WO2010035445A1 - 積層板、回路板および半導体装置 - Google Patents
積層板、回路板および半導体装置 Download PDFInfo
- Publication number
- WO2010035445A1 WO2010035445A1 PCT/JP2009/004715 JP2009004715W WO2010035445A1 WO 2010035445 A1 WO2010035445 A1 WO 2010035445A1 JP 2009004715 W JP2009004715 W JP 2009004715W WO 2010035445 A1 WO2010035445 A1 WO 2010035445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- less
- metal foil
- weight
- resin layer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/092—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/02—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
- B32B17/04—Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/04—Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/266—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
- Y10T428/31529—Next to metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the present invention relates to a laminated board, a circuit board, and a semiconductor device.
- the materials used for the printed wiring boards are required to have quality that can cope with downsizing, thinning, high integration, multi-layering, and high heat resistance. It has been. Along with these demands, warpage of the printed wiring board has become a problem.
- Factors that cause warping of the printed wiring board include uneven distribution such as the copper remaining rate of the wiring pattern, the part position, and the surface resist opening ratio.
- molding of the laminated board which comprises a printed wiring board, the displacement of the thickness of the resin component impregnated to the base material which comprises a laminated board, etc. are mention
- a method of adding an inorganic filler into the resin component has been performed (for example, Patent Document 1).
- Patent Document 1 there is a concern that a new problem such as a reduction in punching may occur due to the use of a highly rigid base material, and a laminated board with less warpage before and after mounting has been desired.
- a laminate comprising an insulating resin layer and a metal foil in contact with the insulating resin layer,
- the tensile elastic modulus (A) at 25 ° C. of the metal foil is 30 GPa or more and 60 GPa or less
- the thermal expansion coefficient (B) of the metal foil is 10 ppm or more, 30 ppm or less
- the bending elastic modulus (C) at 25 ° C. of the insulating resin layer is 20 GPa or more and 35 GPa or less
- D thermal expansion coefficient
- Tg of the insulating resin layer is 5 ppm or more and 15 ppm or less
- the laminated board whose interface stress between the said insulating resin layer represented by following formula (1) and the said metal foil is 7x10 ⁇ 4 > or less.
- Interfacial stress ⁇ (B)-(D) ⁇ x ⁇ (A)-(C) ⁇ x ⁇ Tg-25 [° C.] ⁇ (1)
- the laminate of the present invention is a laminate comprising a metal foil and an insulating resin layer.
- the metal foil is provided in contact with the insulating resin layer.
- this metal foil may be provided so that the whole surface of an insulating resin layer may be covered, and may be provided in a part.
- the metal foil may be provided on one side of the insulating resin layer, or may be provided on both sides.
- the laminated board may be a double-sided copper-clad laminated board or a circuit board.
- the tensile elastic modulus (A) at 25 ° C. of the metal foil is 30 GPa or more and 60 GPa or less, more preferably 35 GPa or more and 50 GPa or less. If the tensile elastic modulus is within this range, it is possible to obtain a laminate having a small warp after circuit processing.
- the tensile modulus (A) of the metal foil can be adjusted by changing the crystal size of the metal (copper) in the metal foil. For example, when the crystal size of the metal (copper) is increased, the elastic modulus is decreased, and when the crystal size is decreased, the elastic modulus is increased.
- the crystal size of the metal (copper) can be controlled by adjusting the conditions of electrolytic plating, for example.
- the metal foil which concerns on this invention can be used as the plating film obtained by electroplating the constituent material (metal) of metal foil.
- an autograph can be used. Specifically, first, a sample is prepared according to JIS Z 2201. And sample shape can be measured based on JISZ2201 using an autograph (made by Shimadzu Corporation) as a No. 13 test piece.
- the thermal expansion coefficient (B) of the metal foil is preferably 10 ppm or more and 30 ppm or less, more preferably 10 ppm or more and 20 ppm or less. If the thermal expansion coefficient is within this range, a laminate having a small difference in coefficient of thermal expansion from the insulating resin layer and small warpage during chip mounting can be obtained.
- a metal which comprises metal foil For example, iron, nickel, copper, aluminum, etc. can be used. Among these, it is preferable to use a copper foil as the metal foil.
- the copper foil allows impurities contained in the manufacturing process.
- the coefficient of thermal expansion (B) of the metal foil can be adjusted by changing the type of the metal foil.
- the value of the thermal expansion coefficient (B) of aluminum is 24 ppm
- the value of the thermal expansion coefficient (B) of copper is about 17 ppm.
- a TMA (thermomechanical analysis) apparatus can be used. Specifically, a 4 mm ⁇ 20 mm test piece is prepared from an electrolytic metal foil (copper foil), and the temperature is increased at 10 ° C./min using a TMA (thermomechanical analysis) apparatus (TA Instruments). Can be measured.
- TMA thermomechanical analysis
- the bending elastic modulus (C) at 25 ° C. of the insulating resin layer is 20 GPa or more and 35 GPa or less, more preferably 25 GPa or more and 35 GPa or less. If the flexural modulus is within this range, it is difficult to be affected by the metal foil, and a laminated board having a small warp after circuit fabrication can be obtained.
- the thermal expansion coefficient (D) in the XY direction at 25 ° C. to Tg of the insulating resin layer is 5 ppm or more and 15 ppm or less. More preferably, it is 5 ppm or more and 10 ppm or less. If the coefficient of thermal expansion is within this range, a difference in coefficient of thermal expansion from the chip is small, and a laminated board having a small warp during chip mounting can be obtained.
- the thermal expansion coefficient (D) can be adjusted. For example, when the filler content is increased, the flexural modulus (C) of the insulating resin layer can be increased. When cyanate resin is used as the resin, the flexural modulus (C) of the insulating resin layer can be increased.
- a (DMA) dynamic viscoelasticity measuring device (dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments) can be used. Specifically, the entire surface of the copper-clad laminate is etched to produce a sample having a width of 15 mm, a thickness of 0.1 mm, and a length of 25 mm, and can be measured using a DMA device in accordance with JIS K 6911. .
- a TMA (thermomechanical analysis) apparatus can be used for measuring the thermal expansion coefficient (D) of the insulating resin layer.
- the copper-clad laminate was etched on the entire surface to produce a 4 mm ⁇ 20 mm test piece from the substrate from which the copper foil was removed, and a TMA (thermomechanical analysis) apparatus (manufactured by TA Instruments) was used.
- TMA thermomechanical analysis
- the temperature can be measured at 10 ° C./min.
- the tensile elastic modulus at 25 ° C. of the metal foil is (A)
- the thermal expansion coefficient of the metal foil is (B)
- the bending elastic modulus at 25 ° C. of the insulating resin layer is (C)
- the thermal expansion coefficient in the XY direction at 25 ° C. to Tg of the insulating resin layer is (D)
- Represented by the following formula (1) shows the difference in stress at the interface between the metal foil and the insulating resin layer, interfacial stress (interfacial stress parameter) 7x10 4 or less, more preferably, to 2x10 4 or less .
- Interfacial stress ⁇ (B)-(D) ⁇ x ⁇ (A)-(C) ⁇ x ⁇ Tg-25 [° C.] ⁇ (1)
- Tg represents the glass transition temperature of the insulating resin layer.
- the value of the interfacial stress indicates an absolute value.
- the interfacial stress is 7 ⁇ 10 4 or less
- warpage as a circuit board and warpage after mounting due to interfacial stress between the metal foil and the insulating resin layer or between the metal foil and the mounting component can be reduced.
- the reliability of the component mounting board can be improved.
- the interface stress is 2 ⁇ 10 4 or less
- the peel strength between the metal foil and the insulating resin layer can be further improved. For this reason, even if the formation of the metal foil or the like is changed, the laminate is highly stickable, so that the laminate is excellent in reliability.
- the manufacturing margin of the laminated board of the present invention can be improved.
- a DMA device can be used to measure the glass transition temperature Tg of the insulating resin layer.
