JP2014136763A - ガス化複合発電システム及びその運転方法 - Google Patents

ガス化複合発電システム及びその運転方法 Download PDF

Info

Publication number
JP2014136763A
JP2014136763A JP2013006515A JP2013006515A JP2014136763A JP 2014136763 A JP2014136763 A JP 2014136763A JP 2013006515 A JP2013006515 A JP 2013006515A JP 2013006515 A JP2013006515 A JP 2013006515A JP 2014136763 A JP2014136763 A JP 2014136763A
Authority
JP
Japan
Prior art keywords
gas
gasification
unit
combustible gas
unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013006515A
Other languages
English (en)
Inventor
Osamu Shinada
治 品田
Naoshige Yoshida
斎臣 吉田
Yasunari Shibata
泰成 柴田
Hiroaki Tada
宏明 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013006515A priority Critical patent/JP2014136763A/ja
Publication of JP2014136763A publication Critical patent/JP2014136763A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Industrial Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】設備容量を小さくし、設備の信頼性を向上させることが可能なガス化複合発電システム及びその運転方法を提供することを目的とする。
【解決手段】石炭ガス化複合発電システム1は、燃料をガス化処理して、可燃性ガスを生成する石炭ガス化設備4と、燃料を石炭ガス化設備4へ供給する石炭供給設備3とを備え、石炭ガス化設備4に設けられ、シール用ガスとして天然ガスを石炭ガス化設備4に導入する第1導入部を有する。石炭ガス化設備4から排出されたチャーを回収するチャー回収供給設備6と、チャー回収供給設備6で回収されたチャーを石炭ガス化設備4へ供給するチャー搬送路12とを備え、チャー搬送路12に設けられ、チャーを搬送する搬送ガスとして天然ガスをチャー搬送路12に導入する第2導入部を有してもよい。
【選択図】図1

