WO2010041429A1 - コークス炉炭化室の炉底際壁面の補修方法及び補修装置 - Google Patents

コークス炉炭化室の炉底際壁面の補修方法及び補修装置 Download PDF

Info

Publication number
WO2010041429A1
WO2010041429A1 PCT/JP2009/005194 JP2009005194W WO2010041429A1 WO 2010041429 A1 WO2010041429 A1 WO 2010041429A1 JP 2009005194 W JP2009005194 W JP 2009005194W WO 2010041429 A1 WO2010041429 A1 WO 2010041429A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
coke oven
carbonization chamber
wall
furnace bottom
Prior art date
Application number
PCT/JP2009/005194
Other languages
English (en)
French (fr)
Inventor
小林信太郎
中嶋淳
阿波靖彦
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020117007547A priority Critical patent/KR101345487B1/ko
Priority to BRPI0920710-4A priority patent/BRPI0920710B1/pt
Priority to CN2009801389029A priority patent/CN102171311B/zh
Priority to JP2010504349A priority patent/JP4528361B2/ja
Publication of WO2010041429A1 publication Critical patent/WO2010041429A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B29/00Other details of coke ovens
    • C10B29/06Preventing or repairing leakages of the brickwork
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • F27D1/1642Repairing linings by projecting or spraying refractory materials on the lining using a gunning apparatus

