WO2010035646A1 - 周波数特性測定装置 - Google Patents
周波数特性測定装置 Download PDFInfo
- Publication number
- WO2010035646A1 WO2010035646A1 PCT/JP2009/065989 JP2009065989W WO2010035646A1 WO 2010035646 A1 WO2010035646 A1 WO 2010035646A1 JP 2009065989 W JP2009065989 W JP 2009065989W WO 2010035646 A1 WO2010035646 A1 WO 2010035646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- sweep
- signal
- measurement
- trigger
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
- G01R23/175—Spectrum analysis; Fourier analysis by delay means, e.g. tapped delay lines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
- G01R23/163—Spectrum analysis; Fourier analysis adapted for measuring in circuits having distributed constants
Definitions
- the present invention relates to a frequency characteristic measuring apparatus for measuring a frequency characteristic or the like of an input signal in a spectrum analyzer or the like.
- the conventional spectrum analyzer disclosed in Patent Document 1 and the like has two input terminals, but the measurement of the frequency characteristic is performed on a signal input from one input terminal. Therefore, if the frequency characteristics of two types of signals are to be measured simultaneously, two spectrum analyzers and an external trigger device that generates a trigger signal for synchronizing these measurements are required. There is a problem that the configuration is complicated and the measurement is troublesome. Further, as a method for comparing the frequency characteristics of two kinds of signals, a method of printing and comparing the respective measurement results can be considered, but this method has a problem that accurate analysis is difficult.
- the present invention was created in view of the above points, and an object of the present invention is to provide a frequency characteristic measuring apparatus capable of simplifying the configuration for measurement and reducing labor for measurement. It is to provide.
- a frequency characteristic measuring apparatus includes a plurality of measuring means for separately measuring frequency characteristics for each of a plurality of input signals, and a measurement start timing in each of the plurality of measuring means.
- Trigger control means for outputting a plurality of trigger signals for designating, and sweep control means for controlling the frequency sweep operation in each of the plurality of measurement means in synchronization with the plurality of trigger signals output from the trigger control means. ing. This makes it possible to measure multiple input signals in parallel to synchronize with the internally generated trigger signal, eliminating the need for an external device, and simplifying the measurement configuration And the labor required for measurement can be reduced.
- the plurality of measurement means described above include a local oscillator whose oscillation frequency can be changed, and a mixer that mixes and outputs a local oscillation signal output from the local oscillator and a signal input from the input terminal.
- the local oscillator outputs a status signal indicating the operating state of the local oscillator, and the sweep control means performs frequency sweep operation on the measuring means including the local oscillator notified by the status signal that the local oscillator is operable. It is desirable to control. As a result, it is possible to perform frequency sweep control by confirming a state where frequency sweep is possible.
- the sweep control means described above individually controls the frequency sweep operation in each of the plurality of measurement means in synchronization with the selection means for selecting one of the plurality of trigger signals and one trigger signal selected by the selection means. And a plurality of sweeping means. As a result, the start timings of the frequency sweeps in the plurality of measuring means can be matched, and the measurement timings of the frequency characteristics can be easily matched.
- the sweep control means described above includes a plurality of selection means for selecting a plurality of trigger signals so as not to overlap each other, and a plurality of trigger signals selected by the plurality of selection means in synchronization with each of the plurality of measurement means. It is desirable to provide a plurality of sweep means for individually controlling the frequency sweep operation. Thereby, the measurement operation
- the sweep control means described above receives a selection means for selecting one of a plurality of trigger signals, and one trigger signal selected by the selection means, and synchronizes with the trigger signal to each of the plurality of measurement means.
- a plurality of sweep means for individually controlling the frequency sweep operation and all status signals corresponding to each of the plurality of measurement means indicate that they are operable, trigger signals are input to the plurality of sweep means. It is desirable to provide a trigger input restricting means to permit. As a result, when frequency sweeping is possible in all measurement means, a trigger signal is input to each sweeping means, so that two systems of measurement can be started more reliably simultaneously.
- Each of the plurality of sweep means described above performs an operation for controlling the frequency sweep operation in each of the plurality of measurement means when all the state signals corresponding to each of the plurality of measurement means indicate an operable state. It is desirable to do. As a result, when it is impossible to perform the frequency sweep in some measuring means, the frequency sweep in all the measuring means can be stopped. It is possible to reliably match the operation timing.
- the sweep control means described above receives a selection means for selecting one of a plurality of trigger signals, and one trigger signal selected by the selection means, and synchronizes with the trigger signal to each of the plurality of measurement means. It is desirable to include a plurality of sweep means for individually controlling the frequency sweep operation and a delay means for delaying the input timing of the trigger signal for a predetermined time with respect to a part of the plurality of measurement means. As a result, the timing at which the trigger signals are input to the plurality of sweep means can be accurately shifted by a predetermined time, and the timing at which the sweep is started can be accurately shifted when performing measurement of a plurality of systems.
- FIG. 4 is a diagram showing a detailed configuration of a sweep control unit corresponding to case 1.
- FIG. 4 is a diagram showing a detailed configuration of a sweep control unit corresponding to case 1.
- FIG. 6 is a diagram showing a detailed configuration of a sweep control unit corresponding to case 2. 6 is a diagram illustrating a detailed configuration of a sweep control unit corresponding to case 3.
- FIG. 4 is a diagram showing a detailed configuration of a sweep control unit corresponding to case 4.
- FIG. 1 is a diagram illustrating a configuration of a spectrum analyzer according to an embodiment.
- the spectrum analyzer 10 of this embodiment includes mixers 110 and 210, local oscillators 112 and 212, IF units (intermediate frequency processing units) 120 and 220, a sweep control unit 300, a trigger control unit 350, and a CPU 400.
- the display unit 410 and the operation unit 420 are included.
- the spectrum analyzer 10 of this embodiment includes two input terminals IN1 and IN2 to which a signal under measurement is input and a trigger terminal TG to which an external trigger signal is input.
- the spectrum analyzer 10 simultaneously measures the frequency characteristics of the two signals under test fin1 and fin2 input to these two input terminals IN1 and IN2, and displays the spectrum as a measurement result.
- the spectrum analyzer 10 includes a mixer 110, a local oscillator 112, and an IF unit 120.
- the mixer 110 receives a signal under measurement fin1 input from one input terminal IN1 and a local oscillation signal f OSC1 output from the local oscillator 112, and these signal under measurement fin1 and local oscillation signal f OSC1 are input. And a mixed signal is output.
- the local oscillator 112 outputs a local oscillation signal f OSC1 that can be swept within a predetermined range of the oscillation frequency.
- the local oscillator 112 is configured by a PLL circuit including a variable frequency divider, a phase comparator, and a VCO (voltage controlled oscillator). Further, in order to widen the frequency variable range of the local oscillation signal output from the local oscillator 112, normally, a plurality of VCOs having different frequency variable ranges are used, and when changing the frequency of the local oscillation signal in one direction, The VCO to be used is switched (band switching).
- the IF unit 120 performs analog and digital signal processing on the output signal of the mixer 110 to measure the frequency characteristics of the signal under test fin1, and includes an intermediate frequency filter 122, an ADC (analog-digital converter). ) 124 and DSP (digital signal processor) 126.
- the intermediate frequency filter 122 is a band pass filter that passes only a predetermined intermediate frequency component (intermediate frequency signal) from the output signal of the mixer 110.
- the ADC 124 converts the intermediate frequency signal output from the intermediate frequency filter 122 into digital data at a predetermined sampling frequency.
- the DSP 126 performs various kinds of signal processing on the intermediate frequency signal converted into digital data, thereby measuring characteristic values (for example, signal level and bit error rate) of the intermediate frequency signal. Specifically, the DSP 126 performs detection processing, image removal processing, and the like on the intermediate frequency signal.
- a mixer 210 receives the signal under test fin2 input from the other input terminal IN2 and the local oscillation signal f OSC2 output from the local oscillator 212. These signal under measurement fin2 and the local oscillation signal f OSC2 are input. And a mixed signal is output.
- the local oscillator 212 outputs a local oscillation signal f OSC2 that can sweep the oscillation frequency within a predetermined range.
- the local oscillator 212 is configured by a PLL circuit including, for example, a variable frequency divider, a phase comparator, and a VCO (voltage controlled oscillator). Further, in order to widen the frequency variable range of the local oscillation signal output from the local oscillator 212, normally, a plurality of VCOs having different frequency variable ranges are used, and when changing the frequency of the local oscillation signal in one direction, The VCO to be used is switched (band switching).
- the IF unit 220 performs analog and digital signal processing on the output signal of the mixer 210 to measure the frequency characteristics of the signal under measurement fin2, and includes an intermediate frequency filter 222, an ADC 224, and a DSP 226.
- the intermediate frequency filter 222 is a band pass filter that passes only a predetermined intermediate frequency component (intermediate frequency signal) from the output signal of the mixer 210.
- the ADC 224 converts the intermediate frequency signal output from the intermediate frequency filter 222 into digital data at a predetermined sampling frequency.
- the DSP 226 measures the characteristic value of the intermediate frequency signal by performing various kinds of signal processing on the intermediate frequency signal converted into digital data. Specifically, the DSP 226 performs detection processing, image removal processing, and the like on the intermediate frequency signal.
- the sweep control unit 300 receives two types of trigger signals T1 and T2 and LO1redy and LO2redy signals output from the local oscillators 112 and 212, respectively.
- the sweep signal is input to each of the two local oscillators 112 and 212.
- S1 and S2 are sent to perform sweep control on each of these two local oscillators 112 and 212.
- the LO1redy signal is a signal indicating the operation state of the local oscillator 112, and becomes a high level when, for example, the sweep operation is enabled (enable state).
- the LO1redy signal becomes low level during the band switching, and the LO1redy signal becomes high level again when the band switching is completed.
- the LO2redy signal becomes low level during the band switching, and the LO1redy signal becomes high level again when the band switching is completed. The same applies to the LO2redy signal.
- the trigger control unit 350 generates trigger signals T1 and T2 for instructing the start of measurement. These trigger signals T1 and T2 are generated in synchronization with an external trigger signal input to the trigger terminal TG, an IF trigger signal output from the IF units 120 and 220, a video trigger signal, or the like.
- the CPU 400 controls the entire spectrum analyzer 10 and simultaneously displays two measurement results (characteristic values) output from the IF units 120 and 220 on the display unit 410 or a user instruction using the operation unit 420.
- the process for setting the measurement conditions is performed according to.
- the operation unit 420 includes a plurality of switches operated by a user, an operation volume, and the like. By operating a switch, an operation volume, or the like provided in the operation unit 420, the user gives instructions for setting measurement conditions and starting and ending measurement.
- FIG. 2 is a diagram showing a detailed configuration of the sweep control unit 300 corresponding to case 1.
- the sweep control unit 300 shown in FIG. 2 includes two sweep units 310 and 312 and two switching units 320 and 322.
- the sweep unit 310 outputs a sweep signal S1 necessary for sweeping the frequency of the local oscillator 112.
- the sweep control unit 310 determines the frequency division ratio of the variable frequency divider in one direction.
- a sweep signal S1 for instructing the start and end of the sweep operation to be changed to is generated and output.
- the sweep signal S1 is input to the local oscillator 112.
- the sweep unit 310 receives the LO1redy signal input from the local oscillator 112 and the trigger signal T1 (or T2) input via the switching unit 320.
- the trigger signal T1 or the like is input when the LO1redy signal is at a high level, the sweep unit 310 starts outputting the sweep signal S1.
- the sweep signal S1 is also input to the IF unit 120, and the start and end of the sweep control are notified to the IF unit 120.
- the sweep unit 312 outputs a sweep signal S2 necessary for sweeping the frequency of the local oscillator 212.
- the sweep control unit 312 performs a sweep operation for changing the frequency division ratio of the variable frequency divider in one direction.
- a sweep signal S2 instructing the start and end of is generated and output.
- the sweep signal S2 is input to the local oscillator 212.
- the sweep unit 312 receives the LO2redy signal input from the local oscillator 212 and the trigger signal T2 (or T1) input via the switching unit 322.
- the sweep unit 312 starts outputting the sweep signal S2 when the trigger signal T2 or the like is input when the LO2redy signal is at a high level.
- the sweep signal S2 is also input to the IF unit 220, and the start and end of the sweep control are notified to the IF unit 220.
- the switching unit 320 selectively outputs one of the two trigger signals T1 and T2 toward the sweep unit 310.
- the switching unit 322 selectively outputs one of the two trigger signals T1 and T2 toward the sweep unit 312.
- the trigger signal T ⁇ b> 1 is selected by the switching unit 320 and input to the sweep unit 310.
- the switching unit 322 selects the trigger signal T2 and inputs it to the sweep unit 312.
- the switching state (selection state) of the two switching units 320 and 322 By setting the switching state (selection state) of the two switching units 320 and 322 in this way, the measurement of the frequency characteristic for the signal under measurement fin1 input from one input terminal IN1 is performed in synchronization with the trigger signal T1. In both cases, it is possible to measure the frequency characteristics of the signal under measurement fin2 input from the other input terminal IN2 in synchronization with the trigger signal T2. Moreover, these two systems of measurement operations can be performed independently.
- FIG. 3 is a diagram illustrating a detailed configuration of the sweep control unit 300 when the switching state of the switching unit 322 is changed.
- the configuration shown in FIG. 3 is the same as the configuration shown in FIG. 2, and only the switching state of the switching unit 322 is changed.
