WO2016181935A1 - グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤 - Google Patents

グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤 Download PDF

Info

Publication number
WO2016181935A1
WO2016181935A1 PCT/JP2016/063752 JP2016063752W WO2016181935A1 WO 2016181935 A1 WO2016181935 A1 WO 2016181935A1 JP 2016063752 W JP2016063752 W JP 2016063752W WO 2016181935 A1 WO2016181935 A1 WO 2016181935A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
aqueous suspension
suspension
aqueous
particle size
Prior art date
Application number
PCT/JP2016/063752
Other languages
English (en)
French (fr)
Inventor
貴広 多田
和宏 加賀美
志朗 横田
健太 菊池
Original Assignee
株式会社アクティバスファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2985171A priority Critical patent/CA2985171C/en
Priority to US15/571,986 priority patent/US10588913B2/en
Priority to MX2017014340A priority patent/MX2017014340A/es
Priority to AU2016262185A priority patent/AU2016262185B2/en
Priority to EP16792660.9A priority patent/EP3295943B1/en
Priority to IL255452A priority patent/IL255452B/en
Priority to CN201680026845.5A priority patent/CN107613985B/zh
Priority to RU2017142694A priority patent/RU2747803C2/ru
Application filed by 株式会社アクティバスファーマ filed Critical 株式会社アクティバスファーマ
Priority to JP2017517933A priority patent/JP6856525B2/ja
Priority to ES16792660T priority patent/ES2937023T3/es
Priority to PL16792660.9T priority patent/PL3295943T3/pl
Priority to KR1020177033330A priority patent/KR102268710B1/ko
Priority to BR112017024000-9A priority patent/BR112017024000B1/pt
Priority to FIEP16792660.9T priority patent/FI3295943T3/fi
Priority to KR1020217018618A priority patent/KR102390014B1/ko
Publication of WO2016181935A1 publication Critical patent/WO2016181935A1/ja
Priority to US16/732,173 priority patent/US11376262B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to an aqueous suspension containing glucocorticosteroid nanoparticles and use thereof.
  • glucocorticosteroids are hydrophobic, they have conventionally been provided as aqueous suspensions. However, since steroid particles contained in aqueous suspensions of glucocorticosteroid compounds precipitate over time, patients must shake the container during use to evenly distribute the active ingredient in the liquid phase. It was. In addition, even though the patient always shakes the container at the time of use, the particles in the suspension tend to aggregate and become agglomerated, and the particle size of the drug increases, and the uniformity is easily lost. . As described above, since the dispersion is not uniform, the planned dose is not administered, and there is a problem that the suppression of inflammation and pain becomes insufficient.
  • Patent Document 1 An emulsion preparation has been proposed as one method for solving such a problem in steroids (Patent Document 1, Non-Patent Documents 1 and 2).
  • a difluprednate oil-in-water (O / W type) emulsion formulation (Durezol (registered trademark): 0.05% difluprednate formulation) is stable regardless of its storage state and presence or absence of shaking before use. It has been confirmed that a uniform drug can be provided to the affected area.
  • the oil-in-water (O / W type) emulsion preparation has a problem that an irritating action such as foreign body sensation and hyperemia is observed because it is necessary to use an oily solvent. Therefore, there has been a demand for an aqueous preparation of glucocorticosteroid that can maintain uniformity without using an oily solvent.
  • Nanosuspensions in which particles of active ingredients in an aqueous suspension are nanosized have been proposed as aqueous solutions containing a poorly soluble drug.
  • Nanosuspensions can be provided in a variety of dosage forms by increasing the solubility faster by maximizing specific surface area by reducing the particle size to nanometer size, and by increasing solubility. That is, it is known that the amount of the active ingredient to be contained can be increased.
  • an aqueous suspension containing fluticasone (D90 0.4 ⁇ m) and budesonide (D90 0.4 ⁇ m) manufactured by Wet mill using glass beads has been used at 4 ° C.
  • Non-patent Document 3 As a bottom-up approach for nanoparticle formation, a method has been reported in which hydrocortisone, a glucocorticosteroid compound, is precipitated to form nanoparticles having an average particle size of about 300 nm to form an aqueous suspension (Non-patent Document). 4). However, this report shows that the top-down approach (milling) was superior in both increased intraocular pressure and stability.
  • a nanosuspension agent of corticosteroid specifically, mometasone furan carboxylate
  • corticosteroid with D50 of 50 to 500 nm, hydrophilic polymer, wetting agent, and A preparation containing a complexing agent is disclosed (Patent Document 2).
  • an aqueous suspension of a glucocorticosteroid compound that can be autoclaved has been reported (Patent Document 3).
  • aqueous suspensions such as injections, eye drops and ear drops containing glucocorticosteroid compounds such as clobetasol propionate
  • glucocorticosteroid compounds such as clobetasol propionate
  • an object of the present invention is to provide an aqueous suspension containing a glucocorticosteroid compound as an active ingredient, which has excellent stability over time and dispersion stability. More specifically, the present invention comprises a glucocorticosteroid compound as an active ingredient, an injection, an eye drop, an ear drop, an nasal drop, and an excellent clarity, dispersibility, and storage stability.
  • An object of the present invention is to provide an aqueous pharmaceutical composition such as an inhalant.
  • an object of the present invention is to provide an eye drop containing a glucocorticosteroid compound excellent in corneal retention and aqueous humor transfer as an active ingredient.
  • Another object of the present invention is to provide the aqueous suspension or aqueous pharmaceutical composition containing clobetasol propionate as an active ingredient as a glucocorticosteroid compound.
  • an aqueous suspension containing glucocorticosteroid compound nanoparticles and, if necessary, a dispersion stabilizer, a surfactant, an aggregation inhibitor, and / or a viscosity modifier has been found that it is excellent in clarity, (long-term) dispersibility, storage stability, corneal retention, and aqueous humor migration, and is excellent as an aqueous pharmaceutical composition.
  • the present inventors have prepared an aqueous suspension containing nanoparticles of a glucocorticosteroid compound and, if necessary, a dispersion stabilizer, a surfactant, an aggregation inhibitor, and / or a viscosity modifier. It has been found that excellent clarity, (long-term) dispersibility, and storage stability can be achieved without containing organic compounds having stimulating effects such as foreign body sensation, hyperemia, etc. Regardless, we have completed an aqueous preparation of a glucocorticosteroid compound that can provide a stable and uniform drug to the affected area and has a high anti-inflammatory effect.
  • the present invention relates to: (1) An aqueous suspension containing nano particles of a glucocorticosteroid compound. (2) The aqueous suspension according to (1), wherein the nanoparticles have an average particle size of 300 nm or less and a D90 particle size of 450 nm or less. (3) The nanoparticle is a particle produced by mixing a glucocorticosteroid compound, a physiologically acceptable salt, a physiologically acceptable polyol, and a surface modifier.
  • the glucocorticosteroid compound is clobetasol propionate, diflorazone acetate, dexamethasone propionate, diflupredado, mometasone furanate, diflucortron valerate, betamethasone butyrate propionate, fluocinide, hydrocortisone butyrate propionate, propione Bechromazone acid, deprodon propionate, betamethasone valerate, dexamethasone valerate, prednisolone valerate acetate, fluocinolone acetonide, hydrocortisone butyrate, clobetasone butyrate, alcromethasone propionate, triamcinolone acetonide, flumezone bivalate, prednisolone, prednisolone
  • (6) The aqueous suspension according to (5), wherein the dispersion stabilizer is polyoxyethylene polyoxypropylene glycol and / or polyvinyl alcohol.
  • (7) The aqueous suspension according to any one of (1) to (6), further comprising a viscosity modifier.
  • (8) The aqueous suspension according to (7), wherein the viscosity modifier is one or more substances selected from methylcellulose, hydroxylpropylmethylcellulose, and polyvinyl alcohol.
  • (9) The aquatic suspension according to (7) or (8), containing 1 to 10 mg / mL of the viscosity modifier.
  • a pharmaceutical composition comprising the aqueous suspension according to any one of (1) to (9).
  • the pharmaceutical composition according to (15), wherein the inflammatory disease or infectious disease is a systemic inflammatory disease or infectious disease.
  • the pharmaceutical composition according to (15), wherein the inflammatory disease or infectious disease is a local inflammatory disease or infectious disease.
  • the pharmaceutical composition according to (17), wherein the local area is one or more tissues or organs selected from the eyes, ears, nose (upper airway), and lung (lower airway).
  • the inventors of the present invention have a nanoparticle of a glucocorticosteroid compound having an average particle diameter (hereinafter referred to as “Dv”) of 300 nm or less and a 90% diameter (hereinafter referred to as “D90”) of 450 nm.
  • Dv average particle diameter
  • D90 90% diameter
  • the average particle diameter can be measured as scattering intensity (Intensity Distribution) average particle diameter, volume (Volume Distribution) average particle diameter, and number (Number Distribution) average particle diameter.
  • Dv represents the scattering intensity average particle size.
  • the present invention relates to an aqueous suspension characterized by containing glucocorticosteroid compound nanoparticles, preferably an aqueous solution in which the Dv of the nanoparticles is 300 nm or less and the D90 is 450 nm or less. It relates to a suspension.
  • the aqueous suspension of the present invention is produced by mixing a glucocorticosteroid compound, a physiologically acceptable salt, a physiologically acceptable polyol and / or water, and a dispersion stabilizer. Nanoparticle of the prepared glucocorticosteroid compound.
  • the aqueous suspension of the present invention is prepared by mixing a glucocorticosteroid compound, a physiologically acceptable salt, glycerin, anhydrous citric acid, and hydrogenated soybean lecithin. Contains nanoparticles of corticosteroid compounds.
  • an aqueous suspension characterized by containing nanoparticles of a glucocorticosteroid compound is a polyoxyethylene polyoxypropylene glycol (hereinafter referred to as “POE / POP glycol”) as a dispersion stabilizer. )) And / or polyvinyl alcohol (hereinafter referred to as “PVA”) and / or hydroxypropylmethylcellulose and / or methylcellulose as a thickening agent for excellent clarity and dispersion over a long period of time. And excellent storage stability.
  • POE / POP glycol polyoxyethylene polyoxypropylene glycol
  • PVA polyvinyl alcohol
  • the present invention provides that Dv is 300 nm or less, D90 is 450 nm or less (preferably, Dv is 250 nm or less, and D90 is 300 nm or less, or Dv is 200 nm or less,
  • the present invention relates to an aqueous suspension comprising glucocorticosteroid compound nanoparticles having a D90 of 250 nm or less.
  • the present invention provides an aqueous pharmaceutical composition comprising glucocorticosteroid compound nanoparticles as an active ingredient and a dispersion stabilizer and / or viscosity modifier as an additive. About.
  • the “aqueous pharmaceutical composition” means an aqueous liquid or gel pharmaceutical composition, and specifically, nanoparticles of a glucocorticosteroid compound are suspended in an aqueous liquid or gel. It means a pharmaceutical composition in a prepared state. Therefore, unless otherwise specified, the pharmaceutical composition herein means an aqueous pharmaceutical composition.
  • Aqueous pharmaceutical compositions include injections and topical formulations.
  • topical formulations herein refer to aqueous formulations for topical administration.
  • the aqueous pharmaceutical composition may have viscosity as long as it does not prevent its use as a pharmaceutical product, and includes a gel-like preparation in addition to a water-form preparation.
  • local means a part of the body, for example, an affected area, its surroundings, or an organ in which the affected area exists, and preferably the eye, ear, nose (upper respiratory tract), or lung (Lower airway).
  • the injection of the present invention can be an injection for the treatment or prevention of systemic or local inflammatory diseases or infectious diseases, and is for intravenous injection, subcutaneous injection, intramuscular injection, infusion. Includes injections for medical use.
  • the “topical application formulation” means a pharmaceutical composition intended for local administration.
  • the topical application is a topical application for the eye (eg, eye drops), a topical application for the ears (eg, ear drops), a topical application for the nose (eg, nasal drops), and a topical application for the lungs.
  • Such a topically applied formulation can be a topically applied formulation for the treatment or prevention of inflammatory or infectious diseases of the eyes, ears, nose or lungs.
  • it can be set as an eye drop, an ear drop, a nasal drop, and an inhalant, for example.
  • the topical preparation of the present invention is preferably a topical preparation for ophthalmic use (including eye drops) for the treatment or prevention of inflammatory diseases or infectious diseases of the eye, treatment of inflammatory diseases or infectious diseases of the ear.
  • topical otic preparations including ear drops
  • topical nasal preparations including nasal drops
  • pulmonary topical preparation including an inhalant
  • the aqueous pharmaceutical composition of the present invention can be used for the treatment or prevention of inflammatory diseases or infectious diseases by administering an effective amount locally to the patient in need thereof. That is, in one embodiment, the present invention includes an aqueous suspension or nanosuspension characterized by containing nanoparticles of a glucocorticosteroid compound, and optionally containing a dispersion stabilizer and / or a viscosity modifier.
  • the present invention relates to a method for treating or preventing an inflammatory disease or an infectious disease, comprising administering an effective amount of a pharmaceutical composition containing a solution to a patient in need thereof.
  • the present invention administers an effective amount locally to a patient in need thereof, a topical formulation characterized in that it contains nanoparticles of a glucocorticosteroid compound and optionally also contains a dispersion stabilizer A method for treating or preventing inflammatory diseases or infectious diseases.
  • the present invention provides nanoparticulates (and optionally dispersion stabilizers and / or viscosity modifiers) of glucocorticosteroid compounds for the manufacture of aqueous pharmaceutical compositions (eg, injections and topical formulations) or , And the use of an aqueous suspension containing the nanoparticles.
  • the “glucocorticosteroid compound” is not particularly limited as long as it is a glucocorticoid and a derivative compound thereof.
  • glucocorticosteroid compounds include clobetasol propionate, diflorazone acetate, dexamethasone propionate, diflupredado, mometasone furanate, diflucortron valerate, betamethasone butyrate propionate, fluocinide, hydrocortisone butyrate propionate, propionic acid Bechrometazone, deprodon propionate, betamethasone valerate, dexamethasone valerate, prednisolone valerate, fluocinolone acetonide, hydrocortisone butyrate, clobetasone butyrate, alcromethasone propionate, triamcinolone acetonide, flumethasone bivalate, hydrocortisone Preferably, it is clobet
  • aqueous suspension means an aqueous liquid in which nanoparticles of a glucocorticosteroid compound are suspended.
  • the aqueous suspension may itself constitute a pharmaceutical composition that can be administered as a pharmaceutical, or constitutes a pharmaceutical composition by appropriately adding other components or diluents. (For example, a raw material of a pharmaceutical composition) or a material that is not particularly used as a medicine.
  • the aqueous suspension in the present specification includes an aqueous suspension that is dispersion-stabilized.
  • Dispersion-stabilized means that after dispersion by stirring, etc., at room temperature (25 ° C.) for 24 hours (preferably 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, January, February , March, April, May, June, 1 year, or 2 years) (1) Precipitation cannot be visually confirmed after standing, (2) High clarity, (3) Aggregation by microscopic observation No object / crystal is observed, (4) Dv value does not change substantially (does not increase by 50% or more), or has two or more properties.
  • the aqueous suspension containing the nanoparticle of the glucocorticosteroid compound in the present specification has no clear visual confirmation after 7 days from the test tube encapsulation, has high clarity, and is observed with a microscope. In the aqueous suspension, no agglomerates / crystals are observed.
  • Clarity can be determined according to the clarity test method listed in the Japanese Pharmacopoeia. Specifically, it can be determined by the following procedure: Water is added to 5 mL of the formazin standard emulsion to make 100 mL, and a turbid comparison solution is obtained. The aqueous suspension to be tested and the newly prepared turbidity comparison solution are taken in a colorless and transparent glass flat bottom test tube each having an inner diameter of 15 mm so that the liquid layer has a depth of 30 mm or 40 mm. Compare the observation from above. When the clarity of the aqueous suspension to be tested is the same as that of water or the solvent used, or when the degree of turbidity is less than or equal to the turbid comparison liquid, it can be determined that the clarity is high.
  • a test aqueous suspension and a newly prepared turbid reference liquid were tested by UV-Vis absorbance measurement using a cell with a layer length of 50 mm and water or the solvent used as a control, and the transmittance at 660 nm was measured.
  • the permeability of the aqueous suspension to be tested is greater than or equal to the turbid comparative solution, it can be determined that the clarity is high.
  • the topical preparation of the present invention is a topical preparation for ophthalmic use that has the ability to migrate to aqueous humor.
  • “having the ability to transfer to aqueous humor” means that the eye is in 60 minutes after a single instillation administration of an aqueous topical preparation of a glucocorticosteroid compound adjusted to 0.05% (w / v).
  • Concentration (average value) of glucocorticosteroid compound in aqueous humor is 45 ng / mL or more (preferably 50 ng / mL or more, 55 ng / mL or more, 60 ng / mL or more, 65 ng / mL or more, 70 ng / mL or more, 75 ng / mL
  • “having transferability to aqueous humor” means that 30 minutes after the single instillation administration of an aqueous topical preparation of a glucocorticosteroid compound adjusted to 0.05% (w / v)
  • Glucocorticosteroid compound concentration (average value) in aqueous humor is 40 ng / mL or more (preferably 50 ng / mL or more, 55 ng / mL or more, 60 ng / mL or more, 63 ng / mL or more, 64 ng / mL or more, 65 ng / /
  • the topical preparation of the present invention is a topical application preparation for ophthalmic that has a property of transferring to the conjunctiva.
  • “having transferability to the conjunctiva” means that 15 minutes after the single ophthalmic administration of an aqueous topical preparation of a glucocorticosteroid compound adjusted to 0.05% (w / v), Glucocorticosteroid compound concentration (average value) is 500 ng / mL or more (preferably, 659 ng / mL or more, 900 ng / mL or more, 972 ng / mL or more, 1000 ng / mL or more, 1200 ng / mL or more, 1210 ng / mL or more, 1400 ng / ML or more, 1455 ng / mL or more, 1500 ng / mL or more, or 2000 ng / mL or more, 2141 ng / m
  • the transferability to the aqueous humor and the transfer to the conjunctiva can be performed according to the method described in the Examples of the present application using an appropriate experimental animal, and can be performed, for example, by the following method.
  • Anesthesia is performed 15 minutes, 30 minutes, 60 minutes, and 90 minutes after instillation, the blood is euthanized, the eyes are washed well with water for injection, and aqueous humor or conjunctiva is collected.
  • the concentration of the glucocorticosteroid compound in the collected aqueous humor was determined by adding methanol and an internal standard (prednisolone) solution to the collected aqueous humor and stirring, and then adding acetonitrile and stirring, followed by centrifugation (13100 ⁇ g, 4 ° C. , 5 minutes) can be determined by measuring the supernatant obtained by the LC-MS / MS method.
  • the concentration of glucocorticosteroid compound in the collected conjunctiva was homogenized by adding 9 times the volume of ultrapure water to the wet weight of the obtained conjunctiva, and methanol and an internal standard (prednisolone) solution were added and stirred. Thereafter, acetonitrile can be further added and stirred, and the supernatant obtained by centrifugation (13100 ⁇ g, 4 ° C., 5 minutes) can be determined by measuring by LC-MS / MS method.
  • the topical preparation of the present invention is a topical preparation for ophthalmic use that can reduce the rate of increase in protein concentration in aqueous humor.
  • the rate of increase in protein concentration in aqueous humor can be reduced means that the glucocorticosteroid compound adjusted to 0.05% (w / v) or 0.1% (w / v) 40 ⁇ L of the above-mentioned aqueous topical preparation is administered 7 times before and after corneal puncture of an experimental animal (for example, rabbit) (preferably, corneal puncture is 0 minute, 180 minutes before, 120 minutes before, 60 minutes) Minutes before, 30 minutes, 30 minutes, 60 minutes, and 90 minutes), and the protein concentration in the aqueous humor 30 minutes after the end of administration It means less than 3 times the protein concentration (preferably less than 2.5 times or less than 2 times).
  • the topical preparation of the present invention is a topical preparation for ophthalmology that can exhibit an eye inflammation-inhibiting action. More specifically, the topical preparation of the present invention is a topical preparation for ophthalmology that can suppress the production of prostaglandin E2 (PGE2), which is an inflammatory mediator.
  • PGE2 prostaglandin E2
  • “can suppress the production of PGE2” means 40 ⁇ L of an aqueous topical preparation of a glucocorticosteroid compound adjusted to 0.05% (w / v) or 0.1% (w / v), Administered 7 times before and after corneal puncture of experimental animals (eg, rabbits) (preferably corneal puncture is 0 minutes, 180 minutes, 120 minutes, 60 minutes, 30 minutes before, 30 minutes)
  • corneal puncture is 0 minutes, 180 minutes, 120 minutes, 60 minutes, 30 minutes before, 30 minutes
  • the PGE2 concentration in the aqueous humor 30 minutes after the completion of the administration was compared with the PGE2 concentration in the Durezole® (registered trademark) administration group administered similarly. Means low.
  • the topical preparation for ophthalmic use of the present invention is selected from the above-mentioned transferability to aqueous humor, transferability to the conjunctiva, low rate of increase in protein concentration in aqueous humor, and ocular inflammation suppression action You may have the property of (2 types, 3 types, or all).
  • the aqueous suspension of the present invention is an aqueous suspension with low irritation.
  • low irritation means that when the aqueous suspension is administered to a subject, an irritation reaction (eg, redness, It means that the degree of inflammatory reaction (swelling, hyperemia, etc.) is low.
  • an irritation reaction eg, redness, It means that the degree of inflammatory reaction (swelling, hyperemia, etc.) is low.
  • Jonas, J. et al. In accordance with the method described by Kuehne et al., Am J Ophthalmol (2004) 138: 547-553, a test aqueous suspension was administered to the rabbit eye, and the degree of eye inflammation was measured. From the standard solution (same as above) When the degree of inflammation is low, it can be determined that the irritation is low.
  • the irritation is determined by injecting a preparation having a glucocorticosteroid compound concentration of 1.0% 1 to 20 times a day at intervals of 30 minutes to several hours before administration.
  • the cornea, iris, and conjunctiva are observed at 1, 3, 5, and 24 hours after administration, and scored according to Draize's evaluation criteria (OECD GUIDINES FOR TESTING OF CHEMICALS 405 (24 Feb. 1987) Accue Eye Irritation / Corrosion). Can be determined.
  • the aqueous suspension or pharmaceutical composition of the present invention may contain one or two or more physiologically acceptable salts.
  • physiologically acceptable salt examples include sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, sodium malate, sodium citrate, and dicitrate.
  • physiologically acceptable salt examples include sodium, sodium dihydrogen citrate, potassium dihydrogen citrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • Examples include sodium chloride, potassium chloride, magnesium sulfate, calcium sulfate, sodium citrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, preferably sodium chloride It is.
  • the aqueous suspension or pharmaceutical composition of the present invention can contain 0.01 to 10% of a physiologically acceptable salt, preferably 0.1 to 5%, such as 0.5 to 3% and 0.8 to 2% can also be contained.
  • the aqueous suspension or pharmaceutical composition of the present invention can contain a physiologically acceptable salt of 0.01 to 50 mg / mL, 0.1 to 20 mg / mL, or 1 to 5 mg / mL. .
  • the aqueous suspension or pharmaceutical composition of the present invention may contain one or more surfactants and / or contain one or more aggregation inhibitors. Also good.
  • surfactant means a surfactant that does not show toxicity even when administered to humans as a pharmaceutical additive, and that does not interfere with the action of the glucocorticosteroid compound.
  • polyoxyethylene (hereinafter referred to as “POE”)-polyoxypropylene (hereinafter referred to as “POP”) block copolymer such as poloxamer 407, poloxamer 235 and poloxamer 188; ethylenediamine such as poloxamine POE sorbitan fatty acid esters such as POE (20) sorbitan monolaurate (polysorbate 20), POE (20) sorbitan monooleate (polysorbate 80), polysorbate 60, etc .
  • POE hydrogenated castor oil such as E (60) hydrogenated castor oil
  • POE alkyl ethers such as POE (9) lauryl ether
  • POE and POP alkyl ethers such as POE (20) POP (4) cetyl ether
  • the “aggregation inhibitor” is a substance that can prevent aggregation of a glucocorticosteroid compound and is not toxic when administered to the human body. It is not particularly limited as long as it does not interfere with the aggregation, and examples thereof include alkyl sulfate, N-alkyloylmethyl taurate, ethanol, glycerin, propylene glycol, sodium citrate, glycerophospholipid (lecithin (phosphatidylcholine) (for example, , Refined soybean lecithin, hydrogenated soybean lecithin), phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, phosphatidylglycerol, lysophosphatidylcholine, lysophosphatidylserine, lysophosphatidylethanol And phospholipids such as sphingophospholipids (sphingophospholipids (s
  • the aqueous suspension or pharmaceutical composition of the present invention can contain 0.001 to 10%, or 0.01 to 10%, preferably 0.02 to 5% of an anti-agglomeration agent. 0.03 to 1%, 0.04 to 0.5%, 0.05 to 0.2% can also be contained.
  • the aqueous suspension or pharmaceutical composition of the present invention can contain an aggregation inhibitor in an amount of 0.01 to 50 mg / mL, 0.1 to 20 mg / mL, or 1 to 5 mg / mL.
  • polyoxyethylene hydrogenated castor oil 60 for example, HCO-60
  • polyoxyethylene hydrogenated castor oil 40 for example, HCO-40
  • polysorbate 80 for example, Tween 80
  • Polysorbate 20 for example, Tween 20
  • POE ⁇ POP glycol for example, Pronon 407P, Pluronic F68, Unilube 70D P-950B, and PVA (for example, Kuraray Poval 217c)
  • POE ⁇ POP glycol for example, Pronon 407P, Pluronic F68, Unilube 70D P-950B
  • PVA for example, Kuraray Poval 217c
  • it is one or more substances selected from POE / POP glycol and PVA.
  • the “viscosity modifier” is a substance that can adjust the viscosity of the aqueous suspension of the present invention, and does not show toxicity even when administered to humans as a pharmaceutical additive. Any substance that does not interfere with the action of the glucocorticosteroid compound is not particularly limited.
  • a polysaccharide or a derivative thereof for example, a polysaccharide or a derivative thereof (gum arabic, karaya gum, xanthan gum, carob gum, guar gum, guaiac fat, quince seed, Dalman gum, tragacanth gum, benzoin gum, locust bean gum, casein, agar, alginic acid, dextrin, dextran, carrageenan, gelatin, collagen, pectin, starch, polygalacturonic acid, chitin and its derivatives, chitosan and its derivatives, elastin, heparin, heparinoid , Heparin Acid, heparan sulfate, hyaluronic acid, chondroitin sulfate, etc.), ceramide, cellulose derivatives (methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose
  • the aqueous suspension of the present invention may contain one kind as a viscosity modifier, or may contain two or more kinds of viscosity modifiers.
  • As the viscosity modifier preferably, hydroxypropyl methylcellulose (for example, TC-5 (R), Metrose 60SH-50), PVA (Kurarepoval 217C), and methylcellulose (for example, Metrose SM-100, Metrose SM-15).
  • hydroxypropyl methylcellulose for example, TC-5 (R), Metrose 60SH-50), PVA (Kurarepoval 217C), and methylcellulose (for example, Metrose SM-100, Metrose SM-15).
  • One or more substances selected more preferably one or more substances selected from hydroxypropyl methylcellulose and methylcellulose.
  • the aqueous suspension of the present invention can contain 1 to 10 mg / mL of a viscosity modifier, preferably 1 to 5 mg / mL, such as 1 to 4 mg / mL, 1 to 3 mg / mL, 1 to It can also contain 2 mg / mL.
  • a viscosity modifier preferably 1 to 5 mg / mL, such as 1 to 4 mg / mL, 1 to 3 mg / mL, 1 to It can also contain 2 mg / mL.
  • the above-mentioned surfactants, anti-aggregation agents, and / or substances described as viscosity modifiers can be used, preferably polyoxyethylene hydrogenated castor oil 60, polyoxyethylene hardened One or more substances selected from castor oil 40, polysorbate 80, polysorbate 20, POE ⁇ POP glycol, PVA, hydroxypropylmethylcellulose, and methylcellulose, more preferably POE ⁇ POPglycol, PVA, hydroxypropylmethylcellulose, and One or more substances selected from methylcellulose.
  • a surfactant, an agglomeration inhibitor, and / or a viscosity modifier (hereinafter referred to as “additive” in this paragraph) that can also be used as a dispersion stabilizer is the surface of the glucocorticosteroid compound nanoparticles. It may be attached to or adsorbed to the surface. When such an additive is added before the pulverization step, it adheres to or is adsorbed to the surface of the glucocorticosteroid compound nanoparticles, thereby suppressing aggregation of the nanoparticles during the pulverization step. .
  • a surfactant, aggregation inhibitor, and / or viscosity modifier that is a dispersion stabilizer is attached to or adsorbed to the surface of a glucocorticosteroid compound nanoparticle. It means that at least some of these additives are attached or adsorbed on the particle surface (contributing to surface modification), and those that are not attached or adsorbed in the aqueous suspension. It does not mean that no additive is present.