Definitions

  • the present invention relates to a method and an apparatus for repairing a wall surface at the bottom of a coke oven carbonization chamber, and more specifically, a damaged portion of the furnace wall that separates a carbonization chamber and a combustion chamber of a coke oven near the furnace bottom.
  • the present invention relates to a method and apparatus for hot repairing from the carbonization chamber side.
  • the coke oven is a device that charges coal into the carbonization chamber, heats it from the combustion chamber, and carbonizes the coal.
  • the furnace wall that separates the combustion chamber and the carbonization chamber is made of silica brick, and has a thickness of about 100 mm, a height of 4 to 7 m, and a depth of about 15 m. Due to the structure of the coke oven, the wall surface on the coking chamber side is loaded with the pushing force during coke extrusion and the own weight of the coke as a side pressure, and this wall surface is easily damaged.
  • the thickness of the furnace wall is reduced and the unevenness of the furnace wall is increased at the bottom of the carbonization chamber wall, that is, the wall of 300 to 400 mm or less from the bottom of the furnace. And / or the corner chipping of the brick proceeds and the wall surface is significantly damaged.
  • the damaged part of the furnace wall is not repaired, the damage will reach the dowel of the brick, the brick will fall off, and a through hole may be generated to the combustion chamber, which may cause the furnace wall to collapse.
  • the repair device mounted on the carriage moving on the two rails provided outside the furnace is moved in the furnace length direction and inserted into the carbonization chamber, but the two rails are Since each of them is not horizontal but has a variation in height, when repairing each carbonization chamber, the position of the spraying device in the furnace height direction changes when the spraying device is moved in the furnace length direction. It was difficult to position the beam tip position with high accuracy.
  • Patent Documents 2 to 4 adopt a structure that supports the device by landing the legs provided in the device on the bottom of the furnace in the carbonization chamber.
  • the precision drive device attached near the tip of the repair manipulator provides high accuracy. Positioning is possible.
  • the support structure supports the device at two points, that is, the leg (support point) landing on the furnace bottom and the support point on the carriage, the height of the support point on the carriage due to the variation in the furnace bottom height and the rails. Due to the variation in the height, the height of the leg landing on the furnace bottom varies depending on the carbonization chamber.
  • the insertion angle of the repair device changes, and the insertion angle of the repair device also changes depending on the insertion stroke in the furnace length direction.
  • the repair device when repairing the damaged part of the furnace wall close to the furnace bottom in a state where the furnace length direction angle with respect to the horizontal surface of the furnace bottom and the insertion angle in the furnace length direction with respect to the horizontal surface of the repair apparatus are different, the repair device Is driven in the furnace length direction, the distance between the furnace wall shape measuring device or the repair device at the tip of the repair manipulator and the furnace bottom cannot be maintained within a predetermined range.
  • the furnace wall shape measuring device or repair device is too far away from the furnace bottom, and the damaged part near the furnace bottom to be repaired cannot be repaired, or the device and the furnace bottom are too close. The risk of contact caused by this cannot be avoided.
  • Patent Document 4 proposes a device for repairing the furnace bottom by measuring the uneven shape of the furnace bottom using a non-contact distance meter attached to an extrusion ram or a mobile in-furnace diagnostic device.
  • the apparatus of Patent Document 4 is intended for repair of the furnace bottom, it is impossible to precisely control the position of the apparatus necessary for measuring and / or repairing the damaged part of the side wall. is there.
  • FIG. 1 shows a side view of a conventional repair device disclosed in Patent Document 2.
  • this conventional repairing device is placed on a carriage on a rail disposed on the extruder side of the coke oven.
  • the repair device includes a plurality of rails 103 laid on the ground, a carriage 117 that moves along the rails 103 and has a plurality of fixed rollers 119 ′, and each fixed roller 119 on the carriage 117.
  • a long beam 109 that can be moved back and forth in the furnace length direction 112 and a repair control device 105 provided at the tip of the long beam 109.
  • a furnace height direction precision drive device 111 for driving a repair manipulator 111z to which a furnace wall shape measuring device 106 and a thermal spraying device 107 are attached along the furnace height direction 111a, and a furnace length direction 110a.
  • a furnace length direction precision driving device 110 that is driven along the center is attached.
  • a leg 108 is attached to the lower part of the repair control device 105 so as to land on the furnace bottom 104 of the carbonization chamber 101 and support the repair control device 105 when the repair control device 105 is inserted into the carbonization chamber 101.
  • Reference numeral 102 denotes a heat storage chamber
  • reference numeral PS denotes the coke extruder side of the carbonization chamber 101
  • reference numeral CS denotes the coke discharge side of the carbonization chamber 101.
  • FIG. 2A and FIG. 2B show a case where a damaged portion near the bottom of the coke oven wall surface is repaired using the conventional repair device.
  • FIG. 2A shows a front view of the repair portion
  • FIG. 2B shows a longitudinal sectional view of the carbonization chamber including the repair portion.
  • the wall of the furnace bottom 104 is 300 to 400 mm or less, and the wall thickness of the furnace wall is reduced, the unevenness of the wall surface is increased, or the corners of the brick are advanced.
  • a damaged portion 115 straddling 116 is formed.
  • the scanning direction 113 (see FIG. 2A) of the thermal spraying device 107 is not parallel to the furnace bottom 104, so at one end of the repair region, If the furnace wall shape measuring device 106 or the thermal spraying device 107 and the furnace bottom 104 are too far from each other, the entire area of the damaged portion 115 at the bottom of the furnace bottom cannot be repaired. There is a risk of contact due to the apparatus 107 and the furnace bottom 104 being too close.
  • JP 2003-321679 A Japanese Patent Laid-Open No. 2000-212566 JP 2004-277527 A JP 2003-41258 A
  • the problem of the present invention is to accurately measure the position of the damaged part of the wall near the bottom of the coke oven carbonization chamber, which has been difficult to repair so far, and spray the repair material on the damaged part to repair it. is there.
  • it is necessary to scan the furnace wall shape measuring device and the thermal spraying device as close as possible to the bottom of the furnace in a non-contact manner, and to extend the region where measurement and repair are possible to the wall near the bottom of the furnace.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method and an apparatus capable of measuring and repairing a damaged portion of a wall surface at the bottom of a coke oven carbonization chamber to the bottom of the furnace with high accuracy. .
  • the present inventor has intensively studied a method and an apparatus for measuring and repairing a damaged portion of the coke oven carbonization chamber near the bottom wall of the coke oven with high accuracy. As a result, the following knowledge was obtained.
  • the furnace wall has large unevenness caused by corner breakage of bricks, etc.
  • the convex part of the furnace wall blocks the laser light, so the shape of the concave part of the furnace wall is accurately It cannot be measured.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • a method for repairing a wall near the bottom of a coke oven carbonization chamber is a method for repairing a damaged portion of a wall surface close to the bottom of a coke oven carbonization chamber, wherein the furnace in the coke oven carbonization chamber
  • the furnace in the coke oven carbonization chamber By measuring the vertical distance between the furnace bottom shape measuring device and the furnace bottom while moving the furnace bottom shape measuring device along the long direction, the uneven shape of the furnace bottom is obtained,
  • a furnace wall shape measuring step for obtaining an uneven shape of the furnace wall while moving in parallel to the furnace bottom approximate curve; and a shortest distance of the thermal spraying apparatus outer shell with respect to the furnace bottom approximate curve to be equal to or greater than a second predetermined distance.
  • the spraying device is flattened on the furnace bottom approximate curve. While moving to a repairing process of spraying to the damaged portion of the repairing material from the spray apparatus; comprises.
  • each of the first predetermined distance and the second predetermined distance may be greater than 0 mm and equal to or less than 50 mm. .
  • the repair material for the damaged portion when the furnace wall is viewed in a cross section perpendicular to the wall surface.
  • the angle formed by the spraying direction may be 70 ° or more and 110 ° or less.
  • the repair may be performed in an atmosphere of 700 ° C. or higher.
  • the apparatus for repairing the wall surface near the bottom of the coke oven carbonization chamber uses a furnace wall shape measuring device to determine the uneven shape of the furnace wall adjacent to the bottom of the coke oven carbonization chamber, and the damaged portion of the furnace wall.
  • furnace bottom approximate curve Wherein as the furnace length direction scanning direction of the precision drive system is parallel, and the distance adjusting device for adjusting the distance between the hearth approximate curve and the precision drive system; comprising a.
  • the shortest distance of the furnace wall shape measuring device outer shell and the shortest distance of the thermal spraying device outer shell with respect to the furnace bottom approximate curve It is good also considering each of more than 0 mm as 50 mm or less.
  • the vertical distance between the furnace bottom and the measurement point of the furnace wall shape measuring device, and the furnace bottom and the thermal spraying device may have an apparatus outer shell structure which can be positioned so that the vertical distance from the thermal spraying point of at least exceeds 0 mm and includes the range of 100 mm.
  • the repair material for the damaged portion when the furnace wall is viewed in a cross section perpendicular to the wall surface.
  • the angle formed by the spraying direction may be not less than 70 ° and not more than 110 °.
  • the precision drive device is a furnace length direction precision drive device that adjusts the furnace length direction position; and the furnace height direction And a furnace height direction precision drive device for adjusting the position.
  • the distance adjusting device is attached to the tip of the long beam and landed on the bottom of the furnace to provide a fulcrum.
  • a lift roller that supports the rear end of the long beam so as to be movable up and down outside the coke oven carbonization chamber, and further, the furnace bottom approximate curve and the precision are determined based on the uneven shape of the furnace bottom.
  • the distance adjusting device is disposed outside the coke oven carbonization chamber along the furnace length direction and the length
  • a configuration may be employed in which the tip of the long beam is positioned by moving the elevating rollers up and down.
  • the spraying device has a rotation mechanism for changing the spraying direction of the repair material with respect to the wall surface downward from horizontal. You may prepare.
  • the furnace wall shape measuring device irradiates a line laser perpendicularly to the furnace wall and the furnace bottom.
  • an observation camera in which the angle of the visual field center can be adjusted within a range of ⁇ 10 ° to + 10 ° along the vertical direction with respect to the reference position.
  • the apparatus for repairing the wall at the bottom of the coke oven carbonization chamber of the present invention comprises a first elongate device and a second elongate device; and the first elongate device is the coke oven carbonization.
  • a first long beam which is the long beam inserted into the room, and a first furnace length direction precision drive device which is the furnace length direction precision drive device at the tip of the first long beam.
  • the furnace bottom shape measuring device that is provided and determines the uneven shape of the furnace bottom by measuring the distance between the furnace bottom and itself, and the furnace in the coke oven carbonization chamber of the furnace bottom shape measuring device Measures the angle between the first furnace length direction precision drive device, which is the furnace length direction precision drive device that adjusts the position in the long direction, and the driving direction of the first furnace length direction precision drive device and the horizontal direction.
  • a first tilt angle sensor that includes: the second elongate device is a front A second elongate beam that is the elongate beam inserted into the coke oven carbonization chamber, the furnace wall shape measuring device provided at the tip of the second elongate beam via the precision drive device, and Thermal spray device, the furnace wall shape measuring device and the thermal spray device, the precision drive device for adjusting the furnace length direction position and the furnace height direction position in the coke oven carbonization chamber, and the furnace length direction position by the precision drive device
  • a second inclination angle sensor for measuring an angle formed by a driving direction and a horizontal direction when adjusting the temperature, a value measured by the first inclination angle sensor, and a furnace bottom obtained from the uneven shape of the furnace bottom
  • the distance adjusting device that adjusts the distance between the precision driving device and the furnace bottom approximate curve using an approximate curve and a value measured by the second tilt angle sensor.
  • the distance adjusting device is attached to the tip of the second long beam and landed on the furnace bottom.
  • a lifting roller that supports the rear end of the second long beam so as to be movable up and down outside the coke oven carbonization chamber, and based on the uneven shape of the furnace bottom, Adopting a configuration in which the tip of the second long beam is positioned by raising and lowering the elevating roller so that the bottom approximate curve and the furnace length direction scanning direction of the precision drive device are parallel to each other. Also good.
  • the distance adjusting device is disposed outside the coke oven carbonization chamber along the furnace length direction, and the second A plurality of elevating rollers that support the elongate beam so as to be movable up and down, and based on the concave and convex shape of the furnace bottom, the furnace bottom approximate curve and the furnace length direction scanning direction of the precision drive device are parallel to each other
  • a configuration may be adopted in which the tip of the second long beam is positioned by raising and lowering each of the elevating rollers.
  • the measurement point can be scanned in parallel with the furnace bottom approximate curve without bringing the outer shell of the furnace wall shape measuring device into contact with the furnace bottom, and the outer shell of the repair device is brought into contact with the furnace bottom.
  • the repairable range can be ensured as much as possible to the bottom of the furnace.
  • the elevating roller that supports the rear end of the long beam so as to be movable up and down outside the coke oven coking chamber is used. Therefore, when measuring or repairing the damaged part of the furnace wall, the furnace wall
  • the scanning direction of the shape measuring device or the thermal spraying device can be set parallel to the furnace bottom approximate curve. Therefore, it is possible to scan the furnace wall shape measuring device or the thermal spraying apparatus at a high speed in the furnace length direction while avoiding a collision between the furnace wall shape measuring apparatus or the thermal spraying device and the furnace bottom.
  • a precision drive device including a drive shaft that rotates in the furnace height direction is used, so that the position of the repair manipulator including the furnace wall shape measuring device and the thermal spraying device is controlled in the furnace height direction.
  • the furnace wall shape measuring device or thermal spraying device is parallel to the furnace bottom approximate curve in the repair range and measures or repairs the damaged part of the furnace wall while avoiding collision with the furnace bottom. be able to.
  • the position adjusting means at least one pair of lifting rollers arranged outside the furnace in the furnace length direction, which can support and position the long beam so as to be movable up and down, is used. Even when the leg portion of the repair device does not land on the furnace bottom, the scanning direction of the furnace wall shape measuring device or the thermal spraying device can be set parallel to the furnace bottom approximate curve.
  • the thermal spraying apparatus includes a rotating shaft capable of setting the spraying direction obliquely, repairing a damaged portion when the furnace wall is viewed in a cross section perpendicular to the wall surface.
  • the angle formed by the spraying direction of the material can be set from 70 ° to 110 °. In this case, it can be repaired up to the furnace bottom.
  • the vertical distance between the furnace bottom and the measurement point of the furnace wall shape measuring device and the vertical distance between the furnace bottom and the thermal spraying point of the thermal spraying device include a range of at least more than 0 mm and 100 mm.
  • the damaged shape of the furnace wall can be measured at high speed up to the height of the furnace bottom from the curve drawn by the line laser obtained by image processing of the captured camera video.
  • the present invention can repair the entire area of the damaged portion at the bottom of the furnace.
  • FIG. 3 shows a first embodiment for repairing a damaged portion of the wall at the bottom of the furnace using the repair device of the present invention.
  • a long beam 9 having a repair control device 5 at the tip and capable of moving back and forth in the furnace length direction 10a is supported by a lifting roller 19 disposed on a carriage 17 on the rail 3 so as to be movable up and down.
  • a furnace height direction precision drive device 11 for driving a repair manipulator 11z including a furnace wall shape measurement device 6, a furnace bottom shape measurement device 18, and a thermal spraying device 7 in the furnace height direction 11a
  • a furnace length direction precision drive device 10 for driving in the furnace length direction 10a is connected.
  • the furnace length direction precision drive device 10 and the furnace height direction precision drive device 11 constitute a precision drive device.
  • legs 8 are attached to support the repair control device 5 by landing on the furnace bottom 4 when the repair control device 5 is inserted into the carbonization chamber 1.
  • FIG. 4 shows an arrangement mode of the furnace wall shape measuring device 6, the furnace bottom shape measuring device 18, and the thermal spraying device 7 attached to the tip of the repair manipulator 11z.
  • the present invention can repair the entire area of the damaged portion of the wall surface at the bottom of the furnace under this arrangement mode.
  • the temperature of the carbonization chamber at the time of operation is about 1000 ° C, but the repair is performed with the temperature of the carbonization chamber kept at 700 ° C or higher.
  • FIG. 5 to FIG. 8 show repair procedures performed while maintaining the temperature of the carbonization chamber at 700 ° C. or higher.
  • the rear end of the long beam 9 supported by a lifting roller 19 disposed on the carriage 17 so as to be movable up and down is driven outside the furnace.
  • the furnace length direction precision drive device 10 connected to the tip of the repair control device 5 is inserted into the carbonization chamber 1 by being pushed by an apparatus (not shown).
  • the bottom of the leg 8 is It is set to be located at a height away from the bottom 4 by a predetermined distance.
  • the furnace bottom shape measurement arranged by driving the furnace length direction precision drive device 10 and the repair manipulator 11 z by driving the furnace length direction precision drive device 10 attached to the repair control device 5.
  • the shape of the furnace bottom 4 is measured by scanning the apparatus 18 in the direction of the arrow in the figure.
  • the stroke of the furnace length direction precision drive device 10 is about 1 to 2 m.
  • the furnace length direction precision drive device 10 is operated in this stroke range of 1 to 2 m, and the furnace height is controlled so that the furnace bottom shape measuring device 18, the furnace wall shape measuring device 6, and the thermal spraying device 7 do not contact the furnace bottom 4.
  • the direction precision drive device 11 is controlled to hold the furnace height direction precision drive device 11 at a height away from the furnace bottom 4 by a predetermined distance, and the shape of the furnace bottom 4 is measured.
  • the measurement position of the furnace bottom shape by the furnace bottom shape measuring device 18 is on a line avoiding the vicinity of the furnace bottom joint 38 in the furnace length direction in the vicinity where the outer shell and the furnace bottom of the measuring device are closest to each other, or It is desirable that the band 39 be as wide as possible (see FIG. 9). In the vicinity of the furnace bottom joint 38, there is a high possibility that the brick is worn. When the vicinity of the furnace bottom joint 38 is measured as the furnace bottom, when the furnace bottom shape measuring device 18 is scanned close to the furnace bottom, There is a risk that the outer shell of the measuring device may come into contact with the furnace bottom. By setting the measurement position of the furnace bottom shape on the wide band 39, the measurement error due to the furnace bottom joint 38 can be reduced. Note that the profile of the entire furnace bottom surface may be measured using a measurement principle similar to that of the furnace wall shape measuring apparatus using a line laser described in [0097], and the measurement result may be used to create an approximate curve.
  • the leg 8 attached to the lower part of the repair control device 5 When the leg 8 attached to the lower part of the repair control device 5 is landed on the furnace bottom 4, the leg 8 landed on the furnace bottom 4 is one fulcrum of the repair device.
  • Two or more sets of lifting rollers 19 that support the long beam 9 so as to be movable up and down are arranged on the carriage 17, and the lifting roller 19 used for lifting and supporting is selected according to the insertion position of the repair control device 5 in the furnace length direction.
  • the lift roller 19 that is not selected (see the lift roller 19 on the right side of FIG. 6) is retracted to a position that does not interfere with the long beam 9 (see the lift roller 19 on the left side of FIG. 6).
  • the entire repair device is supported by the leg 8 serving as a fulcrum and a pair of lifting rollers 19 (see the lifting roller 19 on the left side of FIG. 6), so that the height of the lifting roller 19 is controlled.
  • the inclination angle of the repair control device 5, that is, the driving direction (scanning direction) of the furnace length direction precision driving device 10 can be adjusted.
  • the result of measuring the shape of the furnace bottom 4 with the furnace bottom shape measuring device 18 is not a straight line but an uneven shape of the furnace bottom due to minute protrusions or chipped corners of the furnace bottom brick.
  • the measurement data is approximated, or a straight line or a curve obtained by connecting the convex portions is used as the furnace bottom.
  • a furnace bottom approximate curve is obtained by, for example, the least square method.
  • the elevating roller 19 is moved up and down to position the rear end of the long beam 9 so that the scanning direction of the furnace length direction precision drive device 10 and the furnace bottom approximate curve are parallel. To do.
  • the furnace height direction precision drive device 11 is driven to lower the position of the furnace wall shape measuring device 6 and bring it closer to the furnace bottom 4.
  • the distance between the outer shell of the furnace wall shape measuring device 6 and the outer shell of the thermal spraying device 7 and the furnace bottom 4 is 0 to 50 mm. It is desirable to control within the range (excluding 0).
  • the furnace wall shape measuring device 6 is preferably a laser distance meter that irradiates a laser perpendicular to the furnace wall.
  • the thickness of the outer shell of the furnace wall shape measuring device 6, that is, a measurement point The distance between the outer shell and the device outer shell must be at least 50 to 100 mm. Therefore, if the distance between the outer shell of the furnace wall shape measuring apparatus 6 and the furnace bottom exceeds 50 mm, it becomes impossible to measure the damaged area near the furnace bottom from the furnace bottom to about 100 mm.
  • the furnace length direction precision driving device 10 and the furnace height direction precision driving device 11 are driven to scan the laser distance meter, and the uneven shape of the furnace wall is three-dimensionally measured. measure.
  • the furnace length direction precision drive device 10 and the furnace height direction precision drive device 11 are driven to drive the thermal spraying device 7 to repair the damaged portion of the furnace wall.
  • the thermal spraying device 7 When repairing the part, rotate the thermal spraying device 7 so that the spraying direction is inclined with respect to the wall surface (see FIG. 14B), and spray the repair material on the damaged part on the wall surface near the furnace bottom according to the damage depth, Smooth the wall.
  • the thermal spraying device 7 is rotated by rotating a burner head at the tip of the thermal spraying device 7.
  • the thermal spraying direction of the thermal spraying device 7 is less than 70 ° with respect to the wall surface, the thermal spraying efficiency decreases or the construction state deteriorates.
  • FIG. 11A to FIG. 12 show a second embodiment of the present invention that uses two long devices placed on one carriage 17.
  • the first long device includes a first long beam 20 inserted into the coke oven carbonization chamber 1 and a first furnace length direction precision driving device 10 at the tip of the first long beam 20.
  • the furnace bottom shape measuring device 18 for determining the uneven shape of the furnace bottom 4 by measuring the distance between the furnace bottom 4 and itself, and the coke oven carbonization chamber 1 of the furnace bottom shape measuring device 18
  • a first furnace length direction precision drive device 10 that adjusts the position in the furnace length direction in the inside, and a first inclination that measures the angle formed by the drive direction of the first furnace length direction precision drive device 10 and the horizontal direction And an angle sensor 22.
  • the second long device has a second long beam 21 inserted into the coke oven carbonization chamber 1 and a precision driving device (furnace length direction precision driving device) at the tip of the second long beam 21. 10 and the furnace wall shape measuring device 6 and the thermal spraying device 7 provided through the furnace height direction precision drive device 11), and the furnace wall direction in the coke oven carbonizing chamber 1 of the furnace wall shape measuring device 6 and the thermal spraying device 7
  • FIG. 11A shows a mode in which the furnace bottom shape measuring device 18 is arranged on the first long beam 20 to measure the furnace bottom shape
  • FIG. 11B shows the furnace wall shape measuring device 6 on the second long beam 21.
  • the thermal spraying device arrangement 7 are arranged to measure the furnace wall shape and perform the thermal spraying.
  • FIG. 12 shows a first elongate beam 20 supported by a fixed roller 19 ′ on one carriage 17 and having a furnace bottom shape measuring device 18 inserted in the carbonization chamber 1.
  • 19 shows a state in which the second long beam 21 that is supported so as to freely move up and down and includes the furnace wall shape measuring device 6 and the thermal spraying device 7 is waiting on the carriage 17 outside the carbonization chamber 1.
  • the angle formed between the driving direction of the furnace length direction precision driving device 10 arranged in the first long beam 20 and the horizontal is measured by the first inclination angle sensor 22, and the furnace length direction precision driving is performed.
  • the furnace bottom shape measuring device 18 arranged in the apparatus 10 is scanned in the furnace length direction (see the arrow in FIG. 11A). By this scanning, it is possible to obtain the furnace bottom shape at an arbitrary furnace length direction position with respect to the horizontal in the furnace length direction passing through the position of the first leg portion 24 landed on the furnace bottom 4. A furnace bottom approximate curve is obtained based on the furnace bottom shape.
  • the first long beam 20 is pulled out from the carbonization chamber 1, the carriage 17 is moved in the rail direction (see the arrow in FIG. 12), the furnace wall shape measuring device 6 and the thermal spraying device 7 are moved. As shown in FIG. 11B, the second long beam 21 provided with is inserted into the carbonization chamber 1 where the furnace bottom shape has been measured.
  • a second tilt angle sensor 23 is disposed in the second long beam 21 in which the furnace length direction precision drive device 10 and the furnace height direction precision drive device 11 are disposed.
  • the sensor 23 measures the angle between the driving direction of the furnace length direction precision driving device 10 and the horizontal.
  • the height position of the elevating roller 19 on the carriage 17 is controlled so that the scanning direction of the furnace length direction precision drive device 10 and the furnace bottom 4 are parallel to each other in the spraying range. To do.
  • This control makes it possible to scan the furnace wall shape measuring device 6 and the thermal spraying device 7 close to the furnace bottom 4.
  • the thermal spraying device 7 when repairing a damaged portion on the wall surface near the bottom of the furnace, the thermal spraying device 7 is rotated so that the spraying direction is inclined with respect to the wall surface (see FIG. 14B). Spray the repair material on the damaged part of the bottom wall surface to smooth the wall surface.
  • the thermal spraying device 7 is rotated by driving a rotation shaft provided in the thermal spraying device 7 with a rotation mechanism (not shown) built in the repair manipulator 11z.
  • the spraying device 7 When repairing a damaged part on the wall surface near the furnace bottom, it is preferable to rotate the spraying device 7 so that the spraying direction is 70 ° or more and 110 ° or less with respect to the wall surface.
  • the thermal spraying direction of the thermal spraying device 7 is less than 70 ° with respect to the wall surface, the thermal spraying efficiency decreases or the construction state deteriorates.
  • FIG. 13 shows an aspect of attitude control of the repair device when the leg of the repair device of the present invention is not landed on the furnace bottom.
  • the height position of the first elevating roller 26 that can be raised and lowered and the height position of the second elevating roller 27 that can also be raised and lowered are independently controlled, and the scanning direction of the furnace length direction precision drive device 10
  • the repair control device 5 is positioned so that the approximate furnace bottom curve is parallel. At this time, positioning is performed so that the center of gravity 28 of the repair device is located between the first lifting drive roller 26 and the second lifting drive roller 27.
  • FIG. 14A and FIG. 14B show a mode (fourth embodiment) for repairing a damaged portion on the wall surface at the bottom of the furnace.
  • FIG. 14A shows a measurement mode of the furnace wall shape
  • FIG. 14B shows a spraying mode.
  • the measurement when measuring the furnace wall shape using a laser distance meter as the furnace wall shape measuring device 6, the measurement reaches the furnace bottom 4 by performing measurement with the laser irradiation direction 29 obliquely downward.
  • the shape of the furnace wall of the damaged portion 15 on the wall surface near the furnace bottom can be measured.
  • the thermal spraying is performed by the thermal spraying device 7, the thermal spraying is performed with the thermal spraying direction 30 set obliquely downward.
  • the damaged portion 15 on the wall surface near the furnace bottom can be repaired.
  • furnace wall shape measuring device 6 can correspond to the left and right furnace walls, and the thermal spraying device 7 can reverse the spraying direction by rotation.
  • FIG. 15 shows another aspect (fifth embodiment) for repairing a damaged portion of the wall surface near the furnace bottom.
  • the roller on the carriage that supports the long beam (not shown) is of a fixed type, and the repair device remains inserted into the furnace as in the repair mode shown in FIG.
  • the furnace bottom shape measuring device 18 is scanned while maintaining a height sufficiently away from the furnace bottom 4, the uneven shape of the furnace bottom in the scanning range is measured, and the furnace bottom approximation approximating the uneven shape of the furnace bottom is approximated. Find a curve.
  • the shortest distance between the outer shell of the furnace wall shape measuring device 6 and the outer shell of the thermal spraying device 7 and the furnace bottom approximate curve is controlled within a range of 0 to 50 mm (excluding 0),
  • the furnace wall shape measuring device 6 and the thermal spraying device 7 are controlled by tuning the two axes of the furnace length direction precision drive device 10 and the furnace height direction precision drive device 11 so that the scanning direction is parallel to the furnace bottom approximate curve. , And measurement of the furnace wall shape and thermal spraying to the damaged part of the furnace wall.
  • the furnace wall shape of the damaged portion of the wall surface at the bottom of the furnace is measured, and the damaged portion is Can be repaired.
  • FIG. 16A and FIG. 16B show an aspect (sixth embodiment) for measuring a damaged part of the wall surface at the bottom of the furnace.
  • a line laser irradiation device 32 and an observation camera 34 are used as the furnace wall shape measuring device.
  • FIG. 16A shows the positional relationship between the line laser irradiation device 32 and the observation camera 34.
  • FIG. 16B shows a state where the line laser line 33 is viewed from the observation camera 34.
  • the line laser line 33 is arranged so as to be irradiated perpendicularly to the furnace wall.
  • the line laser irradiation apparatus 32 is arranged so that the line laser line 33 irradiated to the furnace wall is perpendicular to the scanning direction 13 (see FIG. 16A).
  • the observation camera 34 is installed at a distance from the furnace bottom 4 in the range of 50 to 300 mm, has a field of view near the center of the line laser line 33, and a viewing angle of horizontal ⁇ 10 °.
  • the obtained image is processed, and shape measurement is performed by a light cutting method using the geometric relationship between the laser beam and the camera.
  • the wavelength of the line laser line 33 is short-wavelength visible light, and a filter that cuts a component having a longer wavelength than the wavelength of the line laser line 33 is used on the observation camera 34 side.
  • the furnace bottom shape can also be measured using the line laser irradiation device 32 and the observation camera 34.
  • the measurement point can be scanned in parallel with the furnace bottom approximate curve without bringing the outer shell of the furnace wall shape measuring device into contact with the furnace bottom, and the outer shell of the repair device is brought into contact with the furnace bottom.
  • the repairable range can be ensured as much as possible to the bottom of the furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Coke Industry (AREA)