- the trigger signal T1 is selected by the switching unit 320 and input to the sweep unit 310, and the trigger signal T1 is selected by the switching unit 322 and input to the sweep unit 312. That is, the same trigger signal T1 is selected by the two switching units 320 and 322 and input to the two sweeping units 310 and 312. Therefore, the timings at which the sweep signals S1 and S2 are output from the sweep units 310 and 312 are the same, and two systems of measurements can be performed in synchronization with one trigger signal T1.
- it has been conventionally performed to perform sweep control in synchronization with an IF trigger signal output according to the IF level (intermediate frequency signal level) when measuring a harmonic component of a burst wave.
- the sweep control cannot be performed conventionally.
- the measurement of the fundamental wave of the burst wave is performed in synchronization with the trigger signal T1, and the harmonics are synchronized with the same trigger signal T1. Can be measured.
- FIG. 4 is a diagram showing a detailed configuration of the sweep control unit 300 corresponding to Case 2.
- the sweep control unit 300 shown in FIG. 4 includes two sweep units 310 and 312, two switching units 320 and 322, and three AND circuits 330, 332, and 334.
- the configuration shown in FIG. 4 is different from the configuration shown in FIG. 3 in that three AND circuits 330, 332, and 334 are added. In the following, description will be given mainly focusing on this difference.
- the AND circuit 330 is inserted between the switching unit 320 and the sweep unit 310.
- the trigger signal T1 output from the switching unit 320 is input to one input terminal of the AND circuit 330, and the output terminal of the AND circuit 334 is connected to the other input terminal.
- the AND circuit 332 is inserted between the switching unit 322 and the sweep unit 312.
- the trigger signal T1 output from the switching unit 322 is input to one input terminal of the AND circuit 332, and the output terminal of the AND circuit 334 is connected to the other input terminal.
- the AND circuit 334 receives the LO1redy signal and the LO2redy signal at each of the two input terminals, and outputs a logical product signal of these signals. That is, a high level signal is output when both the LO1redy signal and the LO2redy signal are enabled (high level).
- the example shown in FIG. 4 is common in that the trigger signal T1 is input to the two sweep units 310 and 312, but both the LO1redy signal and the LO2redy signal are at a high level. Otherwise, the trigger signal T1 is not input to the two sweep units 310 and 312. That is, the trigger signal T1 is input to the two sweep units 310 and 312 only when both of the two local oscillators 112 and 212 are operable, and the two sweep units 310 and 312 synchronize with the trigger signal T1. At the same time, the sweep signals S1, S2 can be output. As a result, it is possible to more reliably start measurement on two systems of signals under measurement at the same time.
- the two sweep signals S1 and S2 are output in synchronization with the trigger signal T1, but the two sweep signals S1 and S2 are output in synchronization with the trigger signal T2. Good.
- FIG. 5 is a diagram showing a detailed configuration of the sweep control unit 300 corresponding to case 3.
- the sweep control unit 300 shown in FIG. 5 includes two sweep units 310 and 312, two switching units 320 and 322, and three AND circuits 330, 332, and 334.
- the configuration shown in FIG. 5 is different from the configuration shown in FIG. 4 in the input paths of the LO1redy signal and the LO2redy signal. In the following, description will be given mainly focusing on this difference.
- the output signal of the AND circuit 334 (the logical product signal of the LO1 redy signal and the LO2 redy signal) is input to the sweep unit 310 instead of the LO1 redy signal, compared to the example shown in FIG. 4.
- the difference is that the output signal of the AND circuit 334 is input to the sweep unit 312 instead of the LO2redy signal. That is, the two sweep units 310 and 312 can operate only when the LO1redy signal and the LO2redy signal are both at the high level, and only when the LO1redy signal and the LO2redy signal are both at the high level, the trigger signal T1 (or T2) is input.
- FIG. 6 is a diagram illustrating a detailed configuration of the sweep control unit 300 corresponding to case 4.
- the sweep control unit 300 illustrated in FIG. 6 includes two sweep units 310 and 312, a switching unit 320, and a delay unit (D) 340.
- the configuration shown in FIG. 6 is different from the configuration shown in FIG. 2 in that the switching unit 322 is deleted and a delay unit 340 is added. In the following, description will be given mainly focusing on this difference.
- the trigger signal T1 (or T2) selectively output from the switching unit 320 is directly input to the sweep unit 310 and input to the sweep unit 312 via the delay unit 340.
- the delay unit 340 outputs the input trigger signal T1 (or T2) after being delayed by a predetermined time t.
- the time t can be arbitrarily set within a predetermined range, and is set by the CPU 400, for example.
