WO2010032363A1 - マルチx線撮影装置及びその制御方法 - Google Patents
マルチx線撮影装置及びその制御方法 Download PDFInfo
- Publication number
- WO2010032363A1 WO2010032363A1 PCT/JP2009/003679 JP2009003679W WO2010032363A1 WO 2010032363 A1 WO2010032363 A1 WO 2010032363A1 JP 2009003679 W JP2009003679 W JP 2009003679W WO 2010032363 A1 WO2010032363 A1 WO 2010032363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- ray source
- source
- rays
- detector
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 238000010894 electron beam technology Methods 0.000 claims abstract description 20
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000003384 imaging method Methods 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 abstract description 13
- 230000005540 biological transmission Effects 0.000 description 14
- 238000000605 extraction Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/06—Cathodes
- H01J35/065—Field emission, photo emission or secondary emission cathodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4007—Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4021—Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
- A61B6/4028—Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot resulting in acquisition of views from substantially different positions, e.g. EBCT
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5229—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
- A61B6/5235—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
- A61B6/5241—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/547—Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/112—Non-rotating anodes
- H01J35/116—Transmissive anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/16—Vessels; Containers; Shields associated therewith
- H01J35/18—Windows
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/70—Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/44—Constructional features of apparatus for radiation diagnosis
- A61B6/4429—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
- A61B6/4435—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
- A61B6/4441—Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/06—Cathode assembly
- H01J2235/062—Cold cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/06—Cathode assembly
- H01J2235/064—Movement of cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/06—Cathode assembly
- H01J2235/068—Multi-cathode assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/06—Cathodes
Definitions
- the present invention relates to a multi-X-ray imaging apparatus used for non-destructive X-ray imaging and diagnostic applications in the field of medical equipment and industrial equipment using an X-ray source, and a control method thereof.
- X-ray tubes those using a thermionic source as the electron source are used.
- X-rays are generated on the incident side of an electron beam by irradiating an X-ray target made of a bulk metal with thermal electrons emitted from a filament heated to a high temperature. This generated X-ray is used. Therefore, the point light source type X-ray tube creates a pseudo point X-ray light source by taking out an elongated X-ray focal point obliquely. Then, the uniformity of the X-ray intensity distribution is improved by moving the X-ray light source far from the position of the subject.
- Patent Document 1 a flat type multi X-ray generation device has been proposed in which a method for extracting a multi X-ray beam is devised.
- the present invention has been made in view of the above problems, and an object of the present invention is to enable acquisition of a high-definition transmission X-ray image using a multi-X-ray source.
- an X-ray imaging apparatus has the following arrangement. That is, A multi-X-ray source having a plurality of X-ray focal points for generating X-rays by irradiating the X-ray target with an electron beam; A detector for detecting X-rays irradiated from the multi-X-ray source and reaching the detection surface; Moving means for moving the multi-X-ray source in a plane facing the detection surface; The multi X-ray source is irradiated with the multi-X-ray source a plurality of times while the multi-X-ray source is shifted relative to the detection surface by the moving means, and an X-ray detection signal is output from the detector in each irradiation.
- a method for controlling an X-ray imaging apparatus for achieving the above object is as follows: A multi-X-ray source having a plurality of X-ray focal points for generating X-rays by irradiating the X-ray target with an electron beam; A detector for detecting X-rays irradiated from the multi-X-ray source and reaching the detection surface; A control method for an X-ray imaging apparatus comprising a moving means for moving the multi-X-ray source in a plane facing the detection surface, The multi X-ray source is irradiated with the multi-X-ray source a plurality of times while the multi-X-ray source is shifted relative to the detection surface by the moving means, and an X-ray detection signal is output from the detector in each irradiation.
- An acquisition process for acquiring A generating step of generating an X-ray projection image based on a plurality of X-ray detection signals acquired by the acquiring step.
- a high-definition transmission X-ray image can be acquired using a multi-X-ray source.
- FIG. 1st Embodiment It is a figure which shows the structural example of the multi X-ray source main body by 1st Embodiment. It is a top view of the element substrate by a 1st embodiment. It is a figure which shows the scanning multi X-ray source by 1st Embodiment. It is a figure explaining arrangement
- FIG. 1 is a diagram showing a configuration of a multi-X-ray source main body 10 having a plurality of X-ray focal points that generate X-rays by irradiating an X-ray target with an electron beam.
- a multi-electron beam generator 12 and a transmission target 13 as an X-ray target are arranged in the vacuum chamber 11 of the multi-X-ray source body 10.
- the multi-electron beam generator 12 includes an element substrate 14 and an element array 16 in which a plurality of electron-emitting elements 15 are arranged thereon.
- the driving of the electron-emitting elements 15 is controlled by a drive signal unit 17. It has become.
- a lens electrode 19 and an anode electrode 20 are provided to control the multi-electron beam e generated from the electron-emitting device 15, and a high voltage is supplied to these electrodes 19, 20 through high-voltage introducing portions 21, 22.
- the lens electrode 19 is fixed to the element substrate 14 via an insulator 18.
- the transmission type target 13 on which the electron beam e generated from the electron emitting element 15 collides is discretely arranged corresponding to each of the plurality of electron emitting elements 15 and constitutes an X-ray focal point. Furthermore, an X-ray shielding plate 23 made of heavy metal is provided on the target 13, an X-ray extraction part 24 is provided on the X-ray shielding plate 23 in vacuum, and an X-ray extraction part 24 is placed on the front wall 25 of the vacuum chamber 11. An X-ray extraction window 27 provided with a line transmissive film 26 is provided.
- the electron beam e generated from the electron-emitting device 15 is subjected to a lens action by the lens electrode 19 and accelerated to the final potential at the transmission target 13 portion of the anode electrode 20.
- the X-ray beam x generated at the target 13 passes through the X-ray extraction unit 24 and is further extracted from the X-ray extraction window 27 into the atmosphere.
- the multi X-ray source main body 10 is provided with a scanning mechanism 34 for two-dimensionally scanning the multi X-ray source in a plane facing the detection surface of the detector 35. The position of the multi X-ray source moves in synchronization with the occurrence.
- the detector 35 detects X-rays irradiated from the multi-X-ray source and reaching the detection surface.
- the control apparatus 300 includes a CPU, a ROM, and the like (not shown), and controls the entire X-ray imaging apparatus according to this embodiment including the multi X-ray source body 10 and the detector 35.