- Patent Document 1 In an example of a manufacturing process of a conventional metal foil-clad laminate, as shown in Patent Document 1, a metal foil-clad laminate is obtained by heating and pressing a metal foil laminated on one or both sides of a highly rigid substrate. Have gained. Conventionally, in the technical field using such a highly rigid base material, from the viewpoint of productivity such as preventing wrinkles in the metal foil or improving the handleability, as a representative example of the metal foil, from 80 GPa A highly elastic metal foil of about 110 GPa has been generally used. Therefore, although the specific elastic modulus of the metal foil is not described in Patent Document 1, a metal foil of about 80 GPa to 110 GPa is also used in Patent Document 1 from the viewpoint of the above-described productivity.
- the insulating resin layer according to the present invention includes a prepreg formed by impregnating a base material (fiber base material) with a resin component (resin composition).
- a resin composition used for forming a sheet-like prepreg by impregnating a base material, and is characterized by containing a resin and / or a prepolymer thereof.
- the prepreg according to the present invention is characterized in that a fiber base material is impregnated with the above-described resin composition.
- the insulating resin layer used for the laminated board of the present invention is formed by molding one or more prepregs described above.
- thermosetting resin examples include novolac type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resol phenol resin, oil-modified resole phenol modified with tung oil, linseed oil, walnut oil, and the like.
- Phenol resin such as resol type phenol resin such as resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z Type epoxy resin, bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac epoxy resin, etc.
- novolac type epoxy resin novolac type epoxy resin, biphenyl type epoxy resin , Biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, etc.
- cyanate resins including prepolymers of cyanate resins
- the thermal expansion coefficient of a prepreg can be made small.
- the electrical properties (low dielectric constant, low dielectric loss tangent), mechanical strength, etc. of the prepreg are also excellent.
- cyanate resin Although it does not specifically limit as said cyanate resin, it can obtain by making a halogenated cyanide compound and phenols react and prepolymerizing by methods, such as a heating, as needed.
- bisphenol type cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethylbisphenol F type cyanate resin can be mentioned, and these can be used alone or in combination. May be.
- novolac type cyanate resin is preferable. Thereby, the heat resistance improvement by a crosslinking density increase and flame retardance, such as a resin composition, can be improved.
- novolac-type cyanate resin forms a triazine ring after the curing reaction. Furthermore, it is considered that novolak-type cyanate resin has a high benzene ring ratio due to its structure and is easily carbonized. Furthermore, even when the thickness of the prepreg is 0.5 mm or less, excellent rigidity can be imparted to a laminate produced by curing the prepreg. In particular, since the rigidity during heating is excellent, the reliability when mounting a semiconductor element is also particularly excellent.
- novolak type cyanate resin for example, those represented by the formula (I) can be used.
- the average repeating unit n of the novolak-type cyanate resin represented by the formula (I) is not particularly limited, but is preferably 1 to 10, particularly preferably 2 to 7 (hereinafter, “to” is the upper limit unless otherwise specified) Value and lower limit).
- the average repeating unit n is less than the lower limit, the novolak cyanate resin has low heat resistance, and the low-mer may be desorbed and volatilized during heating.
- melt viscosity will become high too much and the moldability of a prepreg may fall.
- the weight average molecular weight of the cyanate resin is not particularly limited, but a weight average molecular weight of 500 to 4,500 is preferable, and 600 to 3,000 is particularly preferable.
- a weight average molecular weight of 500 to 4,500 is preferable, and 600 to 3,000 is particularly preferable.
- the prepreg is produced when the weight average molecular weight is less than the lower limit, tackiness may occur, and when the prepregs come into contact with each other, they may adhere to each other or transfer of the resin may occur.
- the weight average molecular weight exceeds the above actual value, the reaction becomes too fast, and when it is used as a substrate (particularly a circuit substrate), molding defects may occur or the interlayer peel strength may be lowered.
- the weight average molecular weight of the cyanate resin or the like can be measured by, for example, GPC (gel permeation chromatography, standard substance: converted to polystyrene).
- the cyanate resin can be used alone or in combination of two or more having different weight average molecular weights, or one or two or more of these prepolymers. It can also be used together.
- the content of the thermosetting resin is not particularly limited, but is preferably 5 to 50% by weight, particularly preferably 20 to 40% by weight, based on the entire resin composition.
- the content is less than the lower limit, it may be difficult to form a prepreg, and when the content exceeds the upper limit, the strength of the prepreg may be reduced.
- the said resin composition contains an inorganic filler.
- an inorganic filler examples include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica, calcium carbonate, magnesium carbonate, hydrotalcite and the like.
- examples thereof include borates such as calcium oxide and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride, and carbon nitride, titanates such as strontium titanate and barium titanate.
- the inorganic filler one of these can be used alone, or two or more can be used in combination.
- silica is particularly preferable, and fused silica (particularly spherical fused silica) is preferable in terms of excellent low thermal expansion.
- fused silica particularly spherical fused silica
- the shape is crushed and spherical, but in order to reduce the melt viscosity of the resin composition in order to ensure the impregnation of the fiber substrate, a method of use that suits the purpose, such as using spherical silica, is adopted. .
- the average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 5.0 ⁇ m, particularly preferably 0.1 to 2.0 ⁇ m. If the particle size of the inorganic filler is less than the lower limit, the viscosity of the varnish becomes high, which may affect the workability during prepreg production. When the upper limit is exceeded, phenomena such as sedimentation of the inorganic filler may occur in the varnish.
- This average particle diameter can be measured by, for example, a particle size distribution meter (manufactured by HORIBA, LA-500).
- the inorganic filler is not particularly limited, and an inorganic filler having a monodispersed average particle diameter can be used, and an inorganic filler having a polydispersed average particle diameter can be used. Furthermore, one or two or more inorganic fillers having an average particle size of monodisperse and / or polydisperse can be used in combination.
- spherical silica (especially spherical fused silica) having an average particle size of 5.0 ⁇ m or less is preferable, and spherical fused silica having an average particle size of 0.01 to 2.0 ⁇ m is particularly preferable. Thereby, the filling property of an inorganic filler can be improved.
- the content of the inorganic filler is not particularly limited, but is preferably 20 to 80% by weight, particularly preferably 30 to 70% by weight, based on the entire resin composition. When the content is within the above range, particularly low thermal expansion and low water absorption can be achieved.
- the epoxy resin is not particularly limited.
- bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, arylalkylene Type epoxy resin, naphthalene type epoxy resin, triphenolmethane type epoxy resin, alicyclic epoxy resin and copolymers thereof, and the like may be used singly or in combination.
- an epoxy resin two or more types having different weight average molecular weights among them can be used in combination, or one or two or more types and a prepolymer thereof can be used in combination.
- the content of the epoxy resin is not particularly limited, but is preferably 1 to 55% by weight, particularly preferably 2 to 40% by weight, based on the entire resin composition. If the content is less than the lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the product obtained may decrease, and if the content exceeds the upper limit, the heat resistance may decrease.
- the weight average molecular weight of the epoxy resin is not particularly limited, but the weight average molecular weight is preferably 500 to 20,000, and particularly preferably 800 to 15,000. When the weight average molecular weight is less than the lower limit, tackiness may occur in the prepreg, and when the upper limit is exceeded, the impregnation property to the fiber base material is lowered during prepreg production, and a uniform product cannot be obtained. There is.
- the weight average molecular weight of the epoxy resin can be measured by GPC, for example.
- a cyanate resin particularly a novolac-type cyanate resin
- the thermosetting resin it is preferable to use a phenol resin.
- the phenol resin include novolak-type phenol resins, resol-type phenol resins, and arylalkylene-type phenol resins.
- the phenolic resin one of these can be used alone, or two or more having different weight average molecular weights are used in combination, or one or two or more thereof and a prepolymer thereof are used in combination. You can also Among these, arylalkylene type phenol resins are particularly preferable. Thereby, moisture absorption solder heat resistance can be improved further.
- the content of the phenol resin is not particularly limited, but is preferably 1 to 55% by weight, particularly preferably 5 to 40% by weight, based on the entire resin composition. If the content is less than the lower limit, the heat resistance may be reduced, and if the content exceeds the upper limit, the characteristics of low thermal expansion may be impaired.