Description

本発明は、固体炭素質燃料を用いるガス化複合発電システム及びその運転方法に関するものである。
ガス化複合発電システムは、例えば、石炭、バイオマス等の固体炭素質燃料をガス化して生成された可燃性ガスを燃焼して得られるガスタービンの駆動力と、ガスタービンの排熱を回収して得られる蒸気タービンの駆動力によって発電を行う。代表的なものとしては、石炭を用いる石炭ガス化複合発電システム(IGCC:Integrated coal Gasification Combined Cycle)が挙げられる。
ガス化複合発電システムでは、燃料供給設備で生成された微粉体や未燃粒子回収供給設備で回収された未燃粒子を搬送するため、窒素ガスやCOなどの不活性ガスが使用される。また、ガス化複合発電システムでは、ガス化炉が、石炭等の固体炭素質燃料をガス化して可燃性ガスを生成する。そして、ガス化炉には、各種シール部やパージのために、不活性ガスが使用されている。また、生成された可燃性ガスを冷却するガス冷却設備の清浄化媒体として不活性ガスや蒸気が使用され、未燃粒子回収供給設備の高温フィルターの逆洗媒体として不活性ガスが使用されている。
これに対して、ガス化炉で生成された可燃性ガスを、不活性ガスの代わりに微粉体や未燃粒子をガス化炉に供給する搬送ガスとして用いる技術がある。特許文献1では、微粉炭等の粉体燃料の搬送媒体として使用され、燃料供給ホッパから排気された可燃性ガスを安全に大気に放出するガス化設備が開示されている。
国際公開第2012/073300号
ガス化複合発電システムにおいて不活性ガスとして窒素ガスを使用する場合、窒素を製造するために空気分離装置を設置する必要があり、設備費が増加したり、空気分離時の動力の増加によって送電端効率が低下したりする。また、ガス化炉で生成される可燃性ガスが不活性ガスによって希釈されるため、生成された可燃性ガスのカロリーが低下してしまう。さらに、可燃性ガスに不活性ガスが混入しているため、ガスタービンにて所定の発電量を得るためにはガス流量を増加させる必要がある。
本発明は、このような事情に鑑みてなされたものであって、設備容量を小さくし、設備の信頼性を向上させることが可能な固体炭素質燃料を用いるガス化複合発電システム及びその運転方法を提供することを目的とする。
上記課題を解決するために、本発明のガス化複合発電システム及びその運転方法は以下の手段を採用する。
すなわち、本発明に係るガス化複合発電システムは、固体炭素質燃料をガス化処理して、可燃性ガスを生成するガス化部と、前記固体炭素質燃料をガス化部へ供給する燃料供給部とを備え、前記ガス化部に設けられ、シール用ガスとして炭化水素系可燃性ガスを前記ガス化部に導入する第1導入部を有する。
この構成によれば、炭化水素系可燃性ガスがシール用ガスとしてガス化部に導入されることから、シール用ガスに窒素ガス等の不活性ガスが用いられる場合に比べて、不活性ガスを生成する設備の容量や生成時の電力消費を低減できる。また、可燃性ガスのカロリー低下防止やガスタービン駆動時の燃焼カロリーの増加を図ることができ、ガス流量が低減する。その結果、ガス化部、ガス精製設備及びガス管のサイズを減らせる。さらに、炭化水素系可燃性ガスを使用した分、ガス化処理に必要な燃料の流量が低減でき、燃料供給部の設備容量を低減できる。ここでいう炭化水素系可燃性ガスとは、天然ガスや、メタンガス、エタンガス、プロパンガス等を主成分として可燃性の特性を保有するガスを総称する。なお、炭化水素系可燃性ガスには、ガス成分を調整したものも含む。
本発明に係るガス化複合発電システムは、固体炭素質燃料をガス化処理して、可燃性ガスを生成するガス化部と、前記固体炭素質燃料をガス化部へ供給する燃料供給部と、前記ガス化部から排出された未燃粒子を回収する未燃粒子回収部と、前記未燃粒子回収部で回収された前記未燃粒子を前記ガス化部へ供給する未燃粒子搬送路とを備え、前記未燃粒子搬送路に設けられ、前記未燃粒子を搬送する搬送ガスとして炭化水素系可燃性ガスを前記未燃粒子搬送路に導入する第2導入部を有する。
この構成によれば、炭化水素系可燃性ガスが未燃粒子の搬送ガスとして未燃粒子搬送路に導入されることから、未燃粒子の搬送ガスに窒素ガス等の不活性ガスが用いられる場合に比べて、不活性ガスを生成する設備の容量や生成時の電力消費を低減できる。また、可燃性ガスのカロリー低下防止やガスタービン駆動時の燃焼カロリーの増加を図ることができ、ガス流量が低減する。その結果、ガス化部、ガス精製設備及びガス管のサイズを減らせる。さらに、炭化水素系可燃性ガスを使用した分、ガス化処理に必要な燃料の流量が低減でき、燃料供給部や未燃粒子回収部の設備容量を低減できる。
上記発明において、ガス化部で生成された可燃性ガスを冷却するガス冷却設備と、高圧ガスを噴射し、前記ガス冷却設備における冷却面を清浄化する除煤装置とを更に備え、前記冷却面を清浄化する高圧ガスとして炭化水素系可燃性ガスを前記除煤装置に導入する第3導入部を有してもよい。
この構成によれば、炭化水素系可燃性ガスがガス冷却設備に導入されることから、冷却面の清浄化ガスに窒素ガス等の不活性ガスが用いられる場合に比べて、不活性ガスを生成する設備の容量や生成時の電力消費を低減できる。また、可燃性ガスのカロリー低下防止やガスタービン駆動時の燃焼カロリーの増加を図ることができ、ガス流量が低減する。その結果、ガス化部、ガス精製設備及びガス管のサイズを減らせる。さらに、炭化水素系可燃性ガスを使用した分、ガス化処理に必要な燃料の流量が低減でき、燃料供給部や未燃粒子回収部の設備容量を低減できる。
上記発明において、前記ガス化部から排出された未燃粒子を回収する未燃粒子回収部に設置される高温フィルターに付着する未燃粒子を、高圧ガスによって除去する逆洗装置を更に備え、前記未燃粒子を除去する高圧ガスとして炭化水素系可燃性ガスを前記逆洗装置に導入する第4導入部を有してもよい。
この構成によれば、炭化水素系可燃性ガスが高温フィルターの逆洗ガスとして導入されることから、逆洗ガスに窒素ガス等の不活性ガスが用いられる場合に比べて、不活性ガスを生成する設備の容量や生成時の電力消費を低減できる。また、可燃性ガスのカロリー低下防止やガスタービン駆動時の燃焼カロリーの増加を図ることができ、ガス流量が低減する。その結果、ガス化部、ガス精製設備及びガス管のサイズを減らせる。さらに、天然ガスを使用した分、ガス化処理に必要な燃料の流量が低減でき、燃料供給部や未燃粒子回収部の設備容量を低減できる。
上記発明において、前記ガス化部は、前記固体炭素質燃料の微粉体を高温で燃焼させ、ガス化反応に必要な高温熱源を発生させるコンバスタと、前記コンバスタから上昇する高温ガスに前記固体炭素質燃料の微粉体を吹き込んでガス化するリダクタとを有し、前記炭化水素系可燃性ガスを前記コンバスタに導入してもよい。
この構成によれば、コンバスタに未燃粒子が供給される場合、未燃粒子は炭化水素系可燃性ガスとともにガス化部に供給されるため、コンバスタの温度が上昇する。その結果、ガス化部へ酸素を供給するための圧縮機を省略できる場合もある。
また、本発明に係るガス化複合発電システムの運転方法は、ガス化部で固体炭素質燃料をガス化処理して可燃ガスを生成する工程と、前記ガス化部へ前記固体炭素質燃料を供給する工程と、シール用ガスとして炭化水素系可燃性ガスを前記ガス化部に導入する工程と
を含む。
また、本発明に係るガス化複合発電システムの運転方法は、ガス化部で固体炭素質燃料をガス化処理して可燃ガスを生成する工程と、前記ガス化部へ前記固体炭素質燃料を供給する工程と、前記ガス化部から排出された未燃粒子を回収する工程と、回収された前記未燃粒子を前記ガス化部へ供給する工程と、前記未燃粒子を供給する搬送ガスとして炭化水素系可燃性ガスを導入する工程とを含む。
本発明によれば、設備容量を小さくし、設備の信頼性を向上させることができる。
本発明の一実施形態に係る石炭ガス化複合発電システムを示す概略構成図である。 従来の石炭ガス化複合発電システムを示す概略構成図である。
以下に、本発明に係る実施形態について、図面を参照して説明する。
以下、本発明の一実施形態に係る石炭ガス化複合発電システム1を図1に基づいて説明する。
図1に示す本実施形態の石炭ガス化複合発電システム1は、固体炭素質燃料として石炭を用い、空気及び空気分離装置2からの余剰酸素を酸化剤として石炭ガス化設備4で可燃性ガスを生成する空気吹きガス化方式を採用し、生成された可燃性ガスを複合発電設備8のガスタービンへ供給する。すなわち、図1に示す石炭ガス化複合発電システム1は、空気吹きガス化方式の石炭ガス化複合発電システム(以下「空気吹きIGCC」という。)である。以下では、固体炭素質燃料として石炭を用いる場合について説明する。なお、固体炭素質燃料は、石炭以外に、バイオマスなどでもよい。
この空気吹きIGCCは、乾燥用ガスとともに原料となる石炭を石炭供給設備3の微粉炭機に供給する。微粉炭機では、乾燥用ガスにより供給された石炭を加熱し、石炭中の水分を除去しながら細かい粒子状に粉砕して微粉炭を製造する。
こうして製造された微粉炭は、乾燥用ガスによって石炭供給設備3のサイクロンへ搬送される。サイクロンの内部では、乾燥用ガス等のガス成分と微粉炭(粒子成分)とが分離され、ガス成分は排気される。一方、粒子成分の微粉炭は、重力により落下してホッパに回収される。
ホッパ内に回収された微粉炭は、空気分離装置2から供給される加圧搬送用の窒素ガスにより、石炭ガス化設備4内へ搬送される。空気分離装置2は、大気から空気を導入して窒素及び酸素のガスに分離する装置であり、例えば、ASU(Air Separation Unit:深冷空気分離装置)である。また、空気分離装置2は、PSA(圧力変動吸着)方式でもよい。
空気分離装置2の内部は、空気圧縮機によって昇圧される。空気分離装置2で生成された窒素は、圧縮機によって昇圧されて、石炭供給設備3へ供給され、微粉炭の搬送ガスとして使用される。空気分離装置2から石炭供給設備3まで至る窒素は、窒素供給路を介して供給される。本実施形態では、空気分離装置2で生成された窒素は、図2に示すような従来の石炭ガス化複合発電システム20と異なり、チャーの搬送ガスとして使用されない。ここでいうチャーとは、石炭ガス化設備4のガス化炉中において、石炭から揮発分や水分を除いて得られる未燃粒子で主に灰分と固定炭素から成る。
空気分離装置2で生成された酸素は、圧縮機によって昇圧されて石炭ガス化設備4へ供給される。空気分離装置2から石炭ガス化設備4まで至る酸素は、酸素供給路を介して供給される。
石炭ガス化設備4は、ガス化炉などからなり、石炭ガス化設備4では、可燃性ガスの原料としての微粉炭と、複合発電設備8のガスタービン空気圧縮機(以下「GT空気圧縮機」という。)からの圧縮空気や空気分離装置2からの酸素によって、微粉炭がガス化されて、可燃性ガスが生成される。GT空気圧縮機からの圧縮空気は、昇圧機によって昇圧され、空気供給路を経由して、石炭ガス化設備4へ供給される。
石炭ガス化設備4で生成された可燃性ガスは、石炭ガス化設備4のガス化炉からガス冷却設備5へ導かれて冷却される。この可燃性ガスは、ガス冷却設備5で冷却された後に、未燃粒子であるチャーを回収する未燃粒子回収部となるチャー回収供給設備6へ供給される。
ガス冷却設備5は、冷却面がチャーで汚れる。そのため、定期的にガス冷却設備5の冷却面を清浄化する除煤装置10が設置される。図2に示すような従来の石炭ガス化複合発電システム20では、除煤装置30において、除煤用ガスとして蒸気又は窒素が用いられている。本実施形態では、従来の石炭ガス化複合発電システム20と異なり、空気分離装置2で生成される窒素は、除煤装置10で使用されずに、天然ガスが除煤装置10で使用される。除煤装置10に設けられ、外部から天然ガスが導入される導入口は、第3の導入口の一例である。
チャー回収供給設備6では、石炭ガス化設備4で可燃性ガスとともに生成されたチャーが分離される。チャー回収供給設備6には、チャーの流動化及びチャーの搬送のため、天然ガス(NG)が供給される。可燃性ガスは、チャー回収供給設備6から流出し、ガス精製設備7へ供給される。分離されたチャーは、外部から供給される天然ガスによって、チャー搬送路12を介して、石炭ガス化設備4内へ搬送される。天然ガスは、外部からチャー搬送路12に導入される。ここで、チャー搬送路12に設けられ、外部から天然ガスが導入される導入口は、第2導入部の一例である。
また、チャー回収供給設備6には、高温フィルターなどの精密除塵装置(図示せず。)が設置されており、生成ガスからチャーを回収除去している。高温フィルターはチャーにより目詰まりするため、逆洗装置11からの高圧の逆洗ガスにより定期的に清浄にする必要がある。図2に示すような従来の石炭ガス化複合発電システム20では、逆洗装置31において、逆洗用ガスとして例えば窒素が用いられている。本実施形態では、従来の石炭ガス化複合発電システム20と異なり、空気分離装置2で生成された窒素は、逆洗装置11では使用されずに、天然ガスが逆洗装置11で使用される。逆洗装置11に設けられ、外部から天然ガスが導入される導入口は、第4の導入口の一例である。