  • the “surface modifier” means a surfactant, a coagulation inhibitor, and / or a viscosity which is a dispersion stabilizer capable of surface-modifying the surface of the glucocorticosteroid compound nanoparticles.
  • the aqueous suspension or pharmaceutical composition of the present invention may contain one or more physiologically acceptable polyols.
  • the pharmaceutical composition of the present invention can contain the physiologically acceptable polyol described above.
  • the “physiologically acceptable polyol” include glycerin, propylene glycol, polyethylene glycol, dipropylene glycol, diethylene glycol and the like, and propylene glycol or glycerin is preferable.
  • the aqueous suspension or pharmaceutical composition of the present invention may contain a physiologically acceptable polyol, for example, 0.001 to 10%, or 0.01 to 10%, preferably 0.02 to For example, 0.03 to 1%, 0.04 to 0.5%, 0.05 to 0.2% can be contained.
  • the aqueous suspension or pharmaceutical composition of the present invention contains 0.01 to 10 mg / mL, 0.05 to 5 mg / mL, or 0.1 to 3 mg / mL of a physiologically acceptable polyol. Can do.
  • the aqueous suspension or aqueous pharmaceutical composition of the present invention does not contain an oily solvent.
  • An oily solvent means a solvent that is insoluble or hardly soluble in water.
  • the glucocorticosteroid compound contained in the aqueous suspension or the aqueous pharmaceutical composition of the present invention is in the form of nanoparticles.
  • the average particle diameter (Dv) of the glucocorticosteroid compound nanoparticles is 300 nm or less, preferably 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, 200 nm or less, 190 nm or less, 180 nm or less, 170 nm.
  • it may be 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, or 110 nm or less.
  • the average particle diameter range of the glucocorticosteroid compound is 50 to 300 nm, 50 to 250 nm, 50 to 240 nm, 50 to 230 nm, 50 to 220 nm, 50 to 210 nm, 50 to 200 nm, 50 to 190 nm, 50 to 180 nm.
  • the 90% diameter (D90) of the glucocorticosteroid compound nanoparticles contained in the aqueous suspension or the aqueous pharmaceutical composition of the present invention is 450 nm or less, preferably 400 nm or less, 350 nm or less, 300 nm or less, 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less.
  • the 90% diameter (D90) ranges of glucocorticosteroid compounds are 50 to 400 nm, 50 to 350 nm, 50 to 300 nm, 50 to 290 nm, 50 to 280 nm, 50 to 270 nm, 50 to 260 nm, 50 to 250 nm, 50-240 nm, 50-230 nm, 100-400 nm, 100-350 nm, 100-300 nm, 100-290 nm, 100-280 nm, 100-270 nm, 100-260 nm, 100-250 nm, 100-240 nm, or 100-230 nm May be.
  • the 50% diameter (D50) of the glucocorticosteroid compound nanoparticles contained in the aqueous suspension or the aqueous pharmaceutical composition of the present invention may be 200 nm or less, preferably 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, 110 nm or less, 100 nm or less.
  • the 50% diameter (D50) range of the glucocorticosteroid compound is 50 to 190 nm, 50 to 180 nm, 50 to 170 nm, 50 to 160 nm, 50 to 150 nm, 50 to 140 nm, 50 to 130 nm, 50 to 120 nm, 50 to 110 nm, 50 to 100 nm, 80 to 190 nm, 80 to 180 nm, 80 to 170 nm, 80 to 160 nm, 80 to 150 nm, 80 to 140 nm, 80 to 130 nm, 80 to 120 nm, 80 to 110 nm, or 80 to 100 nm May be.
  • the glucocorticosteroid compound nanoparticles contained in the aqueous suspension or the aqueous pharmaceutical composition of the present invention are selected from the aforementioned average particle diameter (Dv), 90% diameter (D90) and 50% diameter (D50). You may satisfy
  • the glucocorticosteroid compound nanoparticles contained in the aqueous pharmaceutical composition of the present invention can have an average particle diameter (Dv) of 204 nm or less, D50 of 177 nm or less, and / or D90 of 306 nm or less. .
  • the glucocorticosteroid compound which is an active ingredient, is in the form of nanoparticles, so that it can be sterilized by a filter, and thus has an easy influence on the physicochemical properties of the active ingredient. Less sterilization can be performed.
  • the glucocorticosteroid compound nanoparticle contained in the aqueous suspension of the present invention preferably comprises a glucocorticosteroid compound, a physiologically acceptable salt, a physiologically acceptable polyol, and a dispersion stable.
  • glucocorticosteroid compound nanoparticles As an example of the aqueous suspension of the present invention, glucocorticosteroid compound nanoparticles; sodium chloride; hydrogenated soybean lecithin; glycerin; anhydrous citric acid; POE • POP glycols, polyoxyethylene hydrogenated castor oil, polysorbate 80 , PVA, POE, one or more substances selected from POE-POP block copolymers; benzalkonium chloride, sorbic acid or a salt thereof (such as potassium sorbate, sodium sorbate, triclocarban sorbate), or a paraoxybenzoate ester ( Methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, etc.)); hydroxypropyl methylcellulose and / or methylcellulose; and sodium citrate (trinatium citrate) It can be exemplified formulations containing the included).
  • the aqueous suspension and the pharmaceutical composition can contain water as a main component.
  • the pharmaceutical composition, aqueous suspension and / or diluent may be added as necessary as a stabilizer (flavoring agent), a corrigent, a thickener, a surfactant, a preservative, a bactericidal agent.
  • a stabilizer flavoring agent
  • a corrigent corrigent
  • a thickener e.g., a surfactant
  • a preservative e.g., a surfactant, a preservative, a bactericidal agent.
  • Various additives such as an agent or an antibacterial agent, a pH adjuster, an isotonic agent, and a buffering agent may be contained.
  • antiseptics, bactericides or antibacterial agents include sorbic acid or salts thereof (potassium sorbate, sodium sorbate, triclocarban sorbate, etc.), paraoxybenzoic acid esters (methyl paraoxybenzoate, ethyl paraoxybenzoate, paraoxy Propyl benzoate, butyl paraoxybenzoate, etc.), acrinol, methylrosaniline chloride, benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, cetylpyridinium bromide, chlorhexidine or its salts, polyhexamethylene biguanide, alkylpolyaminoethylglycine, benzyl alcohol , Phenethyl alcohol, chlorobutanol, isopropanol, ethanol, phenoxyethanol, silver zirconium phosphate, mercurochrome, popidone De, thimerosal, dehydroacetic acid
  • pH adjusters include inorganic acids (hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, boric acid, etc.), organic acids (lactic acid, acetic acid, citric acid, anhydrous citric acid, tartaric acid, malic acid, succinic acid, oxalic acid) , Gluconic acid, fumaric acid, propionic acid, acetic acid, aspartic acid, epsilon-aminocaproic acid, glutamic acid, aminoethylsulfonic acid, etc.), gluconolactone, ammonium acetate, inorganic base (sodium bicarbonate, sodium carbonate, potassium hydroxide, Sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc.), organic bases (monoethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, lysine, etc.), borax, and pharmacologically acceptable salts thereof. Etc.
  • Isotonic agents include, for example, inorganic salts (for example, sodium chloride, potassium chloride, sodium carbonate, sodium bicarbonate, calcium chloride, magnesium sulfate, sodium hydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, Sodium thiosulfate, sodium acetate, etc.), polyhydric alcohols (eg, glycerin, propylene glycol, ethylene glycol, 1,3-butylene glycol, etc.), saccharides (eg, butter sugar, mannitol, sorbitol, etc.).
  • inorganic salts for example, sodium chloride, potassium chloride, sodium carbonate, sodium bicarbonate, calcium chloride, magnesium sulfate, sodium hydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, Sodium thiosulfate, sodium acetate, etc.
  • polyhydric alcohols eg, glycerin, propylene glycol,
  • the buffer examples include Tris buffer, borate buffer, phosphate buffer, carbonate buffer, citrate buffer, acetate buffer, epsilon-aminocaproic acid, aspartate, and the like.
  • boric acid or a salt thereof sodium borate, potassium tetraborate, potassium metaborate, etc.
  • phosphoric acid or a salt thereof sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, etc.
  • Examples thereof include carbonic acid or a salt thereof (sodium hydrogencarbonate, sodium carbonate, etc.), citric acid or a salt thereof (sodium citrate, potassium citrate, anhydrous citric acid, etc.), and the like.
  • the viscosity of the aqueous suspension and the pharmaceutical composition may be 1 to 5 mPa ⁇ s, and may be 1 to 3 mPa ⁇ s, for example.
  • % in composition or content represents weight% (w / w).
  • the aqueous suspension containing the nanoparticle of the glucocorticosteroid compound of the present invention has excellent clarity, dispersibility, storage stability, conjunctival migration, and aqueous humor migration, low irritation, and easy sterilization Therefore, since it is excellent in stability over time and dispersion stability, it can be used as a pharmaceutical composition for parenteral administration, particularly as an eye drop.
  • FIG. 6 is a graph showing the change over time of the concentration of clobetasol propionate in aqueous humor after instillation of the nanoized ophthalmic suspension prepared in Example 5 (1) to (3).
  • the vertical axis represents the clobetasol propionate concentration (ng / mL) in the aqueous humor, and the horizontal axis represents the elapsed time (minutes) after instillation.
  • Black circles represent 0.05% nano-instilled eye suspension (average particle size 100 nm), black squares represent 0.05% nano-instilled eye suspension (average particle size 300 nm), black triangles represent 0.05% Represents nano-ized eye drop suspension (average particle size 600 nm) Values indicate mean values and error bars indicate standard deviation.
  • FIG. 6 is a graph showing the change with time of the clobetasol propionate concentration in the conjunctiva after instillation of the nanoized ophthalmic suspension prepared in Example 5 (1) to (3).
  • the vertical axis represents the concentration of clobetasol propionate (ng / mL) in the conjunctiva, and the horizontal axis represents the elapsed time (in minutes) after instillation.
  • Black circles represent 0.05% nano-instilled eye suspension (average particle size 100 nm), black squares represent 0.05% nano-instilled eye suspension (average particle size 300 nm), black triangles represent 0.05% Represents nano-ized eye drop suspension (average particle size 600 nm). Values indicate mean values and error bars indicate standard deviation.
  • Example 6 is a graph showing the change over time of the concentration of clobetasol propionate in aqueous humor after instillation of the nano-ized eye drop suspension prepared in Example 7 (1) to (4).
  • the vertical axis represents the clobetasol propionate concentration (ng / mL) in the aqueous humor, and the horizontal axis represents the elapsed time (minutes) after instillation.
  • the white circle represents 0.05% nano-ized eye drop suspension P (HPMC (60SH-50) 3 mg / mL), and the black circle represents 0.05% nano-ized eye drop suspension Q (HPMC (60SH-4000) 1.5 mg).
  • / Triangle represents a 0.05% nanonized ophthalmic suspension R (MC (SM-100) 2 mg / mL), and a black triangle represents a 0.05% nanonized ophthalmic suspension S (MC (SM-4000) 1.5 mg / mL). Values indicate mean values and error bars indicate standard deviation.
  • 6 is a graph showing changes with time of the clobetasol propionate concentration in the conjunctiva after instillation of the nano-ized eye drop suspension prepared in Example 7 (1) to (4).
  • the vertical axis represents the concentration of clobetasol propionate (ng / mL) in the conjunctiva, and the horizontal axis represents the elapsed time (in minutes) after instillation.
  • the white circle represents 0.05% nano-ized eye drop suspension P (HPMC (60SH-50) 3 mg / mL), and the black circle represents 0.05% nano-ized eye drop suspension Q (HPMC (60SH-4000) 1.5 mg).
  • / Triangle represents a 0.05% nanonized ophthalmic suspension R (MC (SM-100) 2 mg / mL), and a black triangle represents a 0.05% nanonized ophthalmic suspension S (MC (SM-4000) 1.5 mg / mL).
  • Values indicate mean values and error bars indicate standard deviation. It is a graph which shows the inflammation score of an external eye part in a rabbit BSA induction uveitis model.
  • the vertical axis represents the inflammation score
  • the horizontal axis represents the number of days elapsed from the first BSA administration (after 15 days to 18 days later).
  • White represents the control group (saline)
  • dark gray represents the 0.05% nano clobetasol propionate ophthalmic suspension administration group
  • light gray represents the positive subject group (0.1% fluorometholone ophthalmic solution) Administration group).
  • Values indicate mean values and error bars indicate standard deviation.
  • the vertical axis represents the inflammation score
  • the horizontal axis represents the number of days elapsed from the first BSA administration (after 15 days to 18 days later).
  • White represents the control group (saline), dark gray represents the 0.05% nano clobetasol propionate ophthalmic suspension administration group, and light gray represents the positive subject group (0.1% fluorometholone ophthalmic solution) Administration group). Values indicate mean values and error bars indicate standard deviation. It is a graph which shows the inflammation score of an external eye part (A) and an internal eye part (B) 29 days after the 1st BSA administration in a rabbit BSA-induced uveitis model. The vertical axis represents the inflammation score.
  • White represents the control group (saline), dark gray represents the 0.05% nano clobetasol propionate ophthalmic suspension administration group, and light gray represents the positive subject group (0.1% fluorometholone ophthalmic solution) Administration group).
  • Values indicate mean values and error bars indicate standard deviation. It is a graph showing the conjunctival weight in the rat croton-induced conjunctivitis model. The vertical axis represents the conjunctival weight (g). Values indicate mean values and error bars indicate standard deviation. It is a graph showing the eyelid conjunctival weight in a rat carrageenin-induced conjunctival edema model. The vertical axis represents the eyelid conjunctival weight (g).
  • Values indicate mean values and error bars indicate standard deviation. It is a graph which shows the PGE2 density
  • the vertical axis represents the protein concentration (mg / mL) in the anterior aqueous humor. Values indicate mean values and error bars indicate standard deviation. It is a graph which shows the PGE2 density
  • Nanoparticles of a glucocorticosteroid compound are prepared by mixing a glucocorticosteroid compound with a physiologically acceptable salt and a physiologically acceptable polyol.
  • the organic compound can be produced by wet pulverization. Such a manufacturing method is described in detail in International Publication No. WO2008 / 122677.
  • the mixing is not limited as long as the glucocorticosteroid compound, physiologically acceptable salt, and physiologically acceptable polyol are finally mixed, and the order of addition of these components is not limited.
  • the mixing may be performed by adding physiologically acceptable salts and physiologically acceptable polyols to the glucocorticosteroid compound, or physiologically acceptable salts and physiologically You may carry out by adding a glucocorticosteroid compound to the acceptable polyol.
  • the glucocorticosteroid compound fine particles contained in the powder of the present invention are prepared by adding a physiologically acceptable salt and a physiologically acceptable polyol to an organic compound having a melting point of 80 ° C. or higher.
  • the compound can be produced by wet grinding.
  • an aqueous suspension can be prepared without removing the salt and the polyol. Therefore, since it is not necessary to remove the salt and the polyol, it can be produced by a very simple process.
  • the wet pulverization can be performed by mixing an organic compound, a salt and a polyol and kneading the mixture.
  • the fine particles of the glucocorticosteroid compound of the present invention can be produced by adding lecithin during or after the pulverizing step.
  • the glucocorticosteroid compound nanoparticles are preferably produced by wet pulverization without using a hard solid pulverization aid, more preferably made of glass, metal such as stainless steel, ceramic such as zirconia and alumina.
  • a hard solid pulverization aid more preferably made of glass, metal such as stainless steel, ceramic such as zirconia and alumina.
  • the glucocorticosteroid compound fine particles of the present invention comprise the physiologically acceptable salt and It is manufactured by wet grinding without using a solid grinding aid other than the viscosity modifier.
  • physiologically acceptable means that it can be taken without causing any particular physiological problems, and a substance is a physiologically acceptable substance. Is determined as appropriate depending on the species to be ingested, the mode of ingestion, and the like. Examples of physiologically acceptable solvents include substances approved as additives and solvents for pharmaceuticals and foods.
  • the “physiologically acceptable salt” in the present specification is not particularly limited as long as it is a salt that can be ingested without causing any particular physiological problems.
  • a physiologically acceptable salt preferably a salt having low solubility in polyols, a salt having high solubility in water, and / or a hardness that is less hygroscopic and suitable for pulverization of organic compounds It is salt.
  • a physiologically acceptable salt used in the method for producing nanoparticles of a glucocorticosteroid compound a salt having two or more of these properties is more preferable.
  • the solubility of the physiologically acceptable salt in the polyol is preferably 10 (mass / volume) or less.
  • a physiologically acceptable salt is preferably a salt having high solubility in water. Specifically, the above-mentioned salt is mentioned.
  • the “physiologically acceptable salt” is preferably subjected to pulverization or the like to adjust the particle size before mixing with the glucocorticosteroid compound. If necessary, the moisture content may be reduced by drying under reduced pressure at a temperature of 30 to 200 ° C., for example, for the purpose of preventing particle fusion and particle growth due to the contained moisture.
  • the volume average particle diameter may be, for example, 5 to 300 ⁇ m or 10 to 200 ⁇ m, preferably 0.01 to 300 ⁇ m, more
  • the thickness is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and most preferably 1 to 5 ⁇ m.
  • the amount of the salt used is preferably 1 to 100 times the mass, more preferably 5 to 30 times the mass, and further 10 to 20 times the glucocorticosteroid compound. preferable.
  • the salt one type of salt may be used, or two or more types of salts may be mixed and used.
  • the “physiologically acceptable polyol” used in the method for producing the nanoparticle of the glucocorticosteroid compound is not particularly limited as long as it is a polyol that can be ingested without causing any particular physiological problems.
  • Physiologically acceptable polyols are preferably those having low salt solubility, high water solubility, low freezing point and / or high flash point.
  • the physiologically acceptable polyol preferably has a high solubility in water.
  • the polyol used in the method for producing the nanoparticle of the glucocorticosteroid compound is preferably a polyol having a high viscosity.
  • the viscosity of such a polyol at 20 ° C. is, for example, 40 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and more preferably 80 mPa ⁇ s or more.
  • the upper limit of the viscosity at 20 ° C. of the polyol used in the method for producing the nanoparticle of the glucocorticosteroid compound is not particularly limited. For example, it can be selected from the range of 40 mPa ⁇ s to 5,000 mPa ⁇ s.
  • the amount of the physiologically acceptable polyol used in the method for producing glucocorticosteroid compound nanoparticles is preferably 0.5 to 100 times the mass of the organic compound to be pulverized, It is more preferably 1 to 10 times by mass.
  • the type of polyol to be used can be appropriately determined in consideration of the solubility of the organic compound to be finely pulverized.
  • one kind of polyol may be used as the polyol, or two or more kinds of polyols may be mixed and used.
  • the kneaded product of glucocorticosteroid compound, polyol and salt preferably has a high viscosity.
  • a method of increasing the viscosity of the kneaded product a method of using a mixture obtained by adding a viscosity modifier to a polyol or a method of adding a viscosity modifier alone separately from the polyol is preferable, and the grinding efficiency can be effectively increased. it can.
  • the viscosity modifier added to the polyol the above-mentioned substances can be used. The viscosity at 20 ° C.
  • the upper limit of the viscosity at 20 ° C. of the polyol to which the viscosity modifier of the present invention is added is not particularly limited, but can be selected, for example, from a range of 1,000 mPa ⁇ s to 5,000,000 mPa ⁇ s.
  • the pulverization apparatus used for wet pulverization of the glucocorticosteroid compound is a glucocorticosteroid compound, salt, polyol, and / or dispersion stable by mechanical means. Any agent that can knead and disperse the agent can be used without particular limitation.
  • the pulverizing apparatus include commonly used pulverizing apparatuses such as a kneader, a two-roll, a three-roll, a fret mill, a hoover muller, and a disk blade kneading and dispersing machine.
  • the pulverization temperature can be appropriately determined in consideration of a pulverized glucocorticosteroid compound, a pulverizer, and the like.
  • the pulverization temperature is not particularly limited, but is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 20 to 30 ° C., and most preferably ⁇ 10 to 25 ° C.
  • the pulverization time can be appropriately determined in consideration of the organic compound to be pulverized, the pulverizer, and the like.
  • the grinding time can be, for example, 1 to 50 hours, 2 to 30 hours, 3 to 20 hours, 4 to 18 hours, and 5 to 10 hours.
  • the desired finely divided glucocorticosteroid compound fine particles can be obtained without removing the salt and polyol used for the pulverization. Therefore, since a washing process is not required, a nanoparticle formulation can be produced more easily and inexpensively. Therefore, it can be produced by homogenizing a mixture of glucocorticosteroid compound, salt, polyol and / or viscosity modifier in a solvent using a homogenizer or the like.
  • the solvent used for homogenizing the mixture is a solvent in which polyols, salts and viscosity modifiers are easily dissolved, and finely ground glucocorticosteroid compounds are difficult to dissolve, and physiologically.
  • the solvent is not particularly limited as long as it is an acceptable solvent.
  • the solvent is preferably water, but a solvent other than water can also be used.
  • a solvent other than the water for example, an organic solvent such as acetic acid, methanol, and ethanol is mixed with water.
  • the homogenized mixture can be filtered as needed.
  • the filtration method is not particularly limited, and can be carried out by a known method usually used for filtering the content of the organic compound. Examples of the filtration method include a vacuum filtration method, a pressure filtration method, and an ultrafiltration membrane method.
  • the finely pulverized particles usually have a high surface energy, and thus are easily aggregated. Therefore, after removing salts and the like, the above-mentioned anti-aggregation agent may be added to prevent secondary aggregation.
  • One type of aggregation inhibitor may be used, or two or more types may be used in combination.
  • the solvent used for removing the salt and the like can be removed from the finely pulverized glucocorticosteroid compound fine particles obtained by performing a drying treatment.
  • the drying method is not particularly limited, and can be usually performed by a method used for drying an organic compound. Examples of the drying method include a vacuum drying method, a freeze drying method, a spray drying method, and a freeze spray drying method.
  • the drying temperature and drying time in the drying are not particularly limited, but the drying should be performed at a low temperature in order to maintain the chemical stability of the medical organic compound particles and prevent secondary aggregation of the particles. It is preferable to carry out by freeze-drying method, spray-drying method, freeze-drying drying method.
  • the average particle size of finely pulverized glucocorticosteroid compound fine particles obtained by the method for producing a glucocorticosteroid compound includes glucocorticosteroids contained in the above-described aqueous suspension or aqueous pharmaceutical composition of the present invention.
  • the average particle diameter of the compound nanoparticles can be the same.
  • the range of 90% diameter (D90) and 50% diameter (D50) of finely pulverized glucocorticosteroid compound fine particles obtained by the method for producing a glucocorticosteroid compound is also the above-described aqueous suspension or
  • the 90% diameter (D90) and 50% diameter (D50) of the glucocorticosteroid compound nanoparticles contained in the aqueous pharmaceutical composition can be the same.
  • average particle diameter or “Dv” means an arithmetic average diameter in a particle size distribution measured by a dynamic light scattering photon correlation method.
  • 50% diameter also referred to as median diameter, D50
  • 90% diameter means a particle diameter at a position of 90% when counting from 0 (minimum) to 100% (maximum) in order from the smallest particle diameter in the particle size distribution measured by the above measurement method ( D90).
  • “10% diameter” means a particle diameter at a position of 10% when counting from 0 (minimum) to 100% (maximum) in order from the smallest particle diameter in the particle size distribution measured by the above measurement method ( D10).
  • the measurement method by the dynamic light scattering photon correlation method and the calculation method of the particle size distribution are widely known in the art.
  • compositions characterized by including the nanoparticle of a glucocorticosteroid compound.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition for parenteral administration, and can be, for example, an injection or a topical preparation.
  • the kind of pharmaceutical composition is not particularly limited, and dosage forms include topical ophthalmic preparations (for example, eye drops), otic topical preparations (for example, ear drops), and nasal topical applications.
  • Formulation eg, nasal drops
  • injection eg, intravenous injection, subcutaneous injection, intramuscular injection, infusion
  • injection eg, intravenous injection, subcutaneous injection, intramuscular injection, infusion
  • these preparations can be prepared according to a conventional method.
  • the pharmaceutical composition of the present invention contains a dispersion stabilizer.
  • a dispersion stabilizer In the case of an injection, it is prepared by suspending nanoparticles of the glucocorticosteroid compound of the present invention in water. However, if necessary, it may be suspended in physiological saline or glucose solution, or dispersed. Agents, buffers and preservatives may be added.
  • the pharmaceutical composition of the present invention includes, for example, injections for intravenous administration, intramuscular administration, or subcutaneous administration, drops, transdermal absorbents, transmucosal absorbents, eye drops, ear drops, It can be prepared as a pharmaceutical composition for parenteral administration in the form of nasal agents, inhalants and the like.
  • the pharmaceutical composition of the present invention may contain a pharmacologically acceptable carrier (preparation additive).
  • a pharmacologically acceptable carrier preparation additive
  • the type of pharmaceutical additive used for the production of the pharmaceutical composition, the ratio of the pharmaceutical additive to the active ingredient, or the method for producing the pharmaceutical composition can be appropriately selected by those skilled in the art depending on the form of the composition. It is.
  • an inorganic or organic substance, or a solid or liquid substance can be used, and generally it can be blended in an amount of 1 to 90% by weight based on the weight of the active ingredient.
  • examples of such substances include lactose, glucose, mannitol, dextrin, cyclodextrin, starch, sucrose, magnesium aluminate metasilicate, synthetic aluminum silicate, sodium carboxymethylcellulose, hydroxypropyl starch, carboxymethylcellulose calcium, Ion exchange resin, methylcellulose, gelatin, gum arabic, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, PVA, light anhydrous silicic acid, magnesium stearate, talc, tragacanth, bentonite, bee gum, titanium oxide, sorbitan fatty acid ester, lauryl sulfate Sodium, glycerin, fatty acid glycerin ester, purified lanolin, glycerogelatin, polysorbate, ma Logol, vegetable oil, wax, liquid paraffin, white petrolatum, fluorocarbon, nonionic surfactant, propylene glycol, water, benzalkon
  • the aqueous suspension or pharmaceutical composition of the present invention can be included in the form of a kit together with instructions regarding the outer box, container, diluent, turbid agent, and / or preparation / administration method.
  • the aqueous suspension or pharmaceutical composition of the present invention is supplied as a kit, different components of the aqueous suspension or pharmaceutical composition are packaged in separate containers and included in one kit.
  • only one or more of the components of the aqueous suspension or pharmaceutical composition are included in the kit, and other components May be provided separately from the kit.
  • the necessary components are preferably mixed immediately before use in order to obtain the aqueous suspension or pharmaceutical composition of the present invention. .
  • the kit of the present invention can be the following kit: (A) A kit for preparing a pharmaceutical composition comprising an aqueous suspension containing nanoparticles of a glucocorticosteroid compound (b), further comprising a dispersion stabilizer, (a) The described kit; (C) The kit according to (b), wherein the dispersion stabilizer is one or more substances selected from POE ⁇ POP glycol, PVA, hydroxypropylmethylcellulose, and methylcellulose; (D) The kit according to any one of (a) to (c), which is a kit for preparing a pharmaceutical composition for parenteral administration; (E) The kit according to any one of (a) to (d), which is a kit for preparing an injection or a topical preparation.
  • a kit for preparing a pharmaceutical composition comprising an aqueous suspension containing nanoparticles of a glucocorticosteroid compound (b), further comprising a dispersion stabilizer, (a) The described kit; (C) The kit according
  • the present invention relates to an aqueous pharmaceutical composition containing glucocorticosteroid compound nanoparticles comprising mixing an aqueous suspension containing glucocorticosteroid compound nanoparticles and a diluent. It may be a preparation method.
  • composition of the present invention for example, injection, topical ophthalmic preparation (preferably eye drop), topical otic preparation (preferably ear drop), topical nasal preparation (preferably nasal drop) Agent), or a topical preparation for pulmonary application (preferably inhalant)
  • the pH and osmotic pressure are not particularly limited as long as they are acceptable as a topical preparation, but pH 5-9 0.5, more preferably pH 6-9, and even more preferably pH 7-9.
  • the osmotic pressure ratio of the preparation (other than an ointment) to physiological saline is, for example, 0.3 to 4.3, preferably 0.3 to 2.2, particularly preferably 0.5 to 1.5. Degree.
  • the pH and osmotic pressure can be adjusted by a method known in the art using a pH adjuster, an isotonic agent, salts and the like.
  • the pharmaceutical composition of the present invention can be appropriately prepared by a known method.
  • an aqueous suspension containing nanoparticles of a glucocorticosteroid compound in an appropriate diluent such as distilled water or purified water. It can be manufactured by mixing a liquid agent and optional ingredients, adjusting to the above osmotic pressure and pH, subjecting to high-pressure steam sterilization or filtration sterilization in a sterile environment, and aseptically filling a container that has been sterilized by washing. it can.
  • the pharmaceutical composition of the present invention can be used as a therapeutic or prophylactic agent for inflammatory diseases or infectious diseases.
  • the pharmaceutical composition of the present invention can be used for the treatment or prevention of inflammatory diseases or infectious diseases caused by infection. Therefore, the present invention provides an aqueous suspension characterized in that it contains nanoparticles of a glucocorticosteroid compound and a dispersion stabilizer for use as a medicament (a therapeutic or prophylactic agent for inflammatory diseases or infectious diseases). Includes solutions.
  • the inflammatory diseases or infectious diseases include systemic inflammatory diseases and infectious diseases, and local inflammatory diseases or infectious diseases.
  • Inflammatory diseases include allergic inflammatory diseases (eg, allergic rhinitis, allergic conjunctivitis, allergic dermatitis, allergic eczema, allergic asthma, allergic pneumonia) in addition to inflammatory diseases caused by infection. Is also included.
  • Systemic inflammatory diseases include superficial / deep skin infections, lymphatic vessels / lymphadenitis, mastitis, osteomyelitis, tonsillitis, pneumonia, pyelonephritis, urethritis, gonococcal infection, syphilis, Intrauterine infection, scarlet fever, diphtheria, whooping cough, secondary infection such as trauma / burn and surgery, pharyngeal / laryngitis, bronchitis, secondary infection of chronic respiratory lesions, pericoronitis, periodontitis, tetanus, Examples include systemic inflammatory diseases or infectious diseases such as cystitis, prostatitis, infectious enteritis, jaw inflammation, infectious arthritis, and gastritis.
  • the pharmaceutical composition of the present invention can be used to treat or prevent ocular inflammatory diseases and infectious diseases and various symptoms associated therewith.
  • Inflammatory and infectious diseases of the eye include eyelid symptoms including, for example, blepharitis, blephar conjunctivitis, meibomian adenitis, acute or chronic stye, chalazion, lacrimal inflammation, lacrimal adenitis, and acne rosacea; Conjunctival symptoms, including conjunctivitis, neonatal ophthalmitis, and trachoma; corneal ulcers, superficial keratitis and keratitis, keratoconjunctivitis, foreign body, and corneal symptoms including postoperative infection; and endophthalmitis, infectiousness Can include uveitis and anterior chamber and uveal symptoms including postoperative infection.
  • Infectious disease prevention includes administration before surgery, such as surgery, and before contact with persons with infectious symptoms.
  • surgery such as blepharoplasty, removal of chalazion, pelvic suture, surgery for cannulacuri or lacrimal drainage system, and other surgical procedures involving the eyelid and lacrimal organs Treatment; removal of pterygium, conjunctival fat spots and tumors, traumatic wounds such as conjunctival transplants, cuts, burns and abrasions, and conjunctival surgery; corneas including foreign body removal, keratotomy and corneal transplantation Refractive index surgery including photorefractive index treatment; Glaucoma surgery including bleb filtration; Anterior chamber puncture; Irisectomy; Cataract surgery; Retinal surgery; and administration before surgery related to extraocular muscles be able to. Also, prevention of neonatal ophthalmitis is included in the prevention herein.
  • the pharmaceutical composition of the present invention can be used for the treatment or prevention of various symptoms associated with inflammatory diseases or infectious diseases of the ear.
  • inflammatory diseases or infectious diseases of the ear include otitis media or otitis externa.
  • Infection prophylaxis includes pre-surgical treatment as well as treatment prior to a potentially infected condition (eg, contact with a suspected or infected person).
  • prophylactic situations include surgical procedures involving ear trauma or injury and other surgery or treatment prior to treatment.
  • the pharmaceutical composition of the present invention can treat or prevent various symptoms associated with nasal inflammatory diseases or infectious diseases.
  • nasal in the terms “nasal inflammatory disease or infectious disease” and “topical preparation for nasal application” means the entire upper respiratory tract, for example, nasal cavity, nasopharyngeal throat , Including the pharynx and larynx.
  • nasal inflammatory diseases or infectious diseases include sinusitis, allergic rhinitis, and rhinitis.
  • the pharmaceutical composition of the present invention can be used for treatment or prevention of various symptoms associated with pulmonary inflammatory diseases or infectious diseases.
  • lung in the terms of “pulmonary inflammatory disease or infectious disease” and “topical preparation for pulmonary application” means the entire lower respiratory tract, for example, trachea, bronchi, Includes bronchioles and lungs.
  • pulmonary inflammatory diseases or infectious diseases include pneumonia, bronchitis, allergic pneumonia, and asthma.
  • the pharmaceutical composition of the present invention can be used for the treatment or prevention of infectious diseases caused by various bacteria or parasites (for example, infectious diseases of the eyes, ears, nose or lungs).
  • infectious diseases caused by various bacteria or parasites (for example, infectious diseases of the eyes, ears, nose or lungs).
  • microorganisms include, for example, Staphylococcus, including Staphylococcus aureus and Staphylococcus epidermidis; Streptococcus pneumoniae and Streptococcus pyogenes, and Streptococcus, including Streptococcus of groups C, F and G, and Streptococcus of Viridans H.
  • influenzae including biotype III; flexible gonococcus; Moraxella cataralis; Neisseria, including Neisseria gonorrhoeae and Neisseria meningitidis; Chlamydia, including Trachoma Chlamydia, Parrot disease Chlamydia, and Chlamydia pneumoniae; Mycobacterium genus including intracellular complexes and atypical mycobacteria including Mycobacterium marinum, Mycobacterium fortuitum and Mycobacterium tuberculosis; Pertussis; Campylobacter jejuni; Legionella pneumophila; Bacteroides Biusu; Clostridium perfringens; Peptostreptococcus species; Borrelia burgdorferi; pneumonia mycoplasma, Treponema pallidum, Ureaplasma-Urearichikamu; Toxoplasma; can be mentioned, as well as Nosema; malaria.
  • the pharmaceutical composition of the present invention can be used for treatment or prevention of inflammatory diseases or infectious diseases by administering an effective amount to a patient in need thereof. Therefore, the present invention administers an effective amount of a pharmaceutical composition containing an aqueous suspension characterized by containing nanoparticles (and dispersion stabilizer) of a glucocorticosteroid compound to a patient in need thereof.
  • the present invention relates to a method for treating or preventing inflammatory diseases or infectious diseases.
  • the target patient means any animal classified as a mammal, but is not limited thereto. Examples include humans; companion animals such as dogs, cats and rabbits; livestock animals such as cows, pigs, sheep and horses, preferably humans.
  • the dosage and frequency of administration of the pharmaceutical composition of the present invention are not particularly limited, depending on conditions such as prevention and / or progression of the disease to be treated and / or purpose of treatment, type of disease, patient weight and age, etc. It is possible to select appropriately according to the judgment of the doctor.
  • the dose per day for an adult is about 0.01 to 1000 mg (active ingredient weight), and can be administered once or several times a day.
  • the administration route is injection or local administration, and examples thereof include intravenous injection, intramuscular injection, or subcutaneous injection, instillation, instillation, instillation, instillation, transdermal, transmucosal, inhalation and the like.
  • the content of the active ingredient in the pharmaceutical composition of the present invention can be 0.001% to 10%, 0.01% to 1%, or 0.05% to 0.1%.
  • a daily dose of 0.001 to 100 mg (active ingredient weight) can be continuously or intermittently administered to an adult.
  • the aqueous pharmaceutical composition of the present invention is for topical administration, it is directly administered to the affected area, the surrounding area of the affected area, or an organ including the affected area.
  • the pharmaceutical composition of the present invention can be a topical application for the eye, a topical application for the ear, a topical application for the nose, or a topical application for the lung.
  • the pharmaceutical composition of the present invention is a preparation for topical administration, it can be applied on a daily basis, or can be applied any number of times after a local inflammatory disease or infectious disease has developed.
  • the application amount can be appropriately set according to the symptoms and the like, usually about 1 to 6 times per day, for example, once, twice, three times, four times, five times or six times per day. Apply 1 to 3 drops at a time.
  • the administration period can be any period until symptoms are sufficiently resolved, and can be, for example, 2 weeks to 1 year.
  • Example 1 Examination of pulverization method of clobetasol propionate
  • the average particle size (Dv), center particle size (D50), and 90% particle size (D90) of the obtained particles were measured using a particle size distribution analyzer (Delsa Nano S, manufactured by Beckman Coulter, Inc.).
  • the particle size distribution of clobetasol propionate is 285 nm in average particle size (Dv), center
  • the particle diameter (D50) was 231 nm
  • the 90% particle diameter (D90) was 433 nm.
  • Example 2 Grinding under conditions of addition of anhydrous citric acid Grinding was performed at 5 ° C. for 7 hours under the same conditions as in Example 1 (1) except that 0.8 g of anhydrous citric acid (manufactured by Junsei Chemical Co., Ltd.) was added. Thereafter, the pulverized kneaded product (dough) was dispersed in the same manner as in Example 1, and the particle size distribution of clobetasol propionate was measured. As a result, the average particle size (Dv) was 260 nm, the center particle size (D50) was 222 nm, and 90%. The particle diameter (D90) was 363 nm.
  • anhydrous citric acid manufactured by Junsei Chemical Co., Ltd.
  • Example 3 Grinding under hydrogenated soybean lecithin addition conditions Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 1 (1) except that 10 g of hydrogenated soybean lecithin (Phospholipon 90H, manufactured by Lipoid) was added. It was. As a result, the particle size distribution of clobetasol propionate was an average particle size (Dv) of 147 nm, a central particle size (D50) of 124 nm, and a 90% particle size (D90) of 210 nm.
  • Dv average particle size
  • D50 central particle size
  • D90 90% particle size
  • Example 1 (4) Grinding 1 with anhydrous citric acid and hydrogenated soybean lecithin Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 1 (1) except that 0.8 g of anhydrous citric acid (manufactured by Junsei Kagaku) and 5 g of hydrogenated soybean lecithin (Phospholipon 90H, Lipoid) were added. It was. As a result, the particle size distribution of clobetasol propionate was an average particle size (Dv) of 166 nm, a central particle size (D50) of 138 nm, and a 90% particle size (D90) of 241 nm.
  • Dv average particle size of 166 nm
  • D50 central particle size
  • D90 90% particle size
  • Example 1 Grinding under conditions of adding anhydrous citric acid and hydrogenated soybean lecithin 2 Grinding was carried out at 5 ° C. for 7 hours under the same conditions as in Example 1 (1) except that 0.8 g of anhydrous citric acid (manufactured by Junsei Kagaku) and 10 g of hydrogenated soybean lecithin (Phospholipon 90H, Lipoid) were added. Thereafter, the pulverized kneaded product (dough) was dispersed in the same manner as in Example 1, and the particle size distribution of clobetasol propionate was measured. As a result, the average particle size (Dv) was 101 nm, the center particle size (D50) was 87 nm, and 90%. The particle diameter (D90) was 141 nm.
  • Example 1 (6) Grinding under conditions of addition of anhydrous citric acid and hydrogenated soybean lecithin 3 Grinding at 5 ° C. for 7 hours under the same conditions as in Example 1 (1) except that 0.8 g of anhydrous citric acid (manufactured by Junsei Kagaku) and 20 g of hydrogenated soybean lecithin (Phospholipon 90H, Lipoid) were added. It was. Thereafter, the pulverized kneaded product (dough) was dispersed in the same manner as in Example 1, and the particle size distribution of clobetasol propionate was measured. As a result, the average particle size (Dv) was 144 nm, the center particle size (D50) was 121 nm, and 90%. The particle diameter (D90) was 214 nm.
  • VS-100III manufactured by ASONE
  • ASONE a particle size distribution measuring device
  • Dv average particle size of 137 nm
  • the particle diameter (D50) was 112 nm
  • the 90% particle diameter (D90) was 209 nm.
  • the particle size distribution of clobetasol propionate was The average particle size (Dv) was 147 nm, the central particle size (D50) was 121 nm, and the 90% particle size (D90) was 228 nm.
  • Table 1 shows the pulverizing conditions (1) to (9) and the particle diameters obtained as a result of the pulverization. From the results of this experiment, it was shown that the grinding formula (5) has the best grinding performance.
  • Example 2 Formulation study of clobetasol propionate (1) Examination of dispersant 0.1 g of pulverized kneaded product (dough) obtained in Example 1 (4) and aqueous solutions of each dispersant described in Table 2 5 g was weighed into a 50 mL screw tube and uniformly dispersed using an ultrasonic device (MODEL VS-100III, manufactured by ASONE), and 45 g of purified water was added to make a dispersion 50 g. Each obtained dispersion is stored at room temperature (about 25 ° C.) for 1 day, and the stability of the dispersion is evaluated by visual observation of the clarity and precipitation of each dispersion immediately after dispersion and after 1 day. did.
  • dough pulverized kneaded product obtained in Example 1 (4) and aqueous solutions of each dispersant described in Table 2 5 g was weighed into a 50 mL screw tube and uniformly dispersed using an ultrasonic device (MODEL VS-100III
  • Table 4 shows the results of Example 2 (3).
  • the storage temperature “cycle (5 ° C.-25 ° C.)” in Table 4 means that after storing at 5 ° C. for 6 hours, storing at 25 ° C. for 6 hours was repeated.
  • the eye drops prepared using benzalkonium chloride as a preservative maintained clearness not only immediately after preparation but also after 7 days. Was good.
  • Example 3 Examination of filter sterilization (1) Preparation of eye drops 1 To a 1 L beaker, add 6.0 g of the pulverized kneaded product (dough) obtained in Example 1 (5), 408 g of 0.01% Unilube 70DP-950B aqueous solution and 81.6 g of 1.0% Kuraray Poval 217C aqueous solution, After roughly dispersing using a sonic device (MODEL VS-100III, manufactured by ASONE), it was uniformly dispersed using a high-pressure homogenizer (L01-YH1, 90 MPa ⁇ 5 passes, manufactured by Sanwa Engineering Co., Ltd.).
  • a high-pressure homogenizer L01-YH1, 90 MPa ⁇ 5 passes, manufactured by Sanwa Engineering Co., Ltd.
  • Filter name Optiscale 25 (prefilter 0.5 ⁇ m / main filter 0.22 ⁇ m) Optiscale 25 Capsule (prefilter 0.2 ⁇ m / main filter 0.22 ⁇ m)
  • Filter material Polyvinylidene fluoride (PVDF) Effective filtration area: 3.5 cm 2 Test pressure: 0.18 MPa
  • test method was performed by the Vmax method in which the permeation flow rate of the eye drop was measured over time, and filtration was not performed until the filter was completely clogged, and the maximum throughput of the filter could be predicted.
  • the results are shown in Table 5.
  • the amount of permeation in Table 5 is a value obtained by converting the amount of each eyedrop permeated through the filter into L / m2.
  • the permeability was measured by HPLC for the concentration of clobetasol propionate before and after filtration, and the concentration after filtration relative to before filtration was expressed as a percentage. From the results shown in Table 5, it was found that filter filtration sterilization was possible for any particle size.
  • the eye drop prepared in Example 3 (1) having the smallest particle size of clobetasol propionate after pulverization showed a high value in both permeation amount and transmittance.
  • Example 4 Grinding of clobetasol propionate (1) Preparation of nanoparticles with an average particle size of 100 to 150 nm Clovenazole propionate with an average particle size of 38,390 nm was placed on a water-cooled 1.0 L vertical kneader (Inoue Seisakusho).
  • the particle size distribution of clobetasol propionate is an average particle size (Dv) of 101 nm, 10 % Particle diameter (D10) 56 nm, central particle diameter (D50) 87 nm, and 90% particle diameter (D90) 141 nm.
  • the particle size distribution of clobetasol propionate was as follows: average particle size (Dv) 637 nm, 10% particle size (D10) 233 nm, center particle The diameter (D50) was 475 nm, and the 90% particle diameter (D90) was 1129 nm.
  • Example 5 Preparation of nano-ized clobetasol propionate ophthalmic suspension
  • Grinding prepared in Example 4 (1) 2.4 g of kneaded product (dough), 150 g of 0.01% unilube aqueous solution and 30 g of 1.0% PVA (Merck) aqueous solution are weighed in a beaker, and an ultrasonic device (MODEL VS-100III, manufactured by ASONE) is used.
  • the mixture was uniformly dispersed for about 5 minutes to obtain a crude dispersion, and the crude dispersion was treated with a high-pressure homogenizer (manufactured by Sanwa Kogyo Co., Ltd., L01-YH1) to obtain a dispersion. Further, 2.5 g of 0.1% benzalkonium chloride (BAC) aqueous solution and 2.5 g of 3.0% hydroxypropylmethylcellulose (HPMC) aqueous solution were added, and 500 mM sodium citrate was gradually added to adjust the pH to 7.0. did. Thereafter, water for injection was added to make a total volume of 417.6 g to prepare a 0.05% nano-drop ophthalmic suspension (average particle size is about 100 nm). The osmotic pressure ratio of the ophthalmic suspension was 0.8.
  • BAC benzalkonium chloride
  • HPMC hydroxypropylmethylcellulose
  • Example 5 (1) to (3) The composition of each 0.05% nanonized clobetasol propionate ophthalmic suspension prepared in Example 5 (1) to (3) is shown in Table 6 below.
  • Example 6 Intraocular pharmacokinetic test
  • a rabbit Kbl: JW, male
  • N 3
  • the rabbit's lower eyelid was gently separated, and the test substance was instilled into the conjunctival sac of the left eye using a pipette (single ophthalmic administration, 50 ⁇ L / eye). After instillation, the upper and lower eyelids were gently combined and held for about 2 seconds.
  • Pretreatment of aqueous humor 20 ⁇ L of methanol and 20 ⁇ L of internal standard (prednisolone) solution were added to 25 ⁇ L of the collected aqueous humor and stirred sufficiently. Further, 100 ⁇ L of acetonitrile was added, and the mixture was sufficiently stirred. After centrifugation (13100 ⁇ g, 4 ° C., 5 minutes), 10 ⁇ L of the supernatant was injected into LC-MS / MS.
  • prednisolone internal standard
  • conjunctival pretreatment The collected conjunctiva was homogenized by adding 9 times its volume of ultrapure water to its wet weight. 25 ⁇ L of methanol and 20 ⁇ L of internal standard (prednisolone) solution were added to 25 ⁇ L of the homogenate and stirred sufficiently. Further, 100 ⁇ L of acetonitrile was added, and the mixture was sufficiently stirred. After centrifugation (13100 ⁇ g, 4 ° C., 5 minutes), 20 ⁇ L of the supernatant was injected into LC-MS / MS.
  • prednisolone internal standard
  • the time course of the drug concentration in the aqueous humor is shown in FIG. 1 and Table 7, and the drug in the conjunctiva.
  • the change in concentration with time is shown in FIG.
  • the drug concentration in the aqueous humor was dependent on the particle size. That is, as the particle size decreased, the drug concentration in the aqueous humor showed a tendency to increase. This indicates that the smaller particle size is more suitable for the transfer of instilled nano-ized clobetasol propionate into aqueous humor.
  • the drug concentration in the conjunctiva has a tendency to depend on the particle size, indicating that the smaller particle size is more suitable for the transfer of the instilled nano clobetasol propionate to the conjunctiva. It was.
  • Example 7 Examination of influence of thickener in nanoized ophthalmic suspension From Example 6, it was shown that the average particle diameter of nanoized clobetasol propionate is about 100 nm. Intraocular pharmacokinetic studies were conducted by changing the viscosity of the nano-ophthalmic suspension by adopting various thickeners in ophthalmic suspensions containing nano-ized clobetasol propionate with an average particle size of about 100 nm. I did it.
  • ophthalmic suspension had a viscosity of about 2 mPa ⁇ S.
  • Nano-ized Eye Drop Suspension R Example 7 except that “1.0 g HPMC (60SH-50) aqueous solution 201 g” was changed to “1.0% MC (SM-100) aqueous solution 134 g”. In the same manner as in (1), 0.05% nano-ized eye drop suspension R was prepared. The ophthalmic suspension had a viscosity of about 2 mPa ⁇ S.
  • Table 9 shows the composition of each 0.05% nanoized clobetasol propionate ophthalmic suspension prepared in Examples 7 (1) to (4).
  • Intraocular pharmacokinetics test The intraocular pharmacokinetics test of the nanoized ophthalmic suspension prepared in Examples 7 (1) to (4) was performed by the method described in Example 6.
  • FIG. 3 and Table 10 show the change over time in the drug concentration in the aqueous humor
  • FIG. 4 and Table 11 show the change over time in the drug concentration in the conjunctiva. From the results shown in FIG. 3, it was found that the higher the viscosity of the ophthalmic suspension, the higher the transferability to the aqueous humor. From the results shown in FIG. 4, it was revealed that the higher the viscosity of the ophthalmic suspension, the higher the initial (15 minutes later) transferability to the conjunctiva.
  • Example 8 Medicinal effect test of nano-sized clobetasol ophthalmic suspension in rabbit BSA-induced uveitis model (1) Grinding of clobetasol propionate Establish clobetasol propionate in the same manner as in Example 4 (1). , Crubetasol propionate having an average particle size (Dv) of 132 nm, a 10% particle size (D10) of 65 nm, a central particle size (D50) of 109 nm, and a 90% particle size (D90) of 186 nm (dough ) was produced.
  • Dv average particle size
  • D10 10% particle size
  • D50 central particle size
  • D90 90% particle size
  • control saline solution
  • test substance 0.05% nano clobetasol propionate ophthalmic suspension prepared in (2) above
  • positive control substance 0.01% fluorometholone ophthalmic solution, 50 ⁇ L of a commercially available product
  • the outer eye area (outside the cornea) was observed according to Yamauchi et al.'S eye inflammation scoring criteria (Yamauchi Hideyasu et al. (1973), Bulletin of Japanese Ophthalmology 24, 969-979).
  • Yamauchi et al.'S eye inflammation scoring criteria Yamauchi Hideyasu et al. (1973), Bulletin of Japanese Ophthalmology 24, 969-979).
  • inflammatory symptoms in the inner eye were scored to evaluate the anti-inflammatory effect.
  • 1.25% BSA physiological saline was injected from the auricular vein at a dose of 2 mL / kg to induce uveitis (second time). The anti-inflammatory effect was evaluated by scoring inflammatory symptoms in the inner and inner eyes.
  • Example 9 Drug efficacy test in rat croton-induced conjunctivitis model (1) Preparation of 0.1% nanonized clobetasol propionate ophthalmic suspension Milled kneaded product (dough) 4 prepared in Example 8 (1) above .2 g, 150 g of 0.01% polyoxyethylene polyoxypropylene aqueous solution and 30 g of 1.0% PVA aqueous solution were weighed in a beaker, and the dough was dispersed using an ultrasonic device (MODEL VS-100III, manufactured by ASONE).
  • an ultrasonic device MODEL VS-100III, manufactured by ASONE
  • the crude dispersion was treated five times with a high-pressure homogenizer (manufactured by Sanwa Kogyo Co., Ltd., L01-YH1) to obtain a dough dispersion. Further, 2.4 g of 0.1% benzalkonium chloride aqueous solution and 48.3 g of 1.0% methylcellulose aqueous solution were added, and 500 mM sodium citrate aqueous solution was gradually added to adjust the pH to 7.0. Thereafter, water for injection was added to make a total amount of 241.4 g, and a 0.1% nanonized clobetasol propionate ophthalmic suspension was prepared. The composition and physical properties of the ophthalmic suspension are shown in the following table.
  • Inflammation was induced by instilling 10% croton oil ethanol solution (inflammation agent) in both eyes at 5 ⁇ L / site for a total of 3 times 40 minutes, 100 minutes and 160 minutes after administration of the second inflammatory agent. .
  • 10% croton oil ethanol solution inflammation agent
  • the rats were euthanized by cervical dislocation under isoflurane anesthesia, and the conjunctiva of both eyes was collected and weighed.
  • the anti-inflammatory effect of the test substance was evaluated by comparing with the conjunctival weight of the inflammation control group.
  • Example 10 Drug efficacy test in rat carrageenin-induced conjunctival edema model (1) Preparation of 0.1% nano clobetasol propionate ophthalmic suspension Milled kneaded product (dough) prepared in Example 8 (1) above 4.3 g, 150 g of 0.01% polyoxyethylene polyoxypropylene aqueous solution and 30 g of 1.0% PVA aqueous solution were weighed in a beaker, and the dough was removed using an ultrasonic device (MODEL VS-100III, manufactured by ASONE).
  • dough nano clobetasol propionate ophthalmic suspension Milled kneaded product (dough) prepared in Example 8 (1) above 4.3 g, 150 g of 0.01% polyoxyethylene polyoxypropylene aqueous solution and 30 g of 1.0% PVA aqueous solution were weighed in a beaker, and the dough was removed using an ultrasonic device (MODEL VS-100III, manufactured by AS
  • Dispersion was made into a coarse dispersion, and the coarse dispersion was treated five times with a high-pressure homogenizer (manufactured by Sanwa Kogyo Co., Ltd., L01-YH1) to obtain a dough dispersion. Further, 2.4 g of 0.1% benzalkonium chloride aqueous solution and 47.9 g of 1.0% methylcellulose aqueous solution were added, and 500 mM sodium citrate aqueous solution was gradually added to adjust the pH to 7.0. Thereafter, water for injection was added to make the total amount 239.5 g, and a 0.1% nano clobetasol propionate ophthalmic suspension was prepared. The composition and physical properties of the ophthalmic suspension are shown in the table below.
  • a conjunctival edema model was prepared by subcutaneously administering 50 ⁇ L of a 1% carrageenan physiological saline solution (flammable substance) to the right upper eyelid conjunctiva under isoflurane anesthesia 15 minutes after instillation.
  • the rats were euthanized by exsanguination from the abdominal aorta under isoflurane anesthesia, the edema site including the right eyeball and the accessory lacrimal gland (Harder's gland) was removed, and the right eyelid conjunctiva was isolated and The weight was measured.
  • the anti-inflammatory effect was evaluated by comparing the obtained eyelid conjunctival weight.
  • FIG. 9 shows the results of the weight of the eyelid conjunctiva. From these results, the nano-ized clobetasol propionate ophthalmic suspension showed a concentration-dependent anti-inflammatory effect, while the 0.1% nano-clobetasol propionate ophthalmic suspension was 0.1% fluorometholone as a positive control. It became clear that the anti-inflammatory effect was almost the same as that of eye drops.
  • the obtained pulverized kneaded product (dough) was dispersed with a dispersant in the same manner as in Example 1 (1) to obtain a suspension, and the particle size distribution of clobetasol propionate was measured.
  • the average particle size (Dv) was 132 nm, 10 % Particle diameter (D10) 67 nm, central particle diameter (D50) 110 nm, 90% particle diameter (D90) 184 nm.
  • durezol registered trademark
  • test substance prepared in the above (4) 0.05% ophthalmic suspension
  • FIG. 10 shows the results of the aqueous humor PGE2 concentration (anterior ocular segment evaluation)
  • FIG. 11 shows the results of the vitreous PGE2 concentration (posterior ocular segment evaluation).
  • the nano-ized clobetasol propionate ophthalmic suspension of the present invention is similar to the positive control durezol (registered trademark) for uveitis (anterior ocular segment) by instilling in a rabbit LPS-induced uveitis model It became clear to show the anti-inflammatory action.
  • FIG. 12 shows the results of protein concentration in the anterior aqueous humor. From this result, the nano-ized clobetasol propionate ophthalmic suspension (0.002%, 0.01% and 0.05%) of the present invention is used as a positive control by instilling in a rabbit anterior chamber puncture inflammation model. It became clear that it showed the anti-inflammatory effect similar to durezol (trademark) (0.05% diflupnate).
  • Example 13 Medicinal effect test of nano clobetasol ophthalmic suspension in rabbit LPS-induced uveitis model
  • Drug effect test in rabbit LPS-induced uveitis model Rabbit (Kbs: JW) pentobarbital sodium (Sonompentyl) Is administered through the auricular vein, and 0.4% oxyprocaine hydrochloride (Benoxyal ophthalmic solution) is instilled into both eyes.
  • 0.02 mL of LPS Lipopolysaccharide, from E. ColiO55: sigma
  • Instillation is 50 ⁇ L of a control (saline), a positive control substance (durezol: 0.05% diflupdatedophthalmic emulsion, manufactured by Alcon Laboratories) and a test substance (0.05% ophthalmic suspension) prepared in Example 11 (4).
  • a control saline
  • a positive control substance durezol: 0.05% diflupdatedophthalmic emulsion, manufactured by Alcon Laboratories
  • test substance 0.05% ophthalmic suspension
  • the rabbit was euthanized by overdose of pentobarbital sodium (Sonompentyl), the eyeball was removed, the vicinity of the sclera-corneal junction was incised, and the vitreous body was collected with a 1 mL syringe.
  • the concentration of PGE2 in the collected sample was measured by an ELISA method (Prostaglandin E2 Express ELISA Kit: cayman).
  • FIG. 13 shows the results of PGE2 concentration in the vitreous body (rear eye part evaluation).
  • concentration of PGE2 in the vitreous body of the control was 345.6 pg / ml.
  • the positive control durezol instilled twice daily and four times daily showed a trend of improvement with vitreous PGE2 concentrations of 256.35 pg / ml and 179.4 pg / ml, respectively.
  • the instillation twice daily and four times daily instillation of the nanoized clobetasol propionate ophthalmic suspension of the present invention showed vitreous PGE2 concentrations of 219.2 pg / ml and 167.6, respectively, and more than durezol Excellent anti-inflammatory effect.
  • the nanonized clobetasol propionate ophthalmic suspension of the present invention is instilled in a rabbit LPS-induced uveitis model, compared to the positive control durezol, b. i. d (instilled twice daily) and q. i. It became clear that both showed high anti-inflammatory action in d (instillation 4 times a day).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