- the control device 300 moves the multi-X-ray source by the scanning mechanism 34, thereby irradiating the X-ray while shifting the multi-X-ray source relative to the detection surface.
- the control device 300 acquires a plurality of detection signals by acquiring the X-ray detection signals from the detector 35 at each of the positions where the multi-X-ray source is shifted.
- control device 300 generates an X-ray projection image based on the plurality of detection signals (X-ray transmission intensity data) and the position of the multi-X-ray source when the detection signals are acquired.
- X-ray transmission intensity data X-ray transmission intensity data
- the electron-emitting devices 15 are two-dimensionally arranged on the device array 16 as shown in FIG. With the recent progress of nanotechnology, it is possible to form a nanometer-sized fine structure at a predetermined position by a device process, and the electron-emitting device 15 uses this nanotechnology technology. It has been produced. Further, each of these electron-emitting devices 15 is individually controlled in the amount of electron emission by drive signals S1 and S2 to be described later via the drive signal unit 17. By individually controlling the electron emission amount of the element array 16 by the matrix signals of the drive signals S1 and S2, ON / OFF of each X-ray beam constituting the multi-X-ray beam is controlled.
- a cold cathode type electron-emitting device can obtain emitted electrons only by applying a voltage of several tens V to several KV to the device. Therefore, an X-ray generator using this as an electron source does not require heating of the cathode and does not require a waiting time for generating X-rays. In addition, since power for heating the cathode is not required, a low power consumption type X-ray source can be obtained even if a multi-X-ray source is configured. Since these electron-emitting devices can be turned on / off by driving at a high driving voltage, a driving electron-emitting device is selected and a multi-array X-ray source that responds at high speed is manufactured. Can do.
- a member that becomes a shielding slit for limiting the X-ray emission angle generated for each X-ray focal point is required around the position of the X-ray focal point.
- the distance between the radiation sources needs to be several mm or more.
- FIG. 3 is a diagram schematically showing an example of the scanning multi-X-ray source 30 according to the present embodiment, and a 12 ⁇ 12 X-ray focal point (hereinafter, the X-ray focal point is also referred to as an X-ray source) is spaced by 20 mm.
- a 12 ⁇ 12 X-ray focal point hereinafter, the X-ray focal point is also referred to as an X-ray source
- the multi X-ray source 31 has a configuration in which the array of 3 ⁇ 3 X-ray sources 33 is a multi X-ray unit Bij and the multi X-ray units are arranged in 4 ⁇ 4.
- Each X-ray source 33 includes the electron-emitting device 15 and the target 13 as described with reference to FIGS. 1 and 2.
- the multi-X-ray source 31 is controlled so that one X-ray source generates X-rays in each of the multi-X-ray units 32 in one X-ray irradiation. In each multi X-ray unit 32, the X-ray focal points of the source array in the unit are sequentially scanned.
- a scanning mechanism 34 for moving the entire multi X-ray source 31 is provided. The scanning mechanism 34 can move the entire multi-X-ray source 31 over at least the inter-focal distance of the multi-X-ray source, that is, the distance between adjacent X-ray focal points.
- the movement of the multi X-ray source 31 by the scanning mechanism 34 is synonymous with the movement of the multi X-ray source body 10 in the present embodiment.
- control device 300 includes a CPU, a ROM, and the like (not shown), and controls the entire scanning multi-X-ray source 30.
- the control device 300 controls the multi X-ray source 31, the scanning mechanism 34, and the detector 35 as described below by executing a predetermined control program, and executes X-ray imaging.
- FIG. 4 is an enlarged view of the position of the X-ray focal point of the multi X-ray unit Bij.
- the positions of the generated X-ray sources are m (1,1), m (1,2), m (1 , 3), m (3, 1),...
- FIG. 5 shows how the X-ray beam spreads by the X-ray source of the multi-X-ray unit.
- FIG. 5 is a side view of the state in which the multi-X-ray source 31 generates X-rays, and the arrangement of the multi-X-ray units B11 to B14 is shown.
- X-ray sources m (1,1), m (1,2), m (1,3) which are X-ray sources in the unit are arranged.
- x1, x2, and x3 indicate X-ray beams emitted from the respective X-ray sources.
- m (1,1) When the X-ray source m (1,1) generates X-rays, m (1,1) at the position of each multi-X-ray unit is in a state where X-rays can be generated.
- the divergence angles of the X-ray beams generated from the X-ray sources m (1, 1) of all the multi-X-ray units are limited so as not to interfere with each other on the detector 35. The same applies to the other X-ray sources of each multi-X-ray unit.
- all the multi-X-ray units are connected to the X-ray source m (1,1) ⁇ X-ray source m (1,3), X-ray source m (2,1) ⁇ X-ray source m ( 2 and 3) and the X-ray source m (3,1) ⁇ X-ray source m (3,3) in this order are simultaneously driven.
- a plurality of X-ray sources 33 of the multi-X-ray source 31 are formed so that a group is formed by X-ray focal points that do not interfere with each other on the detection surface of the detector 35. Into multiple groups.
- m (1,1) X-ray sources of each unit belong to the first group, and m (1,2) X-ray sources of each unit belong to the second group. And so on. Then, a plurality of X-ray sources 33 are driven for each group to generate X-rays.
- the X-ray detection signal obtained by this X-ray beam is used as image data in a memory (not shown) of the control device.
- the position of the multi X-ray source 31 at this time is also stored in a memory for generating a projection image.
- the next X-ray source m (1,2) is driven to perform X-ray irradiation. In this manner, X-ray transmission image data of the subject 36 is collected through the detector 35 while the X-ray source 33 is sequentially turned on in each multi-X-ray unit 32.
- the X-ray transmission image data obtained as described above is an X-ray image from a position separated by an X-ray source interval (here, 20 mm). For this reason, when a transmission X-ray image is reproduced from these image data, X-rays obliquely incident on the subject 36 are skipped. Therefore, when these data are converted into a projected image, the image data is defective, and a high-quality projected image cannot be expected.
- the position of the multi-X-ray source 31 in FIG. X-ray projection data is acquired by performing X-ray irradiation a plurality of times.
- an X-ray projection between each multi-X-ray source for example, between m (1,1) and m (1,2) of the multi-X-ray source. Data is acquired. Therefore, it is possible to realize a proximity projection imaging apparatus that can acquire a high-definition image.
