WO2012147618A1 - 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備 - Google Patents

石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備 Download PDF

Info

Publication number
WO2012147618A1
WO2012147618A1 PCT/JP2012/060608 JP2012060608W WO2012147618A1 WO 2012147618 A1 WO2012147618 A1 WO 2012147618A1 JP 2012060608 W JP2012060608 W JP 2012060608W WO 2012147618 A1 WO2012147618 A1 WO 2012147618A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
coal gasification
zeolite membrane
power generation
Prior art date
Application number
PCT/JP2012/060608
Other languages
English (en)
French (fr)
Inventor
藤田 優
健一 澤村
正信 相澤
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to US14/112,650 priority Critical patent/US9863314B2/en
Priority to CN201280020340.XA priority patent/CN103687932B/zh
Priority to JP2013512308A priority patent/JP5775930B2/ja
Publication of WO2012147618A1 publication Critical patent/WO2012147618A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/147Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a carbon dioxide membrane separation system in a coal gasification process, and a coal gasification combined power generation facility using the same.
  • coal has been used as a fuel for power generation, but its power generation method is more efficient than conventional pulverized coal-fired boiler power generation (IGCC) combined with a coal gasification combined power generation facility (IGCC) with excellent environmental conservation. ; Integrated Coal Gasification Combined Cycle).
  • IGCC coal gasification combined power generation facility
  • the coal serving as fuel is gasified to operate a gas turbine, and power is generated using the driving force of the gas turbine and the exhaust heat of the gas turbine.
  • development of the gasification technique which converts coal into gas in various directions is performed actively (for example, refer to patent documents 1 and patent documents 2).
  • the finely pulverized coal is first introduced into the pyrolysis reactor.
  • coal is mixed with the high-temperature gas generated in the high-temperature gas generator and pyrolyzed to generate pyrolysis gas, oil, and char as pyrolysis reaction products.
  • the generated char is separated from gas and oil by a cyclone. Part or all of the separated char is gasified (partially oxidized) with oxygen gas in a high temperature gas generation furnace (gasification furnace), and converted into high temperature gas (main components are hydrogen and carbon monoxide).
  • the hot gas is then introduced into a water gas shift reactor, and carbon monoxide is converted into hydrogen and carbon dioxide by a water gas shift reaction represented by the following formula (1). Further, carbon dioxide is removed from the reaction gas, and a fuel gas rich in hydrogen is generated.
  • CO + H 2 O CO 2 + H 2 (1)
  • carbon dioxide (CO 2 ) is included in the fuel gas after the reaction in addition to hydrogen (H 2 ). Contains a mole fraction.
  • the supply temperature is set to 20 ° C. or more and 200 ° C. or less from the viewpoint of separation performance. It becomes. In either case, when gasified, the temperature is about 200 to 400 ° C., and it is more advantageous in terms of thermal efficiency to supply it to the gas turbine as it is, but carbon dioxide (CO 2 ) is separated. In order to concentrate the fuel, there is a problem that it is necessary to cool it once.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and in addition to the absence of an absorbent regeneration step necessary for the conventional carbon dioxide absorption method, the fuel gas gasified from coal remains carbon dioxide at a high temperature.
  • the invention of the carbon dioxide membrane separation system in the coal gasification process according to claim 1 is characterized in that carbon dioxide (CO 2 ) in a high temperature and high pressure state generated by a water gas shift reaction from a water gas shift reactor.
  • Introducing a mixed gas of hydrogen and hydrogen (H 2 ) into a zeolite membrane module having a zeolite membrane for carbon dioxide removal under the same temperature and pressure conditions to remove carbon dioxide and produce a fuel gas rich in hydrogen It is characterized by.
  • the invention according to claim 2 is a combined coal gasification combined power generation facility using the carbon dioxide membrane separation system in the coal gasification process according to claim 1, wherein the hydrogen is discharged from the zeolite membrane module at a high temperature and high pressure. It is characterized by supplying rich fuel gas to the gas turbine of the power generation facility in the same temperature and pressure state.
  • the invention of claim 4 is a combined coal gasification combined power generation facility using the membrane separation system of carbon dioxide in the fuel gas production process according to claim 3, wherein the zeolite of the fuel gas generation / carbon dioxide separation unit in the final stage
  • the fuel gas rich in high-temperature and high-pressure state discharged from the membrane module is supplied to the gas turbine of the power generation facility in the same temperature and pressure state.
  • the invention of the carbon dioxide membrane separation system in the coal gasification process according to claim 1 is a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) in a high temperature / high pressure state generated by a water gas shift reaction from a water gas shift reactor. Is introduced into a zeolite membrane module having a zeolite membrane for carbon dioxide removal under the same temperature and pressure conditions to remove carbon dioxide and produce a fuel gas rich in hydrogen.
  • gas cooling (heat exchanger) for removing carbon dioxide (CO 2 ) is unnecessary in the conventional carbon dioxide absorption method, and an absorbent regeneration process necessary for the carbon dioxide absorption method is provided.
  • carbon dioxide (CO 2) of the high temperature fuel gas is gasified from coal concentrated by separating, to the gas turbine An effect that it is possible to feed.
  • the invention according to claim 2 is a combined coal gasification combined power generation facility using the carbon dioxide membrane separation system in the coal gasification process according to claim 1, wherein the hydrogen is discharged from the zeolite membrane module at a high temperature and high pressure.
  • the rich fuel gas is supplied to the gas turbine of the power generation facility in the same temperature and pressure state. According to the invention of claim 2, energy can be used effectively, and coal fuel is supplied. There is an effect that the power generation cost used can be significantly reduced.
  • the water gas shift reaction ⁇ The combination of zeolite membrane module having a zeolite membrane for carbon dioxide removal by connecting successively, thereby improving the reaction conversion of the water gas shift reaction. Furthermore, the fuel gas gasified from coal can be concentrated by separating it with carbon dioxide (CO 2 ) at a high temperature and supplied to the gas turbine.
  • CO 2 carbon dioxide
  • the invention of claim 4 is a combined coal gasification combined power generation facility using the membrane separation system of carbon dioxide in the fuel gas production process according to claim 3, wherein the zeolite of the fuel gas generation / carbon dioxide separation unit in the final stage According to the invention of claim 4, the fuel gas rich in high-temperature and high-pressure hydrogen discharged from the membrane module is supplied to the gas turbine of the power generation facility in the same temperature and pressure state. Energy can be used effectively, and the power generation cost using coal fuel can be greatly reduced.
  • the finely pulverized coal is first introduced into a pyrolysis reactor (not shown).
  • a pyrolysis reactor coal is mixed with the high-temperature gas generated in the high-temperature gas generator and pyrolyzed to generate pyrolysis gas, oil, and char as pyrolysis reaction products.
  • the generated char is separated from gas and oil by a cyclone.
  • part or all of the separated char is gasified (partially oxidized) with oxygen gas in a high temperature gas generation furnace (gasification furnace), and the high temperature gas (main components are hydrogen and carbon monoxide). ).
  • the hot gas is then introduced into a water gas shift reactor, and carbon monoxide is converted into hydrogen and carbon dioxide by a water gas shift reaction represented by the following formula (1).
  • CO + H 2 O CO 2 + H 2 (1)
  • the fuel gas after the reaction contains an equimolar amount of carbon dioxide (CO 2 ) in addition to hydrogen (H 2 ).
  • the carbon dioxide membrane separation system in the coal gasification process according to the present invention uses a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) in a high temperature and high pressure state generated by a water gas shift reaction from a water gas shift reactor as it is. It is introduced into a zeolite membrane module having a zeolite membrane for removing carbon dioxide at the temperature and pressure conditions to remove carbon dioxide and produce a fuel gas rich in hydrogen.
  • CO 2 carbon dioxide
  • H 2 hydrogen
  • “in the same temperature and pressure state” means that no gas cooling facilities are used, and does not exclude a decrease in temperature and pressure due to natural heat dissipation or the like.
  • gas cooling for removing carbon dioxide (CO 2 ) in the conventional carbon dioxide absorption method is unnecessary.
  • the fuel gas gasified from coal is concentrated by separating carbon dioxide (CO 2 ) at a high temperature and supplied to the gas turbine. Is possible.
  • the coal gasification combined power generation facility using the carbon dioxide membrane separation system in the coal gasification process of the present invention is a high temperature / high pressure hydrogen-rich fuel gas discharged from the zeolite membrane module. In this state, it is supplied to the gas turbine of the power generation facility.
  • coal gasification combined power generation facility of the present invention energy can be used effectively, and the power generation cost using coal fuel can be significantly reduced.
  • a carbon dioxide membrane separation system in the coal gasification process of the present invention comprises a fuel gas generation / carbon dioxide separation unit comprising a combination of the water gas shift reactor and a zeolite membrane module having a zeolite membrane for removing carbon dioxide.
  • a fuel gas generation / carbon dioxide separation unit comprising a combination of the water gas shift reactor and a zeolite membrane module having a zeolite membrane for removing carbon dioxide.
  • 2 to 5 in succession, and reacting the unreacted raw material gas contained in the hydrogen-rich fuel gas generated from each unit in the water gas shift reactor of the next unit.
  • the carbon dioxide produced in each unit is recovered, and according to the present invention, gas cooling (heat exchanger) for removing carbon dioxide (CO 2 ) is unnecessary in the conventional carbon dioxide absorption method.
  • the water gas shift reaction ⁇ The combination of zeolite membrane module having a zeolite membrane for carbon dioxide removal by connecting successively, thereby improving the reaction conversion of the water gas shift reaction. Furthermore, it becomes possible to concentrate the fuel gas gasified from coal by carbon dioxide (CO 2 ) separation at a high temperature and supply it to the gas turbine.
  • CO 2 carbon dioxide
  • coal gasification combined cycle power generation facility using the carbon dioxide membrane separation system in the fuel gas production process of the present invention is a high temperature / high pressure state discharged from the zeolite membrane module of the final stage fuel gas generation / carbon dioxide separation unit.
  • the fuel gas rich in hydrogen is supplied to the gas turbine of the power generation facility in the same temperature and pressure state.
  • coal gasification combined power generation facility of the present invention energy can be used effectively, and the power generation cost using coal fuel can be significantly reduced.
  • a typical type of the zeolite membrane for removing carbon dioxide used in the zeolite membrane module of the carbon dioxide membrane separation system in the coal gasification process of the present invention is Y type (FAU type). It is particularly preferable to use a composite zeolite membrane having an oxygen 8-membered ring structure on the surface of a zeolite membrane having an oxygen 12-membered ring structure formed on a support such as porous alumina.
  • the adsorption capacity of the zeolite species for carbon dioxide is larger than that of other gases such as hydrogen, so carbon dioxide is preferentially adsorbed on the zeolite membrane surface, and the pores of the membrane are reduced. Permeated through the diffusion and transfer of carbon dioxide to the membrane secondary side, while the pores of the membrane are filled with carbon dioxide molecules, making it difficult for other gas molecules to enter the pores. It is a mechanism that can be separated.
  • porous support used for the composite zeolite membrane examples include, but are not limited to, porous materials such as alumina, silica, cordierite, zirconia, titania, Vycor glass, and sintered metal.
  • a porous body can be used.
  • the shape of the porous support is usually a tube shape or a plate shape.
  • the pore size of the porous support is usually from 0.01 to 5 ⁇ m, preferably from 0.05 to 2 ⁇ m.
  • Formation of a zeolite membrane having an oxygen 12-membered ring structure is performed, for example, by applying an aqueous suspension of a zeolite powder (seed crystal) on the surface of a porous support, drying at a predetermined temperature, and then hydrothermally synthesizing. Is done by.
  • the type of zeolite used as a raw material is not particularly limited, and examples thereof include Y-type zeolite (FAU), beta-type zeolite (BEA), and mordenite (MOR).
  • a coating method for forming the zeolite membrane is not particularly limited, but a rubbing (rubbing) method or a dipping method is preferable.
  • the rubbing (rubbing) method is a method in which a zeolite powder suspension (seed crystal) is uniformly applied by rubbing a zeolite powder suspension on the surface of a porous support and then drying it if desired.
  • the dipping method is a method in which a porous support is dipped in a zeolite powder suspension, and a zeolite powder (seed crystal) is uniformly coated on the surface.
  • hydrothermal synthesis is performed.
  • a zeolite membrane can be formed from the zeolite powder coated on the porous support.
  • the temperature of the hydrothermal synthesis is not particularly limited, but is preferably 80 to 300 ° C. from the viewpoint of more uniformly forming a zeolite membrane on the porous support, and the reaction time is usually 2 to 720 hours, preferably 6 ⁇ 120 hours.
  • the composite zeolite membrane of the present invention is provided with a zeolite membrane having an oxygen 8-membered ring structure on the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on a support such as porous alumina as described above. It is what has been.
  • the zeolite membrane module of the carbon dioxide membrane separation system of the present invention is preferably in a turbulent state as much as possible when supplying the mixed gas to be separated to the tubular membrane element. It is preferable to provide a double tube structure by providing an outer tube, and to have a structure in which a mixed gas flows through the gap between the membrane element and the outer tube at a flow rate of 10 m / s or more.
  • the zeolite membrane having an oxygen 12-membered ring structure is constituted by a FAU type zeolite membrane, and the zeolite membrane having an oxygen 8-membered ring is CHA type. It is preferable to be composed of zeolite or MER type zeolite membrane, preferably CHA type zeolite.
  • Y-type zeolite is a zeolite having the same crystal structure as faujasite, which is a natural zeolite, and is formed by a polyhedron including a 12-membered ring of oxygen. It is known to be 0.74 nm, and can pass through vacancies to molecules of about 0.95 nm by molecular vibration.
  • the CHA-type zeolite has a pore formed by a polyhedron containing an oxygen 8-membered ring, and the pore diameter of the oxygen 8-membered ring is 0.38 nm.
  • the CHA-type zeolite having such structural characteristics has a relatively small pore size among zeolites.