Abstract

 本発明のコークス炉炭化室の炉底際壁面の補修方法は、コークス炉炭化室の炉底に近接する壁面の損傷部を補修する方法であって、前記コークス炉炭化室内でその炉長方向に沿って炉底形状計測装置を移動させながら、この炉底形状計測装置と前記炉底との間の鉛直方向距離を計測することにより、前記炉底の凹凸形状を求め、前記炉底を近似する炉底近似曲線を求める炉底形状計測工程と;前記炉底近似曲線に対する炉壁形状計測装置外殻の最短距離が第1の所定距離以上となるように前記炉壁形状計測装置を前記炉底近似曲線に平行に移動させながら、前記炉壁の凹凸形状を求める炉壁形状計測工程と;前記炉底近似曲線に対する溶射装置外殻の最短距離が第2の所定距離以上となるように前記溶射装置を前記炉底近似曲線に平行に移動させながら、この溶射装置から補修材を前記損傷部に対して溶射する補修工程と;を備える。

Description

コークス炉炭化室の炉底際壁面の補修方法及び補修装置
 本発明は、コークス炉炭化室の炉底際壁面の補修方法及び補修装置に関し、具体的には、コークス炉の炭化室と燃焼室との間を隔てる炉壁の、炉底に近接する損傷部を、炭化室側から熱間で補修する方法及び装置に関する。
 コークス炉は、炭化室に石炭を装入し、燃焼室から加熱して、石炭を乾留する装置である。燃焼室と炭化室との間を隔てる炉壁は、珪石煉瓦で形成されており、厚さが100mm程度、高さが4~7m、奥行が15m程度である。コークス炉の構造上、炭化室側の壁面には、コークス押出時の押出力及びコークスの自重が側圧となって負荷されるので、この壁面が損傷しやすい。
 特に、炉底近くの壁面には側圧が大きく負荷されるので、炭化室壁面の炉底際、即ち、炉底から300~400mm以下の壁面では、炉壁の減肉、炉壁面の凹凸拡大、及び/又は、煉瓦の角欠けが進行して、壁面が著しく損傷する。
 炉壁損傷部を補修しないと、損傷が煉瓦のダボまで到達して煉瓦が抜け落ち、燃焼室まで貫通孔が生じる破孔が発生し、さらには、炉壁の倒壊を招く可能性がある。
 従来、炭化室に挿入し、炉壁損傷部を補修する装置として、炉外の台車に載置した片持ちビームを炉外で炉長方向移動及び俯仰駆動させ、ビーム先端の補修マニピュレータで炉壁損傷部を補修する装置が提案されている(特許文献1を参照)。
 また、炭化室内で、炉高方向、炉長方向及び炉幅方向に精密に動作する3軸補修マニピュレータも提案されている(特許文献2及び3を参照)。この提案によれば、炭化室に挿入した3軸補修マニピュレータによって、炉壁損傷部の凹凸深さを計測し、凹凸深さに応じて補修材の溶射肉盛量を調整して炉壁損傷部を補修し、炉壁を平坦にすることができる。
 補修マニピュレータの先端に取り付けられた炉壁形状計測装置及び溶射装置を用いて、炉底に近接する炉壁損傷部を補修する場合、両装置の外殻と炉底との接触を避けつつ炉底に極力接近して損傷部の計測及び損傷部への溶射を行う必要がある。しかし、コークス炉の炭化室の炉底高さには、経年変化により炭化室毎に数cm~数十cmのばらつきがあり、また、一つの炭化室でも炉長方向の高さにばらつきが存在する。
 さらに、特許文献1の装置においては、炉外に設けた2本の軌条上を移動する台車に搭載した補修装置を炉長方向に移動させて炭化室に挿入するが、2本の軌条は、それぞれが水平ではなく、互いに、高さにばらつきが生じているため、炭化室毎に補修を行う際、溶射装置を炉長方向に移動させると溶射装置の炉高方向の位置が変化するので、ビーム先端位置を高精度に位置決めすることが困難であった。
 また、長尺の片持ビームは、撓んだり振動したりするので、この点でも、ビーム先端位置を高精度に位置決めすることが困難である。
 特許文献2~4の装置は、炭化室内で、装置に設けた脚部を炉底に着地させて装置を支える構造を採用するもので、補修マニピュレータの先端付近に取り付けた精密駆動装置によって高精度な位置決めが可能である。しかしながら、炉底に着地した脚部(支持点)と台車上の支持点の2点で、装置を支える支持構造であるため、炉底高さのばらつき及び軌条起因の台車上の支持点の高さのばらつきによって、炉底に着地する脚部の高さが炭化室毎で異なることになる。
 即ち、特許文献2~4の装置においては、補修装置の挿入角度が変化するし、また、炉長方向の挿入ストロークによっても、補修装置の挿入角度が変化することになる。
 このように、炉底の水平面に対する炉長方向角度と、補修装置の水平面に対する炉長方向の挿入角度とが異なる状態において、炉底に近接する炉壁損傷部を補修しようとする場合、補修装置を炉長方向に駆動したとき、補修マニピュレータ先端にある炉壁形状計測装置又は補修装置と炉底との間の距離を所定範囲に保つことができない。
 即ち、炉壁形状計測装置又は補修装置と炉底とが離れすぎて、補修しようとする炉底近くの損傷部を補修することができなかったり、また、上記装置と炉底とが接近しすぎることによって生じる接触の虞を回避することができなかったりする。
 特許文献4には、押出ラム又は移動式炉内診断装置に取り付けた非接触式距離計を用いて炉底の凹凸形状を測定し、炉底を補修する装置が提案されている。しかし、特許文献4の装置は、炉底の補修を目的とするものであるので、側壁損傷部の計測及び/又は補修を行うために必要な装置の位置を精密に制御することが不可能である。
 特許文献2に開示されている従来の補修装置の側面図を、図1に示す。同図1に示すように、この従来の補修装置は、コークス炉の押出機側に配置された軌条上の台車に載置されている。この補修装置は、地上に敷設された複数本の軌条103と、これら軌条103上に沿って移動するとともに複数の固定ローラー119’を有する台車117と、この台車117上に、前記各固定ローラー119’を介して載置されるとともに炉長方向112に沿って進退可能な長尺ビーム109と、この長尺ビーム109の先端に設けられた補修制御装置105と、を備えている。
 補修制御装置105の先端には、炉壁形状計測装置106と溶射装置107とが取り付けられた補修マニピュレータ111zを炉高方向111aに沿って駆動する炉高方向精密駆動装置111を、炉長方向110aに沿って駆動する炉長方向精密駆動装置110が取り付けられている。
 補修制御装置105の下部には、この補修制御装置105を炭化室101内に挿入した際に、炭化室101の炉底104に着地して補修制御装置105を支える脚部108が取り付けられている。
 なお、参照符号102は、蓄熱室であり、参照符号PSは、炭化室101のコークス押出機側を示し、参照符号CSは、炭化室101のコークス排出側を示す。
 図2A及び図2Bに、上記従来の補修装置を用いてコークス炉の炭化室の壁面における炉底際損傷部を補修する場合を示す。図2Aは、補修部分の正面図を示し、図2Bは、補修部分を含む炭化室の縦断面図を示す。
 炭化室101と燃焼室114との間を隔てる炉壁において、炉底104から300~400mm以下の壁面で、炉壁の減肉、壁面の凹凸拡大または煉瓦の角欠けが進行して、煉瓦目地116を跨ぐ損傷部115が形成されている。
 上記従来の補修装置を用いて炉底際壁面の損傷部115を補修しようとする場合、溶射装置107の走査方向113(図2A参照)が炉底104と平行でないので、補修領域の一端では、炉壁形状計測装置106又は溶射装置107と炉底104とが離れ過ぎることによって炉底際損傷部115の全域を補修することができず、また、他端では、炉壁形状計測装置106又は溶射装置107と炉底104とが接近し過ぎることによる接触の虞がある。
特開2003-321679号公報 特開2000-212566号公報 特開2004-277527号公報 特開2003-41258号公報
 本発明の課題は、これまで補修することが困難であったコークス炉炭化室の炉底際壁面の損傷部の位置を精密に計測し、この損傷部に補修材を溶射して補修することである。そのためには、炉壁形状計測装置及び溶射装置を炉底に非接触で極力接近させて走査し、計測及び補修が可能な領域を炉底際の壁面まで拡張することが必要である。
 さらに、炉壁損傷部に対して垂直に溶射する場合、溶射装置の外殻のために溶射の噴出口位置を炉底近くまで下げることは難しいが、溶射の噴出口高さより下に位置する炉底際損傷部に対しても補修する必要がある。
 尚、炉壁損傷部の補修においては、計測時間を短縮し、かつ、精密な溶射を行うには、炉壁形状計測装置及び溶射装置を高速で走査する必要がある。また、計測及び補修は、炉長方向全域における任意の範囲の炉底際に対して行える必要がある。
 本発明は、上記課題に鑑みてなされたものであって、コークス炉炭化室の炉底際壁面の損傷部を炉底際まで高精度に計測して補修できる方法及び装置の提供を目的とする。
 上記課題を解決して係る目的を達成するために、本発明者は、コークス炉炭化室の炉底際壁面の損傷部を高精度に計測して補修する方法及び装置について鋭意研究した。その結果、以下の知見を得るに至った。
 (w)炉底から300mm程度以下の範囲の煉瓦が著しく損傷する。
 (x)各炭化室の炉底高さの高低差は、高々100mm程度である。
 (y)炉壁に対して斜め下向きに溶射を行う際、溶射方向が、炉壁に対して70°以上であれば、良好な溶射施工体を得ることができる。一方、溶射方向が炉壁に対して70°未満であると、炉壁に到達した溶射材料の半分以上が付着せず、また、溶射施工体表面の凹凸が粗くなるなど、良好な溶射施工体を得ることが困難になる。
 (z)炉壁形状を計測する装置としてレーザー距離計を用いると、レーザー距離計と炉壁との間の距離を高速で精度よく測定することができる。ただし、レーザー光は、炉壁に対してほぼ垂直に照射することが望ましい。
 炉壁には、煉瓦の角欠けなどで生じた段差の大きな凹凸が存在し、レーザー光を斜めに照射すると、炉壁の凸部がレーザー光を遮るので、炉壁の凹部の形状を正確に測定することができない。炉壁に対してレーザー光を斜めに照射する場合、炉壁の凹凸により生じる計測誤差を低減するためには、炉壁に対する垂直方向から20°以下の範囲内の照射方向から照射することが望ましい。
 本発明は、上記知見に基づいてなされたもので、その要旨は、以下のとおりである。
 (1)本発明のコークス炉炭化室の炉底際壁面の補修方法は、コークス炉炭化室の炉底に近接する壁面の損傷部を補修する方法であって、前記コークス炉炭化室内でその炉長方向に沿って炉底形状計測装置を移動させながら、この炉底形状計測装置と前記炉底との間の鉛直方向距離を計測することにより、前記炉底の凹凸形状を求め、前記炉底を近似する炉底近似曲線を求める炉底形状計測工程と;前記炉底近似曲線に対する炉壁形状計測装置外殻の最短距離が第1の所定距離以上となるように前記炉壁形状計測装置を前記炉底近似曲線に平行に移動させながら、前記炉壁の凹凸形状を求める炉壁形状計測工程と;前記炉底近似曲線に対する溶射装置外殻の最短距離が第2の所定距離以上となるように前記溶射装置を前記炉底近似曲線に平行に移動させながら、この溶射装置から補修材を前記損傷部に対して溶射する補修工程と;を備える。
 (2)前記(1)に記載のコークス炉炭化室の炉底際壁面の補修方法では、前記第1の所定距離及び前記第2の所定距離のそれぞれを、0mmを超えて50mm以下としてもよい。
 (3)前記(1)に記載のコークス炉炭化室の炉底際壁面の補修方法では、前記炉壁をその壁面に対して垂直な断面で見た場合の、前記損傷部に対する前記補修材の溶射方向のなす角度を、70°以上かつ110°以下としてもよい。
 (4)前記(1)または(2)に記載のコークス炉炭化室の炉底際壁面の補修方法では、前記補修を、700℃以上の雰囲気中で行ってもよい。
 (5)本発明のコークス炉炭化室の炉底際壁面の補修装置は、コークス炉炭化室の炉底に近接する炉壁の凹凸形状を炉壁形状計測装置で求めて前記炉壁の損傷部を溶射装置により補修する装置であって、前記コークス炉炭化室内に挿入される長尺ビームと;この長尺ビームの先端に精密駆動装置を介して設けられた、炉底形状計測装置及び前記炉壁形状計測装置及び前記溶射装置と;前記炉底形状計測装置及び前記炉壁形状計測装置及び前記溶射装置の、前記コークス炉炭化室内での炉長方向位置及び炉高方向位置を調整する前記精密駆動装置と;前記コークス炉炭化室内をその炉長方向に沿って移動しながら、自らと前記炉底との間の鉛直方向距離を計測することにより炉底近似曲線を求める前記炉底形状計測装置と;前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記炉底近似曲線と前記精密駆動装置との間の距離を調整する距離調整装置と;を備える。
 (6)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記炉底近似曲線に対する前記炉壁形状計測装置外殻の最短距離及び前記溶射装置外殻の最短距離のそれぞれを、0mmを超えて50mm以下としてもよい。
 (7)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記炉底と前記炉壁形状計測装置の計測点との鉛直方向距離及び前記炉底と前記溶射装置の溶射点との鉛直方向距離が、少なくとも0mmを越えて100mmの範囲を含むように位置決め可能な装置外殻構造を有してもよい。
 (8)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記炉壁をその壁面に対して垂直な断面で見た場合の、前記損傷部に対する前記補修材の溶射方向のなす角度が、70°以上かつ110°以下であってもよい。