- the weight average molecular weight of the phenol resin is not particularly limited, but the weight average molecular weight is preferably 400 to 18,000, and particularly preferably 500 to 15,000. When the weight average molecular weight is less than the lower limit, tackiness may occur in the prepreg, and when the upper limit is exceeded, the impregnation property to the fiber base material is lowered during prepreg production, and a uniform product cannot be obtained. There is.
- the weight average molecular weight of the phenol resin can be measured by, for example, GPC.
- the resin composition is not particularly limited, but it is preferable to use a coupling agent.
- the coupling agent improves the wettability of the interface between the thermosetting resin and the inorganic filler, thereby uniformly fixing the thermosetting resin or the like and the inorganic filler to the fiber substrate, Heat resistance, particularly solder heat resistance after moisture absorption can be improved.
- the coupling agent any commonly used one can be used. Specifically, an epoxy silane coupling agent, a cationic silane coupling agent, an aminosilane coupling agent, a titanate coupling agent, and a silicone oil type coupling. It is preferable to use one or more coupling agents selected from among the agents. Thereby, the wettability with the interface of an inorganic filler can be made high, and thereby heat resistance can be improved more.
- the addition amount of the coupling agent is not particularly limited because it depends on the specific surface area of the inorganic filler, but is preferably 0.05 to 3 parts by weight, particularly 0.1 to 2 parts per 100 parts by weight of the inorganic filler. Part by weight is preferred. If the content is less than the lower limit, the inorganic filler cannot be sufficiently coated, and thus the effect of improving the heat resistance may be reduced. If the content exceeds the upper limit, the reaction is affected, and the bending strength is reduced. There is a case.
- a curing accelerator may be used as necessary.
- a well-known thing can be used as said hardening accelerator.
- organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), trisacetylacetonate cobalt (III), triethylamine, tributylamine, diazabicyclo [2,2 , 2] tertiary amines such as octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole Imidazoles such as 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A and nonylphenol, organic acids such as acetic acid, benzoic acid
- the content of the curing accelerator is not particularly limited, but is preferably 0.05 to 5% by weight, particularly preferably 0.2 to 2% by weight, based on the entire resin composition.
- the content is less than the lower limit, the effect of promoting curing may not appear, and when the content exceeds the upper limit, the storability of the prepreg may deteriorate.
- thermoplastic resins such as phenoxy resin, polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, polystyrene resin, styrene-butadiene copolymer, styrene-isoprene copolymer are used.
- Polyethylene thermoplastic elastomers such as polymers, polyolefin thermoplastic elastomers, polyamide elastomers, thermoplastic elastomers such as polyester elastomers, and diene elastomers such as polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, and methacryl-modified polybutadiene are used in combination. You may do it.
- the resin composition may contain additives other than the above components such as pigments, dyes, antifoaming agents, leveling agents, ultraviolet absorbers, foaming agents, antioxidants, flame retardants, and ion scavengers as necessary. May be added.
- the prepreg according to the present invention is obtained by impregnating a base material with the above resin composition. Thereby, it is possible to obtain a prepreg suitable for manufacturing a printed wiring board excellent in various characteristics such as dielectric characteristics, mechanical and electrical connection reliability under high temperature and high humidity.
- the fiber substrate used in the present invention examples include glass fiber substrates such as glass woven fabric and glass nonwoven fabric, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers and wholly aromatic polyamide resin fibers, and polyester resins.
- Synthetic fiber substrate kraft paper composed of woven fabric or non-woven fabric mainly composed of fibers, aromatic polyester resin fibers, polyester resin fibers such as wholly aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, etc.
- organic fiber substrates such as cotton linter paper, paper substrate mainly composed of linter and kraft pulp mixed paper, etc.
- glass fiber substrate is preferably used. Thereby, the intensity
- Examples of the method of impregnating the fiber base material with the resin composition obtained in the present invention include a method of preparing a resin varnish using the resin composition according to the present invention and immersing the fiber base material in the resin varnish, and various coaters.
- coating by, the method of spraying by spray, etc. are mentioned.
- the method of immersing the fiber base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition with respect to the fiber base material can be improved.
- a fiber base material is immersed in a resin varnish, a normal impregnation coating equipment can be used.
- the solvent used in the resin varnish desirably has good solubility in the resin component in the resin composition, but a poor solvent may be used as long as it does not adversely affect the resin varnish.
- the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol.
- the solid content of the resin varnish is not particularly limited, but the solid content of the resin composition is preferably 40 to 80% by weight, particularly preferably 50 to 65% by weight. Thereby, the impregnation property to the fiber base material of the resin varnish can further be improved.
- a prepreg can be obtained by impregnating the fiber base material with the resin composition and drying at a predetermined temperature, for example, 80 to 200 ° C.
- the insulating resin layer constituting the laminate of the present invention is formed by molding at least one prepreg.
- the metal foil is overlapped on both the upper and lower surfaces or one surface.
- a film may be stacked on one side.
- Two or more prepregs can be laminated.
- a metal foil or film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepregs.
- a laminate can be obtained by heating and pressurizing a laminate of a prepreg (insulating resin layer) and a metal foil or the like.
- the heating temperature is not particularly limited, but is preferably 150 to 240 ° C, and particularly preferably 180 to 220 ° C.
- the pressure to be pressurized is not particularly limited, but is preferably 2 to 5 MPa, and particularly preferably 2.5 to 4 MPa.
- the metal foil used in the laminate of the present invention examples include iron, aluminum, stainless steel, copper, and alloys containing one or more of these.
- copper is preferably used as the metal foil from the viewpoint of electrical characteristics.
- the thickness of the metal foil is not particularly limited, but is preferably 1 ⁇ m or more and 70 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 18 ⁇ m or less.
- the thickness of the insulating resin layer used in the laminate of the present invention is preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 20 ⁇ m or more and 500 ⁇ m or less.
- polyethylene for example, polyethylene, polypropylene, polyethylene terephthalate, polyimide, fluorine resin and the like can be mentioned.
- the circuit board of the present invention forms a conductor circuit by etching a metal foil of a laminated board.
- An insulating coating layer is formed on the conductor circuit so as to cover the conductor circuit.
- a semiconductor device using a circuit board is not particularly limited.
- flip chip type semiconductor devices An example of a flip chip type semiconductor device will be described below.
- a semiconductor element having a solder bump is mounted on a circuit board, and the circuit board and the semiconductor element are connected via the solder bump.
- a liquid sealing resin is filled between the circuit board and the semiconductor element to form a semiconductor device.
- the solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like.
- the semiconductor element and circuit board are connected by aligning the connection electrode on the circuit board with the solder bump of the semiconductor element using a flip chip bonder, etc., and then using an IR reflow device, a hot plate, or other heating.
- the solder bumps are heated to the melting point or higher by using an apparatus, and the circuit board and the solder bumps are connected by fusion bonding.
- connection reliability In order to improve connection reliability, a metal layer having a relatively low melting point such as solder paste may be formed in advance on the connection electrode portion on the circuit board. Prior to this joining step, the connection reliability can be improved by applying a flux to the solder bumps and / or the surface layer of the connection electrode portion on the circuit board.
- Example 1 (1) Preparation of resin varnish Novolak cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30, weight average molecular weight of about 700) 14.7 parts by weight, biphenyldimethylene type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275) 8 parts by weight, biphenyl dimethylene type phenol resin (Maywa Kasei Co., Ltd., MEH-7851-3H, hydroxyl group equivalent 230) 7 parts by weight, and epoxy silane type coupling agent (GE Toshiba Silicone) A-187) 0.3 parts by weight is dissolved in methyl ethyl ketone at room temperature, and 70 parts by weight of spherical fused silica (manufactured by Admatechs Co., Ltd., SO-25R, average particle size 0.5 ⁇ m) is added. The mixture was stirred for 10 minutes using a high-speed stirrer to obtain a resin varnish.
