WO2009081780A1 - 周波数特性測定装置 - Google Patents

周波数特性測定装置 Download PDF

Info

Publication number
WO2009081780A1
WO2009081780A1 PCT/JP2008/072741 JP2008072741W WO2009081780A1 WO 2009081780 A1 WO2009081780 A1 WO 2009081780A1 JP 2008072741 W JP2008072741 W JP 2008072741W WO 2009081780 A1 WO2009081780 A1 WO 2009081780A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sweep
measurement
local oscillator
signal
Prior art date
Application number
PCT/JP2008/072741
Other languages
English (en)
French (fr)
Inventor
Shinji Kuniie
Satoru Aoyama
Yoshimasa Ogino
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2009547041A priority Critical patent/JPWO2009081780A1/ja
Priority to US12/745,685 priority patent/US8446144B2/en
Priority to DE112008003254T priority patent/DE112008003254T5/de
Publication of WO2009081780A1 publication Critical patent/WO2009081780A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/173Wobbulating devices similar to swept panoramic receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/163Spectrum analysis; Fourier analysis adapted for measuring in circuits having distributed constants

Definitions

  • the present invention relates to a frequency characteristic measuring apparatus for measuring a frequency characteristic or the like of an input signal in a spectrum analyzer or the like.
  • the conventional spectrum analyzer disclosed in Patent Document 1 and the like has two input terminals, but the measurement of the frequency characteristic is performed on a signal input from one input terminal. Therefore, if the frequency characteristics of two types of signals are to be measured simultaneously, two spectrum analyzers and an external trigger device that generates a trigger signal for synchronizing these measurements are required. There is a problem that the configuration is complicated and the measurement is troublesome. Further, as a method for comparing the frequency characteristics of two kinds of signals, a method of printing and comparing the respective measurement results can be considered, but this method has a problem that accurate analysis is difficult.
  • the present invention was created in view of the above points, and an object of the present invention is to provide a frequency characteristic measuring apparatus capable of simplifying the configuration for measurement and reducing labor for measurement. It is to provide. Another object of the present invention is to provide a frequency characteristic measuring apparatus that can easily improve analysis accuracy.
  • a frequency characteristic measuring apparatus includes a plurality of measuring means for separately measuring frequency characteristics for each of a plurality of input signals, and a measurement start timing in each of the plurality of measuring means.
  • Trigger generating means for generating a trigger signal for designating. This makes it possible to measure multiple input signals in parallel to synchronize with the internally generated trigger signal, eliminating the need for an external device, and simplifying the measurement configuration And the labor required for measurement can be reduced.
  • Each of the plurality of measurement means described above includes a local oscillator that performs frequency sweep, a mixer that performs frequency conversion on an input signal using a local oscillation signal output from the local oscillator, and an intermediate that is output from the mixer.
  • An intermediate frequency filter that extracts a signal component of a predetermined frequency from the frequency signal, and starts frequency sweeping of the local oscillator included in each of the plurality of measurement means in accordance with the generation timing of the trigger signal by the trigger generation means. It is desirable. Thereby, the frequency sweep timing can be matched, and the measurement timing of the frequency characteristic can be easily matched.
  • it further comprises sweep control means for controlling the timing of frequency sweep of the local oscillator included in each of the plurality of measurement means described above, and the sweep control means performs frequency sweep of the local oscillator included in each of the plurality of measurement means. It is desirable to selectively perform the first sweep control that starts in accordance with the generation timing of the trigger signal and the second sweep control that separately starts the frequency sweep of the local oscillator included in each of the plurality of measurement means. . As a result, it is possible to appropriately select an operation for simultaneously performing measurements on a plurality of input signals and an operation for performing separate measurements.
  • each of the plurality of measuring means includes a mixer that performs frequency conversion on an input signal using a local oscillation signal output from the local oscillator, and an intermediate that is output from the mixer. And an intermediate frequency filter that extracts a signal component of a predetermined frequency from the frequency signal, and it is desirable to start the frequency sweep of the local oscillator in accordance with the generation timing of the trigger signal by the trigger generation means.
  • a common local oscillation signal it becomes possible to match the timing of the frequency sweep including the phase.
  • each of the plurality of measuring means described above preferably further includes characteristic value measuring means for measuring the characteristic value of the signal component extracted using the intermediate frequency filter.
  • characteristic value measuring means for measuring the characteristic value of the signal component extracted using the intermediate frequency filter included in each of the plurality of measuring means described above.
  • display processing means for simultaneously displaying the characteristic values obtained corresponding to each of the plurality of measuring means described above on the display unit.