【課題】グルココルチコステロイド化合物を有効成分として含有する水性懸濁液を提供することを目的とする。具体的には,実用化可能なグルココルチコステロイド化合物を有効成分として含有する医薬組成物を提供することを目的とする。 【解決手段】本発明は,グルココルチコステロイド化合物のナノ微粒子および分散安定剤を含有することを特徴とする水性懸濁液剤,ナノ微粒子の平均粒子径が300nm以下でD90粒子径が450nm以下である水性懸濁液剤,該水性懸濁液を含有する非経口投与用医薬組成物,注射剤,点眼剤又は点耳剤,より具体的には,眼の炎症性疾患の治療又は予防のための点眼剤,又は,耳の炎症性疾患の治療又は予防のための点耳剤を提供するものである。

Description

グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤 クロスリファレンス
 本出願は、2015年5月8日に日本国において出願された特願2015-095610号に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。
 本発明は,グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤及びその利用に関するものである。
 グルココルチコステロイドは疎水性であることから,従来は水性懸濁液として提供されてきた。しかし,グルココルチコステロイド化合物の水性懸濁液は含有するステロイド粒子が時間の経過と共に沈殿することから,患者は使用時に容器を振って活性成分を液相中に均一に分散させなければならなかった。また,患者が使用時に必ず容器を振ったにもかかわらず,懸濁液中の粒子が凝集して塊となりやすく,薬剤の粒径は増加することにより,均一性が失われやすいものであった。このように,分散が均一でなくなることで,予定されていた投与量が投与されず,炎症や痛みの抑制が不十分となるという問題があった。
 そこで,ステロイドにおけるこのような問題を解決する方法の一つとして,エマルジョン製剤が提案されている(特許文献1,非特許文献1,2)。例えば,ジフルプレドナートの水中油滴(O/W型)エマルジョン製剤(Durezol(登録商標):0.05% difluprednate製剤)は,その保存状態及び使用前の振盪の有無に関わらず,安定して均一な薬剤を患部に提供できることが確認されている。
 しかし,水中油滴(O/W型)エマルジョン製剤は,油性の溶媒を使用する必要があることから,異物感,充血などの刺激作用が認められるという問題があった。よって,油性溶媒を使用しなくとも,均一性を保つことができるグルココルチコステロイドの水性製剤が求められていた。
 また,デキサメタゾンリン酸エステルナトリウムのように,化合物の構造を親水性とすることにより,水中に溶解させることが試みられている。しかし,水中に溶解させる製剤は,溶解度による制約から含有させることができる有効成分濃度に限界があるという問題があった。
 一方,難溶性薬剤を含有する水性液剤として,水性懸濁液中の有効成分の粒子をナノサイズとしたナノ懸濁液剤(nanosuspensions)が提案されている。ナノ懸濁液剤は,粒子径がナノメートルサイズまで小さいことで比表面積を実質的に広げることにより,溶解度が増すことで血清レベルがより早く最大になること,様々な投与形態に提供可能であること,含有させる有効成分量を高めることができることが知られている。これまで,グルココルチコステロイド化合物のナノ懸濁液剤として,ガラスビーズを用いたWet millで製造したフルチカゾン(D90 0.4μm)及びブデソニド(D90 0.4μm)を含有する水性懸濁液剤が4℃で5週間後にも均一性,結晶構造,粒子径を維持していることが開示されている(非特許文献3)。また,ナノ粒子形成のボトムアップアプローチとして,グルココルチコステロイド化合物のヒドロコルチゾンを沈殿により平均粒径が約300nmのナノ粒子を生成させて水性懸濁液とする方法が報告されている(非特許文献4)。しかし,この報告においては眼圧上昇及び安定性のいずれにおいても,トップダウンアプローチ(milling)の方が優れていたことが示されている。また,主に経鼻投与に用いられるコルチコステロイド(具体的には,フランカルボン酸モメタゾン)のナノ懸濁液剤として,D50が50~500nmのコルチコステロイド,親水性ポリマー,湿潤剤,及び,錯化剤を含む製剤が開示されている(特許文献2)。その他,オートクレーブ滅菌可能なグルココルチコステロイド化合物の水性懸濁液剤が報告されている(特許文献3)。
国際公開WO97/05882号公報 米国公開2011/0008453号公報 国際公開WO2007/089490号公報
Eric D Donnenfeld,Clinical Opthalmology(2011)5:811-816 Hetal K. Patelら,Colloids and Surfaces:Biointerfaces(2013)102:86-94 Jerry Z. Yangら,Journal of Pharmaceutical Sciences(2008)97(11):4869-4878 Hany S.M. Aliら,Journal of Controlled Release(2011)149:175-181
 このような難溶性薬物を含有する水性液剤に関する種々の検討にも関わらず,クロベタゾールプロピオン酸エステル等のグルココルチコステロイド化合物を含有する注射剤,点眼剤や点耳剤などの水性懸濁液剤の実用化は未だに困難であり,経時安定性および分散安定性に優れた,グルココルチコステロイド化合物を有効成分とする注射剤及び局所投与用水性懸濁液剤,特には点眼剤及び点耳剤の開発が望まれている。
 よって,一態様において,本発明は,経時安定性および分散安定性に優れた,グルココルチコステロイド化合物を有効成分として含有する水性懸濁液を提供することを目的とする。より具体的には,本発明は,グルココルチコステロイド化合物を有効成分として含有し,澄明性,分散性,保存安定性に優れた,注射剤,点眼剤,点耳剤,点鼻剤,及び/又は吸入剤等の水性医薬組成物を提供することを目的とする。更に本発明は,角膜滞留性及び房水移行性に優れたグルココルチコステロイド化合物を有効成分として含有する点眼剤を提供することを目的とする。また,本発明は,グルココルチコステロイド化合物としてクロベタゾールプロピオン酸エステルを有効成分として含有する前記水性懸濁液又は水性医薬組成物を提供することを目的とする。
 本発明者らは鋭意検討した結果,グルココルチコステロイド化合物のナノ微粒子,及び必要に応じて,分散安定剤,界面活性剤,凝集防止剤,及び/又は粘度調整剤を含有する水性懸濁液剤が,澄明性,(長期)分散性,保存安定性,角膜滞留性,及び房水移行性に優れ,水性医薬組成物として優れることを見出した。特に,本発明者らは,グルココルチコステロイド化合物のナノ微粒子,及び必要に応じて,分散安定剤,界面活性剤,凝集防止剤,及び/又は粘度調整剤を含有する水性懸濁液剤が,異物感,充血などの刺激作用を有する有機化合物を含むことなく,優れた澄明性,(長期)分散性,及び保存安定性を達成することができることを見出し,これにより,刺激性が少ないにもかかわらず,安定して均一な薬剤を患部に提供でき、また抗炎症効果の高いグルココルチコステロイド化合物の水性製剤を完成させた。
 より具体的には,本発明は以下に関する:
(1) グルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする水性懸濁液剤。
(2) 前記ナノ微粒子の平均粒子径が300nm以下でD90粒子径が450nm以下である(1)記載の水性懸濁液剤。
(3) 前記ナノ微粒子が,グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオールと,表面修飾剤とを混合することにより製造された微粒子であることを特徴とする,(1)又は(2)に記載の水性懸濁液剤。
(4) 前記グルココルチコステロイド化合物が,プロピオン酸クロベタゾール,酢酸ジフロラゾン,プロピオン酸デキサメタゾン,ジフルプレドナード,フランカルボン酸モメタゾン,吉草酸ジフルコルトロン,酪酸プロピオン酸ベタメタゾン,フルオシノニド,酪酸プロピオン酸ヒドロコルチゾン,プロピオン酸ベクロムタゾン,プロピオン酸デプロドン,吉草酸ベタメタゾン,吉草酸デキサメタゾン,吉草酸酢酸プレドニゾロン,フルオシノロンアセトニド,酪酸ヒドロコルチゾン,酪酸クロベタゾン,プロピオン酸アルクロメタゾン,トリアムシノロンアセトニド,フルメタゾンビバル酸エステル,プレドニゾロン,及びヒドロコルチゾンから選択される1種類以上の物質である,(1)~(3)のいずれか1項に記載の水性懸濁液剤。
(5) 更に,分散安定剤を含有することを特徴とする,(1)~(4)のいずれか1項に記載の水性懸濁液剤。
(6) 前記分散安定剤がポリオキシエチレンポリオキシプロピレングリコール及び/又はポリビニルアルコールである,(5)に記載の水性懸濁液剤。
(7) 更に,粘度調整剤を含有することを特徴とする,(1)~(6)のいずれか1項に記載の水性懸濁液剤。
(8) 前記粘度調整剤が,メチルセルロース,ヒドロキシルプロピルメチルセルロース,及びポリビニルアルコールから選択される1種類以上の物質である,(7)に記載の水性懸濁液剤。
(9) 前記粘度調整剤を,1~10mg/mL含有する,(7)又は(8)に記載の水生懸濁液剤。
(10) (1)~(9)のいずれか1項に記載の水性懸濁液剤を含有する医薬組成物。
(11) 非経口投与用である,(10)記載の医薬組成物。
(12) 注射剤又は局所適用製剤である,(11)記載の医薬組成物。
(13) 眼用局所適用製剤,耳用局所適用製剤,鼻用局所適用製剤,又は肺用局所適用製剤である,(12)に記載の医薬組成物。
(14) 点眼剤,点耳剤,点鼻剤,又は吸入剤である,(13)記載の医薬組成物。
(15) 炎症性疾患又は感染性疾患の治療薬または予防薬である,(10)~(14)いずれか1項に記載の医薬組成物。
(16) 炎症性疾患又は感染性疾患が,全身性の炎症性疾患又は感染性疾患である,(15)に記載の医薬組成物。
(17) 炎症性疾患又は感染性疾患が,局所性の炎症性疾患又は感染性疾患である,(15)に記載の医薬組成物。
(18) 局所が,眼,耳,鼻(上気道),及び肺(下気道)から選択される1以上の組織又は臓器であるである,(17)記載の医薬組成物。
(19) グルココルチコステロイド化合物のナノ微粒子を備える,(10)~(18)いずれか1項に記載の医薬組成物を調製するためのキット。
(20) グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオール及び/又は水と,分散安定剤とを混合することを含む,(10)~(18)いずれか1項に記載の医薬組成物の製造方法。
(21) グルココルチコステロイド化合物と,生理学的に許容される塩と,グリセリンと,無水クエン酸と,水添大豆レシチンとを混合することを含む,(20)記載の製造方法。
 特に,本発明者らは,グルココルチコステロイド化合物のナノ微粒子を,平均粒子径(以下,「Dv」という)が300nm以下であり,かつ,90%径(以下,「D90」という)が450nm以下(好ましくは,Dvが250nm以下であり,かつ,D90が300nm以下,又は,Dvが200nm以下であり,かつ,D90が250nm以下)の微粒子とすることにより,非常に優れた眼房水中への移行性及び抗炎症作用に優れることを見出した。また,このようなナノ粒子を採用することでグルココルチコステロイド化合物の溶解性の向上が期待でき,それにより生物学的利用性を高めて投与量を減少させることが期待できる。平均粒子径は、散乱強度(Intensity Distribution)平均粒子径、体積(Volume Distribution)平均粒子径および個数(Number Distribution)平均粒子径として測定することができる。好ましくは本明細書ではDvは散乱強度平均粒子径を表す。
 よって,一態様において,本発明は,グルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする水性懸濁液剤に関し,好ましくは,ナノ微粒子のDvが300nm以下でD90が450nm以下である水性懸濁液剤に関する。例えば,本発明の水性懸濁液剤は,グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオール及び/又は水と,分散安定剤とを混合することにより製造されたグルココルチコステロイド化合物のナノ微粒子を含有する。より好ましくは,本発明の水性懸濁液剤は,グルココルチコステロイド化合物と,生理学的に許容される塩と,グリセリンと無水クエン酸と,水添大豆レシチンとを混合することにより製造されたグルココルチコステロイド化合物のナノ微粒子を含有する。
 また,本発明者らは,グルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする水性懸濁液剤が,分散安定剤として,ポリオキシエチレンポリオキシプロピレングリコール(以下,「POE・POPグリコール」という)及び/又はポリビニルアルコール(以下,「PVA」という)を使用し,かつ/又は,増粘剤として,ヒドロキシプロピルメチルセルロース及び/又はメチルセルロースを使用することにより長期間にわたり優れた澄明性,分散性,及び保存安定性に優れることを見出した。
 よって,一態様において,本発明は,Dvが300nm以下であり,かつ,D90が450nm以下(好ましくは,Dvが250nm以下であり,かつ,D90が300nm以下,又は,Dvが200nm以下であり,かつ,D90が250nm以下)のグルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする水性懸濁液剤に関する。また,別の態様において,本発明は,グルココルチコステロイド化合物のナノ微粒子を有効成分として含有し,分散安定剤及び/又は粘度調整剤を添加物として含有することを特徴とする水性医薬組成物に関する。
 本明細書において,「水性医薬組成物」とは,水性の液体状又はゲル状の医薬組成物を意味し,具体的には水性の液体又はゲルにグルココルチコステロイド化合物のナノ微粒子が懸濁された状態の医薬組成物を意味する。よって,特にそれに反する記載がない限り,本明細書において医薬組成物は水性の医薬組成物を意味する。水性医薬組成物は,注射剤及び局所適用製剤を含む。よって,特にそれに反する記載がない限り,本明細書において局所適用製剤は局所に投与するための水性の製剤を意味する。水性医薬組成物は,医薬品としての使用を妨げない限りにおいて粘性を有していてもよく,水状製剤の他,ゲル状製剤を含む。
 本明細書において,「局所」とは,体の一部を意味し,例えば,患部,その周辺,又は患部の存在する臓器等であり,好ましくは,眼,耳,鼻(上気道)又は肺(下気道)である。
 具体的には,本発明の注射剤は,全身性または局所の炎症性疾患又は感染性疾患の治療または予防のための注射剤であり得,静脈注射用,皮下注射用,筋肉注射用,点滴用等の注射剤を含む。
 本明細書において,「局所適用製剤」とは,局所に投与することを目的とした医薬組成物を意味する。好ましくは,局所適用製剤は,眼用局所適用製剤(例えば,点眼剤),耳用局所適用製剤(例えば,点耳剤),鼻用局所適用製剤(例えば,点鼻剤)及び肺用局所適用製剤(例えば,吸入剤)を含む。このような局所適用製剤は,眼,耳,鼻又は肺の炎症性疾患又は感染性疾患の治療又は予防のための局所適用製剤とすることができる。また,製剤形態としては,例えば,点眼剤,点耳剤,点鼻剤,及び吸入剤とすることができる。本発明の局所適用製剤は,好ましくは,眼の炎症性疾患又は感染性疾患の治療又は予防のための眼用局所適用製剤(点眼剤を含む),耳の炎症性疾患又は感染性疾患の治療又は予防のための耳用局所適用製剤(点耳剤を含む),鼻の炎症性疾患又は感染性疾患の治療又は予防のための鼻用局所適用製剤(点鼻剤を含む),あるいは,肺の炎症性疾患又は感染性疾患の治療又は予防のための肺用局所適用製剤(吸入剤を含む)であってもよい。
 また,本発明の水性医薬組成物は,それを必要とする患者の局所に有効量を投与することにより,炎症性疾患又は感染性疾患の治療又は予防に用いることができる。即ち,一態様において,本発明は,グルココルチコステロイド化合物のナノ微粒子を含有し,随意に分散安定剤及び/又は粘度調整剤を含有することを特徴とする水性懸濁液剤又は該水性懸濁液剤を含有する医薬組成物を,それを必要とする患者に有効量を投与することを含む,炎症性疾患又は感染性疾患の治療方法又は予防方法に関する。例えば,本発明は,グルココルチコステロイド化合物のナノ微粒子を含有し,随意に分散安定剤も含有することを特徴とする局所適用製剤を,それを必要とする患者の局所に有効量を投与することを含む,炎症性疾患又は感染性疾患の治療方法又は予防方法を含む。
 あるいは,本発明は,水性医薬組成物(例えば,注射剤及び局所適用製剤)を製造するための,グルココルチコステロイド化合物のナノ微粒子(及び,随意に分散安定剤及び/又は粘度調整剤)又は,該ナノ微粒子を含有する水性懸濁液剤の使用に関する。
 本明細書において,「グルココルチコステロイド化合物」とは,グルココルチコイド及びその誘導体化合物であれば特に限定されるものではない。グルココルチコステロイド化合物としては,例えば,プロピオン酸クロベタゾール,酢酸ジフロラゾン,プロピオン酸デキサメタゾン,ジフルプレドナード,フランカルボン酸モメタゾン,吉草酸ジフルコルトロン,酪酸プロピオン酸ベタメタゾン,フルオシノニド,酪酸プロピオン酸ヒドロコルチゾン,プロピオン酸ベクロムタゾン,プロピオン酸デプロドン,吉草酸ベタメタゾン,吉草酸デキサメタゾン,吉草酸酢酸プレドニゾロン,フルオシノロンアセトニド,酪酸ヒドロコルチゾン,酪酸クロベタゾン,プロピオン酸アルクロメタゾン,トリアムシノロンアセトニド,フルメタゾンビバル酸エステル,プレドニゾロン,及びヒドロコルチゾンを挙げることができ,好ましくは,プロピオン酸クロベタゾールである。
 本明細書において,「水性懸濁液剤」とは,グルココルチコステロイド化合物のナノ微粒子が懸濁された水性液剤を意味する。本明細書において,水性懸濁液剤は,それ自体が医薬品として投与可能な医薬組成物を構成していてもよいし,適宜他の成分や希釈剤が添加されることにより医薬組成物を構成するもの(例えば,医薬組成物の原料)であってもよいし,特に医薬品として使用されないものでもよい。
 本明細書における水性懸濁液剤は,分散安定化された水性懸濁液剤を含む。分散安定化されたとは,攪拌等により分散させた後,室温(25℃)で24時間(好ましくは,2日,3日,4日,5日,6日,7日,1月,2月,3月,4月,5月,6月,1年,又は2年間)静置後において,(1)沈殿が目視で確認できない,(2)澄明性が高い,(3)顕微鏡観察で凝集物・結晶が観察されない,(4)Dvの値が実質的に変化しない(50%以上増加しない)のいずれか,又は2以上の性質を有する。好ましくは,本明細書におけるグルココルチコステロイド化合物のナノ微粒子を含有する水性懸濁液剤は,試験管封入から7日後において,沈殿物が目視で確認できず,澄明性が高く,かつ,顕微鏡観察において凝集物・結晶が確認されない水性懸濁液剤である。
 澄明性は,日本薬局方収載の澄明性試験法に準じて判定することができる。具体的には,以下の手順で判定することができる:ホルマジン標準乳濁液5mLに水を加えて100mLとし,濁りの比較液とする。被検水性懸濁液剤及び新たに調製した濁りの比較液を,それぞれ内径15mmの無色透明のガラス製平底試験管に液層が深さ30mm又は40mmになるようにとり,散乱光中で黒色の背景を用い,上方から観察して比較する。被検水性懸濁液剤の澄明性が水又は用いた溶媒と同じか,その濁りの度合いが濁りの比較液以下のとき,澄明性が高いと判定することができる。あるいは,被検水性懸濁液剤及び新たに調製した濁りの比較液につき,層長50mmのセルを用い,水又は用いた溶媒を対照として紫外可視吸光度測定法により試験を行い,660nmにおける透過率を測定し,被検水性懸濁液剤の透過率が濁りの比較液以上のとき,澄明性が高いと判定することができる。
 別の態様において,本発明の局所適用製剤は,眼房水への移行性を有する眼用局所適用製剤である。ここで「眼房水への移行性を有する」とは,0.05%(w/v)に調整したグルココルチコステロイド化合物の水性局所適用製剤の1回点眼投与から60分後において,眼房水中のグルココルチコステロイド化合物濃度(平均値)が45ng/mL以上(好ましくは,50ng/mL以上,55ng/mL以上,60ng/mL以上,65ng/mL以上,70ng/mL以上,75ng/mL以上)であることを意味する。あるいは,「眼房水への移行性を有する」とは,0.05%(w/v)に調整したグルココルチコステロイド化合物の水性局所適用製剤の1回点眼投与から30分後において,眼房水中のグルココルチコステロイド化合物濃度(平均値)が40ng/mL以上(好ましくは,50ng/mL以上,55ng/mL以上,60ng/mL以上,63ng/mL以上,64ng/mL以上,65ng/mL以上,70ng/mL以上,75ng/mL以上)であることを意味する。
 更に,別の態様において,本発明の局所適用製剤は,結膜への移行性を有する眼用局所適用製剤である。ここで「結膜への移行性を有する」とは,0.05%(w/v)に調整したグルココルチコステロイド化合物の水性局所適用製剤の1回点眼投与から15分後において,結膜中のグルココルチコステロイド化合物濃度(平均値)が500ng/mL以上(好ましくは,659ng/mL以上,900ng/mL以上,972ng/mL以上,1000ng/mL以上,1200ng/mL以上,1210ng/mL以上,1400ng/mL以上,1455ng/mL以上,1500ng/mL以上,又は2000ng/mL以上,2141ng/mL以上)であることを意味する。
 眼房水への移行性及び結膜への移行性は,適切な実験動物を用いて,本願実施例に記載の方法に準じて行うことができ,例えば,以下の方法で行うことができる。ウサギの下眼瞼を穏やかに引き離し,左眼の結膜嚢内に被験物質をピペットを用いて点眼(単回点眼投与)し,点眼後,上下眼瞼を緩やかに合わせ約2秒間保持する。点眼15分,30分,60分および90分後に麻酔を行い,放血安楽死させ,注射用水で眼をよく洗浄した後,眼房水又は結膜を採取する。採取した眼房水中のグルココルチコステロイド化合物濃度は,採取した眼房水にメタノールおよび内標準(プレドニゾロン)溶液を加えて攪拌後,さらにアセトニトリルを加えて攪拌し,遠心(13100×g,4℃,5分)して得られた上清をLC-MS/MS法で測定することにより決定することができる。また,採取した結膜中のグルココルチコステロイド化合物濃度は,得られた結膜の湿重量に対して9倍容量の超純水を加えてホモジナイズし,メタノールおよび内標準(プレドニゾロン)溶液を加えて攪拌後,さらにアセトニトリルを加えて攪拌し,遠心(13100×g,4℃,5分)して得られた上清をLC-MS/MS法で測定することにより決定することができる。
 別の態様において,本発明の局所適用製剤は,眼房水中のタンパク質濃度の上昇率を低下させることができる眼用局所適用製剤である。ここで,「眼房水中のタンパク質濃度の上昇率を低下させることができる」とは,0.05%(w/v)又は0.1%(w/v)に調整したグルココルチコステロイド化合物の水性局所適用製剤の40μLを,実験動物(例えば,ウサギ)の角膜穿刺前後に30~60分間隔で7回投与(好ましくは,角膜穿刺を0分として,180分前,120分前,60分前,30分前,30分後,60分後,及び90分後の7回投与)し,投与終了から30分後の眼房水中のタンパク質濃度が,角膜穿刺していない眼房水中のタンパク質濃度の3倍未満(好ましくは,2.5倍未満,又は2倍未満)であることを意味する。
 別の態様において,本発明の局所適用製剤は,眼の炎症抑制作用を発揮可能な眼用局所適用製剤である。より詳細には,本発明の局所適用製剤は,炎症メディエーターであるプロスタグランジンE2(PGE2)の産生を抑制可能な眼用局所適用製剤である。ここで,「PGE2の産生を抑制可能」とは,0.05%(w/v)又は0.1%(w/v)に調整したグルココルチコステロイド化合物の水性局所適用製剤の40μLを,実験動物(例えば,ウサギ)の角膜穿刺前後に30~60分間隔で7回投与(好ましくは,角膜穿刺を0分として,180分前,120分前,60分前,30分前,30分後,60分後,及び90分後の7回投与)し,投与終了から30分後の眼房水中のPGE2濃度が,同様に投与したDurezole (登録商標)投与群におけるPGE2濃度と比較して低いことを意味する。
 本発明の眼用局所適用製剤は,上述の眼房水への移行性,結膜への移行性,眼房水中のタンパク質濃度の上昇率が低い,及び眼の炎症抑制作用から選択される2以上(2種類,3種類,又は全て)の性質を有していても良い。
 ある態様において,本発明の水性懸濁液剤は,刺激性が低い水性懸濁液剤である。ここで,刺激性が低いとは,該水性懸濁液剤が対象に投与された際に,従来用いられてきた同じ有効成分を含有する水性製剤と比較して刺激性の反応(例えば,発赤,腫脹,充血等の炎症性反応)の程度が低いことを意味する。被検水性懸濁液剤の刺激性が低いかどうかは,例えば,Jonas,J.Kuehneら,Am J Ophthalmol(2004)138:547-553記載の方法に準じてウサギの眼に被検水性懸濁液剤を投与し,眼の炎症の程度を測定して,標準液剤(同上)より炎症の程度が低い場合には刺激性が低いとして判定することができる。より具体的には,点眼剤の場合,刺激性は,グルココルチコステロイド化合物の濃度が1.0%の製剤を30分~数時間間隔で1日1~20回点眼し,投与前,最終投与後1,3,5,24時間における角膜,虹彩,及び結膜を観察し,Draizeの評価基準(OECD GUIDELINES FOR TESTING OF CHEMICALS 405 (24 Feb. 1987)Acute Eye Irritation/Corrosion参照)に従いスコア化することにより判定することができる。
 本発明の水性懸濁液剤又は医薬組成物は,1種類又は2種類以上の生理学的に許容される塩を含有していてもよい。本明細書における「生理学的に許容される塩」としては,例えば,塩化ナトリウム,塩化カリウム,塩化アンモニウム,硫酸ナトリウム,硫酸マグネシウム,硫酸カリウム,硫酸カルシウム,リンゴ酸ナトリウム,クエン酸ナトリウム,クエン酸二ナトリウム,クエン酸二水素ナトリウム,クエン酸二水素カリウム,リン酸二水素ナトリウム,リン酸二水素カリウム,リン酸水素二ナトリウム,及びリン酸水素二カリウム等が挙げられる。塩化ナトリウム,塩化カリウム,硫酸マグネシウム,硫酸カルシウム,クエン酸ナトリウム,リン酸二水素ナトリウム,リン酸二水素カリウム,リン酸水素二ナトリウム,リン酸水素二カリウム等を挙げることができ,好ましくは塩化ナトリウムである。
 本発明の水性懸濁液剤又は医薬組成物は,生理学的に許容される塩を0.01~10%含有することができ,好ましくは0.1~5%であり,例えば,0.5~3%,0.8~2%含有することもできる。あるいは,本発明の水性懸濁液剤又は医薬組成物は,生理学的に許容される塩を0.01~50mg/mL,0.1~20mg/mL,又は1~5mg/mL含有することができる。
 本発明の水性懸濁液剤又は医薬組成物は,1種類又は2種類以上の界面活性剤を含有していてもよく,かつ/又は,1種類又は2種類以上の凝集防止剤を含有していてもよい。
 本明細書において,「界面活性剤」とは,医薬品添加物としてヒトに投与しても毒性を示さない界面活性剤であって,グルココルチコステロイド化合物の作用を妨げない界面活性剤であれば特に限定されるものではなく,例えば,ポロクサマー407,ポロクサマー235,ポロクサマー188等のポリオキシエチレン(以下,「POE」という)-ポリオキシプロピレン(以下,「POP」という)ブロックコポリマー;ポロキサミン等のエチレンジアミンのポリオキシエチレン-ポリオキシプロピレンブロックコポリマー付加物;モノラウリル酸POE(20)ソルビタン(ポリソルベート20),モノオレイン酸POE(20)ソルビタン(ポリソルベート80),ポリソルベート60などのPOEソルビタン脂肪酸エステル類;POE(60)硬化ヒマシ油などのPOE硬化ヒマシ油;POE(9)ラウリルエーテルなどのPOEアルキルエーテル類;POE(20)POP(4)セチルエーテルなどのPOE・POPアルキルエーテル類;POE(10)ノニルフェニルエーテルなどのPOEアルキルフェニルエーテル類;POE(105)POP(5)グリコール,POE(120)POP(40)グリコール,POE(160)POP(30)グリコール,POE(20)POP(20)グリコール,POE(200)POPグリコール(70),POE(3)POP(17)グリコール,POE(42)POP(67)グリコール,POE(54)POP(39)グリコール,POE(196)POP(67)グリコールなどのPOE・POPグリコール類等の非イオン性界面活性剤;アルキルジアミノエチルグリシンなどのグリシン型,ラウリルジメチルアミノ酢酸ベタインなどの酢酸ベタイン型,イミダゾリン型などの両性界面活性剤;POE(10)ラウリルエーテルリン酸ナトリウムなどのPOEアルキルエーテルリン酸及びその塩,ラウロイルメチルアラニンナトリウムなどのN-アシルアミノ酸塩,アルキルエーテルカルボン酸塩,N-ココイルメチルタウリンナトリウムなどのN-アシルタウリン塩,テトラデセンスルホン酸ナトリウムなどのスルホン酸塩,ラウリル硫酸ナトリウムなどのアルキル硫酸塩,POE(3)ラウリルエーテル硫酸ナトリウムなどのPOEアルキルエーテル硫酸塩,α-オレフィンスルホン酸塩などの陰イオン界面活性剤;アルキルアミン塩,アルキル4級アンモニウム塩(塩化ベンザルコニウム,塩化ベンゼトニウムなど),アルキルピリジニウム塩(塩化セチルピリジニウム,臭化セチルピリジニウムなど)などの陽イオン界面活性剤等を挙げることができる。本発明の水性懸濁液剤は,界面活性剤として,1種類の界面活性剤を含有していてもよく,又は,2種類以上の界面活性剤を含有していてもよい。
 また,本明細書において,「凝集防止剤」は,グルココルチコステロイド化合物の凝集を防止することができ,人体に投与して毒性を示さない物質であって,グルココルチコステロイド化合物の作用を妨げない凝集防止剤であれば特に限定されるものではなく,例えば,アルキル硫酸塩,N-アルキロイルメチルタウリン塩,エタノール,グリセリン,プロピレングリコール,クエン酸ナトリウム,グリセロリン脂質(レシチン(ホスファチジルコリン)(例えば,精製大豆レシチン,水添大豆レシチン),ホスファチジルセリン,ホスファチジルエタノールアミン,ホスファチジルイノシトール,ホスファチジン酸,ホスファチジルグリセロール,リゾホスファチジルコリン,リゾホスファチジルセリン,リゾホスファチジルエタノールアミン,リゾホスファチジルイノシトール,リゾホスファチジン酸,及びリゾホスファチジルグリセロール),及びスフィンゴリン脂質(スフィンゴミエリン,セラミド,スフィンゴ糖脂質,又はガングリオシド)等のリン脂質,D-ソルビトール,乳糖,キシリトール,アラビアゴム,ショ糖脂肪酸エステル,ポリオキシエチレン硬化ヒマシ油,ポリオキシエチレン脂肪酸エステル,ポリエチレングリコール(PEG),ポリオキシエチレンソルビタン脂肪酸エステル,アルキルベンゼンスルホン酸塩,スルホコハク酸エステル塩,POE・POPグリコール,ポリビニルピロリドン,PVA,ヒドロキシプロピルセルロース,メチルセルロース,ヒドロキシエチルセルロース,ヒドロキシプロピルメチルセルロース,カルメロースナトリウム,カルボキシビニルポリマー,N-アシル-グルタミン酸塩,アクリル酸コポリマー,メタクリル酸コポリマー,カゼインナトリウム,L-バリン,L-ロイシン,L-イソロイシン,塩化ベンザルコニウム,塩化ベンゼトニウム等が挙げられる。本発明の水性懸濁液剤は,凝集防止剤として1種類を含有していてもよく,又は,2種類以上の凝集防止剤を含有していてもよい。
 本発明の水性懸濁液剤又は医薬組成物は,凝集防止剤を0.001~10%,又は0.01~10%含有することができ,好ましくは0.02~5%であり,例えば,0.03~1%,0.04~0.5%,0.05~0.2%,含有することもできる。あるいは,本発明の水性懸濁液剤又は医薬組成物は,凝集防止剤を0.01~50mg/mL,0.1~20mg/mL,又は1~5mg/mL含有することができる。
 界面活性剤及び/又は凝集防止剤として,好ましくは,ポリオキシエチレン硬化ヒマシ油60(例えば,HCO-60),ポリオキシエチレン硬化ヒマシ油40(例えば,HCO-40),ポリソルベート80(例えば,Tween80),ポリソルベート20(例えば,Tween20),POE・POPグリコール(例えば,プロノン407P,プルロニックF68,ユニルーブ70D P-950B,及びPVA(例えば,クラレポバール217c)から選択される1種類以上の物質であり,より好ましくは,POE・POPグリコール及びPVAから選択される1種類以上の物質である。
 本明細書において,「粘度調整剤」とは,本発明の水性懸濁液剤の粘度を調製することが可能な物質であって,医薬品添加物としてヒトに投与しても毒性を示さない物質であって,グルココルチコステロイド化合物の作用を妨げない物質であれば特に限定されるものではなく,例えば,多糖類又はその誘導体(アラビアゴム,カラヤガム,キサンタンガム,キャロブガム,グアーガム,グアヤク脂,クインスシード,ダルマンガム,トラガントガム,ベンゾインゴム,ローカストビーンガム,カゼイン,寒天,アルギン酸,デキストリン,デキストラン,カラギーナン,ゼラチン,コラーゲン,ペクチン,デンプン,ポリガラクツロン酸,キチン及びその誘導体,キトサン及びその誘導体,エラスチン,ヘパリン,ヘパリノイド,ヘパリン硫酸,ヘパラン硫酸,ヒアルロン酸,コンドロイチン硫酸など),セラミド,セルロース誘導体(メチルセルロース,エチルセルロース,ヒドロキシエチルセルロース,ヒドロキシプロピルセルロース,ヒドロキシプロピルメチルセルロース,カルボキシメチルセルロース,カルボキシエチルセルロース,セルロース,ニトロセルロースなど),PVA(完全,又は部分ケン化物),ポリビニルピロリドン,マクロゴール,ポリビニルメタアクリレート,ポリアクリル酸,カルボキシビニルポリマー,ポリエチレンイミン,ポリエチレンオキサイド,ポリエチレングリコール,リボ核酸,デオキシリボ核酸,メチルビニルエーテル・無水マレイン酸共重合体など,及びその薬理学的に許容される塩類(例えば,アルギン酸ナトリウム)等を挙げることができる。本発明の水性懸濁液剤は,粘度調整剤として1種類を含有していてもよく,又は,2種類以上の粘度調整剤を含有していてもよい。粘度調整剤として,好ましくは,ヒドロキシプロピルメチルセルロース(例えば,TC-5(R),Metlose 60SH-50),PVA(クラレポバール217C),及びメチルセルロース(例えば,Metlose SM-100,Metlose SM-15)から選択される1種類以上の物質であり,より好ましくは,ヒドロキシプロピルメチルセルロース及びメチルセルロースから選択される1種類以上の物質である。
