WO2010021236A1 - 非水電解質二次電池 - Google Patents
非水電解質二次電池 Download PDFInfo
- Publication number
- WO2010021236A1 WO2010021236A1 PCT/JP2009/063772 JP2009063772W WO2010021236A1 WO 2010021236 A1 WO2010021236 A1 WO 2010021236A1 JP 2009063772 W JP2009063772 W JP 2009063772W WO 2010021236 A1 WO2010021236 A1 WO 2010021236A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- electrolyte secondary
- secondary battery
- aqueous electrolyte
- nonaqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent.
- a non-aqueous electrolyte secondary battery using particulate silicon and / or silicon alloy as the negative electrode active material in the negative electrode the capacity is greatly reduced by charging and discharging in a high temperature environment so that high battery capacity can be obtained.
- the charge / discharge cycle characteristics are excellent even in high temperature environments.
- a non-aqueous electrolyte secondary battery in which a non-aqueous electrolytic solution is used to transfer lithium ions between a positive electrode and a negative electrode to perform charge and discharge. It is done.
- a graphite material is widely used as a negative electrode active material in the negative electrode.
- the discharge potential is flat, and lithium ions are inserted and desorbed between the graphite crystal layers to be charged and discharged, thereby suppressing the generation of needle-like metal lithium and also changing the volume due to charge and discharge. There is an advantage of less.
- Patent Document 1 a thin film of a negative electrode active material made of a material forming an alloy with lithium is formed on a negative electrode current collector, and the thin film of the negative electrode active material is separated into columns by cuts formed in the thickness direction. Further, a nonaqueous electrolytic solution to which a carbonate compound, particularly, a fluorine-bonded carbonate compound is added is described. It is also described that this suppresses the swelling and deterioration of the negative electrode active material due to charge and discharge, and the reaction and deterioration of the negative electrode active material with the non-aqueous electrolyte.
- Patent Document 2 discloses a battery using an electrolytic solution containing a diisocyanate compound having an aliphatic carbon chain.
- examination of the function and effect by the combination of the above-described electrolytic solution and one using a material such as silicon as a negative electrode active material is not performed.
- the inventor of the present application has described a non-aqueous electrolyte secondary battery using silicon or a silicon alloy as a negative electrode active material, the non-aqueous electrolyte containing a carbonate compound in which fluorine is bound and an ethylene carbonate compound in which fluorine is bound.
- the characteristics of charge and discharge cycle of the non-aqueous electrolyte secondary battery were examined.
- a non-aqueous electrolyte secondary battery as described above was examined using a negative electrode having silicon or a silicon alloy formed on a negative electrode current collector by a CVD method, a sputtering method, a vacuum deposition method, a thermal spraying method, a plating method, etc.
- a non-aqueous electrolyte secondary battery still has improved charge / discharge cycle characteristics even when charge / discharge is performed in a high temperature environment.
- a non-aqueous electrolyte using a negative electrode comprising a negative electrode active material composed of particulate silicon and / or silicon alloy and a binder, which is easier to manufacture and lower in manufacturing cost as compared to the above negative electrode
- a fluorine-bonded carbonate compound or a fluorine-bonded ethylene carbonate compound reacted with the negative electrode.
- the charge / discharge cycle characteristics are lower than those in which the non-aqueous electrolytic solution does not contain a carbonate compound in which fluorine is bound or an ethylene carbonate compound in which fluorine is bound. It turned out to be
- the present invention is a non-aqueous electrolyte secondary battery using a negative electrode containing a negative electrode active material comprising particulate silicon and / or silicon alloy and a binder, and a charge and discharge cycle when charged and discharged in a high temperature environment It is an object of the present invention to suppress great deterioration of characteristics and to obtain excellent charge / discharge cycle characteristics even in a high temperature environment.
- a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolytic solution in which a solute is dissolved in a non-aqueous solvent are provided.
- a non-aqueous electrolyte secondary battery a negative electrode containing a negative electrode active material composed of particulate silicon and / or silicon alloy and a binder is used, and a fluorinated cyclic carbonate and a general formula (1) are used in a non-aqueous electrolyte.
- A the theoretical maximum Li storage amount per unit area of the negative electrode is B in the charged state of the nonaqueous electrolyte secondary battery.
- the negative electrode utilization (%) shown by A / B) x 100 was 45% or less.
- particulate silicon and / or silicon is used.
- a negative electrode mixture containing a negative electrode active material made of an alloy and a binder is applied to the surface of the negative electrode current collector, rolled, and then sintered at a temperature above the glass transition temperature of the binder in a nonoxidizing atmosphere. Is preferred.
- the adhesion between the negative electrode active material and the adhesion between the negative electrode active material and the negative electrode current collector are improved. As a result, it is possible to suppress peeling of the negative electrode active material from the negative electrode current collector due to expansion and contraction of the negative electrode active material during charge and discharge.
- a binder it is preferable to use a polyimide having high strength.
- polyimide When polyimide is used as the binder, it is possible to suppress the swelling and deterioration of the negative electrode active material composed of particulate silicon and / or silicon alloy due to charge and discharge.
- a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more it is preferable to use a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more.
- a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more the contact area between the negative electrode active material and the negative electrode current collector is increased, and binding is made to the uneven portion of the surface of the negative electrode current collector. The agent gets in.
- the anchor effect is also expressed, and the adhesion between the negative electrode active material and the negative electrode current collector is greatly improved, and the negative electrode active material is collected from the negative electrode active material by expansion and contraction of the negative electrode active material during charge and discharge. Peeling from the current collector is further suppressed.
- a silicon alloy used for the negative electrode active material a solid solution of silicon and one or more other elements, an intermetallic compound of silicon and one or more other elements, a coexistence of silicon and one or more other elements Crystal alloys and the like.
- a method for producing such a silicon alloy for example, an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, a firing method or the like can be used.
- various atomizing methods such as a single roll quenching method, a twin roll quenching method, a gas atomizing method, a water atomizing method, and a disk atomizing method can be used.
- the linear diisocyanate compound represented by the general formula (2) when the number x of aliphatic hydrocarbon groups is small, the activity of hydrogen bonded to carbon becomes high, and the side of the diisocyanate compound The reaction tends to occur and the battery characteristics deteriorate. On the other hand, when the number x of aliphatic hydrocarbon groups is too large, the viscosity of the non-aqueous electrolytic solution becomes high, and the battery characteristics deteriorate. Therefore, as the linear diisocyanate compound represented by the general formula (2), it is preferable that the number x of aliphatic hydrocarbon groups in this formula is 4 or more and 12 or less, and it is 6 or more and 12 or less Is more preferred.
- diisocyanate compounds specifically, 1,4-diisocyanate butane, 1,5-diisocyante pentane, 1,6-diisocyanate hexane, 1,7-diisocyanatoheptan, 1,8-diisocyanate octane, 1, 9-diisocyanate nonane, 1,10-diisocyanate decane, 1,11-diisocyanate undecane, 1,12-diisocyanate dodecane and the like can be used.
- diisocyanate compound represented by the general formula (1) for example, diisocyanate compounds represented by the chemical formulas (3) to (5) can also be used.
- a cyclic carbonate having a fluorine group represented by General Formula (6) can be used as the fluorinated cyclic carbonate to be contained in the non-aqueous electrolytic solution.
- two kinds of 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one should be used. Is preferred.
- R 9 to R 12 are a group selected from a hydrogen group and a fluorine group, and at least one is a fluorine group
- the fluorinated cyclic carbonate is used as the non-aqueous electrolytic solution when the negative electrode containing the negative electrode active material composed of particulate silicon and / or silicon alloy and the binder is used.
- the diisocyanate compound represented by the general formula (1) the fluorinated cyclic carbonate suppresses the reaction between the negative electrode active material and the non-aqueous electrolytic solution during charge and discharge in a normal environment, and the charge and discharge Cycle characteristics are improved.
- the non-aqueous electrolytic solution contains the diisocyanate compound represented by the general formula (1)
- a resistive component is formed on the surface of the negative electrode by the diisocyanate compound. It is considered that the resistance component suppresses the reaction between the fluorinated cyclic carbonate and the negative electrode in a high temperature environment, and prevents the decrease in charge-discharge cycle characteristics in a high temperature environment.
- the lithium storage amount per unit area of the negative electrode in the charged state of the non-aqueous electrolyte secondary battery is A
- the theoretical maximum Li storage amount per unit area of the negative electrode is B
- the negative electrode utilization factor (%) represented by (A / B) ⁇ 100 is 45% or less
- expansion and contraction of the negative electrode active material due to charge and discharge are suppressed, and charge and discharge are stably repeated.
- the reaction of the negative electrode active material with the non-aqueous electrolyte is appropriately suppressed without the activity of the negative electrode active material becoming too high, and the charge and discharge cycle characteristics are further improved.
- the non-aqueous electrolyte secondary battery of the present invention even when the negative electrode containing the negative electrode active material composed of particulate silicon and / or silicon alloy and the binder is used, not only under normal environment but also under normal environment. Also in the high temperature environment, excellent charge and discharge cycle characteristics can be obtained.
- nonaqueous electrolyte secondary battery according to the embodiment of the present invention will be specifically described.
- the non-aqueous electrolyte secondary battery of the present invention is not limited to the ones shown in the following embodiments, and can be modified as appropriate without departing from the scope of the invention.
- Example 1 [Production of positive electrode]
- a positive electrode active material a material obtained by fixing zirconium on the surface of lithium cobaltate (average particle diameter 13 ⁇ m, BET specific surface area 0.35 m 2 / g) represented by LiCoO 2 is used.
- An N-methyl-2-pyrrolidone solution is added to the mass ratio of active material, carbon material powder of conductive agent, and polyvinylidene fluoride binder as a mass ratio of 95: 2.5: 2.5. The mixture was kneaded and a positive electrode mixture slurry was prepared.
- An aluminum foil with a thickness of 15 ⁇ m, a length of 402 mm, and a width of 50 mm was used as the positive electrode current collector.
- the positive electrode mixture slurry is applied to one side of the positive electrode current collector with a length of 340 mm and a width of 50 mm, and to the opposite side is applied with a length of 271 mm and a width of 50 mm, dried and rolled, The positive electrode was produced.
- the thickness of the positive electrode was 143 ⁇ m
- the amount of the positive electrode mixture on the positive electrode current collector was 48 mg / cm 2
- the packing density of the positive electrode mixture was 3.75 g / cc.
- a positive electrode current collection tab made of an aluminum flat plate having a thickness of 70 ⁇ m, a length of 35 mm, and a width of 4 mm was attached to a portion of the positive electrode where the positive electrode mixture was not applied.
- the well-known positive electrode active material can be used as a positive electrode active material.
- the well-known positive electrode active material generally used can be used.
- lithium cobaltate LiCoO 2 when used as the positive electrode active material, it is desirable that zirconium be fixed to the surface. As a result, the crystal structure of LiCoO 2 can be stabilized to improve charge-discharge cycle characteristics, and side reactions other than charge-discharge reaction can be suppressed from occurring in the interface with the non-aqueous electrolyte.
- this negative electrode material mixture slurry is Cu—Ni—Si—Mg (Ni: 3 wt%, Si: 0.65 wt%, Mg 0.15 wt%) alloy foil having a surface roughness Ra of 0.3 ⁇ m and a thickness of 20 ⁇ m. It apply
- a negative electrode current collector provided with a negative electrode mixture was cut into a rectangular shape having a length of 380 mm and a width of 52 mm, rolled, and heat-treated at 400 ° C. for 10 hours in an argon atmosphere to sinter the negative electrode.
- the thickness of the sintered negative electrode was 56 ⁇ m.
- the negative electrode current collection tab which consists of a nickel flat plate 70 micrometers in thickness, 35 mm in length, and 4 mm in width was attached to the edge part of the negative electrode.
- non-aqueous electrolyte As a non-aqueous solvent, fluorinated cyclic carbonate 4-fluoro-1,3-dioxolan-2-one (FEC) and methyl ethyl carbonate (MEC) at 20:80 are prepared. In a mixed solvent mixed at a volume ratio, LiPF 6 is dissolved as a solute to a concentration of 1.0 mol / l, to which 0.4% by mass of carbon dioxide gas is dissolved, and linear diisocyanate is further added. A non-aqueous electrolyte was prepared by adding 1% by mass of 1,6-diisocyanatohexane (diisocyanate A) having 6 aliphatic hydrocarbon groups as the compound.
- diisocyanate A 1,6-diisocyanatohexane having 6 aliphatic hydrocarbon groups
- a lithium salt generally used in non-aqueous electrolyte secondary batteries can be used as the solute to be dissolved in the non-aqueous solvent.
- LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 or mixtures thereof can be used.
- lithium salts having an oxalato complex As an anion.
- lithium-bis (oxalato) borate or the like can be used as a lithium salt having such an oxalato complex as an anion.
- two separators made of a polyethylene porous body having a thickness of 22 ⁇ m, a length of 430 mm, and a width of 54.5 mm were used.
- the positive electrode 1 and the negative electrode 2 were disposed to face each other via the separator 3. These were wound at predetermined positions so as to be bent, and pressed to produce a flat electrode body 10.
- the positive electrode current collection tab 1 a and the negative electrode current collection tab 2 a provided on the positive electrode 1 and the negative electrode 2 were made to project from the flat electrode body 10.
- the flat electrode body 10 was housed in a battery case 20 made of an aluminum laminate film, and a non-aqueous electrolyte was added into the battery case 20.
- the positive electrode current collection tab 1a provided on the positive electrode 1 and the negative electrode current collection tab 2a provided on the negative electrode 2 were taken out of the battery container 20, and the opening of the battery container 20 was sealed.
- a non-aqueous electrolyte secondary battery with a design capacity of 950 mAh was produced.
- Example 2 In Example 2, in the preparation of the non-aqueous electrolyte in Example 1, the amount of 1,6-diisocyanatohexane (diisocyanate A), which is a linear diisocyanate compound to be added to the non-aqueous electrolyte, is 2% by mass. did.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 3 In Example 3, in the preparation of the non-aqueous electrolyte in Example 1, the amount of 1,6-diisocyanatohexane (diisocyanate A), which is a linear diisocyanate compound to be added to the non-aqueous electrolyte, is 5% by mass. did.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 4 in the preparation of the non-aqueous electrolyte in Example 1, the amount of 1,6-diisocyanatohexane (diisocyanate A), which is a linear diisocyanate compound to be added to the non-aqueous electrolyte, is 10% by mass. did.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 5 In Example 5, in the preparation of the non-aqueous electrolyte in Example 1, 0.1 mass of the amount of 1,6-diisocyanate hexane (diisocyanate A) which is a linear diisocyanate compound to be added to the non-aqueous electrolyte is used. I made it to%. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- diisocyanate A 1,6-diisocyanate hexane
- Example 6 in the preparation of the non-aqueous electrolyte in Example 1, 0.2 mass of the amount of 1,6-diisocyanate hexane (diisocyanate A), which is a linear diisocyanate compound to be added to the non-aqueous electrolyte, is used. I made it to%.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 7 In Example 7, in the preparation of the non-aqueous electrolyte in Example 1, 0.5 mass of the amount of 1,6-diisocyanate hexane (diisocyanate A) which is a linear diisocyanate compound to be added to the non-aqueous electrolyte I made it to%.
- diisocyanate A 1,6-diisocyanate hexane
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Comparative example 1 In Comparative Example 1, in the preparation of the non-aqueous electrolyte in Example 1, the non-aqueous electrolyte was not added with 1,6-diisocyanatohexane (diisocyanate A) which is a linear diisocyanate compound. That is, a mixed solvent of 4-fluoro-1,3-dioxolan-2-one (FEC) of fluorinated cyclic carbonate and methyl ethyl carbonate (MEC) mixed at a volume ratio of 20:80 A solution obtained by dissolving 6 to a concentration of 1.0 mol / l was used. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- FEC 4-fluoro-1,3-dioxolan-2-one
- MEC methyl ethyl carbonate
- Comparative example 2 In Comparative Example 2, in the preparation of the non-aqueous electrolyte in Example 1, vinylene carbonate (VCA) was used instead of the non-aqueous electrolyte in place of 1,6-diisocyanate hexane (diisocyanate A) which is a linear diisocyanate compound. 2 mass% was added. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- VCA vinylene carbonate
- diisocyanate A 1,6-diisocyanate hexane
- Comparative example 3 In Comparative Example 3, as the non-aqueous electrolyte, unfluorinated cyclic carbonate 1,3-dioxolan-2-one (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 20:80. in a mixed solvent obtained by, it was used by dissolving LiPF 6 as a solute at a concentration of 1.0 mol / l. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- EC unfluorinated cyclic carbonate 1,3-dioxolan-2-one
- MEC methyl ethyl carbonate
- Comparative example 4 In Comparative Example 4, as the non-aqueous electrolytic solution, unfluorinated cyclic carbonate 1,3-dioxolan-2-one (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 20:80. In which the concentration of 1.0 mol / l of LiPF 6 is dissolved as a solute in the mixed solvent, and 2% by mass of 1,6-diisocyanate hexane (diisocyanate A) which is a linear diisocyanate compound The one added was used. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- EC unfluorinated cyclic carbonate 1,3-dioxolan-2-one
- MEC methyl ethyl carbonate
- a negative electrode When producing a negative electrode, it consists of Cu-Ni-Si-Mg (Ni: 3 wt%, Si: 0.65 wt%, Mg 0.15 wt%) alloy foil with a surface roughness Ra of 0.3 ⁇ m and a thickness of 26 ⁇ m.
- a negative electrode current collector was used. After irradiating both sides of this negative electrode current collector with an ion beam of Ar at a pressure of 0.05 Pa and an ion current density of 0.27 mA / cm 2 , using a single crystal silicon as a deposition material, a silicon thin film is formed by an electron beam deposition method. It formed.
- the cross section of the negative electrode current collector on which the silicon thin film was formed was observed by SEM, and the film thickness was measured.
- a silicon thin film having a thickness of about 10 ⁇ m was formed on both sides of the negative electrode current collector.
- Raman spectroscopy a peak near a wavelength of 480 cm -1 was detected, but a peak near 520 cm -1 was not detected, so this silicon thin film is amorphous silicon. It was found to be a thin film.
- a thin film of silicon thin film formed on both sides of the negative electrode current collector is cut out in a rectangular shape having a length of 380 mm and a width of 52 mm, and the negative electrode current collection tab is attached to this to prepare a negative electrode. did.
- a non-aqueous electrolyte secondary battery having a design capacity of 600 mAh was produced in the same manner as in Example 1 except that the positive electrode, the negative electrode, and the non-aqueous electrolytic solution produced as described above were used.
- the amount of absorbed Li per unit area of the negative electrode in the charged state is A
- the negative electrode utilization (%) shown by (A / B) ⁇ 100 was 40% in all cases.
- each of the non-aqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 that were initially charged and discharged were charged to a constant current of 950 mA up to 4.2 V at room temperature conditions of 25 ° C. Further, after performing constant-voltage charging to a current value of 47 mA at a constant voltage of 4.2 V, discharging was performed to a constant current of 950 mA to 2.75 V. And charge and discharge of 150 cycles were repeatedly performed by making this into 1 cycle.
- Capacity retention rate (Q150 / Q1) x 100
- each of the non-aqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 4 initially charged and discharged is charged to a constant current of 950 mA to 4.2 V under high temperature conditions of 45 ° C. Furthermore, after making constant-voltage charge until the electric current value will be 47 mA with the constant voltage of 4.2 V, it was made to discharge to 2.75 V by the constant current of 950 mA. And charge and discharge of 150 cycles were repeatedly performed by making this into 1 cycle.
- the nonaqueous electrolyte secondary battery of Comparative Example 5 having a design capacity of 600 mAh is charged to 4.2 V at a constant current of 120 mA under a room temperature condition of 25 ° C., and further a constant voltage of 4.2 V Constant voltage charging until the current value reaches 30 mA. Thereafter, the battery was discharged to 2.75 V at a constant current of 120 mA to perform initial charge and discharge.
- the non-aqueous electrolyte secondary battery of Comparative Example 5 charged and discharged in the initial stage is charged to 4.2 V with a constant current of 600 mA under room temperature conditions of 25 ° C., and further with a current of 4.2 V.
- the battery was discharged to 2.75 V at a constant current of 600 mA.
- charge and discharge of 150 cycles were repeatedly performed by making this into 1 cycle.
- the discharge capacity Q1 of the first cycle and the discharge capacity Q150 of the 150th cycle are determined for the non-aqueous electrolyte secondary battery of Comparative Example 5, respectively, and the capacity maintenance of the 150th cycle at a room temperature of 25 ° C. The rate was determined.
- the nonaqueous electrolyte secondary battery of Comparative Example 5 charged and discharged in the initial stage is charged to 4.2 V with a constant current of 600 mA under high temperature conditions of 45 ° C., and the current value is obtained with a constant voltage of 4.2 V.
- the battery was charged to a constant voltage of 30 mA and then discharged to a voltage of 2.75 V at a constant current of 600 mA. And charge and discharge of 150 cycles were repeatedly performed by making this into 1 cycle.
- the discharge capacity Q1 of the first cycle and the discharge capacity Q150 of the 150th cycle are determined for the non-aqueous electrolyte secondary battery of this comparative example 5 as well, and the capacity maintenance of the 150th cycle under high temperature conditions of 45 ° C. The rate was determined.
- the index of the capacity retention ratio of the 150th cycle under the room temperature condition of 25 ° C. in the non-aqueous electrolyte secondary battery in Example 1 as the cycle life 100 is each index of Examples 1 to 5 and Comparative Examples 1 to 5.
- the cycle life of the water electrolyte secondary battery at room temperature conditions of 25 ° C. and high temperature conditions of 45 ° C. was determined, and the results are shown in Table 1.
- the cycle life at room temperature is higher than that at high temperature.
- the cycle life was similar cycle life.
- nonaqueous electrolyte secondary batteries of Comparative Examples 1 and 2 have higher temperature conditions than the nonaqueous electrolyte secondary batteries of Comparative Examples 3 and 4 using the nonaqueous electrolytic solution not containing fluorinated cyclic carbonate. The cycle life has been deteriorated.
- the diisocyanate compound was added to the non-aqueous electrolyte containing fluorinated cyclic carbonate Even if not, the cycle life at room temperature and the cycle life at high temperature were comparable.
- the diisocyanate compound to the non-aqueous electrolytic solution containing fluorinated cyclic carbonate, it is suppressed that the cycle life under high temperature conditions is reduced.
- the silicon powder of the negative electrode active material and the binder It turned out that it is an effect peculiar to the non-aqueous electrolyte secondary battery using the negative electrode which apply
- Example 8 in the preparation of the non-aqueous electrolyte in Example 1, 1,4-diisocyanatobutane in which the number of aliphatic hydrocarbon groups is 4 as a linear diisocyanate compound to be added to the non-aqueous electrolyte 1 mass% of (diisocyanate B) was added.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 9 In Example 9, in the preparation of the non-aqueous electrolyte in Example 1, 1,8-diisocyanate octane in which the number of aliphatic hydrocarbon groups is 8 as a linear diisocyanate compound to be added to the non-aqueous electrolyte.
- a non-aqueous electrolyte secondary battery having a design capacity of 950 mAh was produced in the same manner as in Example 1 except that 1% by mass of (Diisocyanate C) was added, except for this.
- Example 10 1,12-diisocyanate dodecane in which the number of aliphatic hydrocarbon groups is 12 as a linear diisocyanate compound to be added to the non-aqueous electrolyte in the preparation of the non-aqueous electrolyte in Example 1. (Diisocyanate D) was added at 1% by mass. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 11 In Example 11, in the preparation of the non-aqueous electrolyte in Example 1, as the diisocyanate compound to be added to the non-aqueous electrolyte, the diisocyanate compound represented by the chemical formula (3) and the diisocyanate compound represented by the chemical formula (4) are 1% by mass of diisocyanate E mixed in a ratio of 1: 1 was added. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Example 12 In Example 12, in preparation of the non-aqueous electrolyte in Example 1, 1 mass% of diisocyanate F shown by Chemical formula (5) was added as a diisocyanate compound added to a non-aqueous electrolyte. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Comparative example 6 In Comparative Example 6, in preparation of the non-aqueous electrolyte in Example 1, 1 mass% of hexyl isocyanate having one isocyanate group was added to the non-aqueous electrolyte. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Comparative example 7 In Comparative Example 7, 1 mass% of diisocyanate G represented by the chemical formula (7) was added as a diisocyanate compound to be added to the non-aqueous electrolyte in preparation of the non-aqueous electrolyte in Example 1.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Comparative example 8 In Comparative Example 8, in preparation of the non-aqueous electrolyte in Example 1, 1 mass% of diisocyanate H represented by the chemical formula (8) was added as a diisocyanate compound to be added to the non-aqueous electrolyte. A nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- Comparative example 9 In Comparative Example 9, 1 mass% of diisocyanate I represented by the chemical formula (9) was added as a diisocyanate compound to be added to the non-aqueous electrolyte in the preparation of the non-aqueous electrolyte in Example 1.
- a nonaqueous electrolyte secondary battery with a design capacity of 950 mAh was produced in the same manner as in Example 1 except for the above.
- the non-aqueous electrolyte contains fluorinated cyclic carbonate and a diisocyanate compound represented by the general formula (1)
- the nonaqueous electrolyte secondary batteries of Examples 1 and 8 to which certain diisocyanates A to F were added had cycles at room temperature conditions of 25 ° C., as compared with the nonaqueous electrolyte secondary batteries of Comparative Examples 6 to 9. The life was increased, and the cycle life at high temperature conditions of 45 ° C. was also improved.
- the nonaqueous electrolyte secondary batteries of Examples 1, 8 to 12 will be examined.
- Each of the non-aqueous electrolyte secondary batteries of Examples 1, 9 and 10 in which diisocyanates A, C and D in which the number of linear aliphatic hydrocarbon groups in the diisocyanate compound is 6 or more are added are linear aliphatic
- the cycle life under the high temperature condition of 45 ° C. was higher than that of the nonaqueous electrolyte secondary battery of Example 8 to which the diisocyanate B having 4 group hydrocarbon groups was added. Therefore, it is preferable to use a diisocyanate compound in which the number of linear aliphatic hydrocarbon groups in the diisocyanate compound is 6 or more.
- the nonaqueous electrolyte secondary battery of Example 11 in which diisocyanate E having a side chain exists in the aliphatic hydrocarbon group in the diisocyanate compound is added, and Example in which diisocyanate F in which an aromatic hydrocarbon group exists is added.
- the cycle life at a high temperature condition of 45 ° C. was lower than that of the non-aqueous electrolyte secondary battery of Example 8. This is because diisocyanates E and F have a large influence of steric hindrance, so that the reaction between the negative electrode and the non-aqueous electrolyte can not be sufficiently suppressed, and hence the cycle life at 45 ° C. is considered to be low. .
- Example 13 In manufacturing the positive electrode of Example 1, the thickness of the positive electrode is 151 ⁇ m, the amount of the positive electrode mixture on the positive electrode current collector is 51 mg / cm 2 , and the packing density of the positive electrode mixture is 3.75 g / cm.
- the positive electrode was manufactured by changing only the amount of the positive electrode mixture slurry to be applied to the positive electrode current collector so as to be cc.
- the amount of the negative electrode mixture slurry applied to the negative electrode current collector was changed by 4.9 mg / cm 2 to produce the negative electrode.
- the thickness of the sintered negative electrode was 40 ⁇ m.
- Example 13 had a design capacity of 1060 mAh and a negative electrode utilization rate (%) of 45%.
- the non-aqueous electrolyte secondary battery of Example 13 is charged to 4.2 V at a constant current of 212 mA under a room temperature condition of 25 ° C., and the current value becomes 53 mA at a constant voltage of 4.2 V. It was charged up to constant voltage. Thereafter, the battery was discharged to 2.75 V with a constant current of 212 mA to perform initial charge and discharge.
- the non-aqueous electrolyte secondary battery of Example 13 thus initially charged and discharged is charged to 4.2 V at a constant current of 1060 mA under a room temperature condition of 25 ° C., and further a constant voltage of 4.2 V
- the battery was charged at a constant voltage until the current value reached 53 mA, and then discharged at a constant current of 1060 mA to 2.75V.
- charge and discharge of 150 cycles were repeated with one cycle as this, and the capacity retention ratio of 150 cycles at a room temperature of 25 ° C. in the non-aqueous electrolyte secondary battery of Example 13 was determined.
- the non-aqueous electrolyte secondary battery of Example 13 charged and discharged in the initial stage is charged to 4.2 V with a constant current of 1060 mA under high temperature conditions of 45 ° C., and further the current value is obtained with a constant voltage of 4.2 V
- the constant voltage charge was performed until 53 mA was reached, and then the battery was discharged to 2.75 V with a constant current of 1060 mA.
- 150 cycles of charge and discharge were repeatedly performed with one cycle as this cycle, and the capacity retention ratio of the 150th cycle under the high temperature condition of 45 ° C. in the nonaqueous electrolyte secondary battery of Example 13 was determined.
- the thickness of the positive electrode is 159 ⁇ m
- the amount of the positive electrode mixture on the positive electrode current collector is 54 mg / cm 2
- the packing density of the positive electrode mixture is 3.75 g / cm. Only the amount of the positive electrode material mixture slurry to be applied to the positive electrode current collector was changed so as to be cc, to manufacture a positive electrode.
- the amount of the negative electrode mixture slurry applied to the negative electrode current collector was changed by 3.6 mg / cm 2 to produce the negative electrode.
- the thickness of the sintered negative electrode was 40 ⁇ m.
- Example 10 a non-aqueous electrolyte secondary battery was produced.
- the non-aqueous electrolyte secondary battery of Comparative Example 10 had a design capacity of 1140 mAh and a negative electrode utilization rate (%) of 63%.
- the non-aqueous electrolyte secondary battery of Comparative Example 10 is charged to 4.2 V at a constant current of 228 mA under a room temperature condition of 25 ° C., and the current value becomes 48 mA at a constant voltage of 4.2 V. It was charged up to constant voltage. Thereafter, it was discharged to 2.75 V at a constant current of 228 mA to perform initial charge and discharge.
- the non-aqueous electrolyte secondary battery of Comparative Example 10 which was initially charged and discharged in this manner, is charged to 4.2 V with a constant current of 1140 mA under a room temperature condition of 25 ° C., and further constant voltage of 4.2 V
- the battery was charged at a constant voltage until the current value reached 57 mA, and then discharged at a constant current of 1140 mA to 2.75V.
- charge and discharge of 150 cycles were repeated with one cycle as this, and the capacity retention ratio of 150 cycles at room temperature of 25 ° C. in the non-aqueous electrolyte secondary battery of Comparative Example 10 was determined.
- the nonaqueous electrolyte secondary battery of Comparative Example 10 which was initially charged and discharged, is charged to 4.2 V with a constant current of 1140 mA at a high temperature condition of 45 ° C., and the current value is further obtained with a constant voltage of 4.2 V Were charged to a constant voltage of 57 mA, and then discharged to a voltage of 2.75 V at a constant current of 1140 mA. Then, 150 cycles of charge and discharge were repeatedly performed by setting this as one cycle, and the capacity retention ratio of the 150th cycle under the high temperature condition of 45 ° C. in the nonaqueous electrolyte secondary battery of Comparative Example 10 was determined.
- the index of the capacity retention ratio at 150th cycle under the room temperature condition of 25 ° C. in the non-aqueous electrolyte secondary battery of Example 1 as the cycle life 100 is each non-aqueous electrolyte secondary of each of Example 13 and Comparative Example 10.
- the cycle life of the battery at room temperature of 25 ° C. and high temperature of 45 ° C. was determined, and the results are shown in Table 3.
- the non-aqueous electrolyte secondary battery of Comparative Example 10 in which the negative electrode utilization rate (%) became 63% was the non-aqueous electrolyte secondary battery of Examples 1, 13 in which the negative electrode utilization rate (%) became 45% or less.
- the cycle life of both the room temperature condition of 25 ° C. and the high temperature condition of 45 ° C. was significantly reduced as compared to the secondary battery. This is because when the charge / discharge depth is deep as in the non-aqueous electrolyte secondary battery of Comparative Example 10, the expansion / contraction of silicon becomes large and many new active surfaces appear, and the active surface and the electrolyte The reaction becomes excessive. For this reason, it is considered that charging and discharging can not be stably performed.
- Comparative example 11 In Comparative Example 11, the same non-aqueous electrolyte as in Comparative Example 1 in which diisocyanate A was not added was used as the non-aqueous electrolyte, while using the positive electrode and the negative electrode produced as described below.
- the thickness of the positive electrode is 148 ⁇ m
- the amount of the positive electrode mixture on the positive electrode collector is 49.8 mg / cm 2
- the packing density of the positive electrode mixture is 3.3. Only the amount of the positive electrode mixture slurry applied to the positive electrode current collector was changed to 75 g / cc to fabricate a positive electrode.
- artificial graphite with an average particle diameter of 20 ⁇ m was used as the negative electrode active material.
- a negative electrode active material slurry and a styrene-butadiene rubber as a binder were mixed in an aqueous solution in which carboxymethyl cellulose, which is a thickener, was dissolved in water as a dispersion medium, to prepare a negative electrode mixture slurry.
- the mass ratio of the negative electrode active material, the binder, and the thickener was 97.5: 1: 1.5.
- an electrolytic copper foil having a thickness of 9 ⁇ m, a length of 317 mm, and a width of 52 mm was used.
- the negative electrode mixture slurry was applied to one side of the negative electrode current collector with a length of 284 mm and a width of 52 mm, and to the opposite side with a length of 226 mm and a width of 52 mm. After drying this, it was made to roll and the negative electrode was produced.
- the amount of the negative electrode mixture in the portion where the negative electrode mixture was applied to both surfaces of the negative electrode current collector was 19.3 mg / cm 2 , and the thickness of the negative electrode in this portion was 130 ⁇ m. .
- Example 11 a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
- the non-aqueous electrolyte secondary battery of Comparative Example 11 had a design capacity of 830 mAh.
- Comparative example 12 In Comparative Example 12, in the non-aqueous electrolyte secondary battery in Comparative Example 11, the same non-aqueous electrolyte as in Example 1 to which 1% by mass of diisocyanate A was added was used as the non-aqueous electrolyte. A nonaqueous electrolyte secondary battery having a designed capacity of 830 mAh was produced in the same manner as in Comparative Example 11 except for the above.
- each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12 is charged to 4.2 V at a constant current of 116 mA under a room temperature condition of 25 ° C., and further has a current value of 41 mA at a constant voltage of 4.2 V The constant voltage charge was made until it became. Thereafter, the battery was discharged to 2.75 V at a constant current of 116 mA to perform initial charge and discharge.
- each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12 initially charged and discharged is charged to 4.2 V with a constant current of 830 mA under room temperature conditions of 25 ° C., respectively, and further 4.2 V
- the battery was discharged at a constant current of 830 mA to 2.75V.
- 150 cycles of charge and discharge were repeatedly performed by setting this as one cycle, and the capacity retention ratio at 150th cycle under the room temperature condition of 25 ° C. in each of the nonaqueous electrolyte secondary batteries of Comparative Examples 11 and 12 was determined.
- each non-aqueous electrolyte secondary battery of Comparative Examples 11 and 12 initially charged and discharged is charged to 4.2 V at a constant current of 830 mA at a high temperature condition of 45 ° C., and further a constant voltage of 4.2 V
- the battery was charged at a constant voltage until the current value reached 41 mA, and then discharged at a constant current of 830 mA to 2.75V.
- charge and discharge of 150 cycles were repeatedly performed with one cycle as this, and the capacity retention ratio of 150 cycles under the high temperature condition of 45 ° C. in each of the nonaqueous electrolyte secondary batteries of Comparative Examples 11 and 12 was determined.
- the index of the capacity retention of the 150th cycle under the room temperature condition of 25 ° C. in the non-aqueous electrolyte secondary battery of Comparative Example 11 as the cycle life 100 is the index in each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12.
- the cycle life at room temperature conditions of 25 ° C. and high temperature conditions of 45 ° C. was determined, and the results are shown in Table 4.
- the cycle life at a high temperature condition of 45 ° C. is significantly improved, in particular, It can be seen that this is a unique effect when using silicon and / or silicon alloy as the negative electrode active material.
- each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12 initially charged and discharged is charged to 4.2 V with a constant current of 830 mA under room temperature conditions of 25 ° C., respectively, and further 4.2 V
- the constant voltage charging was performed until the current value became 41 mA at a constant voltage.
- the battery was discharged to 2.75 V at a constant current of 830 mA, and the discharge capacity QL was determined.
- each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12 is charged to 4.2 V at a constant current of 830 mA under room temperature conditions of 25 ° C., and the current value is further reduced at a constant voltage of 4.2 V.
- the constant voltage charge was performed to 41 mA.
- the battery was discharged to 2.75 V with a high constant current of 2490 mA, and the discharge capacity QH at high current was determined.
- each of the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 is initially charged and discharged, and then charged to 4.2 V at a constant current of 950 mA under room temperature conditions of 25 ° C., respectively; Constant voltage charging was performed until the current value became 48 mA at a constant voltage of 2V. Thereafter, the battery was discharged to 2.75 V at a constant current of 950 mA, and the discharge capacity QL in each of the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 was determined.
- each of the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 is charged to 4.2 V with a constant current of 950 mA under room temperature conditions of 25 ° C., and the current is further applied with a constant voltage of 4.2 V. Constant voltage charging was performed until the value reached 48 mA. Then, it was discharged to 2.75 V with a high constant current of 2580 mA. Then, the discharge capacity QH in each of the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 discharged with a high current as described above was determined.
- each of the non-aqueous electrolyte secondary batteries of Comparative Examples 11 and 12 using artificial graphite as the negative electrode active material each of the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 using silicon as the negative electrode active material.
- the high-rate discharge characteristics were significantly reduced compared to the above. This is because when silicon is used as the negative electrode active material, lithium is charged and discharged from all directions to improve the charge and discharge characteristics, but when artificial graphite is used as the negative electrode active material, the orientation of the graphite is obtained. It is considered that the charge and discharge characteristics are lowered due to the
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
まず、CVD法、スパッタリング法、真空蒸着法、溶射法、めっき法等によりシリコンやシリコン合金を負極集電体上に形成した負極を用いた、上記のような非水電解質二次電池について検討した結果、このような非水電解質二次電池は、高温環境下において充放電させた場合にも、充放電サイクル特性が向上されたままであった。
このため、一般式(2)で表される直鎖状のジイソシアネート化合物としては、この式中における脂肪族炭化水素基の数xが4以上12以下であるものが好ましく、6以上12以下であるものがより好ましい。このようなジイソシアネート化合物として、具体的には、1,4-ジイソシアネートブタン、1,5-ジイソシアネートペンタン、1,6-ジイソシアネートヘキサン、1,7-ジイソシアネートへプタン、1,8-ジイソシアネートオクタン、1,9-ジイソシアネートノナン、1,10-ジイソシアネートデカン、1,11-ジイソシアネートウンデカン、1,12-ジイソシアネートドデカンなどを用いることができる。
[正極の作製]
正極を作製するにあたっては、正極活物質として、LiCoO2で表わされるコバルト酸リチウム(平均粒子径13μm,BET比表面積0.35m2/g)の表面にジルコニウムを固着させたものを用い、この正極活物質と、導電剤の炭素材料粉末と、結着剤のポリフッ化ビニリデンとが95:2.5:2.5の質量比になるようにし、これにN-メチル-2-ピロリドン溶液を加えて混練し、正極合剤スラリーを調製した。
負極を作製するにあたっては、負極活物質に平均粒子径が10μmのシリコン粉末(純度99.9%)を用いた。この負極活物質と、導電剤である黒鉛粉末と、結着剤であるガラス転移温度が295℃の熱可塑性ポリイミドとを、87:3:7.5の質量比になるようにして、これらにN-メチル-2-ピロリドン溶液を加え、これを混練して負極合剤スラリーを調製した。
非水電解液を作製するにあたっては、非水系溶媒として、フッ素化環状カーボネートの4-フルオロ-1,3-ジオキソラン-2-オン(FEC)と、メチルエチルカーボネート(MEC)とを20:80の体積比で混合させた混合溶媒に、溶質としてLiPF6を1.0mol/lの濃度になるように溶解させ、これに対して炭酸ガスを0.4質量%溶解させ、さらに直鎖状のジイソシアネート化合物で、脂肪族炭化水素基の数が6である1,6-ジイソシアネートヘキサン(ジイソシアネートA)を1質量%添加させて非水電解液を作製した。
実施例2においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を2質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例3においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を5質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例4においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を10質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例5においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を0.1質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例6においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を0.2質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例7においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)の量を0.5質量%にした。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例1においては、実施例1における非水電解液の作製において、非水電解液に直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)を添加させないようにした。すなわち、フッ素化環状カーボネートの4-フルオロ-1,3-ジオキソラン-2-オン(FEC)と、メチルエチルカーボネート(MEC)とを20:80の体積比で混合させた混合溶媒に、溶質としてLiPF6を1.0mol/lの濃度になるように溶解させただけのものを用いた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例2においては、実施例1における非水電解液の作製において、非水電解液に、直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)に代えて、ビニレンカーボネート(VC)を2質量%添加した。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例3においては、非水電解液として、フッ素化されていない環状カーボネートの1,3-ジオキソラン-2-オン(EC)と、メチルエチルカーボネート(MEC)とを20:80の体積比で混合させた混合溶媒に、溶質としてLiPF6を1.0mol/lの濃度になるように溶解させたものを用いた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例4においては、非水電解液として、フッ素化されていない環状カーボネートの1,3-ジオキソラン-2-オン(EC)と、メチルエチルカーボネート(MEC)とを20:80の体積比で混合させた混合溶媒に、溶質としてLiPF6を1.0mol/lの濃度になるように溶解させたものに、直鎖状のジイソシアネート化合物である1,6-ジイソシアネートヘキサン(ジイソシアネートA)を2質量%添加させたものを用いた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
[正極の作製]
実施例1における正極の作製において、正極の厚みが90μm、正極集電体上の正極合剤の量が28mg/cm2、正極合剤の充填密度が3.75g/ccになるように、正極集電体に塗布させる正極合剤スラリーの量だけを変更した。
負極を作製するにあたっては、表面粗さRaが0.3μmで、厚みが26μmのCu-Ni-Si-Mg(Ni:3wt%,Si:0.65wt%,Mg0.15wt%)合金箔からなる負極集電体を用いた。この負極集電体の両面に、Arのイオンビームを圧力0.05Pa、イオン電流密度0.27mA/cm2で照射した後、蒸着材料に単結晶シリコンを用い、電子ビーム蒸着法によりシリコン薄膜を形成した。
加えて、比較例2の非水電解質二次電池のように、負極表面に抵抗成分を形成すると考えられるビニレンカーボネート(VC)を添加した場合においても、高温条件におけるサイクル寿命が低下するのを抑制することはできなかった。
また、比較例1,2の非水電解質二次電池は、フッ素化環状カーボネートを含有させていない非水電解液を用いた比較例3,4の非水電質二次電池よりも、高温条件においてサイクル寿命が悪化していた。
実施例8においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物として、脂肪族炭化水素基の数が4である1,4-ジイソシアネートブタン(ジイソシアネートB)を1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例9においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物として、脂肪族炭化水素基の数が8である1,8-ジイソシアネートオクタン(ジイソシアネートC)を1質量%添加させるようにし、それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例10においては、実施例1における非水電解液の作製において、非水電解液に添加させる直鎖状のジイソシアネート化合物として、脂肪族炭化水素基の数が12である1,12-ジイソシアネートドデカン(ジイソシアネートD)を1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例11においては、実施例1における非水電解液の作製において、非水電解液に添加させるジイソシアネート化合物として、化学式(3)に示されるジイソシアネート化合物と化学式(4)に示されるジイソシアネート化合物とが1:1の割合で混合されたジイソシアネートEを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
実施例12においては、実施例1における非水電解液の作製において、非水電解液に添加させるジイソシアネート化合物として、化学式(5)に示されるジイソシアネートFを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例6においては、実施例1における非水電解液の作製において、非水電解液に、イソシアネート基が1つであるヘキシルイソシアネートを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例7においては、実施例1における非水電解液の作製において、非水電解液に添加させるジイソシアネート化合物として、化学式(7)に示されるジイソシアネートGを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例8においては、実施例1における非水電解液の作製において、非水電解液に添加させるジイソシアネート化合物として、化学式(8)に示されるジイソシアネートHを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
比較例9においては、実施例1における非水電解液の作製において、非水電解液に添加させるジイソシアネート化合物として、化学式(9)に示されるジイソシアネートIを1質量%添加させた。それ以外は、実施例1の場合と同様にして、設計容量が950mAhの非水電解質二次電池を作製した。
一方、ジイソシアネート化合物における脂肪族炭化水素基に側鎖が存在するジイソシアネートEを添加させた実施例11の非水電解質二次電池や、芳香族炭化水素基が存在するジイソシアネートFを添加させた実施例12の非水電解質二次電池においては、実施例8の非水電解質二次電池と比較しても、45℃の高温条件におけるサイクル寿命が低かった。これは、ジイソシアネートEおよびFでは、立体障害の影響が大きいため、負極と非水電解液とが反応するのを十分に抑制することができず、よって、45℃におけるサイクル寿命が低いと考えられる。
正極を作製するにあたっては、実施例1の正極の作製において、正極の厚みが151μm、正極集電体上の正極合剤の量が51mg/cm2、正極合剤の充填密度は3.75g/ccとなるように、正極集電体に塗布させる正極合剤スラリーの量だけを変更して、正極を作製した。
正極を作製するにあたっては、実施例1の正極の作製において、正極の厚みが159μm、正極集電体上の正極合剤の量が54mg/cm2、正極合剤の充填密度は3.75g/ccとなるように正極集電体に塗布させる正極合剤スラリーの量だけを変更して、正極を作製した。
比較例11においては、下記のようにして作製した正極と負極とを用いる一方、非水電解液としては、ジイソシアネートAが添加されていない比較例1と同じ非水電解液を使用した。
負極集電体は、厚み9μm,長さ317mm,幅52mmの電解銅箔を用いた。負極合剤スラリーを、負極集電体の片面には長さ284mm,幅52mmで塗布し、反対側の面には長さ226mm,幅52mmで塗布した。これを乾燥させた後、圧延させて負極を作製した。なお、この負極においては、負極集電体の両面に負極合剤が塗布された部分における負極合剤の量は19.3mg/cm2であり、またこの部分における負極の厚みは130μmであった。
比較例12においては、比較例11における非水電解質二次電池において、非水電解液として、ジイソシアネートAが1質量%添加された実施例1と同じ非水電解液を使用した。それ以外は、比較例11と同様にして、設計容量が830mAhになった非水電解質二次電池を作製した。
1 正極
1a 正極集電タブ
2 負極
2a 負極集電タブ
3 セパレータ
20 電池容器
Claims (10)
- 請求項2に記載の非水電解質二次電池において、前記の一般式(2)中におけるxが、4以上12以下である非水電解質二次電池。
- 請求項2に記載の非水電解質二次電池において、前記の一般式(2)中におけるxが、6以上12以下である非水電解質二次電池。
- 請求項1に記載の非水電解質二次電池において、前記のジイソシアネート化合物を、ジイソシアネート化合物を除く非水電解液に対して0.1~5質量%の範囲で含有させた非水電解質二次電池。
- 請求項1に記載の非水電解質二次電池において、前記の負極が、粒子状のシリコン及び/又はシリコン合金からなる負極活物質と結着剤とを含む負極合剤が負極集電体の表面に付与される共に、非酸化雰囲気中で上記の結着剤のガラス転移温度以上の温度で焼結されて構成されている非水電解質二次電池。
- 請求項1に記載の非水電解質二次電池において、前記の結着剤がポリイミドである非水電解質二次電池。
- 請求項9に記載の非水電解質二次電池において、前記のフッ素化環状カーボネートが、4-フルオロ-1,3-ジオキソラン-2-オンである非水電解質二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/059,770 US8802299B2 (en) | 2008-08-20 | 2009-08-04 | Non-aqueous electrolyte secondary battery |
EP09808172A EP2320499A1 (en) | 2008-08-20 | 2009-08-04 | Nonaqueous electrolyte secondary battery |
CN200980129790.0A CN102113161A (zh) | 2008-08-20 | 2009-08-04 | 非水电解质二次电池 |
JP2010525651A JP5538226B2 (ja) | 2008-08-20 | 2009-08-04 | 非水電解質二次電池 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-211569 | 2008-08-20 | ||
JP2008211569 | 2008-08-20 | ||
JP2009077924 | 2009-03-27 | ||
JP2009-077924 | 2009-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010021236A1 true WO2010021236A1 (ja) | 2010-02-25 |
Family
ID=41707114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/063772 WO2010021236A1 (ja) | 2008-08-20 | 2009-08-04 | 非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8802299B2 (ja) |
EP (1) | EP2320499A1 (ja) |
JP (1) | JP5538226B2 (ja) |
KR (1) | KR20110053418A (ja) |
CN (1) | CN102113161A (ja) |
WO (1) | WO2010021236A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012105404A1 (ja) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
WO2012108270A1 (ja) | 2011-02-10 | 2012-08-16 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
JP2012182130A (ja) * | 2011-02-10 | 2012-09-20 | Mitsubishi Chemicals Corp | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
JP2013051198A (ja) * | 2011-07-29 | 2013-03-14 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
EP2571088A1 (en) * | 2010-05-10 | 2013-03-20 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery, and non-aqueous electrolyte solution for non-aqueous electrolyte secondary battery |
JP2013206708A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
US20130309564A1 (en) * | 2011-01-31 | 2013-11-21 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
US20130323570A1 (en) * | 2011-02-28 | 2013-12-05 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP2014041820A (ja) * | 2012-07-27 | 2014-03-06 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
WO2014034078A1 (ja) * | 2012-08-31 | 2014-03-06 | 三洋電機株式会社 | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 |
WO2014157591A1 (ja) * | 2013-03-27 | 2014-10-02 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
WO2015046304A1 (ja) * | 2013-09-26 | 2015-04-02 | 宇部興産株式会社 | 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス |
JP2015197943A (ja) * | 2014-03-31 | 2015-11-09 | 三菱化学株式会社 | 非水系電解液、およびそれを用いた非水系電解液二次電池 |
JP2016173886A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社Gsユアサ | 非水電解質二次電池 |
JP2021015812A (ja) * | 2014-03-27 | 2021-02-12 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液二次電池 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011171108A (ja) * | 2010-02-18 | 2011-09-01 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP6201485B2 (ja) * | 2012-07-27 | 2017-09-27 | 三菱ケミカル株式会社 | 非水系電解液二次電池 |
CN104810506B (zh) * | 2014-09-15 | 2017-09-12 | 万向一二三股份公司 | 一种高能量密度的锂离子电池 |
US10916765B2 (en) | 2016-06-07 | 2021-02-09 | Navitas Systems, Llc | High loading electrodes |
US10991981B2 (en) * | 2016-12-22 | 2021-04-27 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
CN108963319B (zh) * | 2017-05-27 | 2021-05-25 | 中国科学院宁波材料技术与工程研究所 | 电解液添加剂、含添加剂的电解液及使用电解液的锂电池 |
US20210057755A1 (en) * | 2019-08-21 | 2021-02-25 | Graphenix Development, Inc. | Anodes for lithium-based energy storage devices |
WO2024049237A1 (ko) * | 2022-08-31 | 2024-03-07 | 주식회사 엘지에너지솔루션 | 비수 전해질 및 이를 포함하는 리튬 이차 전지 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002352797A (ja) * | 2001-05-29 | 2002-12-06 | Hitachi Maxell Ltd | 非水二次電池 |
JP2005228565A (ja) * | 2004-02-12 | 2005-08-25 | Sony Corp | 電解液および電池 |
JP2005317309A (ja) * | 2004-04-28 | 2005-11-10 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP2006086058A (ja) | 2004-09-17 | 2006-03-30 | Mitsubishi Chemicals Corp | 非水電解液二次電池及び非水電解液 |
JP2006164759A (ja) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | 電気化学デバイス用非水電解液 |
JP2007242411A (ja) | 2006-03-08 | 2007-09-20 | Sony Corp | 電池及び電解液組成物 |
JP2008053054A (ja) * | 2006-08-24 | 2008-03-06 | Sony Corp | 電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6905762B1 (en) * | 2001-02-13 | 2005-06-14 | The United States Of America As Represented By The Secretary Of The Army | Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same |
JP4895503B2 (ja) | 2004-12-28 | 2012-03-14 | 三洋電機株式会社 | リチウム二次電池 |
JP4635978B2 (ja) * | 2006-08-02 | 2011-02-23 | ソニー株式会社 | 負極及び二次電池 |
WO2009035054A1 (ja) * | 2007-09-12 | 2009-03-19 | Mitsubishi Chemical Corporation | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
-
2009
- 2009-08-04 WO PCT/JP2009/063772 patent/WO2010021236A1/ja active Application Filing
- 2009-08-04 CN CN200980129790.0A patent/CN102113161A/zh active Pending
- 2009-08-04 EP EP09808172A patent/EP2320499A1/en not_active Withdrawn
- 2009-08-04 US US13/059,770 patent/US8802299B2/en active Active
- 2009-08-04 KR KR1020117001519A patent/KR20110053418A/ko not_active Application Discontinuation
- 2009-08-04 JP JP2010525651A patent/JP5538226B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002352797A (ja) * | 2001-05-29 | 2002-12-06 | Hitachi Maxell Ltd | 非水二次電池 |
JP2005228565A (ja) * | 2004-02-12 | 2005-08-25 | Sony Corp | 電解液および電池 |
JP2005317309A (ja) * | 2004-04-28 | 2005-11-10 | Sanyo Electric Co Ltd | リチウム二次電池 |
JP2006086058A (ja) | 2004-09-17 | 2006-03-30 | Mitsubishi Chemicals Corp | 非水電解液二次電池及び非水電解液 |
JP2006164759A (ja) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | 電気化学デバイス用非水電解液 |
JP2007242411A (ja) | 2006-03-08 | 2007-09-20 | Sony Corp | 電池及び電解液組成物 |
JP2008053054A (ja) * | 2006-08-24 | 2008-03-06 | Sony Corp | 電池 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2571088A1 (en) * | 2010-05-10 | 2013-03-20 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery, and non-aqueous electrolyte solution for non-aqueous electrolyte secondary battery |
US9153841B2 (en) | 2010-05-10 | 2015-10-06 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery, and non-aqueous electrolyte solution for non-aqueous electrolyte secondary battery |
EP2571088A4 (en) * | 2010-05-10 | 2013-10-23 | Sanyo Electric Co | NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY, AND NONAQUEOUS ELECTROLYTE SOLUTION FOR NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY |
US11688881B2 (en) | 2011-01-31 | 2023-06-27 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
WO2012105404A1 (ja) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
US9653753B2 (en) | 2011-01-31 | 2017-05-16 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same |
CN103339784A (zh) * | 2011-01-31 | 2013-10-02 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
CN109148953A (zh) * | 2011-01-31 | 2019-01-04 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
CN103811815A (zh) * | 2011-01-31 | 2014-05-21 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
US20130309564A1 (en) * | 2011-01-31 | 2013-11-21 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
KR20140040284A (ko) | 2011-01-31 | 2014-04-02 | 미쓰비시 가가꾸 가부시키가이샤 | 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지 |
KR20140040285A (ko) | 2011-02-10 | 2014-04-02 | 미쓰비시 가가꾸 가부시키가이샤 | 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지 |
US9923238B2 (en) | 2011-02-10 | 2018-03-20 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same |
CN103762381A (zh) * | 2011-02-10 | 2014-04-30 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
JP2012182130A (ja) * | 2011-02-10 | 2012-09-20 | Mitsubishi Chemicals Corp | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
US11791499B2 (en) | 2011-02-10 | 2023-10-17 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same |
CN110010968A (zh) * | 2011-02-10 | 2019-07-12 | 三菱化学株式会社 | 非水电解液及使用该非水电解液的非水电解质二次电池 |
WO2012108270A1 (ja) | 2011-02-10 | 2012-08-16 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液二次電池 |
US11205802B2 (en) | 2011-02-10 | 2021-12-21 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same |
JP2012182131A (ja) * | 2011-02-10 | 2012-09-20 | Mitsubishi Chemicals Corp | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
EP3758124A1 (en) | 2011-02-10 | 2020-12-30 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte secondary battery |
US10476106B2 (en) | 2011-02-10 | 2019-11-12 | Mitsubishi Chemical Corporation | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same |
US20130323570A1 (en) * | 2011-02-28 | 2013-12-05 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP2013051198A (ja) * | 2011-07-29 | 2013-03-14 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2013206708A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
JP2014041820A (ja) * | 2012-07-27 | 2014-03-06 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いた非水系電解液電池 |
JPWO2014034078A1 (ja) * | 2012-08-31 | 2016-08-08 | 三洋電機株式会社 | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 |
WO2014034078A1 (ja) * | 2012-08-31 | 2014-03-06 | 三洋電機株式会社 | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 |
US9947965B2 (en) | 2013-03-27 | 2018-04-17 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same |
JPWO2014157591A1 (ja) * | 2013-03-27 | 2017-02-16 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
WO2014157591A1 (ja) * | 2013-03-27 | 2014-10-02 | 三菱化学株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
US10056614B2 (en) | 2013-09-26 | 2018-08-21 | Ube Industries, Ltd. | Polyimide binder for power storage device, electrode sheet using same, and power storage device |
JPWO2015046304A1 (ja) * | 2013-09-26 | 2017-03-09 | 宇部興産株式会社 | 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス |
WO2015046304A1 (ja) * | 2013-09-26 | 2015-04-02 | 宇部興産株式会社 | 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス |
JP2021015812A (ja) * | 2014-03-27 | 2021-02-12 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液二次電池 |
JP2015197943A (ja) * | 2014-03-31 | 2015-11-09 | 三菱化学株式会社 | 非水系電解液、およびそれを用いた非水系電解液二次電池 |
JP2016173886A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社Gsユアサ | 非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN102113161A (zh) | 2011-06-29 |
EP2320499A1 (en) | 2011-05-11 |
JPWO2010021236A1 (ja) | 2012-01-26 |
US8802299B2 (en) | 2014-08-12 |
JP5538226B2 (ja) | 2014-07-02 |
KR20110053418A (ko) | 2011-05-23 |
US20110151338A1 (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010021236A1 (ja) | 非水電解質二次電池 | |
JP4837614B2 (ja) | リチウム二次電池 | |
KR20150063956A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
JP5806660B2 (ja) | 非水電解質二次電池及び非水電解質二次電池用非水電解液 | |
JP5441221B2 (ja) | 非水電解質二次電池及び非水電解質二次電池用非水電解液 | |
KR101788561B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2015084026A1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
EP3346539A1 (en) | Electrolyte solution and lithium ion secondary battery | |
KR20170103505A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20150109669A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
US20100081063A1 (en) | Non-aqueous electrolyte secondary battery | |
KR20160093854A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20170106810A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101147200B1 (ko) | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 | |
KR101878920B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101181860B1 (ko) | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 | |
KR20170103507A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20120056675A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
KR101673178B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101084080B1 (ko) | 비수 전해질 이차전지 | |
KR101646702B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20160083818A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20160094338A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR20160093823A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
KR101849759B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980129790.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808172 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117001519 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010525651 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009808172 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13059770 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |