WO2010032434A1 - 医療用複合有機化合物粉体、その製造方法ならびに懸濁液 - Google Patents

医療用複合有機化合物粉体、その製造方法ならびに懸濁液 Download PDF

Info

Publication number
WO2010032434A1
WO2010032434A1 PCT/JP2009/004596 JP2009004596W WO2010032434A1 WO 2010032434 A1 WO2010032434 A1 WO 2010032434A1 JP 2009004596 W JP2009004596 W JP 2009004596W WO 2010032434 A1 WO2010032434 A1 WO 2010032434A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
powder
particle size
average particle
compound powder
Prior art date
Application number
PCT/JP2009/004596
Other languages
English (en)
French (fr)
Inventor
廣川隆志
多田貴広
仁平潤
Original Assignee
株式会社アクティバスファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2011114292/15A priority Critical patent/RU2535017C2/ru
Priority to US13/063,026 priority patent/US20110165259A1/en
Priority to CA2737543A priority patent/CA2737543C/en
Priority to MX2011002847A priority patent/MX2011002847A/es
Priority to EP09814279.7A priority patent/EP2345426B1/en
Priority to JP2010529625A priority patent/JP5536654B2/ja
Application filed by 株式会社アクティバスファーマ filed Critical 株式会社アクティバスファーマ
Priority to CN200980135720.6A priority patent/CN102149410B/zh
Priority to KR1020117008410A priority patent/KR101455446B1/ko
Priority to ES09814279.7T priority patent/ES2467676T3/es
Publication of WO2010032434A1 publication Critical patent/WO2010032434A1/ja
Priority to IL211121A priority patent/IL211121A/en
Priority to US14/010,602 priority patent/US9782484B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4174Arylalkylimidazoles, e.g. oxymetazolin, naphazoline, miconazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a medical composite organic compound powder containing poorly water-soluble organic compound particles, a method for producing the same, and a suspension in which the medical composite organic compound powder is dispersed.
  • the medicinal component of the preparation In order for the medicinal component of the preparation to function effectively, the medicinal component needs to reach the target site through the blood vessels in the body.
  • the thinnest capillary in the blood vessel is about 5 ⁇ m.
  • the particle size of the organic compound is required to be smaller than 5 ⁇ m.
  • the bioavailability of a preparation is extremely important in medicine and pharmaceuticals because it reduces the dosage and thereby reduces side effects on the living body.
  • the bioavailability of a formulation is determined by the physicochemical properties of the drug, the dosage form, and the route of administration.
  • oral preparations have the advantages of being easier and less painful than injection preparations (parenteral preparations), but have the disadvantage of a low bioavailability.
  • Oral preparations enter the intestines via the stomach and duodenum, are absorbed into the blood mainly from the intestinal tract, and are sent to the liver through the portal vein.
  • oral preparations pass through such a long route, some of them are decomposed by the action of gastric acid or the like, or are metabolized in the liver and converted into completely different substances.
  • One of the main reasons why the bioavailability is low is that oral preparations are difficult to be absorbed from digestive organs such as the intestines.
  • preparations have medicinal ingredients that are poorly water-soluble or water-insoluble organic compounds.
  • preparations containing the above-mentioned poorly water-soluble or water-insoluble organic compound as a medicinal ingredient are prepared by dissolving the organic compound in an organic solvent and dispensing it, and by heating the organic compound to an emulsified state (for example, , Refer to Patent Documents 1 and 2), or a method of reducing the size of the organic compound to micron-order particles and mixing it with water.
  • an organic solvent that dissolves an organic compound may cause a medically undesirable event, and it is required that such an organic solvent is not used as much as possible.
  • many organic compounds having medicinal components have almost the same melting point and decomposition point. When the organic compound is dissolved by heating, the organic compound decomposes at the same time, and the organic compound is decomposed into the medicinal component. There is a risk of changing to something that cannot be. Furthermore, there is a problem that it is difficult to use a method of thermal dissolution for an organic compound having a high melting point.
  • JP 2007-23051 A Special table 2003-531162 gazette JP 2003-286105 A Japanese Patent Application Laid-Open No. 11-1000031 JP-A-6-228454
  • the solvent salt milling method is useful as a method for pulverizing organic pigments such as dioxazine and copper phthalocyanine
  • the degree of pulverization and whether the pulverization method can be applied to medical organic compounds are discussed. It is unknown.
  • an organic compound that is an active ingredient of a pharmaceutical product is required to be pulverized while maintaining its crystal form.
  • dissolution of the organic compound in a liquid solution causes dissolution and re-elution even if the amount is extremely small.
  • a liquid crystal and an amorphous form different from those before pulverization are generated, so that it is known that it is very difficult to select a liquid medium (Pharmaceutical Development and Technology Vol. 9, No.
  • the present inventors tried to grind by mixing a salt with a medical organic compound and succeeded in finding a method capable of grinding to a useful level as a drug.
  • the following improvements are required for miniaturization of medical organic compounds. That is, 1) further increasing the pulverization efficiency, 2) preventing re-aggregation of fine particles, and 3) preventing the recovery rate of nano-sized medical organic compounds from being lowered.
  • a point is sought.
  • the medical organic compound is refined to the nano level, it re-aggregates and the water-insoluble medical organic compound may be dissolved in the washing water due to the increase in the specific surface area.
  • poorly water-soluble substances are classified into two types, those that do not dissolve in water and those that do not dissolve in water.
  • the latter include those that can dissolve when sufficient time is spent, but are classified as poorly water-soluble substances when the dissolution time is unsuitable for industrial use.
  • the specific surface area is increased by miniaturization, the contact surface with water increases and the dissolution rate may increase.
  • the stably dispersed nanoparticles are very difficult to collect in the “filtration (separation) / water washing step” because of their fine form. This is because it passes through a filter or the like in the filtration step and does not settle sufficiently in the centrifugation step. Therefore, high crushing efficiency, high redispersibility, and high collection efficiency are mutually contradictory requirements.
  • the present invention has been made to meet such demands, and an object of the present invention is to provide a drug that has low contamination of the grinding media, is safe, and has improved bioavailability.
  • the present inventors have added and pulverized organic compound powder in addition to physiologically acceptable salts and physiologically acceptable polyols.
  • the organic compound powder can be pulverized with high efficiency, and by removing the salt and the polyol after pulverization, the average particle diameter is very small while maintaining the crystal structure.
  • the inventors have found that an organic compound powder in a form in which part or all of the particle surface is covered with a carboxyvinyl polymer can be produced, and the present invention has been completed.
  • organic compound powders with excellent dispersibility and excellent collection efficiency can be produced by adding lecithin to the refined organic compound and mixing, and completed the present invention. I let you. In addition, when adding a lecithin, the presence or absence of the addition of a carboxy vinyl polymer is not ask
  • the present invention relates to a pharmaceutical composite organic compound powder having an average particle diameter of 400 nm or less, a suspension having the powder, and a pulverization method for obtaining the powder. Further, the present invention provides a compound organic compound powder for pharmaceutical use having an average particle size of 400 nm or less, a suspension having the powder, and the powder by adding lecithin to the refined organic compound and carrying out a mixing treatment. The present invention relates to a manufacturing method for obtaining a body with high collection efficiency.
  • the composite organic compound powder for pharmaceutical use of the present invention is a particle in which a part or all of the particle surface of a slightly water-soluble and crystalline organic compound is covered with a carboxyvinyl polymer and covered with the carboxyvinyl polymer.
  • the average particle diameter converted from the BET specific surface area of the film is 400 nm or less.
  • the organic compound is preferably fenofibrate, felbinac, pranlukast hydrate, miconazole, fluticasone propionate, indomethacin, amphotericin B, acyclovir, nifedipine, nicardipine, nimodipine, dipyridamole, disopyramide, prazosin hydrochloride, prednisolone , Cortisone acetate, dexamethasone, betamethasone, beclomethasone propionate, budesonide, fluocinolone acetonide, naproxen, ketoprofen, 7- (3,5-dimethoxy-4-hydroxycinnamoylamino) -3-octyloxy-4-hydroxy- 1-methyl-2 (1H) -quinolinone, phenytoin, phenacemide, ethotoin, primidone, diazepam, nitrazepam, clo
  • the composite organic compound powder for pharmaceutical use is preferably a fenofibrate powder having an average particle diameter calculated from the BET specific surface area of 50 to 400 nm.
  • the composite organic compound powder for pharmaceutical use is preferably a felbinac powder having an average particle diameter converted from the BET specific surface area of 50 to 400 nm.
  • the pharmaceutical complex organic compound powder is preferably a pranlukast hydrate powder having an average particle size of 20 to 70 nm converted from the BET specific surface area.
  • the pharmaceutical complex organic compound powder is preferably a miconazole powder having an average particle size calculated from the BET specific surface area of 50 to 300 nm.
  • the composite organic compound powder for pharmaceutical use is preferably fluticasone propionate powder having an average particle diameter of 20 to 100 nm as calculated from the BET specific surface area.
  • the pharmaceutical complex organic compound powder is preferably an indomethacin powder having an average particle size of 20 to 120 nm as calculated from the BET specific surface area.
  • the composite organic compound powder for pharmaceutical use of the present invention further has lecithin on the surface of the carboxyvinyl polymer or organic compound particles.
  • the present invention is a suspension obtained by dispersing the composite organic compound powder for pharmaceutical use of (9).
  • a method for producing a pharmaceutical composite organic compound powder of the present invention comprises a poorly water-soluble and crystalline organic compound powder, a physiologically acceptable salt, a physiologically acceptable polyol, and a carboxy.
  • a step of mixing the vinyl polymer with the organic compound powder and pulverizing the organic compound powder and a step of removing at least the salt and the polyol after the pulverization are included.
  • the method for producing a pharmaceutical composite organic compound powder of the present invention further includes a step of adding lecithin during or after the pulverizing step.
  • the organic compound particles are preferably fenofibrate, felbinac, pranlukast hydrate, miconazole, fluticasone propionate, indomethacin, amphotericin B, acyclovir, nifedipine, nicardipine, nimodipine, dipyridamole, disopyramide, prazosin hydrochloride, Prednisolone, cortisone acetate, dexamethasone, betamethasone, beclomethasone propionate, budesonide, fluocinolone acetonide, naproxen, ketoprofen, 7- (3,5-dimethoxy-4-hydroxycinnamoylamino) -3-octyloxy-4-hydroxy -1-Methyl-2 (1H) -quinolinone, phenytoin, phenacemide, ethotoin, primidone, diazepam, nitraze
  • the salt is preferably sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, sodium malate, sodium citrate, disodium citrate, sodium dihydrogen citrate, 1 or more selected from the group consisting of potassium dihydrogen citrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • the polyol is preferably glycerin, propylene glycol or polyethylene glycol.
  • the salt and the polyol are preferably sodium chloride and glycerin, respectively.
  • the pharmaceutical composite organic compound powder of the present invention is composed of composite particles having lecithin on the surface of poorly water-soluble organic compound particles, or composite particles in which the organic compound and lecithin are combined at the nano level. .
  • the average particle diameter determined by volume conversion of the composite particles constituting the powder is preferably 400 nm or less.
  • the organic compound is preferably fenofibrate, felbinac, pranlukast hydrate, miconazole, fluticasone propionate, indomethacin, amphotericin B, acyclovir, nifedipine, nicardipine, nimodipine, dipyridamole, disopyramide, prazosin hydrochloride, prednisolone , Cortisone acetate, dexamethasone, betamethasone, beclomethasone propionate, budesonide, fluocinolone acetonide, naproxen, ketoprofen, 7- (3,5-dimethoxy-4-hydroxycinnamoylamino) -3-octyloxy-4-hydroxy- 1-methyl-2 (1H) -quinolinone, phenytoin, phenacemide, ethotoin, primidone, diazepam, nitrazepam, a
  • the pharmaceutical complex organic compound powder is preferably a powder of at least one of amphotericin B, acyclovir or indomethacin having an average particle size of 50 to 250 nm.
  • the present invention is a suspension obtained by dispersing at least one pharmaceutical complex organic compound powder of (17) to (19).
  • the method for producing a composite organic compound powder for pharmaceutical use according to the present invention comprises mixing an organic compound powder having poor water solubility, a physiologically acceptable salt and a physiologically acceptable polyol. And a step of removing at least the salt and the polyol after the pulverization.
  • the method for producing a pharmaceutical composite organic compound powder of the present invention further includes a step of adding lecithin during or after the step of pulverizing.
  • the “average particle diameter converted from the BET specific surface area” is calculated by converting the value of the specific surface area measured by the BET flow method (one-point formula) to the diameter of the virtual spherical particles. .
  • the conversion formula from the value of the specific surface area to the diameter is the following formula 1.
  • D is an average particle diameter
  • is a solid density
  • S is a specific surface area
  • is a shape factor. In the case of spherical particles, ⁇ is 6.
  • the BET flow method is preferably a method for measuring the specific surface area by the following method.
  • a mixed gas of nitrogen and helium is allowed to flow through the cell containing the sample to be measured, and the sample is cooled with liquid nitrogen. Then, only nitrogen gas is adsorbed on the surface of the sample. Next, when the cell is returned to room temperature, gas desorption occurs. In this gas desorption process, the ratio of nitrogen gas flowing through another detector becomes larger than the ratio of nitrogen gas in the mixed gas flowing through one detector. The difference between the signals of these detectors becomes the amount of adsorption, and the specific surface area can be measured.
  • the melting point of the “poorly water-soluble medical organic compound” of the present invention is preferably 80 to 400 ° C.
  • the melting point of the poorly water-soluble medical organic compound of the present invention is preferably 80 to 360 ° C., more preferably 80 to 320 ° C., and most preferably 80 to 280 ° C.
  • the solubility of a poorly water-soluble organic compound in water can be about 1 mg / mL or less, preferably about 0.5 mg / mL at a normal medical organic compound handling temperature, for example, room temperature around 25 ° C. mL or less, more preferably 0.3 mg / mL or less, and most preferably 0.1 mg / mL or less.
  • the “poorly water-soluble medical organic compound” of the present invention is preferably a crystalline poorly water-soluble medical organic compound.
  • “crystalline” means a state in which molecules are regularly arranged, and whether or not a certain substance is crystalline is well known to those skilled in the art such as thermal analysis, X-ray diffraction, electron diffraction, and the like. You can know by the method.
  • the crystalline poorly water-soluble medical organic compound used in the method of the present invention is preferably an organic compound having a clearer crystal form.
  • the “slightly water-soluble medical organic compound” does not necessarily have to be crystalline and includes an amorphous organic compound.
  • the poorly water-soluble medical organic compound may be a natural product or a synthetic product.
  • natural products include organic compounds derived from animals, organic compounds derived from plants, or organic compounds derived from microorganisms such as yeast.
  • the poorly water-soluble medical organic compound of the present invention may be one kind of organic compound or a mixture of two or more kinds of organic compounds.
  • Examples of such poorly water-soluble medical organic compounds include fenofibrate, felbinac, pranlukast hydrate, miconazole, fluticasone propionate, indomethacin, amphotericin B, acyclovir, nifedipine, nicardipine, nimodipine, dipyridamole, disopyramide, Prazosin hydrochloride, prednisolone, cortisone acetate, dexamethasone, betamethasone, beclomethasone propionate, budesonide, fluocinolone acetonide, naproxen, ketoprofen, 7- (3,5-dimethoxy-4-hydroxycinnamoylamino) -3-octyloxy- 4-hydroxy-1-methyl-2 (1H) -quinolinone, phenytoin, phenacemide, ethotoin, primidone, diazepam, nitrazep
  • the “medical composition” is not particularly limited as long as it is used for the purpose of treatment or prevention or diagnosis of humans or animals.
  • the medical composition of the present invention may be administered to the body or surface of a human or animal, or treats blood, urine, etc. collected from a human or animal outside the body. Also good.
  • Such medical compositions include antipyretic drugs, analgesics, anti-inflammatory drugs, gout drugs, hyperuricemia treatment drugs, sleeping drugs, sedative drugs, anxiolytic drugs, antipsychotic drugs, antidepressant drugs, anti-depressants Glaze, psychostimulant, antiepileptic drug, muscle relaxant, Parkinson's disease drug, autonomic nervous system drug, cerebral circulation metabolic drug, allergy drug, cardiotonic drug, antianginal drug, beta blocker, Ca Antagonist, antiarrhythmic, antidiuretic, diuretic, antihypertensive, peripheral circulatory disorder, hyperlipidemia, hypertensive, respiratory stimulant, bronchodilator, asthma, antitussive, expectorant , Chronic obstructive pulmonary disease treatment, peptic ulcer treatment, laxative, antidiarrheal / intestinal medication, diabetes drug, corticosteroid preparation, sex hormone preparation, osteoporosis drug, bone metabolism improving drug, vitamin preparation, Hematopoietic drugs
  • the carboxyvinyl polymer covers a part of the particle surface of the poorly water-soluble and crystalline organic compound, but does not cover the entire surface of the particle, or completely covers the particle surface. Form may be sufficient.
  • lecithin may be present directly on the surface of the organic compound particle or may be present on the surface of the carboxyvinyl polymer.
  • physiologically acceptable means that it is considered that the substance can be ingested without causing any particular physiological problems, and a substance is a physiologically acceptable substance. This is appropriately determined depending on the species to be ingested, the mode of ingestion, and the like.
  • physiologically acceptable solvents include substances approved as additives and solvents for pharmaceuticals and foods.
  • FIG. 1 is an SEM photograph (magnification: 10,000 times) of the crushed powder of felbinac obtained under the conditions of Example 2.
  • FIG. 2 is an SEM photograph (magnification: 20,000 times) in which a part of the visual field shown in FIG. 1 is enlarged.
  • FIG. 3 is an SEM photograph (magnification: 10,000 times) of the crushed powder of felbinac obtained under the conditions of Comparative Example 2.
  • FIG. 4 is an SEM photograph (magnification: 20,000 times) in which a part of the visual field shown in FIG. 3 is enlarged.
  • FIG. 5 is an SEM photograph (magnification: 10,000 times) of a pulverized powder of fluticasone propionate obtained under the conditions of Example 5.
  • FIG. 5 is an SEM photograph (magnification: 10,000 times) of a pulverized powder of fluticasone propionate obtained under the conditions of Example 5.