  • FIG. 1 is a diagram illustrating a configuration of a spectrum analyzer according to an embodiment.
  • the spectrum analyzer 10 of this embodiment includes mixers 110 and 210, local oscillators 112 and 212, IF units (intermediate frequency processing units) 120 and 220, a sweep control unit 300, a trigger generation unit 310, and a CPU 400.
  • the display unit 410 and the operation unit 420 are included.
  • the spectrum analyzer 10 of the present embodiment includes two input terminals IN1 and IN2 to which a signal under measurement is input, and the frequency characteristics of the two signals under measurement fin1 and 2 input to the two input terminals IN1 and IN2. Measure simultaneously and display the spectrum as the measurement result.
  • a mixer 110, a local oscillator 112, and an IF unit (intermediate frequency processing unit) 120 are provided to measure the frequency characteristics of the signal under test fin1 input from one input terminal IN1.
  • the mixer 110 receives a signal under measurement fin1 input from one input terminal IN1 and a local oscillation signal f OSC1 output from the local oscillator 112, and these signal under measurement fin1 and local oscillation signal f OSC1 are input. And a mixed signal is output.
  • the local oscillator 112 outputs a local oscillation signal f OSC1 that can be swept within a predetermined range of the oscillation frequency.
  • the IF unit 120 performs frequency characteristics by performing analog and digital signal processing on the output signal of the mixer 112, and includes an intermediate frequency filter 122, an ADC (analog-digital converter) 124, and a DSP (digital signal processor). 126).
  • the intermediate frequency filter 122 is a band pass filter that passes only a predetermined intermediate frequency component (intermediate frequency signal) from the output signal of the mixer 110.
  • the ADC 124 converts the intermediate frequency signal output from the intermediate frequency filter 122 into digital data at a predetermined sampling frequency.
  • the DSP 126 performs various kinds of signal processing on the intermediate frequency signal converted into digital data, thereby measuring characteristic values (for example, signal level and bit error rate) of the intermediate frequency signal. Specifically, the DSP 126 performs detection processing, image removal processing, and the like on the intermediate frequency signal.
  • a mixer 210 receives the signal under test fin2 input from the other input terminal IN2 and the local oscillation signal f OSC2 output from the local oscillator 212. These signal under measurement fin2 and the local oscillation signal f OSC2 are input. And a mixed signal is output.
  • the local oscillator 212 outputs a local oscillation signal f OSC2 that can sweep the oscillation frequency within a predetermined range.
  • the IF unit 220 performs frequency characteristics by performing analog and digital signal processing on the output signal of the mixer 212, and includes an intermediate frequency filter 222, an ADC 224, and a DSP 226.
  • the intermediate frequency filter 222 is a band pass filter that passes only a predetermined intermediate frequency component (intermediate frequency signal) from the output signal of the mixer 210.
  • the ADC 224 converts the intermediate frequency signal output from the intermediate frequency filter 222 into digital data at a predetermined sampling frequency.
  • the DSP 226 measures the characteristic value of the intermediate frequency signal by performing various kinds of signal processing on the intermediate frequency signal converted into digital data. Specifically, the DSP 226 performs detection processing, image removal processing, and the like on the intermediate frequency signal.
  • the sweep control unit 300 When a trigger signal is input, the sweep control unit 300 sends instructions to the two local oscillators 112 and 212 simultaneously, and local oscillation signals having the same frequency are output at the same timing by the two local oscillators 112 and 212. Sweep control is performed as follows. Specifically, a first PLL circuit (not shown) including one local oscillator 112 and a variable frequency divider, and a second PLL circuit including the other local oscillator 212 and a variable frequency divider. (Not shown) and the sweep control unit 300 changes the frequency division ratios of these two variable frequency dividers while maintaining the same value at the same time. The frequency sweep of the oscillation signal is performed. The trigger generator 310 generates a trigger signal when the user instructs the start of measurement. This trigger signal is input to the sweep control unit 300.
  • the CPU 400 controls the entire spectrum analyzer 10 and simultaneously displays two measurement results (characteristic values) output from the IF units 120 and 220 on the display unit 410 or a user instruction using the operation unit 420.
  • the process for setting the measurement conditions is performed according to.
  • the operation unit 420 includes a plurality of switches operated by a user, an operation volume, and the like. By operating these, the user gives instructions for setting measurement conditions and starting and ending measurement.
  • mixers 110 and 210, local oscillators 112 and 212, IF units 120 and 220 are a plurality of measuring units
  • a trigger generating unit 310 is a trigger generating unit
  • a sweep control unit 300 is a sweep control unit
  • DSPs 126 and 226 are characteristics. Each corresponds to a value measuring means.
  • FIG. 2 is a flowchart showing an operation procedure of the spectrum analyzer 10 of the present embodiment.
  • step 100 After the measurement conditions are set according to the user's instruction content (step 100), the CPU 400 determines whether or not measurement start is instructed (step 101). If the measurement start is not instructed, a negative determination is made and this determination is repeated. Note that the measurement conditions do not necessarily need to be set for each measurement, and step 100 is omitted if setting is not necessary.