 本発明の水性懸濁液剤は,粘度調整剤を1~10mg/mL含有することができ,好ましくは1~5mg/mLであり,例えば,1~4mg/mL,1~3mg/mL,1~2mg/mL含有することもできる。
 本明細書における分散安定剤は,上述の界面活性剤,凝集防止剤,及び/又は粘度調整剤として記載した物質を用いることができ,好ましくは,ポリオキシエチレン硬化ヒマシ油60,ポリオキシエチレン硬化ヒマシ油40,ポリソルベート80,ポリソルベート20,POE・POPグリコール,PVA,ヒドロキシプロピルメチルセルロース,及びメチルセルロースから選択される1種類以上の物質であり,より好ましくは,POE・POPグリコール,PVA,ヒドロキシプロピルメチルセルロース及びメチルセルロースから選択される1種類以上の物質である。
 本明細書において,分散安定剤としても用い得る界面活性剤,凝集防止剤,及び/又は粘度調整剤(以下,本段落において「添加剤」という)は,グルココルチコステロイド化合物のナノ粒子の表面に付着し又は吸着されていてもよい。このような添加剤が粉砕工程前に添加された場合には,グルココルチコステロイド化合物のナノ粒子の表面に付着し又は吸着されることにより,粉砕工程中でのナノ粒子の凝集が抑制される。また,グルココルチコステロイド化合物のナノ粒子の表面に付着し又は吸着されることにより,水性懸濁液中においても凝集を抑制する効果がある。なお,本明細書において,分散安定剤である界面活性剤,凝集防止剤,及び/又は粘度調整剤が,グルココルチコステロイド化合物のナノ粒子の表面に付着し又は吸着されているとは,ナノ粒子表面に少なくとも一部のこれらの添加剤が付着し又は吸着されて(表面修飾に寄与して)いることを意味するものであり,水性懸濁液剤中に付着も吸着もされていないこれらの添加剤が存在しないことを意味するものではない。本明細書において,「表面修飾剤」とは,このようにグルココルチコステロイド化合物のナノ粒子の表面を表面修飾することができる分散安定剤である界面活性剤,凝集防止剤,及び/又は粘度調整剤を意味する。
 本発明の水性懸濁液剤又は医薬組成物は,1種類又は2種類以上の生理学的に許容されるポリオールを含有していてもよい。例えば,本発明の医薬組成物は,上述の生理学的に許容されるポリオールを含有することができる。「生理学的に許容されるポリオール」としては,例えば,グリセリン,プロピレングリコール,ポリエチレングリコール,ジプロピレングリコール,及び,ジエチレングリコール等を挙げることができ,好ましくは,プロピレングリコール又はグリセリンである。本発明の水性懸濁液剤又は医薬組成物は,生理学的に許容されるポリオールを,例えば,0.001~10%,又は0.01~10%含有することができ,好ましくは0.02~5%であり,例えば,0.03~1%,0.04~0.5%,0.05~0.2%,含有することもできる。あるいは,本発明の水性懸濁液剤又は医薬組成物は,生理学的に許容されるポリオールを0.01~10mg/mL,0.05~5mg/mL,又は0.1~3mg/mL含有することができる。
 本発明の水性懸濁液剤又は水性医薬組成物は,油性の溶媒を含有しない。油性の溶媒とは,水に溶けないか,ほとんど溶けない溶媒を意味する。
 本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物は,ナノ微粒子状である。該グルココルチコステロイド化合物ナノ粒子の平均粒子径(Dv)は,300nm以下であり,好ましくは,250nm以下,240nm以下,230nm以下,220nm以下,210nm以下,200nm以下,190nm以下,180nm以下,170nm以下,160nm以下,150nm以下,140nm以下,130nm以下,120nm以下,110nm以下であってもよい。例えば,グルココルチコステロイド化合物の平均粒子径の範囲は,50~300nm,50~250nm,50~240nm,50~230nm,50~220nm,50~210nm,50~200nm,50~190nm,50~180nm,50~170nm,50~160nm,50~150nm,50~140nm,50~130nm,50~120nm,50~110nm,100~300nm,100~250nm,100~240nm,100~230nm,100~220nm,100~210nm,100~200nm,100~190nm,100~180nm,100~170nm,100~160nm,100~150nm,100~140nm,100~130nm,100~120nm,又は100~110nmである。
 また,本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子の90%径(D90)は,450nm以下であり,好ましくは,400nm以下,350nm以下,300nm以下,290nm以下,280nm以下,270nm以下,260nm以下,250nm以下,240nm以下,230nm以下である。例えば,グルココルチコステロイド化合物の90%径(D90)の範囲は,50~400nm,50~350nm,50~300nm,50~290nm,50~280nm,50~270nm,50~260nm,50~250nm,50~240nm,50~230nm,100~400nm,100~350nm,100~300nm,100~290nm,100~280nm,100~270nm,100~260nm,100~250nm,100~240nm,又は100~230nmであってもよい。
 また,本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子の50%径(D50)は,200nm以下であってもよく,好ましくは,190nm以下,180nm以下,170nm以下,160nm以下,150nm以下,140nm以下,130nm以下,120nm以下,110nm以下,100nm以下である。例えば,グルココルチコステロイド化合物の50%径(D50)の範囲は,50~190nm,50~180nm,50~170nm,50~160nm,50~150nm,50~140nm,50~130nm,50~120nm,50~110nm,50~100nm,80~190nm,80~180nm,80~170nm,80~160nm,80~150nm,80~140nm,80~130nm,80~120nm,80~110nm,又は80~100nmであってもよい。
 本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子は,上述の平均粒子径(Dv),90%径(D90)及び50%径(D50)から選択される2以上の粒径に関する条件を満たすものであってもよい。また,例えば,本発明の水性懸濁液剤が含有するグルココルチコステロイド化合物ナノ粒子は,平均粒子径(Dv)が166nm以下,D50が138nm以下,及び/又はD90が241nm以下とすることができる。また,例えば,本発明の水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子は,平均粒子径(Dv)が204nm以下,D50が177nm以下,及び/又はD90が306nm以下とすることができる。
 本発明の水性懸濁液剤はその有効成分であるグルココルチコステロイド化合物がナノ微粒子状であることから,フィルターによる滅菌が可能であり,よって,容易で活性成分の物理化学的性質への影響が少ない滅菌を行うことができる。
 本発明の水性懸濁液剤が含有するグルココルチコステロイド化合物のナノ微粒子は,好ましくは,グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオールと,分散安定剤とを混合することにより製造されたナノ微粒子である。より好ましくは,本発明のグルココルチコステロイド化合物のナノ微粒子は,グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオールと,分散安定剤とを混合することにより製造されたナノ微粒子であって,粉砕中若しくは粉砕後に,レシチン(例えば,水添大豆レシチン)を添加することにより製造されたナノ微粒子である。
 本発明の水性懸濁液剤の一例としては,グルココルチコステロイド化合物のナノ微粒子;塩化ナトリウム;水添大豆レシチン;グリセリン;無水クエン酸;POE・POPグリコール類,ポリオキシエチレン硬化ヒマシ油,ポリソルベート80,PVA,POE-POPブロックコポリマーから選択される1以上の物質;塩化ベンザルコニウム,ソルビン酸またはその塩(ソルビン酸カリウム,ソルビン酸ナトリウム,ソルビン酸トリクロカルバンなど),又は,パラオキシ安息香酸エステル(パラオキシ安息香酸メチル,パラオキシ安息香酸エチル,パラオキシ安息香酸プロピル,パラオキシ安息香酸ブチルなど));ヒドロキシプロピルメチルセルロース及び/又はメチルセルロース;並びにクエン酸ナトリウム(クエン酸三ナトリウムを含む)を含有する製剤を挙げることができる。
 本明細書において,水性懸濁液剤及び医薬組成物は水を主成分として含有することができる。また,本明細書において医薬組成物,水性懸濁液剤及び/又は希釈剤は,必要に応じて添加物として,安定(化)剤,矯味剤,増粘剤,界面活性剤,防腐剤,殺菌剤又は抗菌剤,pH調節剤,等張化剤,緩衝剤などの各種添加剤を含有していてもよい。
 防腐剤,殺菌剤又は抗菌剤としては,例えば,ソルビン酸またはその塩(ソルビン酸カリウム,ソルビン酸ナトリウム,ソルビン酸トリクロカルバンなど),パラオキシ安息香酸エステル(パラオキシ安息香酸メチル,パラオキシ安息香酸エチル,パラオキシ安息香酸プロピル,パラオキシ安息香酸ブチルなど),アクリノール,塩化メチルロザニリン,塩化ベンザルコニウム,塩化ベンゼトニウム,塩化セチルピリジニウム,臭化セチルピリジニウム,クロルヘキシジン又はその塩,ポリヘキサメチレンビグアニド,アルキルポリアミノエチルグリシン,ベンジルアルコール,フェネチルアルコール,クロロブタノール,イソプロパノール,エタノール,フェノキシエタノール,リン酸ジルコニウムの銀,マーキュロクロム,ポピドンヨード,チメロサール,デヒドロ酢酸,クロルキシレノール,クロロフェン,レゾルシン,オルトフェニルフェノール,イソプロピルメチルフェノール,チモール,ヒノキチオール,スルファミン,リゾチーム,ラクトフェリン,トリクロサン,8-ヒドロキシキノリン,ウンデシレン酸,カプリル酸,プロピオン酸,安息香酸,ハロカルバン,チアベンダゾール,ポリミキシンB,5-クロロ-2-メチル-4-イソチアゾリン-3-オン,2-メチル-4-イソチアゾリン-3-オン,ポリリジン,過酸化水素,塩化ポリドロニウム,Glokill(商品名:例えば,Glokill PQ,ローディア社製),ポリジアリルジメチルアンモニウムクロライド,ポリ[オキシエチレン(ジメチルイミニオ)エチレン-(ジメチルイミニオ)エトレンジクロリド],ポリエチレンポリアミン・ジメチルアミンエピクロルヒドリン重縮合物(商品名:例えば,Busan1157,バックマン社製),ビグアニド化合物(コスモシルCQ(商品名,ポリヘキサメチレンビグアニド塩酸塩を約20重量%含有,アピシア社製))など,及びその薬理学的に許容される塩類等が挙げられる。好ましくは,塩化ベンザルコニウムである。
 pH調整剤としては,例えば,無機酸(塩酸,硫酸,リン酸,ポリリン酸,ホウ酸など),有機酸(乳酸,酢酸,クエン酸,無水クエン酸,酒石酸,リンゴ酸,コハク酸,シュウ酸,グルコン酸,フマル酸,プロピオン酸,酢酸,アスパラギン酸,イプシロン-アミノカプロン酸,グルタミン酸,アミノエチルスルホン酸など),グルコノラクトン,酢酸アンモニウム,無機塩基(炭酸水素ナトリウム,炭酸ナトリウム,水酸化カリウム,水酸化ナトリウム,水酸化カルシウム,水酸化マグネシウムなど),有機塩基(モノエタノールアミン,トリエタノールアミン,ジイソプロパノールアミン,トリイソプロパノールアミン,リジンなど),ホウ砂,及びその薬理学的に許容される塩類等が挙げられる。
 等張化剤としては,例えば,無機塩類(例えば,塩化ナトリウム,塩化カリウム,炭酸ナトリウム,炭酸水素ナトリウム,塩化カルシウム,硫酸マグネシウム,リン酸水素ナトリウム,リン酸水素二ナトリウム,リン酸水素二カリウム,チオ硫酸ナトリウム,酢酸ナトリウムなど),多価アルコール類(例えば,グリセリン,プロピレングリコール,エチレングリコール,1,3-ブチレングリコールなど),糖類(例えば,ブトウ糖,マンニトール,ソルビトールなど)等が挙げられる。
 緩衝剤としては,例えば,トリス緩衝剤,ホウ酸緩衝剤,リン酸緩衝剤,炭酸緩衝剤,クエン酸緩衝剤,酢酸緩衝剤,イプシロン-アミノカプロン酸,アスパラギン酸塩等が挙げられる。具体的には,ホウ酸またはその塩(ホウ酸ナトリウム,テトラホウ酸カリウム,メタホウ酸カリウムなど),リン酸又はその塩(リン酸水素ナトリウム,リン酸二水素ナトリウム,リン酸二水素カリウムなど),炭酸又はその塩(炭酸水素ナトリウム,炭酸ナトリウムなど),クエン酸又はその塩(クエン酸ナトリウム,クエン酸カリウム,無水クエン酸など)等が挙げられる。
 本明細書において,水性懸濁液剤及び医薬組成物の粘度は,1~5mPa・sとすることができ,例えば,1~3mPa・sであってもよい。
 本明細書においては,特に明示する場合を除き,組成又は含有量における「%」とは,重量%(w/w)を表す。
 本発明のグルココルチコステロイド化合物のナノ微粒子を含有する水性懸濁液剤は,澄明性,分散性,保存安定性,結膜移行性,及び房水移行性に優れ,刺激性が低く,滅菌が容易で,経時安定性および分散安定性に優れていることから,非経口投与用医薬組成物,特には点眼剤として使用することができる。
実施例5(1)~(3)で作製したナノ化点眼懸濁液を点眼後の眼房水中のクロベタゾールプロピオン酸エステル濃度の経時変化を示すグラフである。縦軸は眼房水中のクロベタゾールプロピオン酸エステル濃度(ng/mL)を表し,横軸は点眼後の経過時間(分)を表す。黒丸は0.05%ナノ化点眼懸濁液(平均粒子径100nm)を表し,黒四角は0.05%ナノ化点眼懸濁液(平均粒子径300nm)を表し,黒三角は0.05%ナノ化点眼懸濁液(平均粒子径600nm)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 実施例5(1)~(3)で作製したナノ化点眼懸濁液を点眼後の結膜中のクロベタゾールプロピオン酸エステル濃度の経時変化を示すグラフである。縦軸は結膜中のクロベタゾールプロピオン酸エステル濃度(ng/mL)を表し,横軸は点眼後の経過時間(分)を表す。黒丸は0.05%ナノ化点眼懸濁液(平均粒子径100nm)を表し,黒四角は0.05%ナノ化点眼懸濁液(平均粒子径300nm)を表し,黒三角は0.05%ナノ化点眼懸濁液(平均粒子径600nm)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 実施例7(1)~(4)で作製したナノ化点眼懸濁液を点眼後の眼房水中のクロベタゾールプロピオン酸エステル濃度の経時変化を示すグラフである。縦軸は眼房水中のクロベタゾールプロピオン酸エステル濃度(ng/mL)を表し,横軸は点眼後の経過時間(分)を表す。白丸は0.05%ナノ化点眼懸濁液P(HPMC(60SH-50) 3mg/mL)を表し,黒丸は0.05%ナノ化点眼懸濁液Q(HPMC(60SH-4000) 1.5mg/mL)を表し,白三角は0.05%ナノ化点眼懸濁液R(MC(SM-100) 2mg/mL)を表し,黒三角は0.05%ナノ化点眼懸濁液S(MC(SM-4000) 1.5mg/mL)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 実施例7(1)~(4)で作製したナノ化点眼懸濁液を点眼後の結膜中のクロベタゾールプロピオン酸エステル濃度の経時変化を示すグラフである。縦軸は結膜中のクロベタゾールプロピオン酸エステル濃度(ng/mL)を表し,横軸は点眼後の経過時間(分)を表す。白丸は0.05%ナノ化点眼懸濁液P(HPMC(60SH-50) 3mg/mL)を表し,黒丸は0.05%ナノ化点眼懸濁液Q(HPMC(60SH-4000) 1.5mg/mL)を表し,白三角は0.05%ナノ化点眼懸濁液R(MC(SM-100) 2mg/mL)を表し,黒三角は0.05%ナノ化点眼懸濁液S(MC(SM-4000) 1.5mg/mL)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギBSA誘発ぶどう膜炎モデルにおける,外眼部の炎症スコアを示すグラフである。縦軸は炎症スコアを表し,横軸は1回目BSA投与からの経過日数(15日後から18日後)を表す。白抜きは対照群(生理食塩水)を表し,濃いグレーは0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液投与群を表し,淡いグレーは陽性対象群(0.1%フルオロメトロン点眼液投与群)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギBSA誘発ぶどう膜炎モデルにおける,内眼部の炎症スコアを示すグラフである。縦軸は炎症スコアを表し,横軸は1回目BSA投与からの経過日数(15日後から18日後)を表す。白抜きは対照群(生理食塩水)を表し,濃いグレーは0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液投与群を表し,淡いグレーは陽性対象群(0.1%フルオロメトロン点眼液投与群)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギBSA誘発ぶどう膜炎モデルにおける,1回目BSA投与29日後の外眼部(A)及び内眼部(B)の炎症スコアを示すグラフである。縦軸は炎症スコアを表す。白抜きは対照群(生理食塩水)を表し,濃いグレーは0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液投与群を表し,淡いグレーは陽性対象群(0.1%フルオロメトロン点眼液投与群)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ラットのクロトン誘発結膜炎モデルにおける,結膜重量を表すグラフである。縦軸は結膜重量(g)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ラットのカラゲニン誘発結膜浮腫モデルにおける,眼瞼結膜重量を表すグラフである。縦軸は眼瞼結膜重量(g)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギのLPS誘発ぶどう膜炎モデルにおける房水中PGE2濃度を示すグラフである。縦軸は房水中PGE2濃度(pg/mL)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギのLPS誘発ぶどう膜炎モデルにおける硝子体中PGE2濃度を示すグラフである。縦軸は硝子体中PGE2濃度(pg/mL)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギ前房穿刺炎症モデルにおける房水中のタンパク濃度を示すグラフである。縦軸は前房水中のタンパク濃度(mg/mL)を表す。値は平均値を示し,エラーバーは標準偏差を示す。 ウサギLPS誘発ぶどう膜炎モデルにおける硝子体中PGE2濃度を示すグラフである。縦軸は硝子体中PGE2濃度(pg/mL)を表す。値は平均値を示す。「b.i.d」は、1日2回点眼を、「q.i.d」は1日4回点眼を表す。
1.グルココルチコステロイド化合物の微粒子を含有する水性懸濁液剤
 グルココルチコステロイド化合物のナノ微粒子は,グルココルチコステロイド化合物を,生理学的に許容される塩及び生理学的に許容されるポリオールと混合して,前記有機化合物を湿式粉砕することにより製造することができる。このような製造方法は,国際公開WO2008/126797号に詳細に記載されている。混合は,グルココルチコステロイド化合物,生理学的に許容される塩,及び生理学的に許容されるポリオールが最終的に混合されればよく,これら成分の添加順序は限定されるものではない。例えば,該混合は,グルココルチコステロイド化合物に生理学的に許容される塩及び生理学的に許容されるポリオールを添加することにより行ってもよいし,又は生理学的に許容される塩及び生理学的に許容されるポリオールにグルココルチコステロイド化合物を添加することで行ってもよい。特に,本発明の粉体に含まれるグルココルチコステロイド化合物微粒子は,融点が80℃以上の有機化合物に,生理学的に許容される塩及び生理学的に許容されるポリオールを添加して,前記有機化合物を湿式粉砕することにより製造することができる。本製造方法においては,前記塩及び前記ポリオールを除去することなく水性懸濁液を調製することができる。よって,前記塩及び前記ポリオールを除去する必要が無いことから,非常に簡便な工程により製造可能である。湿式粉砕は,有機化合物,塩及びポリオールを混合し,該混合物を混練することにより,行うことができる。好ましくは,本発明のグルココルチコステロイド化合物の微粒子は,粉砕する工程中若しくは該工程後に,レシチンを添加することにより製造することができる。
 グルココルチコステロイド化合物ナノ微粒子は,好ましくは,硬質の固体粉砕助剤を使用せずに湿式粉砕することにより製造され,より好ましくは,ガラス製,ステンレス等の金属製,ジルコニア及びアルミナ等のセラミックス製又は硬質ポリスチレン等の高分子製の固体粉砕助剤を使用せず湿式粉砕することにより製造され,最も好ましくは,本発明のグルココルチコステロイド化合物微粒子は,前記生理学的に許容される塩及び粘度調整剤以外に固体粉砕助剤を使用せず湿式粉砕することにより製造される。
 本明細書において,「生理学的に許容される」とは,生理学上特に問題を生じることなく摂取することができると考えられる,という意味であり,ある物質が生理学的に許容される物質であるか否かは,摂取対象である生物種や,摂取の態様等により,適宜決定される。生理学的に許容される溶媒として,例えば,医薬品や食品等の添加剤や溶媒等として認可されている物質等を挙げることができる。
 本明細書における「生理学的に許容される塩」は,生理学上特に問題を生じることなく摂取することができる塩であれば特に限定されない。生理学的に許容される塩として,好ましくは,ポリオールに対する溶解性が低い塩,水に対する溶解性が高い塩及び/又は吸湿性の少なく有機化合物の微粉砕化に適した硬さを有している塩である。グルココルチコステロイド化合物のナノ微粒子の製造方法に用いられる生理学的に許容される塩として,より好ましくは,これらの性質の2以上を備える塩である。生理学的に許容される塩のポリオールに対する溶解度は,好ましくは,10(質量/容量)%以下である。また,粉砕後の除去を簡便にする場合には,生理学的に許容される塩として,好ましくは水に対する溶解性が高い塩である。具体的には上述の塩が挙げられる。
 本明細書における「生理学的に許容される塩」は,グルココルチコステロイド化合物と混合する前に,粉砕等を行って,粒子径を整えておくほうが好ましい。また,必要に応じて,含有水分による粒子融着及び粒子成長を防ぐ目的で,例えば30~200℃の温度で減圧乾燥し,水分含有量を低下させておいてもよい。生理学的に許容される塩の粒子径を予め調整する場合,粒子の体積平均径として,例えば,5~300μm,10~200μmであってもよいが,好ましくは0.01~300μmであり,より好ましくは0.1~100μmであり,更に好ましくは,0.5~50μmであり,最も好ましくは,1~5μmである。また,該塩の使用量は,グルココルチコステロイド化合物に対して,1~100倍質量であることが好ましく,5~30倍質量であることがより好ましく,10~20倍であることが更に好ましい。さらに,該塩は1種類の塩を用いてもよく,2種類以上の塩を混合して用いてもよい。
 グルココルチコステロイド化合物のナノ微粒子の製造方法に用いられる「生理学的に許容されるポリオール」は,生理学上特に問題を生じることなく摂取することができるポリオールあれば特に限定されない。生理学的に許容されるポリオールとして,好ましくは,塩の溶解性の低いもの,水に対する溶解性が高いもの,凝固点が低いもの及び/又は引火点が高いものである。また,粉砕後の除去を簡便に行う場合には,生理学的に許容されるポリオールは,水に対する溶解性が高いことが好ましい。
 グルココルチコステロイド化合物のナノ微粒子の製造方法に用いるポリオールは,好ましくは,粘度が高いポリオールである。このようなポリオールの20℃における粘度としては,例えば,40mPa・s以上であり,好ましくは50mPa・s以上であり,より好ましくは,80mPa・s以上である。グルココルチコステロイド化合物のナノ微粒子の製造方法に用いるポリオールの20℃における粘度として,上限は特に限定されるものではないが,例えば,40mPa・s以上5,000mPa・s以下の範囲から選択可能であり,好ましくは50mPa・s以上3,000mPa・s以下であり,より好ましくは80mPa・s以上2,000mPa・s以下である。具体的には上述のポリオールが挙げられる。
 グルココルチコステロイド化合物のナノ微粒子の製造方法における生理学的に許容されるポリオールの使用量は,微粉砕化する対象である有機化合物に対して,0.5~100倍質量であることが好ましく,1~10質量倍であることがより好ましい。また,使用するポリオールの種類は,微粉砕化する対象である有機化合物の溶解性を考慮して,適宜決定することができる。さらに,該ポリオールは1種類のポリオールを用いてもよく,2種類以上のポリオールを混合して用いてもよい。
 グルココルチコステロイド化合物のナノ微粒子の製造方法において,グルココルチコステロイド化合物,ポリオール及び塩の混練物は,粘度が高いことが好ましい。混練物の粘度を上げる方法としては,ポリオールに粘度調整剤を添加した混合物を使用する方法やポリオールとは別個に粘度調整剤を単独で添加する方法が好ましく,粉砕効率を効果的に上げることができる。ポリオールに添加する粘度調整剤としては,上述の物質を使用することができる。このような粘度調整剤を添加したポリオールの20℃における粘度として,好ましくは1,000mPa・s以上であり,より好ましくは2,000mPa・s以上であり,更に好ましくは,5,000mPa・s以上であり,最も好ましくは,10,000mPa・s以上である。本発明の粘度調整剤を添加したポリオールの20℃における粘度としては,上限は特に限定されるものではないが,例えば,1,000mPa・s以上5,000,000mPa・s以下の範囲から選択可能であり,好ましくは1,000mPa・s以上1,000,000mPa・s以下であり,より好ましくは2,000mPa・s以上500,000mPa・s以下であり,更に好ましくは,5,000mPa・s以上300,000mPa・s以下であり,最も好ましくは,10,000mPa・s以上100,000mPa・s以下である。
 グルココルチコステロイド化合物のナノ微粒子の製造方法において,グルココルチコステロイド化合物を湿式粉砕するために用いられる粉砕装置は,機械的手段によって,グルココルチコステロイド化合物,塩,ポリオール,及び/又は分散安定剤の混練・分散が可能である能力を有するものであれば,特に制限なく用いることができる。該粉砕装置として,例えば,ニーダー,二本ロール,三本ロール,フレットミル,フーバーマーラー,円盤ブレード混練分散機等の通常用いられている粉砕装置がある。
 粉砕温度は,微粉砕化されるグルココルチコステロイド化合物や,粉砕装置等を考慮して適宜決定することができる。粉砕温度として,特に制限はないが,好ましくは-50~50℃であり,より好ましくは-20~30℃であり,最も好ましくは,-10~25℃である。また,粉砕時間は,微粉砕化される有機化合物や,粉砕装置等を考慮して適宜決定することができる。粉砕時間は,例えば,1~50時間,2~30時間,3~20時間,4~18時間,5~10時間とすることができる。
 グルココルチコステロイド化合物の粉砕終了後,粉砕に用いた塩及びポリオールを除去することなく目的の微粉砕化グルココルチコステロイド化合物微粒子を得ることができる。よって,洗浄工程が必要ないことから,より簡便かつ安価にナノ粒子製剤を製造することができる。よって,溶媒中で,ホモジナイザー等を用いて,グルココルチコステロイド化合物,塩,ポリオール及び/又は粘度調整剤の混合物を均一にすることにより製造することができる。該混合物を均一にする際に使用する溶媒は,ポリオール,塩及び粘度調整剤が溶解し易く,かつ,微粉砕されたグルココルチコステロイド化合物が溶解し難い溶媒であって,かつ,生理学的に許容される溶媒であれば,特に限定されるものではない。該溶媒は,水が好ましいが,水以外の溶媒も使用することができる。該水以外の溶媒として,例えば,酢酸,メタノール,エタノール等の有機溶媒を水との混合液がある。また,必要に応じて均一化した混合物を濾過することができる。濾過方法は,特に限定されるものではなく,通常,有機化合物の含有物を濾過するために用いられる公知の方法で行うことができる。該濾過方法として,例えば,減圧濾過法,加圧濾過法,限外濾過膜法等がある。
 微粉砕化粒子は,通常,高い表面エネルギーを有しているため,凝集し易い。従って,塩等を除去した後,二次凝集を防止するために上述の凝集防止剤を加えてもよい。凝集防止剤は1種類を用いてもよく,2種類以上を混合して用いてもよい。
 塩及びポリオールを除去した後,乾燥処理を行うことにより,得られた微粉砕化グルココルチコステロイド化合物微粒子から,塩等の除去に用いた溶媒を除去することができる。該乾燥方法は,特に限定されるものではなく,通常,有機化合物を乾燥するために用いられる方法で行うことができる。該乾燥方法として,例えば,減圧乾燥法,凍結乾燥法,噴霧乾燥法,凍結噴霧乾燥法等がある。該乾燥における乾燥温度や乾燥時間等は特に制限されるものではないが,医療用有機化合物粒子の化学的安定性の保持及び粒子の二次凝集を防止するめに,該乾燥は低温で行うことが好ましく,凍結乾燥法,噴霧乾燥法,凍結噴霧乾燥法で行うことが好ましい。
 グルココルチコステロイド化合物の製造方法により得られる微粉砕化グルココルチコステロイド化合物微粒子の平均粒子径の範囲としては,上述の本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子の平均粒子径と同様とすることができる。また,グルココルチコステロイド化合物の製造方法により得られる微粉砕化グルココルチコステロイド化合物微粒子の90%径(D90)及び50%径(D50)の範囲も,上述の本発明の水性懸濁液剤又は水性医薬組成物が含有するグルココルチコステロイド化合物ナノ粒子の,それぞれ,90%径(D90)及び50%径(D50)と同様とすることができる。
 本明細書でいう「平均粒子径」又は「Dv」とは,動的光散乱光子相関法によって測定される粒度分布における算術平均径を意味する。50%径(メディアン径,D50ともいう)は,上記測定法にて測定される粒度分布において粉体をある粒子径から2つに分けたとき,大きい側と小さい側が等量となる径を意味する。「90%径」とは,上記測定法にて測定される粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの90%の位置にある粒子径(D90)を意味する。「10%径」とは,上記測定法にて測定される粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの10%の位置にある粒子径(D10)を意味する。動的光散乱光子相関法による測定方法,及び粒度分布の算出方法については,当技術分野において広く知られている。
2.医薬組成物
 また,本発明は,グルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする医薬組成物に関する。好ましくは,本発明の医薬組成物は非経口投与用医薬組成物であり,例えば,注射剤又は局所適用製剤とすることができる。本明細書において,医薬組成物の種類は特に限定されず,剤型としては,眼用局所適用製剤(例えば,点眼剤),耳用局所適用製剤(例えば,点耳剤),鼻用局所適用製剤(例えば,点鼻剤),懸濁剤,軟膏,クリーム剤,ゲル剤,吸入剤,注射剤(例えば,静脈注射用注射剤,皮下投与用注射剤,筋肉注射用注射剤,点滴)等が挙げられる。これらの製剤は常法に従って調製することができる。好ましくは,本発明の医薬組成物は分散安定剤を含有する。注射剤の場合には,本発明のグルココルチコステロイド化合物のナノ微粒子を水に懸濁させて調製されるが,必要に応じて生理食塩水或いはブドウ糖溶液に懸濁させてもよく,また分散剤,緩衝剤や保存剤を添加してもよい。本発明の医薬組成物は,例えば,静脈内投与用,筋肉内投与用,若しくは皮下投与用などの注射剤,点滴剤,経皮吸収剤,経粘膜吸収剤,点眼剤,点耳剤,点鼻剤,吸入剤などの形態の非経口投与用医薬組成物として調製することができる。
 本発明の医薬組成物は,薬理学的に許容される担体(製剤用添加物)を含有していてもよい。医薬組成物の製造に用いられる製剤用添加物の種類,有効成分に対する製剤用添加物の割合,又は医薬組成物の製造方法は,組成物の形態に応じて当業者が適宜選択することが可能である。製剤用添加物としては無機又は有機物質,或いは固体又は液体の物質を用いることができ,一般的には,有効成分重量に対して1重量%から90重量%の間で配合することができる。具体的には,その様な物質の例として乳糖,ブドウ糖,マンニトール,デキストリン,シクロデキストリン,デンプン,蔗糖,メタケイ酸アルミン酸マグネシウム,合成ケイ酸アルミニウム,カルボキシメチルセルロースナトリウム,ヒドロキシプロピルデンプン,カルボキシメチルセルロースカルシウム,イオン交換樹脂,メチルセルロース,ゼラチン,アラビアゴム,ヒドロキシプロピルセルロース,ヒドロキシプロピルメチルセルロース,ポリビニルピロリドン,PVA,軽質無水ケイ酸,ステアリン酸マグネシウム,タルク,トラガント,ベントナイト,ビーガム,酸化チタン,ソルビタン脂肪酸エステル,ラウリル硫酸ナトリウム,グリセリン,脂肪酸グリセリンエステル,精製ラノリン,グリセロゼラチン,ポリソルベート,マクロゴール,植物油,ロウ,流動パラフィン,白色ワセリン,フルオロカーボン,非イオン性界面活性剤,プロピレングルコール,水,塩化ベンザルコニウム,塩酸,塩化ナトリウム,水酸化ナトリウム,乳酸,ナトリウム,リン酸一水素ナトリウム,リン酸二水素ナトリウム,クエン酸,クエン酸ナトリウム,エデト酸2ナトリウム,ポロキサマー407,ポリカルボフィル等が挙げられる。例えば,本発明の医薬組成物は,POE・POPグリコール,PVA,ヒドロキシプロピルメチルセルロース,及びメチルセルロースから選択される1種類以上の製剤用添加物を含有する。