  • the thickness of the zeolite membrane having an oxygen 12-membered ring structure before the conversion treatment is to maintain a high membrane permeability.
  • the thickness is desirably 10 ⁇ m or less, and preferably 0.1 ⁇ m to 10 ⁇ m.
  • the film thickness of the converted zeolite layer having an oxygen 8-membered ring structure is preferably 10 nm or more from the viewpoint of durability and 2 ⁇ m or less from the viewpoint of membrane permeability.
  • the molecular size of carbon dioxide (CO 2 ) is 0.33 nm.
  • the method for producing a composite zeolite membrane used for the zeolite membrane module has, for example, an oxygen 12-membered ring structure formed on a support in an alkaline aqueous solution to which zeolite powder having an oxygen 12-membered ring structure is added.
  • a part of the surface of the zeolite membrane having an oxygen 12-membered ring structure formed on the support is immersed in the zeolite membrane and subjected to heat and pressure treatment under a predetermined condition, and has an oxygen 8-membered ring structure.
  • a composite zeolite membrane is formed in which a zeolite membrane having an oxygen 8-membered ring structure is provided on the surface of the zeolite membrane having an oxygen 12-membered ring structure.
  • zeolite powder having an oxygen 12-membered ring structure added in an amount of 0.01 to 20 wt%, preferably 1 to 10 wt%.
  • a zeolite membrane having an oxygen 12-membered ring structure formed on a support is immersed in a 1 to 1 mol / L potassium hydroxide aqueous solution, and the temperature is 80 to 150 ° C., preferably 95 to 125 ° C., and the pressure is 0 It is preferable that the heating and pressurizing treatment be performed for 1 to 120 hours, preferably 6 to 36 hours under the condition of 0.05 to 2 MPa, preferably 0.1 to 1 MPa.
  • the zeolite membrane having an oxygen 12-membered ring structure is constituted by a FAU-type zeolite membrane
  • the zeolite membrane having an oxygen 8-membered ring is constituted by a CHA-type zeolite membrane. Particularly preferred.
  • an oxygen 8-membered ring structure is obtained compared to the conventional synthesis method. It is possible to make the zeolite membrane layer having a large thickness thin, and it is possible to synthesize a composite zeolite membrane having a molecular sieve function.
  • the film thickness of the FAU type zeolite membrane before the conversion treatment is desirably 0.1 ⁇ m to 10 ⁇ m.
  • the film thickness of the converted CHA-type zeolite layer having an 8-membered ring structure is preferably 10 nm or more from the viewpoint of durability and 2 ⁇ m or less from the viewpoint of membrane permeability.
  • the thickness of the zeolite layer is measured by observing a cross section with an electron microscope or by examining a XRD (X-ray diffraction) pattern after grinding and removing a layer having a predetermined thickness from the surface of the zeolite membrane. can do.
  • XRD X-ray diffraction
  • Example 1 First, finely pulverized coal is introduced into a pyrolysis reactor (not shown).
  • a pyrolysis reactor coal is mixed with the high-temperature gas generated in the high-temperature gas generator and pyrolyzed to generate pyrolysis gas, oil, and char as pyrolysis reaction products.
  • the generated char is separated from gas and oil by a cyclone.
  • part or all of the separated char is gasified (partially oxidized) with oxygen gas in a high temperature gas generation furnace (gasification furnace), and the high temperature gas (main components are hydrogen and carbon monoxide). ).
  • the hot gas is then introduced into the water gas shift reactor, where carbon monoxide (CO) is converted to hydrogen (H 2 ) and carbon dioxide (CO 2 ) by the water gas shift reaction.
  • CO carbon monoxide
  • the carbon dioxide membrane separation system in the coal gasification process according to the present invention uses a mixed gas of carbon dioxide (CO 2 ) and hydrogen (H 2 ) in a high temperature and high pressure state generated by a water gas shift reaction from a water gas shift reactor as it is. It is introduced into a zeolite membrane module having a zeolite membrane for removing carbon dioxide at the temperature and pressure conditions to remove carbon dioxide and produce a fuel gas rich in hydrogen.
  • CO 2 carbon dioxide
  • H 2 hydrogen
  • the mixed gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) after being discharged from the water gas shift reactor is in a state where the pressure is 2 to 4 MPa and the temperature is about 200 to 400 ° C. It is directly received by the zeolite membrane module to remove carbon dioxide (CO 2 ) and produce a fuel gas rich in hydrogen.
  • a composite zeolite membrane used for the zeolite membrane module of the carbon dioxide membrane separation system of the present invention was produced as follows.
  • an aqueous suspension of FAU-type zeolite powder (seed crystal) (manufactured by Tosoh Corp.) is applied to the surface of a porous alumina tube (substrate) (manufactured by Hitachi Zosen Corp.) by a conventional method, and then dried.
  • a FAU type zeolite membrane was synthesized by hydrothermal synthesis for 75 hours.
  • the film thickness of the FAU type zeolite membrane on the surface of the porous alumina tube before the conversion treatment was about 2 ⁇ m.
  • a composite zeolite membrane was produced as follows by a conversion treatment of the zeolite membrane.
  • a 12-membered oxygen film formed on a support made of the above porous alumina tube in a 0.5 mol / L potassium hydroxide aqueous solution to which FAU type zeolite powder was added at a rate of 10 wt%.
  • a composite zeolite membrane in which a CHA-type zeolite membrane was provided on the surface of the FAU-type zeolite membrane was formed.
  • the surface of the FAU type zeolite membrane having an oxygen 12-membered ring structure formed on a porous alumina tube (substrate) is CHA type having an oxygen 8-membered ring structure.
  • the zeolite membrane module of the carbon dioxide membrane separation system of the present embodiment is desirably in a turbulent state as much as possible when supplying the mixed gas to be separated to the tubular membrane element.
  • the outer tube is provided to form a double tube structure, and the mixed gas flows through the gap between the membrane element and the outer tube at a flow rate of 10 m / s or more.
  • Example 2 In the carbon dioxide membrane separation system in the coal gasification process of this embodiment, fuel gas generation / carbon dioxide comprising a combination of the water gas shift reactor of the above embodiment 1 and a zeolite membrane module having a zeolite membrane for removing carbon dioxide. Three separation units are combined in order, and the unreacted raw material gas contained in the hydrogen-rich fuel gas generated from each unit is reacted in the water gas shift reactor of the next stage unit, and the carbon dioxide generated in each unit. Carbon was recovered.
  • the zeolite membrane modules are arranged after the water gas shift reactor, and the water gas shift reactor + zeolite membrane module is similarly inserted in the subsequent stage, so that the unreacted gas reacts by the amount of carbon dioxide (CO 2 ).
  • the equilibrium state is shifted easily. This has improved the reaction conversion rate to fuel gas and promoted the effective use of coal fuel.
  • the combined coal gasification combined power generation facility using the carbon dioxide membrane separation system in the fuel gas production process of the present invention is a high-temperature / high-pressure state discharged from the zeolite membrane module of the final stage fuel gas generation / carbon dioxide separation unit.
  • the hydrogen-rich fuel gas was supplied to the gas turbine of the power generation facility at the same temperature and pressure.
  • coal gasification combined power generation facility of this example energy could be used effectively, and the power generation cost using coal fuel could be greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】 従来の二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、石炭からガス化させた燃料ガスを高温のまま二酸化炭素分離することで濃縮させて、ガスタービンへ供給することが可能となる、炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備を提供する。 【解決手段】 石炭ガス化プロセスにおける二酸化炭素膜分離システムは、水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成する。そして、ゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給する。