- the timing at which the trigger signal T1 is input to the sweep unit 310 and the timing at which the trigger signal T1 is input to the sweep unit 312 can be accurately shifted by the time t, and the timing at which the sweep starts when performing two systems of measurement is accurate. Time t can be shifted.
- the mixers 110 and 210, the local oscillators 112 and 212, and the IF units 120 and 220 described above correspond to a plurality of measurement units
- the trigger control unit 350 corresponds to a trigger control unit
- the sweep control unit 300 corresponds to a sweep control unit.
- the switching units 320 and 322 correspond to the selection unit
- the sweep units 310 and 312 correspond to the sweep unit
- the AND circuits 330, 332, and 334 correspond to the trigger input restriction unit
- the delay unit 340 corresponds to the delay unit, respectively.
- the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
- the detailed configuration of the sweep control unit 300 corresponding to each of the cases 1-4 has been individually illustrated using FIGS. 2 to 6. However, all or a plurality of these configurations can be represented by one sweep control unit. 300 may be provided.
- the same two sets of configurations are provided to simultaneously measure the frequency characteristics of two input signals.
- the same configuration is used to simultaneously measure the frequency characteristics of three or more input signals. Three or more sets may be provided.
- the two DSPs 126 and 226 are provided. However, when there is a margin in processing capacity, the other DSP 226 may be omitted and the DSP 226 may perform the processing of the DSP 226. Good. As a result, it is possible to reduce the cost associated with the reduction in the number of parts.
- the present invention it is possible to perform measurements on a plurality of input signals in parallel so as to synchronize with an internally generated trigger signal, eliminating the need for an external device, thus simplifying the configuration for measurement. Therefore, it is possible to reduce the labor required for measurement.
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
図2は、ケース1に対応する掃引制御部300の詳細構成を示す図である。図2に示す掃引制御部300は、2つの掃引部310、312および2つの切替部320、322を含んで構成されている。掃引部310は、局部発振器112の周波数を掃引するために必要な掃引信号S1を出力する。上述したように、可変分周器、位相比較器、VCOを含むPLL回路によって局部発振器112が構成されているものとすると、掃引制御部310は、この可変分周器の分周比を一方向に変化させる掃引動作の開始と終了を指示する掃引信号S1を生成して出力する。この掃引信号S1は、局部発振器112に入力される。また、掃引部310には、局部発振器112から入力されるLO1redy信号と、切替部320を介して入力されるトリガ信号T1(あるいはT2)とが入力されている。掃引部310は、LO1redy信号がハイレベルのときにトリガ信号T1等が入力されると、掃引信号S1の出力を開始する。なお、掃引信号S1はIF部120にも入力されており、掃引制御の開始と終了がIF部120に通知される。
図4は、ケース2に対応する掃引制御部300の詳細構成を示す図である。図4に示す掃引制御部300は、2つの掃引部310、312、2つの切替部320、322、3つのアンド回路330、332、334を含んで構成されている。図4に示す構成は、図3に示した構成に対して、3つのアンド回路330、332、334が追加された点が異なっている。以下では、主にこの相違点に着目して説明する。
310、312からトリガ信号T1に同期して同時に掃引信号S1、S2を出力することが可能になる。これにより、より確実に、2系統の被測定信号に対する測定を同時に開始することができる。
図5は、ケース3に対応する掃引制御部300の詳細構成を示す図である。図5に示す掃引制御部300は、2つの掃引部310、312、2つの切替部320、322、3つのアンド回路330、332、334を含んで構成されている。図5に示す構成は、図4に示した構成に対して、LO1redy信号とLO2redy信号の入力経路が異なっている。以下では、主にこの相違点に着目して説明する。