ガス精製設備7は、例えば、脱硫装置や二酸化炭素回収装置などから構成され、可燃性ガスから硫黄又は硫黄化合物や二酸化炭素等を除去する。
精製された可燃性ガスは、複合発電設備8のガスタービン燃焼器(以下「GT燃焼器」という。)の燃料ガスとして使用される。この燃料ガスをGT燃焼器に供給して燃焼させることによって、高温高圧の燃焼排ガスが生成される。可燃性ガスは、圧力調整弁及び燃料流量調整弁によって、圧力及び流量が調整されて、GT燃焼器へ供給される。GT燃焼器には、大気を吸引して昇圧するGT空気圧縮機から空気が供給される。
GT燃焼器で生成された燃焼排ガスは、ガスタービンを駆動した後、高温の排ガスとして排出される。こうして駆動されたガスタービンは、回転する主軸が発電機と連結されているので、発電機を駆動して発電を行うことができる。
ガスタービンから排出された高温の排ガスは、排熱回収ボイラに供給されて蒸気を生成する熱源として使用される。排熱回収ボイラから排出される排ガスは、必要な処理を施した後に煙突9から大気へ排気される。
排熱回収ボイラで生成された蒸気は、複合発電設備8の蒸気タービン等に供給される。蒸気タービンは、ガスタービンと連結され、発電機を駆動して発電を行う。
石炭ガス化設備4には、サンプリング用にガスを吸引するサンプリングガス管が設置されている。サンプリングガス管は、管表面でガス化炉内のガスが冷却することによって凝縮し、管表面や計器に付着してしまう。また、ガス化炉内のチャー等がサンプリングガス管の表面に付着する可能性もある。そのため、石炭ガス化設備4内部のサンプリングガス管内やサンプリングガス管近傍にシール用ガスを供給する。本実施形態では、このシール用ガスとして天然ガスを用いる。シール用ガスとして供給された天然ガスは、石炭ガス化設備4内を通過して、石炭ガス化設備4で生成された可燃性ガスとともに後流側のガス冷却設備5などに流れていく。ここで、サンプリングガス管内やサンプリングガス管近傍における天然ガスの導入口は、第1導入部の一例である。
また、石炭ガス化設備4は、約3MPaに維持されており、石炭ガス化設備4は、外側の圧力容器と内側のガス化炉部の二重構造になっている。内側のガス化炉部内部は、約1000℃から約2000℃に保たれている。一方、ガス化炉部と圧力容器の間は、ガス化炉内部よりも低温(例えば約300℃)に保たれ、かつ、ガス化炉内とほぼ同一圧とする必要があり、圧力容器とガス化炉部の間にシール用ガスが供給される。本実施形態では、このシール用ガスとして天然ガスを用いる。シール用ガスとして供給された天然ガスは、ガス化炉部の壁を通過してガス化炉部内に導入され、ガス化炉で生成された可燃性ガスとともに後流側のガス冷却設備5や複合発電設備8などに流れていく。ここで、圧力容器における天然ガスの導入口は、第1導入部の一例である。
なお、石炭供給設備3から供給される微粉炭等は、バーナを通過して、ガス化炉部の内部に直接導入されるため、圧力容器とガス化炉部の間で天然ガスと混合することは無い。
以上、本実施形態によれば、石炭ガス化設備4のシール用ガスとして、又は、チャーの搬送ガス、除煤用ガス、逆洗用ガスとして天然ガスが用いられ、天然ガスは石炭ガス化設備4、ガス冷却設備5、チャー回収供給設備6に導入された後、後流側のガス精製設備7や複合発電設備8などに送られる。なお、シール用ガスは、チャーの搬送ガスよりも例えば2倍ほど流量が多い。
従来の石炭ガス化複合発電システム20では、図2に示すように、空気分離装置22で生成した窒素ガスが、石炭供給設備23に微粉炭の搬送ガスとして用いられるだけでなく、石炭ガス化設備24に供給されるシール用ガスや、チャー回収供給設備26から石炭ガス化設備24へチャーを搬送する搬送ガスとして用いられている。また、ガス冷却設備25の除煤用ガスや、チャー回収供給設備26の逆洗用ガスとしても用いられる。一方、本実施形態によれば、石炭ガス化設備4のシール用ガスやチャーの搬送ガス、ガス冷却設備5の除煤用ガス、チャー回収供給設備6の逆洗用ガスとして窒素ガスを用いず、天然ガスを用いる。