- the detectors d2 to d10 detect transmitted X-rays.
- the movement of the multi X-ray source and the irradiation of the X-ray source of the source array in the unit are repeated from p1 to p10 between the multi-X-ray sources to the adjacent multi-X-ray sources. While transmitting X-ray data is collected.
- each X-ray source in the in-unit source array is shown in FIG.
- the X-ray source m (1, 1) is lit only for a time ⁇ t at the position p1, and thereafter, it is sequentially switched to the X-ray source m (3, 3). Then, the position of the multi X-ray source 31 moves from p1 to p2, and the same X-ray lighting operation is repeated again.
- the imaging operations of the X-ray imaging apparatus according to the first embodiment described above are summarized as shown in the flowchart of FIG.
- the X-ray sources are arranged in 3 ⁇ 3, and kmax and lmax in the flowchart are both 3.
- the control device 300 uses the scanning mechanism 34 to move the multi-X-ray source 31 to a reference position having a predetermined positional relationship with respect to the detector 35 (step S101).
- the control device 300 first selects the X-ray source m (1, 1) of each multi-X-ray unit, simultaneously generates X-rays from these X-ray sources, and obtains X-ray image information by the detector 35.
- An acquisition process is executed (steps S102 and S103). Thereafter, the control device 300 sequentially selects and drives the X-ray sources m (1, 2) and m (1, 3), and repeats the acquisition process. That is, the X-ray sources m (1,2) and m (1,3) of each multi-X-ray unit are sequentially driven, and the X-ray image information is obtained by the detector 35 (steps S103 to S105).
- control device 300 moves the multi-X-ray source 31 from, for example, p1 to p2 in FIG. . Then, the processes in steps S102 to S107 are repeated at the position p2 (steps S108 and S109).
- step S110 the control device 300 generates an image using the X-ray image information acquired in step S103, and obtains an X-ray projection image.
- X-ray irradiation is performed (scanned) while the multi-X-ray source is moved within the plane of the multi-X-ray source and within the interval of the X-ray sources.
- high-quality X-ray projection image data can be collected using a multi-X-ray source. That is, high-definition X-ray imaging can be performed while the multi-X-ray source and the two-dimensional flat detector are arranged close to each other, so that a high-definition and compact X-ray projection imaging apparatus can be obtained.
- the X-ray power can be efficiently used for imaging with the X-ray source approached, a low-cost X-ray apparatus with reduced leakage X-rays to the surroundings can be obtained.
- the X-ray sources that are driven simultaneously are selected so that the X-rays do not interfere with each other on the detection surface, so that interference of X-rays from different X-ray sources can be prevented and higher A fine X-ray image can be obtained.
- the X-ray intensity obtained from the X-ray source of the source array in the multi-X-ray unit described above is the melting point and cooling method of the X-ray target material, electron beam acceleration voltage, current value and focal point size, irradiation time, X-ray Depends on the extraction method and the like.
- the X-ray target is mechanically rotated and the irradiation position is sequentially moved to perform heat diffusion. To increase the power of X-rays.
- the X-ray target is thermally diffused by electrically scanning the position of the multi-electron source, so that a larger X power can be input. Specific examples of these will be described with reference to FIG.
- FIG. 8 shows the time change of the temperature of the target surface when the electron beam is irradiated to the X-ray target.
- 8A and 8B show the waveform of the electron current (8B in FIG. 8) when a rectangular pulse signal is generated as the drive signal for the electron source, and the change in the surface temperature of the X-ray target (8A in FIG. 8).
- An example is shown.
- the temperature Tm of the X-ray target rises rapidly, and during about 9 ms after the pulse current is turned off, the surface temperature of the X-ray target becomes the heat conduction to the surrounding structure.
- the original temperature state To is recovered.
- one X-ray source is always lit for each multi-X-ray unit 32 in FIG.
- the time during which all the X-ray sources in the radiation source array in the unit unit are extinguished is set to be the cooling time of the surface temperature of the X-ray target.
- the temperature limit of the X-ray target does not exceed the X-ray irradiation time ⁇ t of each source array in the unit unit shown in FIG. It is important to manage settings so that.
- the X-ray target surface temperature Tm is determined by parameters of the current, voltage, and ⁇ t of the multi-X-ray source with respect to the allowable value of the temperature of the X-ray target, Tmax.
- Tm T (voltage, current, ⁇ t) Tm ⁇ Tmax ⁇ t is set so that By having these data as functions or data in advance, the maximum mAs value irradiated to the X-ray target is determined, thereby improving the safety of the multi-X-ray source.
- the time interval of X-ray generation in one X-ray source that is, the time interval of electron beam irradiation is such that at least the temperature of the X-ray target raised by the electron beam irradiation is equal to or lower than the first temperature (To or lower). This is the period of cooling until.
- the multi-X-ray source can be set to automatically repeat the necessary X-ray irradiation at the same position. By adopting such a method, it becomes possible to perform imaging in a state where the performance of the multi-X-ray source is maximized.
- a multi-X-ray source 40 arranged in a one-dimensional manner and an elongated detector 42 are placed at a position facing the multi-X-ray source.
- the subject is arranged in a direction perpendicular to the multi-X-ray source 40 and the detector 42 in a one-dimensional array.
- the multi X-ray source 40 includes a one-dimensional array of multi-X-ray units and an X-ray source constituting a one-dimensional intra-unit radiation source array.
- each multi-X-ray unit has an X-ray source m (1,1), m (1,2), m (1,3).
- the X-ray sources m (1,1), m (1,2), m (1,3) are sequentially turned on,
- the multi X-ray source 40 is repeatedly moved in the arrangement direction, and X-ray projection data is collected.
- the multi X-ray source 40 scans the width corresponding to the arrangement interval of the X-ray sources
- the subject is moved in a direction perpendicular to the arrangement direction of the X-ray sources in the multi X-ray source 40.
- the multi X-ray source 40 and the detector 42 may be simultaneously moved in a direction perpendicular to the arrangement direction of the X-ray sources.
- FIG. 10 is a diagram showing a configuration example in which the multi-X-ray source 40 and the detector 42 move together.
- the multi-X-ray source 40 and the detector 42 are fixed by a support portion 43, and this is moved in synchronism with the generation of the X-ray source by the drive portion 45 on the table 44.