図6は、ケース4に対応する掃引制御部300の詳細構成を示す図である。図6に示す掃引制御部300は、2つの掃引部310、312、切替部320、遅延部(D)340を含んで構成されている。図6に示す構成は、図2に示した構成に対して、切替部322を削除し、遅延部340を追加した点が異なっている。以下では、主にこの相違点に着目して説明する。
110、210 ミキサ
112、212 局部発振器
120、220 IF部(中間周波処理部)
122、222 中間周波フィルタ
124、224 ADC(アナログ-デジタル変換器)
126、226 DSP(デジタル信号プロセッサ)
300 掃引制御部
310、312 掃引部
320、322 切替部
330、332、334 アンド回路
340 遅延部
350 トリガ制御部
400 CPU
410 表示部
420 操作部
Claims (13)
- 複数の入力信号のそれぞれに対して別々に周波数特性を測定する複数の測定手段と、
前記複数の測定手段のそれぞれにおける測定開始タイミングを指定する複数のトリガ信号を出力するトリガ制御手段と、
前記トリガ制御手段から出力される前記複数のトリガ信号に同期して、前記複数の測定手段のそれぞれにおける周波数掃引動作を制御する掃引制御手段と、
を備える周波数特性測定装置。 - 請求項1において、
前記複数の測定手段のそれぞれには、発振周波数が変更可能な局部発振器と、前記局部発振器から出力される局部発振信号と入力端子から入力される信号とを混合して出力するミキサとが含まれており、
前記局部発振器からは前記局部発振器の動作状態を示す状態信号が出力され、
前記掃引制御手段は、前記状態信号によって動作可能状態であることが通知された前記局部発振器が含まれる前記測定手段に対して周波数掃引動作の制御を行う周波数特性測定装置。 - 請求項1において、
前記掃引制御手段は、
前記複数のトリガ信号のいずれかを選択する選択手段と、
前記選択手段によって選択された一つの前記トリガ信号に同期させて、前記複数の測定手段のそれぞれにおける周波数掃引動作を個別に制御する複数の掃引手段と、
を備える周波数特性測定装置。 - 請求項1において、
前記掃引制御手段は、
前記複数のトリガ信号を重複しないように選択する複数の選択手段と、
前記複数の選択手段によって選択された複数の前記トリガ信号のそれぞれに同期させて、前記複数の測定手段のそれぞれにおける周波数掃引動作を個別に制御する複数の掃引手段と、
を備える周波数特性測定装置。 - 請求項2において、
前記掃引制御手段は、
前記複数のトリガ信号のいずれかを選択する選択手段と、
前記選択手段によって選択された一つの前記トリガ信号が入力され、このトリガ信号に同期させて、前記複数の測定手段のそれぞれにおける周波数掃引動作を個別に制御する複数の掃引手段と、
前記複数の測定手段のそれぞれに対応する全ての前記状態信号が動作可能状態であることを示す場合に、前記複数の掃引手段への前記トリガ信号の入力を許可するトリガ入力制限手段と、
を備える周波数特性測定装置。 - 請求項5において、
前記複数の掃引手段のそれぞれは、前記複数の測定手段のそれぞれに対応する全ての前記状態信号が動作可能状態であることを示す場合に、前記複数の測定手段のそれぞれにおける周波数掃引動作を制御する動作を行う周波数特性測定装置。 - 請求項1において、
前記掃引制御手段は、
前記複数のトリガ信号のいずれかを選択する選択手段と、
前記選択手段によって選択された一つの前記トリガ信号が入力され、このトリガ信号に同期させて、前記複数の測定手段のそれぞれにおける周波数掃引動作を個別に制御する複数の掃引手段と、
前記複数の測定手段の一部に対して、前記トリガ信号の入力タイミングを所定時間遅らせる遅延手段と、
を備える周波数特性測定装置。 - 請求項1において、
前記複数の測定手段のそれぞれには、可変分周器、位相比較器、VCOを含むPLL回路によって構成された局部発振器が備わっており、
前記掃引制御手段は、前記可変分周器の分周比を変化させることにより周波数掃引動作の制御を行う周波数特性測定装置。 - 請求項8において、
前記局部発振器には、周波数可変範囲が異なる複数の前記VCOが備わっており、
複数の前記VCOが切り替えられる周波数特性測定装置。 - 請求項1において、
前記複数の測定手段のそれぞれは、周波数掃引可能な局部発振信号を出力する局部発振器と、前記局部発振信号と前記入力信号とを混合するミキサと、前記ミキサから出力される信号に対して周波数特性の測定を行う中間周波処理部とを備える周波数特性測定装置。 - 請求項10において、
前記中間周波数処理部は、前記ミキサから出力される信号から所定の中間周波数成分のみを通過させる帯域通過フィルタと、前記帯域通過フィルタから出力される中間周波信号を所定のサンプリング周波数でデジタルデータに変換するアナログ-デジタル変換器と、前記アナログ-デジタル変換器から出力されるデータに対して信号処理を行うことにより前記中間周波信号の特性値を測定するDSPを備える周波数特性測定装置。 - 請求項11において、
前記DSPによって測定される特性値は、信号レベルである周波数特性測定装置。 - 請求項11において、
前記DSPによって測定される特性値は、ビットエラー率である周波数特性測定装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801377638A CN102165324A (zh) | 2008-09-26 | 2009-09-14 | 频率特性测定装置 |
DE112009002185T DE112009002185T5 (de) | 2008-09-26 | 2009-09-14 | Frequenzcharakteristik-Messvorrichtung |
US12/865,972 US8368382B2 (en) | 2008-09-26 | 2009-09-14 | Frequency characteristics measuring device |
JP2010530811A JP5559693B2 (ja) | 2008-09-26 | 2009-09-14 | 周波数特性測定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008247072 | 2008-09-26 | ||
JP2008-247072 | 2008-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035646A1 true WO2010035646A1 (ja) | 2010-04-01 |
Family
