ベルトを作製し、これを比較例7とした。このゴム組成物は、ジメタクリル酸亜鉛の含有量が105質量部であった。
 <比較例8>
 ベルト本体ゴム層を形成するゴム組成物のH-NBRの配合量を15質量部としたことを除いて実施例18と同一構成の平ベルトを作製し、これを比較例8とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (試験評価方法)
 <耐熱走行試験>
 図3は、耐熱走行試験に用いたベルト走行試験機30のプーリレイアウトを示す。なお、このベルト走行試験機30は、後述の耐寒走行試験においても使用されるものである。
 ベルト走行試験機30は、上下に並ぶように配されたプーリ径120mmの大径の平プーリ31,32(上側が従動プーリ、下側が駆動プーリ)と、それらの上下方向中間の右方に設けられたプーリ径50mmの小径の従動平プーリ33と、からなり、従動平プーリ33へのベルトの巻き付け角度が90°となるように配されている。
 このベルト走行試験機30に実施例1~18及び比較例1~8の平ベルト(ベルト幅10mm)のそれぞれを巻き掛けた。そして、大径平プーリ31に8.8kWの負荷トルクを付与すると共に小径平プーリ33に側方に98Nのデッドウェイトを付与し、雰囲気温度120℃の下で駆動平プーリ32を4800rpmで時計回りに回転させて、平ベルトが分解して走行不可となるまでの時間を測定した。なお、ベルト走行開始から500時間経過した時点でベルト走行を打ち切った。
 また、ベルト走行中は、大径平プーリ31から上方に50mm離れた位置に騒音計を設置して、ベルト走行開始から1分後の騒音レベルに対して5dB以上大きな騒音が観測されたものについて、「異音発生」と評価した。
 <摩擦係数測定試験>
 図4は、摩擦係数測定装置40を示す。この摩擦係数測定装置40は、プーリ径60mmの平プーリ42とその側方に設けられたロードセル41とからなる。平プーリ42は、鉄系の材料S45Cで構成されている。なお、後述の試験片は、ロードセル41から平プーリ42に向かって水平に延びた後に平プーリ42に巻き掛けられる、つまり、平プーリ42への巻き付け角度が90°となるように設けられている。
 このロードセル41に、各試験片(平ベルト)の一端をロードセル41に固定して平プーリ42に巻き掛け、他端に1.75kgの分銅43を取り付けて吊した。それに続いて、分銅43を引き下げようとする方向に平プーリ42を43rpmの回転速度で回転させ、回転開始後60秒の時点で、ロードセル41で試験片のロードセル41と平プーリ42との間の水平部分に負荷される張力Ttを計測した。なお、試験片の平プーリ42と分銅43との垂直部分に負荷される張力Tsは、分銅43の重さ分の17.15Nであった。
 試験片としては、実施例1~18及び比較例1~8の平ベルトのそれぞれについて、耐熱走行試験で24時間、100時間、500時間走行させた後のものの3種を用いた。そして、摩擦係数測定装置40を用いて、雰囲気温度25℃においてこれらの摩擦係数μ’を測定した。なお、摩擦係数μ’は数1に基づいて算出した。数1中のθは試験片の平プーリ42への巻き付け角であり、ここでは、θ=π/2である。
Figure JPOXMLDOC01-appb-M000001
 24時間後、100時間後、及び500時間後のそれぞれにおける摩擦係数の値から、摩擦係数の経時変化を計算して、摩擦係数の安定性を評価した。
 <耐寒走行試験>
 ベルト走行試験機30に実施例1~18及び比較例1~8の平ベルト(ベルト幅10mm)のそれぞれを巻き掛けた。そして、小径平プーリ33に側方に98Nのデッドウェイトを付与し、雰囲気温度-45℃の下で耐寒走行試験を行った。耐寒走行試験では、5秒間走行させて2秒間走行停止させる計7秒間を1サイクルとして、ベルトのゴム表面にクラックが発生するまでこのサイクルをくり返し行った。なお、1000サイクルくり返した時点でベルト走行を打ち切った。
 (試験評価結果)
 評価試験の結果を、表5~7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表5~7の結果から、原料ゴムがEPDM(1)及びEPDM(2)の混合物であり、それらの混合割合を変量した比較例1,2,実施例1,2及び比較例4の比較、並びに、原料ゴムがEPM及びEPDM(2)の混合物であり、それらの混合割合を変量した比較例1,3,実施例10~12及び比較例5の比較を行った結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8によれば、エチレン含量が70質量%であるEPDM(2)の割合が原料ゴムのうち40質量%よりも多いと耐寒性が悪くなることが分かる。一方、5質量%よりも少ないと、摩擦係数の経時変化が大きくなり、異音発生や心線セパレーション等を起こす原因となる傾向が伺われる。
 次に、表5~7の結果から、ジメタクリル酸亜鉛の含有量を変量させた実施例8,16,17,比較例6,7の比較を行った結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9によれば、ジメタクリル酸亜鉛が32~100質量部であれば優れた耐久性が得られることが分かる。
 また、表5~7の結果から、エチレン-α-オレフィンエラストマー以外のゴム成分(つまり、H-NBR)の配合量を変量した実施例16,18,比較例8の比較を行った結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10によれば、H-NBRの配合量が10質量部以下であれば優れた耐久性が得られることが分かる。
 さらに、表5及び6によれば、EPDMの平均エチレン含量が66~85質量%である実施例8~13,16,17と、エチレン含量が66質量%よりも小さい実施例1~7,14,15と、を比較すると、前者は後者よりも摩擦係数の経時変化が小さいことが分かる。
 そして、同じく表5及び6によれば、エチレン-α-オレフィンエラストマーにEPMが5質量%以上含まれている実施例6~18と、EPMが含まれていない実施例1~5と、を比較すると、前者は後者よりも摩擦係数の経時変化が小さいことが分かる。
 さらに、表5及び6によれば、実施例6,19及び20の結果から、ジカルボン酸金属塩としてジメタクリル酸亜鉛、ジアクリル酸亜鉛、ジメタクリル酸マグネシウムのいずれを用いた場合でも、良好な耐久性が得られることが分かる。
 以上説明したように、本発明はゴム組成物及びそれを用いた伝動ベルトについて有用である。
B 平ベルト(伝動ベルト)
11 ベルト本体ゴム層
12 心線