その結果、空気分離装置2で生成する窒素量は、従来に比べて少量でよい。したがって、空気分離装置2の設備容量を低減でき、かつ、空気分離時の動力を低減できるため送電端効率を増加させることができる。
石炭ガス化設備4のシール用ガスやチャーの搬送ガス、ガス冷却設備5の除煤用ガス、チャー回収供給設備6の逆洗用ガスとして導入された天然ガスは、複合発電設備8に供給されると、GT燃焼器の燃料ガスとして使用され、ガスタービンの動力として用いられる。導入される天然ガスは、すべてGT燃焼器で燃焼されて発電に用いられる。従来、石炭ガス化設備24のシール用ガスやチャーの搬送ガス、ガス冷却設備25の除煤用ガス、チャー回収供給設備26の逆洗用ガスとして窒素ガスが供給されているため、ガス化炉で生成される可燃性ガスが窒素ガスによって希釈されるため、生成された可燃性ガスのカロリーが低下していた。さらに、可燃性ガスに窒素ガスが混入しているため、所定の発電量を得るためにはガス流量を増加させる必要があった。
一方、本実施形態では、窒素ガス等の不活性ガスによる可燃性ガスの希釈化が生じず、可燃性ガスのカロリー低下を防止できる。そして、天然ガスによって燃焼が行われるため、カロリー増加を図ることができる。また、石炭ガス化設備4で生成される可燃性ガスのみで燃料ガスを供給する場合に比べて、GT燃焼器での燃焼が安定化する。
さらに、窒素ガスに代替して天然ガスを使用することによって、ガス燃焼におけるカロリーが増加した分、全体のガス流量が低減する。その結果、石炭ガス化設備4のガス化炉、ガス冷却設備5、チャー回収供給設備6、ガス精製設備7及びこれらを結ぶガス管は、ガスの流量に基づいて設備容量が決定されているため、従来の石炭ガス化設備24のガス化炉、ガス冷却設備25、チャー回収供給設備26、ガス精製設備27及びこれらを結ぶガス管に比べて設備容量を低減できる。なお、図1では、図2で示した従来のシステムに比べて容量を低減できる設備について、記号*を付している。
また、天然ガスを使用した分、石炭等の固体炭素質燃料の流量を低減でき、石炭供給設備3のガス化炉やチャー回収供給設備6の設備容量を低減できる。そして、設備容量が小さくなり、設備が簡素化した分、信頼性が向上する。さらに、本実施形態は、石炭ガス化設備4で生成された可燃性ガスを自己循環して用いるのではなく、外部から供給される天然ガスを用いる。自己循環ガスでは、石炭等の固体炭素質燃料の流量を低減できないため、ガス化炉の設備容量を低減できないが、本実施形態では可能である。
また、万一、石炭供給設備3が不具合によって可燃性ガスを生成できなくなった場合でも、外部から供給される天然ガスがGT燃焼器で燃焼するため、ガスタービンによる発電を継続できる。さらに、天然ガスが石炭ガス化設備4のガス化炉に導入されることによって、天然ガスは、ガス化炉内におけるチャーの燃焼の補助の役割も果たす。
ガス化炉が、微粉炭を高温で燃焼させ、ガス化反応に必要な高温熱源を発生させるコンバスタと、コンバスタから上昇してくる高温ガスに微粉炭を吹き込んでガス化するリダクタの2段構造で構成される場合、コンバスタにチャーが供給される。本実施形態では、チャーは天然ガスとともにガス化炉内に供給されるため、コンバスタの温度が上昇する。その結果、ガス化炉へ酸素を供給するための圧縮機を省略できる場合もある。
本実施形態では、天然ガスは、微粉炭の搬送ガスとして用いられない。そのため、天然ガスは、酸素が存在しない位置に供給されるため、ガス化炉外での発火や燃焼のおそれがない。また、先行技術文献の特許文献1における課題のように、微粉炭等の粉体燃料の搬送媒体として使用したガスが、燃料供給ホッパから排気されるおそれがない。そのため、大気にガスを放出する前にガスを燃焼させるなどの安全設備も不要となる。
上述した本実施形態は、特に、天然ガスが豊富にあり天然ガスのインフラ設備が整った発電所等のプラントに石炭ガス化複合発電システム1を設置する場合に効果が大きい。
1 石炭ガス化複合発電システム(ガス化複合発電システム)
2 空気分離装置
3 石炭供給設備(燃料供給部)
4 石炭ガス化設備(ガス化部)
5 ガス冷却設備
6 チャー回収供給設備(未燃粒子回収部)
7 ガス精製設備
8 複合発電設備
9 煙突
10 除煤装置
11 逆洗装置
12 チャー搬送路(未燃粒子搬送路)