- Novolak cyanate resin Lithoxy
- a semiconductor element (TEG chip, size 15 mm ⁇ 15 mm, thickness 0.8 mm, coefficient of thermal expansion (CTE) 3 ppm) is formed by forming a solder bump with a eutectic of Sn / Pb composition, and a circuit protective film Made of a positive photosensitive resin (CRC-8300 manufactured by Sumitomo Bakelite Co., Ltd.) was used.
- a flux material was uniformly applied to the solder bumps by a transfer method, and then mounted on the package substrate by thermocompression bonding using a flip chip bonder device.
- a liquid sealing resin manufactured by Sumitomo Bakelite Co., Ltd., CRP-4152S
- CRP-4152S Sumitomo Bakelite Co., Ltd.
- Example 2 19.7 parts by weight of novolac type cyanate resin (Lonza Japan KK, Primaset PT-30, weight average molecular weight about 700), biphenyldimethylene type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275) ) 11 parts by weight, 9 parts by weight of a biphenyl dimethylene type phenol resin (Maywa Kasei Co., Ltd., MEH-7851-3H, hydroxyl equivalent 230), and an epoxy silane type coupling agent (GE Toshiba Silicone Co., Ltd., A-187) ) Except that 0.3 parts by weight was dissolved in methyl ethyl ketone at room temperature to obtain 60 parts by weight of spherical fused silica (manufactured by Admatechs Co., Ltd., SO-25R, average particle size 0.5 ⁇ m). A semiconductor device was obtained.
- novolac type cyanate resin Liippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275
- Example 3 A semiconductor device was obtained in the same manner as in Example 2 except that an electrolytic copper foil having a tensile elastic modulus at 25 ° C. of 60 GPa (Mitsui Metals 3EC-M3-VLP) was used.
- a semiconductor device was prepared in the same manner as in Example 1 except that the weight part was dissolved in methyl ethyl ketone at room temperature to obtain 55 parts by weight of spherical fused silica (manufactured by Admatechs Co
- Example 5 17.2 parts by weight of biphenylaralkyl-modified phenol novolak type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275), p of the above formula derived from ⁇ -naphthol aralkyl resin (SN485 manufactured by Nippon Steel Chemical Co., Ltd.) -12.25 parts by weight of xylene-modified naphthol aralkyl-type cyanate resin, 5.25 parts by weight of bis (3-ethyl-5-methyl-maleimidophenyl) methane (manufactured by Keisei Kasei Co., Ltd., BMI-70), and epoxysilane type coupling agent (GE Toshiba Silicone Co., Ltd., A-187) 0.3 parts by weight dissolved in methyl ethyl ketone at room temperature, 65 parts by weight of spherical fused silica (manufactured by Admatechs Co., Ltd., SO
- Example 6 P of the above formula derived from 15.95 parts by weight of a biphenylaralkyl-modified phenol novolac type epoxy resin (Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent 275), ⁇ -naphthol aralkyl resin (SN485 manufactured by Nippon Steel Chemical Co., Ltd.) -13.13 parts by weight of xylene-modified naphthol aralkyl-type cyanate resin, 1.88 parts by weight of naphthalene diol glycidyl ether (DIC, HP4032), bis (3-ethyl-5-methyl-maleimidophenyl) methane (manufactured by KAI KASEI, BMI -70) 8.75 parts by weight and 0.3 part by weight of epoxy silane type coupling agent (GE Toshiba Silicone Co., Ltd., A-187) were dissolved in methyl ethyl ketone at room temperature, and spherical fused
- Example 7 Cresol novolac type epoxy resin (N690, manufactured by DIC) 22.8 parts by weight, phenol novolac resin (manufactured by DIC, Phenolite LF2882) 12.2 parts by weight, curing agent (manufactured by ADEKA, EH-3636AS) 0.3 parts by weight and Epoxysilane type coupling agent (GE Toshiba Silicone Co., Ltd., A-187) 0.3 parts by weight is dissolved in methyl ethyl ketone at room temperature, and spherical fused silica (manufactured by Admatechs Co., Ltd., SO-25R, average particle size 0). 0.5 ⁇ m) A semiconductor device was obtained in the same manner as in Example 1 except that the amount was 65 parts by weight.
- Example 1 A semiconductor device was obtained in the same manner as in Example 2 except that an electrolytic copper foil (F2-WS, manufactured by Furukawa Electric) having a tensile elastic modulus at 25 ° C. of 80 GPa was used.
- F2-WS electrolytic copper foil
- Example 2 A semiconductor device was obtained in the same manner as in Example 2 except that an electrolytic copper foil having a tensile elastic modulus at 25 ° C. of 110 GPa (JTCAM made by Nikko Metal) was used.
- Comparative Example 4 38.4 parts by weight of bisphenol A type epoxy resin (manufactured by jER, Epicoat 828), 17 parts by weight of modified phenol novolac resin (manufactured by DIC, Phenolite LF2882), 0.3 part by weight of curing accelerator 2PN-CZ (manufactured by Shikoku Kasei) And 0.3 part by weight of an epoxy silane type coupling agent (GE Toshiba Silicone Co., Ltd., A-187) dissolved in methyl ethyl ketone at room temperature, spherical fused silica (manufactured by Admatechs Co., Ltd., SO-25R, average particle size) 0.5 ⁇ m) 40 parts by weight
- a semiconductor device was obtained in the same manner as in Example 1 except that electrolytic copper foil (F2-WS, manufactured by Furukawa Electric) having a tensile elastic modulus at 25 ° C. of 80 GPa was used.
- electrolytic copper foil F2-WS, manufactured by Fur
- Warp of Laminated Plate A laminated plate of 530 mm ⁇ 530 mm was cut into 50 mm ⁇ 50 mm to obtain a warp evaluation sample. The amount of warpage is measured using a temperature variable laser three-dimensional measuring machine (LS220-MT100, manufactured by T-Tech Co., Ltd.) under a measurement area of 48 mm ⁇ 48 mm, a measurement pitch of 4 mm (both in X and Y directions) at 25 ° C. went. The obtained warp data was subjected to inclination correction by the least square method, and the difference between the maximum value and the minimum value was defined as the warp amount. Therefore, the smaller the amount of warp, the less warp.
- ⁇ Warpage of 60 ⁇ m or less
- ⁇ Over 60 ⁇ m and 80 ⁇ m or less
- X Over 80 ⁇ m
- CTE Thermal expansion coefficient
- CTE Thermal expansion coefficient
- Glass transition temperature Tg of insulating resin layer A test piece of 4 mm ⁇ 20 mm was prepared from a substrate obtained by etching the entire surface of the copper-clad laminate, and the temperature was measured at 5 ° C./minute using a dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments. The peak position of tan ⁇ was taken as the glass transition temperature.
- Examples 1 to 7 using metal foils having a tensile modulus of elasticity of 30 GPa or more and 60 GPa or less have low warpage of the laminated plate and improved mounting reliability when used as a semiconductor device.
- Comparative Examples 1 to 3 using a metal foil having a tensile elastic modulus exceeding 60 GPa resulted in large warpage and low mounting reliability.
- Comparative Example 4 similar to Example 1 of Patent Document 1 a typical 80 GPa metal foil was conventionally used for a highly rigid substrate (laminate).
