WO2010026932A1 - 石炭ガス化複合発電設備 - Google Patents

石炭ガス化複合発電設備 Download PDF

Info

Publication number
WO2010026932A1
WO2010026932A1 PCT/JP2009/065101 JP2009065101W WO2010026932A1 WO 2010026932 A1 WO2010026932 A1 WO 2010026932A1 JP 2009065101 W JP2009065101 W JP 2009065101W WO 2010026932 A1 WO2010026932 A1 WO 2010026932A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
coal
power generation
recovery device
Prior art date
Application number
PCT/JP2009/065101
Other languages
English (en)
French (fr)
Inventor
創研 ▲高▼瀬
太田 一広
貴雄 橋本
貴 藤井
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09811458.0A priority Critical patent/EP2322781A4/en
Priority to US13/058,853 priority patent/US20110139047A1/en
Publication of WO2010026932A1 publication Critical patent/WO2010026932A1/ja
Priority to ZA2011/01252A priority patent/ZA201101252B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1815Recycle loops, e.g. gas, solids, heating medium, water for carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/61Removal of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a combined coal gasification combined power generation facility that performs combined power generation using coal as fuel.
  • an integrated coal gasification combined cycle that operates gas turbines by gasifying coal as fuel and generates power using the driving power of the gas turbine and the exhaust heat of the gas turbine. It has been.
  • an oxygen combustion system is known in which oxygen is used as an oxidant, so that the combustion exhaust gas of the gas turbine is carbon dioxide (CO 2 ) and water (H 2 O). Yes.
  • the combustion exhaust gas is cooled by an exhaust gas condenser, the combustion exhaust gas can be separated into carbon dioxide and moisture, so that carbon dioxide can be easily recovered.
  • FIG. 4 is a configuration diagram showing a conventional example of a carbon dioxide recovery coal gasification combined power generation facility (hereinafter referred to as “air-blown IGCC system”) using an air combustion system (air-blown).
  • air-blown IGCC system coal as a raw material is first introduced into the pulverized coal machine 1 together with the drying gas, and the pulverized coal is produced by drying and pulverizing the coal.
  • the pulverized coal is guided to the cyclone 2, separated from the exhaust gas, and collected in the hopper 3. Thereafter, the pulverized coal in the hopper 3 is conveyed to the gasification furnace 4 and gasified by nitrogen gas for pressurized conveyance supplied from an air separation device 12 described later.
  • the coal gas gasified in the gasification furnace 4 in this way is supplied to the char recovery device 6 through the gas cooler 5.
  • compressed air supplied from a gas turbine 9 described later and oxygen supplied from the air separation device 12 are used as an oxidant.
  • the char recovery device 6 separates the char generated together with coal gas obtained by gasifying pulverized coal.
  • One coal gas is desulfurized through the desulfurization device 7 and then supplied to the carbon dioxide recovery device 8.
  • carbon dioxide recovery device 8 carbon dioxide in the coal gas is separated and recovered.
  • the coal gas from which carbon dioxide has been separated becomes the fuel gas of the gas turbine 9 and is supplied to the combustor and burned to generate high-temperature and high-pressure combustion exhaust gas.
  • the combustion exhaust gas is discharged as exhaust gas after driving the turbine of the gas turbine 9.
  • the main shaft of the gas turbine 9 is connected to a generator (not shown), and power is generated by driving the generator.
  • a part of the high-temperature exhaust gas discharged from the gas turbine 9 is supplied to the pulverized coal machine 1 as a drying gas, and the rest is supplied to the exhaust gas boiler 10 for steam generation.
  • the exhaust gas used for steam generation in the exhaust gas boiler 10 is subjected to necessary processing and exhausted to the atmosphere.
  • the steam generated in the exhaust gas boiler 10 is supplied to a power generation steam turbine or the like (not shown).
  • the drying gas used by mixing the exhaust gas from the gas turbine 9 and the exhaust gas after steam generation in the exhaust gas boiler 10 is a low oxygen concentration exhaust gas containing about 11% by volume of moisture.
  • the char recovered by the char recovery device 6 described above is recovered by the hopper 11 and then returned to the gasification furnace 4 by the nitrogen gas supplied from the air separation device 12 as a gas for pressurized conveyance.
  • the char returned to the gasification furnace 4 is used as a raw material for gasification together with pulverized coal.
  • the air separation device 12 is a device that introduces air from the atmosphere and separates it into nitrogen and oxygen gases.
  • the air separation device is used for pressurized conveyance of pulverized coal and char. It is desired to secure a carrier gas source to replace the nitrogen gas of the carrier gas supplied and eliminate the need for an air separation device.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to convey pulverized coal and char under pressure in an air-blown coal gasification combined power generation facility equipped with a carbon dioxide recovery device.
  • An object of the present invention is to provide a combined coal gasification combined power generation apparatus that secures a new carrier gas source to replace nitrogen gas as a carrier gas and eliminates an air separation device.
  • the combined coal gasification combined power generation facility employs an air combustion system in which coal gas is generated in a gasification furnace using air as an oxidant, and carbon dioxide is separated from the coal gas by a carbon dioxide recovery device.
  • a part of the carbon dioxide separated and recovered by the carbon dioxide recovery device is used as a transport gas for pulverized coal and char.
  • a part of the carbon dioxide separated and recovered by the carbon dioxide recovery device is used as a transport gas for pulverized coal and char, so that nitrogen as a transport gas is produced. No air separation device is required.
  • the combined coal gasification combined power generation facility it is preferable to use a part of carbon dioxide separated and recovered by the carbon dioxide recovery device mixed with a coal drying gas, It is possible to improve the drying efficiency of coal by reducing the moisture concentration of the drying gas.
  • the carbon dioxide recovery device is configured to absorb carbon dioxide using a multistage flash drum, and the high pressure stage of the flash drum is used as the transport gas. It is preferable to use an outlet gas, whereby a high-pressure carrier gas can be introduced, so that the amount of energy required to pressurize the carrier gas by a compressor or the like can be reduced.
  • a part of carbon dioxide separated and recovered by a carbon dioxide recovery device is used as a pulverized coal and char transport gas, and an air separation device for producing nitrogen as a transport gas is unnecessary. Therefore, the plant efficiency of the coal gasification combined power generation facility can be improved by the amount of consumption of auxiliary power necessary for the operation of the air separation device.
  • the coal gasification combined power generation facility of the embodiment shown in FIG. 1 employs an air combustion method in which coal gas is generated in a gasification furnace 4 using air as an oxidizing agent, and carbon dioxide recovery apparatus 8 emits carbon dioxide from the coal gas. Carbon is separated and recovered and supplied to the gas turbine 9. That is, the coal gasification combined power generation facility shown in FIG. 1 is an air combustion type (air blown) carbon dioxide recovery coal gasification combined power generation facility (hereinafter referred to as “air blown IGCC system”).
  • air blown IGCC system air combustion type carbon dioxide recovery coal gasification combined power generation facility
  • This air-blown IGCC system introduces a part of exhaust gas that has been worked in a gas turbine 9 and an exhaust gas boiler 10 described later as a drying gas, and supplies coal as a raw material to the pulverized coal machine 1 together with the drying gas.