  • FIG. 6 is an SEM photograph (magnification: 20,000 times) in which a part of the visual field shown in FIG. 5 is enlarged.
  • FIG. 7 is an SEM photograph (magnification: 10,000 times) of a pulverized powder of fluticasone propionate obtained under the conditions of Comparative Example 5.
  • FIG. 8 is an SEM photograph (magnification: 20,000 times) in which a part of the visual field shown in FIG. 7 is enlarged.
  • the pharmaceutical compound organic compound powder is a partially water-soluble and crystalline organic compound particle surface partially or entirely covered with carboxyvinyl polymer, The average particle diameter converted from the BET specific surface area of the particles covered with the vinyl polymer is 400 nm or less. Furthermore, the pharmaceutical composite organic compound powder according to a preferred embodiment further has lecithin on the surface of the carboxyvinyl polymer or organic compound particles.
  • the pharmaceutical composite organic compound powder according to this embodiment is a particle in a state having lecithin on the particle surface of the organic compound, or a state in which the organic compound and lecithin form a complex, Also included are those having an average particle size of 400 nm or less determined by volume conversion.
  • Organic compounds used in medical composite organic compound powders include fenofibrate (melting point: 80 to 83 ° C), felbinac (melting point: 163 to 166 ° C), pranlukast hydrate ( Melting point: 231-235 ° C.), miconazole (melting point: 84-87 ° C.), fluticasone propionate (melting point: about 273 ° C.
  • decomposition dexamethasone (melting point: about 45 ° C (decomposition)), betamethasone (melting point: about 240 ° C (decomposition)), beclomethasone propionate (melting point: about 208 ° C (decomposition)), budesonide (melting point: about 240 ° C (decomposition)), fluocinolone acetonide (Melting point: about 266-274 ° C.
  • Simvastatin (melting point: 135-138 ° C), fluoxymesterone (melting point: 270-278 ° C), stanozolol (melting point: 230-242 ° C), Stradiol (melting point: 175 to 180 ° C.), chlormadinone acetate (melting point: 211 to 215 ° C.), falecalcitriol (melting point: about 143 ° C.), mazindol (melting point: about 177 to 184 ° C.
  • composition chlorphenesin carbamate (melting point: 88-91 ° C.), dantrolene sodium (melting point: 200 ° C. or more (decomposition)), formoterol fumarate ( Melting point: about 138 ° C. (decomposition), atenolol (melting point: 153-156 ° C.), riluzole (melting point: about 118 ° C.), flumazenil (melting point: 198-202 ° C.), theophylline (melting point: 271-275 ° C. (decomposition)) ), Methotrexate (melting point: 185 to 204 ° C.
  • Carboxyvinyl polymer A water-swellable vinyl polymer mainly composed of acrylic acid, also called “carbomer”, and is not particularly limited as long as it is commonly used in pharmaceuticals. Can be used in combination.
  • carbomers different types of Mw, such as Carbopol (registered trademark) 934, Carbopol (registered trademark) 940, Carbopol (registered trademark) 980, Carbopol (registered trademark) 981, Carbopol (registered trademark) 2984, Carbopol (registered trademark).
  • Lecithin is a compound comprising a fatty acid residue and a phosphate group and a basic compound or sugar bonded to the glycerin skeleton, and is also called “phosphatidylcholine”.
  • soybeans, rapeseed and chicken eggs can be used. However, the type is not particularly limited.
  • Lecithin is oily crude lecithin, powdered high-purity lecithin that has been defatted, fractionated lecithin with a higher ratio of specific components using solvents, chromatographic techniques, etc., fully or partially hydrogenated and purified
  • There are many types such as hydrogenated lecithin with improved oxidative stability, and enzyme-decomposed lecithin obtained by enzymatic treatment of these lecithins and enzyme-modified lecithin, any of which can be used.
  • a method for producing a pharmaceutical composite organic compound powder according to this embodiment comprises a poorly water-soluble and crystalline organic compound powder, a physiologically acceptable salt, It includes a step of mixing a physiologically acceptable polyol and a carboxyvinyl polymer to pulverize the organic compound powder, and a step of removing the salt and the polyol after the pulverization.
  • the composite organic compound powder for pharmaceutical use according to a preferred embodiment includes a step of adding lecithin during or after the pulverizing step.
  • the method for producing a pharmaceutical composite organic compound powder according to this embodiment comprises mixing a poorly water-soluble organic compound powder, a physiologically acceptable salt, and a physiologically acceptable polyol. And a step of pulverizing the organic compound powder and a step of removing at least the salt and the polyol after the pulverization. Furthermore, it preferably includes a step of adding lecithin during or after the pulverizing step.
  • Polyol used in the production method according to the present embodiment is not particularly limited as long as it is a salt that can be ingested without causing any particular physiological problems.
  • Physiologically acceptable polyols are preferably those having low solubility in salts, high solubility in water, low freezing points and / or high flash points.
  • the physiologically acceptable polyol preferably has high solubility in water.
  • polyol examples include glycerin, propylene glycol, polyethylene glycol, dipropylene glycol, and diethylene glycol, and are preferably propylene glycol or glycerin.
  • the viscosity of the polyol is preferably 50 to 200,000 (dPa ⁇ S), more preferably 1,000 to 50,000 (dPa ⁇ S), and still more preferably 5,000 to 30,000. 000 (dPa ⁇ S).
  • the amount of polyol used is preferably 0.7 to 50 parts by weight, more preferably 2 to 15 parts by weight, and more preferably 3 to 10 parts by weight with respect to 1 part by weight of the organic compound to be ground. More preferably it is.
  • the kind of polyol to be used can be appropriately determined in consideration of the solubility of the organic compound to be ground.
  • one kind of polyol may be used as the polyol, or two or more kinds of polyols may be mixed and used.
  • the salt used in the production method according to the present embodiment is not particularly limited as long as it is a salt that can be ingested without causing any particular physiological problems.
  • the physiologically acceptable salt preferably has a low solubility in polyols, a high solubility in water, and / or a hardness that is less hygroscopic and suitable for pulverization of organic compounds. Salt.
  • a salt having two or more of these properties is more preferable.
  • the solubility of the salt in the polyol is preferably 10 (mass / volume) or less. In the case where the removal of the salt is simplified after pulverization, a suitable salt is highly soluble in water.
  • Suitable salts include, for example, sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, sodium malate, sodium citrate, disodium citrate, sodium dihydrogen citrate, citric acid
  • potassium dihydrogen, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate examples include sodium chloride, potassium chloride, magnesium sulfate, calcium sulfate, sodium citrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, preferably sodium chloride It is.
  • the salt may be pulverized to adjust the particle size before mixing with the poorly water-soluble medical organic compound.
  • the volume average particle diameter may be, for example, 5 to 300 ⁇ m, 10 to 200 ⁇ m, preferably 0.01 to 300 ⁇ m, more preferably 0.1 to
  • the thickness is 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and most preferably 1 to 5 ⁇ m.
  • the amount of the salt used is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, and more preferably 10 to 30 parts by weight with respect to 1 part by weight of the organic compound. Further preferred.
  • one type of salt may be used, or two or more types of salts may be mixed and used.
  • the composite organic compound powder for medical use according to the present embodiment is preferably subjected to the “pulverization process”, “lecithin mixing process”, “filtration / water washing process” and “drying process” in this order.
  • the “pulverization step” and the “lecithin mixing step” may be integrated into one step, and lecithin may be mixed into the pulverized particles while being pulverized.
  • a dispersant is added to the medical composite organic compound powder obtained through the above steps and mixed with water as necessary. To do.
  • the “grinding step”, “lecithin mixing step”, “filtration (separation) / water washing step” and “drying step” will be described.
  • the pulverization apparatus used for wet pulverizing the organic compound is not particularly limited as long as it has the ability to make the organic compound fine by mechanical means.
  • the pulverizer include commonly used pulverizers such as a kneader, a two-roll, a three-roll, a fret mill, a hoover marra, a disk blade kneading and dispersing machine, and a twin-screw extruder.
  • the organic compound, salt and carboxyvinyl polymer into the pulverizer and knead while adding the polyol little by little.
  • the viscosity at the time of kneading can be appropriately determined depending on the type of organic compound, salt, and polyol to be pulverized.
  • the pulverization temperature can be appropriately determined in consideration of the organic compound to be pulverized, the pulverizer, and the like.
  • the pulverization temperature is not particularly limited as long as it can reduce melting or decomposition of the organic compound, but is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 20 to 30 ° C., and most preferably ⁇ 10 to 25 ° C. Further, the pulverization time can be appropriately determined in consideration of the organic compound to be pulverized, the pulverizing apparatus, and the like.
  • the grinding time can be, for example, about 1 to 50 hours, preferably 3 to 30 hours, more preferably 5 to 20 hours, and most preferably 6 to 18 hours.
  • the amount of carboxyvinyl polymer used is preferably 0.002 to 0.9 parts by mass, more preferably 0.005 to 0.4 parts by mass, with respect to 1 part by mass of the organic compound to be pulverized.
  • the amount is preferably 0.03 to 0.07 parts by mass.
  • the type of carboxyvinyl polymer to be used can be appropriately determined in consideration of the type of organic compound to be pulverized. Further, one kind of the carboxyvinyl polymer may be used, or two or more kinds having different Mw may be mixed and used.
  • the mixing step can be performed by mixing lecithin after pulverization in the pulverizer or during pulverization and continuing kneading in the same pulverizer.
  • another mixing apparatus can be prepared, the kneaded product after pulverization can be transferred to the mixing apparatus, and lecithin can be added thereto to perform the mixing step.
  • the amount of lecithin used is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 2 parts by weight, with respect to 1 part by weight of the organic compound to be ground. More preferably, it is 1.0 part by mass.
  • Lecithin may be used alone, but a mixture of polyol and lecithin can also be added. In that case, the mixing ratio (weight ratio) of lecithin and polyol is 1 to 10 parts by mass of polyol, more preferably 1.5 to 5 parts by mass, and further preferably 2 to 4 parts by mass with respect to 1 part by mass of lecithin. is there.
  • the solvent is preferably water, but a solvent other than water can also be used.
  • the solvent other than water include a mixed solution of water and an organic solvent such as acetic acid, methanol, and ethanol.
  • the filtration method is not specifically limited, It can perform by the well-known method normally used in order to filter the content of an organic compound. Examples of the filtration method include a vacuum filtration method, a pressure filtration method, and an ultrafiltration membrane method. Further, there is a centrifugal separation method as a method for removing salts and polyols as in the case of filtration.
  • a specific method of centrifugation is to put the kneaded material after mixing lecithin in a solvent and uniformly mix using a homogenizer, etc., and then precipitate the finely pulverized organic compound in a centrifuge. Remove the clarification. By repeating this operation, the salt and polyol can be removed.
  • the end point of washing can be determined by measuring the electrical conductivity of the supernatant. That is, for example, if the electrical conductivity of the supernatant is 10 ⁇ S / cm, the concentration of sodium chloride can be predicted to be about 5 ppm. Therefore, the electrical conductivity at the end point may be determined according to the characteristics of the substance.
  • the finely pulverized particles of a medical composite organic compound usually have high surface energy, and thus are easily aggregated. Therefore, an additive for preventing secondary aggregation may be added after removing salts and the like.
  • the secondary aggregation inhibitor include, for example, alkyl sulfate, N-alkyloylmethyl taurate, ethanol, glycerin, propylene glycol, sodium citrate, purified soybean lecithin, phospholipid, D-sorbitol, lactose, xylitol, gum arabic , Sucrose fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene fatty acid ester, polyoxyethylene glycol, polyoxyethylene sorbitan fatty acid ester, alkylbenzene sulfonate, sulfosuccinate ester salt, polyoxyethylene polyoxypropylene glycol, polyvinyl Pyrrolidone, polyvinyl alcohol, hydroxypropylcellulose, methylcellulose, hydroxy
  • alkyl sulfates and N-alkyloylmethyl taurate are preferable, and sodium dodecyl sulfate and N-myristoyl methyl taurate are particularly preferable.
  • One kind of secondary aggregation inhibitor may be used, or two or more kinds of secondary aggregation inhibitors may be mixed and used.
  • the medical composite organic compound powder obtained by performing a drying treatment is used.
  • the solvent used for removing salts and the like can be removed.
  • the drying method is not particularly limited, and can be usually performed by a method used for drying an organic compound. Examples of the drying method include a vacuum drying method, a freeze drying method, a spray drying method, and a freeze spray drying method.
  • the drying temperature and drying time in the drying are not particularly limited, but the drying should be performed at a low temperature in order to maintain the chemical stability of the medical composite organic compound particles and prevent secondary aggregation of the particles. It is preferable to carry out by a reduced pressure drying method, a freeze drying method, a spray drying method, or a freeze spray drying method.
  • the range of the average particle diameter converted from the BET specific surface area of the fine particles constituting the composite organic compound powder for medical use obtained by the production method according to the present embodiment is preferably 20 to 400 nm, more preferably 20 It is ⁇ 300 nm or less, more preferably 50 to 150 nm.
  • the medical composite organic compound powder obtained by the production method according to the present embodiment has excellent formulation characteristics and can be used as pharmaceuticals in various dosage forms.
  • a solvent-containing solid hereinafter referred to as a wet cake
  • a medical composite organic compound powder obtained by removing salt and polyol after pulverization is suspended in water and frozen. It can be prepared as porous particles of about 1 to 30 ⁇ m by spray drying.
  • a small amount of a surfactant may be added to the water.
  • a small amount of a volatile additive such as ethanol may be added.
  • ethanol can be distilled off at the time of drying, so that irritation can be improved as compared with the case where a surfactant is added.
  • an aqueous dispersion is prepared by adding a secondary aggregation inhibitor to the wet cake. be able to.
  • the secondary aggregation inhibitor include known surfactants.
  • the compounds mentioned in the secondary aggregation inhibitor that can be added after removing the salt and polyol can be used.
  • An aqueous dispersion using a polymer such as an acrylic acid copolymer or a methacrylic acid copolymer as a secondary aggregation inhibitor can be used as a DDS agent.
  • the aqueous dispersion can also be pulverized by vacuum drying, spray drying, freeze drying, freeze spray drying, or the like. Since the powder prepared in this way is excellent in redispersibility in water, it has excellent properties as an injection, an eye drop, and an oral preparation for use at the time of use.
  • the composite organic compound powder for medical use can be dispersed in an oily substance and used for ointments, capsules, transdermal absorbents and the like.
  • the oily substance is not particularly limited as long as it is a substance usually used in formulation. Examples of the oily substance include liquid paraffin, petrolatum, propylene glycol, glycerin, polyethylene glycol, vegetable oil and the like.
  • the oily substance may be used alone, or two or more oily substances may be mixed and used. Moreover, you may use the apparatus etc. which are normally used at the time of oily substance dispersion preparation.
  • Examples of the apparatus include a homogenizer, a homomixer, an ultrasonic disperser, a high-pressure homogenizer, a two-roll, a three-roll, a disk blade kneading disperser, and a twin screw extruder.
  • Example 1 Crushing experiment of fenofibrate 0.1 g of fenofibrate (melting point: 80-83 ° C.) having an average particle diameter of 6,640 nm and ground sodium chloride (average) 1.6 g of particle diameter: 5 ⁇ m) and 0.005 g of carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) were mixed and mixed uniformly, and then 0.36 g of glycerin was gradually added dropwise to make the contents into a dough. The mixture was kneaded at 20 ° C. for 100 rotations and pulverized.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.073 g of pulverized powder having an average particle size of 338 nm.
  • Example 2 Felbinac crushing experiment 0.1 g of felbinac (melting point: 163 to 166 ° C) having an average particle diameter of 34,000 nm and ground sodium chloride (average particle diameter: 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: Nikko Chemicals) 0.005 g were charged and mixed uniformly. Then, 0.33 g of glycerin was gradually added dropwise to keep the contents in a dough shape. The mixture was kneaded at 100 ° C. for 100 revolutions.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.081 g of pulverized powder having an average particle size of 207 nm.
  • ferbinac grinding experiment 0.1 g of ferbinac (melting point: 163 to 166 ° C) having an average particle size of 34,000 nm and ground sodium chloride (average particle size: average) on a water-cooled Hoovermarler (manufactured by Imoto Seisakusho Co., Ltd.) (5 ⁇ m) 1.6 g was charged and mixed uniformly, and then 0.36 g of glycerin was gradually added dropwise to keep the contents in a dough shape, which was kneaded at 20 ° C. for 100 revolutions and pulverized.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.085 g of pulverized powder having an average particle diameter of 535 nm.
  • Example 3 Crushing experiment of pranlukast hydrate Pranlukast hydrate having an average particle size of 1,088 nm (melting point: about 231 to 235 ° C. (decomposition)) on a water-cooled Hoovermarler (manufactured by Imoto Seisakusho Co., Ltd.) ) 0.1 g, 1.6 g of crushed sodium chloride (average particle size: 5 ⁇ m) and 0.005 g of carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) were mixed and uniformly mixed, and then 0.42 g of glycerin was gradually added.
  • the mixture was dripped into the dough and the contents were kept in the form of a dough and kneaded at 20 ° C. for 100 revolutions. Then, the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. The obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.090 g of pulverized powder having an average particle diameter of 62 nm.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.098 g of pulverized powder having an average particle diameter of 73 nm.
  • Example 4 Miconazole Grinding Experiment 0.1 g of miconazole (melting point: 84-87 ° C.) having an average particle size of 10,900 nm and ground sodium chloride (average particle size: average particle size: water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.) 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: Nikko Chemicals) 0.005 g were charged and mixed uniformly, then 0.345 g of glycerin was gradually added dropwise to keep the contents in a dough shape. The mixture was kneaded at 100 ° C. for 100 revolutions.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.058 g of pulverized powder having an average particle diameter of 142 nm.
  • Example 5 Grinding experiment of fluticasone propionate 0.1 g of fluticasone propionate (melting point: about 273 ° C. (decomposition)) having an average particle size of 7,850 nm was pulverized and chlorinated in a water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.). Sodium (average particle size: 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) 0.005 g were charged and mixed uniformly, then glycerin 0.375 g was gradually added dropwise to knead the contents.