 (9)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記精密駆動装置が、前記炉長方向位置を調整する炉長方向精密駆動装置と;前記炉高方向位置を調整する炉高方向精密駆動装置と;を備えてもよい。
 (10)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記距離調整装置が、前記長尺ビームの先端に取り付けられるととともに前記炉底に着地して支点をなす脚部と、前記コークス炉炭化室外で前記長尺ビームの後端を昇降自在に支持する昇降ローラーとを備え、なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記昇降ローラーを昇降させることで前記長尺ビームの前記先端の位置決めを行う、構成を採用してもよい。
 (11)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記距離調整装置が、前記コークス炉炭化室外に前記炉長方向に沿って配設されるとともに前記長尺ビームを昇降自在に支持する複数の昇降ローラーを備え、なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記各昇降ローラーを昇降させることで前記長尺ビームの前記先端の位置決めを行う、構成を採用してもよい。
 (12)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記溶射装置が、前記壁面に対する前記補修材の溶射方向を水平より下向きに変更するための回転機構を備えてもよい。
 (13)前記(5)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記炉壁形状計測装置が、前記炉壁及び前記炉底に対して垂直にラインレーザーを照射するラインレーザー照射装置と;前記コークス炉炭化室内の前記炉底から50mm~300mmの高さ範囲内に設置され、前記炉壁に照射された前記ラインレーザーにより形成されるラインレーザー線の鉛直方向中央位置を視野中心の基準位置とし、さらにこの基準位置に対して鉛直方向に沿って-10°~+10°の範囲内で前記視野中心が角度調整可能である観察カメラと;を備えてもよい。
 (14)本発明のコークス炉炭化室の炉底際壁面の補修装置は、第1の長尺装置と第2の長尺装置とを備え;前記第1の長尺装置が、前記コークス炉炭化室内に挿入される前記長尺ビームである第1の長尺ビームと、この第1の長尺ビームの先端に前記炉長方向精密駆動装置である第1の炉長方向精密駆動装置を介して設けられ、前記炉底と自らとの間の距離を計測することにより、前記炉底の凹凸形状を求める前記炉底形状計測装置と、この炉底形状計測装置の、前記コークス炉炭化室内における炉長方向の位置を調整する前記炉長方向精密駆動装置である前記第1の炉長方向精密駆動装置と、この第1の炉長方向精密駆動装置の駆動方向と水平方向とがなす角度を計測する第1の傾斜角センサーと、を備え;前記第2の長尺装置が、前記コークス炉炭化室内に挿入される前記長尺ビームである第2の長尺ビームと、この第2の長尺ビームの先端に前記精密駆動装置を介して設けられた前記炉壁形状計測装置及び前記溶射装置と、前記炉壁形状計測装置及び前記溶射装置の、前記コークス炉炭化室内における炉長方向位置及び炉高方向位置を調整する前記精密駆動装置と、この精密駆動装置により前記炉長方向位置を調整する際の駆動方向と水平方向とがなす角度を計測する第2の傾斜角センサーと、前記第1の傾斜角センサーで計測された値と、前記炉底の凹凸形状から求めた炉底近似曲線と、前記第2の傾斜角センサーで計測された値とを用いて、前記精密駆動装置と前記炉底近似曲線との間の距離を調整する前記距離調整装置と、を備える。
 (15)前記(14)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記距離調整装置が、前記第2の長尺ビームの前記先端に取り付けられるとともに前記炉底に着地して支点をなす脚部と、前記コークス炉炭化室外で前記第2の長尺ビームの後端を昇降自在に支持する昇降ローラーとを備え、なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記昇降ローラーを昇降させることで前記第2の長尺ビームの前記先端の位置決めを行う、構成を採用してもよい。
 (16)前記(15)に記載のコークス炉炭化室の炉底際壁面の補修装置では、前記距離調整装置が、前記コークス炉炭化室外に前記炉長方向に沿って配設され、前記第2の長尺ビームを昇降自在に支持する複数の昇降ローラーを備え、なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記各昇降ローラーを昇降させることで前記第2の長尺ビームの前記先端の位置決めを行う、構成を採用してもよい。
 本発明によれば、炉壁形状計測装置の外殻を炉底に接触させることなく炉底近似曲線と平行に計測点を走査することができ、補修装置の外殻を炉底に接触させることなく炉底近似曲線と平行に炉壁の損傷部を溶射することができるので、補修可能な範囲を炉底際まで最大限確保することができる。
 本発明によれば、補修を700℃以上の雰囲気中で行うので、補修を室温まで下げることによって生じるコークス炉炭化室の炉壁の損傷を防止することができる。
 本発明によれば、位置調整手段として、コークス炉炭化室外で前記長尺ビームの後端を昇降自在に支持する昇降ローラーを用いるので、炉壁損傷部の計測又は補修を行う際に、炉壁形状計測装置又は溶射装置の走査方向を炉底近似曲線に対して平行に設定することができる。よって、炉壁形状計測装置又は溶射装置と炉底との間の衝突を回避しながら、炉壁形状計測装置又は溶射装置を高速で炉長方向に走査することが可能である。
 本発明によれば、位置調整手段として、炉高方向に回転する駆動軸を備える精密駆動装置を用いるので、炉壁形状計測装置及び溶射装置を備える補修マニピュレータを炉高方向に位置制御させながら、炉長方向に駆動することによって、炉壁形状計測装置又は溶射装置を、補修範囲の炉底近似曲線と平行かつ、炉底との衝突を回避しながら、炉壁損傷部の計測又は補修を行うことができる。
 本発明によれば、位置調整手段として、長尺ビームを昇降自在に支持し、かつ、位置決めすることが可能な、炉外で炉長方向に配設した少なくとも1対の昇降ローラーを用いるので、補修装置の脚部が炉底に着地していない場合でも、炉壁形状計測装置又は溶射装置の走査方向を炉底近似曲線に対して平行に設定することができる。
 本発明によれば、溶射装置が、溶射方向を斜めに設定することが可能な回転軸を備えているので、炉壁をその壁面に対して垂直な断面で見た場合の、損傷部に対する補修材の溶射方向のなす角度を70°以上から110°以下に設定することができる。この場合、炉底際まで補修することができる。
 本発明によれば、炉底と炉壁形状計測装置の計測点との鉛直方向距離及び炉底と溶射装置の溶射点との鉛直方向距離が、少なくとも0mmを越えて100mmの範囲を含むように位置決め可能な装置外殻構造を有することにより、溶射装置を炉底際まで接近させて溶射材を溶射することができる。
 本発明によれば、撮影されたカメラ映像を画像処理して得られるラインレーザーの描く曲線から、炉壁の損傷形状を炉底の高さまで高速に計測することができる。
従来の補修装置の側面図である。 コークス炉炭化室の炉底際壁面の損傷部を従来の補修装置で補修する態様を示す図であって、補修部分を含む炭化室の正面図を示す。 コークス炉炭化室の炉底際壁面の損傷部を従来の補修装置で補修した場合を示す図であって、補修部分を含む炭化室の縦断面図を示す。 本発明の第1実施形態に係る補修装置を用いて炉底際壁面の損傷部を補修している状態を示す図である。 補修マニピュレータの先端に取り付けられた炉壁形状計測装置、炉底形状計測装置、及び、溶射装置の配置を示す部分拡大図である。 同実施形態において、補修制御装置の先端に取り付けられた炉長方向精密駆動装置を炭化室内へ挿入した状態を示す図である。 同実施形態において、炉長方向精密駆動装置を駆動して炉底形状計測装置を走査させ、炉底の凹凸形状を計測する状態を示す図である。 同実施形態において、炉長方向精密駆動装置の走査方向と炉底近似曲線とが平行になるように、昇降ローラーの高さ位置を制御する状態を示す図である。 同実施形態において、炉高方向精密駆動装置を駆動して炉壁形状計測装置の位置を下げて炉底に近づけた状態を示す図である。 炉底形状計測装置を用いて炉底形状を計測する状態を示す斜視図である。 炉底形状を示すグラフである。 本発明の第2実施形態に係る補修装置を示す図であり、同補修装置では、炉底形状計測装置と、炉壁形状計測装置及び溶射装置とを、別々の長尺ビームに配置している。そして、この図11Aでは、第1の長尺ビームに炉底形状計測装置が配置されている。 同実施形態に係る補修装置を示す図であり、第2の長尺ビームに炉壁形状計測装置及び溶射装置が配置されている。 同実施形態において、炉底形状計測装置を備える第1の長尺ビームが炭化室内に挿入されていて、かつ、炉壁形状計測装置及び溶射装置を備える第2の長尺ビームが炭化室の外で待機している状態を示す平面図である。 本発明の第3実施形態に係る補修装置を示す図であり、同補修装置の脚部が炉底に着地していない場合の姿勢制御の態様を示す図である。 本発明の第4実施形態に係る補修装置を用いた、炉底際壁面の補修の態様を示す図であって、炉壁の凹凸形状を計測している状態を示す。 同補修装置を用いた、炉底際壁面の補修の態様を示す図であって、溶射している状態を示す。 本発明の第5実施形態に係る補修装置を用いて炉底際壁面の損傷部を補修している状態を示す図である。 本発明の第6実施形態に係る補修装置を用いて炉底際壁面の損傷部を計測している状態を示す図であって、ラインレーザー照射装置と観察カメラとの位置関係を示す図である。 同補修装置を用いて炉底際壁面の損傷部を計測している状態を示す図であって、観察カメラからラインレーザー線を見た斜視図である。
 以下、本発明の各実施形態について、図面に基づいて説明する。
 本発明は、以下に説明するように、炉底際損傷部の全域を補修することができる。
 [第1実施形態]
 図3に、本発明の補修装置を用いて炉底際壁面の損傷部を補修する第1実施形態を示す。先端に補修制御装置5を備え、炉長方向10aに進退可能な長尺ビーム9が、軌条3上の台車17に配設した昇降ローラー19により、昇降自在に支持されている。
 補修制御装置5の先端には、炉壁形状計測装置6、炉底形状計測装置18、及び、溶射装置7を備える補修マニピュレータ11zを炉高方向11aに駆動する炉高方向精密駆動装置11を、炉長方向10aに駆動する炉長方向精密駆動装置10が連結されている。炉長方向精密駆動装置10及び炉高方向精密駆動装置11は、精密駆動装置を構成する。
 補修制御装置5の下部には、補修制御装置5を炭化室1内に挿入した際に炉底4に着地して補修制御装置5を支える脚部8が取り付けられている。
 図4に、補修マニピュレータ11zの先端に取り付けられた炉壁形状計測装置6、炉底形状計測装置18、及び、溶射装置7の配置態様を示す。本発明は、この配置態様のもとで、炉底際壁面の損傷部の全域を補修することができる。
 通常、操業時の炭化室の温度は、約1000℃であるが、補修は、炭化室の温度を700℃以上に保ったままで行う。ここで、炭化室の温度を700℃以上に保って行う補修の手順を図5から図8に示す。
 炉底際壁面の損傷部の補修を行う際、まず、図5に示すように、台車17上に配設した昇降ローラー19で昇降自在に支持した長尺ビーム9の後端を炉外の駆動装置(図示せず)で押して、補修制御装置5の先端に連結した炉長方向精密駆動装置10を炭化室1内へ挿入する。
 この挿入時、補修制御装置5の下部に取り付けた脚部8が、炉底4と干渉しないように、炉底高さ及び軌条高さのばらつきを考慮して、脚部8の底が、炉底4から所定の距離離れた高さに位置するように設定する。
 次に、図6に示すように、補修制御装置5に取り付けられた炉長方向精密駆動装置10を駆動して、炉高方向精密駆動装置11及び補修マニピュレータ11zを介して配置した炉底形状計測装置18を図中矢印方向に走査して、炉底4の形状を計測する。
 炉長方向精密駆動装置10のストロークは1~2m程度である。このストローク範囲1~2mで炉長方向精密駆動装置10を操作し、そして、炉底形状計測装置18、炉壁形状計測装置6、及び、溶射装置7が炉底4に接触しないように炉高方向精密駆動装置11を制御して、炉底4から所定距離離れた高さに炉高方向精密駆動装置11を保持し、炉底4の形状を計測する。
 炉底形状計測装置18による炉底形状の計測位置は、この計測装置の外殻と炉底とが最も接近する付近における、炉長方向の炉底目地38の近傍を避けた線上か、又は、極力広幅の帯39上が望ましい(図9を参照)。炉底目地38の近傍では、煉瓦が損耗している可能性が大きく、炉底目地38の近傍を炉底として計測すると、炉底形状計測装置18を炉底に近接させて走査したとき、この計測装置の外殻が炉底と接触する危険がある。炉底形状の計測位置を広幅の帯39上とすることで、炉底目地38による計測誤差を低減することができる。尚、[0097]記載の、ラインレーザーを用いた炉壁形状計測装置と同様の計測原理を用いて炉底面全体のプロファイルを測定し、その測定結果を近似曲線の作成に利用してもよい。