- Comparative Example 4 Although the warpage of the laminate of the metal foil and the insulating resin layer is small, the thermal expansion coefficient of the insulating resin layer is higher than that of the present invention, so that stress is generated between the insulating resin layer and the semiconductor element. It was found that the mounting reliability was lowered.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
また、プリント配線板を構成する積層板の積層成形時応力、積層板を構成する基材に含浸された樹脂成分の厚さの変位などがあげられる。これらへの対応として、樹脂成分中に無機充填材を添加する方法などがおこなわれている(例えば特許文献1)。しかしながら、高剛性の基材になることにより、打抜き加工の低下など新たな問題が発生することが懸念され、実装前後の反りの少ない積層板が望まれていた。
[1]絶縁樹脂層と、前記絶縁樹脂層上に接する金属箔とを備える積層板であって、
前記金属箔の25℃における引張弾性率(A)が30GPa以上、60GPa以下、
前記金属箔の熱膨張係数(B)が10ppm以上、30ppm以下、
前記絶縁樹脂層の25℃における曲げ弾性率(C)が20GPa以上、35GPa以下、
前記絶縁樹脂層の25℃~TgにおけるXY方向での熱膨張係数(D)が5ppm以上、15ppm以下としたとき、
下記式(1)で表される前記絶縁樹脂層と前記金属箔との間の界面応力が、7x104以下である、積層板。
界面応力={(B)-(D)}x{(A)-(C)}x{Tg-25[℃]} ・・・式(1)
Tg:前記絶縁樹脂層のガラス転移温度を表す。
[3]前記金属箔が、銅箔である、[1]または[2]に記載の積層板。
[4]前記金属箔が、めっき膜を含む、[1]から[3]のいずれかに記載の積層板。
[5]前記絶縁樹脂層は、基材に樹脂組成物を含浸させてなるプリプレグを含む、[1]から[4]のいずれかに記載の積層板。
[6]前記樹脂組成物は、エポキシ樹脂を含む、[5]に記載の積層板。
[7]前記樹脂組成物は、シアネート樹脂を含む、[5]または[6]に記載の積層板。
[10]前記エポキシ樹脂の含有量は、前記樹脂組成物全体の1重量%以上、55重量%以下である、[6]に記載の積層板。
[11]前記樹脂組成物は、無機充填材を含む、[5]から[10]のいずれかに記載の積層板。
[12]前記無機充填材の含有量は、前記樹脂組成物全体の20重量%以上、80重量%以下である、[11]に記載の積層板。
[13]前記基材は、ガラス繊維基材である[5]から[12]のいずれかに記載の積層板。
[14]前記金属箔の厚さは、1μm以上、70μm以下である、[1]から[13]のいずれかに記載の積層板。
[15]前記絶縁樹脂層の厚さは、10μm以上、1000μm以下である、[1]から[14]のいずれかに記載の積層板。
[16][1]から[15]のいずれかに記載の積層板を回路加工して得られ、回路板。
[17][16]に記載の回路板に半導体素子を搭載してなる、半導体装置。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。
たとえば、金属箔中の金属(銅)の結晶サイズを変更することにより、金属箔の引張弾性率(A)を調節することができる。たとえば、金属(銅)の結晶サイズを大きくすると、弾性率が下がり、結晶サイズを小さくすれば、弾性率が高くなる。
ここで、たとえば電解めっきの条件を調節することにより、金属(銅)の結晶サイズを制御できる。
このように、本発明に係る金属箔は、金属箔の構成材料(金属)を電解めっきすることにより得られる、めっき膜とすることができる。
金属箔の引張弾性率(A)を測定するには、たとえば、オートグラフを用いることができる。具体的には、まず、JIS Z 2201に準拠し、サンプルを作製する。そして、サンプル形状は、13号試験片として、オートグラフ(島津製作所製)を用いて、JIS Z 2201に準拠し測定することができる。
金属箔を構成する金属としては、特に限定はされないが、例えば、鉄、ニッケル、銅、アルミなどを用いることができる。これらの中でも、金属箔として銅箔を用いることが好ましい。銅箔としては、その製造過程に含まれる不純物を許容する。
たとえば金属箔の種類を変えることにより、金属箔の熱膨張係数(B)を調節することができる。たとえば、アルミの熱膨張係数(B)の値は、24ppmで、銅の熱膨張係数(B)の値は、17ppm程度である。
熱膨張係数(B)を測定するには、たとえば、TMA(熱機械的分析)装置を用いることができる。具体的には、電解金属箔(銅箔)から4mm×20mmの試験片を作製し、TMA(熱機械的分析)装置(TAインスツルメント社製)を用いて、10℃/分で昇温して測定することができる。
また、絶縁樹脂層の25℃~TgにおけるXY方向での熱膨張係数(D)が5ppm以上、15ppm以下である。さらに好ましくは5ppm以上、10ppm以下である。熱膨張係数がこの範囲内にあればチップとの熱膨張率の差が小さくチップ実装時に反りの小さい積層板とすることができる。
たとえばフィラー含有量を大きくすると、絶縁樹脂層の曲げ弾性率(C)を大きくすることができる。樹脂として、シアネート樹脂を用いると絶縁樹脂層の曲げ弾性率(C)を大きくすることができる。
一方、絶縁樹脂層の熱膨張係数(D)の測定には、TMA(熱機械的分析)装置を用いることができる。具体的には、銅張積層板を全面エッチングして、銅箔を除去した基板から4mm×20mmの試験片を作製し、TMA(熱機械的分析)装置(TAインスツルメント社製)を用いて、10℃/分で昇温して測定することができる。
上記金属箔の熱膨張係数を(B)、
上記絶縁樹脂層の25℃における曲げ弾性率を(C)、
上記絶縁樹脂層の25℃~TgにおけるXY方向での熱膨張係数を(D)としたとき、
下記式(1)で表され、金属箔と絶縁樹脂層との間の界面における応力の差を示す、界面応力(界面応力パラメータ)が7x104以下、さらに好ましくは2x104以下とすることができる。
界面応力={(B)-(D)}x{(A)-(C)}x{Tg-25[℃]} ・・・式(1)
Tg:絶縁樹脂層のガラス転移温度を表す。
ここで、界面応力の値は、絶対値を示す。
また、界面応力が2x104以下の場合には、金属箔と絶縁樹脂層とのピール強度を一層向上させることができる。このため、金属箔の形成等を変更したとしても積層板の貼付性が高いため、信頼性に優れた積層板となる。このように、設計通りの積層板が得られるので、本発明の積層板の製造マージンを向上させることができる。
しかしながら、本発明者らが検討したところ、高スペックが要求される現在においては、高弾性の金属箔を高剛性の基材に用いると実装前後に発生するわずかな反りでも、問題になることがあることを新たに見出した。
そこで、本発明においては、高弾性ではなく、上述のような低弾性の金属箔を高剛性の絶縁樹脂層に用いている。そのため、(i)金属箔と絶縁樹脂層、または(ii)金属箔と実装部品間での界面応力差を小さくすることができる。このため、実装前後の反りを抑制することができる。このようにして、本発明においては、信頼性に優れた積層板を得ることができる。ここで、高剛性の絶縁樹脂層に用いるので、(iii)絶縁樹脂層と実装部品間での界面応力差を小さくすることができ、信頼性の信頼性に優れた積層板を得ることができる。
以下、本発明に係る樹脂組成物、プリプレグおよび積層板について詳細に説明する。
本発明に係る樹脂組成物は、基材に含浸させてシート状のプリプレグを形成するために用いる樹脂組成物であって、樹脂および/またはそのプレポリマーを含むことを特徴とするものである。また、本発明に係るプリプレグは、上述の樹脂組成物を繊維基材に含浸させてなることを特徴とするものである。また、本発明の積層板に用いる絶縁樹脂層は、上述のプリプレグを1枚以上成形してなることを特徴とするものである。
前記熱硬化性樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂等のエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネート樹脂等が挙げられる。
これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
またこれらの中でも、特にシアネート樹脂(シアネート樹脂のプレポリマーを含む)が好ましい。これにより、プリプレグの熱膨張係数を小さくすることができる。さらに、プリプレグの電気特性(低誘電率、低誘電正接)、機機械強度等にも優れる。
これらの中でもノボラック型シアネート樹脂が好ましい。これにより、架橋密度増加による耐熱性向上と、樹脂組成物等の難燃性を向上することができる。ノボラック型シアネート樹脂は、硬化反応後にトリアジン環を形成するからである。さらに、ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。さらに、プリプレグを厚さ0.5mm以下にした場合であっても、プリプレグを硬化させて作製した積層板に優れた剛性を付与することができる。特に加熱時における剛性に優れるので、半導体素子実装時の信頼性にも特に優れる。
前記シアネート樹脂等の重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。
前記無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。無機充填材として、これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。これらの中でも特に、シリカが好ましく、溶融シリカ(特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使う等、その目的にあわせた使用方法が採用される。
この平均粒子径は、例えば粒度分布計(HORIBA製、LA-500)により測定することができる。
また、エポキシ樹脂として、これらの中の異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
前記エポキシ樹脂の重量平均分子量は、例えばGPCで測定することができる。
前記フェノール樹脂の重量平均分子量は、例えばGPCで測定することができる。
前記カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。
また、前記樹脂組成物には、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。