  • the trigger generation unit 310 generates a trigger signal (step 102). For example, it may be possible to generate a trigger signal by outputting a pulse signal or changing the signal level from a low level to a high level (or from a high level to a low level).
  • the sweep control unit 300 When this trigger signal is input, the sweep control unit 300 simultaneously sends sweep instructions to the two local oscillators 112 and 212, and performs frequency sweep operations by the two local oscillators 112 and 212 at the same start timing (step 103, 104). In parallel with this frequency sweep operation, the IF unit 120, 220 measures the characteristic value of the intermediate frequency signal (step 105).
  • the sweep control unit 300 determines whether or not the sweep is finished (step 106), makes a negative determination until the sweep frequency reaches the upper limit value (or lower limit value) of the measurement range, and returns to step 104. Continue frequency sweep. When the sweep frequency reaches the upper limit (or lower limit) of the measurement range, an affirmative determination is made in step 106.
  • the CPU 400 displays the measurement results of the two IF units 120 and 220 on the display unit 410 (step 107), and a series of measurement of frequency characteristics is completed.
  • FIG. 3 is a diagram showing a display example of the spectrum analyzer 10 of the present embodiment, and shows a case where two measurement results are displayed side by side in the display screen.
  • the display screen of the display unit 410 includes two display areas A and B.
  • One display area A is for displaying a measurement result using one IF unit 120, and displays a frequency spectrum in the frequency range f 11 to f 12 .
  • the other display area B is for displaying the measurement results using the other IF unit 220 and, like the display area A, displays the frequency spectrum of the frequency range f 11 to f 12. Yes.
  • the spectrum analyzer 10 of the present embodiment it is possible to perform measurements on two input signals in parallel so as to synchronize with an internally generated trigger signal, and an external device is unnecessary.
  • the configuration for measurement can be simplified, and the labor required for measurement can be reduced.
  • the DSP 126 or 226 that performs signal processing necessary for characteristic value measurement in each of the two IF units 120 and 220, it becomes possible to use hardware that has been used conventionally, and development costs, etc. Can be reduced. Also, by displaying the two measurement results simultaneously, there is no need to prepare an external analysis device and perform analysis work separately from the measurement, and the analysis accuracy can be easily improved.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • two measurement results are displayed side by side, but may be displayed in an overlapping manner in a state where they can be distinguished from each other (for example, different colors).
  • the same two sets of configurations are provided to simultaneously measure the frequency characteristics of two input signals.
  • the same configuration is used to simultaneously measure the frequency characteristics of three or more input signals. Three or more sets may be provided.
  • the two DSPs 126 and 226 are provided. However, if there is a sufficient processing capacity, the other DSP 226 may be omitted and the DSP 226 may perform the processing of the DSP 226. Good. As a result, it is possible to reduce the cost associated with the reduction in the number of parts.
  • the sweep control unit 300 performs the sweep control in which the two local oscillators 112 and 212 are synchronized when a trigger signal is input. Separate sweep control may be performed using 112 and 212. That is, the sweep control unit 300 starts the first sweep control for starting the frequency sweep of the two local oscillators 112 and 212 in accordance with the generation timing of the trigger signal and the frequency sweep for the two local oscillators 112 and 212 separately.
  • the second sweep control can be selectively performed. As a result, it is possible to appropriately select an operation for performing measurement on two input signals simultaneously and an operation for performing measurement separately. Alternatively, the sweep control unit 300 may perform only the second sweep control.
  • the two local oscillators 112 and 212 are provided. However, the other local oscillator 212 is omitted, and the local oscillation signal output from one local oscillator 112 is commonly used in two sets of configurations. You may make it do.
  • FIG. 4 is a diagram showing a modification of the spectrum analyzer in which the local oscillator 212 is omitted.
  • the spectrum analyzer 10A shown in FIG. 4 is different from the spectrum analyzer 10 shown in FIG. 1 in that the local oscillator 212 is omitted and the local oscillation signal output from the local oscillator 112 is sent to two mixers 110 and 210. The input points are different. By using a common local oscillation signal, it becomes possible to match the timing of the frequency sweep including the phase.
  • the present invention it is possible to perform measurements on a plurality of input signals in parallel so as to synchronize with an internally generated trigger signal, eliminating the need for an external device, thus simplifying the configuration for measurement. Therefore, it is possible to reduce the labor required for measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 測定のための構成を簡素化することができ、測定にかかる手間を低減することができる周波数特性測定装置を提供することを目的とする。スペクトラムアナライザ10は、2つの入力信号のそれぞれに対して別々に周波数特性を測定する2組の測定手段としてのミキサ110、210、局部発振器112、212、IF部120、220と、これら2組の測定手段のそれぞれにおける測定開始タイミングを指定するトリガ信号を発生するトリガ発生部310と、トリガ信号が入力されたときに、2つの局部発振器112、212に同時に指示を送って、これら2つの局部発振器112、212によって同じ周波数の局部発振信号が同じタイミングで出力されるように掃引制御を行う掃引制御部300とを備える。