  • the pulverized coal machine 1 the coal supplied by the drying gas is heated and pulverized into fine particles while removing moisture in the coal to produce pulverized coal.
  • the pulverized coal thus manufactured is conveyed to the cyclone 2 by the drying gas. Inside the cyclone 2, gas components such as drying gas and pulverized coal (particle components) are separated, and the gas components are exhausted from the hopper 3. On the other hand, the pulverized coal of the particle component falls by gravity and is collected in the hopper 3.
  • the pulverized coal recovered in the hopper 3 is transported into the gasification furnace 4 by carbon dioxide introduced as a pressurized transport gas (transport gas) from a carbon dioxide recovery device 8 described later.
  • the gasification furnace 4 is supplied with pulverized coal and char to be described later as a raw material for coal gas, and coal gas is produced by gasification using compressed air supplied from the gas turbine 9 as an oxidizing agent.
  • the coal gas gasified in the gasification furnace 4 in this way is led from the upper part of the gasification furnace 4 to the gas cooler 5 to be cooled.
  • the coal gas is supplied to the char recovery device 6 after being cooled by the gas cooler 5.
  • the char generated together with the coal gas obtained by gasifying pulverized coal is separated.
  • carbon dioxide recovery device 8 carbon dioxide in the coal gas is separated and recovered.
  • the carbon dioxide separated and recovered here is partly sent as pulverized coal and char transport gas through the carbon dioxide supply line C1 by the compressor 13 to the hoppers 3 and 11, and the rest is appropriately recovered.
  • the coal gas from which carbon dioxide has been separated in this way is used as a fuel gas for the gas turbine 9.
  • This fuel gas By supplying this fuel gas to the combustor of the gas turbine 9 and burning it, high-temperature and high-pressure combustion exhaust gas is generated.
  • This combustion exhaust gas is discharged as high-temperature exhaust gas after driving the turbine of the gas turbine 9. Since the gas turbine 9 driven in this way has a main shaft that rotates with the turbine connected to a gas turbine generator (not shown), the gas turbine generator can be driven to generate electric power.
  • a part of the high-temperature exhaust gas discharged from the gas turbine 9 is supplied to the pulverized coal machine 1 through the exhaust gas supply line G1 as a high-temperature drying gas, and the rest is supplied to the exhaust gas boiler 10 to generate steam. Used as.
  • the exhaust gas used for steam generation in the exhaust gas boiler 10 is exhausted to the atmosphere after being subjected to the necessary treatment. However, a part of the exhaust gas is mixed with the exhaust gas introduced from the gas turbine 9 to become a drying gas. It is supplied to the pulverized coal machine 1 through the supply line G1.
  • the steam generated in the exhaust gas boiler 10 is supplied to a power generation steam turbine or the like (not shown).
  • generating steam with the exhaust gas boiler 10 with the exhaust gas of the gas turbine 9 contains about 11 volume% of water
  • the char recovered by the above-described char recovery device 6 falls to the hopper 11 due to gravity and is recovered.
  • the char in the hopper 11 uses carbon dioxide supplied from the carbon dioxide recovery device 8 and is returned to the gasification furnace 4 using this carbon dioxide as a carrier gas.
  • the char returned to the gasification furnace 4 is used as a raw material for gasification together with pulverized coal.
  • pulverized coal obtained by pulverizing coal is gasified in a gasification furnace 4 using air as an oxidizer to generate coal gas and char, and the other coal gas is a fuel gas of the gas turbine 9. Used as.
  • the char separated from the coal gas is supplied again to the gasification furnace 4 and gasified.
  • a part of the carbon dioxide separated and recovered by the carbon dioxide recovery device 8 is introduced into the compressor 13 and the pressure is increased, and this carbon dioxide is supplied to the hopper 3 for pulverized coal and the hopper 11 for char to be pulverized. Used as charcoal and char transport gas.
  • the molar specific heat of carbon dioxide flowing into the gasification furnace 4 is larger than that of nitrogen. For this reason, the reaction temperature of the gasification furnace 4 tends to decrease.
  • the air ratio of the gasification furnace 4 is increased.
  • the calorific value (per volume) of the produced coal gas will decrease.
  • the stable operation of the gas turbine 9 becomes difficult.
  • the calorific value of the fuel gas increases due to the removal of carbon dioxide.
  • a carbon dioxide branch line C2 branched from the carbon dioxide supply line C1 on the downstream side of the compressor 13 and joined to the exhaust gas supply line G1 is provided. Since the carbon dioxide branch line C2 is a drying gas line that does not need to be pressurized as much as the carrier gas, the pressure is appropriately adjusted by providing a pressure regulating valve (not shown).
  • the drying efficiency of coal in 1 can be improved. That is, the drying gas obtained by mixing carbon dioxide with a low moisture concentration and exhaust gas with a high moisture concentration reduces the mixing ratio of the exhaust gas with a high moisture concentration, and the moisture concentration of the drying gas as a whole decreases. If the temperature conditions are the same, the drying efficiency of coal (evaporation amount / moisture content in coal) can be improved. Incidentally, when the moisture content in the coal is 40%, the drying efficiency is improved by about 14% by reducing the moisture content of the drying gas from 11% by volume to 1% by volume.
  • the carbon dioxide recovery device 8 described above uses a multistage flash drum to absorb carbon dioxide, and uses a high pressure stage outlet gas of the flash drum as a drying gas.
  • the carbon dioxide recovery device 8 shown in FIG. 3 introduces coal gas (inlet gas) from the desulfurization device 7 into the carbon dioxide absorption tower 81, and the first-stage flash drum 82 and the second-stage flash drum 83. After the carbon dioxide is recovered through the fuel gas, the fuel gas (exit gas) is supplied to the gas turbine 9 from the outlet of the carbon dioxide absorption tower 81.
  • the outlet gas of the first-stage flash 82 located on the upstream side and on the high-pressure stage side is introduced as a carrier gas. The recovered carbon dioxide flows out from the second stage flash drum 83 on the low pressure stage side.
  • a high-pressure carrier gas can be introduced from the carbon dioxide recovery device 8, so that the pressure-feeding capacity of the compressor 13 for pressure-feeding to the hoppers 3 and 11 is reduced. be able to. That is, since the compressor 13 having a small pumping capacity can obtain a sufficient transport capacity as the transport gas, the amount of energy required for pressurizing the transport gas can be reduced. As a result, in the coal gasification combined power generation facility, the plant efficiency can be improved in accordance with the reduction in the amount of energy consumed by the compressor 13.
  • a part of the carbon dioxide separated and recovered by the carbon dioxide recovery device 8 is used as a transport gas for pulverized coal and char, and the transport gas Therefore, since the air separation device for producing nitrogen is unnecessary, the plant efficiency of the coal gasification combined power generation facility can be improved by the amount of consumption of auxiliary power necessary for the operation of the air separation device.
  • the moisture concentration of the drying gas is decreased by mixing a part of the carbon dioxide separated and recovered by the carbon dioxide recovery device 8 with the drying gas of coal.
  • the drying efficiency of coal can be improved.
  • Such improvement in drying efficiency is also effective in improving the plant efficiency of the coal gasification combined power generation facility.
  • the amount of energy consumed by the compressor 13 can be reduced by introducing a high-pressure carrier gas from the carbon dioxide recovery device 8, which also increases plant efficiency. Can be improved.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)

Abstract

二酸化炭素回収装置を備えた空気吹きの石炭ガス化複合発電設備において、微粉炭及びチャーを加圧搬送する搬送用ガスとして窒素ガスに代わる新たな搬送源を確保し、空気分離装置を不要にした石炭ガス化複合発電設備を提供する。空気を酸化剤としてガス化炉(4)で石炭ガスを生成する空気燃焼方式を採用し、二酸化炭素回収装置(8)で石炭ガス中から二酸化炭素を分離・回収してからガスタービン(9)へ供給する石炭ガス化複合発電設備において、二酸化炭素回収装置(8)で分離・回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用する。

Description

石炭ガス化複合発電設備
 本発明は、石炭を燃料として複合発電を行う石炭ガス化複合発電設備に関する。
 従来、燃料となる石炭をガス化してガスタービンを運転し、ガスタービンの駆動力及びガスタービンの排熱を利用して発電する石炭ガス化複合発電設備(IGCC;Integrated Coal Gasification Combined Cycle)が知られている。
 このような石炭ガス化複合発電設備においては、酸化剤として酸素を使用することにより、ガスタービンの燃焼排ガスを二酸化炭素(CO)及び水(HO)とする酸素燃焼方式が知られている。この場合、燃焼排ガスを排ガス凝縮器で冷却すれば、燃焼排ガスを二酸化炭素と水分とに分離することができるので、二酸化炭素の回収が容易である。(たとえば、特許文献1参照)
 一方、酸化剤として空気を使用する空気燃焼方式(「空気吹き」とも呼ばれている)の石炭ガス化複合発電設備においては、ガスタービンの燃焼排ガスには窒素ガスが含まれているので、二酸化炭素を回収する場合、ガスタービンの上流に二酸化炭素回収装置を設置する方が効率がよい。
 図4は、空気燃焼方式(空気吹き)の二酸化炭素回収石炭ガス化複合発電設備(以下、「空気吹きIGCCシステム」と呼ぶ)について、従来例を示す構成図である。
 この空気吹きIGCCシステムでは、最初に乾燥用ガスとともに原料となる石炭を微粉炭機1に導入し、石炭を乾燥粉砕することによって微粉炭が製造される。この微粉炭はサイクロン2に導かれ、排気と分離されてホッパ3に回収される。この後、ホッパ3内の微粉炭は、後述する空気分離装置12から供給される加圧搬送用の窒素ガスにより、ガス化炉4に搬送されてガス化される。こうしてガス化炉4でガス化された石炭ガスは、ガス冷却器5を通ってチャー回収装置6に供給される。なお、ガス化炉4で微粉炭をガス化する際には、後述するガスタービン9から供給される圧縮空気と、空気分離装置12から供給される酸素とが酸化剤として使用される。
 チャー回収装置6では、微粉炭をガス化した石炭ガスとともに生成されたチャーを分離する。一方の石炭ガスは、脱硫装置7を通って脱硫した後、二酸化炭素回収装置8に供給される。
 二酸化炭素回収装置8では、石炭ガス中の二酸化炭素が分離・回収される。
 一方、二酸化炭素が分離された石炭ガスはガスタービン9の燃料ガスとなり、燃焼器に供給されて燃焼することで高温高圧の燃焼排ガスが生成される。この燃焼排ガスは、ガスタービン9のタービンを駆動した後、排ガスとして排出される。なお、ガスタービン9の主軸は図示しない発電機と連結され、発電機を駆動することにより発電が行われる。
 ガスタービン9から排出された高温の排ガスは、一部が乾燥用ガスとして微粉炭機1に供給され、残りが排ガスボイラ10に供給されて蒸気生成に使用される。なお、排ガスボイラ10で蒸気生成に使用された排ガスは、必要な処理を施して大気に排気される。
 排ガスボイラ10で生成された蒸気は、図示しない発電用の蒸気タービン等に供給される。なお、ガスタービン9の排出ガスと排ガスボイラ10で蒸気生成後の排ガスを混合して使用する乾燥用ガスは、低酸素濃度の排ガスが11体積%程度の水分を含んだものとなる。
 上述したチャー回収装置6で回収されたチャーは、ホッパ11に回収された後、空気分離装置12から加圧搬送用のガスとして供給される窒素ガスによってガス化炉4へ戻される。ガス化炉4に戻されたチャーは、微粉炭とともにガス化の原料として使用される。なお、空気分離装置12は、大気から空気を導入して窒素及び酸素のガスに分離する装置である。
特開平4-1428号公報
 ところで、上述した従来の石炭ガス化複合発電設備(空気吹きIGCCシステム)においては、二酸化炭素回収に伴う補助蒸気量及び補機動力の増加により、二酸化炭素の回収を行わない方式と比較してプラント効率が数%低下するという問題がある。
 一方、微粉炭やチャーをホッパ3,11で加圧搬送するための搬送用ガスとして、空気分離装置12で製造した窒素ガスが用いられている。これは、微粉炭やチャーを加圧する場合、粉塵爆発等を防止し安全を確保するために、酸素濃度の低いイナートガスを使用するためである。このため、加圧搬送用の窒素ガスを得るためには、空気分離装置12で補機動力を消費して製造する必要があり、このような空気分離装置12もプラント効率を低下させる要因となっている。
 このように、上述した従来の空気吹きIGCCシステムにおいては、空気分離装置を運転するために補機動力がプラント効率を低下させているので、微粉炭及びチャーの加圧搬送用として空気分離装置から供給される搬送用ガスの窒素ガスに代わる搬送ガス源を確保し、空気分離装置を不要とすることが望まれる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、二酸化炭素回収装置を備えた空気吹きの石炭ガス化複合発電設備において、微粉炭及びチャーを加圧搬送する搬送用ガスとして窒素ガスに代わる新たな搬送ガス源を確保し、空気分離装置を不要にした石炭ガス化複合発電装置を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係る石炭ガス化複合発電設備は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、二酸化炭素回収装置で前記石炭ガス中から二酸化炭素を分離・回収した燃料ガスをガスタービンへ供給する石炭ガス化複合発電設備において、前記二酸化炭素回収装置で分離・回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用することを特徴とする。
 このような石炭ガス化複合発電設備によれば、二酸化炭素回収装置で分離・回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用するので、搬送用ガスとしての窒素を製造するための空気分離装置が不要となる。
 上記本発明の一態様に係る石炭ガス化複合発電設備において、前記二酸化炭素回収装置で分離・回収した二酸化炭素の一部を石炭の乾燥用ガスに混合して使用することが好ましく、これにより、乾燥用ガスの水分濃度を低下させて石炭の乾燥効率を向上させることができる。
 上記本発明の一態様に係る石炭ガス化複合発電設備において、前記二酸化炭素回収装置が多段式のフラッシュドラムを用いて二酸化炭素を吸収する方式とされ、前記搬送用ガスとして前記フラッシュドラムの高圧段出口ガスを使用することが好ましく、これにより、高圧の搬送用ガスを導入することができるので、圧縮機等による搬送用ガスの加圧に要するエネルギ量を低減することができる。
 本発明によれば、二酸化炭素回収装置で分離・回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用し、搬送用ガスとして窒素を製造するための空気分離装置を不要にしたので、空気分離装置の運転に必要な補機動力の消費がなくなった分だけ石炭ガス化複合発電設備のプラント効率を向上させることができる。
本発明に係る石炭ガス化複合発電設備の一実施形態を示す構成図である。 図1に示す石炭ガス化複合発電設備の第1変形例を示す構成図である。 図1に示す石炭ガス化複合発電設備の第2変形例として、二酸化炭素回収装置の具体的な構成例を示す構成図である。 石炭ガス化複合発電設備の従来例を示す構成図である。
 以下、本発明に係る石炭ガス化複合発電設備の一実施形態を図面に基づいて説明する。
 図1に示す実施形態の石炭ガス化複合発電設備は、空気を酸化剤としてガス化炉4で石炭ガスを生成する空気燃焼方式を採用し、かつ、二酸化炭素回収装置8で石炭ガス中から二酸化炭素を分離・回収してガスタービン9へ供給する。すなわち、図1に示す石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の二酸化炭素回収石炭ガス化複合発電設備(以下、「空気吹きIGCCシステム」と呼ぶ)である。
 この空気吹きIGCCシステムは、後述するガスタービン9や排ガスボイラ10で仕事をした排ガスの一部を乾燥用ガスとして導入し、この乾燥用ガスとともに原料となる石炭を微粉炭機1に供給する。微粉炭機1では、乾燥用ガスにより供給された石炭を加熱し、石炭中の水分を除去しながら細かい粒子状に粉砕して微粉炭を製造する。
 こうして製造された微粉炭は、乾燥用ガスによりサイクロン2へ搬送される。サイクロン2の内部では、乾燥用ガス等のガス成分と微粉炭(粒子成分)とが分離され、ガス成分はホッパ3から排気される。一方、粒子成分の微粉炭は、重力により落下してホッパ3に回収される。
 ホッパ3内に回収された微粉炭は、後述する二酸化炭素回収装置8から加圧搬送用のガス(搬送用ガス)として導入した二酸化炭素により、ガス化炉4内へ搬送される。
 ガス化炉4には、石炭ガスの原料として微粉炭及び後述するチャーが供給され、ガスタービン9から供給される圧縮空気を酸化剤としてガス化した石炭ガスが製造される。
 こうしてガス化炉4でガス化された石炭ガスは、ガス化炉4の上部からガス冷却器5へ導かれて冷却される。この石炭ガスは、ガス冷却器5で冷却された後にチャー回収装置6へ供給される。
 チャー回収装置6では、微粉炭をガス化した石炭ガスとともに生成されたチャーが分離される。一方の石炭ガスは、チャー回収装置6の上部から流出し、脱硫装置7を通って脱硫された後に二酸化炭素回収装置8へ供給される。
 二酸化炭素回収装置8では、石炭ガス中の二酸化炭素が分離・回収される。ここで分離・回収された二酸化炭素は、微粉炭及びチャーの搬送用ガスとして一部が二酸化炭素供給ラインC1を通って圧縮機13によりホッパ3,11へ圧送され、残りは適切に回収処理される。
 こうして二酸化炭素が分離された石炭ガスは、ガスタービン9の燃料ガスとして使用される。この燃料ガスをガスタービン9の燃焼器に供給して燃焼させることにより、高温高圧の燃焼排ガスが生成される。
 この燃焼排ガスは、ガスタービン9のタービンを駆動した後、高温の排ガスとして排出される。こうして駆動されたガスタービン9は、タービンとともに回転する主軸が図示しないガスタービン発電機と連結されているので、ガスタービン発電機を駆動して発電を行うことができる。
 ガスタービン9から排出された高温の排ガスは、一部が高温の乾燥用ガスとして排ガス供給ラインG1を通って微粉炭機1に供給され、残りが排ガスボイラ10に供給されて蒸気を生成する熱源として使用される。なお、排ガスボイラ10で蒸気生成に使用された排ガスは、必要な処理を施した後に大気へ排気されるが、一部はガスタービン9から導入した排出ガスと混合されて乾燥用ガスとなり、排ガス供給ラインG1を通って微粉炭機1に供給される。
 排ガスボイラ10で生成された蒸気は、図示しない発電用の蒸気タービン等に供給される。なお、ガスタービン9の排出ガスに排ガスボイラ10で蒸気を生成した後の排ガスを混合した乾燥用ガスは、低酸素濃度の排ガスに11体積%程度の水分を含んでいる。
 上述したチャー回収装置6で回収されたチャーは、重力によりホッパ11に落下して回収される。ホッパ11内のチャーは、二酸化炭素回収装置8から供給される二酸化炭素を使用し、この二酸化炭素を搬送用ガスとしてガス化炉4へ戻される。ガス化炉4に戻されたチャーは、微粉炭とともにガス化の原料として使用される。
 このように、石炭を粉砕して得られる微粉炭は、空気を酸化剤とするガス化炉4でガス化することにより石炭ガス及びチャーが生成され、一方の石炭ガスはガスタービン9の燃料ガスとして使用される。そして、石炭ガスから分離したチャーは、再度ガス化炉4に供給されてガス化される。
 このとき、二酸化炭素回収装置8で分離・回収した二酸化炭素の一部が圧縮機13に導入して昇圧され、この二酸化炭素が微粉炭用のホッパ3及びチャー用のホッパ11に供給されて微粉炭及びチャーの搬送用ガスとして使用される。