本発明に係るプリプレグは、上述の樹脂組成物を基材に含浸させてなるものである。これにより、誘電特性、高温多湿下での機械的、電気的接続信頼性等の各種特性に優れたプリント配線板を製造するのに好適なプリプレグを得ることができる。
前記樹脂ワニスの固形分は、特に限定されないが、前記樹脂組成物の固形分40~80重量%が好ましく、特に50~65重量%が好ましい。これにより、樹脂ワニスの繊維基材への含浸性を更に向上できる。前記繊維基材に前記樹脂組成物を含浸させ、所定温度、例えば80~200℃等で乾燥させることによりプリプレグを得ることが出来る。
また、プリプレグを2枚以上積層することもできる。プリプレグを2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。
次に、プリプレグ(絶縁樹脂層)と金属箔等とを重ねたものを加熱、加圧して成形することで積層板を得ることができる。
前記加熱する温度は、特に限定されないが、150~240℃が好ましく、特に180~220℃が好ましい。
また、前記加圧する圧力は、特に限定されないが、2~5MPaが好ましく、特に2.5~4MPaが好ましい。
(1)樹脂ワニスの調製
ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT-30、重量平均分子量約700)14.7重量部、ビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)8重量部、ビフェニルジメチレン型フェノール樹脂(明和化成株式会社製、MEH-7851-3H、水酸基当量230)7重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)70重量部を添加し、高速攪拌機を用いて10分攪拌して、樹脂ワニスを得た。
上述の樹脂ワニスを用いて、ガラス繊布(厚さ94μm、日東紡績社製、WEA-2116)に含浸し、150℃の乾燥炉で2分間乾燥させ、プリプレグ中のワニス固形分が約50%重量部のプリプレグを得た。得られたプリプレグの厚さは0.1mmであった。
上記プリプレグを上下に厚さ12μm、25℃における引張弾性率30GPaの電解銅箔(日本電解製 HLB)を重ねて、圧力4MPa、温度200℃で2時間加熱加圧成形し、厚さ0.124mmの両面銅張積層板を得た。
(4)回路板の製造
上記積層板を通常の回路作成工程(穴あけ、メッキ、DFRラミネート、露光・現像、エッチング、DFR剥離)にて所定の回路作成を行った。
上記回路板の絶縁層に炭酸レーザー装置を用いて開口部を設け、電解銅めっきにより絶縁層表面に外層回路形成を行い、外層回路と内層回路との導通を図った。なお、外層回路は、半導体素子を実装するための接続用電極部を設けた。
その後、最外層にソルダーレジスト(太陽インキ製造社製PSR4000/AUS308)を形成し、露光・現像により半導体素子が実装できるよう接続用電極部を露出させ、ニッケル金メッキ処理を施し、50mm×50mmの大きさに切断し、パッケージ基板を得た。
半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.8mm、熱膨張係数(CTE)3ppm)は、半田バンプをSn/Pb組成の共晶で形成し、回路保護膜をポジ型感光性樹脂(住友ベークライト社製CRC-8300)で形成したものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、上記パッケージ基板上に加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP-4152S)を充填し、液状封止樹脂を硬化させることで半導体装置を得た。尚、液状封止樹脂は、温度150℃、120分の条件で硬化させた。
ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT-30、重量平均分子量約700)19.7重量部、ビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)11重量部、ビフェニルジメチレン型フェノール樹脂(明和化成株式会社製、MEH-7851-3H、水酸基当量230)9重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)60重量部とした以外は、実施例1と同様にして半導体装置を得た。
25℃における引張弾性率が60GPaの電解銅箔(三井金属製 3EC-M3-VLP)を用いた以外は、実施例2と同様に半導体装置を得た。
ビフェニルアラルキル変性フェノールノボラック型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)15.45重量部、α-ナフトールアラルキル樹脂(SN485 新日鐵化学製)から誘導した下記式のp-キシレン変性ナフトールアラルキル型シアネート樹脂27重量部、ナフタレンジオールグリシジルエーテル(DIC製、HP4032)2.25重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)55重量部とした以外は、実施例1と同様にして半導体装置を得た。
ビフェニルアラルキル変性フェノールノボラック型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)17.2重量部、α-ナフトールアラルキル樹脂(SN485 新日鐵化学製)から誘導した上記式のp-キシレン変性ナフトールアラルキル型シアネート樹脂12.25重量部、ビス(3-エチル-5-メチル-マレイミドフェニル)メタン(ケイアイ化成製、BMI-70)5.25重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)65重量部とした以外は、実施例1と同様にして半導体装置を得た。
ビフェニルアラルキル変性フェノールノボラック型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)15.95重量部、α-ナフトールアラルキル樹脂(SN485 新日鐵化学製)から誘導した上記式のp-キシレン変性ナフトールアラルキル型シアネート樹脂13.13重量部、ナフタレンジオールグリシジルエーテル(DIC製、HP4032)1.88重量部、ビス(3-エチル-5-メチル-マレイミドフェニル)メタン(ケイアイ化成製、BMI-70)8.75重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)60重量部とした以外は、実施例1と同様にして半導体装置を得た。
クレゾールノボラック型エポキシ樹脂(N690、DIC製)22.8重量部、フェノールノボラック樹脂(DIC製、フェノライトLF2882)12.2重量部、硬化剤(ADEKA製、EH-3636AS)0.3重量部およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)65重量部とした以外は、実施例1と同様にして半導体装置を得た。
25℃における引張弾性率が80GPaの電解銅箔(古河電工製 F2-WS)を用いた以外は、実施例2と同様に半導体装置を得た。
25℃における引張弾性率が110GPaの電解銅箔(日鉱金属製 JTCAM)を用いた以外は、実施例2と同様に半導体装置を得た。
ビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275)21.7重量部、ビフェニルジメチレン型フェノール樹脂(明和化成株式会社製、MEH-7851-3H、水酸基当量230)18重量部、およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)60重量部とし、25℃における引張弾性率が110GPaの電解銅箔を用いた以外は、実施例1と同様にして半導体装置を得た。
ビスフェノールA型エポキシ樹脂(jER製、エピコート828)38.4重量部、変性フェノールノボラック樹脂(DIC製、フェノライトLF2882)17重量部、硬化促進剤2PN-CZ(四国化成製)0.3重量部およびエポキシシラン型カップリング剤(GE東芝シリコーン株式会社製、A-187)0.3重量部をメチルエチルケトンに常温で溶解し、球状溶融シリカ(株式会社アドマテックス社製、SO-25R、平均粒径0.5μm)40重量部とし、25℃における引張弾性率が80GPaの電解銅箔(古河電工製 F2-WS)を用いた以外は、実施例1と同様にして半導体装置を得た。
(1)積層板の反り
530mm×530mmの積層板を50mm×50mmに切断し、反り評価サンプルとして得た。
反り量の測定は、温度可変レーザー3次元測定機(LS220-MT100、(株)ティーテック製)を用い、測定エリア48mm×48mm、測定ピッチ4mm(X、Y両方向とも)、25℃条件下で行った。得られた反りデータは、最小2乗法により傾き補正を行い、最高値と最低値との差を反り量と定義した。よって反り量が小さいほど、反りが少ないことになる。
○:反り60μm以下
△:60μmを超えて80μm以下
×:80μm超え
上記半導体装置をフロリナート中で、
(i)条件1として、-65℃10分、150℃10分、-65℃10分を1サイクルとして、1000サイクル処理し、
(ii)条件2として、-40℃10分、125℃10分、-40℃10分を1サイクルとして、1000サイクル処理し、テストピースにクラックが発生していないか目視で確認した。
○:条件1および条件2において、クラック発生なし
△:条件1ではクラック発生あり、条件2ではクラック発生なし
×:条件1および条件2において、クラック発生あり
JIS Z 2201に準拠し、サンプルを作製した。サンプル形状は、13号試験片を用い、オートグラフ(島津製作所製)を用いて、JIS Z 2201に準拠し測定した。
上記電解銅箔から4mm×20mmの試験片を作製し、TMA(熱機械的分析)装置(TAインスツルメント社製)を用いて、10℃/分で昇温して測定した。
JIS K 6911に準拠し、測定した。サンプル形状は、幅15mm、厚み0.1mm、長さ25mmのものを用いた。なお、サンプルは、前記積層板を全面エッチングしたものを用いた。
銅張積層板を全面エッチングした基板から4mm×20mmの試験片を作製し、TMA(熱機械的分析)装置(TAインスツルメント社製)を用いて、10℃/分で昇温して測定した。
銅張積層板を全面エッチングした基板から4mm×20mmの試験片を作製し、TAインスツルメント社製動的粘弾性測定装置DMA983を用いて5℃/分で昇温し測定を行った。tanδのピーク位置をガラス転移温度とした。
特許文献1の実施例1に類似の比較例4においては、高剛性の基材(積層板)に対して、従来では代表的な80GPaの金属箔を使用した。その結果、比較例4は、金属箔および絶縁樹脂層の積層板の反りは小さいものの、本発明より絶縁樹脂層の熱膨張係数が高いために、絶縁樹脂層と半導体素子との間で応力が発生し、実装信頼性も低下したことが分かった。