 補修制御装置5の下部に取り付けた脚部8が、炉底4に着地しているときは、炉底4に着地した脚部8が、補修装置の一方の支点となる。
 長尺ビーム9を昇降自在に支持する昇降ローラー19は、台車17上に2組以上配設し、補修制御装置5の炉長方向における挿入位置により、昇降・支持に用いる昇降ローラー19を選択し(図6の紙面左側の昇降ローラー19を参照)、選択しない昇降ローラー(図6の紙面右側の昇降ローラー19を参照)は、長尺ビーム9に干渉しない位置に退避させる。
 補修装置の全体は、支点となる脚部8と、1組の昇降ローラー19(図6の紙面左側の昇降ローラー19を参照)とによって支持されるので、昇降ローラー19の高さを制御することにより、補修制御装置5の傾斜角、即ち、炉長方向精密駆動装置10の駆動方向(走査方向)を調節することができる。
 図10に記載されるように、炉底形状計測装置18で炉底4の形状を計測した結果は、直線ではなく、炉底煉瓦の微小な突起又は角欠けなどによる炉底の凹凸形状であるが、測定データを近似するか、又は、凸部を結んで得られた直線又は曲線を炉底として利用する。この測定データを用いて、例えば最小二乗法により炉底近似曲線を求める。
 次に、図7に示すように、炉長方向精密駆動装置10の走査方向と、炉底近似曲線が平行になるように、昇降ローラー19を昇降して、長尺ビーム9の後端を位置決めする。
 次に、図8に示すように、炉高方向精密駆動装置11を駆動して、炉壁形状計測装置6の位置を下げて炉底4に近づける。このとき、炉壁形状計測装置6を炉底に最も近づけた状態で、炉壁形状計測装置6の外殻、及び、溶射装置7の外殻と、炉底4との間隔は、0~50mm(0は含まず)の範囲に制御することが望ましい。
 炉壁形状計測装置6としては、炉壁に対し垂直にレーザーを照射するレーザー距離計が好ましいが、レーザー距離計を用いる場合、炉壁形状計測装置6の外殻の厚さ、即ち、計測点と装置外殻との距離は、少なくとも、50~100mmは必要である。したがって、炉壁形状計測装置6の外殻と炉底との間隔が50mmを超えると、炉底から100mm程度までの炉底際の損傷領域を測定することができなくなる。
 炉壁形状計測装置6としてレーザー距離計を用いる場合、炉長方向精密駆動装置10及び炉高方向精密駆動装置11を駆動してレーザー距離計を走査し、炉壁の凹凸形状を3次元的に計測する。
 炉壁形状の計測データに基づき、炉長方向精密駆動装置10及び炉高方向精密駆動装置11を駆動して溶射装置7を駆動し、炉壁損傷部を補修するが、炉底際壁面の損傷部を補修するときは、溶射方向が壁面に対し傾斜するように溶射装置7を回転させ(図14Bを参照)、損傷深さに応じ、炉底際壁面の損傷部に補修材を溶射し、壁面を平滑にする。
 溶射装置7の回転は、溶射装置7の先端にあるバーナーヘッドを回転して行う。炉底際壁面の損傷部を補修するとき、溶射方向が壁面に対して70°以上110°以下になるように溶射装置7を回転させるのが好ましい。溶射装置7の溶射方向が、壁面に対して70°未満の場合、溶射効率が低下したり、施工状態が悪化したりする。
 [第2実施形態]
 図11A~図12に、一つの台車17上に載置した2つの長尺装置を用いる本発明の第2実施形態を示す。
 第1の長尺装置は、コークス炉炭化室1内に挿入される第1の長尺ビーム20と、この第1の長尺ビーム20の先端に第1の炉長方向精密駆動装置10を介して設けられ、炉底4と自らとの間の距離を計測することにより、炉底4の凹凸形状を求める炉底形状計測装置18と、この炉底形状計測装置18の、コークス炉炭化室1内における炉長方向の位置を調整する第1の炉長方向精密駆動装置10と、この第1の炉長方向精密駆動装置10の駆動方向と水平方向とがなす角度を計測する第1の傾斜角センサー22と、を備える。
 一方、第2の長尺装置は、コークス炉炭化室1内に挿入される第2の長尺ビーム21と、この第2の長尺ビーム21の先端に精密駆動装置(炉長方向精密駆動装置10及び炉高方向精密駆動装置11)を介して設けられた炉壁形状計測装置6及び溶射装置7と、炉壁形状計測装置6及び溶射装置7の、コークス炉炭化室1内における炉長方向位置及び炉高方向位置を調整する精密駆動装置と、この精密駆動装置により炉長方向位置を調整する際の駆動方向と水平方向とがなす角度を計測する第2の傾斜角センサー23と、第1の傾斜角センサー22で計測された値と、炉底4の凹凸形状から求めた炉底近似曲線と、第2の傾斜角センサー23で計測された値とを用いて、精密駆動装置と炉底近似曲線との間の距離を調整する距離調整装置と、を備える。
 図11Aに、第1の長尺ビーム20に炉底形状計測装置18を配置して炉底形状を計測する態様を示し、図11Bに、第2の長尺ビーム21に炉壁形状計測装置6と溶射装置配置7とを配置して炉壁形状を計測して溶射を行う態様を示す。
 図12は、一つの台車17上にある固定ローラー19’で支持され、炉底形状計測装置18を備える第1の長尺ビーム20が、炭化室1内に挿入されていて、一方の昇降ローラー19で昇降自在に支持され、炉壁形状計測装置6及び溶射装置7を備える第2の長尺ビーム21が、炭化室1の外で、台車17上で待機している状態を示す。
 図11Aに示すように、第1の長尺ビーム20に配置した炉長方向精密駆動装置10の駆動方向と水平とがなす角度を第1の傾斜角センサー22で計測し、炉長方向精密駆動装置10に配置した炉底形状計測装置18を炉長方向(図11Aの矢印を参照)に走査する。この走査により、炉底4に着地した第1の脚部24の位置を通る炉長方向において、水平を基準とする任意の炉長方向位置の炉底形状を求めることができる。この炉底形状に基づいて炉底近似曲線を求める。
 炉底形状を計測した後は、第1の長尺ビーム20を炭化室1から引き抜き、台車17を軌条方向に移動し(図12の矢印を参照)、炉壁形状計測装置6及び溶射装置7を備える第2の長尺ビーム21を、図11Bに示すように、炉底形状を計測した炭化室1内に挿入する。
 炉長方向精密駆動装置10と炉高方向精密駆動装置11とが配置されている第2の長尺ビーム21には、第2の傾斜角センサー23が配置されていて、この第2の傾斜角センサー23で、炉長方向精密駆動装置10の駆動方向と水平とがなす角度を計測する。
 第2の傾斜角センサー23の計測値と、炉底形状データ、及び、補修装置の炉底4における着地位置と、炉壁形状計測装置6、又は、溶射装置7の位置関係とから、計測又は溶射を行う範囲において、炉長方向精密駆動装置10の走査方向と炉底4とが平行になるように、上記第1実施形態と同様に、台車17上の昇降ローラー19の高さ位置を制御する。
 この制御により、炉壁形状計測装置6及び溶射装置7を炉底4に接近させて走査することが可能となる。
 この制御の際、炉底形状データについては、第2の長尺ビーム21の炉底4に着地した第2の脚部25の位置と、炉底形状を計測した時の第1の長尺ビーム20の第1の脚部24の位置との差から、炉底形状計測装置18によって計測した炉底形状を、第2の長尺ビーム21の第2の脚部25の着地位置を基準とする炉底形状に変換して用いる。
 第1実施形態と同じく、炉底際壁面の損傷部を補修するときは、溶射方向が壁面に対し傾斜するように溶射装置7を回転させ(図14Bを参照)、損傷深さに応じ、炉底際壁面の損傷部に補修材を溶射し、壁面を平滑にする。溶射装置7の回転は、溶射装置7に備えた回転軸を、補修マニピュレータ11zに内蔵した回転機構(図示なし)で駆動して行う。
 炉底際壁面の損傷部を補修するとき、溶射方向が壁面に対し70°以上110°以下になるように溶射装置7を回転させるのが好ましい。溶射装置7の溶射方向が、壁面に対して70°未満の場合、溶射効率が低下したり、施工状態が悪化したりする。
 [第3実施形態]
 図13に、本発明の補修装置の脚部が炉底に着地していない場合における補修装置の姿勢制御の態様を示す。昇降可能な第1の昇降ローラー26の高さ位置と、同じく昇降可能な第2の昇降ローラー27の高さ位置とを、それぞれ独立に制御して、炉長方向精密駆動装置10の走査方向と炉底近似曲線とが平行になるように、補修制御装置5の位置決めを行う。このとき、補修装置の重心28が、第1の昇降駆動ローラー26と第2の昇降駆動ローラー27との間に位置するように位置決めを行う。
 [第4実施形態]
 図14A及び図14Bに、炉底際壁面の損傷部を補修する態様(第4実施形態)を示す。図14Aに、炉壁形状の計測態様を示し、図14Bに、溶射の態様を示す。
 図14Aに示すように、炉壁形状計測装置6としてレーザー距離計を用いて炉壁形状を計測する際、レーザーの照射方向29を斜め下向きにして計測を行なうことにより、炉底4にまで達する炉底際壁面の損傷部15の炉壁形状を計測することができる。
 また、図14Bに示すように、溶射装置7で溶射を行う際、溶射方向30を斜め下向きにして溶射を行う。この斜め下向きの溶射により、炉底際壁面の損傷部15を補修することができる。
 なお、炉壁形状計測装置6は、左右の炉壁に対応可能であり、溶射装置7は、回転により溶射方向を反転することができる。
 [第5実施形態]
 図15に、炉底際壁面の損傷部を補修する別の態様(第5実施形態)を示す。長尺ビーム(図示せず)を支持する台車上のローラーは固定タイプであり、補修装置は、図1に示した補修態様と同様に、炉内に挿入した状態のままである。
 まず、炉底形状計測装置18を、炉底4から十分離れた高さに維持して走査し、走査範囲の炉底の凹凸形状を計測し、この炉底の凹凸形状を近似した炉底近似曲線を求める。
 そして、炉壁形状計測装置6の外殻、及び、溶射装置7の外殻と上記炉底近似曲線との間の最短距離を、0~50mm(0は含まず)の範囲内に制御し、かつ、走査方向が炉底近似曲線と平行になるように、炉長方向精密駆動装置10と炉高方向精密駆動装置11の2軸を同調制御して、炉壁形状計測装置6及び溶射装置7を走査し、炉壁形状の計測、及び、炉壁損傷部への溶射を行う。
 本実施形態によれば、炉壁形状計測装置及び溶射装置の走査方向を制御する機械装置を新たに設けることなく、炉底際壁面の損傷部の炉壁形状を計測して、この損傷部を補修することができる。
 [第6実施形態]
 図16A及び図16Bに、炉底際壁面の損傷部を計測する態様(第6実施形態)を示す。炉壁形状計測装置として、ラインレーザー照射装置32と観察カメラ34とを用いる。図16Aに、ラインレーザー照射装置32と観察カメラ34との位置関係を示す。また、観察カメラ34からラインレーザー線33を見た様子を図16Bに示す。ラインレーザー線33は、炉壁に対して垂直に照射されるように配置する。その際、装置の走査方向が炉長方向であるので、炉壁に照射されたラインレーザー線33が走査方向13(図16A参照)に垂直となるように、ラインレーザー照射装置32を配置する。観察カメラ34は、炉底4からの距離を50~300mmの範囲に設置し、ラインレーザー線33の中心付近を視野とし、視線の角度を水平±10°とする。得られた画像を処理し、レーザー光とカメラの幾何的関係を用いて、光切断法により形状計測を行う。ラインレーザー線33の波長は短波長の可視光とし、観察カメラ34側に、ラインレーザー線33の波長よりも長波長の成分をカットするフィルターを用いることが望ましい。尚、ラインレーザー照射装置32と観察カメラ34とを用いて炉底形状を測定することもできる。
 本発明によれば、炉壁形状計測装置の外殻を炉底に接触させることなく炉底近似曲線と平行に計測点を走査することができ、補修装置の外殻を炉底に接触させることなく炉底近似曲線と平行に炉壁の損傷部を溶射することができるので、補修可能な範囲を炉底際まで最大限確保することができる。
 1  炭化室
 2  蓄熱室
 3  軌条
 4  炉底
 5  補修制御装置
 6  炉壁形状計測装置
 7  溶射装置
 8  脚部
 9  長尺ビーム
 10  炉長方向精密駆動装置
 10a  炉長方向
 11  炉高方向精密駆動装置
 11a  炉高方向
 11z  補修マニピュレータ
 12  炉長方向
 13  走査方向
 14  燃焼室
 15  損傷部
 16  煉瓦目地
 17  台車
 18  炉底形状計測装置
 19  昇降ローラー
 19’  固定ローラー
 20  第1の長尺ビーム
 21  第2の長尺ビーム
 22  第1の傾斜角センサー
 23  第2の傾斜角センサー
 24  第1の脚部
 25  第2の脚部
 26  第1の昇降ローラー
 27  第2の昇降ローラー
 28  重心位置
 29  レーザー照射方向
 30  溶射方向
 31  走査方向
 32  ラインレーザー照射装置
 33  ラインレーザー線
 34  観察カメラ
 35  観察カメラの視線方向
 37  堆積物
 38  炉底目地
 39  帯
 101  炭化室
 102  蓄熱室
 103  軌条
 104  炉底
 105  補修制御装置
 106  炉壁形状計測装置
 107  溶射装置
 108  脚部
 109  長尺ビーム
 110  炉長方向精密駆動装置
 110a  炉長方向
 111  炉高方向精密駆動装置
 111a  炉高方向
 111z  補修マニピュレータ
 112  炉長方向
 114  燃焼室
 115  損傷部
 116  煉瓦目地
 117  台車
 119’  固定ローラー
 PS  炭化室のコークス押出機側
 CS  炭化室のコークス排出側