 このように、二酸化炭素回収装置8で回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用すると、ガス化炉4内に流入する二酸化炭素のモル比熱が窒素と比較して大きいため、ガス化炉4の反応温度は低下する傾向となる。
 このため、ガス化炉4内における反応温度の低下を防ぐため、ガス化炉4の空気比を上げて運転することになる。しかし、ガス化炉4の空気比を上げて石炭ガスを製造すると、製造される石炭ガスの発熱量(体積当たり)は低下することとなる。
 このようにして、製造された石炭ガスの発熱量が低下すると、ガスタービン9の安定した運転は困難になる。しかし、発熱量の低下した石炭ガスは、二酸化炭素回収装置8で二酸化炭素が除去された後に燃料ガスとなるため、二酸化炭素の除去により燃料ガスの発熱量は増加する。
 このような状況において、二酸化炭素除去による燃料ガスの発熱量増加は、空気比を上げることによる石炭ガスの発熱量低下を補うことができるので、搬送用ガスとして二酸化炭素を使用してもガスタービン9の安定した運転が可能になる。すなわち、空気比を上げて製造された石炭ガスの発熱量低下分と、二酸化炭素除去による発熱量増加分とは、実質的に略同じか大差のない値になり、従って、最終的にガスタービン9の運転に使用される燃料ガスの発熱量に大きな変化はない。
 この結果、微粉炭及びチャーの搬送用ガスとして二酸化炭素を使用しても、最終的なガスタービン9の運転に支障がないので、搬送用ガスとして窒素を製造するための空気分離装置が不要となる。従って、本発明の石炭ガス化複合発電設備においては、空気分離装置がなくなったことにより、空気分離装置の運転に必要となる補機類を駆動する動力の消費がないので、プラント効率を約1%向上させることができる。
 次に、本発明に係る石炭ガス化複合発電設備について、その第1変形例を図2に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この変形例では、二酸化炭素回収装置8で分離・回収した二酸化炭素の一部が、乾燥用ガスに混合して使用されている。すなわち、二酸化炭素回収装置8で分離・回収した二酸化炭素の一部は、圧縮機13で昇圧した後に微粉炭用のホッパ3及びチャー用のホッパ11に供給されて微粉炭及びチャーの搬送用ガスとして使用されるだけでなく、排ガスと混合して微粉炭機1に供給する乾燥用ガスとしても使用される。このため、圧縮機13の下流側で二酸化炭素供給ラインC1から分岐し、排ガス供給ラインG1に合流する二酸化炭素分流ラインC2が設けられている。なお、二酸化炭素分流ラインC2は、搬送ガスほど昇圧する必要がない乾燥用ガスのラインであるから、図示しない圧力調整弁を設けるなどして適宜調圧されている。
 このようにして、二酸化炭素回収装置8で回収した二酸化炭素の一部を乾燥用ガスに混合すると、比較的水分濃度の高い排ガスが中心となる乾燥用ガスの水分濃度を低下させ、微粉炭機1における石炭の乾燥効率を向上させることができる。すなわち、水分濃度の低い二酸化炭素と水分濃度の高い排ガスとを混合して得られる乾燥用ガスは、水分濃度の高い排ガスの混合割合が減少し、乾燥用ガス全体としての水分濃度が低下するので、温度条件が同じであれば石炭の乾燥効率(蒸発量/石炭中水分)を向上させることができる。
 ちなみに、石炭中水分が40%の場合について試算すると、乾燥用ガスの水分が11体積%から1体積%まで低下することで乾燥効率は14%程度向上する。
 次に、本発明に係る石炭ガス化複合発電設備について、その第2変形例を図3に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
 この変形例では、上述した二酸化炭素回収装置8が多段式のフラッシュドラムを用いて二酸化炭素を吸収する方式とされ、乾燥用ガスとしてフラッシュドラムの高圧段出口ガスを使用している。
 具体的に説明すると、図3に示す二酸化炭素回収装置8は、脱硫装置7から二酸化炭素吸収塔81に石炭ガス(入口ガス)を導入し、第1段フラッシュドラム82及び第2段フラッシュドラム83を介して二酸化炭素を回収した後、燃料ガス(出口ガス)を二酸化炭素吸収塔81の出口からガスタービン9へ供給する2段式である。
 このような2段式のフラッシュドラムを備えた二酸化炭素回収装置8においては、上流側に位置して高圧段側となる第1段フラッシュ82の出口ガスを搬送用ガスとして導入している。なお、回収した二酸化炭素は、低圧段側の第2段フラッシュドラム83から外部へ流出する。
 このような構成を採用することにより、二酸化炭素回収装置8から高圧の搬送用ガスを導入することができるので、ホッパ3,11へ圧送するための圧縮機13については、その圧送能力を低減することができる。すなわち、圧送能力の小さい圧縮機13でも搬送用ガスとして十分な搬送能力を得ることができるので、搬送用ガスの加圧に要するエネルギ量の低減が可能となる。この結果、石炭ガス化複合発電設備においては、圧縮機13で消費するエネルギ量の低減に応じたプラント効率の向上が可能となる。
 このように、上述した本発明の石炭ガス化複合発電設備によれば、二酸化炭素回収装置8で分離・回収した二酸化炭素の一部を微粉炭及びチャーの搬送用ガスとして使用し、搬送用ガスとして窒素を製造するための空気分離装置を不要にしたので、空気分離装置の運転に必要な補機動力の消費がなくなった分だけ石炭ガス化複合発電設備のプラント効率を向上させることができる。
 また、本発明の石炭ガス化複合発電設備においては、二酸化炭素回収装置8で分離・回収した二酸化炭素の一部を石炭の乾燥用ガスに混合することにより、乾燥用ガスの水分濃度を低下させて石炭の乾燥効率を向上させることができる。このような乾燥効率の向上は、石炭ガス化複合発電設備のプラント効率向上にも有効である。
 さらに、本発明の石炭ガス化複合発電設備においては、二酸化炭素回収装置8から高圧の搬送用ガスを導入して圧縮機13の消費エネルギ量を低減することができるので、これによってもプラント効率を向上させることができる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 1 微粉炭機
 2 サイクロン
 3,11 ホッパ
 4 ガス化炉
 5 ガス冷却器
 6 チャー回収装置
 7 脱硫装置
 8 二酸化炭素回収装置
 9 ガスタービン
 10 排ガスボイラ
 13 圧縮機