- the multi-X-ray source 40 in which a plurality of X-ray focal points are arranged one-dimensionally is used. Then, the control device 300 irradiates the X-rays from the multi-X-ray source 40 while moving the multi-X-ray source 31 in the arrangement direction 41 of the plurality of X-ray focal points by the scanning mechanism 34, and X-rays from the detector 42. The detection signal is acquired. Then, this process is repeated while moving the multi-X-ray source 40 in a direction orthogonal to the arrangement direction 41 to obtain two-dimensional X-ray image information.
- the detector 42 When the detector 42 has a sufficiently wide detection surface, only the multi X-ray source 40 may be moved when the multi X-ray source 40 moves in the direction orthogonal to the arrangement direction 41. 9 and 10, the detection surface of the detector 42 corresponds to a region for one irradiation of the multi-X-ray source 40, and therefore the multi-X-ray source 40 is moved in a direction orthogonal to the arrangement direction 41. And the detector 42 move together.
- an X-ray projection apparatus using a scanning multi-X-ray source that is very compact and low in cost can be produced.
- FIG. 11 shows a method of obtaining high-quality X-ray projection data in the scanning multi-X-ray source driving mechanism.
- the accuracy of attitude control of the multi-X-ray source needs to be several tens of ⁇ m or less.
- the scanning multi-X-ray source 30 of the fourth embodiment uses an optical means for reading the position of the multi-X-ray source 31 in addition to the scanning mechanism 34 of the multi-X-ray source 31.
- a position detector 38 was attached.
- the position detector 38 reads the position of the multi X-ray source 31 at the time of X-ray irradiation.
- this position data as X-ray source position correction data when converting an X-ray projection image from X-ray transmission intensity data (detection signal), it is possible to convert the projection image with high accuracy.
- transmission X-ray data acquired by the scanning multi-X-ray apparatus can be converted into an X-ray projection image by a conventional method of obtaining a tomographic image. Therefore, it is possible to provide an X-ray projection imaging apparatus capable of acquiring a small and high-definition image utilizing the characteristics of the multi-X-ray source.
- the present invention can also be realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and the computer (or CPU, MPU, etc.) of the system or apparatus reads the program. It is a process to be executed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
X線ターゲットに電子ビームを照射することによりX線を発生する複数のX線焦点を有するマルチX線源と、
前記マルチX線源から照射され、検出面に到達したX線を検出する検出器と、
前記検出面に対向する面内において、前記マルチX線源を移動する移動手段と、
前記移動手段により前記マルチX線源を前記検出面に対して相対的にずらしながら前記マルチX線源によるX線の複数回の照射を行い、それぞれの照射において前記検出器からX線の検出信号を取得する取得手段と、
前記取得手段により取得された複数のX線の検出信号に基づいてX線投影画像を生成する生成手段とを備える。
X線ターゲットに電子ビームを照射することによりX線を発生する複数のX線焦点を有するマルチX線源と、
前記マルチX線源から照射され、検出面に到達したX線を検出する検出器と、
前記検出面に対向する面内において、前記マルチX線源を移動する移動手段とを備えたX線撮影装置の制御方法であって、
前記移動手段により前記マルチX線源を前記検出面に対して相対的にずらしながら前記マルチX線源によるX線の複数回の照射を行い、それぞれの照射において前記検出器からX線の検出信号を取得する取得工程と、
前記取得工程により取得された複数のX線の検出信号に基づいてX線投影画像を生成する生成工程とを有する。
図1は、X線ターゲットに電子ビームを照射することによりX線を発生する複数のX線焦点を有するマルチX線源本体10の構成を示す図である。マルチX線源本体10の真空室11にはマルチ電子ビーム発生部12、X線ターゲットとしての透過型ターゲット13が配置されている。マルチ電子ビーム発生部12は、素子基板14と、その上に複数個の電子放出素子15が配列された素子アレイ16により構成され、電子放出素子15は駆動信号部17により駆動が制御されるようになっている。また、電子放出素子15から発生するマルチ電子ビームeを制御するためにレンズ電極19とアノード電極20が設けられ、これらの電極19、20に高電圧導入部21、22を介して高電圧が供給されている。レンズ電極19は、絶縁体18を介して素子基板14に固定されている。
上述したマルチX線ユニット内の線源アレイのX線源より得られるX線強度は、X線ターゲット材料の融点や冷却方式、電子ビームの加速電圧、電流値と焦点サイズ、照射時間、X線の取り出し方法等に依存する。
Tm=T(電圧、電流、Δt)
Tm < Tmax
となるように、Δtを設定する。これらのデータを事前に関数、または、データとして持つことにより、X線ターゲットに照射する最大のmAs値を決定することでマルチX線源の安全性を高めている。また、1つのX線源におけるX線発生の時間間隔、即ち、電子ビームを照射する時間間隔は、少なくとも電子ビームの照射によって上昇したX線ターゲットの温度が第1の温度以下(To以下)となるまで冷却される期間である。
第1実施形態では、2次元に配列したマルチX線源を使った場合の投影画像撮影方法を示した。第3実施形態では、1次元配列のマルチX線源を使った場合の撮影装置及び撮影方法について、図9を使って説明する。
図11は、走査型マルチX線源の駆動機構において、高画質のX線投影データを得る方法を示したものである。高精細のX線画像を得るためには、マルチX線源の姿勢制御の精度を数10μm以下にする必要がある。これを実現する簡便な方法として、第4実施形態の走査型マルチX線源30は、マルチX線源31の走査機構34の他にマルチX線源31の位置を読み取るために光学手段を用いた位置検出器38が取付けられている。この位置検出器38によりX線照射時のマルチX線源31の位置を読み取る。そして、この位置データをX線透過強度のデータ(検出信号)からX線投影画像を変換する際のX線源位置補正データとして使うことで高精度の投影画像の変換が可能となる。
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
Claims (11)
- X線ターゲットに電子ビームを照射することによりX線を発生する複数のX線焦点を有するマルチX線源と、
前記マルチX線源から照射され、検出面に到達したX線を検出する検出器と、