Claims (16)

  1.  コークス炉炭化室の炉底に近接する壁面の損傷部を補修する方法であって、
     前記コークス炉炭化室内でその炉長方向に沿って炉底形状計測装置を移動させながら、この炉底形状計測装置と前記炉底との間の鉛直方向距離を計測することにより、前記炉底の凹凸形状を求め、前記炉底の凹凸形状を近似する炉底近似曲線を求める炉底形状計測工程と;
     前記炉底近似曲線に対する炉壁形状計測装置外殻の最短距離が第1の所定距離以上となるように前記炉壁形状計測装置を前記炉底近似曲線に平行に移動させながら、前記炉壁の凹凸形状を求める炉壁形状計測工程と;
     前記炉底近似曲線に対する溶射装置外殻の最短距離が第2の所定距離以上となるように前記溶射装置を前記炉底近似曲線に平行に移動させながら、この溶射装置から補修材を前記損傷部に対して溶射する補修工程と;
    を備えることを特徴とする、コークス炉炭化室の炉底際壁面の補修方法。
  2.  前記第1の所定距離及び前記第2の所定距離のそれぞれを、0mmを超えて50mm以下とすることを特徴とする、請求項1に記載のコークス炉炭化室の炉底際壁面の補修方法。
  3.  前記補修工程では、前記炉壁をその壁面に対して垂直な断面で見た場合の、前記損傷部に対する前記補修材の溶射方向のなす角度を、70°以上かつ110°以下とすることを特徴とする請求項1に記載のコークス炉炭化室の炉底際壁面の補修方法。
  4.  前記補修を、700℃以上の雰囲気中で行うことを特徴とする、請求項1又は2に記載のコークス炉炭化室の炉底際壁面の補修方法。
  5.  コークス炉炭化室の炉底に近接する炉壁の凹凸形状を炉壁形状計測装置で求めて前記炉壁の損傷部を溶射装置により補修する装置であって、
     前記コークス炉炭化室内に挿入される長尺ビームと;
     この長尺ビームの先端に精密駆動装置を介して設けられた、炉底形状計測装置及び前記炉壁形状計測装置及び前記溶射装置と;
     前記炉底形状計測装置及び前記炉壁形状計測装置及び前記溶射装置の、前記コークス炉炭化室内での炉長方向位置及び炉高方向位置を調整する前記精密駆動装置と;
     前記コークス炉炭化室内をその炉長方向に沿って移動しながら、自らと前記炉底との間の鉛直方向距離を計測することにより炉底近似曲線を求める前記炉底形状計測装置と;
     前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記炉底近似曲線と前記精密駆動装置との間の距離を調整する距離調整装置と;
    を備えることを特徴とする、コークス炉炭化室の炉底際壁面の補修装置。
  6.  前記炉底近似曲線に対する前記炉壁形状計測装置外殻の最短距離及び前記溶射装置外殻の最短距離のそれぞれを、0mmを超えて50mm以下とすることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  7.  前記炉底と前記炉壁形状計測装置の計測点との鉛直方向距離及び前記炉底と前記溶射装置の溶射点との鉛直方向距離が、少なくとも0mmを越えて100mmの範囲を含むように位置決め可能な装置外殻構造を有することを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  8.  前記炉壁をその壁面に対して垂直な断面で見た場合の、前記損傷部に対する前記補修材の溶射方向のなす角度が、70°以上かつ110°以下であることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  9. 前記精密駆動装置が、
     前記炉長方向位置を調整する炉長方向精密駆動装置と;
     前記炉高方向位置を調整する炉高方向精密駆動装置と;
    を備えることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  10. 前記距離調整装置が、
     前記長尺ビームの先端に取り付けられるととともに前記炉底に着地して支点をなす脚部と、前記コークス炉炭化室外で前記長尺ビームの後端を昇降自在に支持する昇降ローラーとを備え、
     なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記昇降ローラーを昇降させることで前記長尺ビームの前記先端の位置決めを行う、
    ことを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  11. 前記距離調整装置が、
     前記コークス炉炭化室外に前記炉長方向に沿って配設されるとともに前記長尺ビームを昇降自在に支持する複数の昇降ローラーを備え、
     なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記各昇降ローラーを昇降させることで前記長尺ビームの前記先端の位置決めを行う、
    ことを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  12.  前記溶射装置が、前記壁面に対する前記補修材の溶射方向を水平より下向きに変更するための回転機構を備えることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  13. 前記炉壁形状計測装置が、
     前記炉壁及び前記炉底に対して垂直にラインレーザーを照射するラインレーザー照射装置と;
     前記コークス炉炭化室内の前記炉底から50mm~300mmの高さ範囲内に設置され、前記炉壁に照射された前記ラインレーザーにより形成されるラインレーザー線の鉛直方向中央位置を視野中心の基準位置とし、さらにこの基準位置に対して鉛直方向に沿って-10°~+10°の範囲内で前記視野中心が角度調整可能である観察カメラと;
    を備えることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  14.  第1の長尺装置と第2の長尺装置とを備え;
     前記第1の長尺装置が、
      前記コークス炉炭化室内に挿入される前記長尺ビームである第1の長尺ビームと、
      この第1の長尺ビームの先端に前記炉長方向精密駆動装置である第1の炉長方向精密駆動装置を介して設けられ、前記炉底と自らとの間の距離を計測することにより、前記炉底の凹凸形状を求める前記炉底形状計測装置と、
      この炉底形状計測装置の、前記コークス炉炭化室内における炉長方向の位置を調整する前記炉長方向精密駆動装置である前記第1の炉長方向精密駆動装置と、
      この第1の炉長方向精密駆動装置の駆動方向と水平方向とがなす角度を計測する第1の傾斜角センサーと、を備え;
     前記第2の長尺装置が、
      前記コークス炉炭化室内に挿入される前記長尺ビームである第2の長尺ビームと、
      この第2の長尺ビームの先端に前記精密駆動装置を介して設けられた前記炉壁形状計測装置及び前記溶射装置と、
      前記炉壁形状計測装置及び前記溶射装置の、前記コークス炉炭化室内における炉長方向位置及び炉高方向位置を調整する前記精密駆動装置と、
      この精密駆動装置により前記炉長方向位置を調整する際の駆動方向と水平方向とがなす角度を計測する第2の傾斜角センサーと、
      前記第1の傾斜角センサーで計測された値と、前記炉底の凹凸形状から求めた炉底近似曲線と、前記第2の傾斜角センサーで計測された値とを用いて、前記精密駆動装置と前記炉底近似曲線との間の距離を調整する前記距離調整装置と、
    を備えることを特徴とする、請求項5に記載のコークス炉炭化室の炉底際壁面の補修装置。
  15.  前記距離調整装置が、
     前記第2の長尺ビームの前記先端に取り付けられるとともに前記炉底に着地して支点をなす脚部と、前記コークス炉炭化室外で前記第2の長尺ビームの後端を昇降自在に支持する昇降ローラーとを備え、
     なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記昇降ローラーを昇降させることで前記第2の長尺ビームの前記先端の位置決めを行う、
    ことを特徴とする、請求項14に記載のコークス炉炭化室の炉底際壁面の補修装置。
  16.  前記距離調整装置が、
     前記コークス炉炭化室外に前記炉長方向に沿って配設され、前記第2の長尺ビームを昇降自在に支持する複数の昇降ローラーを備え、
     なおかつ、前記炉底の凹凸形状に基づいて、前記炉底近似曲線と前記精密駆動装置の炉長方向走査方向とが平行となるように、前記各昇降ローラーを昇降させることで前記第2の長尺ビームの前記先端の位置決めを行う、
    ことを特徴とする、請求項14に記載のコークス炉炭化室の炉底際壁面の補修装置。
PCT/JP2009/005194 2008-10-06 2009-10-06 コークス炉炭化室の炉底際壁面の補修方法及び補修装置 WO2010041429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117007547A KR101345487B1 (ko) 2008-10-06 2009-10-06 코크스로 탄화실의 노 바닥 근처 벽면의 보수 방법 및 보수 장치
BRPI0920710-4A BRPI0920710B1 (pt) 2008-10-06 2009-10-06 Método de reparo e aparelho de reparo para superfície de parede de câmara de carbonização de forno de coque na borda inferior da mesma
CN2009801389029A CN102171311B (zh) 2008-10-06 2009-10-06 炼焦炉炭化室的炉底边壁面的修补方法及修补装置
JP2010504349A JP4528361B2 (ja) 2008-10-06 2009-10-06 コークス炉炭化室の炉底際壁面の補修方法及び補修装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008260067 2008-10-06
JP2008-260067 2008-10-06