Description

周波数特性測定装置
 本発明は、スペクトラムアナライザ等において入力信号の周波数特性等を測定する周波数特性測定装置に関する。
 従来から周波数掃引を行うことにより入力信号の周波数特性を測定するスペクトラムアナライザが知られている(例えば、特許文献1参照。)。このスペクトラムアナライザは2系統の入力端子を有し、いずれかの入力端子から入力される信号の周波数特性を測定する。測定された周波数特性は表示部に表示される。
特開平8-233875号公報(第3-4頁、図1-2)
 ところで、特許文献1等に開示された従来のスペクトラムアナライザは、2つの入力端子を有するが、周波数特性の測定は一方の入力端子から入力される信号について行われる。したがって、2種類の信号について同時に周波数特性を測定しようとすると、2台のスペクトラムアナライザや、これらの測定を同期させるためのトリガ信号を発生する外付けのトリガ装置が必要になり、測定のための構成が複雑になるとともに測定に手間がかかるという問題があった。また、2種類の信号の周波数特性を比較する方法としては、それぞれの測定結果を印刷して比較する方法が考えられるが、この方法では正確な解析が難しいという問題があった。あるいは、2種類の信号の周波数特性を比較する他の方法としては、外部の解析装置(外部コンピュータ)に取り込んでデータ処理を行って比較する方法が考えられるが、そのために解析装置を用意して測定とは別に解析作業をする必要があるため、さらに測定のための構成が複雑になるとともに測定に手間がかかるという問題があった。
 本発明は、このような点に鑑みて創作されたものであり、その目的は、測定のための構成を簡素化することができ、測定にかかる手間を低減することができる周波数特性測定装置を提供することにある。また、本発明の他の目的は、容易に解析精度を向上させることができる周波数特性測定装置を提供することにある。
 上述した課題を解決するために、本発明の周波数特性測定装置は、複数の入力信号のそれぞれに対して別々に周波数特性を測定する複数の測定手段と、複数の測定手段のそれぞれにおける測定開始タイミングを指定するトリガ信号を発生するトリガ発生手段とを備えている。これにより、内部で発生したトリガ信号に同期するように複数の入力信号に対する測定を並行して行うことが可能となり、外付けする装置が不要になるため、測定のための構成を簡素化することができ、測定にかかる手間を低減することができる。
 また、上述した複数の測定手段のそれぞれは、周波数掃引を行う局部発振器と、局部発振器から出力される局部発振信号を用いて入力信号に対して周波数変換を行うミキサと、ミキサから出力される中間周波信号から所定周波数の信号成分を抽出する中間周波フィルタとを含んでおり、トリガ発生手段によるトリガ信号の発生タイミングに合わせて、複数の測定手段のそれぞれに含まれる局部発振器の周波数掃引を開始することが望ましい。これにより、周波数掃引のタイミングを一致させることができ、容易に周波数特性の測定タイミングを合わせることができる。
 また、上述した複数の測定手段のそれぞれに含まれる局部発振器の周波数掃引のタイミングを制御する掃引制御手段をさらに備え、掃引制御手段は、複数の測定手段のそれぞれに含まれる局部発振器の周波数掃引をトリガ信号の発生タイミングに合わせて開始する第1の掃引制御と、複数の測定手段のそれぞれに含まれる局部発振器の周波数掃引を別々に開始する第2の掃引制御とを選択的に行うことが望ましい。これにより、複数の入力信号に対して同時に測定を実施する動作と、別々に測定を実施する動作とを適宜選択することが可能になる。
 また、周波数掃引を行う局部発振器をさらに備え、複数の測定手段のそれぞれは、局部発振器から出力される局部発振信号を用いて入力信号に対して周波数変換を行うミキサと、ミキサから出力される中間周波信号から所定周波数の信号成分を抽出する中間周波フィルタとを含んでおり、トリガ発生手段によるトリガ信号の発生タイミングに合わせて、局部発振器の周波数掃引を開始することが望ましい。共通の局部発振信号を用いることにより、周波数掃引のタイミングを位相を含めて一致させることが可能となる。
 また、上述した複数の測定手段のそれぞれは、中間周波フィルタを用いて抽出された信号成分の特性値を測定する特性値測定手段をさらに含んでいることが望ましい。複数の測定手段のそれぞれに対応した特性値測定手段を用いることにより、従来から用いられているハードウエアを利用することが可能になり、開発コスト等の低減が可能となる。
 また、上述した複数の測定手段のそれぞれに含まれる中間周波フィルタを用いて抽出された信号成分の特性値を測定する特性値測定手段をさらに備えることが望ましい。複数の測定手段に対応した共通の特性値測定手段を用いることにより、部品点数削減にともなうコストの低減が可能となる。
 また、上述した複数の測定手段のそれぞれに対応して得られた特性値を表示部に同時に表示する表示処理手段をさらに備えることが望ましい。この場合に、複数の特性値は、互いに識別可能な状態(例えば色を異ならせる)で表示することが望ましい。複数の測定結果を同時に表示することにより、外部の解析装置を用意して測定とは別に解析作業をする手間がなくなり、容易に解析精度を向上させることができる。
一実施形態のスペクトラムアナライザの構成を示す図である。 本実施形態のスペクトラムアナライザの動作手順を示す流れ図である。 本実施形態のスペクトラムアナライザの表示例を示す図である。 局部発振器を省略したスペクトラムアナライザの変形例を示す図である。
符号の説明
 10、10A スペクトラムアナライザ
 110、210 ミキサ
 112、212 局部発振器
 120、220 IF部(中間周波処理部)
 122、222 中間周波フィルタ