Claims (7)

  1. 固体炭素質燃料をガス化処理して、可燃性ガスを生成するガス化部と、
    前記固体炭素質燃料を前記ガス化部へ供給する燃料供給部と、
    を備え、
    前記ガス化部に設けられ、シール用ガスとして炭化水素系可燃性ガスを前記ガス化部に導入する第1導入部を有するガス化複合発電システム。
  2. 固体炭素質燃料をガス化処理して、可燃性ガスを生成するガス化部と、
    前記固体炭素質燃料を前記ガス化部へ供給する燃料供給部と、
    前記ガス化部から排出された未燃粒子を回収する未燃粒子回収部と、
    前記未燃粒子回収部で回収された前記未燃粒子を前記ガス化部へ供給する未燃粒子搬送路と、
    を備え、
    前記未燃粒子搬送路に設けられ、前記未燃粒子を搬送する搬送ガスとして炭化水素系可燃性ガスを前記未燃粒子搬送路に導入する第2導入部を有するガス化複合発電システム。
  3. 前記ガス化部で生成された前記可燃性ガスを冷却するガス冷却設備と、
    高圧ガスを噴射し、前記ガス冷却設備における冷却面を清浄化する除煤装置と、
    を更に備え、
    前記冷却面を清浄化する高圧ガスとして炭化水素系可燃性ガスを前記除煤装置に導入する第3導入部を有する請求項1又は請求項2に記載のガス化複合発電システム。
  4. 前記ガス化部から排出された未燃粒子を回収する未燃粒子回収部に設置される高温フィルターに付着する未燃粒子を、高圧ガスによって除去する逆洗装置を更に備え、
    前記未燃粒子を除去する高圧ガスとして炭化水素系可燃性ガスを前記逆洗装置に導入する第4導入部を有する請求項1から請求項3のいずれか1項に記載のガス化複合発電システム。
  5. 前記ガス化部は、
    前記固体炭素質燃料の微粉体を高温で燃焼させ、ガス化反応に必要な高温熱源を発生させるコンバスタと、
    前記コンバスタから上昇する高温ガスに前記固体炭素質燃料の微粉体を吹き込んでガス化するリダクタと、
    を有し、
    前記炭化水素系可燃性ガスを前記コンバスタに導入することを特徴とする請求項1から請求項4のいずれか1項に記載のガス化複合発電システム。
  6. ガス化部で固体炭素質燃料をガス化処理して可燃ガスを生成する工程と、
    前記ガス化部へ前記固体炭素質燃料を供給する工程と、
    シール用ガスとして炭化水素系可燃性ガスを前記ガス化部に導入する工程と、
    を含むガス化複合発電システムの運転方法。
  7. ガス化部で固体炭素質燃料をガス化処理して可燃ガスを生成する工程と、
    前記ガス化部へ前記固体炭素質燃料を供給する工程と、
    前記ガス化部から排出された未燃粒子を回収する工程と、
    回収された前記未燃粒子を前記ガス化部へ供給する工程と、
    前記未燃粒子を供給する搬送ガスとして炭化水素系可燃性ガスを導入する工程と、
    を含むガス化複合発電システムの運転方法。
JP2013006515A 2013-01-17 2013-01-17 ガス化複合発電システム及びその運転方法 Pending JP2014136763A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006515A JP2014136763A (ja) 2013-01-17 2013-01-17 ガス化複合発電システム及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006515A JP2014136763A (ja) 2013-01-17 2013-01-17 ガス化複合発電システム及びその運転方法