  • Carbopol 980 carboxyvinyl polymer
  • the mixture was kept in the shape and kneaded for 100 revolutions at 20 ° C. Then, the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. The obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.071 g of pulverized powder having an average particle diameter of 71 nm.
  • the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water.
  • the obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.075 g of pulverized powder having an average particle diameter of 114 nm.
  • Indomethacin pulverization experiment 8 g of indomethacin (melting point: 155 to 162 ° C) having an average particle size of 3,960 nm and crushed sodium chloride (average particle size) in a 0.2 L kneader (decomposed type kneader, manufactured by Yoshida Seisakusho) : 5 ⁇ m) 170 g and carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) 0.5 g were charged and mixed uniformly, and then 36 g of glycerin was gradually injected to keep the contents in a dough shape. Time grinding was performed.
  • FIGS. 1 and 2 show an SEM photograph (magnification: 10,000 times) of the ferbinac ground powder obtained in Example 2, and an enlarged SEM photograph (magnification: 20,000 times) of the SEM photograph.
  • 3 and 4 are respectively an SEM photograph (magnification: 10,000 times) of the ferbinac ground powder obtained in Comparative Example 2 and an enlarged SEM photograph (magnification: 20,000) of the SEM photograph.
  • FIG. 5 and FIG. 6 are SEM photographs (magnification: 10,000 times) of the ground powder of fluticasone propionate obtained in Example 5, respectively, and SEM photographs (magnifications) of a part of the SEM photograph. : 20,000 times)
  • FIG. 7 and FIG. 8 are SEM photographs (magnification: 10,000 times) of the pulverized fluticasone propionate powder obtained in Comparative Example 5, respectively, and an enlarged S on the SEM photograph.
  • M Photo show the (magnification 20,000 times).
  • the average particle size of the powder before and after pulverization was measured using a BET specific surface area measuring device (Macsorb HM-1201, manufactured by Mountec Co., Ltd.). Moreover, the particle size of the particles in the suspension was measured using a particle size distribution measuring device (Delsa Nano S, manufactured by Beckman Coulter).
  • D 50 is the particle diameter (referred to as the central particle diameter) of the integrated value 50% counted from the larger (or smaller) particle in the particle size distribution.
  • D 90 is the diameter of a particle having an integrated value of 90% (referred to as 90% diameter) counted from the smaller particle in the particle size distribution.
  • D V is a volume average particle diameter (referred to as an average particle diameter).
  • Example 7 Grinding experiment of fenofibrate 0.1 g of fenofibrate (melting point: 80-83 ° C.) having an average particle diameter of 6,640 nm and ground sodium chloride (average particle) in a water-cooled Hoovermarler (manufactured by Imoto Seisakusho Co., Ltd.) (Diameter: 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) 0.005 g were mixed and mixed uniformly, and then 0.36 g of glycerin was gradually added dropwise to keep the contents in a dough shape. The mixture was kneaded at 20 ° C. for 100 revolutions.
  • 0.1 g of a purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with the obtained pulverized kneaded product and kneaded at 20 ° C. for 50 revolutions. Then, the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. The obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.094 g of powder.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • Comparative Example 7 Fenofibrate Grinding Experiment To 0.05 g of the powder produced in Example 1, 5 g of 1% sodium dodecyl sulfate was added as a dispersant, and an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System) Was dispersed uniformly, and 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • the particle size distribution was found to be an average particle size (D V ) of 556.5 nm, a center particle
  • the diameter (D 50 ) was 457.2 nm and the 90% diameter (D 90 ) was 742.6 nm.
  • Comparative Example 8 Fenofibrate Grinding Experiment To 0.05 g of the powder prepared in Comparative Example 1, 5 g of 1% sodium dodecyl sulfate was added as a dispersant, and an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System) Was dispersed uniformly, and 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • the particle size distribution was found to be an average particle size (D V ) 629.5 nm, a center particle
  • the diameter (D 50 ) was 893.6 nm
  • the 90% diameter (D 90 ) was 1,867 nm.
  • Felbinac crushing experiment 0.1 g of felbinac (melting point: 163 to 166 ° C.) having an average particle diameter of 34,000 nm and ground sodium chloride (average particle diameter: 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: Nikko Chemicals) 0.005 g were charged and mixed uniformly. Then, 0.33 g of glycerin was gradually added dropwise to keep the contents in a dough shape. The mixture was kneaded at 100 ° C. for 100 revolutions.
  • 0.1 g of a purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with the obtained pulverized kneaded product and kneaded at 20 ° C. for 50 revolutions. Then, the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. The obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.106 g of powder.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • the particle size distribution was found to be an average particle size (D V ) of 5,618 nm, a center particle
  • the diameter (D 50 ) was 273.0 nm
  • the 90% diameter (D 90 ) was 10,321 nm.
  • the particle size distribution was found to be an average particle size (D V ) 610.8 nm, a center particle
  • the diameter (D 50 ) was 498.2 nm
  • the 90% diameter (D 90 ) was 842.8 nm.
  • Example 9 Crushing experiment of pranlukast hydrate Pranlukast hydrate having an average particle size of 1,088 nm (melting point: about 231 to 235 ° C. (decomposition)) in a water-cooled Hoovermarer (manufactured by Imoto Seisakusho Co., Ltd.) ) 0.1 g, 1.6 g of crushed sodium chloride (average particle size: 5 ⁇ m) and 0.005 g of carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) were mixed and uniformly mixed, and then 0.42 g of glycerin was gradually added.
  • Hoovermarer manufactured by Imoto Seisakusho Co., Ltd.
  • the mixture was dripped into the dough and the contents were kept in the form of a dough and kneaded at 20 ° C. for 100 revolutions. Further, 0.2 g of a purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with the obtained pulverized kneaded product and kneaded at 20 ° C. for 50 revolutions. The contents are then reduced to 50 mL of 0.1. The solution was placed in a mol / L acetic acid aqueous solution and dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. Were dried under reduced pressure to obtain 0.119 g of powder.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • the particle size distribution was found to be an average particle size (D V ) of 105.3 nm, a center particle
  • the diameter (D 50 ) was 89.9 nm
  • the 90% diameter (D 90 ) was 131.7 nm.
  • the particle size distribution was found to be an average particle size (D V ) 43,804 nm, a center particle
  • the diameter (D 50 ) was 38,306 nm
  • the 90% diameter (D 90 ) was 39,845 nm.
  • Comparative Example 12 Pulverukast Hydrate Crushing Experiment To 0.05 g of the powder prepared in Comparative Example 3, 5 g of 1% sodium dodecyl sulfate was added as a dispersant, and an ultrasonic device (UT-105, Sharp Using a manufacturing system), 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • an ultrasonic device UT-105, Sharp Using a manufacturing system
  • the particle size distribution was found to be an average particle size (D V ) of 50,510 nm, a center particle
  • the diameter (D 50 ) was 46,227 nm
  • the 90% diameter (D 90 ) was 59,856 nm.
  • Example 10 Miconazole Grinding Experiment 0.1 g of miconazole (melting point: 84 to 87 ° C.) having an average particle diameter of 10,900 nm and ground sodium chloride (average particle diameter: average particle diameter: manufactured by Imoto Seisakusho Co., Ltd.) 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: Nikko Chemicals) 0.005 g were charged and mixed uniformly, then 0.345 g of glycerin was gradually added dropwise to keep the contents in a dough shape. The mixture was kneaded at 100 ° C. for 100 rotations.
  • 0.1 g of a purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with the obtained pulverized kneaded product and kneaded at 20 ° C. for 50 revolutions. Then, the contents are put into 50 mL of 0.1 mol / L acetic acid aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), followed by filtration and washing with water. The obtained wet cake was dried under reduced pressure at 30 ° C. to obtain 0.075 g of powder.
  • an ultrasonic device UT-105, manufactured by Sharp Manufacturing System
  • Example 13 Miconazole grinding experiment To 0.05 g of the powder prepared in Example 4, 5 g of 1% sodium dodecyl sulfate was added as a dispersant, and an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System) was used. Used to disperse uniformly, and 44.95 g of purified water was added to obtain 50.0 g of a suspension. As a result of measuring the particle size distribution of the obtained suspension using a particle size distribution measuring device (Delsa Nano S, manufactured by Beckman Coulter, Inc.), the particle size distribution was found to be an average particle size (D V ) of 155.5 nm, and a central particle. The diameter (D 50 ) was 136 nm, and the 90% diameter (D 90 ) was 193.6 nm.
  • D V average particle size
  • Example 11 Crushing Experiment of Fluticasone Propionate 0.1 g of fluticasone propionate (melting point: about 273 ° C. (decomposition)) having a mean particle size of 7,850 nm was pulverized into water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.). Sodium (average particle size: 5 ⁇ m) 1.6 g and carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) 0.005 g were charged and mixed uniformly, then glycerin 0.375 g was gradually added dropwise to knead the contents. The mixture was kept in the shape and kneaded for 100 revolutions at 20 ° C.
  • Example 12 Indomethacin grinding experiment 8 g of indomethacin having an average particle diameter of 3,960 nm (melting point: 155 to 162 ° C.) and ground sodium chloride (average particle diameter) in a 0.2 L kneader (decomposed type kneader, manufactured by Yoshida Seisakusho) : 5 ⁇ m) 170 g and carboxyvinyl polymer 0.5 g were charged and uniformly mixed, and then 39 g of glycerin was gradually poured to keep the contents in a dough shape, and pulverized at 5 ° C. for 10 hours.
  • L kneader decomposed type kneader, manufactured by Yoshida Seisakusho
  • Comparative Example 18 Indomethacin Grinding Experiment To 0.05 g of the powder prepared in Comparative Example 6, 5 g of 1% N-myristoylmethyl taurine sodium was added as a dispersant, and an ultrasonic device (UT-105, Sharp Manufacturing System Co., Ltd.). And 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) 319.9 nm, a center particle
  • the diameter (D 50 ) was 238.3 nm
  • the 90% diameter (D 90 ) was 461.5 nm.
  • Table 2 shows the results of Examples 7 to 12 and Comparative Examples 7 to 18. As shown in Table 2, it was found that the powder prepared by adding the carboxyvinyl polymer and lecithin has high redispersibility in water and the average particle size in the suspension is small. On the other hand, it was found that the powder prepared without adding lecithin was not easily dispersed in the suspension.
  • the average particle diameter of the powder was measured using a BET specific surface area measuring apparatus (Macsorb HM-1201, manufactured by Mountec Co., Ltd.). Moreover, the particle size of the particles in the suspension was measured using a particle size distribution measuring device (Delsa Nano S, manufactured by Beckman Coulter).
  • D 50 is the particle diameter (referred to as the central particle diameter) of the integrated value 50% counted from the larger (or smaller) particle in the particle size distribution.
  • D 90 is the diameter of a particle having an integrated value of 90% (referred to as 90% diameter) counted from the smaller particle in the particle size distribution.
  • D V is a volume average particle diameter (referred to as an average particle diameter).
  • Example 13 Grinding and collection experiment of amphotericin B 0.1 g of amphotericin B (melting point: decomposed at 170 ° C. or higher) having an average particle size of 13,423 nm was ground in a water-cooled Hoovermarler (manufactured by Imoto Seisakusho Co., Ltd.). After charging 1.6 g of sodium (average particle size: 5 ⁇ m) and mixing uniformly, 0.36 g of glycerin is gradually added dropwise to keep the contents in a dough shape, kneaded at 20 ° C. for 100 revolutions, and pulverized. I did it.
  • the average particle diameter of 13,423 nm of amphotericin B before pulverization is a value measured in the following manner.
  • 0.01 g of amphotericin B was added with 5 g of 0.03% sodium lauryl sulfate as a dispersant, and the mixture was uniformly dispersed using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System Co., Ltd.). 44.99 g was added to obtain 50.0 g of a suspension.
  • the particle size distribution of the resulting suspension was measured using a particle size distribution measuring device (Delsa Nano S, manufactured by Beckman Coulter, Inc.). As a result, the particle size distribution was an average particle diameter (D V ) of 13,423 nm, a central particle diameter (D 50 ) of 11,843 nm, and a 90% diameter (D 90 ) of 15,181 nm.
  • 0.1 g of purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with the pulverized kneaded product obtained by pulverization using a water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.) Kneaded in a mortar. After that, the contents were put into 50 mL of 0.1 mol / L acetic acid aqueous solution, dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), and then centrifuged (6000 rpm). CN-2060 (manufactured by ASONE Corporation) for 10 minutes, and the supernatant was removed. After performing this operation 4 times, a wet cake was obtained.
  • Example 14 Grinding experiment of acyclovir 0.1 g of acyclovir having an average particle diameter of 60,371 nm (melting point: decomposed at about 300 ° C) and ground sodium chloride (average particle) After adding 1.6 g (diameter: 5 ⁇ m) and mixing uniformly, 0.1 g of glycerin was gradually added dropwise to keep the contents in a dough shape, and kneaded at 20 ° C. for 100 revolutions.
  • the average particle diameter 60,371 nm of acyclovir before pulverization is a value measured in the following manner.
  • 0.01 g of acyclovir was added with 5 g of 0.03% sodium lauryl sulfate as a dispersant, and the mixture was uniformly dispersed using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), and purified water 44.99 g was added to obtain 50.0 g of a suspension.
  • UT-105 Ultrasonic device
  • purified water 44.99 g was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) of 60,371 nm, and a central particle.
  • the diameter (D 50 ) was 52,997 nm
  • the 90% diameter (D 90 ) was 69,371 nm.
  • 0.2 g of a purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) was uniformly mixed with a pulverized kneaded product obtained by pulverization using a water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.) Kneaded in a mortar. Thereafter, the contents are put into 50 mL of an aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), and then centrifuged (6000 rpm, 10 minutes, CN- 2060, manufactured by ASONE Corporation), and the supernatant was removed. After performing this operation three times, the obtained wet cake was dried under reduced pressure at 30 ° C.
  • Example 20 Acyclovir grinding experiment 0.1 g of acyclovir (melting point: decomposed at about 300 ° C) having an average particle size of 60,371 nm used in Example 14 was used in a water-cooled Hoover Muller (manufactured by Imoto Seisakusho Co., Ltd.). After charging 1.6 g of crushed sodium chloride (average particle size: 5 ⁇ m) and mixing uniformly, 0.1 g of glycerin is gradually added dropwise to keep the contents in a dough shape and kneaded at 20 ° C. for 100 revolutions. Then, pulverization was performed.
  • the contents are put into 50 mL of an aqueous solution, and are dispersed uniformly using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System), and then centrifuged (6000 rpm, 10 minutes, CN- 2060, manufactured by ASONE Corporation), and the supernatant was removed.
  • UT-105 manufactured by Sharp Manufacturing System
  • centrifuged 6000 rpm, 10 minutes, CN- 2060, manufactured by ASONE Corporation
  • Example 15 Indomethacin pulverization and recovery experiment Into a 2 L kneader (manufactured by Inoue Seisakusho), 38 g of indomethacin having an average particle size of 3,960 nm (melting point: 155 to 162 ° C) and 608 g of crushed sodium chloride (average particle size: 5 ⁇ m) were added. After charging and mixing uniformly, 78 g of glycerin was gradually poured to keep the contents in a dough shape, and pulverized at 5 ° C. for 2 hours. This kneaded product contains indomethacin having an average particle size of 154 nm.
  • the average particle size of 154 nm of indomethacin in the kneaded product is a value measured in the following manner. Add 0.05 g of 0.1% lecithin / 0.03% sodium lauryl sulfate as a dispersant to 0.05 g of the kneaded material containing indomethacin, and use an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System). Then, 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) of 154 nm, a center particle size ( D 50 ) 118 nm, 90% diameter (D 90 ) 213 nm.
  • the particle size distribution was found to be an average particle size (D V ) of 137 nm, a center particle size ( D 50 ) 122 nm and 90% diameter (D 90 ) 164 nm.
  • the recovery rate was 69%.
  • 0.01 g of the indomethacin-containing pulverized powder obtained was added with 5 g of 0.1% sodium lauryl sulfate as a dispersant, and uniform using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System).
  • UT-105 manufactured by Sharp Manufacturing System
  • purified water was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) of 1,484 nm, a center particle
  • the diameter (D 50 ) was 201 nm
  • the 90% diameter (D 90 ) was 4,012 nm. Since some of the particles were agglomerated, it is assumed that the difference between D V , D 50 , and D 90 was large.
  • Example 16 Indomethacin pulverization and recovery experiment In a 2 L kneader (manufactured by Inoue Seisakusho), 38 g of indomethacin having an average particle diameter of 3,960 nm (melting point: 155 to 162 ° C), 608 g of crushed sodium chloride (average particle diameter: 5 ⁇ m), and After 1.9 g of carboxyvinyl polymer (Carbopol 980: manufactured by Nikko Chemicals) was charged and mixed uniformly, 78 g of glycerin was gradually poured to keep the contents in a dough shape, and pulverized at 5 ° C. for 2 hours. . This kneaded product contains indomethacin having an average particle size of 96 nm.
  • the average particle diameter of 96 nm of indomethacin in the kneaded product is a value measured in the following manner. Add 0.05 g of 0.1% lecithin / 0.03% sodium lauryl sulfate as a dispersant to 0.05 g of the kneaded material containing indomethacin, and use an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System). Then, 44.95 g of purified water was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) of 96 nm, a center particle size ( D 50 ) 72 nm, 90% diameter (D 90 ) 142 nm.
  • a portion of 532 g (amount containing 28 g of indomethacin) and 57 g of purified hydrogenated soybean lecithin-glycerin mixture (1: 3 weight ratio) were uniformly charged by pulverizing with a 2 L kneader (manufactured by Inoue Seisakusho). Mixed. Thereafter, about 10 g of the contents (containing 0.48 g of indomethacin) was put in 50 mL of purified water, dispersed uniformly with a homogenizer, and then centrifuged to remove salt and glycerin. This operation was repeated, and washing was performed until the electric conductivity of the supernatant after centrifugation was 10 ⁇ S / cm or less.
  • the particle size distribution was found to be an average particle size (D V ) of 94 nm, a center particle size ( D 50 ) 79 nm and 90% diameter (D 90 ) 125 nm.
  • the recovery rate was 67%.
  • 0.01 g of the indomethacin-containing pulverized powder obtained was added with 5 g of 0.1% sodium lauryl sulfate as a dispersant, and uniform using an ultrasonic device (UT-105, manufactured by Sharp Manufacturing System).
  • UT-105 manufactured by Sharp Manufacturing System
  • purified water was added to obtain 50.0 g of a suspension.
  • the particle size distribution was found to be an average particle size (D V ) of 202 nm, a center particle size ( D 50 ) 163 nm and 90% diameter (D 90 ) 269 nm.
  • a water-insoluble organic compound can be refined more safely and easily than before, and further production efficiency (particle recovery rate) can be improved. It can be used in the field of medicine and diagnostics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)