 124、224 ADC(アナログ-デジタル変換器)
 126、226 DSP(デジタル信号プロセッサ)
 300 掃引制御部
 310 トリガ発生部
 400 CPU
 410 表示部
 420 操作部
 以下、本発明を適用した一実施形態の周波数特性測定装置としてのスペクトラムアナライザについて、図面を参照しながら詳細に説明する。図1は、一実施形態のスペクトラムアナライザの構成を示す図である。図1に示すように、本実施形態のスペクトラムアナライザ10は、ミキサ110、210、局部発振器112、212、IF部(中間周波処理部)120、220、掃引制御部300、トリガ発生部310、CPU400、表示部410、操作部420を含んで構成されている。
 本実施形態のスペクトラムアナライザ10は、被測定信号が入力される2つの入力端子IN1、IN2を備え、これら2つの入力端子IN1、IN2に入力される2つの被測定信号fin1、2の周波数特性を同時に測定し、測定結果としてのスペクトラムを表示する。
 一方の入力端子IN1から入力される被測定信号fin1の周波数特性を測定するために、ミキサ110、局部発振器112、IF部(中間周波処理部)120が備わっている。ミキサ110は、一方の入力端子IN1から入力された被測定信号fin1と、局部発振器112から出力される局部発振信号fOSC1とが入力されており、これらの被測定信号fin1と局部発振信号fOSC1とを混合した信号を出力する。局部発振器112は、発振周波数が所定範囲で掃引可能な局部発振信号fOSC1を出力する。
 IF部120は、ミキサ112の出力信号に対してアナログおよびデジタルの信号処理を行って周波数特性を行うものであり、中間周波フィルタ122、ADC(アナログ-デジタル変換器)124、DSP(デジタル信号プロセッサ)126を含んでいる。中間周波フィルタ122は、ミキサ110の出力信号から所定の中間周波数成分(中間周波信号)のみを通過させる帯域通過フィルタである。ADC124は、中間周波フィルタ122から出力される中間周波信号を所定のサンプリング周波数でデジタルデータに変換する。DSP126は、デジタルデータに変換された中間周波信号に対して各種の信号処理を行うことにより、この中間周波信号の特性値(例えば信号レベルやビットエラー率など)を測定する。具体的には、DSP126によって、中間周波信号に対する検波処理やイメージ除去処理などが行われる。
 同様に、他方の入力端子IN2から入力される被測定信号fin2の周波数特性を測定するために、ミキサ210、局部発振器212、IF部220が備わっている。ミキサ210は、他方の入力端子IN2から入力された被測定信号fin2と、局部発振器212から出力される局部発振信号fOSC2とが入力されており、これらの被測定信号fin2と局部発振信号fOSC2とを混合した信号を出力する。局部発振器212は、発振周波数が所定範囲で掃引可能な局部発振信号fOSC2を出力する。
 IF部220は、ミキサ212の出力信号に対してアナログおよびデジタルの信号処理を行って周波数特性を行うものであり、中間周波フィルタ222、ADC224、DSP226を含んでいる。中間周波フィルタ222は、ミキサ210の出力信号から所定の中間周波数成分(中間周波信号)のみを通過させる帯域通過フィルタである。ADC224は、中間周波フィルタ222から出力される中間周波信号を所定のサンプリング周波数でデジタルデータに変換する。DSP226は、デジタルデータに変換された中間周波信号に対して各種の信号処理を行うことにより、この中間周波信号の特性値を測定する。具体的には、DSP226によって、中間周波信号に対する検波処理やイメージ除去処理などが行われる。
 なお、上述した説明では周波数特性の測定に必要な概略的な構成のみが示されている。実際には、入力端子IN1とミキサ110の間や入力端子IN2とミキサ210の間には減衰器が備わっており、信号レベルの調整が行われる。また、実際には、ミキサと局部発振器を1組あるいは複数組追加することによってイメージ除去処理が行われる。また、周波数測定に必要な構成は、適宜要求仕様に合わせて変更することができるが、本発明を適用するために重要なことは同じ構成を2組備えることである。
 掃引制御部300は、トリガ信号が入力されたときに、2つの局部発振器112、212に同時に指示を送って、これら2つの局部発振器112、212によって同じ周波数の局部発振信号が同じタイミングで出力されるように掃引制御を行う。具体的には、一方の局部発振器112と可変分周器とが含まれる第1のPLL回路(図示せず)と、他方の局部発振器212と可変分周器とが含まれる第2のPLL回路(図示せず)とが含まれており、掃引制御部300によってこれら2つの可変分周器の分周比を同時に同じ値を維持しながら変更することで、2つの局部発振器112、212の局部発振信号の周波数掃引が行われる。トリガ発生部310は、利用者によって測定の開始が指示されたときにトリガ信号を発生する。このトリガ信号は掃引制御部300に入力される。
 CPU400は、スペクトラムアナライザ10の全体を制御するとともに、IF部120、220から出力される2つの測定結果(特性値)を表示部410に同時に表示したり、操作部420を用いた利用者の指示に応じて測定条件を設定する処理を行う。操作部420は、利用者によって操作される複数のスイッチや操作ボリューム等を備えている。これらを操作することにより、測定条件の設定や測定開始、終了等の指示が利用者によって行われる。
 上述したミキサ110、210、局部発振器112、212、IF部120、220が複数の測定手段に、トリガ発生部310がトリガ発生手段に、掃引制御部300が掃引制御手段に、DSP126、226が特性値測定手段にそれぞれ対応する。