 本発明の水性懸濁液剤又は医薬組成物は,キットの形態で,外箱,容器,希釈剤,濁液剤,及び/又は調製方法・投与方法に関する説明書と共に含めることができる。本発明の水性懸濁液剤又は医薬組成物がキットとして供給される場合,該水性懸濁液剤又は医薬組成物のうち異なる構成成分が別々の容器中に包装され,一つのキットに含まれていてもよいし,あるいは,該水性懸濁液剤又は医薬組成物のうち一以上の一部の構成成分(少なくとも,グルココルチコステロイド化合物のナノ微粒子を含む)のみがキットに含まれ,別の構成成分がキットとは別に提供されていてもよい。また,本発明の水性懸濁液剤又は医薬組成物がキットとして供給される場合,本発明の水性懸濁液剤又は医薬組成物を得るため,好ましくは,必要な構成成分が使用直前に混合される。
 例えば,本発明のキットは,以下のキットとすることができる:
(a)グルココルチコステロイド化合物のナノ微粒子を含有する水性懸濁液剤を備える,医薬組成物を調製するためのキット
(b) 更に,分散安定剤を備えることを特徴とする,(a)に記載のキット;
(c) 前記分散安定剤がPOE・POPグリコール,PVA,ヒドロキシプロピルメチルセルロース,及びメチルセルロースから選択される1種類以上の物質である(b)に記載のキット;
(d) 非経口投与用医薬組成物を調製するためのキットである,(a)~(c)のいずれか1項に記載のキット;
(e) 注射剤又は局所適用製剤を調製するためのキットである,(a)~(d)のいずれか1項に記載のキット。
(f) 眼用局所適用製剤,耳用局所適用製剤,鼻用局所適用製剤,若しくは肺用局所適用製剤,又は,点眼剤,点耳剤,点鼻剤,若しくは吸入剤を調製するためのキットである,(e)に記載のキット。
(g) 医薬組成物が眼,耳,鼻,又は肺の炎症性疾患又は感染性疾患の治療薬又は予防薬である,(a)~(f)のいずれか1項に記載のキット。
 一態様において,本発明は,グルココルチコステロイド化合物のナノ微粒子を含有する水性懸濁液剤と希釈剤とを混合することを含む,グルココルチコステロイド化合物のナノ微粒子を含有する水性医薬組成物の調製方法であってもよい。
 本発明の医薬組成物(例えば,注射剤,眼用局所適用製剤(好ましくは,点眼剤),耳用局所適用製剤(好ましくは,点耳剤),鼻用局所適用製剤(好ましくは,点鼻剤),又は肺用局所適用製剤(好ましくは,吸入剤))を調製する場合,そのpH及び浸透圧については,局所適用製剤として許容されることを限度として,特に制限されないが,pH5~9.5とすることが好ましく,pH6~9がより好ましく,pH7~9が更に好ましい。該製剤(軟膏剤以外の場合)の生理食塩液に対する浸透圧比としては,例えば0.3~4.3であり,好ましくは0.3~2.2,特に好ましくは0.5~1.5程度である。pHや浸透圧の調節は,pH調整剤,等張化剤,塩類等を用いて,当該技術分野で既知の方法で行うことができる。
 本発明の医薬組成物の調製は,適宜公知の方法で行うことができ,例えば,蒸留水または精製水等の適当な希釈剤中で,グルココルチコステロイド化合物のナノ微粒子を含有する水性懸濁液剤と任意の配合成分とを混合して,上記の浸透圧及びpHに調整し,無菌環境下,高圧蒸気滅菌あるいはろ過滅菌処理し,洗浄滅菌済みの容器に無菌充填することにより製造することができる。
 本発明の医薬組成物は,炎症性疾患又は感染性疾患の治療薬又は予防薬とすることができる。例えば,本発明の医薬組成物は,感染に起因する炎症性疾患又は感染性疾患の治療用又は予防用とすることができる。よって,本発明は,医薬(炎症性疾患又は感染性疾患の治療薬又は予防薬)として使用するためのグルココルチコステロイド化合物のナノ微粒子および分散安定剤を含有することを特徴とする水性懸濁液剤を包含する。
 本明細書において,炎症性疾患又は感染性疾患とは,全身性の炎症性疾患及び感染性疾患,並びに局所性の炎症性疾患又は感染性疾患を包含する。炎症性疾患には,感染に起因する炎症性疾患の他,アレルギー性の炎症性疾患(例えば,アレルギー性鼻炎,アレルギー性結膜炎,アレルギー性皮膚炎,アレルギー性湿疹,アレルギー性喘息,アレルギー性肺炎)も含まれる。全身性の炎症性疾患としては,表在性・深在性皮膚感染症,リンパ管・リンパ節炎,乳腺炎,骨髄炎,扁桃炎,肺炎,腎盂腎炎,尿道炎,淋菌感染症,梅毒,子宮内感染,猩紅熱,ジフテリア,百日咳,外傷・火傷及び手術等の二次感染,咽頭・喉頭炎,気管支炎,慢性呼吸器病変の二次感染,歯冠周囲炎,歯周組織炎,破傷風,膀胱炎,前立腺炎,感染性腸炎,顎炎,感染性関節炎,胃炎等の全身の炎症性疾患又は感染性疾患を挙げることができる。
 具体的には,本発明の医薬組成物は,眼の炎症性疾患及び感染性疾患並びにそれらに付随する多様な症状を治療または予防するために使用することができる。眼の炎症性疾患及び感染性疾患としては,例えば,眼瞼炎,眼瞼結膜炎,マイボーム腺炎,急性もしくは慢性麦粒腫,霰粒腫,涙嚢炎,涙腺炎,および酒さ性座瘡を含む眼瞼の症状;結膜炎,新生児眼炎,およびトラコーマを含む結膜の症状;角膜潰瘍,表在性角膜炎および角膜実質炎,角結膜炎,異物,および術後感染症を含む角膜の症状;ならびに眼内炎,感染性ぶどう膜炎,および術後感染症を含む前眼房およびぶどう膜の症状を挙げることができる。感染症の予防としては,手術等の外科処置前,感染性症状を呈する者との接触前に投与することを含む。予防のために使用する場合,例えば,眼瞼形成術,霰粒腫の摘出,瞼板縫合術,カニュアリキュリや涙管排液システムのための手術,および眼瞼と涙器に関係する他の外科処置といった外科処置;翼状片,結膜脂肪斑および腫瘍の摘出,結膜移植,切り傷,火傷および擦過といった外傷性の傷,および結膜被覆術を含む結膜の手術;異物の除去,角膜切開術および角膜移植を含む角膜の手術;光屈折率処置を含む屈折率手術;ブレブの濾過を含む緑内障手術;前眼房の穿刺;虹彩切除術;白内障手術;網膜手術;ならびに外眼筋に関係する手術の前に投与することができる。また,新生児眼炎の予防も本明細書における予防に含まれる。
 例えば,本発明の医薬組成物は,耳の炎症性疾患又は感染性疾患に付随する多様な症状の治療又は予防に使用することができる。耳の炎症性疾患又は感染性疾患としては,例えば,中耳炎,又は外耳炎を挙げることができる。感染症の予防とは,手術前の処置,並びに感染の可能性のある状態(例えば,感染が疑われる人又は感染した人との接触)の前の処置を含む。予防的状況の例としては,耳の外傷若しくは損傷を伴う外科的処置及びその他の手術又は処置の前の治療が挙げられる。
 また,本発明の医薬組成物は,鼻の炎症性疾患又は感染性疾患に付随する多様な症状を治療又は予防することができる。なお,本明細書全体にわたって「鼻の炎症性疾患又は感染性疾患」,及び「鼻用局所適用製剤」の語における「鼻」とは,上気道全体を含む意味であり,例えば鼻腔,鼻咽喉,咽頭,及び喉頭を含むものである。鼻の炎症性疾患又は感染性疾患としては,例えば,副鼻腔炎,アレルギー性鼻炎,及び鼻炎を挙げることができる。
 また,本発明の医薬組成物は,肺の炎症性疾患又は感染性疾患に付随する多様な症状の治療又は予防に使用することができる。なお,本明細書全体にわたって「肺の炎症性疾患又は感染性疾患」,及び「肺用局所適用製剤」の語における「肺」とは,下気道全体を含む意味であり,例えば気管,気管支,細気管支,及び肺を含むものである。肺の炎症性疾患又は感染性疾患としては,例えば,肺炎,気管支炎,アレルギー性肺炎,及び喘息等を挙げることができる。
 より好ましくは,本発明の医薬組成物は多様な細菌または寄生虫により引き起こされる感染性疾患(例えば,眼,耳,鼻又は肺の感染性疾患)の治療または予防に使用することができる。そのような微生物としては,例えば,黄色ブドウ球菌および表皮ブドウ球菌を含むブドウ球菌属;肺炎連鎖球菌および化膿連鎖球菌ならびにC,FおよびG群の連鎖球菌およびビリダンス群の連鎖球菌を含む連鎖球菌属;バイオタイプIIIを含むインフルエンザ菌;軟性下疳菌;モラクセラ・カタラリス;淋菌および髄膜炎菌を含むナイセリア属;トラコーマクラジミア,オウム病クラジミアおよびクラジミア・ニューモニエを含むクラジミア属;ヒト結核菌およびトリ結核菌細胞内複合体ならびにミコバクテリウム・マリナム,ミコバクテリウム・フォルツイツムおよびカメ結核菌を含む非定型ミコバクテリウム菌を含むミコバクテリウム属;百日咳菌;カンピロバクター・ジェジュニ;レジオネラ・ニューモフィラ;バクテロイデス・ビビウス;ウェルシュ菌;ペプトストレプトコッカススピーシーズ;ボレリア・ブルグドルフェリ;肺炎マイコプラスマ;梅毒トレポネーマ;ウレアプラスマ・ウレアリチカム;トキソプラスマ;マラリア;ならびにノセマを挙げることができる。
3.治療方法・予防方法
 本発明の医薬組成物は,それを必要とする患者に有効量を投与することにより,炎症性疾患又は感染性疾患の治療又は予防に用いることができる。よって,本発明は,グルココルチコステロイド化合物のナノ微粒子(および分散安定剤)を含有することを特徴とする水性懸濁液剤を含む医薬組成物を,それを必要とする患者に有効量を投与することを含む,炎症性疾患又は感染性疾患の治療方法又は予防方法に関する。ここで,対象となる患者は,哺乳類に分類される任意の動物を意味し,これに限定されるものではない。例として,ヒト;イヌ,ネコ,ウサギなどの愛玩動物;ウシ,ブタ,ヒツジ,ウマなどの家畜動物を含み,好ましくは,ヒトである。
 本発明の医薬組成物の投与量及び投与回数は特に限定されず,治療対象疾患の悪化・進展の防止及び/又は治療の目的,疾患の種類,患者の体重や年齢などの条件に応じて,医師の判断により適宜選択することが可能である。一般的には,成人一日あたりの投与量は0.01~1000mg(有効成分重量)程度であり,一日1回又は数回投与することができる。投与経路は,注射又は局所投与であり,例えば,静脈注射,筋肉内注射,若しくは皮下注射,点滴,点眼,点耳,点鼻,経皮,経粘膜,吸入等が挙げられる。また,例えば,本発明の医薬組成物における有効成分の含有量は,0.001%~10%,0.01%~1%,又は0.05%~0.1%とすることができる。
 本発明の医薬組成物が注射剤の場合,成人に対して一日量0.001~100mg(有効成分重量)を連続投与又は間欠投与することができる。
 本発明の水性医薬組成物が局所投与用の場合,患部,患部の周辺部又は患部を含む臓器などの局所に直接投与されるものである。例えば,本発明の医薬組成物は眼用局所適用製剤,耳用局所適用製剤,鼻用局所適用製剤,又は肺用局所適用製剤とすることができる。本発明の医薬組成物が局所投与用製剤の場合,日常的に適用することもできるし,局所の炎症性疾患又は感染性疾患が発症した後に,任意の回数適用することができる。また,適用量は,症状等に応じて適宜設定することができ,通常一日あたり1~6回程度、例えば、一日当たり、1回、2回、3回、4回、5回又は6回点眼し,1回に1~3滴程度適用する。また,投与期間は,症状が十分に治まるまで任意の期間とすることができるが,例えば,2週間~1年とすることができる。
 以下に実施例を用いて本発明をより詳細に説明するが,これは本発明の範囲を限定するものではない。なお,本願明細書全体を通じて引用する文献は,参照によりその全体が本願明細書に組み込まれる。
(実施例1)クロベタゾールプロピオン酸エステルの粉砕方法の検討
 クロベタゾールプロピオン酸エステルの粉砕における無水クエン酸及び水添大豆レシチン添加の影響を調べるため,以下の(1)~(9)の粉砕を行い,得られた粒子の平均粒子径(Dv),中心粒子径(D50),及び90%粒子径(D90)を粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて測定した。
(1)無水クエン酸及び水添大豆レシチン無添加条件下における粉砕
 水冷式1.0L竪型ニーダー(井上製作所)に,平均粒子径38,390nmのクロベタゾールプロピオン酸エステル(融点:193~200℃,東京化成製)10g及び塩化ナトリウム(トミタソルトK-30,富田製薬製)110gを仕込んで均一に混合した後,グリセリン(Sigma-Aldrich社製)17gを投入して内容物をこね粉状態に保って,5℃で6時間粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.1g,分散剤として0.1%POE・POPグリコール(ユニルーブ70DP-950B,日本油脂製)5gを50mLスクリュー管に計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,均一に分散し,精製水45gを加えて懸濁液50gを得た。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)285nm,中心粒子径(D50)231nm,90%粒子径(D90)433nmであった。
(2)無水クエン酸添加条件下における粉砕
 無水クエン酸(純正化学社製)0.8gを追加した以外は,実施例1(1)と同一条件で,5℃で7時間粉砕を行なった。その後,実施例1と同様に粉砕混練物(ドウ)の分散処理を行ない,クロベタゾールプロピオン酸エステルの粒度分布を測定した結果,平均粒子径(Dv)260nm,中心粒子径(D50)222nm,90%粒子径(D90)363nmであった。
(3)水添大豆レシチン添加条件下における粉砕
 水添大豆レシチン(Phospholipon90H,リポイド社製)10gを追加した以外は,実施例1(1)と同一条件にて,粉砕およびその後の分散処理を行なった。その結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)147nm,中心粒子径(D50)124nm,90%粒子径(D90)210nmであった。
(4)無水クエン酸及び水添大豆レシチン添加条件下における粉砕1
 無水クエン酸(純正化学社製)0.8gおよび水添大豆レシチン(Phospholipon90H,リポイド社)5gを追加した以外は,実施例1(1)と同一条件にて,粉砕およびその後の分散処理を行なった。その結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)166nm,中心粒子径(D50)138nm,90%粒子径(D90)241nmであった。
(5)無水クエン酸及び水添大豆レシチン添加条件下における粉砕2
 無水クエン酸(純正化学製)0.8gおよび水添大豆レシチン(Phospholipon90H,リポイド社)10gを追加した以外は,実施例1(1)と同一条件で,5℃で7時間粉砕を行なった。その後,実施例1と同様に粉砕混練物(ドウ)の分散処理を行ない,クロベタゾールプロピオン酸エステルの粒度分布を測定した結果,平均粒子径(Dv)101nm,中心粒子径(D50)87nm,90%粒子径(D90)141nmであった。
(6)無水クエン酸及び水添大豆レシチン添加条件下における粉砕3
 無水クエン酸(純正化学社製)0.8gおよび水添大豆レシチン(Phospholipon90H,リポイド社製)20gを追加した以外は,実施例1(1)と同一条件で,5℃で7時間粉砕を行なった。その後,実施例1と同様に粉砕混練物(ドウ)の分散処理を行ない,クロベタゾールプロピオン酸エステルの粒度分布を測定した結果,平均粒子径(Dv)144nm,中心粒子径(D50)121nm,90%粒子径(D90)214nmであった。
(7)無水クエン酸及び水添大豆レシチン添加条件下における粉砕4
 無水クエン酸(純正化学社製)2gおよび水添大豆レシチン(Phospholipon90H,リポイド社製)5gを追加した以外は,実施例1(1)と同一条件で,5℃で7時間粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.1g,分散剤として0.01%POE・POPグリコール(ユニルーブ70DP-950B,日本油脂製)5gを50mLスクリュー管に計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,均一に分散し,精製水15gを加えて懸濁液20gを得た。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)137nm,中心粒子径(D50)112nm,90%粒子径(D90)209nmであった。
(8)無水クエン酸及び水添大豆レシチン添加条件下における粉砕5
 無水クエン酸(純正化学社製)2gおよび水添大豆レシチン(Phospholipon90H,リポイド社製)10gを追加した以外は,実施例1(1)と同一条件で,5℃で6時間粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.1gを実施例1(1)と同様に分散処理を行ない,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)129nm,中心粒子径(D50)112nm,90%粒子径(D90)179nmであった。
(9)無水クエン酸及び水添大豆レシチン添加条件下における粉砕6
 無水クエン酸(純正化学社製)2gおよび水添大豆レシチン(Phospholipon90H,リポイド社製)20gを追加した以外は,実施例1(1)と同一条件で,5℃で7時間粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.1gを実施例1(1)同様に分散処理を行ない,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)147nm,中心粒子径(D50)121nm,90%粒子径(D90)228nmであった。
 (1)~(9)の粉砕条件及び粉砕の結果得られた粒子径を表1に示す。本実験の結果から,(5)の粉砕処方が最も良好な粉砕性能であることが示された。
Figure JPOXMLDOC01-appb-T000001
(実施例2)クロベタゾールプロピオン酸エステルの製剤化検討
(1)分散剤の検討
 実施例1(4)で得られた粉砕混練物(ドウ)0.1gと表2に記載の各分散剤の水溶液5gを50mLスクリュー管に計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,均一に分散し,精製水45gを加えて分散液50gとした。得られた各分散液を室温(約25℃)にて1日保存し,分散直後と1日経過後の各分散液の澄明性と沈殿の有無を目視により観察して分散液の安定性を評価した。
 結果を表2に示す。表2において,保存安定性の評価に記載された記号は,以下を意味する。○:安定性が良好;△:分散直後は安定だが,時間の経過とともに沈殿が生成;×:調製直後から濁り感があり,不安定。表2に示されたように,本実験の結果から,分散剤としてPOE・POPグリコール(プロノン407P,プルロニックF68,ユニルーブ70DP-950B)およびPVA(クラレポバール217C)を使用した場合,分散直後のみならず,1日経過後においても沈殿の生成は見られず,澄明性を保持しており,安定性が良好であった。
Figure JPOXMLDOC01-appb-T000002
(2)増粘剤の検討
 実施例1(4)で得られた粉砕混練物(ドウ)0.1gと0.1%プルロニックF68/0.01%Tween80(1:1)混合水溶液7.3gを50mLスクリュー管に計り取り,超音波ホモジナイザー(Sonicator S-4000,チップ418号,出力30,アストラソン社製)を使用して,3分間,均一に分散した後,表3に記載の各増粘剤の水溶液1.5gを添加し,さらに精製水13.5gを加えて分散液22.4gとした。なお,各増粘剤の最終濃度は表3に記載したとおりにした。得られた各分散液を室温(約25℃)にて4日間保存し,各分散液の澄明性と沈殿の有無を目視により観察して安定性を評価した。
 結果を表3に示す。表3において,保存安定性の評価に記載された記号は,以下を意味する。○:安定性が良好;△:若干の沈殿が見られ,安定性が低い;×:完全沈殿が見られ,不安定。表3に示されるとおり,本実験の結果から,増粘剤としてヒドロキシプロピルメチルセルロースおよびメチルセルロースを使用した場合,分散直後のみならず,4日経過後においても沈殿の生成は見られず,澄明性を保持しており,安定性が良好であった。
Figure JPOXMLDOC01-appb-T000003
(3)防腐剤の検討1
 実施例1(4)で得られた粉砕混練物(ドウ)0.1gと0.1%プルロニックF68/0.01%Tween80(1:1)混合水溶液7.3gならびに1%クラレポバール217C水溶液1.43gを50mLスクリュー管に計り取り,超音波ホモジナイザー(Sonicator S-4000,チップ418号,出力30,アストラソン社製)を使用して,7分間,均一に分散した後,0.01%塩化ベンザルコニウム水溶液1.43gおよび3%TC-5(R)水溶液1.43gを加え,撹拌しながら100mMクエン酸ナトリウム水溶液を徐々に添加してpH7.0に調整し,さらに精製水を加えて点眼剤14.6gとした。得られた点眼剤を5℃-25℃のサイクルおよび40℃にて7日間保存し,該点眼剤の澄明性を目視により観察して安定性を評価した。
 実施例2(3)の結果を表4に示す。表4における保存温度の「サイクル(5℃-25℃)」とは,5℃で6時間保存した後,25℃で6時間保存することを繰り返したことを意味する。表4に示すとおり,本実験の結果から,防腐剤として塩化ベンザルコニウムを使用して調製した点眼剤は,調製直後のみならず,7日経過後においても澄明性を保持しており,安定性が良好であった。
Figure JPOXMLDOC01-appb-T000004
(実施例3)濾過滅菌の検討
(1)点眼剤の調製1
 1Lのビーカーに実施例1(5)で得られた粉砕混練物(ドウ)6.0g,0.01%ユニルーブ70DP-950B水溶液408gおよび1.0%クラレポバール217C水溶液81.6gを加え,超音波装置(MODEL VS-100III,アズワン社製)を使用して粗分散させた後,高圧ホモジナイザー(L01-YH1,90MPa×5パス,三和エンジニアリング社製)にて均一に分散させた。さらに0.1%塩化ベンザルコニウム水溶液7.48gおよび3%TC-5(R)水溶液7.48gを加え,5分間撹拌した後,100mMクエン酸ナトリウム水溶液を添加してpH7.0とした後,撹拌しながら精製水を加え総量748gとした。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた点眼剤の粒度分布を測定した結果,平均粒子径(Dv)173nm,中心粒子径(D50)151nm,90%粒子径(D90)233nmであった。
(2)点眼剤の調製2
 1Lのビーカーに実施例1(7)で得られた粉砕混練物(ドウ)6.0g,0.01%ユニルーブ70DP-950B水溶液414gおよび1.0%クラレポバール217C水溶液82.8gを加え,超音波装置(MODEL VS-100III,アズワン社製)を使用して粗分散させた後,高圧ホモジナイザー(L01-YH1,90MPa×5パス,三和エンジニアリング社製)にて均一に分散させた。さらに0.1%塩化ベンザルコニウム水溶液7.5gおよび3%TC-5(R)水溶液7.5gを加え,5分間撹拌した後,100mMクエン酸ナトリウム水溶液を添加してpH7.0とした後,撹拌しながら精製水を加え総量750gとした。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた点眼剤の粒度分布を測定した結果,平均粒子径(Dv)201nm,中心粒子径(D50)177nm,90%粒子径(D90)260nmであった。
(3)点眼剤の調製3
 1Lのビーカーに実施例1(8)で得られた粉砕混練物(ドウ)6.29g,0.01%ユニルーブ70DP-950B水溶液415gおよび1.0%クラレポバール217C水溶液83.0gを加え,超音波装置(MODEL VS-100III,アズワン社製)を使用して粗分散させた後,高圧ホモジナイザー(L01-YH1,90MPa×5パス,三和エンジニアリング社製)にて均一に分散させた。さらに0.1%塩化ベンザルコニウム水溶液7.84gおよび3%TC-5(R)水溶液7.84gを加え,5分間撹拌した後,100mMクエン酸ナトリウム水溶液を添加してpH7.0とした後,撹拌しながら精製水を加え総量784gとした。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた点眼剤の粒度分布を測定した結果,平均粒子径(Dv)204nm,中心粒子径(D50)166nm,90%粒子径(D90)306nmであった。
(4)フィルター濾過透過性の検討
 実施例3(1)~(3)で調製した各点眼剤に関して,ミリポア社製の2種類のフィルター濾過膜(Optiscale25およびOptiscale25 Capsule)を用いてフィルター濾過透過性の検討を行なった。濾過条件は以下の通りである。
フィルター名:
Optiscale25(プレフィルター0.5μm/本フィルター0.22μm)
Optiscale25 Capsule(プレフィルター0.2μm/本フィルター0.22μm)
フィルター材質:ポリビニリデンフロライド(PVDF)
有効濾過面積:3.5cm
試験圧力:0.18MPa
 試験の方法は,経時的に点眼剤の透過流量を測定し,完全にフィルターが目詰まりするまで濾過を行なわず,フィルターの最大処理量を予測することができるVmax法にて実施した。
 結果を表5に示した。表5中の透過量は,各点眼剤がフィルターを透過した量をL/m2に換算した値を示した。また透過率は,フィルター濾過前後のクロベタゾールプロピオン酸エステルの濃度をHPLCで測定し,濾過前に対する濾過後の濃度を百分率で示した。表5に示された結果より,いずれの粒子径についても,フィルター濾過滅菌が可能であることが分かった。粉砕後のクロベタゾールプロピオン酸エステルの粒子径が最も小さい実施例3(1)で調製した点眼剤が,透過量と透過率の両方とも高い値を示した。
Figure JPOXMLDOC01-appb-T000005
(実施例4)クロベタゾールプロピオン酸エステルの粉砕
(1)平均粒子径100~150nmのナノ粒子の作製
 水冷式1.0L竪型ニーダー(井上製作所)に,平均粒子径38,390nmのクロベタゾールプロピオン酸エステル(融点:193~200℃,東京化成製)10g,塩化ナトリウム(トミタソルトK-30,富田製薬製)110g,水添大豆レシチン(Phospholipon90H,リポイド社製)10gおよび無水クエン酸(純正化学社製)0.8gを仕込んで均一に混合した後,グリセリン(Sigma-Aldrich社製)17gを投入して内容物をこね粉状態に保って,5℃で7時間粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.1g,分散剤として0.01%POE・POPグリコール(ユニルーブ70DP-950B,日本油脂製)5gを50mLスクリュー管に計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,均一に分散し,精製水45gを加えて懸濁液50gを得た。粒度分布測定装置(Delsa Nano S,ベックマンコールター社製)を用いて,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)101nm,10%粒子径(D10)56nm,中心粒子径(D50)87nm,90%粒子径(D90)141nmであった。
(2)平均粒子径100~150nmのナノ粒子の作製
 (1)と同様にクロベタゾールプロピオン酸エステルの粉砕および粒度分布測定を行なった。その結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)108nm,10%粒子径(D10)57nm,中心粒子径(D50)89nm,90%粒子径(D90)151nmであった。
(3)平均粒子径250~300nmのナノ粒子の作製
 水添大豆レシチン(Phospholipon90H,リポイド社製)10gを添加しなかった以外は,(1)と同様にクロベタゾールプロピオン酸エステルの粉砕および粒度分布測定を行なった。その結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)260nm,10%粒子径(D10)143nm,中心粒子径(D50)222nm,90%粒子径(D90)363nmであった。
(4)平均粒子径500~700nmのナノ粒子の作製
 平均粒子径38,390nmのクロベタゾールプロピオン酸エステル1g,塩化ナトリウムおよびグリセリンの混合物(塩化ナトリウム11g,グリセリン2g)2gをモルタグラインダRM200(レッチェ社製)に投入し,室温にて1回1分間の運転を9回繰り返して粉砕を行なった。その後,得られた粉砕混練物(ドウ)0.04g,分散剤として0.01%POE・POPグリコール(ユニルーブ70DP-950B)5gを50mLスクリュー管に計り取り,超音波装置を使用して,均一に分散し,精製水45gを加えて懸濁液50gを得た。粒度分布測定装置を用いて,得られた懸濁液の粒度分布を測定した結果,クロベタゾールプロピオン酸エステルの粒度分布は,平均粒子径(Dv)637nm,10%粒子径(D10)233nm,中心粒子径(D50)475nm,90%粒子径(D90)1129nmであった。
(実施例5)ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
(1)0.05%ナノ化点眼懸濁液(平均粒子径が約100nm)の作製
 実施例4(1)で作製した粉砕混練物(ドウ)2.4g,0.01%ユニルーブ水溶液150gおよび1.0%PVA(メルク社製)水溶液30gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,約5分間均一に分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で処理して分散液を得た。さらに0.1%塩化ベンザルコニウム(BAC)水溶液2.5gおよび3.0%ヒドロキシプロピルメチルセルロース(HPMC)水溶液2.5gを添加した後,500mM クエン酸ナトリウムを徐々に加えてpH7.0に調整した。その後,注射用水を加えて全量を417.6gとして,0.05%ナノ化点眼懸濁液(平均粒子径が約100nm)を作製した。該点眼懸濁液の浸透圧比は0.8であった。
(2)0.05%ナノ化点眼懸濁液(平均粒子径が約300nm)の作製
 実施例4(3)で作製した粉砕混練物(ドウ)2.1g,0.01%ユニルーブ水溶液150gおよび1.0%PVA水溶液30gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,約5分間均一に分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で処理して分散液を得た。さらに0.1%BAC水溶液2.5gおよび3.0%HPMC水溶液2.5gを添加した後,500mM クエン酸ナトリウムを徐々に加えてpH7.0に調整した。その後,注射用水を加えて全量を405.4gとして,0.05%ナノ化点眼懸濁液(平均粒子径が約300nm)を作製した。該点眼懸濁液の浸透圧比は0.8であった。
(3)0.05%ナノ化点眼懸濁液(平均粒子径が約600nm)の作製
 実施例4(4)で作製した粉砕混練物(ドウ)0.52g,注射用水150gおよび1.0%PVA水溶液30gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,約5分間均一に分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で処理して分散液を得た。さらに0.1%BAC水溶液2.5gおよび3.0%HPMC水溶液2.5gを添加した後,500mM クエン酸ナトリウムを徐々に加えてpH7.0に調整した。その後,塩化ナトリウム1.45gを加え,注射用水を加えて全量を245gとして,0.05%ナノ化点眼懸濁液(平均粒子径が約600nm)を作製した。該点眼懸濁液の浸透圧比は0.9であった。
 実施例5(1)~(3)で作製した各0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の組成を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
(実施例6)眼内薬物動態試験
 実施例5(1)~(3)で作製した各ナノ化点眼懸濁液をウサギ(Kbl:JW,雄)に点眼して眼内薬物動態試験を行なった(n=3)。ウサギの下眼瞼を穏やかに引き離し,左眼の結膜嚢内に被験物質をピペットを用いて点眼(単回点眼投与,50μL/eye)し,点眼後,上下眼瞼を緩やかに合わせ約2秒間保持した。点眼15分,30分,60分および90分後に,ペントバルビタールナトリウム(東京化成工業株式会社)水溶液の耳介静脈内投与により麻酔を行い,放血安楽死させ,注射用水で眼をよく洗浄した後,眼房水(左眼)を採取した。その後,結膜(左眼)を採取した。採取した眼房水及び結膜はそれぞれ,電子天秤を用いて重量を測定した後,液体窒素にて凍結し,測定まで超低温フリーザー(許容範囲:-70℃以下)に保存した。眼房水および結膜中のクロベタゾールプロピオン酸エステル濃度は,LC-MS/MS法で測定した。
(眼房水の前処理)
 採取した眼房水25μLにメタノール20μLおよび内標準(プレドニゾロン)溶液20μLを加えて十分に攪拌した。さらにアセトニトリル100μLを加えて十分に攪拌し,遠心(13100×g,4℃,5分)した後,上清10μLをLC-MS/MSに注入した。
(結膜の前処理)
 採取した結膜は,その湿重量に対して9倍容量の超純水を加えてホモジナイズした。該ホモジネート25μLにメタノール25μLおよび内標準(プレドニゾロン)溶液20μLを加えて十分に攪拌した。さらにアセトニトリル100μLを加えて十分に攪拌し,遠心(13100×g,4℃,5分)した後,上清20μLをLC-MS/MSに注入した。