Claims (17)
- 絶縁樹脂層と、前記絶縁樹脂層上に接する金属箔とを備える積層板であって、
前記金属箔の25℃における引張弾性率(A)が30GPa以上、60GPa以下、
前記金属箔の熱膨張係数(B)が10ppm以上、30ppm以下、
前記絶縁樹脂層の25℃における曲げ弾性率(C)が20GPa以上、35GPa以下、
前記絶縁樹脂層の25℃~TgにおけるXY方向での熱膨張係数(D)が5ppm以上、15ppm以下としたとき、
下記式(1)で表される前記絶縁樹脂層と前記金属箔との間の界面応力が、7x104以下である、積層板。
界面応力={(B)-(D)}x{(A)-(C)}x{Tg-25[℃]} ・・・式(1)
Tg:前記絶縁樹脂層のガラス転移温度を表す。 - 前記界面応力が、2x104以下である、請求項1に記載の積層板。
- 前記金属箔が、銅箔である、請求項1または2に記載の積層板。
- 前記金属箔が、めっき膜を含む、請求項1から3のいずれかに記載の積層板。
- 前記絶縁樹脂層は、基材に樹脂組成物を含浸させてなるプリプレグを含む、請求項1から4のいずれかに記載の積層板。
- 前記樹脂組成物は、エポキシ樹脂を含む、請求項5に記載の積層板。
- 前記樹脂組成物は、シアネート樹脂を含む、請求項5または6に記載の積層板。
- 前記シアネート樹脂の含有量は、前記樹脂組成物全体の5重量%以上、50重量%以下である、請求項7または8に記載の積層板。
- 前記エポキシ樹脂の含有量は、前記樹脂組成物全体の1重量%以上、55重量%以下である、請求項6に記載の積層板。
- 前記樹脂組成物は、無機充填材を含む、請求項5から10のいずれかに記載の積層板。
- 前記無機充填材の含有量は、前記樹脂組成物全体の20重量%以上、80重量%以下である、請求項11に記載の積層板。
- 前記基材は、ガラス繊維基材である、請求項5から12のいずれかに記載の積層板。
- 前記金属箔の厚さは、1μm以上、70μm以下である、請求項1から13のいずれかに記載の積層板。
- 前記絶縁樹脂層の厚さは、10μm以上、1000μm以下である、請求項1から14のいずれかに記載の積層板。
- 請求項1から15のいずれかに記載の積層板を回路加工して得られ、回路板。
- 請求項16に記載の回路板に半導体素子を搭載してなる、半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980137720XA CN102164743A (zh) | 2008-09-26 | 2009-09-18 | 层压板、电路板和半导体器件 |
JP2010530718A JP5533657B2 (ja) | 2008-09-26 | 2009-09-18 | 積層板、回路板および半導体装置 |
KR1020117009148A KR101502653B1 (ko) | 2008-09-26 | 2009-09-18 | 적층판, 회로판 및 반도체 장치 |
US13/061,153 US20110149532A1 (en) | 2008-09-26 | 2009-09-18 | Laminate, circuit board and semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-248242 | 2008-09-26 | ||
JP2008248242 | 2008-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035445A1 true WO2010035445A1 (ja) | 2010-04-01 |
Family
ID=42059458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004715 WO2010035445A1 (ja) | 2008-09-26 | 2009-09-18 | 積層板、回路板および半導体装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110149532A1 (ja) |
JP (1) | JP5533657B2 (ja) |
KR (1) | KR101502653B1 (ja) |
CN (1) | CN102164743A (ja) |
MY (1) | MY153947A (ja) |
TW (1) | TWI433773B (ja) |
WO (1) | WO2010035445A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012116941A (ja) * | 2010-11-30 | 2012-06-21 | Sumitomo Bakelite Co Ltd | 樹脂ワニス、プリプレグ、金属張積層板、プリント配線板及び半導体装置 |
JP2014080021A (ja) * | 2012-09-28 | 2014-05-08 | Nippon Steel & Sumikin Chemical Co Ltd | フレキシブル銅張積層板 |
JP2015089622A (ja) * | 2013-11-05 | 2015-05-11 | 住友ベークライト株式会社 | 金属張積層板、プリント配線基板、および半導体装置 |
JP2021504497A (ja) * | 2018-04-10 | 2021-02-15 | エルジー・ケム・リミテッド | 金属箔積層板用熱硬化性樹脂複合体および金属箔積層板 |
US12129338B2 (en) | 2018-04-10 | 2024-10-29 | Lg Chem, Ltd. | Thermosetting resin composition for semiconductor package, prepreg and metal clad laminate using the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2759400B1 (en) * | 2011-09-22 | 2020-04-15 | Hitachi Chemical Company, Ltd. | Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board |
US8895873B2 (en) | 2011-09-28 | 2014-11-25 | Ibiden Co., Ltd. | Printed wiring board |
KR20140144177A (ko) * | 2012-03-14 | 2014-12-18 | 스미토모 베이클리트 컴퍼니 리미티드 | 금속장 적층판, 프린트 배선 기판, 반도체 패키지 및 반도체 장치 |
JP6327429B2 (ja) * | 2013-08-01 | 2018-05-23 | パナソニックIpマネジメント株式会社 | 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板 |
JP6360760B2 (ja) * | 2014-09-19 | 2018-07-18 | 新日鉄住金化学株式会社 | 銅張積層板及び回路基板 |
KR102493463B1 (ko) | 2016-01-18 | 2023-01-30 | 삼성전자 주식회사 | 인쇄회로기판, 이를 가지는 반도체 패키지, 및 인쇄회로기판의 제조 방법 |
CN109757023B (zh) * | 2017-11-08 | 2022-04-26 | 广东生益科技股份有限公司 | 印刷线路板及其制作方法 |
CN109760385B (zh) * | 2017-11-08 | 2022-08-16 | 广东生益科技股份有限公司 | 可静态弯折的覆铜板及其制作方法和弯曲成型方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003277531A (ja) * | 2002-03-27 | 2003-10-02 | Sumitomo Bakelite Co Ltd | プリプレグ及びこれを用いた積層板 |
JP2005262591A (ja) * | 2004-03-18 | 2005-09-29 | Sumitomo Bakelite Co Ltd | 積層板の連続製造方法および装置 |
JP2007059844A (ja) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Works Ltd | 凹凸多層回路板モジュール及びその製造方法 |
JP2007273766A (ja) * | 2006-03-31 | 2007-10-18 | Nippon Steel Chem Co Ltd | 配線基板用積層体 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5677045A (en) * | 1993-09-14 | 1997-10-14 | Hitachi, Ltd. | Laminate and multilayer printed circuit board |
US5670250A (en) * | 1995-02-24 | 1997-09-23 | Polyclad Laminates, Inc. | Circuit board prepreg with reduced dielectric constant |
TW398163B (en) * | 1996-10-09 | 2000-07-11 | Matsushita Electric Ind Co Ltd | The plate for heat transfer substrate and manufacturing method thereof, the heat-transfer substrate using such plate and manufacturing method thereof |
US5837355A (en) * | 1996-11-07 | 1998-11-17 | Sumitomo Bakelite Company Limited | Multilayer printed circuit board and process for producing and using the same |
US6042936A (en) * | 1997-09-23 | 2000-03-28 | Fibermark, Inc. | Microsphere containing circuit board paper |
US20020048137A1 (en) * | 1998-04-01 | 2002-04-25 | Williams Thomas J. | Two-layered embedded capacitor |