 本実施形態のスペクトラムアナライザ10はこのような構成を有しており、次にその動作を説明する。図2は、本実施形態のスペクトラムアナライザ10の動作手順を示す流れ図である。
 利用者の指示内容に応じた測定条件の設定が行われた後(ステップ100)、CPU400は、測定開始が指示されたか否かを判定する(ステップ101)。測定開始が指示されない場合には否定判断が行われ、この判定が繰り返される。なお、測定条件の設定は、必ずしも測定毎に行う必要はなく、設定が不要の場合はステップ100は省略される。
 また、測定開始が指示されるとステップ101の判定において肯定判断が行われる。次に、トリガ発生部310は、トリガ信号を発生する(ステップ102)。例えば、パルス状の信号を出力したり、信号のレベルをローレベルからハイレベルに変化(あるいはハイレベルからローレベルに変化)させることでトリガ信号を発生する場合が考えられる。
 このトリガ信号が入力されると、掃引制御部300は、2つの局部発振器112、212に同時に掃引指示を送り、同じ開始タイミングで2つの局部発振器112、212による周波数掃引動作を行う(ステップ103、104)。この周波数掃引動作と並行して、IF部120、220のそれぞれによって中間周波信号の特性値が測定される(ステップ105)。
 また、掃引制御部300は、掃引終了か否かを判定しており(ステップ106)、掃引周波数が測定範囲の上限値(あるいは下限値)に達するまでは否定判断を行い、ステップ104に戻って周波数掃引を継続する。また、掃引周波数が測定範囲の上限値(あるいは下限値)に達するとステップ106の判定において肯定判断が行われる。次に、CPU400は、2つのIF部120、220のそれぞれの測定結果を表示部410に表示し(ステップ107)、一連の周波数特性の測定が終了する。
 図3は、本実施形態のスペクトラムアナライザ10の表示例を示す図であり、2つの測定結果を表示画面内に並べて表示した場合が示されている。図3に示すように、表示部410の表示画面には、2つの表示領域A、Bが含まれている。一方の表示領域Aは、一方のIF部120を用いた測定結果を表示するためのものであり、周波数範囲f11~f12の周波数スペクトラムが表示されている。また、他方の表示領域Bは、他方のIF部220を用いた測定結果を表示するためのものであり、表示領域Aと同じように、周波数範囲f11~f12の周波数スペクトラムが表示されている。
 このように、本実施形態のスペクトラムアナライザ10では、内部で発生したトリガ信号に同期するように2つの入力信号に対する測定を並行して行うことが可能となり、外付けする装置が不要になるため、測定のための構成を簡素化することができ、測定にかかる手間を低減することができる。
 また、2つのIF部120、220のそれぞれに特性値測定に必要な信号処理を行うDSP126あるいは226を備えることにより、従来から用いられているハードウエアを利用することが可能になり、開発コスト等の低減が可能となる。また、2つの測定結果を同時に表示することにより、外部の解析装置を用意して測定とは別に解析作業をする手間がなくなり、容易に解析精度を向上させることができる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。図3に示した表示例では、2つの測定結果を並べて表示したが、互いに識別可能な状態(例えば色を異ならせる)で重ねて表示するようにしてもよい。
 また、上述した実施形態では、2つの入力信号の周波数特性を同時に測定するために同じ2組の構成を備えるようにしたが、3つ以上の入力信号の周波数特性を同時に測定するために同じ構成を3組以上備えるようにしてもよい。
 また、上述した実施形態では、2つのDSP126、226を備えるようにしたが、処理能力に余裕がある場合には、他方のDSP226を省略して一方のDSP126でDSP226の処理を行うようにしてもよい。これにより、部品点数削減にともなうコストの低減が可能となる。
 また、上述した実施形態では、掃引制御部300は、トリガ信号が入力されたときに2つの局部発振器112、212を同期させた掃引制御を行うようにしたが、必要に応じて2つの局部発振器112、212を用いて別々の掃引制御を行うようにしてもよい。すなわち、掃引制御部300は、2つの局部発振器112、212の周波数掃引をトリガ信号の発生タイミングに合わせて開始する第1の掃引制御と、2つの局部発振器112、212の周波数掃引を別々に開始する第2の掃引制御とを選択的に行うことができる。これにより、2つの入力信号に対して同時に測定を実施する動作と、別々に測定を実施する動作とを適宜選択することが可能になる。あるいは、掃引制御部300は、第2の掃引制御のみを行うようにしてもよい。
 また、上述した実施形態では、2つの局部発振器112、212を備えたが、他方の局部発振器212を省略し、一方の局部発振器112から出力される局部発振信号を2組の構成で共通に使用するようにしてもよい。
 図4は、局部発振器212を省略したスペクトラムアナライザの変形例を示す図である。図4に示すスペクトラムアナライザ10Aは、図1に示したスペクトラムアナライザ10に対して、局部発振器212が省略されている点と、局部発振器112から出力される局部発振信号を2つのミキサ110、210に入力している点が異なっている。共通の局部発振信号を用いることにより、周波数掃引のタイミングを位相を含めて一致させることが可能となる。
 本発明によれば、内部で発生したトリガ信号に同期するように複数の入力信号に対する測定を並行して行うことが可能となり、外付けする装置が不要になるため、測定のための構成を簡素化することができ、測定にかかる手間を低減することができる。