Claims (4)

  1.  エチレン含量が66~85質量%のエチレンプロピレンジエンモノマーゴム、エチレンブテンコポリマー、及びエチレンオクテンコポリマーの少なくとも1種類を合計で5質量%以上40質量%未満含むエチレン-α-オレフィンエラストマー100質量部に対し、α,β-不飽和カルボン酸金属塩32~100質量部が配合され、エチレン-α-オレフィンエラストマー以外のエラストマーが配合されていない又は10質量部未満が配合された伝動ベルト用ゴム組成物。
  2.  請求項1に記載された伝動ベルト用ゴム組成物において、
     上記エチレン-α-オレフィンエラストマーに含まれるエチレンプロピレンジエンモノマーゴムの平均エチレン含量が66~85質量%である伝動ベルト用ゴム組成物。
  3.  請求項1又は2に記載された伝動ベルト用ゴム組成物において、
     上記エチレン-α-オレフィンエラストマーはエチレンプロピレンゴムを5~95質量%含むことを特徴とする伝動ベルト用ゴム組成物。
  4.  請求項1~3のいずれかに記載された伝動ベルト用ゴム組成物でプーリ接触部分が形成された伝動ベルト。
PCT/JP2009/004094 2008-10-24 2009-08-25 伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト WO2010047029A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010534660A JP5315355B2 (ja) 2008-10-24 2009-08-25 伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-274057 2008-10-24
JP2008274057 2008-10-24

Publications (1)

Publication Number Publication Date
WO2010047029A1 true WO2010047029A1 (ja) 2010-04-29

Family

ID=42119086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004094 WO2010047029A1 (ja) 2008-10-24 2009-08-25 伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト

Country Status (2)

Country Link
JP (1) JP5315355B2 (ja)
WO (1) WO2010047029A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111171A1 (it) * 2011-06-27 2012-12-28 Elatech Srl Cinghia di trasmissione
WO2014006916A1 (ja) * 2012-07-06 2014-01-09 バンドー化学株式会社 伝動ベルト
WO2016183238A1 (en) 2015-05-11 2016-11-17 Gates Corporation Cvt belt
JP6078702B1 (ja) * 2015-12-04 2017-02-08 バンドー化学株式会社 Vリブドベルト
US9664252B2 (en) 2012-10-23 2017-05-30 Bando Chemical Industries, Ltd. Drive belt
WO2017094213A1 (ja) * 2015-12-04 2017-06-08 バンドー化学株式会社 Vリブドベルト
WO2018155722A1 (ja) 2017-02-27 2018-08-30 三ツ星ベルト株式会社 伝動ベルト
US10550913B2 (en) 2015-08-27 2020-02-04 Bando Chemical Industries, Ltd. Friction transmission belt
WO2020122054A1 (ja) * 2018-12-11 2020-06-18 バンドー化学株式会社 架橋ゴム組成物及びそれを用いたゴム製品
WO2022075368A1 (ja) * 2020-10-08 2022-04-14 住友化学株式会社 ゴム組成物、及び成形体
WO2023282119A1 (ja) * 2021-07-07 2023-01-12 バンドー化学株式会社 架橋ゴム組成物及びそれを用いた摩擦伝動ベルト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164135A1 (ja) * 2016-03-25 2017-09-28 三ツ星ベルト株式会社 はす歯ベルトおよびベルト伝動装置
JP6553107B2 (ja) * 2016-03-25 2019-07-31 三ツ星ベルト株式会社 はす歯ベルトおよびベルト伝動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339843A (ja) * 1991-01-30 1992-11-26 Bando Chem Ind Ltd ゴム組成物及びそれよりなる加硫ゴムを構成部材とする伝動ベルト
JP2000320618A (ja) * 1999-05-06 2000-11-24 Bando Chem Ind Ltd 伝動ベルト用ゴム部材及び伝動ベルト
JP2002081506A (ja) * 2000-09-08 2002-03-22 Bando Chem Ind Ltd 伝動ベルト
JP2008120902A (ja) * 2006-11-10 2008-05-29 Bando Chem Ind Ltd 伝動ベルト及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT737228E (pt) * 1994-10-31 2002-10-31 Gates Rubber Co Correias de etileno-alfa-olefinas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339843A (ja) * 1991-01-30 1992-11-26 Bando Chem Ind Ltd ゴム組成物及びそれよりなる加硫ゴムを構成部材とする伝動ベルト
JP2000320618A (ja) * 1999-05-06 2000-11-24 Bando Chem Ind Ltd 伝動ベルト用ゴム部材及び伝動ベルト
JP2002081506A (ja) * 2000-09-08 2002-03-22 Bando Chem Ind Ltd 伝動ベルト
JP2008120902A (ja) * 2006-11-10 2008-05-29 Bando Chem Ind Ltd 伝動ベルト及びその製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111171A1 (it) * 2011-06-27 2012-12-28 Elatech Srl Cinghia di trasmissione
JPWO2014006916A1 (ja) * 2012-07-06 2016-06-02 バンドー化学株式会社 伝動ベルト
US9709129B2 (en) 2012-07-06 2017-07-18 Bando Chemical Industries, Ltd. Transmission belt
KR20150029694A (ko) * 2012-07-06 2015-03-18 반도 카가쿠 가부시키가이샤 전동 벨트
KR102070476B1 (ko) * 2012-07-06 2020-01-29 반도 카가쿠 가부시키가이샤 전동 벨트
WO2014006916A1 (ja) * 2012-07-06 2014-01-09 バンドー化学株式会社 伝動ベルト
CN104412002A (zh) * 2012-07-06 2015-03-11 阪东化学株式会社 传动带
US9664252B2 (en) 2012-10-23 2017-05-30 Bando Chemical Industries, Ltd. Drive belt
WO2016183238A1 (en) 2015-05-11 2016-11-17 Gates Corporation Cvt belt
US9933041B2 (en) 2015-05-11 2018-04-03 Gates Corporation CVT belt
US10550913B2 (en) 2015-08-27 2020-02-04 Bando Chemical Industries, Ltd. Friction transmission belt
JP6078702B1 (ja) * 2015-12-04 2017-02-08 バンドー化学株式会社 Vリブドベルト
CN108368914A (zh) * 2015-12-04 2018-08-03 阪东化学株式会社 多楔带
WO2017094213A1 (ja) * 2015-12-04 2017-06-08 バンドー化学株式会社 Vリブドベルト
CN108368914B (zh) * 2015-12-04 2018-12-18 阪东化学株式会社 多楔带
US10274045B2 (en) 2015-12-04 2019-04-30 Bando Chemical Industries, Ltd. V-ribbed belt
WO2018155722A1 (ja) 2017-02-27 2018-08-30 三ツ星ベルト株式会社 伝動ベルト
WO2020122054A1 (ja) * 2018-12-11 2020-06-18 バンドー化学株式会社 架橋ゴム組成物及びそれを用いたゴム製品
JPWO2020122054A1 (ja) * 2018-12-11 2021-10-28 バンドー化学株式会社 架橋ゴム組成物及びそれを用いたゴム製品
JP7365361B2 (ja) 2018-12-11 2023-10-19 バンドー化学株式会社 架橋ゴム組成物及びそれを用いたゴム製品
WO2022075368A1 (ja) * 2020-10-08 2022-04-14 住友化学株式会社 ゴム組成物、及び成形体
WO2023282119A1 (ja) * 2021-07-07 2023-01-12 バンドー化学株式会社 架橋ゴム組成物及びそれを用いた摩擦伝動ベルト
JP7219369B1 (ja) * 2021-07-07 2023-02-07 バンドー化学株式会社 架橋ゴム組成物及びそれを用いた摩擦伝動ベルト
CN116348542A (zh) * 2021-07-07 2023-06-27 阪东化学株式会社 交联橡胶组合物及使用该交联橡胶组合物的摩擦传动带
CN116348542B (zh) * 2021-07-07 2023-12-15 阪东化学株式会社 交联橡胶组合物及使用该交联橡胶组合物的摩擦传动带