(LC-MS/MSの測定条件)
(HPLCの測定条件)
カラム:CAPCELL PAK C18 MGIII(5μm,2mm×150mm,資生堂)
移動相A:0.2% ぎ酸水溶液
移動相B:アセトニトリル
グラジエントのタイムプログラム:以下の容量比で行なった
----------------------------
   時間(min)  移動相A(%)  移動相B(%)
----------------------------
    0.00     70       30
    2.20     70       30
    2.50     20       80
    5.40     20       80
    5.41     70       30
    7.00     70       30
----------------------------
流速:0.3mL/min
カラム温度:40℃
オートサンプラー温度:4℃
分析時間:7分間
(MS/MSの測定条件)
Ion Source:Electrospray ionization(ESI)
Scan Type:Multiple reaction monitoring(MRM)
Polarity:Positive
Source Temperature:400℃
モニターイオン:
----------------------------------
     化合物          Q1(m/z)  Q3(m/z)
----------------------------------
クロベタゾールプロピオン酸エステル 468.1    356.3
内標準物質(プレドニゾロン)    361.3    147.1
----------------------------------
       許容範囲:±0.5以内
 実施例5(1)~(3)で作製したナノ化点眼懸濁液の眼内薬物動態試験の結果として,眼房水中の薬物濃度の経時変化を図1及び表7に,結膜中の薬物濃度の経時変化を図2及び表8に示した。眼房水中の薬物濃度には,粒子径依存性が見られた。すなわち粒子径が小さくなるに従い,眼房水中の薬物濃度が高くなる傾向が示された。このことから,点眼したナノ化クロベタゾールプロピオン酸エステルの眼房水中への移行性には,粒子径が小さい方が適していることが示された。また結膜中の薬物濃度にも同様に粒子径依存性の傾向が見られ,点眼したナノ化クロベタゾールプロピオン酸エステルの結膜への移行性には,粒子径が小さい方が適していることが示された。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(実施例7)ナノ化点眼懸濁液における増粘剤の影響の検討
 実施例6より,ナノ化クロベタゾールプロピオン酸エステルの平均粒子径は約100nmが適していることが示されたため,次に,平均粒子径は約100nmのナノ化クロベタゾールプロピオン酸エステルを含有する点眼懸濁液において,様々な増粘剤を採用することによりナノ化点眼懸濁液の粘度を変えて,眼内薬物動態試験を行なった。
(1)ナノ化点眼懸濁液Pの作製
 実施例4(2)で作製した粉砕混練物(ドウ)5g,0.01%ユニルーブ水溶液335gおよび1.0%PVA水溶液67gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,約5分間均一に分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で処理して分散液を得た。さらに0.1%BAC水溶液6.7gおよび1.0%HPMC(60SH-50)水溶液201gを添加した後,500mM クエン酸ナトリウムを徐々に加えてpH7.0に調整した。その後,注射用水を加えて全量を670gとして,0.05%ナノ化点眼懸濁液Pを作製した。該点眼懸濁液の粘度は約2mPa・Sであった。
(2)ナノ化点眼懸濁液Qの作製
 「1.0%HPMC(60SH-50)水溶液201g」を「1.0%HPMC(60SH-4000)水溶液100.5g」に変えた以外は,実施例7(1)と同様にして0.05%ナノ化点眼懸濁液Qを作製した。該点眼懸濁液の粘度は約3mPa・Sであった。
(3)ナノ化点眼懸濁液Rの作製
 「1.0%HPMC(60SH-50)水溶液201g」を「1.0%MC(SM-100)水溶液134g」に変えた以外は,実施例7(1)と同様にして0.05%ナノ化点眼懸濁液Rを作製した。該点眼懸濁液の粘度は約2mPa・Sであった。
(4)ナノ化点眼懸濁液Sの作製
 「1.0%HPMC(60SH-50)水溶液201g」を「1.0%MC(SM-4000)水溶液100.5g」に変えた以外は,実施例7(1)と同様にして0.05%ナノ化点眼懸濁液Sを作製した。該点眼懸濁液の粘度は約3mPa・Sであった。
 実施例7(1)~(4)で作製した各0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の組成を以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
(5)眼内薬物動態試験
 実施例7(1)~(4)で作製したナノ化点眼懸濁液を実施例6記載の方法にて,眼内薬物動態試験を行なった。
(6)結果
 眼房水中の薬物濃度の経時変化を図3及び表10に,結膜中の薬物濃度の経時変化を図4及び表11に示した。図3に示した結果より,点眼懸濁液の粘度が高い方が,眼房水中への移行性が高い傾向があることが明らかとなった。また図4に示した結果より,点眼懸濁液の粘度が高い方が,初期(15分後)の結膜への移行性が高い傾向があることが明らかとなった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(実施例8)ナノ化クロベタゾール点眼懸濁液のウサギのBSA誘発ぶどう膜炎モデルにおける薬効試験
(1)クロベタゾールプロピオン酸エステルの粉砕
 実施例4(1)と同様にクロベタゾールプロピオン酸エステルの粉砕を行ない,クロベタゾールプロピオン酸エステルの粒度分布が,平均粒子径(Dv)132nm,10%粒子径(D10)65nm,中心粒子径(D50)109nm,90%粒子径(D90)186nmである粉砕混練物(ドウ)を作製した。
(2)0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 上記(1)で作製した粉砕混練物(ドウ)2.4g,0.01%POE・POPグリコール水溶液167.5gおよび1.0%PVA水溶液33.5gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で5回処理してドウ分散液を得た。さらに0.1%塩化ベンザルコニウム水溶液2.8gおよび1.0%メチルセルロース水溶液56.4gを添加した後,500mM クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調整した。その後,グリセリン1.5gを添加して浸透圧比を1.0に調整し,注射用水を加えて全量を282.1gとして,0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を以下の表に示す。
点眼懸濁液の組成
--------------------------------
 成分                       組成(%)
--------------------------------
 クロベタゾールプロピオン酸エステル        0.05
 塩化ナトリウム                  0.50
 水添大豆レシチン                 0.05
 グリセリン                    0.08
 無水クエン酸                   0.004
 ポリオキシエチレンポリオキシプロピレングリコール 0.005
 ポリビニルアルコール               0.1
 塩化ベンザルコニウム               0.001
 メチルセルロース                 0.20
 クエン酸ナトリウム                適量
 注射用水                     適量
--------------------------------
点眼懸濁液の物性
----------------------------
 測定項目                   測定値
----------------------------
 クロベタゾールプロピオン酸エステル濃度(%) 0.05
 浸透圧比                   1.0
 pH                     7.0
 粘度(mPa・s)              2.1
----------------------------
(3)ウサギのBSA誘発ぶどう膜炎モデルを用いた薬効試験
 ウサギ(Std:JW/CSK)をケタミン塩酸塩(ケタラール筋注用500mg)およびキシラジン(セラクタール2%注射液)の併用麻酔下で,右眼球に0.4%オキシブプロカイン塩酸塩(ベノキシール点眼液0.4%)を点眼麻酔して角膜反射が消失した後,右眼の硝子体中央部に10%BSA生理食塩液を0.1mL注入して,ぶどう膜炎の惹起(1回目)を行なった。この翌日より,対照(生理食塩液),被験物質(上記(2)で作製した0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液)および陽性対照物質(0.1%フルオロメトロン点眼液,市販品)をマイクロピペットを用いて50μL採取し,1日2回(原則として9:00と17:00),29日連続して右眼球に点眼投与した。左眼は無処置とし,各群n=5で薬効試験を行なった。
 1回目のBSA投与15日後から18日後までの4日間は,山内らの眼炎症採点基準(山内 秀泰ほか(1973),日本眼科紀要,24,969-979)に従って外眼部(角膜の外側)と内眼部(角膜の内側)の炎症症状をスコア化することで,抗炎症効果の評価を行なった。また27日後には1.25% BSA生理食塩液を2mL/kgの用量で耳介静脈より注入して,ぶどう膜炎の惹起(2回目)を行ない,29日後には上記と同様に外眼部と内眼部の炎症症状をスコア化して抗炎症効果を評価した。
(4)結果
 結果を図5~7に示す。本結果より,0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液は,外眼部と内眼部の炎症モデルに対して,0.1%フルオロメトロン点眼液と同程度の抗炎症効果があることが明らかとなった。
(実施例9)ラットのクロトン誘発結膜炎モデルにおける薬効試験
(1)0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 上記実施例8(1)で作製した粉砕混練物(ドウ)4.2g,0.01%ポリオキシエチレンポリオキシプロピレン水溶液150gおよび1.0%PVA水溶液30gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で5回処理してドウ分散液を得た。さらに0.1%塩化ベンザルコニウム水溶液2.4gおよび1.0%メチルセルロース水溶液48.3gを添加した後,500mM クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調整した。その後,注射用水を加えて全量を241.4gとして,0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を以下の表に示す。
点眼懸濁液の組成
--------------------------------
 成分                       組成(%)
--------------------------------
 クロベタゾールプロピオン酸エステル        0.1
 塩化ナトリウム                  1.1
 水添大豆レシチン                 0.1
 グリセリン                    0.16
 無水クエン酸                   0.008
 ポリオキシエチレンポリオキシプロピレングリコール 0.005
 ポリビニルアルコール               0.1
 塩化ベンザルコニウム               0.001
 メチルセルロース                 0.20
 クエン酸ナトリウム                適量
 注射用水                     適量
--------------------------------
点眼懸濁液の物性
----------------------------
 測定項目                   測定値
----------------------------
 クロベタゾールプロピオン酸エステル濃度(%) 0.1
 浸透圧比                   1.6
 pH                     7.0
 粘度(mPa・s)              1.9
----------------------------
(2)ラットのクロトン誘発結膜炎モデルを用いた薬効試験
 ラット(Wistar,雌)の両眼に,-41分と0分の2回,エタノール(起炎剤)を2.5μL/siteで点眼し,合計2回起炎させた。被験物質((1)で作製した0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液)および陽性対照物質(0.1%デキサメタゾン,市販品)を1回目の起炎剤投与1分前(-42分)および2回目の起炎剤投与1分前(-1分)の2回,マイクロピペットを用いて両眼に5μL/siteで点眼投与をした。なお正常対照群(起炎なし,薬物投与なし)および起炎対照群(起炎あり,薬物投与なし)をコントロール群とし,各群n=10で試験を行なった。
 2回目の起炎剤投与40分後,100分後および160分後の合計3回,10%クロトン油エタノール溶液(炎症誘発剤)を両眼に5μL/siteで点眼して炎症を誘発させた。10%クロトン油エタノール溶液の最終点眼から2時間後に,ラットをイソフルラン麻酔下で頸椎脱臼により安楽死させた後,両眼の結膜を採取して重量を測定した。起炎対照群の結膜重量と比較することで,被験物質の抗炎症効果を評価した。
 得られた結果を図8に示す。本結果より,起炎対照群の結膜重量は,正常対照群と比較して高値を示していることから,本モデルは炎症が誘発されていることが確認できた。また,被験物質(0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液)および陽性対照物質(0.1%デキサメタゾン)を点眼した群の結膜重量は,いずれも起炎対照群と比較して低値を示した。したがって,本特許の0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液は,ラットのクロトン誘発結膜炎モデルに点眼することで,結膜の浮腫を抑制できることが明らかとなった。
(実施例10)ラットのカラゲニン誘発結膜浮腫モデルにおける薬効試験
(1)0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 上記実施例8(1)で作製した粉砕混練物(ドウ)4.3g,0.01%ポリオキシエチレンポリオキシプロピレン水溶液150gおよび1.0%PVA水溶液30gをビーカーに計り取り,超音波装置(MODEL VS-100III,アズワン社製)を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で5回処理してドウ分散液を得た。さらに0.1%塩化ベンザルコニウム水溶液2.4gおよび1.0%メチルセルロース水溶液47.9gを添加した後,500mM クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調整した。その後,注射用水を加えて全量を239.5gとして,0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を下表に示す。
点眼懸濁液の組成
--------------------------------
 成分                       組成(%)
--------------------------------
 クロベタゾールプロピオン酸エステル        0.1
 塩化ナトリウム                  1.0
 水添大豆レシチン                 0.1
 グリセリン                    0.16
 無水クエン酸                   0.008
 ポリオキシエチレンポリオキシプロピレングリコール 0.005
 ポリビニルアルコール               0.1
 塩化ベンザルコニウム               0.001
 メチルセルロース                 0.20
 クエン酸ナトリウム                適量
 注射用水                     適量
--------------------------------
点眼懸濁液の物性
----------------------------
 測定項目                   測定値
----------------------------
 クロベタゾールプロピオン酸エステル濃度(%) 0.1
 浸透圧比                   1.5
 pH                     7.0
 粘度(mPa・s)              1.9
----------------------------
(2)ラットのカラゲニン誘発結膜浮腫モデルを用いた薬効試験
 ラット(Wistar,雄)の右眼にマイクロピペットを用いてコントロール(生理食塩液),被験物質(実施例8(2)で調製した0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液および実施例10(1)で調製した0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液)および陽性対照物質(0.1%フルオロメトロン点眼液,市販品)を点眼投与した(各群n=8)。点眼投与15分後に,イソフルラン麻酔下にて1%カラゲニン生理食塩液溶液(起炎物質)を右上眼瞼結膜に50μL皮下投与することで,結膜浮腫モデルを作製した。起炎物質投与4時間後にラットをイソフルラン麻酔下にて腹大動脈からの放血により安楽死させ,右眼球および副涙腺(ハーダー腺)を含む浮腫部位を摘出した後,右眼瞼結膜を分離してその重量を測定した。得られた眼瞼結膜重量を比較することにより,抗炎症効果の評価を行なった。
 図9に眼瞼結膜重量の結果を示す。本結果より,ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液では濃度に依存した抗炎症効果が認められ,0.1%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液は陽性対照の0.1%フルオロメトロン点眼液とほぼ同様の抗炎症作用を示すことが明らかになった。
(実施例11)ナノ化クロベタゾール点眼懸濁液のウサギLPS誘発ぶどう膜炎モデルにおける薬効試験
(1)クロベタゾールプロピオン酸エステルの粉砕
 水冷式1.0L竪型ニーダー(井上製作所)に,クロベタゾールプロピオン酸エステル(Farmabios SPA社製)50g,塩化ナトリウム(トミタソルトK-30,富田製薬製)550g,無水クエン酸(Sigma-Aldrich社製)4gおよび水添大豆レシチン(Phospholipon 90H,リポイド社製)50gを仕込んで均一に混合した後,グリセリン(Sigma-Aldrich社製)70gを投入して内容物をこね粉状態に保って,5℃で5時間粉砕を行なった。得られた粉砕混練物(ドウ)を実施例1(1)と同様に分散剤で分散させ懸濁液とし,クロベタゾールプロピオン酸エステルの粒度分布を測定した結果,平均粒子径(Dv)132nm,10%粒子径(D10)67nm,中心粒子径(D50)110nm,90%粒子径(D90)184nmであった。
(2)0.002%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 (1)で作製した粉砕混練物(ドウ)0.076g,0.01%Poloxamer407水溶液31.3g,1.0%PVA水溶液25.0g,塩化ナトリウム0.217g,注射用水93.3gをビーカーに計り取り,超音波装置を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で4回処理してドウ分散液を得た。該ドウ分散液110.67gをビーカーに計り取り,0.1%塩化ベンザルコニウム水溶液1.85gおよび1.0%メチルセルロース水溶液36.91gを添加した後,1M クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調製した。その後,グリセリンを添加して浸透圧比を1.0に調整し,注射用水を加えて全量を184.6gとして,0.002%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を下表に示す。
点眼懸濁液の組成
--------------------------------
  成分                組成(%)
--------------------------------
クロベタゾールプロピオン酸エステル  0.002
塩化ナトリウム            0.11
水添大豆レシチン           0.002
グリセリン              2.2
無水クエン酸             0.0002
Poloxamer407       0.0013
ポリビニルアルコール         0.1
塩化ベンザルコニウム         0.001
メチルセルロース           0.20
クエン酸ナトリウム          適量
注射用水               適量
--------------------------------
点眼懸濁液の物性
--------------------------------
   測定項目                   測定値
--------------------------------
クロベタゾールプロピオン酸エステル濃度(%)   0.002
浸透圧比                     1.0
pH                       7.0
粘度(mPa・s)                1.98
--------------------------------
(3)0.01%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 (1)で作製した粉砕混練物(ドウ)0.38g,0.01%Poloxamer407水溶液62.5g,1.0%PVA水溶液25.0g,注射用水62.5gをビーカーに計り取り,超音波装置を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で4回処理してドウ分散液を得た。該ドウ分散液119.44gをビーカーに計り取り,0.1%塩化ベンザルコニウム水溶液1.98gおよび1.0%メチルセルロース水溶液39.70gを添加した後,1M クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調製した。その後,グリセリンを添加して浸透圧比を1.0に調整し,注射用水を加えて全量を198.5gとして,0.01%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を下表に示す。
点眼懸濁液の組成
--------------------------------
   成分                組成(%)
--------------------------------
クロベタゾールプロピオン酸エステル   0.01
塩化ナトリウム             0.12
水添大豆レシチン            0.01
グリセリン               2.1
無水クエン酸              0.0008
Poloxamer407        0.0025
ポリビニルアルコール          0.1
塩化ベンザルコニウム          0.001
メチルセルロース            0.20
クエン酸ナトリウム           適量
注射用水                適量
--------------------------------
点眼懸濁液の物性
--------------------------------
   測定項目                  測定値
--------------------------------
クロベタゾールプロピオン酸エステル濃度(%)  0.010
浸透圧比                    1.0
pH                      7.0
粘度(mPa・s)               1.99
--------------------------------
(4)0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の作製
 (1)で作製した粉砕混練物(ドウ)1.84g,0.01%Poloxamer407水溶液125.0g,1.0%PVA水溶液25.0gをビーカーに計り取り,超音波装置を使用して,ドウを分散して粗分散液とし,該粗分散液を高圧ホモジナイザー(三和工業社製,L01-YH1)で4回処理してドウ分散液を得た。該ドウ分散液116.79gをビーカーに計り取り,0.1%塩化ベンザルコニウム水溶液1.92gおよび1.0%メチルセルロース水溶液38.45gを添加した後,1M クエン酸ナトリウム水溶液を徐々に加えてpH7.0に調製した。その後,グリセリンを添加して浸透圧比を1.0に調整し,注射用水を加えて全量を192.3gとして,0.05%ナノ化クロベタゾールプロピオン酸エステル点眼懸濁液を作製した。該点眼懸濁液の組成と物性を下表に示す。
点眼懸濁液の組成
--------------------------------
   成分                     組成(%)
--------------------------------
クロベタゾールプロピオン酸エステル         0.05
塩化ナトリウム                   0.56
水添大豆レシチン                  0.05
グリセリン                     0.50
無水クエン酸                    0.004
ポリオキシエチレンポリオキシプロピレングリコール  0.005
ポリビニルアルコール                0.1
塩化ベンザルコニウム                0.001
メチルセルロース                  0.20
クエン酸ナトリウム                 適量
注射用水                      適量
--------------------------------
点眼懸濁液の物性
--------------------------------
   測定項目                   測定値
--------------------------------
クロベタゾールプロピオン酸エステル濃度(%)   0.048
浸透圧比                     1.0
pH                       7.0
粘度(mPa・s)                1.99
--------------------------------
(5)ウサギのLPS誘発ぶどう膜炎モデルにおける薬効試験
 ウサギ(Kbs:JW)にペントバルビタールナトリウム(ソノムペンチル)を耳介静脈より投与することで麻酔を施し,さらに0.4%オキシプロカイン塩酸塩(ベノキシール点眼液)を両眼に点眼し,角膜反射が消失した後,ウサギに開瞼器を装着し,30G注射針付きシリンジを用いて,2μg/mLに調製したLPS(Lipopolysaccharide,from E.ColiO55:sigma)を硝子体内へ0.02mL投与し炎症を惹起した。点眼はコントロール(saline),陽性対照物質(durezol(登録商標):0.05%difluprednate ophthalmic emulsion,Alcon Laboratories社製)および上記(4)で作製した被験物質(0.05%点眼懸濁液)を50μLずつ,マイクロピペットを用いて両眼にLPS投与の4時間前,15分後,6時間および8時間後に実施した。なお,各群6羽ずつ両眼を使用し,各群n=12とした。LPS投与から24時間後,ウサギへペントバルビタールナトリウム(ソノムペンチル)を過量投与することで安楽死させ,26G注射針付きシリンジで前房水を全量採取した.さらに眼球を摘出し強膜-角膜移行部付近を切開し,1mLシリンジにて硝子体を採取した。採取した両サンプル中のPGE2濃度はELISA法(Prostaglandin E2 Express ELISA Kit:cayman)により測定した。
(6)結果
 図10に房水中PGE2濃度(前眼部評価),図11に硝子体中PGE2濃度(後眼部評価)の結果を示す。本発明のナノ化クロベタゾールプロピオン酸エステル点眼懸濁液は,ウサギのLPS誘発ぶどう膜炎モデルに点眼することで,ぶどう膜炎(前眼部)に対して陽性対照のdurezol(登録商標)と同様の抗炎症作用を示すことが明らかになった。また,硝子体内のPGE2濃度はDurezol(登録商標)投与群と比較して,本発明のナノ化クロベタゾールプロピオン酸エステル点眼懸濁液投与群においてより低くなったことから,ぶどう膜炎(後眼部)に対しては,Durezol(登録商標)よりも高い抗炎症作用を示すことが明らかになった。
(実施例12)ナノ化クロベタゾール点眼懸濁液のウサギ前房穿刺炎症モデルにおける薬効試験
(1)ウサギの前房穿刺炎症モデルにおける薬効試験
 ウサギ(Kbs:JW)にコントロール(saline),陽性対照物質(durezol(登録商標))および実施例11(2)(3)(4)で作製した被験物質(0.002%,0.01%および0.05%点眼懸濁液)を50μLずつ,マイクロピペットを用いて両眼に1回ずつ点眼投与した。なお,各群6羽ずつ両眼を使用し,各群n=12とした。その4時間後に0.4%オキシプロカイン塩酸塩(ベノキシール点眼液)を両眼に点眼し,角膜反射が消失した後,ウサギに開瞼器を装着し,26G注射針付きシリンジを前房内へ刺入させ,前房水全量を採取することで前眼部炎症を惹起した。さらにその3時間後に再度26G注射針付きシリンジを用いて前房水を全量採取し,前房水中タンパク濃度をBCA法(PierceTM BCA Protein Assay Kit:Thermo Fisher Scientific Inc.)を用いて測定した。また,前房穿刺による前眼部炎症を惹起していない群(Normal)の前房水中タンパク濃度もBCA法を用いて測定した。
(2)結果
 図12に前房水中のタンパク濃度の結果を示す。本結果より,本発明のナノ化クロベタゾールプロピオン酸エステル点眼懸濁液(0.002%,0.01%および0.05%)は,ウサギの前房穿刺炎症モデルに点眼することで陽性対照のdurezol(登録商標)(0.05% difluprednate)と同様の抗炎症作用を示すことが明らかになった。
(実施例13)ナノ化クロベタゾール点眼懸濁液のウサギLPS誘発ぶどう膜炎モデルにおける薬効試験
(1)ウサギのLPS誘発ぶどう膜炎モデルにおける薬効試験
 ウサギ(Kbs:JW)にペントバルビタールナトリウム(ソノムペンチル)を耳介静脈より投与することで麻酔を施し、さらに0.4%オキシプロカイン塩酸塩(ベノキシール点眼液)を両眼に点眼し、角膜反射が消失した後、ウサギに開瞼器を装着し、30G注射針付きシリンジを用いて、2μg/mLに調製したLPS(Lipopolysaccharide、from E.ColiO55:sigma)を硝子体内へ0.02mL投与し炎症を惹起した。点眼はコントロール(saline)、陽性対照物質(durezol:0.05%difluprednate ophthalmic emulsion、Alcon Laboratories社製)および実施例11(4)で作製した被験物質(0.05%点眼懸濁液)を50μLずつ、マイクロピペットを用いて両眼にLPS投与の翌日よりb.i.d(1日2回点眼)では9:00および17:00、q.i.d(1日4回点眼)では9:00、12:00、15:00および18:00に連続6日間実施した。なお、各群4羽又は5羽ずつ両眼を使用し、各群n=8又は10とした。LPS投与から24時間後、ウサギへペントバルビタールナトリウム(ソノムペンチル)を過量投与することで安楽死させ、眼球を摘出し強膜-角膜移行部付近を切開し、1mLシリンジにて硝子体を採取した。採取したサンプル中のPGE2濃度はELISA法(Prostaglandin E2 Express ELISA Kit:cayman)により測定した。
(2)結果
 図13に硝子体中PGE2濃度(後眼部評価)の結果を示す。コントロールの硝子体中PGE2濃度は345.6pg/mlであった。陽性対照のdurezolの1日2回点眼及び1日4回点眼は、それぞれ硝子体中PGE2濃度が256.35pg/ml及び179.4pg/mlと改善傾向を示した。本発明のナノ化クロベタゾールプロピオン酸エステル点眼懸濁液の1日2回点眼及び1日4回点眼は、それぞれ硝子体中PGE2濃度が219.2pg/ml及び167.6を示し、durezolよりもさらに優れた抗炎症作用を示した。よって、本発明のナノ化クロベタゾールプロピオン酸エステル点眼懸濁液は、ウサギのLPS誘発ぶどう膜炎モデルに点眼することで、陽性対照のdurezolと比較して、b.i.d(1日2回点眼)およびq.i.d(1日4回点眼)の両方において高い抗炎症作用を示すことが明らかになった。