Claims (11)

  1.  複数の入力信号のそれぞれに対して別々に周波数特性を測定する複数の測定手段と、
     前記複数の測定手段のそれぞれにおける測定開始タイミングを指定するトリガ信号を発生するトリガ発生手段と、
     を備える周波数特性測定装置。
  2.  請求項1において、
     前記複数の測定手段のそれぞれは、
     周波数掃引を行う局部発振器と、
     前記局部発振器から出力される局部発振信号を用いて前記入力信号に対して周波数変換を行うミキサと、
     前記ミキサから出力される中間周波信号から所定周波数の信号成分を抽出する中間周波フィルタと、
     を含んでおり、前記トリガ発生手段による前記トリガ信号の発生タイミングに合わせて、前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引を開始する周波数特性測定装置。
  3.  請求項2において、
     前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引のタイミングを制御する掃引制御手段をさらに備え、
     前記掃引制御手段は、前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引を前記トリガ信号の発生タイミングに合わせて開始する第1の掃引制御と、前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引を別々に開始する第2の掃引制御とを選択的に行う周波数特性測定装置。
  4.  請求項2において、
     前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引のタイミングを制御する掃引制御手段をさらに備え、
     前記掃引制御手段は、前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引を前記トリガ信号の発生タイミングに合わせて開始する第1の掃引制御を行う周波数特性測定装置。
  5.  請求項2において、
     前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引のタイミングを制御する掃引制御手段をさらに備え、
     前記掃引制御手段は、前記複数の測定手段のそれぞれに含まれる前記局部発振器の周波数掃引を別々に開始する第2の掃引制御を行う周波数特性測定装置。
  6.  請求項1において、
     周波数掃引を行う局部発振器をさらに備え、
     前記複数の測定手段のそれぞれは、
     前記局部発振器から出力される局部発振信号を用いて前記入力信号に対して周波数変換を行うミキサと、
     前記ミキサから出力される中間周波信号から所定周波数の信号成分を抽出する中間周波フィルタと、
     を含んでおり、前記トリガ発生手段による前記トリガ信号の発生タイミングに合わせて、前記局部発振器の周波数掃引を開始する周波数特性測定装置。
  7.  請求項1において、
     前記複数の測定手段のそれぞれは、前記中間周波フィルタを用いて抽出された信号成分の特性値を測定する特性値測定手段をさらに含んでいる周波数特性測定装置。
  8.  請求項1において、
     前記複数の測定手段のそれぞれに含まれる前記中間周波フィルタを用いて抽出された信号成分の特性値を測定する特性値測定手段をさらに備える周波数特性測定装置。
  9.  請求項1において、
     前記複数の測定手段のそれぞれに対応して得られた特性値を表示部に同時に表示する表示処理手段をさらに備える周波数特性測定装置。
  10.  請求項9において、
     前記表示処理手段は、複数の前記特性値を互いに識別可能な状態で表示する周波数特性測定装置。
  11.  請求項10において、
     前記表示処理手段は、複数の前記特性値の色を異ならせて表示する周波数特性測定装置。
PCT/JP2008/072741 2007-12-20 2008-12-15 周波数特性測定装置 WO2009081780A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009547041A JPWO2009081780A1 (ja) 2007-12-20 2008-12-15 周波数特性測定装置
US12/745,685 US8446144B2 (en) 2007-12-20 2008-12-15 Frequency characteristics measuring device
DE112008003254T DE112008003254T5 (de) 2007-12-20 2008-12-15 Frequenzcharakteristik-Messvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007328323 2007-12-20
JP2007-328323 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009081780A1 true WO2009081780A1 (ja) 2009-07-02

Family

ID=40801085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072741 WO2009081780A1 (ja) 2007-12-20 2008-12-15 周波数特性測定装置

Country Status (4)