前記検出面に対向する面内において、前記マルチX線源を移動する移動手段と、
前記移動手段により前記マルチX線源を前記検出面に対して相対的にずらしながら前記マルチX線源によるX線の複数回の照射を行い、それぞれの照射において前記検出器からX線の検出信号を取得する取得手段と、
前記取得手段により取得された複数のX線の検出信号に基づいてX線投影画像を生成する生成手段とを備えることを特徴とするX線撮影装置。 - 前記取得手段は、前記移動手段により前記マルチX線源を隣接するX線焦点の距離にわたって移動させる間に、前記マルチX線源によるX線の複数回の照射を行うことにより、前記検出器より複数のX線の検出信号を取得することを特徴とする請求項1に記載のX線撮影装置。
- 前記取得手段は、
同時にX線を発生させても前記検出面においてX線が相互に干渉しないX線焦点によりグループを形成することで前記複数のX線焦点を複数のグループに分け、グループ毎に前記複数のX線焦点からX線を発生させて、前記検出器よりX線の検出信号を取得し、
前記複数のグループの全てについて検出信号の取得を終えた後、前記移動手段により前記マルチX線源を移動することを特徴とする請求項1または2に記載のX線撮影装置。 - 前記複数のX線焦点の各々について、X線を発生させるべく前記電子ビームを照射する間隔は、少なくとも前記電子ビームの照射によって上昇した前記X線ターゲットの温度が第1の温度以下となるまで冷却するのに要する期間であり、前記電子ビームを照射する時間は、前記電子ビームの照射による前記X線ターゲットの温度の上昇が温度の許容値を超えない時間であることを特徴とする請求項1乃至3のいずれか1項に記載のX線撮影装置。
- 前記複数のX線焦点は2次元に配列され、
前記移動手段は、前記マルチX線源を2次元の方向に移動することを特徴とする請求項1乃至4のいずれか1項に記載のX線撮影装置。 - 前記複数のX線焦点は1次元に配列され、
前記取得手段は、
前記移動手段により前記マルチX線源を前記複数のX線焦点の配列方向へ移動しながら前記マルチX線源によるX線の照射を行って前記検出器よりX線の検出信号を取得する取得処理を実行し、
前記移動手段により、前記マルチX線源を前記配列方向と直交する方向へ移動しながら、前記取得処理を繰り返すことを特徴とする請求項1乃至4のいずれか1項に記載のX線撮影装置。 - 前記移動手段は、前記配列方向と直交する方向への移動においては、前記マルチX線源と前記検出器を共に移動させることを特徴とする請求項6に記載のX線撮影装置。
- 前記マルチX線源の位置を検出する位置検出手段を更に備え、
前記生成手段は、前記位置検出手段で検出された前記マルチX線源の位置に基づいて前記検出信号を補正してX線投影画像を生成することを特徴とする請求項1乃至7のいずれか1項に記載のX線撮影装置。 - X線ターゲットに電子ビームを照射することによりX線を発生する複数のX線焦点を有するマルチX線源と、
前記マルチX線源から照射され、検出面に到達したX線を検出する検出器と、
前記検出面に対向する面内において、前記マルチX線源を移動する移動手段とを備えたX線撮影装置の制御方法であって、
前記移動手段により前記マルチX線源を前記検出面に対して相対的にずらしながら前記マルチX線源によるX線の複数回の照射を行い、それぞれの照射において前記検出器からX線の検出信号を取得する取得工程と、
前記取得工程により取得された複数のX線の検出信号に基づいてX線投影画像を生成する生成工程とを有することを特徴とするX線撮影装置の制御方法。 - 請求項9に記載のX線撮影装置の制御方法をコンピュータに実行させるためのプログラム。
- 請求項9に記載のX線撮影装置の制御方法をコンピュータに実行させるためのプログラムを格納した、コンピュータ読み取り可能な記憶媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09814209A EP2269511A4 (en) | 2008-09-18 | 2009-08-03 | MULTI-X-RAY PHOTOGRAPHY DEVICE AND CONTROL METHOD THEREFOR |
KR1020107025299A KR101227353B1 (ko) | 2008-09-18 | 2009-08-03 | 멀티 x선 촬영 장치 및 그 제어 방법 |
CN200980129788.3A CN102112053B (zh) | 2008-09-18 | 2009-08-03 | 多x射线摄像设备及其控制方法 |
US12/763,486 US7991114B2 (en) | 2008-09-18 | 2010-04-20 | Multi X-ray imaging apparatus and control method therefor |
US13/164,440 US9008268B2 (en) | 2008-09-18 | 2011-06-20 | Multi X-ray imaging apparatus and control method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008239754A JP4693884B2 (ja) | 2008-09-18 | 2008-09-18 | マルチx線撮影装置及びその制御方法 |
JP2008-239754 | 2008-09-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/763,486 Continuation US7991114B2 (en) | 2008-09-18 | 2010-04-20 | Multi X-ray imaging apparatus and control method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032363A1 true WO2010032363A1 (ja) | 2010-03-25 |
Family
ID=42039216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003679 WO2010032363A1 (ja) | 2008-09-18 | 2009-08-03 | マルチx線撮影装置及びその制御方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US7991114B2 (ja) |
EP (1) | EP2269511A4 (ja) |
JP (1) | JP4693884B2 (ja) |
KR (1) | KR101227353B1 (ja) |
CN (1) | CN102112053B (ja) |
WO (1) | WO2010032363A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065762A1 (ja) * | 2011-11-02 | 2013-05-10 | 富士フイルム株式会社 | 放射線照射装置、放射線照射方法、及びプログラム記憶媒体 |
CN103308535A (zh) * | 2012-03-09 | 2013-09-18 | 同方威视技术股份有限公司 | 用于射线扫描成像的设备和方法 |
CN112218682A (zh) * | 2018-03-27 | 2021-01-12 | 伊利克塔有限公司 | 辐射探测系统 |
JP2022545826A (ja) * | 2019-08-28 | 2022-10-31 | 高麗大学校産学協力団 | X線源装置及びその制御方法 |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4693884B2 (ja) | 2008-09-18 | 2011-06-01 | キヤノン株式会社 | マルチx線撮影装置及びその制御方法 |
US8204174B2 (en) * | 2009-06-04 | 2012-06-19 | Nextray, Inc. | Systems and methods for detecting an image of an object by use of X-ray beams generated by multiple small area sources and by use of facing sides of adjacent monochromator crystals |
JP5099461B2 (ja) * | 2010-05-11 | 2012-12-19 | 株式会社エーイーティー | 病巣組織リアルタイム位置同定装置およびこれを用いたx線治療装置 |
JP2012066062A (ja) * | 2010-08-24 | 2012-04-05 | Fujifilm Corp | 放射線撮影システム及び放射線撮影方法 |
WO2012106204A1 (en) * | 2011-01-31 | 2012-08-09 | University Of Massachusetts | Tomosynthesis imaging |
JP5276682B2 (ja) * | 2011-02-21 | 2013-08-28 | キヤノン株式会社 | マルチx線撮影装置及びその制御方法 |
JP5423705B2 (ja) * | 2011-02-28 | 2014-02-19 | 横河電機株式会社 | 放射線検査装置 |
KR101222224B1 (ko) * | 2011-03-25 | 2013-01-16 | 경희대학교 산학협력단 | 다중 배열 엑스레이 시스템 |
KR101773960B1 (ko) * | 2011-06-30 | 2017-09-12 | 한국전자통신연구원 | 단층합성영상 시스템 |
JP5896649B2 (ja) * | 2011-08-31 | 2016-03-30 | キヤノン株式会社 | ターゲット構造体及びx線発生装置 |
KR101299297B1 (ko) * | 2011-11-01 | 2013-08-26 | 경희대학교 산학협력단 | 회전하는 플랫폼을 가진 단층 영상 합성 시스템 |
US10242836B2 (en) | 2012-03-16 | 2019-03-26 | Nanox Imaging Plc | Devices having an electron emitting structure |
JP6112773B2 (ja) * | 2012-04-17 | 2017-04-12 | キヤノン株式会社 | 放射線撮影装置、その制御方法及びプログラム |
US10068740B2 (en) * | 2012-05-14 | 2018-09-04 | The General Hospital Corporation | Distributed, field emission-based X-ray source for phase contrast imaging |
KR20140013403A (ko) * | 2012-07-23 | 2014-02-05 | 삼성전자주식회사 | 엑스선 촬영 장치 및 그 촬영 방법 |
US9922793B2 (en) | 2012-08-16 | 2018-03-20 | Nanox Imaging Plc | Image capture device |
KR101413574B1 (ko) * | 2012-08-28 | 2014-07-02 | 한국전기연구원 | 다중 에너지 x-선 발생장치 및 이를 이용한 영상 시스템 |
KR20140112270A (ko) * | 2013-03-13 | 2014-09-23 | 삼성전자주식회사 | 방열 블록을 포함한 엑스선 발생 장치 |
CN103315761B (zh) * | 2013-06-17 | 2016-06-29 | 深圳先进技术研究院 | 一种基于线阵射线源的锥束ct系统 |
JP6188470B2 (ja) * | 2013-07-24 | 2017-08-30 | キヤノン株式会社 | 放射線発生装置及びそれを用いた放射線撮影システム |
CN106132302A (zh) * | 2013-11-06 | 2016-11-16 | 射线科学有限公司 | 包括多个x射线源的x射线成像设备 |
WO2015079393A1 (en) | 2013-11-27 | 2015-06-04 | Nanox Imaging Plc | Electron emitting construct configured with ion bombardment resistant |
JP6272043B2 (ja) * | 2014-01-16 | 2018-01-31 | キヤノン株式会社 | X線発生管及びこれを用いたx線発生装置、x線撮影システム |
KR102234422B1 (ko) * | 2014-02-07 | 2021-03-31 | 주식회사 바텍 | 엑스선 촬영장치 |
US9976971B2 (en) * | 2014-03-06 | 2018-05-22 | United Technologies Corporation | Systems and methods for X-ray diffraction |
CN106535769B (zh) * | 2014-05-01 | 2020-03-13 | 斯格瑞公司 | X射线干涉成像系统 |
GB2531326B (en) * | 2014-10-16 | 2020-08-05 | Adaptix Ltd | An X-Ray emitter panel and a method of designing such an X-Ray emitter panel |
KR102548577B1 (ko) * | 2016-01-25 | 2023-06-27 | 어답틱스 리미티드 | 디지털 3d 영상을 형성하는 고정된 x선 디텍터 어레이와 고정된 x선 이미터 어레이를 갖춘 의료영상장치 |
US10991539B2 (en) * | 2016-03-31 | 2021-04-27 | Nano-X Imaging Ltd. | X-ray tube and a conditioning method thereof |
US11282668B2 (en) * | 2016-03-31 | 2022-03-22 | Nano-X Imaging Ltd. | X-ray tube and a controller thereof |
EP3733072A4 (en) * | 2018-01-31 | 2021-09-15 | Nano-X Imaging Ltd | PROCESS FOR CONTROLLING AN X-RAY IMAGING DEVICE |
JP7184584B2 (ja) * | 2018-09-27 | 2022-12-06 | 富士フイルム株式会社 | 放射線撮影装置 |
JP7043380B2 (ja) * | 2018-09-27 | 2022-03-29 | 富士フイルム株式会社 | トモシンセシス撮影装置及びその作動方法 |
US12087540B2 (en) | 2018-11-27 | 2024-09-10 | Cat Beam Tech Co., Ltd. | Field emission-type tomosynthesis system, emitter for field emission-type tomosynthesis system, and method of manufacturing emitter |
KR102136062B1 (ko) | 2018-11-27 | 2020-07-21 | 경희대학교 산학협력단 | 전계 방출형 토모신테시스 시스템 |
JP2020156825A (ja) * | 2019-03-27 | 2020-10-01 | 富士フイルム株式会社 | 位置情報表示装置、方法およびプログラム、並びに放射線画像撮影装置 |
FR3102055B1 (fr) * | 2019-10-17 | 2024-03-08 | Thales Sa | Dispositif de radiologie à plusieurs sources de rayons ionisants et procédé mettant en oeuvre le dispositif |
US12046442B2 (en) | 2020-12-31 | 2024-07-23 | VEC Imaging GmbH & Co. KG | Hybrid multi-source x-ray source and imaging system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005261838A (ja) * | 2004-03-22 | 2005-09-29 | Toshiba Corp | X線断層撮影装置 |
JP2006057846A (ja) | 2004-08-16 | 2006-03-02 | Guzik Technical Enterp Inc | 拘束層減衰組立体 |
JP2006061692A (ja) | 2004-08-24 | 2006-03-09 | Univ Leland Stanford Jr | 3次元コンピュータ断層撮影方法及びシステム |
JP2006524548A (ja) * | 2003-04-24 | 2006-11-02 | ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル | 人体及び小型動物を撮影するためのコンピュータ断層撮影システム |
JP2007263961A (ja) * | 2006-03-28 | 2007-10-11 | General Electric Co <Ge> | 複数焦点x線システムのための方法及びシステム |
JP2007265981A (ja) * | 2006-03-03 | 2007-10-11 | Canon Inc | マルチx線発生装置 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2667585A (en) * | 1951-02-15 | 1954-01-26 | Hartford Nat Bank & Trust Co | Device for producing screening images of body sections |
US3606798A (en) * | 1965-04-06 | 1971-09-21 | Harry Leiter | Carriage apparatus for scanning means |
GB1540582A (en) * | 1975-03-12 | 1979-02-14 | Emi Ltd | Radiography |
JPH01246796A (ja) * | 1988-03-28 | 1989-10-02 | Hitachi Medical Corp | X線検査装置 |
US5265142A (en) * | 1992-05-08 | 1993-11-23 | General Electric Company | Image reconstruction technique for a computer tomography system |
DE19740214A1 (de) * | 1997-09-12 | 1999-04-01 | Siemens Ag | Computertomograph |
WO1999030486A2 (en) * | 1997-12-10 | 1999-06-17 | Koninklijke Philips Electronics N.V. | Forming an assembled image from successive x-ray images |
JP2001513202A (ja) * | 1997-12-10 | 2001-08-28 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | X線検査装置 |