Claims (3)

  1.  空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、二酸化炭素回収装置で前記石炭ガス中から二酸化炭素を分離・回収した燃料ガスをガスタービンへ供給する石炭ガス化複合発電設備において、
     前記二酸化炭素回収装置で分離・回収した二酸化炭素の一部が微粉炭及びチャーの搬送用ガスとして使用されることを特徴とする石炭ガス化複合発電設備。
  2.  前記二酸化炭素回収装置で分離・回収した二酸化炭素の一部が石炭の乾燥用ガスに混合して使用されることを特徴とする請求項1に記載の石炭ガス化複合発電装置。
  3.  前記二酸化炭素回収装置が多段式のフラッシュドラムを用いて二酸化炭素を吸収する方式とされ、前記搬送用ガスとして前記フラッシュドラムの高圧段出口ガスが使用されることを特徴とする請求項1または2に記載の石炭ガス化複合発電設備。
PCT/JP2009/065101 2008-09-08 2009-08-28 石炭ガス化複合発電設備 WO2010026932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09811458.0A EP2322781A4 (en) 2008-09-08 2009-08-28 INTEGRATED CHARCOAL GASIFICATION COMBINED CYCLE ENERGY PRODUCTION APPARATUS
US13/058,853 US20110139047A1 (en) 2008-09-08 2009-08-28 Integrated coal gasification combined cycle power generation system
ZA2011/01252A ZA201101252B (en) 2008-09-08 2011-02-16 Integrated coal gasification combined cycle power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-229519 2008-09-08
JP2008229519A JP4981771B2 (ja) 2008-09-08 2008-09-08 石炭ガス化複合発電設備

Publications (1)

Publication Number Publication Date
WO2010026932A1 true WO2010026932A1 (ja) 2010-03-11

Family

ID=41797100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065101 WO2010026932A1 (ja) 2008-09-08 2009-08-28 石炭ガス化複合発電設備

Country Status (6)

Country Link
US (1) US20110139047A1 (ja)
EP (1) EP2322781A4 (ja)
JP (1) JP4981771B2 (ja)
RU (1) RU2011106157A (ja)
WO (1) WO2010026932A1 (ja)
ZA (1) ZA201101252B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129192A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化システムおよび石炭ガス化方法
WO2012157640A1 (ja) * 2011-05-19 2012-11-22 新日鉄エンジニアリング株式会社 石炭ガス化システム
JP2013170463A (ja) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd 湿潤燃料を用いて複合発電を行うプラント及びその燃料乾燥方法
WO2011146239A3 (en) * 2010-05-17 2013-10-31 General Electric Company System and method for conveying a solid fuel in a carrier gas
EP2707663A1 (en) * 2011-05-09 2014-03-19 Hrl Treasury (idgcc) Pty Ltd Improvements in integrated drying gasification
JP2017206661A (ja) * 2016-05-20 2017-11-24 三菱日立パワーシステムズ株式会社 炭素含有固体燃料ガス化発電設備及びその炭素含有固体燃料の乾燥用ガスの調整方法
CN115506888A (zh) * 2022-10-27 2022-12-23 国网山东省电力公司电力科学研究院 火电机组耦合燃气轮机响应电网调节需求的方法与系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
JP5448961B2 (ja) * 2010-03-24 2014-03-19 三菱重工業株式会社 石炭ガス化複合発電プラント
JP5578907B2 (ja) * 2010-03-29 2014-08-27 三菱重工業株式会社 石炭ガス化複合発電プラント
JP5653794B2 (ja) * 2011-02-28 2015-01-14 三菱重工業株式会社 石炭ガス化複合発電設備および石炭ガス化複合発電方法
WO2012147618A1 (ja) 2011-04-28 2012-11-01 日立造船株式会社 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
JP5699038B2 (ja) * 2011-05-19 2015-04-08 新日鉄住金エンジニアリング株式会社 石炭ガス化システム
JP5911137B2 (ja) * 2012-04-25 2016-04-27 電源開発株式会社 ガス化システム
EP2679659B1 (en) * 2012-06-29 2016-08-24 Global Gateways Lux HoldCo S.A. Method and plant for production of a fuel gas from waste
KR101368399B1 (ko) 2012-07-17 2014-03-04 두산중공업 주식회사 미분탄 연소 보일러
US9611756B2 (en) * 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
KR101419470B1 (ko) 2012-12-27 2014-07-29 재단법인 포항산업과학연구원 석탄 가스화 장치 및 석탄 가스화 방법
CN103214334A (zh) * 2013-03-12 2013-07-24 中国石油天然气股份有限公司 一种煤和天然气制取烯烃和氨的热电联产方法及装置
CN103232857B (zh) * 2013-04-24 2015-10-28 华东理工大学 一种co2零排放的煤基电力与化工品联产工艺
CN103969072B (zh) * 2014-05-13 2017-02-22 国家电网公司 一种四角切圆燃烧锅炉细粉分离器效率试验方法
JP6682280B2 (ja) * 2016-01-27 2020-04-15 三菱日立パワーシステムズ株式会社 スラグ排出システムおよびガス化炉
CN107201251B (zh) * 2017-06-23 2023-08-22 西安热工研究院有限公司 一种基于煤气化的太阳能储能和利用系统及方法
JP7043285B2 (ja) * 2018-02-19 2022-03-29 三菱重工業株式会社 ガス化炉設備、ガス化複合発電設備及びガス化炉設備の運転方法
US11519601B2 (en) 2020-03-10 2022-12-06 General Electric Company System and method for inerting a biomass feed assembly
JP7434031B2 (ja) * 2020-03-31 2024-02-20 三菱重工業株式会社 ガス化複合発電設備及びその運転方法
CN112576375B (zh) * 2020-12-29 2023-09-22 上海电气燃气轮机有限公司 一种低热值联合循环机组煤压机间冷热量利用系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428A (ja) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd ガス化ガス燃焼ガスタービン発電プラント
JPH041428B2 (ja) 1985-12-16 1992-01-13 Matsushita Electric Ind Co Ltd
JPH04116232A (ja) * 1990-09-07 1992-04-16 Babcock Hitachi Kk 石炭ガス化複合発電方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818869A (en) * 1973-01-02 1974-06-25 Combustion Eng Method of operating a combined gasification-steam generating plant
US3866411A (en) * 1973-12-27 1975-02-18 Texaco Inc Gas turbine process utilizing purified fuel and recirculated flue gases
US4252548A (en) * 1979-01-02 1981-02-24 Kryos Energy Inc. Carbon dioxide removal from methane-containing gases
JPS61175241A (ja) * 1985-01-30 1986-08-06 Mitsubishi Heavy Ind Ltd 石炭ガス化複合発電装置
US5937652A (en) * 1992-11-16 1999-08-17 Abdelmalek; Fawzy T. Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
CA2603529A1 (en) * 2005-04-05 2006-10-12 Sargas As Low co2 thermal powerplant
US20070225382A1 (en) * 2005-10-14 2007-09-27 Van Den Berg Robert E Method for producing synthesis gas or a hydrocarbon product
US7777088B2 (en) * 2007-01-10 2010-08-17 Pilot Energy Solutions, Llc Carbon dioxide fractionalization process
JP2008291081A (ja) * 2007-05-23 2008-12-04 Central Res Inst Of Electric Power Ind ガス化設備
US8951314B2 (en) * 2007-10-26 2015-02-10 General Electric Company Fuel feed system for a gasifier
WO2010020655A1 (en) * 2008-08-21 2010-02-25 Shell Internationale Research Maatschappij B.V. Improved process for production of elemental iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428B2 (ja) 1985-12-16 1992-01-13 Matsushita Electric Ind Co Ltd
JPH041428A (ja) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd ガス化ガス燃焼ガスタービン発電プラント
JPH04116232A (ja) * 1990-09-07 1992-04-16 Babcock Hitachi Kk 石炭ガス化複合発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322781A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129192A1 (ja) * 2010-04-16 2011-10-20 新日鉄エンジニアリング株式会社 石炭ガス化システムおよび石炭ガス化方法
JP5450799B2 (ja) * 2010-04-16 2014-03-26 新日鉄住金エンジニアリング株式会社 石炭ガス化システムおよび石炭ガス化方法
WO2011146239A3 (en) * 2010-05-17 2013-10-31 General Electric Company System and method for conveying a solid fuel in a carrier gas
EP2707663A1 (en) * 2011-05-09 2014-03-19 Hrl Treasury (idgcc) Pty Ltd Improvements in integrated drying gasification
EP2707663A4 (en) * 2011-05-09 2015-04-08 Hrl Treasury Idgcc Pty Ltd IMPROVEMENTS ON A GASIFICATION WITH INTEGRATED DRYING
WO2012157640A1 (ja) * 2011-05-19 2012-11-22 新日鉄エンジニアリング株式会社 石炭ガス化システム
AU2012256839B2 (en) * 2011-05-19 2016-08-18 Nippon Steel & Sumikin Engineering Co., Ltd. Coal gasification system
JP2013170463A (ja) * 2012-02-17 2013-09-02 Mitsubishi Heavy Ind Ltd 湿潤燃料を用いて複合発電を行うプラント及びその燃料乾燥方法
JP2017206661A (ja) * 2016-05-20 2017-11-24 三菱日立パワーシステムズ株式会社 炭素含有固体燃料ガス化発電設備及びその炭素含有固体燃料の乾燥用ガスの調整方法
CN115506888A (zh) * 2022-10-27 2022-12-23 国网山东省电力公司电力科学研究院 火电机组耦合燃气轮机响应电网调节需求的方法与系统