Abstract

 【課題】  粉砕媒体のコンタミネーションが低く、安全かつ生体内利用率の改善された薬剤を提供する。  【解決手段】  難水溶性かつ結晶性の有機化合物粉体と、生理的に許容される塩と、生理的に許容されるポリオールと、カルボキシビニルポリマーとを混合して、上記有機化合物粉体を粉砕する工程と、粉砕中もしくは粉砕後に、少なくとも上記塩および上記ポリオールを除去する工程と、を含む医薬用複合有機化合物粉体の製造方法を用いる。

Description

医療用複合有機化合物粉体、その製造方法ならびに懸濁液
 本発明は、難水溶性の有機化合物粒子を含む医療用複合有機化合物粉体、その製造方法、ならびに医療用複合有機化合物粉体を分散させた懸濁液に関する。
 製剤の薬効成分が有効に機能するためには、薬効成分が体内の血管を通って標的部位に到達する必要がある。血管の中で最も細い毛細血管は、約5μmである。このため、薬効成分を有する有機化合物が毛細血管を閉塞させることなく通過するためには、当該有機化合物の粒子径が5μmより小さいことが求められる。
 一方、製剤の生体内利用率を向上させることは、投薬量を減少させ、それによって生体への副作用を低減することにつながるため、医療および製薬においてきわめて重要である。一般に、製剤の生体内利用率は、薬物の物理化学的性質、剤形および投与経路によって決定される。例えば、経口製剤は、注射製剤(非経口製剤)と比べて手軽で苦痛が少ないという長所を有する反面、生体内利用率が低いという短所を有する。経口製剤は、胃、十二指腸を経て腸に入り、主に腸管から血液に吸収され、門脈を通って肝臓に送られる。経口製剤がこのような長い経路を通る間に、その一部は胃酸などの作用を受けて分解し、あるいは肝臓内にて代謝され全く別の物質に変わる。生体内利用率が低い大きな理由の一つは、経口製剤が腸などの消化器官から吸収されにくいことである。製剤の生体内利用率を高めるためには、薬効成分を有する有機化合物が消化器官から血液内に吸収されやすくするために必要なレベルまで、その大きさを小さくする必要がある。
 製剤の中には、難水溶性あるいは不水溶性の有機化合物を薬効成分とするものも少なくない。従来から、上記難水溶性あるいは不水溶性の有機化合物を薬効成分とする製剤は、当該有機化合物を有機溶媒に溶解し調剤する方法、当該有機化合物を熱溶解させ乳化した状態にする方法(例えば、特許文献1,2参照)、あるいは当該有機化合物をミクロンオーダの粒子まで微細化して水と混合する方法などによってその大きさを小さくして、生体に投与されている。
 しかし、有機化合物を溶解させる有機溶媒は、医療上好ましくない事象を引き起こす可能性があり、このような有機溶媒をできるだけ使用しないことが求められている。また、薬効成分を持つ有機化合物の中には、融点と分解点がほとんど同じであるものが多く、有機化合物を熱溶解させると、それと同時に有機化合物が分解してしまい、当該有機化合物が薬効成分となり得ないものに変化する危険性がある。さらに、融点が高い有機化合物に対しては、熱溶解という方法を使用することが難しいという問題もある。
 一方、有機化合物を機械的手段によって粉砕し微細化する方法は、近年のナノテクノロジーの発展に伴い、注目を集めている。例えば、セラミックス、ガラス等から成るビーズを用いたビーズミルによって、固体農薬活性成分を粉砕する方法が知られている(例えば、特許文献3参照)。また、回転ボールミル等の粉砕装置を使用して、紫外線吸収剤用の有機化合物を微細に粉砕する方法も知られている(例えば、特許文献4参照)。さらに、顔料を粉砕する方法ではあるが、粗製ジオキサジンを、無機塩およびアルコール若しくはポリオール類の有機液体中で湿式粉砕する、いわゆるソルベントソルトミリング法も知られている(例えば、特許文献5参照)。
特開2007-23051号公報 特表2003-531162号公報 特開2003-286105号公報 特開平11-100317号公報 特開平6-228454号公報
 しかし、ビーズミルおよび回転ボールミルのように硬質媒体を用いた粉砕方法では、粉砕時に、硬質媒体やミル容器の磨耗により生じた磨耗粉が有機化合物粒子に混入するという問題がある。これに対して、ソルベントソルトミリング法では、塩を粉砕ツールとして使用しているため、有機化合物粒子を粉砕する際に塩が摩耗あるいは破砕したとしても、粉砕工程後に塩を水で洗い流すことができる。このため、上述の硬質媒体を用いる粉砕方法に比べて、コンタミネーションの問題は生じにくいという利点がある。
 しかし、ソルベントソルトミリング法は、ジオキサジンや銅フタロシアニンのような有機顔料の粉砕方法としては有用であるが、粉砕化の程度や、医療用の有機化合物に適用可能な粉砕方法であるかどうかについては不明である。特に、医薬品の有効成分である有機化合物においては、その結晶形を維持したまま粉砕することが求められるところ、当該有機化合物の媒液への溶解は、それがごく微量でも溶解-再溶出を引き起こすことにより、粉砕前とは異なる結晶形や非晶形を生じることから、媒液の選択が非常に困難であることが知られている(Pharmaceutical Development and Technology Vol.9, No.1, pp.1-13 (2004))。また、ソルベントソルトミリング法で粉砕される有機顔料は、結晶構造により発色しているものが多く、その化学構造は置換基が少なく分子の平面性が高いことから結晶構造が密である。このため、被粉砕物は、高融点化合物(融点350℃以上)であることが多く、かつ溶媒に対する溶解性が低い特性を持つものが多い。ソルベントソルトミリング法は、難溶性有機化合物の中でもとりわけ溶解度の低い顔料を粉砕するために用いられているからこそ利用可能であると考えられており、多くの場合、顔料と比較して結晶格子が疎であり、融点が低く、又は溶媒に対する溶解度が高い等、特性が著しく異なる医療用有機化合物について当該方法を適用した場合には、医療用有機化合物が溶媒に溶解してしまい、微粉砕できないと考えられていた。
 本発明者らは、本発明に先立ち、医療用の有機化合物に塩を混合して粉砕を試み、薬剤として有用なレベルまで粉砕できる方法を見出すことに成功した。しかし、医療用有機化合物の微細化あたり、次のような改善が求められている。すなわち、1)さらに粉砕効率を高めること、2)微細化した粒子が再凝集してしまうことを防ぐこと、3)ナノ化した医療用有機化合物の回収率が低くなることを防ぐこと、の3点が求められている。医療用有機化合物をナノレベルにまで微細化すると、再凝集する他、比表面積の増大に起因して難水溶性医療用の有機化合物が洗浄用の水に溶解してしまうことがある。一般的に、難水溶性物質は、水に溶解しないものと、水に溶解し難いものの2種類に分類される。後者は、充分に時間をかけると溶解し得るものも含むが、溶解時間が産業上利用するのに不適切なほど長い場合には難水溶性物質に分類される。一方、微細化することにより、比表面積が増大すると、水との接触面が増大し、溶解速度が速くなる場合がある。
 一方、安定に分散したナノ粒子は、その微細な形態であるがゆえに、「濾過(分離)・水洗工程」で捕集することが非常に困難になる。これは、濾過工程ではフィルタ等を通過してしまい、遠心分離工程では充分に沈降しないからである。したがって、高い粉砕効率、高い再分散性、高い捕集効率は、互いに相反する要求となっている。
 本発明は、かかる要求に応えるべくなされたものであって、粉砕媒体のコンタミネーションが低く、安全でかつ生体内利用率の改善された薬剤を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、有機化合物粉体に、生理学的に許容される塩および生理学的に許容されるポリオールに加え、カルボキシビニルポリマーを添加して粉砕することにより、該有機化合物粉体を高効率にて粉砕できること、および粉砕後に該塩と該ポリオールを除去することにより、結晶構造を維持したままで、平均粒子径が非常に小さく、有機化合物の各粒子表面の一部または全部がカルボキシビニルポリマーで覆われた形態の有機化合物粉体を製造し得ることを見出し、本発明を完成させた。さらに、微細化した有機化合物にレシチンを加えて混合処理を行うことにより、分散性に富み、かつ捕集効率に優れた有機化合物粉体を製造し得ることを見出し、さらに優れた本発明を完成させた。なお、レシチンを添加する際には、カルボキシビニルポリマーの添加の有無は問わない。
 すなわち、本発明は、難水溶性かつ結晶性の有機化合物の粒子表面の一部若しくは全部がカルボキシビニルポリマーで覆われ、そのカルボキシビニルポリマーで覆われた状態の粒子のBET比表面積から換算される平均粒子径が400nm以下である医薬用複合有機化合物粉体、当該粉体を有する懸濁液、ならびに当該粉体を得るための粉砕方法に関する。また、本発明は、微細化した有機化合物にレシチンを加えて混合処理を行うことにより、平均粒子径が400nm以下の医薬用複合有機化合物粉体、当該粉体を有する懸濁液、ならびに当該粉体を高い補集効率で得るための製造方法に関する。
 より具体的には、本発明は以下に記載のとおりである。
(1)本発明の医薬用複合有機化合物粉体は、難水溶性かつ結晶性の有機化合物の粒子表面の一部若しくは全部がカルボキシビニルポリマーで覆われ、カルボキシビニルポリマーで覆われた状態の粒子のBET比表面積から換算される平均粒子径が400nm以下である。
(2)上記有機化合物は、好ましくは、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である。
(3)医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が50~400nmのフェノフィブラート粉体である。
(4)また、医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が50~400nmのフェルビナク粉体である。
(5)また、医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が20~70nmのプランルカスト水和物粉体である。
(6)また、医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が50~300nmのミコナゾール粉体である。
(7)また、医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が20~100nmのプロピオン酸フルチカゾン粉体である。
(8)また、医薬用複合有機化合物粉体は、好ましくは、BET比表面積から換算される平均粒子径が20~120nmのインドメタシン粉体である。
(9)本発明の医薬用複合有機化合物粉体は、カルボキシビニルポリマーまたは有機化合物粒子の表面に、さらにレシチンを有する。
(10)本発明は、(9)の医薬用複合有機化合物粉体を分散してなる懸濁液である。
(11)本発明の医薬用複合有機化合物粉体の製造方法は、難水溶性かつ結晶性の有機化合物粉体と、生理的に許容される塩と、生理的に許容されるポリオールと、カルボキシビニルポリマーとを混合して上記有機化合物粉体を粉砕する工程と、粉砕後に、少なくとも塩およびポリオールを除去する工程とを含む。
(12)本発明の医薬用複合有機化合物粉体の製造方法は、さらに、上記粉砕する工程中若しくは該工程後に、レシチンを添加する工程を含む。
(13)上記有機化合物粒子は、好ましくは、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である。
(14)上記塩は、好ましくは、塩化ナトリウム、塩化カリウム、塩化アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸カルシウム、リンゴ酸ナトリウム、クエン酸ナトリウム、クエン酸二ナトリウム、クエン酸二水素ナトリウム、クエン酸二水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、及びリン酸水素二カリウムからなる群より選ばれる1以上である。
(15)上記ポリオールは、好ましくは、グリセリン、プロピレングリコールまたはポリエチレングリコールである。
(16)上記塩および上記ポリオールは、好ましくは、それぞれ塩化ナトリウムおよびグリセリンである。
(17)本発明の医薬用複合有機化合物粉体は、難水溶性の有機化合物の粒子表面にレシチンを有する複合体粒子、または当該有機化合物とレシチンとがナノレベルで複合した複合体粒子から成る。当該粉体を構成する複合体粒子の体積換算により求められる平均粒子径は、400nm以下であるのが好ましい。
(18)上記有機化合物は、好ましくは、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である。
(19)また、医薬用複合有機化合物粉体は、好ましくは、平均粒子径が50~250nmのアムホテリシンB、アシクロビルまたはインドメタシンの内の少なくともいずれか1種類の粉体である。
(20)また、本発明は、(17)から(19)の内の少なくともいずれか1つの医薬用複合有機化合物粉体を分散してなる懸濁液である。
(21)本発明の医薬用複合有機化合物粉体の製造方法は、難水溶性の有機化合物粉体、生理的に許容される塩および生理的に許容されるポリオールを混合して有機化合物粉体を粉砕する工程と、粉砕後に、少なくとも塩およびポリオールを除去する工程とを含む。
(22)本発明の医薬用複合有機化合物粉体の製造方法は、さらに、粉砕する工程中若しくは該工程後に、レシチンを添加する工程を含む。
 本発明において、「BET比表面積から換算される平均粒子径」とは、BET流動法(1点式)にて測定した比表面積の値から仮想球状粒子の直径に換算して算出したものである。比表面積の値から直径への換算式は、次の式1である。ここで、Dは平均粒子径、ρは固体密度、Sは比表面積、αは形状係数である。球状粒子の場合、αは6である。
    D=α/(ρ・S)・・・(式1)
 BET流動法は、好適には、以下のような方法によって比表面積を測定する方法である。測定対象ンのサンプルを入れたセルに、窒素とヘリウムの混合ガスを流し、サンプルを液体窒素にて冷却する。すると、サンプルの表面に窒素ガスだけが吸着する。次に、セルを常温まで戻すと、ガスの脱離が起きる。このガスの脱離過程において、一つの検出器を流れる混合ガス中の窒素ガスの割合より、別の検出器を流れる窒素ガスの割合が大きくなる。これら検出器の信号の差が吸着量となり、比表面積を測定できる。
 本発明の「難水溶性医療用有機化合物」の融点は、好ましくは、80~400℃である。本発明の難水溶性医療用有機化合物の融点として、好ましくは80~360℃であり、更に好ましくは80~320℃であり、最も好ましくは80~280℃である。
 本明細書において、「難水溶性」とは、医薬品として利用する場合に影響を受ける程度に有機化合物の水への溶解度が低いことを意味し、先に述べたように、水に溶解しない性質と、水に溶解し難い性質の両方を包含する。医薬品における難水溶性の考え方については、例えば、各国の薬局方の記載を参照することができる。例えば、難水溶性の有機化合物の水への溶解度は、通常の医療用有機化合物の取扱い温度、例えば、室温25℃付近において、約1mg/mL以下であることができ、好ましくは0.5mg/mL以下であり、より好ましくは0.3mg/mL以下であり、最も好ましくは0.1mg/mL以下である。
 また、本発明の「難水溶性医療用有機化合物」は、好ましくは、結晶性の難水溶性医療用有機化合物である。本明細書において、「結晶性」とは、規則正しく分子が並んでいる状態であり、ある物質が結晶性であるか否かは、例えば、熱分析、X線回折、電子回折等の当業者周知の方法により知ることができる。また、本発明の方法において用いられる結晶性の難水溶性医療用有機化合物として、好ましくは、より明確な結晶型を有する有機化合物である。しかし、「難水溶性医療用有機化合物」は、結晶性であることを必須の要件とせず、アモルファスの有機化合物も含む。
 本明細書において、難水溶性医療用有機化合物は、天然物であってもよく、合成物であってもよい。天然物としては、例えば、動物由来の有機化合物、植物由来の有機化合物、又は、酵母等の微生物由来の有機化合物等を挙げることができる。また、本発明の難水溶性医療用有機化合物は、1種類の有機化合物であってもよく、2種類以上の有機化合物の混合物であってもよい。
 このような難水溶性医療用有機化合物としては、例えば、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールを挙げることができ、好ましくは、インドメタシン、ニフェジピン、酢酸コルチゾン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、ミコナゾール、プランルカスト、デキサメタゾン、及び、ザフィルルカストである。
 本明細書において、「医療用組成物」は、ヒト又は動物の治療若しくは予防又は診断を目的として用いられる限り特に限定されない。例えば、本発明の医療用組成物は、ヒト又は動物の体内又は表面等に投与されるものであってもよいし、ヒト又は動物から採取した血液、尿等を体外で処理するものであってもよい。このような医療用組成物としては、例えば、解熱薬、鎮痛薬、抗炎症薬、痛風薬、高尿酸血症治療薬、睡眠薬、鎮静薬、抗不安薬、抗精神病薬、抗うつ薬、抗躁薬、精神刺激薬、抗てんかん薬、筋弛緩薬、パーキンソン病治療薬、自律神経系作用薬、脳循環代謝改善薬、アレルギー治療薬、強心薬、抗狭心症薬、β遮断薬、Ca拮抗薬、抗不整脈薬、抗利尿薬、利尿薬、降圧薬、末梢循環障害治療薬、高脂血症用薬、昇圧薬、呼吸促進薬、気管支拡張薬、喘息治療薬、鎮咳薬、去痰薬、慢性閉塞性肺疾患治療薬、消化性潰瘍治療薬、下剤、止痢・整腸薬、糖尿病用薬、副腎皮質ホルモン製剤、性ホルモン製剤、骨粗しょう症薬、骨代謝改善薬、ビタミン製剤、造血薬、血液凝固製剤、化学療法薬、抗生物質、抗真菌薬、抗ウィルス薬、抗癌剤、免疫抑制剤、眼科用薬、耳鼻咽喉科用薬、口腔用薬、皮膚用薬、放射性医薬品、診断用薬、生活改善薬及び漢方薬を挙げることができる。
 本発明において、カルボキシビニルポリマーは、難水溶性かつ結晶性の有機化合物の粒子表面の一部を覆っているがその表面の全部を覆っていない、あるいは当該粒子表面を完全に覆っているいずれの形態でも良い。また、本発明において、レシチンは、上記有機化合物粒子の表面に直接存在していても、カルボキシビニルポリマーの表面に存在していても良い。本明細書において、「生理学的に許容される」とは、生理学上特に問題を生じることなく摂取することができると考えられる、という意味であり、ある物質が生理学的に許容される物質であるか否かは、摂取対象である生物種や、摂取の態様等により、適宜決定される。生理学的に許容される溶媒として、例えば、医薬品や食品等の添加剤や溶媒等として認可されている物質等を挙げることができる。
 本発明によれば、粉砕媒体のコンタミネーションが低く、安全でかつ生体内利用率の改善された薬剤を提供することができる。
