WO2014034078A1 - 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 - Google Patents
非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 Download PDFInfo
- Publication number
- WO2014034078A1 WO2014034078A1 PCT/JP2013/005013 JP2013005013W WO2014034078A1 WO 2014034078 A1 WO2014034078 A1 WO 2014034078A1 JP 2013005013 W JP2013005013 W JP 2013005013W WO 2014034078 A1 WO2014034078 A1 WO 2014034078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- sio
- electrolyte secondary
- battery
- nonaqueous electrolyte
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery.
- a non-aqueous electrolyte secondary battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and a high capacity. Widely used as a drive power source.
- the mobile information terminal has a tendency to further increase power consumption with enhancement of functions such as a video playback function and a game function, and the non-aqueous electrolyte secondary battery, which is a driving power source thereof, can be played back for a long time or improved in output. As an object, further increase in capacity and improvement in charge / discharge performance are strongly desired.
- lithium cobaltate as the positive electrode active material and graphite as the negative electrode active material, but it is difficult to further increase the capacity with these materials. It is. For this reason, development of an active material with a higher specific capacity is being promoted. For example, if it is a negative electrode active material, material development, such as a silicon alloy, is actively advanced. When such a material is used, the specific capacity is much higher than that of graphite, but the volume expansion is large and there are problems to be solved in terms of safety. Therefore, at present, development of an oxide negative electrode with less volume expansion and higher safety is prioritized.
- Patent Documents 2 and 3 describe the case where graphite is used alone as the negative electrode active material, and no consideration is given to the negative electrode obtained by mixing silicon oxide and graphite.
- the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode mixture layer comprising a negative electrode active material containing SiO x (0.8 ⁇ x ⁇ 1.2) and graphite, and the negative electrode mixture on at least one surface.
- nonaqueous electrolyte secondary battery according to the present invention will be described below.
- the nonaqueous electrolyte secondary battery in this invention is not limited to what was shown to the following form, In the range which does not change the summary, it can change suitably and can implement.
- Lithium cobaltate as a positive electrode active material, acetylene black as a conductive agent, polyvinylidene fluoride (PVdF) as a binder, and N-methyl-2-pyrrolidone (NMP) as a dispersion medium
- PVdF polyvinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- a material, a conductive agent, and a binder were added so that the mass ratio thereof was 95.0: 2.5: 2.5, and then kneaded to prepare a positive electrode slurry.
- this positive electrode slurry was applied to both sides of a positive electrode current collector made of aluminum foil, dried, then rolled with a rolling roller, and a positive electrode current collector tab was attached to produce a positive electrode.
- the packing density of the positive electrode was 3.60 g / cm 3 .
- DEC diethyl carbonate
- HMDI hexamethylene diisocyanate
- the negative electrode slurry is uniformly coated on both sides of a negative electrode current collector made of copper foil, dried, and then rolled with a rolling roller to a packing density of 1.60 g / cm 3 , and further the negative electrode current collector A negative electrode was produced by attaching a tab.
- the positive electrode and the negative electrode were wound so as to face each other with a separator made of a polyethylene microporous film having a thickness of 22 ⁇ m to produce a wound body.
- a glow box under an argon atmosphere the wound body is enclosed in an aluminum laminate together with the non-aqueous electrolyte so that a non-aqueous electrolyte secondary battery (thickness 3.6 mm, width 3.5 cm, A length of 6.2 cm) was produced.
- the nonaqueous electrolyte secondary battery was charged to 4.40 V and discharged to 2.75 V, the discharge capacity was 800 mAh.
- Example 1 A battery was produced in the same manner as in the embodiment for carrying out the invention.
- the battery thus produced is hereinafter referred to as battery A1.
- Example 2 A battery was fabricated in the same manner as in Example 1 except that the ratio of HMDI dissolved in DEC was 5% by mass during the surface treatment of SiO x . It was confirmed by gas chromatography that the entire amount of the HMDI had reacted. This was the same in Examples 3 to 6 described later. Further, the ratio of the coating film to SiO x was 6 mol%. The battery thus produced is hereinafter referred to as battery A2.
- Example 3 A battery was fabricated in the same manner as in Example 1 except that the ratio of HMDI dissolved in DEC was 10% by mass during the surface treatment of SiO x . The ratio of coating to SiO x was 12 mol%. The battery thus produced is hereinafter referred to as battery A3.
- Example 4 A battery was fabricated in the same manner as in Example 1 except that the ratio of HMDI dissolved in DEC was 15% by mass during the surface treatment of SiO x . The ratio of coating to SiO x was 18 mol%. The battery thus produced is hereinafter referred to as battery A4.
- Example 5 A battery was fabricated in the same manner as in Example 1 except that the ratio of HMDI dissolved in DEC was 20% by mass during the surface treatment of SiO x . The ratio of coating to SiO x was 24 mol%. The battery thus produced is hereinafter referred to as battery A5.
- Example 6 A battery was fabricated in the same manner as in Example 3 except that hexyl isocyanate was used in place of HMDI during the surface treatment of SiO x . The ratio of coating to SiO x was 18 mol%. The battery thus produced is hereinafter referred to as battery A6.
- Example 1 A battery was fabricated in the same manner as in Example 1 except that the SiO x surface treatment was not performed. The battery thus produced is hereinafter referred to as battery Z1.
- Example 2 A battery was fabricated in the same manner as in Example 1 except that the surface treatment of SiO x was not performed and 1.0 mass% of HMDI was added to the non-aqueous electrolyte.
- the battery thus produced is hereinafter referred to as battery Z2.
- Example 3 A battery was fabricated in the same manner as in Example 1 except that HMDI was not dissolved in DEC during the surface treatment of SiO x .
- the battery thus produced is hereinafter referred to as battery Z3.
- the batteries A1 to A6 have excellent cycle characteristics (high capacity retention after 50 cycles) and excellent high-temperature charge storage characteristics (less battery swelling) compared to the batteries Z1 and Z3.
- the capacity remaining rate is high).
- the battery A6 and the battery A4 have the same coating ratio with respect to SiO x (both are 18 mol%), the battery A6 is slightly different in cycle characteristics and high-temperature charge storage characteristics than the battery A4. Inferior. This is considered to be due to the following reasons.
- a urethane bond is formed by reacting an isocyanate group of HMDI or hexyl isocyanate with an OH group on the surface of SiO x before producing the negative electrode. Accordingly, since the coating (pseudo SEI) is formed on the SiO x surface can be suppressed from the SiO x and the electrolytic solution react during charging and discharging. As a result, the isolation of SiO x resulting from the increase in SEI can be suppressed, and the cycle characteristics are improved. In addition, since the reaction between the non-aqueous electrolyte and SiO x is suppressed, the high-temperature charge storage characteristics are also improved.
- the coating (pseudo SEI) is not formed on the SiO x surface, and thus the reaction between the SiO x and the non-aqueous electrolyte during charging / discharging cannot be suppressed. Therefore, since the isolation of SiO x resulting from the increase in SEI cannot be suppressed, cycle characteristics are deteriorated. In addition, since the reaction between the electrolytic solution and SiO x cannot be suppressed, the high-temperature charge storage characteristics also deteriorate.
- the film having a crosslinked structure on SiO x is formed on the surface of the electrolyte
- the reaction between the liquid and SiO x is sufficiently suppressed.
- the surface treatment of the SiO x in the case of using a compound containing only one isocyanate group, since the film formed on the SiO x surface does not have a crosslinked structure, with the electrolyte solution and the SiO x The degree of reaction inhibition is slightly reduced.
- battery A4 treated with HMDI which is a compound containing two or more isocyanate groups, is superior in cycle characteristics and high-temperature charge storage characteristics as compared with battery A6 treated with a compound containing only one isocyanate group. .
- R is C n H 2n (n is an integer of 1 or more)]
- the cycle characteristics and the high temperature charge storage characteristics are substantially equal. Therefore, it can be seen that the effect of the present invention is not exhibited by immersing SiO x in an organic solvent, but by reacting HMDI or hexyl isocyanate with SiO x . Furthermore, it is recognized that the cycle characteristics of the battery Z2 are lower than those of the batteries Z1 and Z3. This is presumably because HMDI is added to the non-aqueous electrolyte in the battery Z2, so that a coating derived from HMDI is also formed on the carbon, which causes capacity deterioration.
- the ratio of the coating film to SiO x is preferably 6 mol% or more and 18 mol% or less.
- the content of SiO x in the negative electrode mixture is preferably 0.5% by mass or more and 25% by mass or less, and particularly preferably 1.0% by mass or more and 20% by mass or less. If the content of SiO x is too small, the negative electrode capacity may not be increased. On the other hand, if the content of SiO x is too large, the expansion in the negative electrode will increase, so that the negative electrode mixture layer is peeled off and the negative electrode current collector is collected. The body may be deformed and the cycle characteristics may be deteriorated.
- lithium transition metal composite oxide used in the present invention examples include the above lithium cobaltate, nickel-cobalt-lithium manganate, nickel-cobalt-aluminum lithium, nickel-lithium cobaltate, nickel-lithium manganate
- Well-known materials such as lithium and transition metal oxides such as lithium nickelate and lithium manganate, and olivic acid compounds such as iron and manganese can be used.
- solvents and additives conventionally used in non-aqueous electrolyte secondary batteries can be used at the same time.
- cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid
- esters such as ethyl and ⁇ -butyrolactone
- compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,4 -Compounds containing ethers such as dioxane and 2-methyltetrahydrofuran, butyronitrile
- a solvent in which a part of these H is substituted with F is preferably used.
- these can be used individually or in combination of several, The solvent which combined these with the compound containing a small amount of nitriles and the compound containing ether is preferable.
- a solute used in the non-aqueous electrolyte a known lithium salt that is conventionally used in a non-aqueous electrolyte secondary battery can be used.
- a lithium salt a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used.
- LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Lithium salts such as LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 and mixtures thereof can be used.
- LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.
- a lithium salt having an oxalato complex as an anion can also be used.
- the lithium salt having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2 ⁇ is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer).
- the said solute may be used not only independently but in mixture of 2 or more types.
- the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte.
- the concentration of the solute is desirably 1.0 to 1.6 mol per liter of the electrolyte.
- the separator conventionally used can be used. Specifically, not only a separator made of polyethylene, but also a material in which a layer made of polypropylene is formed on the surface of a polyethylene layer, or a material in which a resin such as an aramid resin is applied to the surface of a polyethylene separator is used. Also good.
- a layer made of an inorganic filler that has been conventionally used can be formed.
- the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surfaces are treated with hydroxide or the like.
- the filler layer can be formed by directly applying a filler-containing slurry to a positive electrode, a negative electrode, or a separator, or by attaching a sheet formed of a filler to the positive electrode, the negative electrode, or the separator. it can.
- the present invention can be expected to be deployed in, for example, driving power sources for mobile information terminals such as mobile phones, notebook computers, smartphones, etc., driving power sources for high output such as electric vehicles, HEVs and electric tools, and power sources related to power storage.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、その駆動電源である非水電解質二次電池には長時間再生や出力改善等を目的として、更なる高容量化や充放電性能の向上が強く望まれるところである。
また、電解液にイソシアナート基含有化合物を添加することで負極上に良好なSEIを生成し、これによって、サイクル特性の向上や、高温保存時の膨れ抑制を図る提案がされている(下記特許文献2、3)。
正極活物質としてのコバルト酸リチウムに、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)と、分散媒としてのN-メチル-2-ピロリドン(NMP)とを、正極活物質と導電剤と結着剤との質量比が95.0:2.5:2.5の割合になるように加えた後に混練して、正極スラリーを調製した。次に、この正極スラリーを、アルミニウム箔から成る正極集電体の両面に塗布、乾燥した後、圧延ローラにより圧延し、正極集電タブを取り付けることで、正極を作製した。なお、正極の充填密度は3.60g/cm3とした。
ヘキサメチレンジイソシアナート(HMDI)が1質量%溶解されたジエチルカーボネート(DEC)溶液200gを調製し、当該溶液にSiOx(x=0.93、平均粒子径5.0μm)を44g加えて室温で10分間攪拌させた後、吸引濾過した。次に、SiOxをDECで洗浄した後、得られた粉末を真空乾燥し、非水電解液の還元反応を抑制する被膜(イソシアナート基を含む化合物に由来する被膜)が表面に形成されたSiOx(表面が化学修飾されたSiOx)を得た。尚、ガスクロマトグラフィーにより、上記HMDIが全量反応していることを確認した。また、SiOxに対する被膜の割合は1モル%であった。
負極活物質としての上記SiOxと、増粘剤であるCMC(カルボキシメチルセルロースナトリウム)とを純水に溶かした水溶液中に、負極活物質として人造黒鉛と、結着剤としてのSBR(スチレン-ブタジエンゴム)とを加えた後に混練して、負極スラリーを調製した。この際、負極活物質(人造黒鉛とSiOxとの総和)と結着剤と増粘剤との質量比は98:1:1の比率となるように規定し、また、人造黒鉛とSiOxとの質量比は95:5の比率となるように規定した。次に、上記負極スラリーを銅箔から成る負極集電体の両面に均一に塗布し、乾燥させた後、充填密度1.60g/cm3になるように圧延ローラにより圧延し、更に負極集電タブを取り付けることで、負極を作製した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF6)を1.0モル/リットルの濃度になるように溶解させるとともに、ビニレンカーボネート(VC)を1.0質量%添加して、非水電解液を調製した。
上記正極及び負極を、厚さ22μmでポリエチレン微多孔膜からなるセパレータを介して対向するように巻取って巻取り体を作製した。次に、アルゴン雰囲気下のグローボックス中にて、該巻取り体を上記非水電解液とともにアルミニウムラミネート内に封入することにより非水電解質二次電池(厚さ3.6mm、幅3.5cm、長さ6.2cm)を作製した。当該非水電解質二次電池を4.40Vまで充電し、2.75Vまで放電したときの放電容量は800mAhであった。
上記発明を実施するための形態と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A1と称する。
SiOxの表面処理の際、DECに溶解したHMDIの割合を5質量%としたこと以外は上記実施例1と同様にして電池を作製した。尚、ガスクロマトグラフィーにより、上記HMDIが全量反応していることを確認した。このことは、後述の実施例3~6においても同様であった。また、SiOxに対する被膜の割合は6モル%であった。
このようにして作製した電池を、以下、電池A2と称する。
SiOxの表面処理の際、DECに溶解したHMDIの割合を10質量%としたこと以外は上記実施例1と同様にして電池を作製した。尚、SiOxに対する被膜の割合は12モル%であった。
このようにして作製した電池を、以下、電池A3と称する。
SiOxの表面処理の際、DECに溶解したHMDIの割合を15質量%としたこと以外は上記実施例1と同様にして電池を作製した。尚、SiOxに対する被膜の割合は18モル%であった。
このようにして作製した電池を、以下、電池A4と称する。
SiOxの表面処理の際、DECに溶解したHMDIの割合を20質量%としたこと以外は上記実施例1と同様にして電池を作製した。尚、SiOxに対する被膜の割合は24モル%であった。
このようにして作製した電池を、以下、電池A5と称する。
SiOxの表面処理の際、HMDIに代えてヘキシルイソシアナートを用いたこと以外は上記実施例3と同様にして電池を作製した。尚、SiOxに対する被膜の割合は18モル%であった。
このようにして作製した電池を、以下、電池A6と称する。
SiOxの表面処理を行わなかったこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z1と称する。
SiOxの表面処理を行なわず、且つ、非水電解液にHMDIを1.0質量%添加したこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z2と称する。
SiOxの表面処理の際、DECにHMDIを溶解させなかったこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Z3と称する。
上記電池A1~A6、Z1~Z3を、下記に示す条件で充放電等を行って、サイクル特性(50サイクル後の容量維持率であって、サイクル初期の特性)と、高温連続充電特性(ガス発生による電池膨れ量、容量残存率)とを調べたので、それらの結果を表1に示す。
1.0It(800mA)電流で電池電圧が4.4Vとなるまで定電流充電を行った後、4.4Vの定電圧で電流値が40mAとなるまで充電を行った。10分間休止した後、1.0It(800mA)電流で電池電圧が2.75Vとなるまで定電流放電を行った。尚、試験は室温(25℃)で行った。
50サイクル後の容量維持率(%)=[50サイクル目の放電容量/1サイクル目の放電容量]×100・・・(1)
室温にて、上記サイクル特性試験に示した充電条件と同様の条件で4.4Vまで充電した後、80℃の恒温槽に入れて48時間放置した。その後、恒温槽から取り出して室温まで冷却し、電池厚みを測定し、下記(2)式から電池膨れ量を算出した。更に、室温にて、上記サイクル特性試験に示した放電条件と同様の条件で2.75Vまで放電して放電容量を測定し、下記(3)式から容量残存率を求めた。
電池膨れ量(mm)=充電保存後の電池厚み-充電保存前の電池厚み・・・(2)
容量残存率(%)=[充電保存後の放電容量/充電保存前の放電容量]×100・・・(3)
更に、電池Z2は電池Z1、Z3に比べて、サイクル特性が低下していることが認められる。これは、電池Z2では非水電解液にHMDIを添加しているので、炭素にもHMDI由来の被膜ができ、これによって、容量劣化が生じるためと考えられる。
加えて、電池A1~A5を比較すると、電池A2~A4は電池A1、A5に比べて、サイクル特性と高温充電保存特性とに優れることが認められる。したがって、SiOxに対する被膜の割合は6mol%以上18mol%以下であることが好ましい。
(1)2以上のイソシアナート基を含む化合物としては、上記ヘキサメチレンジイソシアナートの他、テトラメチレンジイソシアナート、ペンタメチレンジイソシアナート、ヘプタメチレンジイソシアナート、オクタメチレンジイソシアナート、ノナメチレンジイソシアナート、デカメチレンジイソシアナート、ウンデカメチレンジイソシアナート、ドデカメチレンジイソシアヂート、1,3-ビス(イソシアナートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、1,3-シクロペンタンジイソシアナート、1,3-シクロヘキサンジイソシアナート、1,4-シクロヘキサンジイソシ
アナートなどが例示される。
尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モルであることが望ましい。更に、大電電流での放電を必要とする用途では、上記溶質の濃度が電解液1リットル当たり1.0~1.6モルであることが望ましい。
上記フィラー層の形成は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
Claims (6)
- SiOx(0.8≦x≦1.2)、及び黒鉛を含む負極活物質を備えた負極合剤層と、
少なくとも一方の面に上記負極合剤層が形成された負極集電体と、
を備え、
上記SiOxの表面には、イソシアナート基を含む化合物に由来する被膜が形成されている、非水電解質二次電池用負極。 - 上記イソシアナート基を含む化合物に由来する被膜が、上記負極活物質のうち上記SiOxにのみ形成されている、請求項1に記載の非水電解質二次電池用負極。
- 上記イソシアナート基を含む化合物が2以上のイソシアナート基を有する、請求項1又は2に記載の非水電解質二次電池用負極。
- 上記SiOxに対する上記被膜の割合が6mol%以上18mol%以下である、請求項1~3の何れか1項に記載の非水電解質二次電池用負極。
- イソシアナート基を含む化合物が溶解された溶媒中で、SiOx(0.8≦x≦1.2)を攪拌して、イソシアナート基を含む化合物に由来する被膜をSiOxの表面に形成するステップと、
上記SiOxと黒鉛とを含む負極合剤スラリーを調製するステップと、
負極集電体の少なくとも一方の面に上記負極合剤スラリーを塗布して、負極集電体の少なくとも一方の面に負極合剤層を形成するステップと、
を備える非水電解質二次電池用負極の製造方法。 - 上記請求項1~4の何れか1項に記載の負極と、
正極集電体の少なくとも一方の面に正極合剤層が形成された正極と、
上記正極と上記負極の間に配置されたセパレータと、
非水電解液と、
を備える非水電解質二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014532780A JP6122014B2 (ja) | 2012-08-31 | 2013-08-26 | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 |
CN201380036560.6A CN104471755B (zh) | 2012-08-31 | 2013-08-26 | 非水电解质二次电池用负极、其制造方法及非水电解质二次电池 |
US14/413,259 US20150207141A1 (en) | 2012-08-31 | 2013-08-26 | Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012191239 | 2012-08-31 | ||
JP2012-191239 | 2012-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014034078A1 true WO2014034078A1 (ja) | 2014-03-06 |
Family
ID=50182915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/005013 WO2014034078A1 (ja) | 2012-08-31 | 2013-08-26 | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150207141A1 (ja) |
JP (1) | JP6122014B2 (ja) |
CN (1) | CN104471755B (ja) |
WO (1) | WO2014034078A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160087268A1 (en) * | 2014-09-19 | 2016-03-24 | Kabushiki Kaisha Toshiba | Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
JPWO2017026269A1 (ja) * | 2015-08-10 | 2018-05-31 | ソニー株式会社 | 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JPWO2017026268A1 (ja) * | 2015-08-10 | 2018-05-31 | ソニー株式会社 | 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP2023082643A (ja) * | 2021-12-02 | 2023-06-14 | コリア インスティテュート オブ セラミック エンジニアリング アンド テクノロジー | 電気化学特性を向上させたリチウム二次電池用のシリコン-炭素複合負極活物質及びその製造方法と、これを含むリチウム二次電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109792040B (zh) * | 2016-10-13 | 2024-03-08 | 宁德新能源科技有限公司 | 负极添加剂及含有该添加剂的极片和电化学储能装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373653A (ja) * | 2001-06-15 | 2002-12-26 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材 |
JP2005259641A (ja) * | 2004-03-15 | 2005-09-22 | Mitsubishi Heavy Ind Ltd | リチウム二次電池用の電解液、電極、リチウム二次電池およびそれらの製造方法 |
JP2006164759A (ja) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | 電気化学デバイス用非水電解液 |
JP2007242411A (ja) * | 2006-03-08 | 2007-09-20 | Sony Corp | 電池及び電解液組成物 |
WO2010021236A1 (ja) * | 2008-08-20 | 2010-02-25 | 三洋電機株式会社 | 非水電解質二次電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5319899B2 (ja) * | 2007-08-23 | 2013-10-16 | 株式会社東芝 | 非水電解液電池 |
JP2009245923A (ja) * | 2008-03-10 | 2009-10-22 | Sony Corp | 二次電池 |
US20110135982A1 (en) * | 2009-06-30 | 2011-06-09 | Yoshiyuki Muraoka | Negative electrode for non-aqueous electrolyte secondary battery and fabrication method thereof, and non-aqueous electrolyte secondary battery |
US20120315548A1 (en) * | 2010-02-24 | 2012-12-13 | Panasonic Corporation | Lithium secondary battery |
JP5441221B2 (ja) * | 2010-05-10 | 2014-03-12 | 三洋電機株式会社 | 非水電解質二次電池及び非水電解質二次電池用非水電解液 |
US8790829B2 (en) * | 2010-12-20 | 2014-07-29 | Hitachi Maxell, Ltd. | Nonaqueous secondary battery |
-
2013
- 2013-08-26 JP JP2014532780A patent/JP6122014B2/ja active Active
- 2013-08-26 WO PCT/JP2013/005013 patent/WO2014034078A1/ja active Application Filing
- 2013-08-26 CN CN201380036560.6A patent/CN104471755B/zh active Active
- 2013-08-26 US US14/413,259 patent/US20150207141A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373653A (ja) * | 2001-06-15 | 2002-12-26 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材 |
JP2005259641A (ja) * | 2004-03-15 | 2005-09-22 | Mitsubishi Heavy Ind Ltd | リチウム二次電池用の電解液、電極、リチウム二次電池およびそれらの製造方法 |
JP2006164759A (ja) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | 電気化学デバイス用非水電解液 |
JP2007242411A (ja) * | 2006-03-08 | 2007-09-20 | Sony Corp | 電池及び電解液組成物 |
WO2010021236A1 (ja) * | 2008-08-20 | 2010-02-25 | 三洋電機株式会社 | 非水電解質二次電池 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160087268A1 (en) * | 2014-09-19 | 2016-03-24 | Kabushiki Kaisha Toshiba | Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
JP2016062829A (ja) * | 2014-09-19 | 2016-04-25 | 株式会社東芝 | 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池および電池パック |
JPWO2017026269A1 (ja) * | 2015-08-10 | 2018-05-31 | ソニー株式会社 | 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JPWO2017026268A1 (ja) * | 2015-08-10 | 2018-05-31 | ソニー株式会社 | 二次電池用負極およびその製造方法、二次電池およびその製造方法、ならびに電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP2023082643A (ja) * | 2021-12-02 | 2023-06-14 | コリア インスティテュート オブ セラミック エンジニアリング アンド テクノロジー | 電気化学特性を向上させたリチウム二次電池用のシリコン-炭素複合負極活物質及びその製造方法と、これを含むリチウム二次電池 |
JP7304988B2 (ja) | 2021-12-02 | 2023-07-07 | コリア インスティテュート オブ セラミック エンジニアリング アンド テクノロジー | 電気化学特性を向上させたリチウム二次電池用のシリコン-炭素複合負極活物質及びその製造方法と、これを含むリチウム二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN104471755B (zh) | 2016-11-16 |
CN104471755A (zh) | 2015-03-25 |
US20150207141A1 (en) | 2015-07-23 |
JP6122014B2 (ja) | 2017-04-26 |
JPWO2014034078A1 (ja) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3316357B1 (en) | Cathode active material comprising multi-layered transition metal oxide for lithium secondary battery, and cathode comprising cathode active material | |
JP4679112B2 (ja) | 非水電解質二次電池及びその製造方法 | |
US10581071B2 (en) | Precursor for the production of positive electrode active material comprising metal oxides having multilayered structure and positive electrode active material for lithium secondary battery produced using the same | |
WO2014034043A1 (ja) | 非水電解質二次電池 | |
WO2012099265A1 (ja) | 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池 | |
JP5070731B2 (ja) | 非水電解質電池の製造方法 | |
CN104054199A (zh) | 非水电解质二次电池及其制造方法 | |
JP2008235147A (ja) | 非水電解質二次電池 | |
CN106716685B (zh) | 非水电解质二次电池用正极和使用其的非水电解质二次电池 | |
JP2002358999A (ja) | 非水電解質二次電池 | |
EP4002538A1 (en) | Electrolyte additive for lithium secondary battery, and electrolyte for lithium secondary battery and lithium secondary battery, which comprise same | |
JP2007200695A (ja) | 非水電解質二次電池及びその製造方法 | |
JP6122014B2 (ja) | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 | |
JP5619645B2 (ja) | 非水電解質二次電池 | |
JP5026629B2 (ja) | 非水電解質電池用正極及び非水電解質電池 | |
WO2018123213A1 (ja) | 非水電解質二次電池 | |
US9847551B2 (en) | Lithium-ion secondary battery | |
JP2014049287A (ja) | 非水電解質二次電池及び非水電解質二次電池スタック | |
WO2013018692A1 (ja) | 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池 | |
JP6124303B2 (ja) | 非水電解液二次電池 | |
JP2009176528A (ja) | 非水電解質二次電池及びその製造方法 | |
WO2013146115A1 (ja) | 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池 | |
JP2014049288A (ja) | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 | |
JP2002270222A (ja) | 非水系電解液及びこれを用いた二次電池 | |
JP2011096520A (ja) | 非水電解質二次電池用負極極板及びこの負極極板を用いた非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13833467 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14413259 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2014532780 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13833467 Country of ref document: EP Kind code of ref document: A1 |