Country Link
US (1) US8446144B2 (ja)
JP (1) JPWO2009081780A1 (ja)
DE (1) DE112008003254T5 (ja)
WO (1) WO2009081780A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007616A (ja) * 2011-06-23 2013-01-10 Advantest Corp 信号測定装置、信号測定方法、プログラム、記録媒体
JP2013251071A (ja) * 2012-05-30 2013-12-12 Advantest Corp 信号測定装置、信号測定方法、プログラム、記録媒体
JP2014009979A (ja) * 2012-06-28 2014-01-20 Nippon Dempa Kogyo Co Ltd 周波数測定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186323A (ja) * 2008-02-06 2009-08-20 Advantest Corp 周波数特性測定装置
DE112009002185T5 (de) * 2008-09-26 2011-11-17 Advantest Corp. Frequenzcharakteristik-Messvorrichtung
US8760176B2 (en) * 2010-11-10 2014-06-24 St-Ericsson Sa Methods and systems for production testing of DCO capacitors
US9553601B2 (en) 2013-08-21 2017-01-24 Keysight Technologies, Inc. Conversion of analog signal into multiple time-domain data streams corresponding to different portions of frequency spectrum and recombination of those streams into single-time domain stream
EP3971559A4 (en) * 2019-05-14 2023-06-28 Furuno Electric Co., Ltd. Measurement signal generation device, measurement device, measurement signal generation method, measurement method, measurement signal generation program, and measurement program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237537A (ja) * 1985-04-13 1986-10-22 Anritsu Corp 位相測定用受信装置
JPH0854429A (ja) * 1994-08-10 1996-02-27 Advantest Corp スペクトラムアナライザ
JPH10282163A (ja) * 1997-02-07 1998-10-23 Advantest Corp スペクトラムアナライザ
JP3071225U (ja) * 2000-02-22 2000-08-29 株式会社アドバンテスト スペクトラムアナライザ
JP2002014123A (ja) * 2000-06-29 2002-01-18 Anritsu Corp スペクトラムアナライザ
JP2002101431A (ja) * 2000-08-07 2002-04-05 Tektronix Inc 信号特性表示
JP2004245807A (ja) * 2003-02-12 2004-09-02 Mototaka Sone 外部接続型スペクトラム・アナライザの解析速度増速装置。
JP2007033171A (ja) * 2005-07-26 2007-02-08 Advantest Corp 周波数成分測定装置
JP2007199021A (ja) * 2006-01-30 2007-08-09 Hioki Ee Corp 表示制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233875A (ja) 1994-11-11 1996-09-13 Advantest Corp イメージ周波数除去装置及びこれを用いたスペクトラムアナライザ
JPH08201449A (ja) * 1995-01-24 1996-08-09 Advantest Corp スペクトラムアナライザ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237537A (ja) * 1985-04-13 1986-10-22 Anritsu Corp 位相測定用受信装置
JPH0854429A (ja) * 1994-08-10 1996-02-27 Advantest Corp スペクトラムアナライザ
JPH10282163A (ja) * 1997-02-07 1998-10-23 Advantest Corp スペクトラムアナライザ
JP3071225U (ja) * 2000-02-22 2000-08-29 株式会社アドバンテスト スペクトラムアナライザ
JP2002014123A (ja) * 2000-06-29 2002-01-18 Anritsu Corp スペクトラムアナライザ
JP2002101431A (ja) * 2000-08-07 2002-04-05 Tektronix Inc 信号特性表示
JP2004245807A (ja) * 2003-02-12 2004-09-02 Mototaka Sone 外部接続型スペクトラム・アナライザの解析速度増速装置。
JP2007033171A (ja) * 2005-07-26 2007-02-08 Advantest Corp 周波数成分測定装置
JP2007199021A (ja) * 2006-01-30 2007-08-09 Hioki Ee Corp 表示制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007616A (ja) * 2011-06-23 2013-01-10 Advantest Corp 信号測定装置、信号測定方法、プログラム、記録媒体
JP2013251071A (ja) * 2012-05-30 2013-12-12 Advantest Corp 信号測定装置、信号測定方法、プログラム、記録媒体
JP2014009979A (ja) * 2012-06-28 2014-01-20 Nippon Dempa Kogyo Co Ltd 周波数測定装置

Also Published As

Publication number Publication date
JPWO2009081780A1 (ja) 2011-05-06
DE112008003254T5 (de) 2010-10-07
US20100259245A1 (en) 2010-10-14
US8446144B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
WO2009081780A1 (ja) 周波数特性測定装置
JP5085105B2 (ja) シグナル・アナライザ
JP5559693B2 (ja) 周波数特性測定装置
CN103067104A (zh) 基于数字本振对射频信号高速扫频频谱测量的系统及方法
GB2253550A (en) Sampling signal analyzer
EP3451000B1 (en) Vector network analyzer and measuring method for frequency-converting measurements
JP5386061B2 (ja) 周波数成分測定装置
US9810726B2 (en) Method and system for calibrating phases of comb teeth in comb signal with pilot tone and using calibrated comb teeth phases to measure a device under test
JP5465380B2 (ja) 高周波信号の位相ジッターを測定する装置
JP4782502B2 (ja) 周波数成分測定装置
JP2009186323A (ja) 周波数特性測定装置
JP6325590B2 (ja) 位相雑音最適化装置及び位相雑音最適化方法
JP5186474B2 (ja) 測定装置及び周波数切替方法
US4860227A (en) Circuit for measuring characteristics of a device under test
JP2009092497A (ja) 周波数特性測定装置
JP2008309674A (ja) スペクトラムアナライザ
JP6353880B2 (ja) 測定装置及び測定方法
JPH09203755A (ja) 信号発生装置
TWI355140B (ja)
JP3167740B2 (ja) バースト信号測定回路およびバースト信号測定方法
JP2009232270A (ja) 信号発生装置
JP2002340949A (ja) 半導体デバイステストシステム
JPH0854429A (ja) スペクトラムアナライザ
JP2020043427A (ja) 発振回路、それを用いた信号発生装置及び信号分析装置、並びに内部周波数設定方法
JP2009204474A (ja) スペクトラムアナライザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547041

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12745685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080032548

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008003254

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08863944

Country of ref document: EP

Kind code of ref document: A1