図1は、実施例2の条件で得られたフェルビナクの粉砕パウダーのSEM写真(倍率:1万倍)である。 図2は、図1に示す視野の一部を拡大したSEM写真(倍率:2万倍)である。 図3は、比較例2の条件で得られたフェルビナクの粉砕パウダーのSEM写真(倍率:1万倍)である。 図4は、図3に示す視野の一部を拡大したSEM写真(倍率:2万倍)である。 図5は、実施例5の条件で得られたプロピオン酸フルチカゾンの粉砕パウダーのSEM写真(倍率:1万倍)である。 図6は、図5に示す視野の一部を拡大したSEM写真(倍率:2万倍)である。 図7は、比較例5の条件で得られたプロピオン酸フルチカゾンの粉砕パウダーのSEM写真(倍率:1万倍)である。 図8は、図7に示す視野の一部を拡大したSEM写真(倍率:2万倍)である。
 次に、本発明の医療用複合有機化合物粉体、その製造方法ならびに懸濁液の各実施の形体につき、説明する。
1.医療用複合有機化合物粉体
 好適な実施の形態に係る医薬用複合有機化合物粉体は、難水溶性かつ結晶性の有機化合物の粒子表面の一部若しくは全部がカルボキシビニルポリマーで覆われ、そのカルボキシビニルポリマーで覆われた状態の粒子のBET比表面積から換算される平均粒子径が400nm以下である。さらに、好適な実施の形態に係る医薬用複合有機化合物粉体は、カルボキシビニルポリマーまたは有機化合物粒子の表面に、さらにレシチンを有する。また、他にも、この実施の形態に係る医薬用複合有機化合物粉体は、有機化合物の粒子表面にレシチンを有する状態、若しくは有機化合物とレシチンとが複合体を形成した状態の粒子であり、体積換算により求められる平均粒子径が400nm以下のものも含む。
(1)有機化合物
 医療用複合有機化合物粉体に用いられる有機化合物としては、例えば、フェノフィブラート(融点:80~83℃)、フェルビナク(融点:163~166℃)、プランルカスト水和物(融点:231~235℃)、ミコナゾール(融点:84~87℃)、プロピオン酸フルチカゾン(融点:約273℃(分解))、インドメタシン(融点:155~162℃)、ニフェジピン(融点:172~175℃)、ニカルジピン(融点:136~138℃)、ニモジピン(融点:123~126℃)、ジピリダモール(融点:165~169℃)、ジソピラミド(融点:約204℃)、塩酸プラゾシン (融点:約275℃(分解))、プレドニゾロン(融点:約235℃(分解))、酢酸コルチゾン(融点:約240℃(分解))、デキサメタゾン (融点:約245℃(分解))、ベタメタゾン (融点:約240℃(分解))、プロピオン酸ベクロメタゾン(融点:約208℃(分解))、ブデソニド(融点:約240℃(分解))、フルオシノロンアセトニド (融点:約266~274℃(分解))、ナプロキセン(融点:154~158℃)、ケトプロフェン(融点:94~97℃)、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン(以下、キノリノン誘導体という)(融点:186~187℃)、フェニトイン(融点:約296℃(分解))、フェナセミド(融点:214~216℃)、エトトイン(融点:90~95℃)、プリミドン(融点:279~284℃)、ジアゼパム(融点:130~134℃)、ニトラゼパム(融点:約227℃(分解))、クロナゼパム(融点:約240℃(分解))、ジギトキシン(融点:256~257℃(分解))、スピロノラクトン(融点:198~207℃)、トリアムテレン(融点:316℃)、クロルタリドン(融点:217℃)、ポリチアジド(融点:202.5℃)、ベンズチアジド(融点:231.5℃)、グリセオフルビン(融点:218~222℃)、ナリジクス酸(融点:225~231℃)、クロラムフェニコール(融点:149~153℃)、クロルゾキサジン (融点:188~192℃)、フェンプロバメート (融点:102~105.5℃)、メキタジン(融点:146~150℃)、ビスベンチアミン(融点:140~144℃)、トリアムシノロンアセトニド(融点:約290℃(分解))、フルコナゾール(融点:137~141℃)、リファンピシン(融点:183~188℃(分解)、ダカルバジン(融点:約204℃(分解))、マイトマイシンC(融点:300℃以上)、ビカルタミド(融点:190~195℃)、パクリタキセル(融点:220~223℃)、ウベニメクス(融点:約234℃(分解))、フマル酸クレマスチン (融点:176~180℃(分解))、エリスロマイシン(融点:133~138℃)、アムホテリシンB(融点:170℃)、セフィキシム(融点:約240℃(分解))、サラゾスルファピリジン(融点:240~249℃)、スパルフロキサシン(融点:266℃(分解)、チニダゾール(融点:125~129℃)、ビダラビン(融点:248~254℃(分解))、アシクロビル(融点:300℃(分解))、ミルリノン(融点:約317℃(分解))、ジゴキシン(融点:約230~265℃(分解))、ピンドロール(融点:169~173℃)、塩酸プロパフェノン(融点:172~175℃)、アムリノン(融点:約297℃(分解))、ヒドロクロロチアジド(融点:263~270℃(分解))、トランドラプリル(融点:123~126℃)、カンデサルタンシレキセチル(融点:163.6~164.1℃(分解))、ウラピジル(融点:156~161℃)、レセルピン(融点:264~265℃(分解))、メチルドパ(融点:295~298℃(分解))、ノルエピネフリン(融点:約191℃(分解))、シンバスタチン(融点:135~138℃)、フルオキシメステロン(融点:270~278℃)、スタノゾロール(融点:230~242℃)、エストラジオール(融点:175~180℃)、酢酸クロルマジノン(融点:211~215℃)、ファレカルシトリオール(融点:約143℃)、マジンドール(融点:約177~184℃(分解))、クエン酸シルデナフィル(融点:約200~201℃)、ミノキシジル(融点:248℃)、ドロペリドール(融点:約145~149℃)、クアゼパム(融点:148~151℃)、ペンタゾシン(融点:154℃)、プロペリシアジン(融点:113~118℃)、チミペロン(融点:200~203℃)、スルピリド(融点:175~182℃(分解))、アモキサピン(融点:178~182℃(分解))、マレイン酸リスリド(融点:約195℃(分解))、ニセルゴリン(融点:134~138℃(分解))、ビペリデン(融点:112~115℃)、レボドパ(融点:約275℃(分解))、カルバミン酸クロルフェネシン(融点:88~91℃)、ダントロレンナトリウム(融点:200℃以上(分解))、フマル酸ホルモテロール(融点:約138℃(分解))、アテノロール(融点:153~156℃)、リルゾール(融点:約118℃)、フルマゼニル(融点:198~202℃)、テオフィリン(融点:271~275℃(分解))、メトトレキサート(融点:185~204℃(分解))、アミドトリゾ酸(融点:291~308℃(分解))、シロスタゾール(融点:158~162℃)、アデニン(融点:約360℃(分解))、トルブタミド(融点:126~132℃)、ファモチジン(融点:約164℃(分解))、ウルソデスオキシコール酸(融点:200~204℃)、スリンダク(融点:180~187℃)、ピレノキシン(融点:約245℃(分解))、フルニソリド(融点:約243℃(分解))、ダナゾール(融点:223~227℃(分解))及びタクロリムス水和物(融点:約130~133℃)等が挙げられる。これらの有機化合物は、既知の方法により製造されたものを用いることができる。
(2)カルボキシビニルポリマー
 アクリル酸を主体とした水膨潤性ビニルポリマーであり、別名、「カルボマー」といい、医薬品で通常用いられているものであれば特に制限されず、1種又は2種以上を組み合わせて使用できる。カルボマーとして、Mwの異なる複数種、例えば、Carbopol(登録商標)934、Carbopol(登録商標)940、Carbopol(登録商標)980、Carbopol(登録商標)981、Carbopol(登録商標)2984、Carbopol(登録商標)5984、Carbopol(登録商標)EDT 2050、Carbopol(登録商標)Ultrez 10、ハイビスワコー (登録商標)103、ハイビスワコー(登録商標)104、ハイビスワコー(登録商標)105などを用いることができる。
(3)レシチン
 レシチンは、グリセリン骨格に脂肪酸残基とリン酸基、それに結合した塩基性化合物あるいは糖からなる化合物であり、別名、「ホスファチジルコリン」ともいう。一般的には、ダイズ、ナタネを起源とするもの、鶏卵を起源とするものを利用することができる。ただし、その種類については特に限定するものではない。レシチンは、油脂状のクルードレシチン、これを脱脂した粉末状の高純度レシチン、溶剤やクロマト技術等を用いて特定の成分の比率を高めた分別レシチン、完全又は部分的に水素添加し精製することで酸化安定性を高めた水添レシチン、またこれらのレシチンを酵素処理した酵素分解レシチンや酵素改質レシチン等の多種類に及ぶが、いずれを用いることもできる。
2.医療用複合有機化合物粉体の製造方法
 この実施の形態に係る医薬用複合有機化合物粉体の製造方法は、難水溶性かつ結晶性の有機化合物粉体と、生理的に許容される塩と、生理的に許容されるポリオールと、カルボキシビニルポリマーとを混合して、有機化合物粉体を粉砕する工程と、粉砕後に、塩およびポリオールを除去する工程とを含む。さらに、好適な実施の形態に係る医薬用複合有機化合物粉体は、粉砕する工程中若しくは該工程後に、レシチンを添加する工程を含む。また、この実施の形態に係る医薬用複合有機化合物粉体の製造方法は、難水溶性の有機化合物粉体と、生理的に許容される塩と、生理的に許容されるポリオールとを混合して、有機化合物粉体を粉砕する工程と、粉砕後に、少なくとも塩およびポリオールを除去する工程とを含む。さらに、好ましくは、上記粉砕する工程中若しくは粉砕する工程後に、レシチンを添加する工程を含む。
(1)ポリオール
 本実施の形態に係る製造方法に用いられるポリオールは、生理学上特に問題を生じることなく摂取することができる塩であれば特に限定されない。生理学的に許容されるポリオールとして、好ましくは、塩に対する溶解性の低いもの、水に対する溶解性が高いもの、凝固点が低いもの及び/又は引火点が高いものである。また、粉砕後の除去を簡便に行う場合には、生理学的に許容されるポリオールは、水に対する溶解性が高いことが好ましい。
 ポリオールとしては、例えば、グリセリン、プロピレングリコール、ポリエチレングリコール、ジプロピレングリコール、及び、ジエチレングリコール等を挙げることができ、好ましくは、プロピレングリコール又はグリセリンである。ポリオールの粘度としては、好ましくは、50~200,000(dPa・S)であり、より好ましくは1,000~50,000(dPa・S)であり、さらに好ましくは、5,000~30,000(dPa・S)である。
 ポリオールの使用量は、粉砕対象である有機化合物1質量部に対して、0.7~50質量部であることが好ましく、2~15質量部であることがより好ましく、3~10質量部であることがさらに好ましい。また、使用するポリオールの種類は、粉砕対象である有機化合物の溶解性を考慮して、適宜決定することができる。さらに、該ポリオールは1種類のポリオールを用いてもよく、2種類以上のポリオールを混合して用いてもよい。
(2)塩
 本実施の形態に係る製造方法に用いられる塩は、生理学上特に問題を生じることなく摂取することができる塩であれば特に限定されない。生理学的に許容される塩として、好ましくは、ポリオールに対する溶解性が低い塩、水に対する溶解性が高い塩及び/又は吸湿性の少なく有機化合物の微粉砕化に適した硬さを有している塩である。塩として、より好ましくは、これらの性質の2以上を備える塩である。塩のポリオールに対する溶解度は、好ましくは、10(質量/容量)%以下である。また、粉砕後に塩の除去を簡便にする場合には、好適な塩は水に対する溶解性が高いものである。
 好適な塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸カルシウム、リンゴ酸ナトリウム、クエン酸ナトリウム、クエン酸二ナトリウム、クエン酸二水素ナトリウム、クエン酸二水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、及びリン酸水素二カリウム等が挙げられる。塩化ナトリウム、塩化カリウム、硫酸マグネシウム、硫酸カルシウム、クエン酸ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム等を挙げることができ、好ましくは塩化ナトリウムである。
 また、塩は、難水溶性医療用有機化合物と混合する前に、粉砕等を行って、粒子径を整えておいてもよい。塩の粒子径を予め調整する場合、粒子の体積平均径として、例えば、5~300μm、10~200μmであってもよいが、好ましくは0.01~300μmであり、より好ましくは0.1~100μmであり、更に好ましくは、0.5~50μmであり、最も好ましくは、1~5μmである。また、該塩の使用量は、有機化合物1質量部に対して、1~100質量部であることが好ましく、5~50質量部であることがより好ましく、10~30質量部であることが更に好ましい。さらに、該塩は1種類の塩を用いてもよく、2種類以上の塩を混合して用いてもよい。
(3)製造工程
 本実施の形態にかかる医療用複合有機化合物粉体は、好適には、「粉砕工程」、「レシチンの混合工程」、「濾過・水洗工程」および「乾燥工程」を順に経て製造される。ただし、「粉砕工程」と「レシチンの混合工程」を統合した一つの工程とし、粉砕しながら粉砕粒子にレシチンを混合するようにしても良い。また、医療用複合有機化合物粉体を含む懸濁液を製造する場合には、上記各工程を経て得られた医療用複合有機化合物粉体に、必要に応じて分散剤を加えて水と混合する。以下、「粉砕工程」、「レシチンの混合工程」、「濾過(分離)・水洗工程」および「乾燥工程」について説明する。
(4)粉砕工程
 本実施の形態に係る製造方法において、有機化合物を湿式粉砕するために用いられる粉砕装置は、機械的手段によって有機化合物を微細にできる能力を有するものであれば、特に制限なく用いることができる。該粉砕装置として、例えば、ニーダー、二本ロール、三本ロール、フレットミル、フーバーマーラ、円盤ブレード混練分散機、二軸エクストルーダー等の通常用いられている粉砕装置を挙げることができる。
 有機化合物を粉砕するには、粉砕装置内に有機化合物、塩およびカルボキシビニルポリマーを投入し、ポリオールを少しずつ加えながら混練するのが好ましい。混練時の粘度は、粉砕される有機化合物、塩、ポリオールの種類によって適宜決定することができる。粉砕温度は、粉砕される有機化合物や、粉砕装置等を考慮して適宜決定することができる。粉砕温度として、有機化合物の融解あるいは分解を低減できる温度であれば、特に制限はないが、好ましくは-50~50℃であり、より好ましくは-20~30℃であり、最も好ましくは、-10~25℃である。また、粉砕時間は、粉砕される有機化合物、粉砕装置等を考慮して適宜決定することができる。粉砕時間は、例えば、1~50時間程度とすることができ、好ましくは、3~30時間であり、より好ましくは、5~20時間であり、最も好ましくは、6~18時間である。
 カルボキシビニルポリマーの使用量は、粉砕対象である有機化合物1質量部に対して、0.002~0.9質量部であることが好ましく、0.005~0.4質量部であることがより好ましく、0.03~0.07質量部であることがさらに好ましい。また、使用するカルボキシビニルポリマーの種類は、粉砕対象である有機化合物の種類を考慮して、適宜決定することができる。さらに、該カルボキシビニルポリマーは1種類を用いてもよく、2種類以上のMwの異なるものを混合して用いてもよい。
(5)レシチンの混合工程
 レシチンは、粉砕中もしくは粉砕終了後の混練物と混合される。なお、この混練物に、カルボキシビニルポリマーが含まれていなくても良い。混合工程は、粉砕装置にて粉砕した後若しくは粉砕中にレシチンを混合して、同じ粉砕装置内で混練を継続することにより行うことができる。その他、混合用の別の装置(混合装置)を用意して、粉砕後の混練物を当該混合装置に移し、そこにレシチンを加えて混合工程を行うこともできる。レシチンの使用量は、粉砕対象である有機化合物1質量部に対して、0.01~10質量部であることが好ましく、0.05~2質量部であることがより好ましく、0.1~1.0質量部であることがさらに好ましい。レシチンは単独でも良いが、ポリオールとレシチンの混和物を加えることもできる。その場合、レシチンとポリオールとの混合比(重量比)は、レシチン1質量部に対してポリオール1~10質量部、より好ましくは1.5~5質量部、さらに好ましくは2~4質量部である。
(6)濾過(分離)・水洗工程
 レシチンの混合後、濾過および水洗を行い、少なくとも塩及びポリオールを除去することにより、所望の大きさに微粉砕した医療用複合有機化合物粉体を得る。具体的には、レシチン混合後の混練物を、溶媒中に入れて、ホモジナイザー等を用いて均一に混合した後、濾過及び水洗を行うことにより、塩およびポリオールを除去することができる。該混練物を均一に混合する際に使用する溶媒は、ポリオールおよび塩が溶解し易く、かつ微粉砕された有機化合物が溶解し難い溶媒であって、かつ、生理学的に許容される溶媒であれば、特に限定されるものではない。該溶媒は、水が好ましいが、水以外の溶媒も使用することができる。該水以外の溶媒として、例えば、酢酸、メタノール、エタノール等の有機溶媒と水との混合液がある。また、濾過方法は、特に限定されるものではなく、通常、有機化合物の含有物を濾過するために用いられる公知の方法で行うことができる。該濾過方法として、例えば、減圧濾過法、加圧濾過法、限外濾過膜法がある。また、濾過と同様に塩およびポリオールを除去する方法として、遠心分離法がある。遠心分離の具体的な方法は、レシチン混合後の混練物を、溶媒中に入れて、ホモジナイザー等を用いて均一に混合した後、遠心分離機にて微粉砕された有機化合物を沈降させ、上澄を除去する。この操作を繰り返すことにより、塩及びポリオールを除去できる。上澄液の電気伝導度を測定することにより、洗浄の終点を求めることができる。すなわち、例えば、上澄液の電気伝導度が10μS/cmであれば、塩化ナトリウムの濃度は約5ppmと予測できるので、物質の特性に合わせて、終点の電気伝導度を決めればよい。