Also Published As

Publication number Publication date
JP5315355B2 (ja) 2013-10-16
JPWO2010047029A1 (ja) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5315355B2 (ja) 伝動ベルト用ゴム組成物及びそれを用いた伝動ベルト
JP5498941B2 (ja) 伝動ベルト
JP6209524B2 (ja) 伝動ベルト
JP6192641B2 (ja) 伝動ベルト
JP5704752B2 (ja) 摩擦伝動ベルト
CA2495578C (en) Transmission belt
US8944948B2 (en) Flat belt
US8845468B2 (en) Friction drive belt and belt transmission system using the same
WO2010109532A1 (ja) 摩擦伝動ベルト
JP5060248B2 (ja) 平ベルト
JP2009019663A (ja) 動力伝動ベルト
US20220243786A1 (en) Friction transmission belt
JP6609395B1 (ja) 歯付ベルト
JP6082853B1 (ja) 摩擦伝動ベルト
JP6598777B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにベルト伝動装置
JP2008223005A (ja) ベルト用ゴム組成物、動力伝動用ベルト及び歯付ベルト
JP6635753B2 (ja) ベルト
JP2004150524A (ja) 伝動ベルト
JPH09303488A (ja) 動力伝動用vベルト
JP2003120756A (ja) 動力伝動用ベルト
WO2010004733A1 (ja) 平ベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534660

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC; EPO FORM 1205A DATED 25.07.2011

122 Ep: pct application non-entry in european phase

Ref document number: 09821730

Country of ref document: EP

Kind code of ref document: A1