ID=42059647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/065989 WO2010035646A1 (ja) | 2008-09-26 | 2009-09-14 | 周波数特性測定装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8368382B2 (ja) |
JP (1) | JP5559693B2 (ja) |
KR (1) | KR20110081953A (ja) |
CN (1) | CN102165324A (ja) |
DE (1) | DE112009002185T5 (ja) |
TW (1) | TW201024749A (ja) |
WO (1) | WO2010035646A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355259A (zh) * | 2010-05-21 | 2012-02-15 | Nxp股份有限公司 | 具有频率产生电路的集成电路 |
JP2012042459A (ja) * | 2010-08-13 | 2012-03-01 | Tektronix Inc | 試験測定機器及びその動作方法 |
CN102735924A (zh) * | 2012-06-14 | 2012-10-17 | 中国电子科技集团公司第四十一研究所 | 一种超外差式微波分析仪器中的频率瞬变特征检测检测装置及方法 |
JP2021162372A (ja) * | 2020-03-31 | 2021-10-11 | 横河電機株式会社 | 波形測定器、及び波形測定器による再演算方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101150878B1 (ko) * | 2006-04-11 | 2012-05-29 | 엘아이지넥스원 주식회사 | 스펙트럼 분석기 |
GB2458908B (en) * | 2008-04-01 | 2010-02-24 | Michael Frank Castle | Low power signal processor |
KR101421580B1 (ko) * | 2012-10-15 | 2014-07-22 | 세종대학교산학협력단 | 디지털 스펙트럼 분석 장치 및 그 방법 |
CN104483619B (zh) * | 2014-12-10 | 2017-10-27 | 四川理工学院 | 一种基于虚拟仪器的频率特性测试系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0856242A (ja) * | 1994-08-10 | 1996-02-27 | Advantest Corp | デジタル変調信号のビット誤り率測定装置 |
JPH09321717A (ja) * | 1996-03-27 | 1997-12-12 | Anritsu Corp | 無線機試験装置及び方法 |
JPH10282163A (ja) * | 1997-02-07 | 1998-10-23 | Advantest Corp | スペクトラムアナライザ |
JP2006329981A (ja) * | 2005-05-27 | 2006-12-07 | Agilent Technol Inc | 二重スペクトル・アナライザ測定システム |
JP2008145145A (ja) * | 2006-12-07 | 2008-06-26 | Yokogawa Electric Corp | 測定装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08233875A (ja) | 1994-11-11 | 1996-09-13 | Advantest Corp | イメージ周波数除去装置及びこれを用いたスペクトラムアナライザ |
JPH08201449A (ja) * | 1995-01-24 | 1996-08-09 | Advantest Corp | スペクトラムアナライザ |
US6060878A (en) * | 1997-02-07 | 2000-05-09 | Advantest Corp. | Spectrum analyzer |
US6219376B1 (en) * | 1998-02-21 | 2001-04-17 | Topcon Positioning Systems, Inc. | Apparatuses and methods of suppressing a narrow-band interference with a compensator and adjustment loops |
DE102006017018A1 (de) * | 2006-01-10 | 2007-07-12 | Rohde & Schwarz Gmbh & Co. Kg | Secum-Trahenz-Verfahren, insbesondere für einen Netzwerkanalysator |
DE112008003254T5 (de) * | 2007-12-20 | 2010-10-07 | Advantest Corp. | Frequenzcharakteristik-Messvorrichtung |
JP2009186323A (ja) * | 2008-02-06 | 2009-08-20 | Advantest Corp | 周波数特性測定装置 |
CN102012444B (zh) * | 2009-09-07 | 2014-04-23 | 鸿富锦精密工业(深圳)有限公司 | 示波器及利用该示波器测试串行总线信号的方法 |
-
2009
- 2009-09-14 DE DE112009002185T patent/DE112009002185T5/de not_active Withdrawn
- 2009-09-14 WO PCT/JP2009/065989 patent/WO2010035646A1/ja active Application Filing
- 2009-09-14 US US12/865,972 patent/US8368382B2/en active Active
- 2009-09-14 CN CN2009801377638A patent/CN102165324A/zh active Pending
- 2009-09-14 JP JP2010530811A patent/JP5559693B2/ja active Active
- 2009-09-14 KR KR1020117006675A patent/KR20110081953A/ko not_active Application Discontinuation
- 2009-09-18 TW TW098131528A patent/TW201024749A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0856242A (ja) * | 1994-08-10 | 1996-02-27 | Advantest Corp | デジタル変調信号のビット誤り率測定装置 |