 微粉砕した医療用複合有機化合物の粒子は、通常、高い表面エネルギーを有しているため、凝集し易い。従って、塩等を除去した後、二次凝集を防止するための添加剤を加えてもよい。該二次凝集防止剤として、例えば、アルキル硫酸塩、N-アルキロイルメチルタウリン塩、エタノール、グリセリン、プロピレングリコール、クエン酸ナトリウム、精製大豆レシチン、リン脂質、D-ソルビトール、乳糖、キシリトール、アラビアゴム、ショ糖脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、アルキルベンゼンスルホン酸塩、スルホコハク酸エステル塩、ポリオキシエチレンポリオキシプロピレングリコール、ポリビニルピロリドン、ポリビニルアルコール、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、カルメロースナトリウム、カルボキシビニルポリマー、N-アシル-グルタミン酸塩、アクリル酸コポリマー、メタクリル酸コポリマー、カゼインナトリウム、L-バリン、L-ロイシン、L-イソロイシン、塩化ベンザルコニウム、塩化ベンゼトニウム等がある。特に、アルキル硫酸塩およびN-アルキロイルメチルタウリン塩が好ましく、その中でも特に、ドデシル硫酸ナトリウムおよびN-ミリストイルメチルタウリンナトリウムが好ましい。二次凝集防止剤は、1種類を用いてもよく、2種類以上の二次凝集防止剤を混合して用いてもよい。
(7)乾燥方法
 塩及びポリオールを除去(完全に除去していない場合でも低減できていれば、「除去」という)した後、乾燥処理を行うことにより得られた医療用複合有機化合物粉体から、塩等の除去に用いた溶媒を除去することができる。該乾燥方法は、特に限定されるものではなく、通常、有機化合物を乾燥するために用いられる方法で行うことができる。該乾燥方法として、例えば、減圧乾燥法、凍結乾燥法、噴霧乾燥法、凍結噴霧乾燥法等がある。該乾燥における乾燥温度や乾燥時間等は特に制限されるものではないが、医療用複合有機化合物粒子の化学的安定性の保持及び粒子の二次凝集を防止するめに、該乾燥は低温で行うことが好ましく、減圧乾燥法、凍結乾燥法、噴霧乾燥法、凍結噴霧乾燥法で行うことが好ましい。
3.剤型
 本実施の形態に係る製造方法により得られる医療用複合有機化合物粉体を構成する微粒子のBET比表面積から換算される平均粒子径の範囲としては、好ましくは20~400nm、より好ましくは20~300nm以下であり、更に好ましくは50~150nmである。
 本実施の形態に係る製造方法により得られる医療用複合有機化合粉体は、製剤特性にも優れており、様々な剤型の医薬品として用いることができる。例えば、吸入剤として使用する場合、粉砕後の塩及びポリオールを除去して得られた医療用複合有機化合物粉体の含溶媒固形物(以降、ウェットケーキという。)を水に縣濁させ、凍結噴霧乾燥法により1~30μm程度の多孔質粒子として調整することができる。粒子の分散性を改善するため、該水に界面活性剤を少量添加してもよい。また、同様に分散性を改善するために、エタノールのような揮発性の添加剤を少量添加してもよい。揮発性の添加剤を添加した場合には、乾燥時にエタノールの留去が可能であるため、界面活性剤を添加する場合よりも、刺激性を改善することができる。
医療用複合有機化合物粉体を、注射剤、点眼剤、軟膏剤、経皮吸収剤等に使用する場合は、ウェットケーキに、二次凝集防止剤を添加して水分散体を調製して用いることができる。該二次凝集防止剤として、例えば、公知の界面活性剤等がある。具体的には、塩やポリオールを除去した後に添加し得る二次凝集防止剤で挙げた化合物を用いることができる。二次凝集防止剤として、アクリル酸コポリマー、メタクリル酸コポリマー等の高分子を使用した水分散体は、DDS剤として使用することができる。また、水分散体調製時に、通常使用されている装置等を用いてもよい。該装置として、例えば、ホモジナイザー、ホモミキサー、超音波分散機、高圧ホモジナイザー等を挙げることができる。
 該水分散体は、減圧乾燥、噴霧乾燥、凍結乾燥又は凍結噴霧乾燥等により粉末化することもできる。このようにして調製した粉体は、水に対する再分散性に優れるため、用時調製用の注射剤及び点眼剤、経口剤として優れた特性を有する。
 また、医療用複合有機化合物粉体を、油状物質中に分散させ、軟膏剤、カプセル剤、経皮吸収剤等に使用することもできる。該油状物質は、通常製剤化において用いられる物質であれば、特に限定されるものではない。該油状物質として、例えば、流動パラフィン、ワセリン、プロピレングリコール、グリセリン、ポリエチレングリコール、植物油等が挙げられる。該油状物質は1種類で用いても良く、2種類以上の油状物質を混合して用いてもよい。また、油状物質分散体調製時に、通常使用されている装置等を用いてもよい。該装置として、例えば、ホモジナイザー、ホモミキサー、超音波分散機、高圧ホモジナイザー、二本ロール、三本ロール、円盤ブレード混練分散機、二軸エクストルーダー等がある。
 次に、本発明の実施例について、比較例と比較しながら説明する。
1.カルボキシビニルポリマー添加による粉砕
 まず、カルボキシビニルポリマーを加えた粉砕実験について説明する。粉砕前後の乾燥粉末の平均粒径は、BET式比表面積測定装置(Macsorb HM-1201型、マウンテック社製)を用いて測定したBET比表面積を前述の式(1)により換算して求めた。また、粉砕前後の粉体の観察には、走査型電子顕微鏡(Scanning Electron Microscope: SEM、VE-7800型、キーエンス社製)を用いた。
(実施例1)フェノフィブラートの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に、平均粒子径6,640nmのフェノフィブラート(融点:80~83℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで、均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径338nmの粉砕パウダー0.073gを得た。
(比較例1)フェノフィブラートの粉砕実験
 カルボキシビニルポリマーを添加していない点を除き、実施例1と同一条件にてフェノフィブラートを粉砕した。その結果、平均粒子径672nmの粉砕パウダー0.075gを得た。
(実施例2)フェルビナクの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径34,000nmのフェルビナク(融点:163~166℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.33gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径207nmの粉砕パウダー0.081gを得た。
(比較例2)フェルビナクの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径34,000nmのフェルビナク(融点:163~166℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径535nmの粉砕パウダー0.085gを得た。
(実施例3)プランルカスト水和物の粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径1,088nmのプランルカスト水和物(融点:約231~235℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.42gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径62nmの粉砕パウダー0.090gを得た。
(比較例3)プランルカスト水和物の粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径1,088nmのプランルカスト水和物(融点:約231~235℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径73nmの粉砕パウダー0.098gを得た。
(実施例4)ミコナゾールの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径10,900nmのミコナゾール(融点:84~87℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.345gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径142nmの粉砕パウダー0.058gを得た。
(比較例4)ミコナゾールの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径10,900nmのミコナゾール(融点:84~87℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで均一に混合した後、グリセリン0.33gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径358nmの粉砕パウダー0.060gを得た。
(実施例5)プロピオン酸フルチカゾンの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径7,850nmのプロピオン酸フルチカゾン(融点:約273℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.375gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径71nmの粉砕パウダー0.071gを得た。
(比較例5)プロピオン酸フルチカゾンの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径7,850nmのプロピオン酸フルチカゾン(融点:約273℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで均一に混合した後、グリセリン0.33gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径114nmの粉砕パウダー0.075gを得た。
(実施例6)インドメタシンの粉砕実験
 0.2Lニーダー(分解型ニーダー、吉田製作所製)に、平均粒子径3,960nmのインドメタシン(融点:155~162℃)8g、粉砕した塩化ナトリウム(平均粒子径:5μm)170g及びカルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.5gを仕込んで均一に混合した後、グリセリン36gを徐々に注入し内容物をこね粉状に保って、5℃で10時間粉砕を行なった。その後、内容物を1Lの0.1mol/L酢酸水溶液中に入れ、ホモジナイザーで均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径58.5nmのインドメタシンの粉砕パウダー7gを得た。
(比較例6)インドメタシンの粉砕実験
 0.2Lニーダー(分解型ニーダー、吉田製作所製)に、平均粒子径3,960nmのインドメタシン(融点:155~162℃)8g、粉砕した塩化ナトリウム(平均粒子径:5μm)170gを仕込んで均一に混合した後、グリセリン35.5gを徐々に注入し内容物をこね粉状に保って、5℃で8時間粉砕を行なった。その後、内容物を1Lの0.1mol/L酢酸水溶液中に入れ、ホモジナイザーで均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、平均粒子径141nmのインドメタシンの粉砕パウダー7gを得た。
 表1に、実施例1~6および比較例1~6の結果を示す。また、図1および図2に、それぞれ実施例2で得られたフェルビナクの粉砕パウダーのSEM写真(倍率:1万倍)および当該SEM写真上の一部を拡大したSEM写真(倍率:2万倍)を、図3および図4に、それぞれ比較例2で得られたフェルビナクの粉砕パウダーのSEM写真(倍率:1万倍)および当該SEM写真上の一部を拡大したSEM写真(倍率:2万倍)を、図5および図6に、それぞれ実施例5で得られたプロピオン酸フルチカゾンの粉砕パウダーのSEM写真(倍率:1万倍)および当該SEM写真上の一部を拡大したSEM写真(倍率:2万倍)を、図7および図8に、それぞれ比較例5で得られたプロピオン酸フルチカゾンの粉砕パウダーのSEM写真(倍率:1万倍)および当該SEM写真上の一部を拡大したSEM写真(倍率:2万倍)を示す。
 表1に示すように、カルボキシビニルポリマーを添加して粉砕することにより、明かに、各医薬用有機化合物の平均粒子径が小さくなった。また、図1と図3(または図2と図4)、図5と図7(または図6と図8)を比較すると、カルボキシビニルポリマーを加えて粉砕したパウダーの方が、カルボキシビニルポリマーを加えないで粉砕したパウダーに比べて粒子径が小さいことがわかる。これらSEM写真の比較結果は、表1に示すデータとも一致する。
Figure JPOXMLDOC01-appb-T000001
2.カルボキシビニルポリマーおよびレシチン添加による粉砕
 次に、カルボキシビニルポリマーおよびレシチンを添加した粉砕実験について説明する。粉砕前後の粉末の平均粒径の測定は、BET式比表面積測定装置(Macsorb HM-1201型、マウンテック社製)を用いて行った。また、懸濁液中の粒子の粒径は、粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて測定した。「D50」は、粒度分布において粒子の大きい方から(あるいは小さい方から)数えて積算値50%の粒子の直径(中心粒子径という)である。「D90」は、粒度分布において粒子の小さい方から数えて積算値90%の粒子の直径(90%径という)である。「D」は、体積平均粒径(平均粒子径という)である。
(実施例7)フェノフィブラートの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径6,640nmのフェノフィブラート(融点:80~83℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。さらに、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.1gを均一に混合し、20℃で50回転混練した。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー0.094gを得た。次に、得られたフェノフィブラート含有パウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)159.2nm、中心粒子径(D50)135.1nm、90%径(D90)199.6nmであった。
(比較例7)フェノフィブラートの粉砕実験
 実施例1で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)556.5nm、中心粒子径(D50)457.2nm、90%径(D90)742.6nmであった。
(比較例8)フェノフィブラートの粉砕実験
 比較例1で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)629.5nm、中心粒子径(D50)893.6nm、90%径(D90)1,867nmであった。
(実施例8)フェルビナクの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径34,000nmのフェルビナク(融点:163~166℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.33gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。さらに、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.1gを均一に混合し、20℃で50回転混練した。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー0.106gを得た。次に、得られたフェルビナク含有パウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)147.1nm、中心粒子径(D50)121.5nm、90%径(D90)192.3nmであった。
(比較例9)フェルビナクの粉砕実験
 実施例2で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)5,618nm、中心粒子径(D50)273.0nm、90%径(D90)10,321nmであった。
(比較例10)フェルビナクの粉砕実験
 比較例2で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)610.8nm、中心粒子径(D50)498.2nm、90%径(D90)842.8nmであった。
(実施例9)プランルカスト水和物の粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径1,088nmのプランルカスト水和物(融点:約231~235℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.42gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。さらに、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.2gを均一に混合し、20℃で50回転混練した。その後、内容物を50mLの0.1
mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー0.119gを得た。次に、得られたプランルカスト水和物含有パウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)105.3nm、中心粒子径(D50)89.9nm、90%径(D90)131.7nmであった。
(比較例11)プランルカスト水和物の粉砕実験
 実施例3で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)43,804nm、中心粒子径(D50)38,306nm、90%径(D90)39,845nmであった。
(比較例12)プランルカスト水和物の粉砕実験
 比較例3で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、を加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)50,510nm、中心粒子径(D50)46,227nm、90%径(D90)59,856nmであった。