Claims (21)

  1.  グルココルチコステロイド化合物のナノ微粒子を含有することを特徴とする水性懸濁液剤。
  2.  前記ナノ微粒子の平均粒子径が300nm以下でD90粒子径が450nm以下である請求項1記載の水性懸濁液剤。
  3.  前記ナノ微粒子が,グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオールと,表面修飾剤とを混合することにより製造された微粒子であることを特徴とする,請求項1又は請求項2に記載の水性懸濁液剤。
  4.  前記グルココルチコステロイド化合物が,プロピオン酸クロベタゾール,酢酸ジフロラゾン,プロピオン酸デキサメタゾン,ジフルプレドナード,フランカルボン酸モメタゾン,吉草酸ジフルコルトロン,酪酸プロピオン酸ベタメタゾン,フルオシノニド,酪酸プロピオン酸ヒドロコルチゾン,プロピオン酸ベクロムタゾン,プロピオン酸デプロドン,吉草酸ベタメタゾン,吉草酸デキサメタゾン,吉草酸酢酸プレドニゾロン,フルオシノロンアセトニド,酪酸ヒドロコルチゾン,酪酸クロベタゾン,プロピオン酸アルクロメタゾン,トリアムシノロンアセトニド,フルメタゾンビバル酸エステル,プレドニゾロン,及びヒドロコルチゾンから選択される1種類以上の物質である,請求項1~請求項3のいずれか1項に記載の水性懸濁液剤。
  5.  更に,分散安定剤を含有することを特徴とする,請求項1~請求項4のいずれか1項に記載の水性懸濁液剤。
  6.  前記分散安定剤がポリオキシエチレンポリオキシプロピレングリコール及び/又はポリビニルアルコールである,請求項5に記載の水性懸濁液剤。
  7.  更に,粘度調整剤を含有することを特徴とする,請求項1~請求項6のいずれか1項に記載の水性懸濁液剤。
  8.  前記粘度調整剤が,メチルセルロース,ヒドロキシルプロピルメチルセルロース,及びポリビニルアルコールから選択される1種類以上の物質である,請求項7に記載の水性懸濁液剤。
  9.  前記粘度調整剤を,1~10mg/mL含有する,請求項7又は請求項8に記載の水生懸濁液剤。
  10.  請求項1~請求項9のいずれか1項に記載の水性懸濁液剤を含有する医薬組成物。
  11.  非経口投与用である,請求項10記載の医薬組成物。
  12.  注射剤又は局所適用製剤である,請求項11記載の医薬組成物。
  13.  眼用局所適用製剤,耳用局所適用製剤,鼻用局所適用製剤,又は肺用局所適用製剤である,請求項12に記載の医薬組成物。
  14.  点眼剤,点耳剤,点鼻剤,又は吸入剤である,請求項13記載の医薬組成物。
  15.  炎症性疾患又は感染性疾患の治療薬または予防薬である,請求項10~請求項14いずれか1項に記載の医薬組成物。
  16.  炎症性疾患又は感染性疾患が,全身性の炎症性疾患又は感染性疾患である,請求項15に記載の医薬組成物。
  17.  炎症性疾患又は感染性疾患が,局所性の炎症性疾患又は感染性疾患である,請求項15に記載の医薬組成物。
  18.  局所が,眼,耳,鼻(上気道),及び肺(下気道)から選択される1以上の組織又は臓器であるである,請求項17記載の医薬組成物。
  19.  グルココルチコステロイド化合物のナノ微粒子を備える,請求項10~請求項18いずれか1項に記載の医薬組成物を調製するためのキット。
  20.  グルココルチコステロイド化合物と,生理学的に許容される塩と,生理学的に許容されるポリオール及び/又は水と,分散安定剤とを混合することを含む,請求項10~請求項18いずれか1項に記載の医薬組成物の製造方法。
  21.  グルココルチコステロイド化合物と,生理学的に許容される塩と,グリセリンと,無水クエン酸と,水添大豆レシチンとを混合することを含む,請求項20記載の製造方法。
PCT/JP2016/063752 2015-05-08 2016-05-09 グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤 WO2016181935A1 (ja)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2017517933A JP6856525B2 (ja) 2015-05-08 2016-05-09 グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
US15/571,986 US10588913B2 (en) 2015-05-08 2016-05-09 Aqueous suspension agent containing glucocorticosteroid nanoparticles
ES16792660T ES2937023T3 (es) 2015-05-08 2016-05-09 Agente de suspensión acuosa que comprende nanopartículas de glucocorticosteroides
EP16792660.9A EP3295943B1 (en) 2015-05-08 2016-05-09 Aqueous suspension agent comprising glucocorticosteroid nanoparticles
IL255452A IL255452B (en) 2015-05-08 2016-05-09 Aqueous suspension containing glucocorticosteroid nanoparticles
CN201680026845.5A CN107613985B (zh) 2015-05-08 2016-05-09 含有糖皮质激素的纳米微粒的水性悬浮液剂
RU2017142694A RU2747803C2 (ru) 2015-05-08 2016-05-09 Водная суспензия, содержащая наночастицы глюкокортикостероида
CA2985171A CA2985171C (en) 2015-05-08 2016-05-09 Aqueous suspension containing nanoparticles of glucocorticosteroid
MX2017014340A MX2017014340A (es) 2015-05-08 2016-05-09 Suspension acuosa que contiene nanoparticulas de glucocorticosteroide.
AU2016262185A AU2016262185B2 (en) 2015-05-08 2016-05-09 Aqueous suspension agent comprising glucocorticosteroid nanoparticles
PL16792660.9T PL3295943T3 (pl) 2015-05-08 2016-05-09 Środek do zawieszania w wodzie zawierający nanocząstki glikokortykosteroidowe
KR1020177033330A KR102268710B1 (ko) 2015-05-08 2016-05-09 글루코코르티코스테로이드의 나노미립자를 함유하는 수성 현탁액제
BR112017024000-9A BR112017024000B1 (pt) 2015-05-08 2016-05-09 Suspensão aquosa contendo nano partículas de glucocorticosteroide
FIEP16792660.9T FI3295943T3 (fi) 2015-05-08 2016-05-09 Vesipitoinen suspensioaine, joka käsittää glukokortikosteroidinanopartikkeleita
KR1020217018618A KR102390014B1 (ko) 2015-05-08 2016-05-09 글루코코르티코스테로이드의 나노미립자를 함유하는 수성 현탁액제
US16/732,173 US11376262B2 (en) 2015-05-08 2019-12-31 Method of treating an inflammatory or infectious disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095610 2015-05-08
JP2015095610 2015-05-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/571,986 A-371-Of-International US10588913B2 (en) 2015-05-08 2016-05-09 Aqueous suspension agent containing glucocorticosteroid nanoparticles
US16/732,173 Division US11376262B2 (en) 2015-05-08 2019-12-31 Method of treating an inflammatory or infectious disease

Publications (1)

Publication Number Publication Date
WO2016181935A1 true WO2016181935A1 (ja) 2016-11-17

Family

ID=57248091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063752 WO2016181935A1 (ja) 2015-05-08 2016-05-09 グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤

Country Status (17)

Country Link
US (2) US10588913B2 (ja)
EP (1) EP3295943B1 (ja)
JP (1) JP6856525B2 (ja)
KR (2) KR102268710B1 (ja)
CN (1) CN107613985B (ja)
AU (1) AU2016262185B2 (ja)
CA (1) CA2985171C (ja)
ES (1) ES2937023T3 (ja)
FI (1) FI3295943T3 (ja)
HU (1) HUE061418T2 (ja)
IL (1) IL255452B (ja)
MX (1) MX2017014340A (ja)
PL (1) PL3295943T3 (ja)
PT (1) PT3295943T (ja)
RU (1) RU2747803C2 (ja)
TW (1) TWI773641B (ja)
WO (1) WO2016181935A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019945A (ko) * 2017-06-23 2020-02-25 라보라토리오스 에스에이엘브이에이티, 에스.에이. 클로베타솔의 수중유 나노에멀젼 조성물
JP2022062172A (ja) * 2019-07-23 2022-04-19 ニコックス アフサァルミィクス、 インコーポレイテッド 無菌眼用水性プロピオン酸フルチカゾンa型ナノ結晶懸濁液の調製方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582264B (zh) * 2017-03-26 2022-11-11 V·R·斯塔福德 眼睑皮肤状况的处理方法
EP3691654A4 (en) 2017-09-25 2021-11-24 Surface Pharmaceuticals, Inc. OPHTHALMIC PHARMACEUTICAL COMPOSITIONS AND METHODS FOR TREATMENT OF EYE SURFACE DISEASES
CN114040782A (zh) * 2019-04-30 2022-02-11 威斯康星州医药大学股份有限公司 跨鼓膜递送平台及其用途
CN112656760B (zh) * 2019-09-27 2022-04-12 武汉科福新药有限责任公司 一种二氟泼尼酯混悬滴眼液及其制备方法
KR102653853B1 (ko) * 2021-06-21 2024-04-01 가톨릭대학교 산학협력단 약물 전달용 나노서스펜션 및 이의 용도
KR20240086291A (ko) * 2022-12-09 2024-06-18 가톨릭대학교 산학협력단 약물 전달용 조성물 및 이의 용도
CN116077669A (zh) * 2022-12-15 2023-05-09 中南大学湘雅医院 用于治疗关节痛的糖皮质激素纳米脂质载体、制法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055262A (ja) * 1997-05-14 2003-02-26 Senju Pharmaceut Co Ltd 再分散性の良い水性懸濁液剤
JP2005536512A (ja) * 2002-07-16 2005-12-02 エラン ファーマ インターナショナル,リミティド 安定なナノ粒子活性物質の液体投与組成物
WO2008126797A1 (ja) * 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法
WO2010032434A1 (ja) * 2008-09-19 2010-03-25 株式会社アクティバスファーマ 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
WO2014074823A1 (en) * 2012-11-08 2014-05-15 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747001A (en) * 1995-02-24 1998-05-05 Nanosystems, L.L.C. Aerosols containing beclomethazone nanoparticle dispersions
ZA966579B (en) 1995-08-04 1998-02-02 Wakamoto Pharma Co Ltd O/W emulsion composition for eye drops.
CA2289618A1 (en) 1997-05-14 1998-11-19 Shin-Ichi Yasueda Aqueous suspension preparations with excellent redispersibility
IT1303692B1 (it) * 1998-11-03 2001-02-23 Chiesi Farma Spa Procedimento per la preparazione di sospensioni di particelle difarmaci da somministrare per inalazione.
US20030224058A1 (en) * 2002-05-24 2003-12-04 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US20070178051A1 (en) 2006-01-27 2007-08-02 Elan Pharma International, Ltd. Sterilized nanoparticulate glucocorticosteroid formulations
EP2101735A2 (en) * 2006-11-28 2009-09-23 Marinus Pharmaceuticals, Inc. Nanoparticulate formulations and methods for the making and use thereof
KR101477329B1 (ko) * 2008-05-14 2014-12-29 오토노미, 인코포레이티드 귀 질환 치료를 위한 제어 방출형 코르티코스테로이드 조성물 및 방법
US20150093440A1 (en) 2010-10-15 2015-04-02 Glaxo Group Limited Aggregate nanoparticulate medicament formulations, manufacture and use thereof
WO2012127037A2 (en) * 2011-03-24 2012-09-27 Leo Pharma A/S A composition comprising lipid nanoparticles and a corticosteroid or vitamin d derivative
AU2013259150B2 (en) * 2012-05-11 2016-07-14 Activus Pharma Co., Ltd. Organic compound nanopowder, production method therefor, and suspension

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055262A (ja) * 1997-05-14 2003-02-26 Senju Pharmaceut Co Ltd 再分散性の良い水性懸濁液剤
JP2005536512A (ja) * 2002-07-16 2005-12-02 エラン ファーマ インターナショナル,リミティド 安定なナノ粒子活性物質の液体投与組成物
WO2008126797A1 (ja) * 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法
WO2010032434A1 (ja) * 2008-09-19 2010-03-25 株式会社アクティバスファーマ 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
WO2014074823A1 (en) * 2012-11-08 2014-05-15 Clearside Biomedical, Inc. Methods and devices for the treatment of ocular diseases in human subjects

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3295943A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200019945A (ko) * 2017-06-23 2020-02-25 라보라토리오스 에스에이엘브이에이티, 에스.에이. 클로베타솔의 수중유 나노에멀젼 조성물
JP2020524672A (ja) * 2017-06-23 2020-08-20 ラボラトリオス・サルバト・ソシエダッド・アノニマLaboratorios Salvat, S.A. クロベタゾールの水中油型ナノエマルジョン組成物
JP7065895B2 (ja) 2017-06-23 2022-05-12 ラボラトリオス・サルバト・ソシエダッド・アノニマ クロベタゾールの水中油型ナノエマルジョン組成物
KR102571107B1 (ko) * 2017-06-23 2023-08-25 라보라토리오스 에스에이엘브이에이티, 에스.에이. 클로베타솔의 수중유 나노에멀젼 조성물
JP2022062172A (ja) * 2019-07-23 2022-04-19 ニコックス アフサァルミィクス、 インコーポレイテッド 無菌眼用水性プロピオン酸フルチカゾンa型ナノ結晶懸濁液の調製方法
JP7494230B2 (ja) 2019-07-23 2024-06-03 ニコックス アフサァルミィクス、 インコーポレイテッド 無菌眼用水性プロピオン酸フルチカゾンa型ナノ結晶懸濁液の調製方法

Also Published As

Publication number Publication date
AU2016262185B2 (en) 2021-05-13
JPWO2016181935A1 (ja) 2018-02-22
RU2747803C2 (ru) 2021-05-14
EP3295943B1 (en) 2022-11-30
BR112017024000A2 (ja) 2018-07-17
US10588913B2 (en) 2020-03-17
US20200129526A1 (en) 2020-04-30
FI3295943T3 (fi) 2023-03-03
US11376262B2 (en) 2022-07-05
IL255452B (en) 2022-08-01
KR20180004164A (ko) 2018-01-10
JP6856525B2 (ja) 2021-04-07
CN107613985B (zh) 2021-05-25
KR20210076202A (ko) 2021-06-23
IL255452A (en) 2018-01-31
HUE061418T2 (hu) 2023-06-28
CN107613985A (zh) 2018-01-19
RU2017142694A (ru) 2019-06-10
EP3295943A4 (en) 2019-01-02
AU2016262185A1 (en) 2017-12-21
PL3295943T3 (pl) 2023-05-08
KR102268710B1 (ko) 2021-06-23
CA2985171A1 (en) 2016-11-17
US20180117064A1 (en) 2018-05-03
ES2937023T3 (es) 2023-03-23
MX2017014340A (es) 2018-09-21
RU2017142694A3 (ja) 2019-11-11
KR102390014B1 (ko) 2022-04-22
TWI773641B (zh) 2022-08-11
CA2985171C (en) 2021-11-02
TW201701882A (zh) 2017-01-16
EP3295943A1 (en) 2018-03-21
PT3295943T (pt) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2016181935A1 (ja) グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
JP6407882B2 (ja) マクロライド系抗菌剤のナノ微粒子を含有する水性懸濁液剤
JP2007119456A (ja) 難溶性薬物のナノ微粒子を含有する水性懸濁液剤
TW202116326A (zh) 用於製備無菌眼用水性丙酸氟替卡松a型奈米晶體懸浮液之方法
Sun et al. A simple but novel glycymicelle ophthalmic solution based on two approved drugs empagliflozin and glycyrrhizin: in vitro/in vivo experimental evaluation for the treatment of corneal alkali burns
BR112017024000B1 (pt) Suspensão aquosa contendo nano partículas de glucocorticosteroide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2985171

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15571986

Country of ref document: US

Ref document number: 255452

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017517933

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/014340

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033330

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017142694

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016262185

Country of ref document: AU

Date of ref document: 20160509

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017024000

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017024000

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171108