JPH09321717A (ja) * | 1996-03-27 | 1997-12-12 | Anritsu Corp | 無線機試験装置及び方法 |
JPH10282163A (ja) * | 1997-02-07 | 1998-10-23 | Advantest Corp | スペクトラムアナライザ |
JP2006329981A (ja) * | 2005-05-27 | 2006-12-07 | Agilent Technol Inc | 二重スペクトル・アナライザ測定システム |
JP2008145145A (ja) * | 2006-12-07 | 2008-06-26 | Yokogawa Electric Corp | 測定装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355259A (zh) * | 2010-05-21 | 2012-02-15 | Nxp股份有限公司 | 具有频率产生电路的集成电路 |
CN102355259B (zh) * | 2010-05-21 | 2014-11-05 | Nxp股份有限公司 | 具有频率产生电路的集成电路 |
JP2012042459A (ja) * | 2010-08-13 | 2012-03-01 | Tektronix Inc | 試験測定機器及びその動作方法 |
CN102735924A (zh) * | 2012-06-14 | 2012-10-17 | 中国电子科技集团公司第四十一研究所 | 一种超外差式微波分析仪器中的频率瞬变特征检测检测装置及方法 |
JP2021162372A (ja) * | 2020-03-31 | 2021-10-11 | 横河電機株式会社 | 波形測定器、及び波形測定器による再演算方法 |
JP7413124B2 (ja) | 2020-03-31 | 2024-01-15 | 横河電機株式会社 | 波形測定器、及び波形測定器による再演算方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201024749A (en) | 2010-07-01 |
JPWO2010035646A1 (ja) | 2012-02-23 |
US20110001468A1 (en) | 2011-01-06 |
KR20110081953A (ko) | 2011-07-15 |
US8368382B2 (en) | 2013-02-05 |
JP5559693B2 (ja) | 2014-07-23 |
CN102165324A (zh) | 2011-08-24 |
DE112009002185T5 (de) | 2011-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5559693B2 (ja) | 周波数特性測定装置 | |
WO2009081780A1 (ja) | 周波数特性測定装置 | |
EP3451000B1 (en) | Vector network analyzer and measuring method for frequency-converting measurements | |
US9810726B2 (en) | Method and system for calibrating phases of comb teeth in comb signal with pilot tone and using calibrated comb teeth phases to measure a device under test | |
US7948326B2 (en) | Method for carrying out a frequency change | |
WO2007132660A1 (ja) | 周波数成分測定装置 | |
US7952344B2 (en) | Frequency characteristic measuring apparatus | |
JP2003149279A (ja) | ネットワーク・アナライザ及びrf測定方法 | |
JPWO2008114307A1 (ja) | 遅延回路及び該回路の試験方法 | |
US8519696B2 (en) | Integrated circuits with frequency generating circuits | |
JPH03124122A (ja) | ディジタル同期掃引方法 | |
US9188617B2 (en) | Using a shared local oscillator to make low-noise vector measurements | |
JP2008309674A (ja) | スペクトラムアナライザ | |
JP2011127994A (ja) | 測定装置及び周波数切替方法 | |
JP2000329806A (ja) | スペクトラムアナライザ | |
JP7177865B2 (ja) | 測定装置とその補間方法 | |
JP6329196B2 (ja) | 発振回路及び発振方法 | |
JP2006148407A (ja) | チューナの特性を測定する装置 | |
JPH0854429A (ja) | スペクトラムアナライザ | |
JP3071099U (ja) | 半導体試験装置 | |
JP6034850B2 (ja) | 電圧設定装置、それを備えたpllシンセサイザ、信号分析装置及び信号発生装置並びに電圧設定方法 | |
JP2019047471A (ja) | Pllロック検出回路、それを備えたpll回路及び測定装置並びにpllロック検出方法 | |
JP2001050994A (ja) | スペクトラムアナライザ | |
JP2005043226A (ja) | テスト容易化回路 | |
JPH06230046A (ja) | 広レンジ周波数比較器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980137763.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09816061 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12865972 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010530811 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117006675 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09816061 Country of ref document: EP Kind code of ref document: A1 |