(実施例10)ミコナゾールの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径10,900nmのミコナゾール(融点:84~87℃)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.345gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し粉砕を行なった。さらに、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.1gを均一に混合し、20℃で50回転混練した。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー0.075gを得た。次に、得られたミコナゾール含有パウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)144.9nm、中心粒子径(D50)126.5nm、90%径(D90)182nmであった。
(比較例13)ミコナゾールの粉砕実験
 実施例4で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)155.5nm、中心粒子径(D50)136nm、90%径(D90)193.6nmであった。
(比較例14)ミコナゾールの粉砕実験
 比較例4で作製したパウダー0.05gに、分散剤として1%ドデシル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)20,059nm、中心粒子径(D50)17,562nm、90%径(D90)22,729nmであった。
(実施例11)プロピオン酸フルチカゾンの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に平均粒子径7,850nmのプロピオン酸フルチカゾン(融点:約273℃(分解))0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6g、カルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)0.005gを仕込んで均一に混合した後、グリセリン0.375gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。さらに、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.15gを均一に混合し、20℃で50回転混練した。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー0.092gを得た。次に、得られたプロピオン酸フルチカゾン含有パウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)96nm、中心粒子径(D50)79nm、90%径(D90)127.2nmであった。
(比較例15)プロピオン酸フルチカゾンの粉砕実験
 実施例5で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)902.3nm、中心粒子径(D50)126.2nm、90%径(D90)2,129nmであった。
(比較例16)プロピオン酸フルチカゾンの粉砕実験
 比較例5で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)3,508nm、中心粒子径(D50)3,315nm、90%径(D90)4,406nmであった。
(実施例12)インドメタシンの粉砕実験
 0.2Lニーダー(分解型ニーダー、吉田製作所製)に、平均粒子径3,960nmのインドメタシン(融点:155~162℃)8g、粉砕した塩化ナトリウム(平均粒子径:5μm)170g及びカルボキシビニルポリマー0.5gを仕込んで均一に混合した後、グリセリン39gを徐々に注入し内容物をこね粉状に保って、5℃で10時間粉砕を行なった。その後、得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)16gおよびグリセリン23gを均一に混合し、10℃で1時間混練した。その後、内容物を1Lの0.1mol/L酢酸水溶液中に入れ、ホモジナイザーで均一に分散させた後、濾過、水洗し、得られたウェットケーキを30℃の減圧下で乾燥し、パウダー11.1gを得た。次に、得られたインドメタシン含有パウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)103nm、中心粒子径(D50)83.9nm、90%径(D90)139.2nmであった。
(比較例17)インドメタシンの粉砕実験
 実施例6で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)123.7nm、中心粒子径(D50)99.7nm、90%径(D90)166.3nmであった。
(比較例18)インドメタシンの粉砕実験
 比較例6で作製したパウダー0.05gに、分散剤として1%N-ミリストイルメチルタウリンナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)319.9nm、中心粒子径(D50)238.3nm、90%径(D90)461.5nmであった。
 表2に、実施例7~12および比較例7~18の結果を示す。表2に示すように、カルボキシビニルポリマーとレシチンの添加により調製したパウダーは、水に対する再分散性が高く、懸濁液中の平均粒子径が小さくなることがわかった。これに対して、レシチンを添加しないで作製したパウダーは、懸濁液中で十分に分散しにくいことがわかった。
Figure JPOXMLDOC01-appb-T000002
3.レシチン添加による捕集効率の改善
 次に、粉砕粒子にレシチンを添加したものの捕集効率の改善実験について説明する。特記する場合を除き、粉末の平均粒径の測定は、BET式比表面積測定装置(Macsorb HM-1201型、マウンテック社製)を用いて行った。また、懸濁液中の粒子の粒径は、粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて測定した。「D50」は、粒度分布において粒子の大きい方から(あるいは小さい方から)数えて積算値50%の粒子の直径(中心粒子径という)である。「D90」は、粒度分布において粒子の小さい方から数えて積算値90%の粒子の直径(90%径という)である。「D」は、体積平均粒径(平均粒子径という)である。
(実施例13)アムホテリシンBの粉砕捕集実験
 水冷式フーバーマーラー(株式会社井元製作所製)に、平均粒子径13,423nmのアムホテリシンB(融点:170℃以上で分解)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで、均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。
 ここで、粉砕前のアムホテリシンBの平均粒子径13,423nmは、以下の要領で測定した値である。まず、アムホテリシンB0.01gに、分散剤として0.03%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した。その結果、当該粒度分布は、平均粒子径(D)13,423nm、中心粒子径(D50)11,843nm、90%径(D90)15,181nmであった。
 水冷式フーバーマーラー(株式会社井元製作所製)を用いて粉砕して得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.1gを均一に混合し、瑪瑙乳鉢にて混練した。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、遠心分離(6000rpm、10分間、CN-2060,アズワン株式会社製)し、上澄を除去した。この操作を4回実施後、ウェットケーキを得た。ウェットケーキ512mgに精製水を3g加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、縣濁液3.5gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)122nm、中心粒子径(D50)96nm、90%径(D90)174nmであった。
(比較例19)アムホテリシンBの粉砕捕集実験
 水冷式フーバーマーラー(株式会社井元製作所製)に、実施例13にて用いた平均粒子径13,423nmのアムホテリシンB(融点:170℃以上で分解)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで、均一に混合した後、グリセリン0.36gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの0.1mol/L酢酸水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させたが、粉砕された粒子は、遠心分離後に浮遊して回収できなかった。また、濾過を実施しても、粒子が透過してしまい、回収できなかった。
(実施例14)アシクロビルの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に、平均粒子径60,371nmのアシクロビル(融点:約300℃で分解)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで、均一に混合した後、グリセリン0.1gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。
 ここで、粉砕前のアシクロビルの平均粒子径60,371nmは、以下の要領で測定した値である。まず、アシクロビル0.01gに、分散剤として0.03%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)60,371nm、中心粒子径(D50)52,997nm、90%径(D90)69,371nmであった。
 水冷式フーバーマーラー(株式会社井元製作所製)を用いて粉砕して得られた粉砕混練物に精製水添大豆レシチン-グリセリン混和物(1:3重量比)0.2gを均一に混合し、瑪瑙乳鉢にて混練した。その後、内容物を50mLの水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、遠心分離(6000rpm、10分間、CN-2060,アズワン株式会社製)し、上澄を除去した。この操作を3回実施後、得られたウェットケーキを30℃の減圧下で乾燥し、粉砕パウダー0.085gを得た。この粉末0.01gに0.1%ラウリル硫酸ナトリウム水溶液を1mL加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液46.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)153nm、中心粒子径(D50)124nm、90%径(D90)225nmであった。
(比較例20)アシクロビルの粉砕実験
 水冷式フーバーマーラー(株式会社井元製作所製)に、実施例14にて用いた平均粒子径60,371nmのアシクロビル(融点:約300℃で分解)0.1g、粉砕した塩化ナトリウム(平均粒子径:5μm)1.6gを仕込んで、均一に混合した後、グリセリン0.1gを徐々に滴下し内容物をこね粉状に保って、20℃で100回転混練し、粉砕を行なった。その後、内容物を50mLの水溶液中に入れ、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散させた後、遠心分離(6000rpm、10分間、CN-2060,アズワン株式会社製)し、上澄を除去した。この操作を繰り返し実施すると、沈殿物は徐々に少なくなり、3回実施すると沈降物はみとめられなくなった。
(実施例15)インドメタシンの粉砕回収実験
 2Lニーダー(井上製作所製)に、平均粒子径3,960nmのインドメタシン(融点:155~162℃)38gおよび粉砕した塩化ナトリウム(平均粒子径:5μm)608gを仕込んで均一に混合した後、グリセリン78gを徐々に注入し内容物をこね粉状に保って、5℃で2時間粉砕を行なった。この混練物は平均粒子径154nmのインドメタシンを含む。
 ここで、混練物中のインドメタシンの平均粒子径154nmは、以下の要領で測定した値である。インドメタシンを含有する混練物0.05gに、分散剤として0.1%レシチン・0.03%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)154nm、中心粒子径(D50)118nm、90%径(D90)213nmであった。
 2Lニーダー(井上製作所製)にて粉砕して得られた混練物の一部628g(インドメタシン33g含む量)及び精製水添大豆レシチン-グリセリン混和物(1:3重量比)66gを仕込んで均一に混合した。その後、内容物の一部約10g(インドメタシン0.49g含む量)を50mLの精製水中に入れ、ホモジナイザーで均一に分散させた後、遠心分離し、塩およびグリセリンを除いた。この操作を繰り返し、遠心後の上澄み液の電気電導度が10μS/cm以下になるまで洗浄した。遠心分離洗浄は、7回実施した(8μS/cm)。得られたウェットケーキを30℃の減圧下で乾燥し、粉砕パウダー0.69g(インドメタシン含量0.45g)を得た。回収率は92%であった。また、得られたインドメタシン含有粉砕パウダー0.01gに、分散剤として0.1%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)137nm、中心粒子径(D50)122nm、90%径(D90)164nmであった。
(比較例21)インドメタシンの粉砕回収実験
 実施例15にて得られた粉砕混練物の一部約10g(インドメタシン0.51g含む量)を50mLの精製水中に入れ、ホモジナイザーで均一に分散させた後、遠心分離し、塩およびグリセリンを除いた。この操作を繰り返し、遠心後の上澄み液の電気電導度が10μS/cm以下になるまで洗浄した。遠心分離洗浄は、6回実施した(4μS/cm)。得られたウェットケーキを30℃の減圧下で乾燥し、粉砕パウダー0.35g(インドメタシン含量0.35g)を得た。回収率は69%であった。また、得られたインドメタシン含有粉砕パウダー0.01gに、分散剤として0.1%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)1,484nm、中心粒子径(D50)201nm、90%径(D90)4,012nmであった。一部粒子が凝集していたため、D、D50、D90の差が大きい結果となったものと推察される。
(実施例16)インドメタシンの粉砕回収実験
 2Lニーダー(井上製作所製)に、平均粒子径3,960nmのインドメタシン(融点:155~162℃)38g、粉砕した塩化ナトリウム(平均粒子径:5μm)608g及びカルボキシビニルポリマー(カーボポール980:日光ケミカルズ製)1.9gを仕込んで均一に混合した後、グリセリン78gを徐々に注入し内容物をこね粉状に保って、5℃で2時間粉砕を行なった。この混練物は平均粒子径96nmのインドメタシンを含む。
 ここで、混練物中のインドメタシンの平均粒子径96nmは、以下の要領で測定した値である。インドメタシンを含有する混練物0.05gに、分散剤として0.1%レシチン・0.03%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.95gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)96nm、中心粒子径(D50)72nm、90%径(D90)142nmであった。
 2Lニーダー(井上製作所製)にて粉砕して得られた混練物の一部532g(インドメタシン28g含む量)及び精製水添大豆レシチン-グリセリン混和物(1:3重量比)57gを仕込んで均一に混合した。その後、内容物の一部約10g(インドメタシン0.48g含む量)を50mLの精製水中に入れ、ホモジナイザーで均一に分散させた後、遠心分離し、塩およびグリセリンを除いた。この操作を繰り返し、遠心後の上澄み液の電気電導度が10μS/cm以下になるまで洗浄した。遠心分離洗浄は、7回実施した(4μS/cm)。得られたウェットケーキを30℃の減圧下で乾燥し、粉砕パウダー0.65g(インドメタシン含量0.42g)を得た。回収率は87%であった。また、得られたインドメタシン含有粉砕パウダー0.01gに、分散剤として0.1%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)94nm、中心粒子径(D50)79nm、90%径(D90)125nmであった。
(比較例22)インドメタシンの粉砕回収実験
 実施例16の粉砕混練物の一部約10g(インドメタシン0.54g含む量)を50mLの精製水中に入れ、ホモジナイザーで均一に分散させた後、遠心分離し、塩およびグリセリンを除いた。この操作を繰り返し、遠心後の上澄み液の電気電導度が10μS/cm以下になるまで洗浄した。遠心分離洗浄は、6回実施した(7μS/cm)。得られたウェットケーキを30℃の減圧下で乾燥し、粉砕パウダー0.36g(インドメタシン含量0.36g)を得た。回収率は67%であった。また、得られたインドメタシン含有粉砕パウダー0.01gに、分散剤として0.1%ラウリル硫酸ナトリウム5gを加え、超音波装置(UT-105、シャープマニファクチャリングシステム社製)を使用して、均一に分散し、精製水44.99gを加えて縣濁液50.0gを得た。粒度分布測定装置(Delsa Nano S、ベックマンコールター社製)を用いて、得られた懸濁液の粒度分布を測定した結果、当該粒度分布は、平均粒子径(D)202nm、中心粒子径(D50)163nm、90%径(D90)269nmであった。
 実施例13,14および比較例19,20の結果より、粉砕後にレシチンを添加したものは粒子として回収できたが、レシチンを添加しなかったものは回収できなかった。比較例19の場合には、粒子が充分に小さくかつ安定して存在しているため、遠心分離で沈降せず、また、粒子が濾過膜を透過してしまうためであると考えられる。比較例20の場合には、粒子の比表面積が大きくなって溶解速度が速くなり、洗浄工程中に溶解してしまったものと考えられる。一方、実施例13,14の場合には、微細化粒子の表面にレシチンが吸着等の作用をし、溶解速度を遅くし、また、比重を重くすることにより、遠心分離が可能になったと考えられる。
 また、実施例15,16および比較例21,22の結果より、カルボキシビニルポリマーの有無に関わらず、レシチンを添加すると回収率が向上することがわかった。また、レシチンの添加により、粒子の分散性が高まることがわかった。この結果および実施例12、比較例17,18の結果から明らかなように、高い粉砕効率、高い再分散性、高い捕集効率の互いに相反する要望を応えることができた。
 本発明の医薬用複合有機化合物粉体の製造方法により、安全かつ簡便に、難水溶性有機化合物を従来よりも微細化でき、さらには生産効率(粒子回収率)も向上させることができるため、医薬及び診断薬の分野で利用が可能である。