Publications (1)

Publication Number Publication Date
JP2014136763A true JP2014136763A (ja) 2014-07-28

Family

ID=51414471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006515A Pending JP2014136763A (ja) 2013-01-17 2013-01-17 ガス化複合発電システム及びその運転方法

Country Status (1)

Country Link
JP (1) JP2014136763A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254695A (ja) * 1985-05-07 1986-11-12 Mitsubishi Heavy Ind Ltd 酸素吹き石炭ガス化炉への石炭、チヤ−の供給方法
JPS6210573Y2 (ja) * 1981-10-14 1987-03-12
JPS62196509A (ja) * 1986-02-21 1987-08-29 Babcock Hitachi Kk 石炭ガス化炉を有する石炭焚ボイラ設備
JPH07279684A (ja) * 1994-04-13 1995-10-27 Kawasaki Heavy Ind Ltd 加圧ガス化複合発電プラントの補助ガス供給装置
JP2002080865A (ja) * 2000-09-08 2002-03-22 Toshiba Corp 廃棄物処理システム
JP2006037012A (ja) * 2004-07-29 2006-02-09 Takuma Co Ltd ガス化発電システムとガス化発電方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210573Y2 (ja) * 1981-10-14 1987-03-12
JPS61254695A (ja) * 1985-05-07 1986-11-12 Mitsubishi Heavy Ind Ltd 酸素吹き石炭ガス化炉への石炭、チヤ−の供給方法
JPS62196509A (ja) * 1986-02-21 1987-08-29 Babcock Hitachi Kk 石炭ガス化炉を有する石炭焚ボイラ設備
JPH07279684A (ja) * 1994-04-13 1995-10-27 Kawasaki Heavy Ind Ltd 加圧ガス化複合発電プラントの補助ガス供給装置
JP2002080865A (ja) * 2000-09-08 2002-03-22 Toshiba Corp 廃棄物処理システム
JP2006037012A (ja) * 2004-07-29 2006-02-09 Takuma Co Ltd ガス化発電システムとガス化発電方法

Similar Documents

Publication Publication Date Title
JP4981771B2 (ja) 石炭ガス化複合発電設備
JP5578907B2 (ja) 石炭ガス化複合発電プラント
US7805923B2 (en) Integrated coal gasification combined cycle plant
JP5653794B2 (ja) 石炭ガス化複合発電設備および石炭ガス化複合発電方法
WO2012115054A1 (ja) 石炭ガス化炉用微粉炭供給システム
CN108602631B (zh) 粉体供给料斗的加压系统、气化设备及气化复合发电设备以及粉体供给料斗的加压方法
JP2010196606A (ja) 石炭ガス化複合発電プラント
CN103980941B (zh) 气化炉的起动方法、气化装置及煤气化复合发电设备
JP6660790B2 (ja) 微粉炭供給システム及びその運転方法並びに石炭ガス化発電設備
JP3977890B2 (ja) ガス化発電システム
WO2012073300A1 (ja) ガス化設備
WO2013008924A1 (ja) ガス冷却器、ガス化炉及び炭素含有燃料ガス化複合発電装置
JP6602174B2 (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP2014136763A (ja) ガス化複合発電システム及びその運転方法
JP4335758B2 (ja) 石炭ガス化複合発電設備
JP2009240888A (ja) 廃棄物ガス化処理システム
JP5639955B2 (ja) 石炭ガス化システム
JP6008514B2 (ja) ガス化ガスのガス精製装置
JP6556639B2 (ja) ガス化システム及びガス化システムの運転方法
JP5675297B2 (ja) ガス化設備および石炭ガス化複合発電設備
JP6033380B2 (ja) 石炭ガス化複合発電設備
JP2019178230A (ja) ガス化炉システム
JP5606045B2 (ja) ガス化設備
KR101529823B1 (ko) 석탄가스화 복합발전 시스템
JP2014101838A (ja) 石炭ガス化複合発電設備

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170224