Description

石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
 本発明は、石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備に関する。
 従来より、石炭は発電燃料として用いられているが、その発電方式は、従来方式である微粉炭焚きボイラー発電から、より効率が良く、環境保全性にも優れた石炭ガス化複合発電設備(IGCC;Integrated Coal Gasification Combined Cycle)に注目が移ってきている。このような石炭ガス化複合発電設備(IGCC)においては、燃料となる石炭をガス化してガスタービンを運転し、ガスタービンの駆動力及びガスタービンの排熱を利用して発電するものであり、このため、各方面で石炭をガスに転換するガス化技術の開発が盛んに行われている(例えば、特許文献1および特許文献2参照)。
 石炭を発電燃料として用いる場合、微粉砕した石炭は、まず熱分解反応炉に導入される。熱分解反応炉では、高温ガス発生炉において発生する高温ガスに石炭を混合し、熱分解することによって、熱分解反応生成物として熱分解ガス、オイル、チャーが発生する。発生したチャーは、サイクロンによってガス、オイルから分離される。分離されたチャーの一部または全量は、高温ガス発生炉(ガス化炉)において酸素ガスによってガス化(部分酸化)され、高温ガス(主成分は水素および一酸化炭素)に変換される。高温ガスは、ついで、水性ガスシフト反応器へ導入され、下記式(1)に示す水性ガスシフト反応によって、一酸化炭素が水素および二酸化炭素へと変換される。さらに反応ガスより二酸化炭素が除去され、水素に富む燃料ガスが生成される。
  CO+HO=CO+H・ ・ ・ (1)
 ガスタービンへの燃料ガス(H)を精製するためのガス化炉および水性ガスシフト反応炉においては、反応後の燃料ガスには、水素(H)以外にも二酸化炭素(CO)が等モル分含まれている。
 従来は、二酸化炭素(CO)を含んだまま燃料ガスとしてガスタービンに供給している場合もあったが、最近ではその二酸化炭素(CO)を吸収法で除去しているケースが殆どである。また反応後のガスに含まれる二酸化炭素の除去に利用できるような分離膜が提案されている(例えば、特許文献3参照)。
特開2000-319672号公報 特開2010-59940号公報 特開2010-214324号公報
 しかしながら、従来の吸収法においては、二酸化炭素(CO)が吸収された後に吸収剤を再生させる必要があり、再生させるには二酸化炭素(CO)を揮発させるための熱エネルギーが必要となる。また、特許文献3に記載の炭酸ガス分離膜では、分離性能の観点から供給温度が20℃以上200℃以下とされているので、膜へ供給する前に温度を下げるための熱交換器が必要となる。何れの場合も、ガス化した際には200~400℃程度の温度になっており、そのままガスタービンへ供給した方が熱効率的にも有利であるが、二酸化炭素(CO)を分離して燃料の濃縮するためには、一旦冷却することが必要となってくるという問題があった。
 本発明の目的は、上記の従来技術の問題を解決し、従来の二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、石炭からガス化させた燃料ガスを高温のまま二酸化炭素(CO)分離することで濃縮させて、ガスタービンへ供給することが可能となる、石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備を提供することにある。
 上記の目的を達成するために、請求項1の石炭ガス化プロセスにおける二酸化炭素膜分離システムの発明は、水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成することを特徴としている。
 請求項2の発明は、請求項1に記載の石炭ガス化プロセスにおける二酸化炭素膜分離システムを用いた石炭ガス化複合発電設備であって、ゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴としている。
 請求項3の石炭ガス化プロセスにおける二酸化炭素膜分離システムの発明は、請求項1に記載の水性ガスシフト反応炉と、二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールとの組み合わせよりなる燃料ガス生成・二酸化炭素分離ユニットを、順に複数個連続して組み合わせ、各ユニットから生じる水素に富む燃料ガス中に含まれる未反応原料ガスを、次段のユニットの水性ガスシフト反応炉において反応させるとともに、各ユニットで生じる二酸化炭素を回収することを特徴としている。
 請求項4の発明は、請求項3に記載の燃料ガス製造プロセスにおける二酸化炭素の膜分離システムを用いた石炭ガス化複合発電設備であって、最終段の燃料ガス生成・二酸化炭素分離ユニットのゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴としている。
 請求項1の石炭ガス化プロセスにおける二酸化炭素膜分離システムの発明は、水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成することを特徴とするもので、請求項1の発明によれば、従来の二酸化炭素吸収法において二酸化炭素(CO)を取り除くためのガス冷却(熱交換器)が不要であるとともに、二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、石炭からガス化させた燃料ガスを高温のまま二酸化炭素(CO)分離することで濃縮させて、ガスタービンへ供給することが可能となるという効果を奏する。
 請求項2の発明は、請求項1に記載の石炭ガス化プロセスにおける二酸化炭素膜分離システムを用いた石炭ガス化複合発電設備であって、ゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴とするもので、請求項2の発明によれば、エネルギーを有効利用することができて、石炭燃料を用いた発電コストが大幅に低減することができるという効果を奏する。
 請求項3の石炭ガス化プロセスにおける二酸化炭素膜分離システムの発明は、請求項1に記載の水性ガスシフト反応炉と、二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールとの組み合わせよりなる燃料ガス生成・二酸化炭素分離ユニットを、順に複数個連続して組み合わせ、各ユニットから生じる水素に富む燃料ガス中に含まれる未反応原料ガスを、次段のユニットの水性ガスシフト反応炉において反応させるとともに、各ユニットで生じる二酸化炭素を回収することを特徴とするもので、請求項3の発明によれば、従来の二酸化炭素吸収法において二酸化炭素(CO)を取り除くためのガス冷却(熱交換器)が不要であるとともに、二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、水性ガスシフト反応炉→二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールの組合せを連続してつなげることで、水性ガスシフト反応の反応転化率が向上する。さらに、石炭からガス化させた燃料ガスを高温のまま二酸化炭素(CO)分離することで濃縮させて、ガスタービンへ供給することが可能となるという効果を奏する。
 請求項4の発明は、請求項3に記載の燃料ガス製造プロセスにおける二酸化炭素の膜分離システムを用いた石炭ガス化複合発電設備であって、最終段の燃料ガス生成・二酸化炭素分離ユニットのゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴とするもので、請求項4の発明によれば、エネルギーを有効利用することができて、石炭燃料を用いた発電コストが大幅に低減することができるという効果を奏する。
本発明の燃料ガス製造プロセスにおける二酸化炭素の膜分離システムを示すフローシートである。
 つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。
 石炭を発電燃料として用いる場合、微粉砕した石炭は、まず熱分解反応炉(図示略)に導入される。熱分解反応炉では、高温ガス発生炉において発生する高温ガスに石炭を混合し、熱分解することによって、熱分解反応生成物として熱分解ガス、オイル、チャーが発生する。発生したチャーは、サイクロンによってガス、オイルから分離される。
 図1に示すように、分離されたチャーの一部または全量は、高温ガス発生炉(ガス化炉)において酸素ガスによってガス化(部分酸化)され、高温ガス(主成分は水素および一酸化炭素)に変換される。高温ガスは、ついで、水性ガスシフト反応器へ導入され、下記式(1)に示す水性ガスシフト反応によって、一酸化炭素が水素および二酸化炭素へと変換される。
  CO+HO=CO+H・ ・ ・ (1)
 反応後の燃料ガスには、水素(H)以外にも二酸化炭素(CO)が等モル分含まれている。
 本発明による石炭ガス化プロセスにおける二酸化炭素膜分離システムは、水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成することを特徴とするものである。
 ここで、「そのままの温度・圧力状態で」とは、ガス冷却のための設備を介さないことを意味しており、自然放熱などによる温度・圧力低下を排除するものではない。
 このような本発明の石炭ガス化プロセスにおける二酸化炭素膜分離システムによれば、従来の二酸化炭素吸収法において二酸化炭素(CO)を取り除くためのガス冷却(熱交換器)が不要であるとともに、二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、石炭からガス化させた燃料ガスを高温のまま二酸化炭素(CO)分離することで濃縮させて、ガスタービンへ供給することが可能となる。
 そして、本発明の石炭ガス化プロセスにおける二酸化炭素膜分離システムを用いた石炭ガス化複合発電設備は、ゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給するものである。
 この場合の発電設備の発電方式としては、例えば、低負荷運転への切り替えが容易で、かつその際の発電効率も高い複合サイクル発電(ガスタービン+スチームタービン)が好ましい。
 本発明の石炭ガス化複合発電設備によれば、エネルギーを有効利用することができて、石炭燃料を用いた発電コストが大幅に低減することができる。
 また、本発明の石炭ガス化プロセスにおける二酸化炭素膜分離システムは、上記水性ガスシフト反応炉と、二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールとの組み合わせよりなる燃料ガス生成・二酸化炭素分離ユニットを、順に2~5個、好ましくは2~4個連続して組み合わせ、各ユニットから生じる水素に富む燃料ガス中に含まれる未反応原料ガスを、次段のユニットの水性ガスシフト反応炉において反応させるとともに、各ユニットで生じる二酸化炭素を回収することを特徴とするもので、本発明によれば、従来の二酸化炭素吸収法において二酸化炭素(CO)を取り除くためのガス冷却(熱交換器)が不要であるとともに、二酸化炭素吸収法に必要な吸収剤の再生工程がないことに加え、水性ガスシフト反応炉→二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールの組合せを連続してつなげることで、水性ガスシフト反応の反応転化率が向上する。さらに、石炭からガス化させた燃料ガスを高温のまま二酸化炭素(CO)分離することで濃縮させて、ガスタービンへ供給することが可能となる。
 そして、本発明の燃料ガス製造プロセスにおける二酸化炭素の膜分離システムを用いた石炭ガス化複合発電設備は、最終段の燃料ガス生成・二酸化炭素分離ユニットのゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給するものである。
 本発明の石炭ガス化複合発電設備によれば、エネルギーを有効利用することができて、石炭燃料を用いた発電コストが大幅に低減することができる。
 ここで、本発明の石炭ガス化プロセスにおける二酸化炭素膜分離システムのゼオライト膜モジュールに用いる二酸化炭素除去用ゼオライト膜の種類として代表的なものは、Y型(FAU型)であるが、例えば、多孔質アルミナ等の支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有する複合ゼオライト膜を用いるのが、特に好ましい。これらのゼオライト膜を用いることにより、そのゼオライト種の二酸化炭素に対する吸着力が、水素など他のガスに比較して大きいため、二酸化炭素が優先的にゼオライト膜表面に吸着され、膜の細孔を通って膜二次側に二酸化炭素が拡散移動することで透過し、一方で膜の細孔が二酸化炭素分子で埋まることにより、他のガス分子が細孔に入りにくくなることで、選択的な分離が可能なメカニズムとなっている。
 以下、本発明の二酸化炭素膜分離システムのゼオライト膜モジュールに用いる複合ゼオライト膜について説明する。
 まず、複合ゼオライト膜に用いられる多孔質支持体としては、例えばアルミナ、シリカ、コージェライト、ジルコニア、チタニア、バイコールガラス、焼結金属などの多孔質体が挙げられるが、これらに限らず、種々の多孔質体を用いることができる。多孔質支持体の形状は、通常は、チューブ状もしくは板状である。多孔質支持体の孔径は、通常、0.01~5μmであり、好ましくは0.05~2μmである。
 酸素12員環構造を有するゼオライト膜の形成は、例えば、多孔質支持体の表面にゼオライトの粉末(種結晶)の懸濁水溶液を塗布したのち、所定の温度で乾燥したのち、水熱合成させることによって行われる。
 原料として用いるゼオライトの種類は、特に限定されず、例えばY型ゼオライト(FAU)、ベータ型ゼオライト(BEA)、モルデナイト(MOR)などが挙げられる。ゼオライト膜の形成のための塗布方法は、特に限定されないが、ラビング(擦り込み)法や浸漬法が好ましい。
 ラビング(擦り込み)法は、多孔質支持体の表面にゼオライト粉末懸濁液を擦り込み、次いで所望により乾燥することにより、ゼオライトの粉末(種結晶)を均一塗布する方法である。
 また、浸漬法は、ゼオライト粉末懸濁液内に、多孔質支持体を浸し、表面にゼオライトの粉末(種結晶)を均一塗布する方法である。
 ゼオライト粉末の塗布および乾燥ののち、水熱合成させるが、この水熱合成により、多孔質支持体上に塗布したゼオライトの粉末からゼオライト膜を形成することができる。水熱合成の温度は、特に限定されないが、多孔質支持体上にゼオライト膜がより均一に生成するという観点から、80~300℃が好ましく、反応時間は、通常2~720時間、好ましくは6~120時間である。
 本発明の複合ゼオライト膜は、上記のように、多孔質アルミナ等の支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面に、酸素8員環構造を有するゼオライト膜が設けられているものである。
 本発明の二酸化炭素膜分離システムのゼオライト膜モジュールとしては、被分離される混合ガスを管状膜エレメントへ供給する際には、できるだけ乱流状態であることが望ましく、例えば管状膜エレメント外側に一対の外管を設けて二重管構造とし、その膜エレメントと外管の隙間を、10m/s以上の流速で混合ガスが流れるような構造を有するものであるのが好ましい。(特許文献:特開2009-39654参照)
 本発明の二酸化炭素膜分離システムのゼオライト膜モジュールに用いる複合ゼオライト膜は、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライトまたはMER型ゼオライト膜、好ましくはCHA型ゼオライトにより構成されることが好ましい。
 ここで、Y型ゼオライト(FAU)は、天然ゼオライトであるホージャサイトと同じ結晶構造を有するゼオライトであり、酸素の12員環を含む多面体によって形成されているとともに、酸素12員環の細孔径は0.74nmであることが知られており、分子振動により0.95nm程度の分子まで空孔を通過することができる。
 一方、CHA型ゼオライトは、その細孔が酸素8員環を含む多面体によって形成されているとともに、酸素8員環の細孔径は0.38nmであることが知られている。このような構造上の特徴を有するCHA型ゼオライトは、ゼオライトの中では比較的細孔径が小さいものである。
 また、本発明の二酸化炭素膜分離システムのゼオライト膜モジュールに用いる複合ゼオライト膜において、転換処理を行う前の酸素12員環構造を有するゼオライト膜の膜厚は、高い膜透過度を維持するために、10μm以下が望ましく、0.1μm~10μmが好ましい。また転換した酸素8員環構造を有するゼオライト層の膜厚は、耐久性の観点からは10nm以上、膜透過度の観点からは2μm以下が好ましい。
 なおここで、二酸化炭素(CO)の分子サイズは、0.33nmである。
 また、上記ゼオライト膜モジュールに用いる複合ゼオライト膜の製造方法は、例えば、酸素12員環構造を有するゼオライト粉末を添加したアルカリ水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、所定の条件下で加熱加圧処理することで、支持体上に製膜された酸素12員環構造を有するゼオライト膜の表面の一部を、酸素8員環構造を有するゼオライト膜に転換させることにより、酸素12員環構造を有するゼオライト膜の表面に酸素8員環構造を有するゼオライト膜が設けられた複合ゼオライト膜を形成する。
 このような複合ゼオライト膜の製造方法において、酸素12員環構造を有するゼオライト粉末を0.01~20wt%、好ましくは1~10wt%の割合で添加した0.01~3mol/L、好ましくは0.1~1mol/Lの水酸化カリウム水溶液中に、支持体上に製膜された酸素12員環構造を有するゼオライト膜を浸漬し、温度80~150℃、好ましくは95~125℃、圧力0.05~2MPa、好ましくは0.1~1MPaの条件下で、1~120時間、好ましくは6~36時間、加熱加圧処理することが好ましい。
 また、上記複合ゼオライト膜の製造方法において、酸素12員環構造を有するゼオライト膜が、FAU型ゼオライト膜により構成され、酸素8員環を有するゼオライト膜が、CHA型ゼオライト膜により構成されることが、特に、好ましい。
 こうして、多孔質アルミナ管等の基体上に製膜したFAU型ゼオライト膜の表面を、酸素8員環構造を有するゼオライト膜に転換させることにより、従来の合成方法に比べて、酸素8員環構造を有するゼオライト膜層の大幅な薄膜化が可能であり、分子篩機能を付与した複合ゼオライト膜を合成することができる。
 特に、基体上に製膜したFAU膜表面のみを、8員環ゼオライトに転換させることで、高い膜透過度を維持したまま分子篩能を維持させる。さらに高い膜透過度を維持するためには、転換処理を行う前のFAU型ゼオライト膜の膜厚は、0.1μm~10μmが望ましい。また転換した8員環構造を有するCHA型ゼオライト層の膜厚については、耐久性の観点からは10nm以上、膜透過度の観点からは2μm以下が好ましい。
 ここで、ゼオライト層の膜厚は、断面を電子顕微鏡によって観察するか、または、ゼオライト膜表面から所定の厚さの層を研削・除去した後、XRD(X線回折)パターンを調べることによって測定することができる。
 つぎに、本発明の実施例を説明するが、本発明は、これらの実施例に限定されるものではない。
実施例1
 まず、微粉砕した石炭は熱分解反応炉(図示略)に導入される。熱分解反応炉では、高温ガス発生炉において発生する高温ガスに石炭を混合し、熱分解することによって、熱分解反応生成物として熱分解ガス、オイル、チャーが発生する。発生したチャーは、サイクロンによってガス、オイルから分離される。
 図1に示すように、分離されたチャーの一部または全量は、高温ガス発生炉(ガス化炉)において酸素ガスによってガス化(部分酸化)され、高温ガス(主成分は水素および一酸化炭素)に変換される。高温ガスは、ついで、水性ガスシフト反応器へ導入され、水性ガスシフト反応によって一酸化炭素(CO)が、水素(H)および二酸化炭素(CO)へと変換される。
 本発明による石炭ガス化プロセスにおける二酸化炭素膜分離システムは、水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成することを特徴としている。
 すなわち、水性ガスシフト反応炉から排出される反応後の水素(H2)および二酸化炭素(CO)を含む混合ガスは、圧力2~4MPa、温度200~400℃程度の状態であるが、これをそのままゼオライト膜のモジュールで受け入れて、二酸化炭素(CO)を除去するとともに、水素に富む燃料ガスを生成するものである。
 これにより、水素に富む燃料ガスを、高温ガスのまま燃料としてガスタービンへの供給が可能となる。またガスの圧力が高いため、膜の透過側が大気圧のままでも駆動力となる圧力差は確保され、特にポンプやコンプレッサといった動力も特段に必要としない。
 なお、この場合の発電設備の発電方式としては、低負荷運転への切り替えが容易で、かつその際の発電効率も高い複合サイクル発電(ガスタービン+スチームタービン)が好ましい。
 本実施例においては、本発明の二酸化炭素膜分離システムのゼオライト膜モジュールに用いる複合ゼオライト膜を、つぎのようにして製造した。
 まず、定法により、多孔質アルミナ管(基体)(Hitz日立造船社製)表面にFAU型ゼオライト粉末(種結晶)(東ソー社製)の懸濁水溶液を塗布乾燥したのち、温度100℃で4.75時間、水熱合成させることによってFAU型ゼオライト膜を合成した。転換処理を行う前の多孔質アルミナ管表面のFAU型ゼオライト膜の膜厚は、約2μmであった。
 つぎに、ゼオライト膜の転換処理により、複合ゼオライト膜を下記のようにして製造した。
 すなわち、オートクレーブ内で、FAU型ゼオライト粉末を、10wt%の割合で添加した0.5mol/Lの水酸化カリウム水溶液中に、上記多孔質アルミナ管よりなる支持体上に製膜された酸素12員環構造を有するFAU型ゼオライト膜を浸漬し、温度95℃、圧力0.1MPaの条件下で、24時間、静置することで加熱加圧処理し、支持体上に製膜されたFAU型ゼオライト膜の表面を、酸素8員環構造を有するCHA型ゼオライト膜に転換させることにより、FAU型ゼオライト膜の表面にCHA型ゼオライト膜が設けられた複合ゼオライト膜を形成した。
 このようなゼオライト膜モジュールに用いる複合ゼオライト膜では、多孔質アルミナ管(基体)上に製膜した酸素12員環構造を有するFAU型ゼオライト膜の表面のみを、酸素8員環構造を有するCHA型ゼオライト膜に転換させることで、高い膜透過度を維持したまま二酸化炭素の除去機能を付与したゼオライト膜を合成することができた。なお、転換した酸素8員環構造を有するゼオライト層の膜厚は、0.01~1μmであると推定され、酸素8員環構造を有するCHA型ゼオライト膜層の大幅な薄膜化を果たすことができた。
 本実施例の二酸化炭素膜分離システムのゼオライト膜モジュールとしては、被分離される混合ガスを管状膜エレメントへ供給する際には、できるだけ乱流状態であることが望ましく、例えば管状膜エレメント外側に一対の外管を設けて二重管構造とし、その膜エレメントと外管の隙間を、10m/s以上の流速で混合ガスが流れるような構造を有するものであった。
実施例2
 この実施例の石炭ガス化プロセスにおける二酸化炭素膜分離システムでは、上記実施例1の水性ガスシフト反応炉と、二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールとの組み合わせよりなる燃料ガス生成・二酸化炭素分離ユニットを、順に3個連続して組み合わせ、各ユニットから生じる水素に富む燃料ガス中に含まれる未反応原料ガスを、次段のユニットの水性ガスシフト反応炉において反応させるとともに、各ユニットで生じる二酸化炭素を回収した。
 このように、水性ガスシフト反応炉の後にゼオライト膜モジュールを並べ、その後段にも同様に水性ガスシフト反応炉+ゼオライト膜モジュールを入れることで、二酸化炭素(CO)が少ない分だけ未反応ガスが反応しやすく平衡状態がシフトされる。これにより燃料ガスへの反応転化率が向上し、石炭燃料の有効活用が促進された。
 また、本発明の燃料ガス製造プロセスにおける二酸化炭素の膜分離システムを用いた石炭ガス化複合発電設備は、最終段の燃料ガス生成・二酸化炭素分離ユニットのゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給した。
 本実施例の石炭ガス化複合発電設備によれば、エネルギーを有効利用することができて、石炭燃料を用いた発電コストを大幅に低減することができた。

Claims (4)

  1.  水性ガスシフト反応炉からの水性ガスシフト反応により発生する高温・高圧状態の二酸化炭素(CO)と水素(H)の混合ガスを、そのままの温度・圧力状態で二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールに導入し、二酸化炭素を除去するとともに、水素に富む燃料ガスを生成することを特徴とする、石炭ガス化プロセスにおける二酸化炭素膜分離システム。
  2.  ゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴とする、請求項1に記載の石炭ガス化プロセスにおける二酸化炭素膜分離システムを用いた石炭ガス化複合発電設備。
  3.  請求項1に記載の水性ガスシフト反応炉と、二酸化炭素除去用ゼオライト膜を具備するゼオライト膜モジュールとの組み合わせよりなる燃料ガス生成・二酸化炭素分離ユニットを、順に複数個連続して組み合わせ、各ユニットから生じる水素に富む燃料ガス中に含まれる未反応原料ガスを、次段のユニットの水性ガスシフト反応炉において反応させるとともに、各ユニットで生じる二酸化炭素を回収することを特徴とする、燃料ガス製造プロセスにおける二酸化炭素の膜分離システム。
  4.  最終段の燃料ガス生成・二酸化炭素分離ユニットのゼオライト膜モジュールから排出される高温・高圧状態の水素に富む燃料ガスを、そのままの温度・圧力状態で発電設備のガスタービンへ供給することを特徴とする、請求項3に記載の石炭ガス化プロセスにおける二酸化炭素膜分離システムを用いた石炭ガス化複合発電設備。
PCT/JP2012/060608 2011-04-28 2012-04-19 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備 WO2012147618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/112,650 US9863314B2 (en) 2011-04-28 2012-04-19 Carbon dioxide membrane separation system in coal gasification process, and integrated coal gasification combined cycle power generation facility using same
CN201280020340.XA CN103687932B (zh) 2011-04-28 2012-04-19 煤气化工艺中的二氧化碳膜分离系统及使用该系统的煤气化复合发电设备
JP2013512308A JP5775930B2 (ja) 2011-04-28 2012-04-19 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011101729 2011-04-28
JP2011-101729 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147618A1 true WO2012147618A1 (ja) 2012-11-01

Family

ID=47072139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060608 WO2012147618A1 (ja) 2011-04-28 2012-04-19 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備

Country Status (4)

Country Link
US (1) US9863314B2 (ja)
JP (1) JP5775930B2 (ja)
CN (1) CN103687932B (ja)
WO (1) WO2012147618A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236137A (ja) * 2011-05-11 2012-12-06 Hitachi Zosen Corp 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
EP3132842A1 (en) * 2014-04-18 2017-02-22 Mitsubishi Chemical Corporation (porous support)-(zeolite film) complex, and method for producing (porous support)-(zeolite film) complex
WO2017150737A1 (ja) * 2016-03-04 2017-09-08 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
JP7398578B2 (ja) 2018-10-04 2023-12-14 日本碍子株式会社 ガス分離方法およびガス分離装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201251B (zh) * 2017-06-23 2023-08-22 西安热工研究院有限公司 一种基于煤气化的太阳能储能和利用系统及方法
CN108313980A (zh) * 2018-02-06 2018-07-24 吴波挺 一种水煤气制氢装置
WO2021024045A1 (en) * 2019-08-07 2021-02-11 Chevron Usa Inc. Potassium-merlinoite zeolite, its synthesis and use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322112A (ja) * 1992-05-20 1993-12-07 Ishikawajima Harima Heavy Ind Co Ltd 二酸化炭素抑制燃焼設備
JPH09279163A (ja) * 1996-04-11 1997-10-28 Ishikawajima Harima Heavy Ind Co Ltd Co2除去石炭ガス化複合発電システム
JP2009029676A (ja) * 2007-07-27 2009-02-12 Nippon Oil Corp 水素製造および二酸化炭素回収方法ならびに装置
JP2009536260A (ja) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ シャフハウゼン ブランチ 炭素質原料のガスへの変換のための制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233175B2 (ja) 1999-05-07 2009-03-04 新日本製鐵株式会社 石炭熱分解反応生成物による発電方法
JP4803990B2 (ja) * 2004-10-13 2011-10-26 日本碍子株式会社 下水汚泥由来のメタン濃縮方法及びメタン貯蔵装置
US7938893B2 (en) * 2006-04-18 2011-05-10 Gas Technology Institute Membrane reactor for H2S, CO2 and H2 separation
EP1916233A1 (en) * 2006-10-20 2008-04-30 BP Chemicals Limited Process for the conversion of hydrocarbons to alcohols
TW200846282A (en) * 2006-11-30 2008-12-01 Shell Int Research Systems and processes for producing hydrogen and carbon dioxide
DE102007004078A1 (de) * 2007-01-26 2008-07-31 Linde Ag Verfahren zur Dampf-Dealkylierung unter Einbindung einer Wassergas-Shift-Reaktion
EP2361878B1 (en) 2007-07-27 2015-10-07 Nippon Oil Corporation Method and apparatus for hydrogen production and carbon dioxide recovery
JP4981771B2 (ja) 2008-09-08 2012-07-25 三菱重工業株式会社 石炭ガス化複合発電設備
JP5378841B2 (ja) 2009-03-18 2013-12-25 一般財団法人石油エネルギー技術センター 炭酸ガス分離膜
EP2414279A1 (en) * 2009-03-30 2012-02-08 Shell Internationale Research Maatschappij B.V. Process for producing a purified synthesis gas stream
US8713907B2 (en) * 2010-01-04 2014-05-06 General Electric Company System for providing air flow to a sulfur recovery unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322112A (ja) * 1992-05-20 1993-12-07 Ishikawajima Harima Heavy Ind Co Ltd 二酸化炭素抑制燃焼設備
JPH09279163A (ja) * 1996-04-11 1997-10-28 Ishikawajima Harima Heavy Ind Co Ltd Co2除去石炭ガス化複合発電システム
JP2009536260A (ja) * 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ シャフハウゼン ブランチ 炭素質原料のガスへの変換のための制御システム
JP2009029676A (ja) * 2007-07-27 2009-02-12 Nippon Oil Corp 水素製造および二酸化炭素回収方法ならびに装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236137A (ja) * 2011-05-11 2012-12-06 Hitachi Zosen Corp 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
EP3132842A1 (en) * 2014-04-18 2017-02-22 Mitsubishi Chemical Corporation (porous support)-(zeolite film) complex, and method for producing (porous support)-(zeolite film) complex
EP3132842A4 (en) * 2014-04-18 2017-04-05 Mitsubishi Chemical Corporation (porous support)-(zeolite film) complex, and method for producing (porous support)-(zeolite film) complex
JPWO2015159986A1 (ja) * 2014-04-18 2017-04-13 三菱化学株式会社 多孔質支持体−ゼオライト膜複合体及び多孔質支持体−ゼオライト膜複合体の製造方法
US10406486B2 (en) 2014-04-18 2019-09-10 Mitsubishi Chemical Corporation Porous support-zeolite membrane composite
US11065586B2 (en) 2014-04-18 2021-07-20 Mitsubishi Chemical Corporation Porous support-zeolite membrane composite and process for producing porous support-zeolite membrane composite
WO2017150737A1 (ja) * 2016-03-04 2017-09-08 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
JPWO2017150737A1 (ja) * 2016-03-04 2019-01-10 三菱ケミカル株式会社 二酸化炭素の分離方法、及び二酸化炭素の分離装置
US10953364B2 (en) 2016-03-04 2021-03-23 Mitsubishi Chemical Corporation Method for separating carbon dioxide and apparatus for separating carbon dioxide
JP7398578B2 (ja) 2018-10-04 2023-12-14 日本碍子株式会社 ガス分離方法およびガス分離装置

Also Published As

Publication number Publication date
US9863314B2 (en) 2018-01-09
US20140190146A1 (en) 2014-07-10
CN103687932A (zh) 2014-03-26
CN103687932B (zh) 2015-11-25
JP5775930B2 (ja) 2015-09-09
JPWO2012147618A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5775930B2 (ja) 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
US10611634B2 (en) Polygeneration production of hydrogen for use in various industrial processes
Smart et al. Ceramic membranes for gas processing in coal gasification
JP5779397B2 (ja) 石炭ガス化プロセスにおける二酸化炭素膜分離システム、およびこれを用いた石炭ガス化複合発電設備
WO2012153808A1 (ja) 二酸化炭素分離システム
US8495882B2 (en) Syngas cleanup section with carbon capture and hydrogen-selective membrane
WO2007126416A2 (en) Methods and apparatus for hydrogen gas production
JP2009085210A (ja) ポリジェネレーションシステム
JP2012527395A (ja) 合成ガスと電力を共生産するためのプロセス
US11859517B2 (en) Power production with cogeneration of further products
JP6405275B2 (ja) 水素の製造方法、および水素製造システム
Marano et al. Integration of gas separation membranes with IGCC identifying the right membrane for the right job
JP2005512771A (ja) 圧力スイング式吸着装置(psa)の共用
Ghasemzadeh et al. Technoeconomic assessment of polymeric, ceramic, and metallic membrane integration in an advanced IGCC process for CO2 separation and capture
US20130284981A1 (en) Filtering Structure Coated with Catalyst for Reforming Synthesis Gas and Filtering Method Using the Same
Karousos et al. Polymeric, metallic and carbon membranes for hydrogen separation: A review
CN107376603A (zh) 脱除制氢变换气变压吸附工艺尾气中co2的方法
Lin Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor
JP2002220208A (ja) 酸素富化気体の製造方法および装置
JP2024068972A (ja) バイオマス処理システム
Pang et al. Conceptual process and analysis of water-gas-shift membrane reactor
JP2023000697A (ja) 二酸化炭素分離回収・利用システムおよび二酸化炭素分離回収・利用方法
Kgaphola Synthesis and performance evaluation of Nanocomposite SAPO-34/ceramic membranes for CO₂/N₂ mixture separation
Champaklal et al. Pure Silica Sodalite as a Building Block for Hydrogen Separation Membranes
Tsapatsis et al. Hydrogen Selective Exfoliated Zeolite Membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112650

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12776212

Country of ref document: EP

Kind code of ref document: A1