Claims (22)

  1.  難水溶性かつ結晶性の有機化合物の粒子表面の一部若しくは全部がカルボキシビニルポリマーで覆われ、
     上記カルボキシビニルポリマーで覆われた状態の粒子のBET比表面積から換算される平均粒子径が400nm以下である医薬用複合有機化合物粉体。
  2.  前記有機化合物は、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である、請求項1に記載の医薬用複合有機化合物粉体。
  3.  前記BET比表面積から換算される平均粒子径が50~400nmのフェノフィブラート粉体である請求項2に記載の医薬用複合有機化合物粉体。
  4.  前記BET比表面積から換算される平均粒子径が50~400nmのフェルビナク粉体である請求項2に記載の医薬用複合有機化合物粉体。
  5.  前記BET比表面積から換算される平均粒子径が20~70mのプランルカスト水和物粉体である請求項2に記載の医薬用複合有機化合物粉体。
  6.  前記BET比表面積から換算される平均粒子径が50~300nmのミコナゾール粉体である請求項2に記載の医薬用複合有機化合物粉体。
  7.  前記BET比表面積から換算される平均粒子径が20~100nmのプロピオン酸フルチカゾン粉体である請求項2に記載の医薬用複合有機化合物粉体。
  8.  平均粒子径が20~120nmのインドメタシン粉体である請求項2に記載の医薬用複合有機化合物粉体。
  9.  前記カルボキシビニルポリマーまたは前記有機化合物の粒子表面に、さらにレシチンを有することを特徴とする請求項1から8のいずれか1項に記載の医薬用複合有機化合物粉体。
  10.  請求項9に記載の医薬用複合有機化合物粉体を分散してなる懸濁液。
  11.  難水溶性かつ結晶性の有機化合物粉体と、生理的に許容される塩と、
     生理的に許容されるポリオールと、カルボキシビニルポリマーとを混合して上記有機化合物粉体を粉砕する工程と、
     粉砕後に、少なくとも上記塩および上記ポリオールを除去する工程と、
    を含む、医薬用複合有機化合物粉体の製造方法。
  12.  前記粉砕する工程中若しくは該工程後に、さらに、レシチンを添加する工程を含む請求項11に記載の医薬用複合有機化合物粉体の製造方法。
  13.  前記有機化合物は、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である、請求項11または請求項12に記載の医薬用複合有機化合物粉体の製造方法。
  14.  前記塩は、塩化ナトリウム、塩化カリウム、塩化アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸カルシウム、リンゴ酸ナトリウム、クエン酸ナトリウム、クエン酸二ナトリウム、クエン酸二水素ナトリウム、クエン酸二水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、及びリン酸水素二カリウムからなる群より選ばれる1以上である、請求項11または請求項12に記載の医薬用複合有機化合物粉体の製造方法。
  15.  前記ポリオールは、グリセリン、プロピレングリコールまたはポリエチレングリコールである請求項11または請求項12に記載の医薬用複合有機化合物粉体の製造方法。
  16.  前記塩が塩化ナトリウムであり、前記ポリオールがグリセリンである請求項11または請求項12に記載の医薬用複合有機化合物粉体の製造方法。
  17.  難水溶性の有機化合物の粒子表面にレシチンを有する複合体粒子、または当該有機化合物とレシチンとがナノレベルで複合した複合体粒子から成り、
     体積換算により求められる平均粒子径が400nm以下である医薬用複合有機化合物粉体。
  18.  前記有機化合物は、フェノフィブラート、フェルビナク、プランルカスト水和物、ミコナゾール、プロピオン酸フルチカゾン、インドメタシン、アムホテリシンB、アシクロビル、ニフェジピン、ニカルジピン、ニモジピン、ジピリダモール、ジソピラミド、塩酸プラゾシン、プレドニゾロン、酢酸コルチゾン、デキサメタゾン、ベタメタゾン、プロピオン酸ベクロメタゾン、ブデソニド、フルオシノロンアセトニド、ナプロキセン、ケトプロフェン、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、フェニトイン、フェナセミド、エトトイン、プリミドン、ジアゼパム、ニトラゼパム、クロナゼパム、ジギトキシン、スピロノラクトン、トリアムテレン、クロルタリドン、ポリチアジド、ベンズチアジド、グリセオフルビン、ナリジクス酸、クロラムフェニコール、クロルゾキサジン、フェンプロバメート、メキタジン、ビスベンチアミン、マイトマイシンC、ビカルタミド、パクリタキセル、ウベニメクス、ダカルバジン、フルコナゾール、リファンピシン、トリアムシノロンアセトニド、フマル酸クレマスチン、酢酸コルチゾン、デキサメタゾン、ザフィルルカスト、ジヒドロコレステロール、β―カロテン、没食子酸プロピル、桂皮酸、サッカリン、葉酸、及び、マルトールからなる群より選ばれる1以上である、請求項17に記載の医薬用複合有機化合物粉体。
  19.  前記平均粒子径が50~250nmのアムホテリシンB、アシクロビルまたはインドメタシンの内の少なくともいずれか1種類の粉体である請求項18に記載の医薬用複合有機化合物粉体。
  20.  請求項17から請求項19のいずれか1つに記載の医薬用複合有機化合物粉体を分散してなる懸濁液。
  21.  難水溶性の有機化合物粉体と、生理的に許容される塩と、生理的に許容されるポリオールとを混合して上記有機化合物粉体を粉砕する工程と、
     粉砕後に、少なくとも上記塩および上記ポリオールを除去する工程と、
    を含む、医薬用複合有機化合物粉体の製造方法。
  22.  前記粉砕する工程中若しくは該工程後に、さらに、レシチンを添加する工程を含む請求項21に記載の医薬用複合有機化合物粉体の製造方法。

     
PCT/JP2009/004596 2008-09-19 2009-09-15 医療用複合有機化合物粉体、その製造方法ならびに懸濁液 WO2010032434A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US13/063,026 US20110165259A1 (en) 2008-09-19 2009-09-15 Composite organic compound powder for medical use, method for producing same and suspension of same
CA2737543A CA2737543C (en) 2008-09-19 2009-09-15 Composite organic compound powder for medical use and production method and suspension of the same
MX2011002847A MX2011002847A (es) 2008-09-19 2009-09-15 Polvo de compuesto organico combinado para uso medico y metodo de produccion y suspension del mismo.
EP09814279.7A EP2345426B1 (en) 2008-09-19 2009-09-15 Composite organic compound powder for medical use, method for producing same and suspension of same
JP2010529625A JP5536654B2 (ja) 2008-09-19 2009-09-15 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
RU2011114292/15A RU2535017C2 (ru) 2008-09-19 2009-09-15 Композитный порошок из органического вещества для применения в медицине, способ его получения и его суспензия
CN200980135720.6A CN102149410B (zh) 2008-09-19 2009-09-15 医疗用复合有机化合物粉体及其制造方法以及悬浮液
KR1020117008410A KR101455446B1 (ko) 2008-09-19 2009-09-15 의료용 복합 유기 화합물 분체, 그 제조 방법 및 현탁액
ES09814279.7T ES2467676T3 (es) 2008-09-19 2009-09-15 Polvo de un compuesto orgánico combinado para uso médico, método para producir el mismo y suspensión del mismo
IL211121A IL211121A (en) 2008-09-19 2011-02-08 Compound organic compound powder for medical use, its method of manufacture and expansion
US14/010,602 US9782484B2 (en) 2008-09-19 2013-08-27 Method for producing a composite organic compound powder for medical use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241855 2008-09-19
JP2008241855 2008-09-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/063,026 A-371-Of-International US20110165259A1 (en) 2008-09-19 2009-09-15 Composite organic compound powder for medical use, method for producing same and suspension of same
US14/010,602 Division US9782484B2 (en) 2008-09-19 2013-08-27 Method for producing a composite organic compound powder for medical use

Publications (1)

Publication Number Publication Date
WO2010032434A1 true WO2010032434A1 (ja) 2010-03-25

Family

ID=42039283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004596 WO2010032434A1 (ja) 2008-09-19 2009-09-15 医療用複合有機化合物粉体、その製造方法ならびに懸濁液

Country Status (13)

Country Link
US (2) US20110165259A1 (ja)
EP (1) EP2345426B1 (ja)
JP (1) JP5536654B2 (ja)
KR (1) KR101455446B1 (ja)
CN (1) CN102149410B (ja)
CA (1) CA2737543C (ja)
ES (1) ES2467676T3 (ja)
IL (1) IL211121A (ja)
MX (1) MX2011002847A (ja)
PT (1) PT2345426E (ja)
RU (1) RU2535017C2 (ja)
TW (1) TWI440479B (ja)
WO (1) WO2010032434A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103956A (ja) * 2011-11-10 2013-05-30 Nippon Shokubai Co Ltd 有機結晶
US20130236516A1 (en) * 2010-11-02 2013-09-12 Teikoku Seiyaku Co., Ltd. Felbinac-Containing External Patch
WO2013168437A1 (ja) 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液
WO2016181935A1 (ja) * 2015-05-08 2016-11-17 株式会社アクティバスファーマ グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103664773A (zh) * 2013-12-18 2014-03-26 南京易亨制药有限公司 米力农的制备方法和精制方法
JP6921759B2 (ja) 2015-06-04 2021-08-18 クリティテック・インコーポレイテッド 捕集装置および使用法
DK3439635T3 (da) 2016-04-04 2021-03-08 Crititech Inc Formuleringer til behandling af fast tumor
SG11201909840TA (en) 2017-06-09 2019-11-28 Crititech Inc Treatment of epithelial cysts by intracystic injection of antineoplastic particles
BR112019022720A2 (pt) 2017-06-14 2020-05-12 Crititech, Inc. Métodos para tratar distúrbios pulmonares
CN111278436A (zh) 2017-10-03 2020-06-12 克里蒂泰克公司 局部递送抗肿瘤颗粒与全身递送免疫治疗剂相结合用于治疗癌症
CN110859675B (zh) * 2019-10-21 2021-07-09 昆山洁宏无纺布制品有限公司 一种广谱长效抗菌医用手术包
CN112557573B (zh) * 2020-12-31 2023-05-05 成都普康生物科技有限公司 一种测定aeea-aeea含量的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366613A (ja) * 1989-08-04 1991-03-22 Tanabe Seiyaku Co Ltd 難溶性薬物の超微粒子化法
JPH03131355A (ja) * 1989-10-17 1991-06-04 Sankyo Co Ltd 難溶性化合物の湿式粉砕方法
JPH04295420A (ja) * 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JPH06228454A (ja) 1991-03-07 1994-08-16 Toyo Ink Mfg Co Ltd β型ジオキサジン顔料の製造法
JPH11100317A (ja) 1997-07-26 1999-04-13 Ciba Specialty Chem Holding Inc Uv−防御剤組成物
JP2003286105A (ja) 2002-03-27 2003-10-07 Kumiai Chem Ind Co Ltd 顆粒状水和剤
JP2003531162A (ja) 2000-04-20 2003-10-21 スカイファーマ・カナダ・インコーポレーテッド 改善された水不溶性薬剤粒子の処理
JP2003342493A (ja) * 2002-05-27 2003-12-03 Konica Minolta Holdings Inc 有機化合物の精製方法
JP2005008806A (ja) * 2003-06-20 2005-01-13 Toyo Ink Mfg Co Ltd β型銅フタロシアニン顔料の製造方法
WO2006087919A1 (ja) * 2005-01-28 2006-08-24 Takeda Pharmaceutical Company Limited 難水溶性物質含有微細化組成物
JP2006255519A (ja) * 2005-03-15 2006-09-28 Masumi Kusunoki 媒体循環型粉砕装置
JP2007023051A (ja) 1993-03-05 2007-02-01 Pfizer Health Ab 生物活性剤の粒子およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1146866A (en) * 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Process for the production of sustained release pharmaceutical composition of solid medical material
IL111477A (en) * 1994-10-31 1999-07-14 Makhteshim Chem Works Ltd Stable lycophene concentrates and process for their preparation
JP2791317B2 (ja) * 1995-12-26 1998-08-27 株式会社三和化学研究所 多層フィルム製剤
US20030224058A1 (en) * 2002-05-24 2003-12-04 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US7255733B2 (en) 2003-06-20 2007-08-14 Toyo Ink Mfg. Co., Ltd. Process for the production of β type copper phthalocyanine pigment and a use thereof
DE602004012262T2 (de) * 2003-06-26 2009-03-12 Dainippon Ink And Chemicals, Inc. Benzimidazolonverbindung
KR100638041B1 (ko) * 2003-12-24 2006-10-23 주식회사 삼양사 수용성 약물의 경구투여용 나노입자 조성물 및 그의제조방법
EP1621200A1 (en) * 2004-07-26 2006-02-01 Fournier Laboratories Ireland Limited Pharmaceutical combinations containing an inhibitor of platelet aggregation and a fibrate
MXPA04008735A (es) * 2004-09-09 2006-03-13 Gcc Technology And Processes S Composiciones de mortero mejoradas a base de clinker ultra-fino, arena refinada y aditivos quomicos.
JP2008524239A (ja) * 2004-12-15 2008-07-10 エラン ファーマ インターナショナル リミティド ナノ粒子のタクロリムス製剤
DE102005016873A1 (de) * 2005-04-12 2006-10-19 Magforce Nanotechnologies Ag Nanopartikel-Wirstoff-Konjugate
WO2007007403A1 (ja) * 2005-07-13 2007-01-18 Miyoshi Kasei, Inc. 表面処理粉体及びこれを含有する化粧料
US20070178051A1 (en) * 2006-01-27 2007-08-02 Elan Pharma International, Ltd. Sterilized nanoparticulate glucocorticosteroid formulations
TWI405590B (zh) 2007-04-06 2013-08-21 Activus Pharma Co Ltd 微粉碎化有機化合物粒子之製法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366613A (ja) * 1989-08-04 1991-03-22 Tanabe Seiyaku Co Ltd 難溶性薬物の超微粒子化法
JPH03131355A (ja) * 1989-10-17 1991-06-04 Sankyo Co Ltd 難溶性化合物の湿式粉砕方法
JPH04295420A (ja) * 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JPH06228454A (ja) 1991-03-07 1994-08-16 Toyo Ink Mfg Co Ltd β型ジオキサジン顔料の製造法
JP2007023051A (ja) 1993-03-05 2007-02-01 Pfizer Health Ab 生物活性剤の粒子およびその製造方法
JPH11100317A (ja) 1997-07-26 1999-04-13 Ciba Specialty Chem Holding Inc Uv−防御剤組成物
JP2003531162A (ja) 2000-04-20 2003-10-21 スカイファーマ・カナダ・インコーポレーテッド 改善された水不溶性薬剤粒子の処理
JP2003286105A (ja) 2002-03-27 2003-10-07 Kumiai Chem Ind Co Ltd 顆粒状水和剤
JP2003342493A (ja) * 2002-05-27 2003-12-03 Konica Minolta Holdings Inc 有機化合物の精製方法
JP2005008806A (ja) * 2003-06-20 2005-01-13 Toyo Ink Mfg Co Ltd β型銅フタロシアニン顔料の製造方法
WO2006087919A1 (ja) * 2005-01-28 2006-08-24 Takeda Pharmaceutical Company Limited 難水溶性物質含有微細化組成物
JP2006255519A (ja) * 2005-03-15 2006-09-28 Masumi Kusunoki 媒体循環型粉砕装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, vol. 9, no. 1, 2004, pages 1 - 13
See also references of EP2345426A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130236516A1 (en) * 2010-11-02 2013-09-12 Teikoku Seiyaku Co., Ltd. Felbinac-Containing External Patch
US9833417B2 (en) * 2010-11-02 2017-12-05 Teikoku Seiyaku Co., Ltd. Felbinac-containing external patch
JP2013103956A (ja) * 2011-11-10 2013-05-30 Nippon Shokubai Co Ltd 有機結晶
WO2013168437A1 (ja) 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液
US9278071B2 (en) 2012-05-11 2016-03-08 Activus Pharma Co., Ltd. Organic compound nano-powder, method for producing the same and suspension
WO2016181935A1 (ja) * 2015-05-08 2016-11-17 株式会社アクティバスファーマ グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
JPWO2016181935A1 (ja) * 2015-05-08 2018-02-22 株式会社アクティバスファーマ グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
US10588913B2 (en) 2015-05-08 2020-03-17 Activus Pharma Co., Ltd. Aqueous suspension agent containing glucocorticosteroid nanoparticles
US11376262B2 (en) 2015-05-08 2022-07-05 Activus Pharma Co., Ltd. Method of treating an inflammatory or infectious disease
IL255452B (en) * 2015-05-08 2022-08-01 Activus Pharma Co Ltd Aqueous suspension containing glucocorticosteroid nanoparticles

Also Published As

Publication number Publication date
TW201014615A (en) 2010-04-16
US9782484B2 (en) 2017-10-10
IL211121A (en) 2014-09-30
CN102149410B (zh) 2014-05-14
CN102149410A (zh) 2011-08-10
JPWO2010032434A1 (ja) 2012-02-02
CA2737543A1 (en) 2010-03-25
ES2467676T3 (es) 2014-06-12
EP2345426A4 (en) 2012-01-11
JP5536654B2 (ja) 2014-07-02
EP2345426B1 (en) 2014-03-05
US20110165259A1 (en) 2011-07-07
RU2535017C2 (ru) 2014-12-10
US20140038931A1 (en) 2014-02-06
RU2011114292A (ru) 2012-10-27
MX2011002847A (es) 2011-04-07
KR20110063830A (ko) 2011-06-14
EP2345426A1 (en) 2011-07-20
PT2345426E (pt) 2014-06-09
TWI440479B (zh) 2014-06-11
CA2737543C (en) 2015-01-06
IL211121A0 (en) 2011-04-28
KR101455446B1 (ko) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5536654B2 (ja) 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
JP5317960B2 (ja) 微粉砕化有機化合物粒子の製造方法
JP2010047579A (ja) セルロース系表面安定剤を用いたヒト免疫不全ウイルス(hiv)プロテアーゼ阻害剤のナノ結晶製剤及びそのような製剤の製造方法
Ali et al. Development and clinical trial of nano-atropine sulfate dry powder inhaler as a novel organophosphorous poisoning antidote
Liu Nanocrystal formulation for poorly soluble drugs
Ye et al. Nanosuspensions of a new compound, ER-β005, for enhanced oral bioavailability and improved analgesic efficacy
WO2018118929A1 (en) Pharmaceutical formulations of suvorexant
MXPA05010506A (es) Forma farmaceutica para el tratamiento de casos agudos y exacerbaciones de pacientes con artritis reumatoide, y transtornos agudos relacionados.
Jassem et al. Ex vivo permeability study and in vitro solubility characterization of oral Canagliflozin self-nanomicellizing solid dispersion using Soluplus as a nanocarrier
KR20110029249A (ko) 프란루카스트의 향상된 용해도를 갖는 약학적 조성물
Tímea et al. Nanonization of Niflumic Acid by Co-Grinding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135720.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 211121

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010529625

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2737543

Country of ref document: CA

Ref document number: MX/A/2011/002847

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009814279

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117008410

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011114292

Country of ref document: RU