Also Published As

Publication number Publication date
US20110139047A1 (en) 2011-06-16
ZA201101252B (en) 2011-10-26
EP2322781A1 (en) 2011-05-18
JP4981771B2 (ja) 2012-07-25
EP2322781A4 (en) 2014-07-02
JP2010059940A (ja) 2010-03-18
RU2011106157A (ru) 2012-10-20

Similar Documents

Publication Publication Date Title
JP4981771B2 (ja) 石炭ガス化複合発電設備
US7805923B2 (en) Integrated coal gasification combined cycle plant
US9261020B2 (en) Integrated coal gasification combined cycle plant
US7810310B2 (en) Integrated coal gasification combined cycle plant
JP5653794B2 (ja) 石炭ガス化複合発電設備および石炭ガス化複合発電方法
US20130298465A1 (en) Pulverized-coal supply system for coal gasification furnace
JP5840024B2 (ja) 湿潤燃料を用いて複合発電を行うプラント及びその燃料乾燥方法
US9719038B2 (en) Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
JP3977890B2 (ja) ガス化発電システム
US9890331B2 (en) Gasification facility
US8512446B2 (en) High pressure conveyance gas selection and method of producing the gas
JP6033380B2 (ja) 石炭ガス化複合発電設備
JP2014101838A (ja) 石炭ガス化複合発電設備
JP2006010226A (ja) 石炭ガス化複合発電設備
JP5606045B2 (ja) ガス化設備
JP2001348578A (ja) 炭素系化石燃料とバイオマスのガス化装置およびガス化方法
JPH066710B2 (ja) 石炭のガス化法
JP2000328074A (ja) 石炭ガス化システム
JP5675297B2 (ja) ガス化設備および石炭ガス化複合発電設備
TWI412596B (zh) 整合功率生產的鼓風爐鐵生產方法
JP2013173900A (ja) ガス化ガスのガス精製装置
JP6556639B2 (ja) ガス化システム及びガス化システムの運転方法
US8535418B2 (en) Gaseous byproduct removal from synthesis gas
JPH11106760A (ja) ウェットフィード方式ガス化炉
JP2014136763A (ja) ガス化複合発電システム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13058853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009811458

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011106157

Country of ref document: RU