TW200714666A (en) * | 2005-07-29 | 2007-04-16 | Sumitomo Chemical Co | Laminate of liquid crystalline polyester with copper foil |
JP5243715B2 (ja) * | 2005-12-01 | 2013-07-24 | 住友ベークライト株式会社 | プリプレグ、基板および半導体装置 |
KR101025055B1 (ko) * | 2005-12-01 | 2011-03-25 | 스미토모 베이클리트 컴퍼니 리미티드 | 프리프레그, 프리프레그의 제조 방법, 기판 및 반도체 장치 |
CN101652401B (zh) * | 2007-04-10 | 2012-09-05 | 住友电木株式会社 | 环氧树脂组合物、预浸料坯、层叠板、多层印刷线路板、半导体器件、绝缘树脂片、和制造多层印刷线路板的方法 |
-
2009
- 2009-09-18 KR KR1020117009148A patent/KR101502653B1/ko not_active IP Right Cessation
- 2009-09-18 US US13/061,153 patent/US20110149532A1/en not_active Abandoned
- 2009-09-18 JP JP2010530718A patent/JP5533657B2/ja not_active Expired - Fee Related
- 2009-09-18 MY MYPI2011000905A patent/MY153947A/en unknown
- 2009-09-18 WO PCT/JP2009/004715 patent/WO2010035445A1/ja active Application Filing
- 2009-09-18 CN CN200980137720XA patent/CN102164743A/zh active Pending
- 2009-09-24 TW TW98132243A patent/TWI433773B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003277531A (ja) * | 2002-03-27 | 2003-10-02 | Sumitomo Bakelite Co Ltd | プリプレグ及びこれを用いた積層板 |
JP2005262591A (ja) * | 2004-03-18 | 2005-09-29 | Sumitomo Bakelite Co Ltd | 積層板の連続製造方法および装置 |
JP2007059844A (ja) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Works Ltd | 凹凸多層回路板モジュール及びその製造方法 |
JP2007273766A (ja) * | 2006-03-31 | 2007-10-18 | Nippon Steel Chem Co Ltd | 配線基板用積層体 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012116941A (ja) * | 2010-11-30 | 2012-06-21 | Sumitomo Bakelite Co Ltd | 樹脂ワニス、プリプレグ、金属張積層板、プリント配線板及び半導体装置 |
JP2014080021A (ja) * | 2012-09-28 | 2014-05-08 | Nippon Steel & Sumikin Chemical Co Ltd | フレキシブル銅張積層板 |
JP2018065395A (ja) * | 2012-09-28 | 2018-04-26 | 新日鉄住金化学株式会社 | フレキシブル銅張積層板 |
JP2018067740A (ja) * | 2012-09-28 | 2018-04-26 | 新日鉄住金化学株式会社 | フレキシブル回路基板 |
JP2015089622A (ja) * | 2013-11-05 | 2015-05-11 | 住友ベークライト株式会社 | 金属張積層板、プリント配線基板、および半導体装置 |
JP2021504497A (ja) * | 2018-04-10 | 2021-02-15 | エルジー・ケム・リミテッド | 金属箔積層板用熱硬化性樹脂複合体および金属箔積層板 |
JP7078215B2 (ja) | 2018-04-10 | 2022-05-31 | エルジー・ケム・リミテッド | 金属箔積層板用熱硬化性樹脂複合体および金属箔積層板 |
US12091510B2 (en) | 2018-04-10 | 2024-09-17 | Lg Chem, Ltd. | Thermosetting resin composite and metal clad laminate using the same |
US12129338B2 (en) | 2018-04-10 | 2024-10-29 | Lg Chem, Ltd. | Thermosetting resin composition for semiconductor package, prepreg and metal clad laminate using the same |
Also Published As
Publication number | Publication date |
---|---|
US20110149532A1 (en) | 2011-06-23 |
JP5533657B2 (ja) | 2014-06-25 |
CN102164743A (zh) | 2011-08-24 |
KR20110059784A (ko) | 2011-06-03 |
JPWO2010035445A1 (ja) | 2012-02-16 |
KR101502653B1 (ko) | 2015-03-13 |
TWI433773B (zh) | 2014-04-11 |
MY153947A (en) | 2015-04-15 |
TW201018579A (en) | 2010-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5533657B2 (ja) | 積層板、回路板および半導体装置 | |
KR101464008B1 (ko) | 반도체 패키지, 코어층 재료, 빌드업층 재료 및 시일링 수지 조성물 | |
JP5493853B2 (ja) | エポキシ樹脂組成物、プリプレグ、積層板、多層プリント配線板、半導体装置、絶縁樹脂シート、多層プリント配線板の製造方法 | |
JP5660272B2 (ja) | フリップチップ半導体パッケージ用の接続構造、ビルドアップ層材料、封止樹脂組成物および回路基板 | |
WO2009122680A1 (ja) | 多層回路基板、絶縁シート、および多層回路基板を用いた半導体パッケージ | |
JP5206600B2 (ja) | エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板、及び半導体装置 | |
JP2010174242A (ja) | ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置 | |
JP5428232B2 (ja) | プリプレグ、積層板、多層プリント配線板、及び半導体装置 | |
JP5445442B2 (ja) | プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置 | |
JP6286820B2 (ja) | プリプレグ、積層板、多層プリント配線板、および半導体装置 | |
JP2012131947A (ja) | プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、樹脂シート、プリント配線板及び半導体装置 | |
WO2008099940A9 (ja) | 回路基板の製造方法、半導体製造装置、回路基板及び半導体装置 | |
JP2012131946A (ja) | プリント配線板用樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板及び半導体装置 | |
JP2011135034A (ja) | 半導体パッケージおよび半導体装置 | |
JP5256681B2 (ja) | 半導体装置、半導体装置用プリント配線板及び銅張積層板 | |
JP2012153755A (ja) | エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板、及び半導体装置 | |
JP5448414B2 (ja) | 樹脂組成物、プリプレグ、積層板、多層プリント配線板、及び半導体装置 | |
JP2009067852A (ja) | ガラス繊維織布入り絶縁樹脂シート、積層板、多層プリント配線板、及び半導体装置 | |
JP2005209489A (ja) | 絶縁シート | |
JP5929639B2 (ja) | シアン酸エステル化合物、樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板、および半導体装置 | |
JP2012158645A (ja) | プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、樹脂シート、プリント配線板及び半導体装置 | |
JP2009070891A (ja) | 半導体装置 | |
JP5029291B2 (ja) | 多層プリント配線板用樹脂組成物、プリプレグ、積層板、多層プリント配線板、及び半導体装置 | |
JP5188075B2 (ja) | 回路基板の製造方法及び半導体製造装置 | |
JP2011195644A (ja) | 積層板用シアネート樹脂組成物、プリプレグ、金属張積層板、プリント配線板及び半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980137720.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09815867 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010530718 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13061153 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117009148 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09815867 Country of ref document: EP Kind code of ref document: A1 |