Publications (1)

Publication Number Publication Date
WO2010041429A1 true WO2010041429A1 (ja) 2010-04-15

Family

ID=42100391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005194 WO2010041429A1 (ja) 2008-10-06 2009-10-06 コークス炉炭化室の炉底際壁面の補修方法及び補修装置

Country Status (5)

Country Link
JP (1) JP4528361B2 (ja)
KR (1) KR101345487B1 (ja)
CN (1) CN102171311B (ja)
BR (1) BRPI0920710B1 (ja)
WO (1) WO2010041429A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841955B1 (ko) 2017-02-27 2018-05-14 주식회사 바인시스템즈 3d 카메라를 이용한 자동차 부품검사장치의 카메라 설치유닛

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720892B1 (ko) * 2012-11-27 2017-03-28 제이에프이 스틸 가부시키가이샤 코크스의 압출력 추정 방법 및 코크스로의 보수 방법
CN104342175B (zh) * 2013-07-30 2016-09-21 中国一冶集团有限公司 焦炉热修炭化室墙局部破损的方法
CN106244174B (zh) * 2016-09-27 2019-04-02 武汉钢铁有限公司 一种碳化炉墙喷补装置及方法
JP7163847B2 (ja) * 2019-03-29 2022-11-01 日本製鉄株式会社 溶射装置及び炉壁溶射方法
JP7323741B2 (ja) 2020-02-20 2023-08-09 日本製鉄株式会社 コークス炉炭化室炉壁の補修方法
CN111718731B (zh) * 2020-07-07 2021-07-06 新疆八钢南疆钢铁拜城有限公司 一种焦炉燃烧室立火道喷浆方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178561A (ja) * 1998-12-16 2000-06-27 Nippon Steel Corp コークス炉内作業装置
JP2000212566A (ja) * 1999-01-27 2000-08-02 Nippon Steel Corp コ―クス炉の診断補修装置及び診断補修方法
JP2003041258A (ja) * 2001-07-27 2003-02-13 Nippon Steel Corp コークス炉炉底凹凸測定装置並びに炉底補修方法及び補修装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312905B1 (ko) 1993-10-29 2001-12-28 에모또 간지 코우크스로의보수방법및장치
DE69804577T2 (de) * 1997-12-05 2002-10-17 Kawasaki Steel Co Material und Verfahren zum Reparieren von Koksofenkammern
CN1978590A (zh) * 2005-12-10 2007-06-13 攀枝花新钢钒股份有限公司 一种焦炉炭化室底部耐火砖的热态修补方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178561A (ja) * 1998-12-16 2000-06-27 Nippon Steel Corp コークス炉内作業装置
JP2000212566A (ja) * 1999-01-27 2000-08-02 Nippon Steel Corp コ―クス炉の診断補修装置及び診断補修方法
JP2003041258A (ja) * 2001-07-27 2003-02-13 Nippon Steel Corp コークス炉炉底凹凸測定装置並びに炉底補修方法及び補修装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841955B1 (ko) 2017-02-27 2018-05-14 주식회사 바인시스템즈 3d 카메라를 이용한 자동차 부품검사장치의 카메라 설치유닛

Also Published As

Publication number Publication date
CN102171311B (zh) 2013-08-21
KR20110059746A (ko) 2011-06-03
JPWO2010041429A1 (ja) 2012-03-01
BRPI0920710B1 (pt) 2021-05-25
CN102171311A (zh) 2011-08-31
BRPI0920710A2 (pt) 2015-12-29
JP4528361B2 (ja) 2010-08-18
KR101345487B1 (ko) 2013-12-27

Similar Documents

Publication Publication Date Title
JP4528361B2 (ja) コークス炉炭化室の炉底際壁面の補修方法及び補修装置
JP2006289973A (ja) プロセス・チャンバ内に取外し可能な構築チャンバを位置決めするための装置および方法
TWI406727B (zh) Laser cutting device
JP2022532714A (ja) オブジェクト形成方法
WO2017165769A1 (en) Laser sintering system and method for forming high purity, low roughness, low warp silica glass
JP3848478B2 (ja) コークス炉の診断補修装置及び診断補修方法
KR101569742B1 (ko) 파이프 용접장치
KR101571007B1 (ko) 대면적 3차원 레이저 마킹장치
JP4975479B2 (ja) コークス炉炭化室炉壁の破孔補修方法及び破孔補修装置
JP7163847B2 (ja) 溶射装置及び炉壁溶射方法
JP2018533540A (ja) ガラス板用金型装置および方法
TWI521730B (zh) Substrate processing equipment
JPH07126637A (ja) コークス炉炉壁の補修方法および装置
KR20130113227A (ko) 스크라이브 장치, 기판 절단 장치 및, 기판 스크라이브 방법
CN104056866B (zh) 智能自动化连铸坯缺陷熔除特种处理装置
JP7393649B2 (ja) 炭化室補修機
JP2002038159A (ja) コークス炉燃焼室の観察補修装置
KR101982833B1 (ko) 워크테이블 처짐 보정 기능을 구비한 글래스 검사 장치
JP4283692B2 (ja) 炭化室の炉壁補修方法
JP7306602B1 (ja) コークス炉の炉壁形状測定方法およびコークス炉の炉壁補修方法
KR101382378B1 (ko) 지지장치, 이를 구비하는 연마장치 및 연마방법
CN116275471B (zh) 一种激光加工装置及方法
KR101401738B1 (ko) 스크라이빙 헤드 승강장치
JP4212452B2 (ja) コークス炉の熱間補修用断熱装置
CN204074742U (zh) 智能自动化连铸坯缺陷熔除特种处理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138902.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010504349

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117007547

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2768/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09818969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0920710

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110404