US6229870B1 (en) * | 1998-11-25 | 2001-05-08 | Picker International, Inc. | Multiple fan beam computed tomography system |
US6125167A (en) * | 1998-11-25 | 2000-09-26 | Picker International, Inc. | Rotating anode x-ray tube with multiple simultaneously emitting focal spots |
US6292531B1 (en) * | 1998-12-31 | 2001-09-18 | General Electric Company | Methods and apparatus for generating depth information mammography images |
DE19922346C2 (de) * | 1999-05-14 | 2003-06-18 | Siemens Ag | Röntgendiagnostikeinrichtung für Tomosynthese oder Schichtung |
US6463121B1 (en) * | 1999-10-13 | 2002-10-08 | General Electric Company | Interactive x-ray position and exposure control using image data as reference information |
US6333968B1 (en) * | 2000-05-05 | 2001-12-25 | The United States Of America As Represented By The Secretary Of The Navy | Transmission cathode for X-ray production |
JP2002017712A (ja) * | 2000-07-07 | 2002-01-22 | Shimadzu Corp | X線撮影装置 |
JP2002028155A (ja) * | 2000-07-14 | 2002-01-29 | Shimadzu Corp | X線透視撮影台 |
US7082182B2 (en) * | 2000-10-06 | 2006-07-25 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US7085351B2 (en) * | 2000-10-06 | 2006-08-01 | University Of North Carolina At Chapel Hill | Method and apparatus for controlling electron beam current |
US6553096B1 (en) * | 2000-10-06 | 2003-04-22 | The University Of North Carolina Chapel Hill | X-ray generating mechanism using electron field emission cathode |
US6483890B1 (en) * | 2000-12-01 | 2002-11-19 | Koninklijke Philips Electronics, N.V. | Digital x-ray imaging apparatus with a multiple position irradiation source and improved spatial resolution |
US6674837B1 (en) * | 2001-06-15 | 2004-01-06 | Nan Crystal Imaging Corporation | X-ray imaging system incorporating pixelated X-ray source and synchronized detector |
US6760407B2 (en) * | 2002-04-17 | 2004-07-06 | Ge Medical Global Technology Company, Llc | X-ray source and method having cathode with curved emission surface |
JP3673791B2 (ja) * | 2002-05-22 | 2005-07-20 | キヤノン株式会社 | 放射線撮影装置及び放射線撮影方法 |
DE10244609A1 (de) * | 2002-09-25 | 2004-04-15 | Siemens Ag | Bestrahlungsbildaufnahmeeinrichtung |
US6970531B2 (en) * | 2002-10-07 | 2005-11-29 | General Electric Company | Continuous scan RAD tomosynthesis system and method |
US6944265B2 (en) * | 2002-11-25 | 2005-09-13 | Ge Medical Systems Global Technology Company, Llc | Image pasting using geometry measurement and a flat-panel detector |
US7634308B2 (en) * | 2002-12-17 | 2009-12-15 | Kabushiki Kaisha Toshiba | Method and system for X-ray diagnosis of object in which X-ray contrast agent is injected |
US6947522B2 (en) * | 2002-12-20 | 2005-09-20 | General Electric Company | Rotating notched transmission x-ray for multiple focal spots |
GB0309379D0 (en) * | 2003-04-25 | 2003-06-04 | Cxr Ltd | X-ray scanning |
JP4262042B2 (ja) * | 2003-10-09 | 2009-05-13 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 熱発生装置、x線撮像装置およびx線装置過熱防止方法 |
US6990169B2 (en) * | 2003-12-23 | 2006-01-24 | General Electric Company | Method and system for viewing a rendered volume |
US7639774B2 (en) * | 2003-12-23 | 2009-12-29 | General Electric Company | Method and apparatus for employing multiple axial-sources |
US7192031B2 (en) * | 2004-02-05 | 2007-03-20 | General Electric Company | Emitter array configurations for a stationary CT system |
US7090396B2 (en) * | 2004-10-15 | 2006-08-15 | General Electric Company | Systems, methods and apparatus of a radiographic positioner |
US7336761B2 (en) * | 2005-04-21 | 2008-02-26 | Michigan State University | Tomographic imaging system using a conformable mirror |
EP1959835B1 (en) * | 2005-12-08 | 2018-11-14 | Koninklijke Philips N.V. | Systems and methods for scanning and data acquisition in computed tomography (ct) applications |
WO2007088497A1 (en) * | 2006-02-02 | 2007-08-09 | Philips Intellectual Property & Standards Gmbh | Imaging apparatus using distributed x-ray sources and method thereof |
JP2007265987A (ja) | 2006-03-03 | 2007-10-11 | Semiconductor Energy Lab Co Ltd | 発光素子、発光装置、発光装置の作製方法及びシート状のシール材 |
CN101534716B (zh) * | 2006-11-09 | 2011-12-28 | 佳能株式会社 | 控制多放射线生成设备的控制设备及其控制方法 |
US7627087B2 (en) * | 2007-06-28 | 2009-12-01 | General Electric Company | One-dimensional grid mesh for a high-compression electron gun |
JP4946677B2 (ja) * | 2007-07-06 | 2012-06-06 | コニカミノルタホールディングス株式会社 | 透過像撮影システム、および透過像撮影方法 |
US7826594B2 (en) * | 2008-01-21 | 2010-11-02 | General Electric Company | Virtual matrix control scheme for multiple spot X-ray source |
US7809114B2 (en) * | 2008-01-21 | 2010-10-05 | General Electric Company | Field emitter based electron source for multiple spot X-ray |
FR2926924B1 (fr) * | 2008-01-25 | 2012-10-12 | Thales Sa | Source radiogene comprenant au moins une source d'electrons associee a un dispositif photoelectrique de commande |
US7567647B1 (en) * | 2008-04-11 | 2009-07-28 | Siemens Medical Solutions Usa, Inc. | Source array translation for digital tomosynthesis |
DE102008030698B3 (de) * | 2008-06-27 | 2010-02-18 | Siemens Aktiengesellschaft | Mammographieanlage |
JP4693884B2 (ja) | 2008-09-18 | 2011-06-01 | キヤノン株式会社 | マルチx線撮影装置及びその制御方法 |
DE102008050571A1 (de) * | 2008-10-06 | 2010-04-15 | Siemens Aktiengesellschaft | Tomosynthesegerät und Verfahren zum Betrieb eines Tomosynthesegerätes |
JP5416426B2 (ja) * | 2009-02-03 | 2014-02-12 | 富士フイルム株式会社 | 放射線画像撮影装置 |
-
2008
- 2008-09-18 JP JP2008239754A patent/JP4693884B2/ja active Active
-
2009
- 2009-08-03 KR KR1020107025299A patent/KR101227353B1/ko active IP Right Grant
- 2009-08-03 WO PCT/JP2009/003679 patent/WO2010032363A1/ja active Application Filing
- 2009-08-03 CN CN200980129788.3A patent/CN102112053B/zh active Active
- 2009-08-03 EP EP09814209A patent/EP2269511A4/en not_active Withdrawn
-
2010
- 2010-04-20 US US12/763,486 patent/US7991114B2/en not_active Expired - Fee Related
-
2011
- 2011-06-20 US US13/164,440 patent/US9008268B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006524548A (ja) * | 2003-04-24 | 2006-11-02 | ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル | 人体及び小型動物を撮影するためのコンピュータ断層撮影システム |
JP2005261838A (ja) * | 2004-03-22 | 2005-09-29 | Toshiba Corp | X線断層撮影装置 |
JP2006057846A (ja) | 2004-08-16 | 2006-03-02 | Guzik Technical Enterp Inc | 拘束層減衰組立体 |
JP2006061692A (ja) | 2004-08-24 | 2006-03-09 | Univ Leland Stanford Jr | 3次元コンピュータ断層撮影方法及びシステム |
JP2007265981A (ja) * | 2006-03-03 | 2007-10-11 | Canon Inc | マルチx線発生装置 |
JP2007263961A (ja) * | 2006-03-28 | 2007-10-11 | General Electric Co <Ge> | 複数焦点x線システムのための方法及びシステム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2269511A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013065762A1 (ja) * | 2011-11-02 | 2013-05-10 | 富士フイルム株式会社 | 放射線照射装置、放射線照射方法、及びプログラム記憶媒体 |
US9079027B2 (en) | 2011-11-02 | 2015-07-14 | Fujifilm Corporation | Radiation irradiation device, radiation irradiation method and program storage medium |
CN103308535A (zh) * | 2012-03-09 | 2013-09-18 | 同方威视技术股份有限公司 | 用于射线扫描成像的设备和方法 |
CN112218682A (zh) * | 2018-03-27 | 2021-01-12 | 伊利克塔有限公司 | 辐射探测系统 |
CN112218682B (zh) * | 2018-03-27 | 2023-04-21 | 伊利克塔有限公司 | 辐射探测系统 |
JP2022545826A (ja) * | 2019-08-28 | 2022-10-31 | 高麗大学校産学協力団 | X線源装置及びその制御方法 |
JP7407476B2 (ja) | 2019-08-28 | 2024-01-04 | 高麗大学校産学協力団 | X線源装置及びその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110249796A1 (en) | 2011-10-13 |
JP4693884B2 (ja) | 2011-06-01 |
US9008268B2 (en) | 2015-04-14 |
EP2269511A1 (en) | 2011-01-05 |
JP2010069012A (ja) | 2010-04-02 |
US7991114B2 (en) | 2011-08-02 |
CN102112053A (zh) | 2011-06-29 |
EP2269511A4 (en) | 2012-03-07 |
US20100266097A1 (en) | 2010-10-21 |
KR101227353B1 (ko) | 2013-01-28 |
KR20100134107A (ko) | 2010-12-22 |
CN102112053B (zh) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010032363A1 (ja) | マルチx線撮影装置及びその制御方法 | |
KR101113093B1 (ko) | 멀티 x선 발생장치 및 멀티 x선 촬영장치 | |
JP5797727B2 (ja) | 分散型x線を発生するデバイス及びその方法 | |
JP5675794B2 (ja) | 2つの焦点スポットを生成するx線管及びこれを有する医療デバイス | |
JP5276682B2 (ja) | マルチx線撮影装置及びその制御方法 | |
US8488737B2 (en) | Medical X-ray imaging system | |
JP2007265981A5 (ja) | ||
JP2007080818A (ja) | X線放射器 | |
JP2005110722A (ja) | X線管およびx線撮影装置 | |
WO2013002124A1 (ja) | X線管球及びx線ct装置 | |
JP2012521614A (ja) | 電界放出陰極を具えるx線源 | |
US10022093B2 (en) | X-ray diagnosis apparatus and control method | |
US7643606B2 (en) | X-ray computed tomography apparatus with light beam-controlled x-ray source | |
JP5486762B2 (ja) | 複数焦点x線システムのための方法及びシステム | |
KR20220040818A (ko) | 엑스선 튜브 및 엑스선 촬영장치 | |
JP5312555B2 (ja) | マルチx線発生装置 | |
JP2010063758A (ja) | X線ct装置及びx線ct装置のデータ収集方法 | |
JP2010146992A (ja) | 走査型x線管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980129788.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09814209 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009814209 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009814209 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107025299 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |