WO2010021122A1 - 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法 - Google Patents

最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法 Download PDF

Info

Publication number
WO2010021122A1
WO2010021122A1 PCT/JP2009/003927 JP2009003927W WO2010021122A1 WO 2010021122 A1 WO2010021122 A1 WO 2010021122A1 JP 2009003927 W JP2009003927 W JP 2009003927W WO 2010021122 A1 WO2010021122 A1 WO 2010021122A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
granules
waste plastic
organic matter
catalyst
Prior art date
Application number
PCT/JP2009/003927
Other languages
English (en)
French (fr)
Inventor
樫本逸志
Original Assignee
草津電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 草津電機株式会社 filed Critical 草津電機株式会社
Priority to CN2009801322974A priority Critical patent/CN102137724B/zh
Priority to JP2009545758A priority patent/JP5190897B2/ja
Priority to US13/059,755 priority patent/US8722958B2/en
Priority to EP09808058.3A priority patent/EP2327485B1/en
Publication of WO2010021122A1 publication Critical patent/WO2010021122A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for decomposing waste plastics, organic substances, particularly various plastics, medical wastes composed of organic substances, and infectious medical wastes using titanium oxide granules having optimum particle characteristics.
  • Patent Documents 1 and 2 Various studies have also been made on catalysts used for the decomposition treatment of waste plastic pieces.
  • the present invention is a waste plastic using titanium oxide granules that can be easily separated from metals and inorganics, have high-efficiency decomposition ability, and low pulverization characteristics during thermal decomposition. It is an object of the present invention to provide a method for decomposing organic substances.
  • this invention consists of the following. “1. A step of stirring waste plastics and / or organic substances while heating them in the range of 420 ° C. to 560 ° C. together with a catalyst composed of titanium oxide granules whose active ingredient is titanium oxide.
  • the catalyst has the following characteristics: (1) The shape of the granule is substantially spherical. (2) The particle diameter of 70% or more of the whole granule is 0.2 mm to 1.0 mm. The method for decomposing waste plastics / organic matter according to item 1 above, wherein the particle diameter of 70% or more of the whole granules is 0.3 mm to 1.0 mm. 3. 3.
  • the angle at which the granules begin to slide is 0.5 to 15.0 degrees
  • the angle at which all the granules finish sliding is 2.0 to 30.0 degrees.
  • the decomposition method using the titanium oxide granules having the optimum particle characteristics of the present invention has several times the waste plastic and organic matter processing ability compared to the conventional decomposition method using titanium oxide. Furthermore, the titanium oxide granules used in the decomposition method of the present invention are easier to separate from metals and inorganics than conventional titanium oxide, and have high efficiency decomposition ability and low pulverization characteristics during thermal decomposition. Have
  • the “heating temperature of the catalyst” of the present invention must be at least 300 ° C. and 600 ° C., preferably 350 ° C. or more, particularly preferably 420 ° C. to 560 ° C., more preferably 450 ° C. It is in the range of 530 ° to 530 °, and most preferably 480 ° to 510 °.
  • the heating temperature is the temperature in the reaction tank for reacting the catalyst with waste plastic and / or organic matter, and indicates the set temperature for maintaining the set temperature of the catalyst. That is, even if the set temperature is set to 480 degrees, the fluctuation range of the catalyst temperature in the reaction tank becomes about plus or minus about 30 degrees from the set temperature.
  • the particularly preferable “heating temperature of the catalyst” of the present invention may be higher or lower than the particularly preferable “heating temperature of the catalyst” of the present invention depending on the shape and size of the reaction tank.
  • the majority of the catalyst need only be maintained at the preferred catalyst heating temperature.
  • the catalyst of the present invention is a catalyst comprising titanium oxide granules whose active ingredient is titanium oxide.
  • the catalyst comprising titanium oxide granules is not only a titanium oxide granule comprising only titanium oxide as an active ingredient, but also a mixture of at least one selected from aluminum oxide and silicon oxide and titanium oxide (hereinafter referred to as inorganic). (Sometimes referred to as oxides).
  • at least one inorganic oxide selected from titanium / aluminum composite oxide, zirconium oxide, titanium / zirconium composite oxide, and titanium-containing perovskite compound is also targeted.
  • the inorganic oxides examples include, for example, strontium titanate, barium zirconate titanate, calcium titanate, and a part of barium, zirconium, strontium and / or calcium. Although what substituted by lanthanum, cerium, yttrium, etc. can be mentioned, It is not limited to these.
  • waste plastic and organic matter can be decomposed with high efficiency by using a suitable catalyst under heating conditions. Furthermore, the catalyst can be easily separated from metals and inorganics mixed in waste plastic.
  • the “particle diameter” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 0.20 mm to 1.2 mm, preferably 0.30 mm to 1.0 mm, more preferably 0.40 mm to 1.0 mm, most preferably. 0.40 mm to 0.80 mm. More specifically, the particle diameter of the granule of 70% or more, preferably 80% or more, more preferably 90% or more in the total titanium oxide granules before use is 0.20 mm to 1.2 mm, preferably 0.3 mm to It is 1.0 mm, more preferably 0.40 mm to 1.0 mm, and most preferably 0.40 mm to 0.80 mm.
  • the range of the particle diameter of the said granule is obtained from the result of Example 2.
  • the center distribution of the particle diameter is 0.4 mm to 0.6 mm, preferably about 0.50 mm, for titanium oxide before use.
  • the “particle diameter” of the titanium oxide granules is 0.4 mm to 1.0 mm, preferably within the above range. 0.5 mm to 0.8 mm. That is, by using a titanium oxide granule having a large particle size, the recovery rate of fine metal / inorganic can be increased.
  • the shape of the granule is substantially spherical
  • index which shows that the spherical degree of particle shape is high index which shows that the spherical degree of particle shape is high, "roundness”, “rolling inclination angle of a granule (particle)", “rest angle”, etc. are mentioned.
  • the “roundness measurement method” of the present invention can be performed under the following conditions and apparatus.
  • condition A CCD camera is attached to the inverted microscope, and image processing is performed using Image-Pro Plus. Specifically, the titanium oxide granules should not overlap the plastic petri dish. Then, an image is captured at a magnification of 4 times with the inverted microscope described below, and the roundness is automatically measured with Image-Pro Plus.
  • apparatus Microscope: Inverted microscope TMD-300 Nihon Optics (Nikon), CCD camera: Nippon Roper, Retiga 2000R (1600 ⁇ 1200pixels) Image processing equipment: Nippon Roper, Image-Pro Plus
  • the “roundness” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 1.00 to 2.00, preferably 1.00 to 1.50, more preferably 1.00 to 1.40, and still more preferably 1.00 to 1.30. Most preferably, it is 1.00 to 1.20. More specifically, the roundness of the granules of 70% or more, preferably 80% or more, more preferably 90% or more of the total titanium oxide granules before use is 1.00 to 2.00, preferably 1.00 to 1.50, More preferably, it is 1.00 to 1.40, more preferably 1.00 to 1.30, and most preferably 1.00 to 1.20. The range of roundness of the granule is obtained from the results of Example 2.
  • the “rolling inclination angle of the granule” of the present invention can be performed under the following conditions. 20g of titanium oxide granules are placed on a glass plate, and the glass plate is inclined from the horizontal (0 degree), (1) the angle at which the titanium oxide granules begin to slide, and (2) all the granules slide Measure the ending angle.
  • the numerical value of “rolling inclination angle of granules” of titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is as follows. (1) The angle at which the granules start to slide is 0.5 ° to 15.0 °, preferably 0.5 ° to 10.0 °, more preferably 0.5 ° to 8.0 °, and most preferably 0.5 ° to 5.0 °. (2) The angle at which all the granules finish sliding is 2.0 to 30.0 degrees, preferably 2.0 to 25.0 degrees, more preferably 2.0 to 22.0 degrees, and most preferably 2.0 to 18.0 degrees. The range of the “granular rolling inclination angle” of the granule is obtained from the results of Example 3.
  • the “rest angle” of the present invention can be performed by the following method. 20g of unused titanium oxide granules are dropped with a funnel, and the angle formed by the slope when the layer is formed in a mountain shape is measured. The angle of repose is smaller for powders with good fluidity, and conversely becomes larger for powders with poor powder flowability.
  • the “rest angle” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 15 to 35 degrees, preferably 20 to 35 degrees.
  • tap density is another index indicating the characteristics of titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention.
  • the tap density of the titanium oxide granules can be measured as follows. About 180 g of titanium oxide granules are put into a 200 mL glass graduated cylinder, this graduated cylinder is repeatedly dropped from a position of 50 mm on a 10 mm thick rubber sheet 10 times, and then dropped from a distance of 50 mm. After hitting the side of the plate 10 times and repeating the above operation twice, the scale of the graduated cylinder was read to make the volume of the granule V (mL), and separately, the granule was dried at 110 ° C. for 3 hours, The weight M (g) is measured, and based on these, the tap density is obtained from the formula M / V.
  • the “tap density” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 1.00 g / mL to 1.80 g / mL, preferably 1.03 g / mL to 1.60 g / mL, more preferably Is 1.05 g / mL to 1.40 g / mL.
  • wear rate Another index indicating the characteristics of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is “wear rate”.
  • the wear rate of the titanium oxide granules of the present invention can be measured by the following method.
  • this wear rate measuring apparatus is configured by attaching a stirrer 202 to a sample container 201 having an inner diameter of 63 mm and a depth of 86 mm, and the stirrer 202 has an elliptical stirring blade 204 having a length of 20 mm at the lower end portion of the shaft body 203.
  • the stirring blades are inclined so as to have an angle of 45 ° with respect to the horizontal.
  • the lowermost edge of the stirring blade is located at a distance of 8 mm from the bottom of the sample container.
  • the “wear rate” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 2.0% by weight or less, preferably 1.5% by weight or less, more preferably 1.0% by weight or less.
  • the specific surface area of the titanium oxide granules of the present invention can be measured by the following method. In the present invention, measurement is performed using the BET method. Details are as follows.
  • the BET method is a method in which a specific surface area of a sample is obtained from the amount of molecules adsorbed on the surface of powder particles adsorbed at the temperature of liquid nitrogen.
  • the 2300 type automatic measuring device manufactured by Shimadzu Corporation is used as the specific surface area measuring device.
  • the “specific surface area” of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is 30 m 2 / g or more, preferably 33 m 2 / g to 65 m 2 / g, It is preferably 35 m 2 / g to 50 m 2 / g. Furthermore, the specific surface area of the catalyst composed of titanium oxide granules before use is 35 m 2 / g to 50 m 2 / g. The larger the specific surface area, the larger the contact surface between the granule and the waste plastic, and the decomposition efficiency can be increased. However, if the specific surface area is too large, the heat resistance becomes weak, and the granule tends to collapse and become powdered easily.
  • the “catalyst comprising titanium oxide granules” of the present invention has a pore volume of titanium oxide as an active ingredient of 0.05 ml / g to 0.70 ml / g, preferably 0.07 ml / g to 0.50 ml / g, More preferably, it is 0.10 ml / g to 0.30 ml / g.
  • a method for measuring the pore volume of the catalyst composed of titanium oxide granules a method known per se can be used. In the present invention, the pore volume is measured using a mercury intrusion method. Details are as follows.
  • the mercury intrusion method is a method for obtaining the pore volume from the pressure and the amount of injected mercury by applying a pressure to make mercury enter the fine pores of the powder by utilizing the high surface tension of mercury.
  • a porosimeter manufactured by Thermo Finnigan (mercury intrusion type maximum pressure: 200 MPa) was used.
  • the “catalyst comprising a titanium oxide granule” of the present invention has the above-described properties, so that it can decompose waste plastics and organic substances with high efficiency over a long period of time. Furthermore, in the “catalyst comprising titanium oxide granules” of the present invention, the particle size distribution of titanium oxide granules is narrower than that of conventional titanium oxide catalysts. Therefore, by using a sieve larger and smaller than the particle distribution of the titanium oxide granules, it is possible to easily separate the granules and foreign substances (metal, inorganic, etc. mixed in the plastic).
  • the “titanium oxide granule production method” comprises agitation and granulation of the pulverized inorganic oxide described above in the presence of at least one sol selected from titania sol, silica sol, alumina sol and zirconia sol. After making spherical granules, firing is performed at a temperature in the range of 400 ° C to 850 ° C. By sieving, calcined granules having a particle size in the range of 0.15 mm to 1.20 mm are obtained.
  • the stirring granulation is performed by stirring powder (in the present invention, the inorganic oxide powder) and liquid binder (in the present invention, the sol described above)
  • the pressure density and particle size of the resulting aggregated particles can be arbitrarily adjusted.
  • the shape of the obtained aggregate can be further spheroidized by appropriately selecting the bottom plate in the granulation container of the stirring granulator.
  • a granulator for stirring and granulating the inorganic oxide is not particularly limited.
  • a mixed granulator NMG series manufactured by Nara Machinery Co., Ltd., Fukae Powtech Co., Ltd.
  • High-speed mixers and high-flex glals made by Nihon Eirich Co., Ltd.
  • Eirich intensive mixers (Eirich reverse flow high-speed mixer), G-LABO high-speed agitation granulator HSG series, Kneading made by Dalton Co., Ltd.
  • a high-speed agitation granulator SPG series, a high-speed mixing / fine-grain machine Spartan-Luzer, a vertical granulator VG-CT series manufactured by POWREC, etc. are preferably used.
  • the sol is obtained by pulverizing the inorganic oxide pulverized product or the sol after drying and firing. You may use the mixture with a ground material.
  • Rolling granulation refers to a granulation method in which a mixture of powder and liquid binder is given a rolling motion to obtain agglomerated particles.
  • Fluidized bed granulation is already well known. As described above, it refers to a granulation method in which a liquid binder is supplied to a fluidized bed of powder to form aggregates by forming a cross-link by a binder between particles. In this way, the inorganic oxide is agglomerated with stirring, and further granulated by at least one method selected from rolling granulation and fluidized bed granulation.
  • Such a rolling granulator and fluidized bed granulator (composite granulator) for granulation are not particularly limited in the present invention, but, for example, manufactured by Dalton Co., Ltd. Fluidized bed granulator “New / Malmerizer”, spherical granulator “Malmerizer”, Powrec's fluidized bed granulator and rolling fluidized coating device “Multiplex” series, etc. .
  • the waste plastic / organic matter decomposing apparatus used in the method for decomposing waste plastic / organic matter of the present invention may be any known decomposing apparatus.
  • the titanium oxide granules used in the method for decomposing waste plastics / organic matter of the present invention have a very high decomposition efficiency, so that the contact between the granules and the waste plastics / organic matter is higher than that of the conventional batch type decomposition apparatus.
  • a catalyst recycling type waste plastic / organic decomposition apparatus with high efficiency is preferable.
  • a catalyst circulation type waste plastic / organic decomposition apparatus is described in International Publication No. 2007/122967.
  • the waste plastic / organic matter decomposition apparatus includes an oxidation catalyst treatment means and / or a reduction catalyst treatment means in addition to the waste plastic / organic matter treatment means, and more preferably includes a lime neutralization treatment means.
  • the decomposition apparatus used in the decomposition method of the present invention can have any one or more of the following means.
  • Alumina catalyst treatment means (2) Waste plastic / organic matter crushing means (3) Carrier gas supply means (4) Dispersed metal / inorganic matter and / or catalyst discharged from the reaction tank of waste plastic / organic matter treatment means Means to collect.
  • Cyclone dust collecting means (first dust collecting means) (6) Dust collecting means with bag filter (second dust collecting means) (7) Heat exchange means (8) Preheater means (9) Exhaust blower means (10) Cooling means (11) Heat recovery means (12) Hydrogen chloride continuous measurement means (13) CO continuous measurement means (14) Alarm means ( 15) Oxidation catalyst treatment means / reduction catalyst treatment means
  • the “waste plastic / organic matter decomposition system” of the present invention uses the above-described decomposition apparatus, and further uses the titanium oxide granules having the optimum particle characteristics of the present invention to produce waste plastic / It means to decompose organic matter.
  • waste plastic to be treated is various medical waste plastics such as polyvinyl chloride, polyurethane, Teflon (registered trademark), etc.
  • Hydrogen chloride, sulfur compounds, hydrogen fluoride, cyanide gas and nitrogen-containing compounds are produced during the process. Hydrogen chloride etc. cannot be released into the atmosphere as it is. Therefore, preferably, a lime neutralization treatment means is introduced.
  • the stirring of the catalyst composed of titanium oxide granules and the waste plastic varies depending on the volume of the reaction vessel, the shape of the stirring blade, and the stirring method, but the rotational speed is 5 to 70 rpm, preferably 10 to 40 rpm. In addition, the same rotation speed is preferable even if the reaction vessel is a batch system or a circulation system. This is a value that takes into account that if the rotational speed is too high, the titanium oxide wears greatly, but if the rotational speed is slow, the contact efficiency between titanium oxide and waste plastic and / or organic matter decreases.
  • Waste plastics and organic substances that can be applied to the decomposition method or decomposition system of the present invention are not particularly limited.
  • thermoplastics such as polyethylene and polypropylene
  • thermosetting plastics are also included in the present invention. It can be decomposed and gasified by the method.
  • waste plastics and organic substances that are crushed to have a size of about several mm 3 squares are preferable from the viewpoint of decomposition efficiency, but can be decomposed without being crushed.
  • the objects that can be decomposed by the method for decomposing waste plastic and organic matter of the present invention are plastics such as polyethylene, polypropylene, polyester, polyethylene terephthalate, polystyrene, polycarbonate, polyurethane, polyvinyl chloride, Teflon (registered trademark), diapers, and artificial dialysis.
  • valuable metal recovery, separation of organic substance and metal inorganic substance and the like can be mentioned, but there is no particular limitation including organic substance.
  • metals such as stainless steel and aluminum may be mixed depending on the application, or metal may be deposited or stuck on the surface.
  • waste plastic does not target only used plastic but also unused but unnecessary plastic and organic matter.
  • Titanium oxide used in the present invention was produced by the following methods. Details are as follows.
  • granules having a particle size of 0.1 mm to 1.2 mm have a standard sieve 15 mesh (wire diameter 0.5 mm, opening 1.19 mm) and 150 mesh (wire diameter of 0.1 mm) made of a stainless steel wire mesh.
  • granules having a particle size of 0.1 mm to 1.2 mm were obtained as follows. That is, the 15 mesh standard sieve is attached to the upper lid of a low tap type standard sieve shaker manufactured by Yoshida Seisakusho Co., Ltd., the 150 mesh standard sieve is attached to the lower tray, and 100 g of titanium oxide granules are used as a sample on the 15 mesh standard sieve. Sieving for 3 minutes at a rotation speed of 300 rpm and 150 strokes / minute, and granules below 15 mesh (passed) and 150 mesh (residual) as 0.1 to 1.2 mm particle size Obtained.
  • the titanium oxide granules obtained above had a specific surface area of 60 m 2 / g by the BET method, a pore volume of 0.15 mL / g by the mercury intrusion method, and a tap density of 1.16 g / mL.
  • the wear rate was 0.3%.
  • Titanium oxide granules 2 The titanium hydroxide slurry A obtained in Example 1 was heated and dried at 100 ° C. to obtain a dried gel, which was baked in an electric furnace at 500 ° C. for 3 hours, pulverized, and baked with titanium oxide. A pulverized product of product D was obtained, and 50 parts by weight of the pulverized product of titanium oxide baked product D and 50 parts by weight of the pulverized product of titanium oxide baked product C were mixed. A mixture of 50 parts by weight of the pulverized product of titanium oxide fired product D and 50 parts by weight of the pulverized product of titanium oxide fired product C was treated in the same manner as in Example 1, and the resulting particles were dried, fired, and sieved. Thus, granules having a particle size of 0.1 mm to 1.2 mm were obtained.
  • the titanium oxide granules obtained above had a specific surface area of 62 m 2 / g, a pore volume of 0.28 mL / g, a tap density of 1.06 g / mL, and a wear rate of 1.0%.
  • Titanium oxide granules 3 While spraying the granulated titanium oxide obtained in Example 1 with the tumbling granulator “Malmerizer”, the pulverized product of titanium oxide C obtained in Example 1 and the sol B diluted four times with water. Further, the particles were sized in a spherical shape, and the obtained particles were processed in the same manner as in Example 1 to obtain granules having a particle size in the range of 0.1 mm to 1.2 mm.
  • the titanium oxide granules obtained above had a specific surface area of 59 m 2 / g, a pore volume of 0.17 mL / g, a tap density of 1.18 g / mL, and a wear rate of 0.3%.
  • Titanium oxide granules 4 The titanium oxide sol B obtained in Example 1 and ammonium tungstate were mixed. This mixture was heated to 100 ° C. and dried to obtain a dried gel, which was fired in an electric furnace at 500 ° C. for 3 hours to obtain a titanium / tungsten composite oxide (titanium oxide / tungsten oxide weight ratio 90:10). A fired product was obtained. The fired product of the titanium / tungsten composite oxide E was pulverized to obtain a pulverized product. This pulverized product is granulated using a high-speed agitation granulator SPG-25 manufactured by Dalton Co., Ltd.
  • the specific surface area of the titanium oxide granules obtained above is 69 m 2 / g, the pore volume is 0.2 ml / g, the tap density is 1.20 g / ml, and the wear rate is 0.5. %Met.
  • the result of the said particle diameter is shown in FIG. 2 (M fraction) and FIG. 3 (L fraction).
  • the range of the particle radius of the M fraction was 0.05 mm to 0.6 mm (FIG. 2A, B).
  • the range of the particle radius of the L fraction was 0.25 mm to 0.48 mm (FIGS. 3A and 3B). Therefore, the particle diameter (twice the radius) of the granules of 70% or more of the total titanium oxide granules was in the range of 0.2 mm to 1.0 mm, and further 0.3 mm to 1.0 mm.
  • FIG. 2 The results of the roundness are shown in FIG. 2 (M fraction) and FIG. 3 (L fraction).
  • the range of roundness of the M fraction was 1.02 to 1.24 (FIG. 2C).
  • the range of roundness of the L fraction was 1.09 to 1.17 (FIG. 3C). Therefore, the roundness of 70% or more of the total titanium oxide granules was in the range of 1.00 to 1.50, and further 1.00 to 1.30.
  • the rolling inclination angles of the two titanium oxide granule fractions (L fraction and M fraction) obtained in Example 1 were measured. Details are as follows. As controls, a titanium oxide catalyst (Sakai Chemical Industry Co., Ltd. SSP-G Lot.051108) and a titanium oxide having a small particle size (particle size of 0.1 mm or less) were used. 20g of titanium oxide granules are placed on a glass plate, and the glass plate is inclined from the horizontal (0 degree), (1) the angle at which the titanium oxide granules begin to slide, and (2) all the granules slide The ending angle was measured.
  • the measurement results are shown in Table 1 below.
  • the angle at which the granules of the two titanium oxide granule fractions (L fraction and M fraction) obtained in Example 1 start to slip was 1.5 to 2.5 degrees.
  • the angle at which all the granules of the two titanium oxide granule fractions (L fraction and M fraction) obtained in Example 1 finished sliding was 9.0 degrees to 10.0 degrees.
  • the rolling inclination angle of the granules of the two titanium oxide granule fractions (L fraction and M fraction) obtained in Example 1 was lower than that of the control.
  • Input amount 0.7 g / min, 1.2 g / min, 1.5 g / min, 2.0 g / min
  • the gas concentration (NO / NOx, CO, CO 2 , O 2 , SO 2 ) was measured using a gas concentration continuous measuring device PG-250 (manufacturer: Horiba Seisakusho).
  • the titanium oxide granules 1 can decompose 2.0 g or more of waste plastic per minute under the conditions defined in this example.
  • the treatment capacity of the titanium oxide granules used in the method for decomposing waste plastic / organic matter of the present invention is about 3 times or more compared with the treatment capacity of conventional products.
  • the titanium oxide granules 1 of Example 1 After mixing the titanium oxide granules 1 of Example 1 and foreign matter (simulated dust: iron wire), the titanium oxide granules and foreign matter are used by using a sieve larger and smaller than the particle distribution of the granules. The foreign material was recovered from the mixture. In the same manner as described above, the conventional titanium oxide was also used. When the titanium oxide granules of the present invention were used, the collection efficiency of the foreign matters was clearly higher than when the conventional titanium oxide was used.
  • the granule of titanium oxide used in the method for decomposing waste plastic / organic matter of the present invention can easily separate the granule from the foreign substance as compared with the conventional titanium oxide catalyst.
  • the decomposition method using the titanium oxide granules having the optimum particle characteristics of the present invention it is possible to provide several times the waste plastics and organic matter processing ability as compared with the conventional decomposition method using titanium oxide. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Catalysts (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 金属・無機との分離が容易であり、高効率分解能力及び低い熱分解中の微粉化特性を持つ酸化チタンの顆粒体を使用した廃プラスチック、有機物の分解方法を提供することを課題とする。  より詳しくは、酸化チタンの顆粒体の特性を最適化することにより、金属・無機との分離が容易であり、高効率分解能力及び低い熱分解中の微粉化特性を持つ酸化チタンの顆粒体を使用した廃プラスチック、有機物の分解方法を確立した。

Description

最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
 本発明は、最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック、有機物、特に多種のプラスチック、有機物で構成される医療廃棄物、又感染性のある医療廃棄物の分解方法に関する。
 なお、本出願は、参照によりここに援用されるところ、日本特許出願番号2008-211726からの優先権を請求する。
 近年、廃プラスチックを処理し又は再利用する方法として、種々のものが提案され、また、一部は実用化されている。このような廃プラスチック処理の一つの有力な方法として、廃プラスチック片を光触媒として知られている酸化チタンからなる分解触媒の存在下において、加熱して、廃プラスチックをガス化する方法及び装置が提案されている(特許文献1、2参照)。
 また、廃プラスチック片の分解処理に用いられる触媒についても種々検討されている(特許文献3~6)。
 一方、病院、透析施設等から排出される感染性医療廃棄物による2次感染防止のため、このような廃棄物の処理方法を規定した厚生省のガイドラインが平成1年11月7日に発表され、平成2年4月1日から施行されている。これにより、病院、透析施設等は、原則として、院内又は施設内での医療廃棄物の滅菌処理が義務付けられている。
 以上により、病院内やクリニック内での施設において、大掛かりな装置を必要とせずかつ安全に廃プラスチック特にポリ塩化ビニルを含む感染性医療廃棄物の処理を可能とする分解方法、分解装置及び分解システムの開発が望まれている。
特開2002-363337号公報 特開2004-182837号公報 特開2005-066433号公報 特開2005-205312号公報 特開2005-307007号公報 国際公開2007/122967号公報
 従来使用されている酸化チタンは、磨耗しやすく、容易に微粉化する。従って、上述したような廃プラスチックの熱分解においては、微粉化した酸化チタンが熱分解による生成ガスと同伴して反応容器外に失われるので、時間の経過と共に熱分解効率が低下し、更には、酸化チタン粒状物の微粉化に伴って、その粒度分布が変化する。これらの点から、廃プラスチックの熱分解効率が低下するという問題があった。
 また、従来の酸化チタンは、処理される廃プラスチックに混在する金属・無機との分離には不向きであり、貴重な金属・無機の回収が十分にできないという問題があった。
 さらに、酸化チタンの微粉化を避けるために、粒径の大きい酸化チタン触媒を用いても、廃プラスチックの熱分解効率が劣るという問題があった。
 加えて、従来の分解装置では、粉末化しさらに飛散した触媒は、反応槽に戻されることなく廃棄されている。これは、粉末化した触媒は流動し難い性質となり、廃プラスチック・有機物と混ざり難くなるからである。この問題は、反応槽に蓄積する触媒の量が増える程に顕著となるため、反応槽を大型化することを妨げ、更には処理量を増大することも妨げている。
 すなわち、本発明は、上記問題を解決するために、金属・無機との分離が容易であり、高効率分解能力及び熱分解中の低微粉化特性を持つ酸化チタンの顆粒体を使用した廃プラスチック、有機物の分解方法を提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、酸化チタンの顆粒体の特性を最適化することにより、高効率の廃プラスチック、有機物の分解方法を確立した。
 以上により、本発明を完成するに至った。
 すなわち本発明は以下よりなる。
「1.活性成分が酸化チタンである酸化チタンの顆粒体からなる触媒と共に廃プラスチック及び/又は有機物を420度~560度の範囲で加熱しながら攪拌する工程を含む、該プラスチック及び/又は有機物をガス化する廃プラスチック・有機物の分解方法において、該触媒の特性は以下であること特徴とする廃プラスチック・有機物の分解方法。
(1)顆粒体の形状が略球形である
(2)全顆粒体の70%以上の顆粒体の粒子径が0.2mm~1.0mmである
 2.前記全顆粒体の70%以上の顆粒体の粒子径が0.3mm~1.0mmであることを特徴とする前項1の廃プラスチック・有機物の分解方法。
 3.前記顆粒体の形状が略球形とは、以下の特性であることを特徴とする前項1又は2に記載の廃プラスチック・有機物の分解方法。
(1)顆粒体の滑り始める角度が0.5度~15.0度である
(2)全ての顆粒体が滑り終わる角度が2.0度~30.0度である
 4.前記顆粒体のタップ密度が1.05g/mL~1.4g/mLの範囲であることを特徴とする前項1~3のいずれか1に記載の廃プラスチック・有機物の分解方法。
 5.前記顆粒体の比表面積が35m2/g~50m2/gの範囲であることを特徴とする前項1~4のいずれか1に記載の廃プラスチック・有機物の分解方法。」
 本発明の最適な粒子特性を有する酸化チタンの顆粒体を使用した分解方法によれば、従来の酸化チタンを使用した分解方法と比較して、数倍の廃プラスチック及び有機物の処理能力を有する。さらに、本発明の分解方法で使用する酸化チタンの顆粒体は、従来の酸化チタンと比較して、金属・無機との分離が容易であり、高効率分解能力及び熱分解中の低微粉化特性を有する。
酸化チタンの摩耗率を測定するための装置を示す図 M画分の粒子径及び真円度の測定結果 L画分の粒子径及び真円度の測定結果 0.7g/min投入での酸化チタンの顆粒体1の結果 1.5g/min投入酸化チタンの顆粒体1の結果 2.0g/min投入酸化チタンの顆粒体1の結果 2.0g/min投入酸化チタンの顆粒体1の結果 従来品の酸化チタン触媒の結果
 本発明の「触媒の加熱温度」は、少なくとも、300度以上かつ600度以下は必要であり、好ましくは、350度以上であり、特に好ましくは、420度~560度であり、さらに好ましくは450度~530度の範囲であり、最も好ましくは480度~510度である。
 なお、加熱温度とは、触媒と廃プラスチック及び/又は有機物を反応させるための反応槽内の温度であり、その触媒の設定温度を保つための設定温度を指す。すなわち、設定温度を480度としても、反応槽内の触媒温度の振れ範囲は設定温度からプラス・マイナス約30度となる。
 さらに、反応槽内のある箇所では、反応槽の形状や大きさにより、本発明の特に好ましい「触媒の加熱温度」よりも高く又は低くなる場合がある。しかしながら、触媒の大部分が好ましい触媒加熱温度に維持されていれば良い。
 本発明の触媒は、活性成分が酸化チタンである酸化チタンの顆粒体からなる触媒である。また、酸化チタンの顆粒体からなる触媒は活性成分としての酸化チタンのみからなる酸化チタンの顆粒体だけでなく、酸化アルミニウム、酸化ケイ素から選ばれる少なくとも1種と酸化チタンとの混合物(以下、無機酸化物と称する場合がある)も含まれる。さらには、チタン/ニオブ複合酸化物、チタン/ケイ素複合酸化物、ケイ素とタングステンから選ばれる少なくとも1種とチタンとの複合酸化物、ケイ素とモリブデンから選ばれる少なくとも1種とチタンとの複合酸化物、チタン/アルミニウム複合酸化物、酸化ジルコニウム、チタン/ジルコニウム複合酸化物及びチタン含有ぺロブスカイト化合物から選ばれる少なくとも1種の無機酸化物も対象とする。
 なお、前記無機酸化物のうち、チタン含有ぺロブスカイト化合物としては、例えば、チタン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸カルシウムのほか、これらにおけるバリウム、ジルコニウム、ストロンチウム及び/又はカルシウムの一部をランタン、セリウム、イットリウム等で置換したもの等を挙げることができるが、これらに限定されるものではない。
 本発明の廃プラスチック・有機物の分解方法では、好適な触媒を加熱条件下で使用することにより、高効率で廃プラスチック、有機物の分解を行うことができる。さらには、該触媒は、廃プラスチックに混在する金属・無機等と容易に分離可能である。
 本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「粒子径」は、0.20mm~1.2mm、好ましくは0.30mm~1.0mm、より好ましくは0.40mm~1.0mm、最も好ましくは0.40mm~0.80mmである。
 より詳しくは、使用前の全酸化チタンの顆粒体中の70%以上、好ましくは80%以上、より好ましくは90%以上の顆粒体の粒子径が、0.20mm~1.2mm、好ましくは0.3mm~1.0mm、より好ましくは0.40mm~1.0mm、最も好ましくは0.40mm~0.80mmである。
 なお、上記顆粒体の粒子径の範囲は、実施例2の結果より得られたものである。
 加えて、粒子径の中心分布は、使用前の酸化チタンでは、0.4mm~0.6mm、好ましくは約0.50mmである。
 さらに、金属・無機特にレアメタルなどの微粉金属が混在した廃プラスチック・有機物を分解するには、上記酸化チタンの顆粒体の「粒子径」は、上記範囲の中でも、0.4mm~1.0mm、好ましくは0.5mm~0.8mmである。
 すなわち、粒子径の大きい酸化チタンの顆粒体を使用することにより、微粉金属・無機の回収率を高めることができる。
 本発明の「顆粒体の形状が略球形」とは、従来の酸化チタン触媒の形状と比較して、顆粒体(粒子)表面の角が取れ、粒子形状の球形の度合いが高いことを意味する。
 なお、粒子形状の球形度合いが高いことを示す指標として、「真円度」、「顆粒体(粒子)の転がり傾斜角度」、「安息角度」等が挙げられる。
 本発明の「真円度測定方法」は、以下の条件及び装置で行うことができる。
(条件)
 倒立型顕微鏡にCCDカメラを装着し、画像の処理はImage-Pro Plusにより行う。詳しくは、酸化チタンの顆粒体をプラスチックシャーレに重ならないようにいれる。そして、下記倒立型顕微鏡により倍率4倍で画像を取り込み、Image-Pro Plusにより真円度を自動計測する。
(装置)
 顕微鏡:倒立型顕微鏡 TMD-300 日本光学(ニコン),
 CCDカメラ:日本ローパー株(Nippon Roper) Retiga 2000R(1600×1200pixels)
 画像処理装置:Nippon Roper, Image-Pro Plus
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「真円度」は、1.00~2.00、好ましくは1.00~1.50、より好ましくは1.00~1.40、さらに好ましくは1.00~1.30、最も好ましくは1.00~1.20である。
 より詳しくは、使用前の全酸化チタンの顆粒体中の70%以上、好ましくは80%以上、より好ましくは90%以上の顆粒体の真円度が、1.00~2.00、好ましくは1.00~1.50、より好ましくは1.00~1.40、さらに好ましくは1.00~1.30、最も好ましくは1.00~1.20である。
 なお、上記顆粒体の真円度の範囲は、実施例2の結果より得られたものである。
 本発明の「顆粒体の転がり傾斜角度」は、以下の条件で行うことができる。
 酸化チタンの顆粒体20gをガラス板上に載せ、そして該ガラス板を水平(0度)から斜めにして、(1)酸化チタンの顆粒体の滑り始める角度、(2)全ての顆粒体が滑り終わる角度を測定する。
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「顆粒体の転がり傾斜角度」の数値は以下の通りである。
(1)顆粒体の滑り始める角度は、0.5度~15.0度、好ましくは0.5度~10.0度、より好ましくは0.5度~8.0度、最も好ましくは0.5度~5.0度である。
(2)全ての顆粒体が滑り終わる角度は、2.0度~30.0度、好ましくは2.0度~25.0度、より好ましくは2.0度~22.0度、最も好ましくは2.0度~18.0度である。
 上記顆粒体の「顆粒体の転がり傾斜角度」の範囲は、実施例3の結果より得られたものである。
 本発明の「安息角度」は、以下の方法で行うことができる。
 未使用の酸化チタンの顆粒体20gをロートで落下させ、山型に層を形成した時の斜面が水平面となす角を測定する。なお、 安息角度は,流動性の良い粉粒体ほど小さく、逆に粉体流動性の良くない粉粒体の場合には大きくなる。
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「安息角度」は、15度~35度、好ましくは20度~35度である。
 また、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の特性を示す別の指標として「タップ密度」がある。
 なお、本発明において、酸化チタンの顆粒体のタップ密度は以下のように測定できる。
 酸化チタンの顆粒体約180gを200mLガラス製メスシリンダーに投入し、このメスシリンダーを厚み10mmのゴム製シート上に高さ50mmの位置から繰り返し10回自然落下させた後、50mmの距離から木製の板の側面に10回打ち当て、以上の操作を2回繰り返した後、メスシリンダーの目盛を読み取り、顆粒体の容積V(mL)とし、別に、顆粒体を110℃で3時間乾燥した後、その重量M(g)を測定、これらに基づいて、タップ密度を式M/Vから求める。
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「タップ密度」は、1.00g/mL~1.80g/mL、好ましくは1.03g/mL~1.60g/mL、より好ましくは1.05g/mL~1.40g/mLである。
 また、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の特性を示す別の指標として「摩耗率」がある。
 本発明の酸化チタンの顆粒体の摩耗率は以下の方法で測定をすることができる。
 図1に示す摩耗率測定装置にて測定する。即ち、この摩耗率測定装置は、内径63mm、深さ86mmの試料容器201に攪拌機202を取付けてなり、この攪拌機202は、軸体203の下端部にそれぞれ長さ20mmの楕円形状の攪拌羽根204を3枚、60゜間隔で軸体から直径方向に延びるように取付けたものであって、攪拌羽根はそれぞれ水平に対して45゜の角度を有するように傾斜している。この攪拌羽根は、その最下縁が試料容器の底から8mmの距離に位置する。
 なお、酸化チタンの顆粒体の摩耗率の測定に際しては、200mLメスシリンダーで酸化チタンの顆粒体150mLを計量し、重量を記録した後、試料容器に全量を投入し、300rpmで30分間上記攪拌機を用いて攪拌した後、試料容器から試料を取り出し、全量を目開き0.5mmの篩に移し、この篩を通過した試料の重量を測定する。ここに、試料の摩耗率Aは、目開き0.5mmの篩を通過した試料の重量をWとし、測定に供した試料の重量をW0とするとき、A=(W/W0)×100(%)である。
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「磨耗率」は、2.0重量%以下、好ましくは1.5重量%以下、より好ましくは1.0重量%以下である。
 また、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の特性を示す別の指標として「比表面積」がある。
 本発明の酸化チタンの顆粒体の比表面積は以下の方法で測定をすることができる。
 本発明ではBET法を使用して測定する。詳しくは、以下の通りである。
 BET法は,粉体粒子表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。
 本発明では、比表面積測定装置は、2300形 自動測定装置(島津製作所(株)製造元)を使用する。
 なお、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の「比表面積」は、30 m2/g 以上であり、好ましくは33 m2/g~65 m2/g、より好ましくは35 m2/g~50m2/gである。
 さらには、使用前の酸化チタンの顆粒体からなる触媒の比表面積は、35 m2/g~50 m2/gである。
 これは、比表面積が大きいほど、顆粒体と廃プラスチックとの接触面が大きくなり、分解効率を上げることができる。しかし、比表面積が大きすぎると耐熱性が弱くなり、かつ顆粒体が崩れやすく粉末化しやすくなる。
 また、本発明の「酸化チタンの顆粒体からなる触媒」は、活性成分としての酸化チタンの細孔容積が0.05ml/g~0.70ml/g、好ましくは0.07ml/g~0.50ml/g、より好ましくは0.10ml/g~0.30ml/gである。
 なお、酸化チタンの顆粒体からなる触媒の細孔容積の測定方法は、自体公知の方法を利用することができるが、本発明では水銀圧入法を使用して測定する。詳しくは、以下の通りである。
 水銀圧入法は、水銀の表面張力が大きいことを利用して粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から細孔容積を求める方法である。
 本発明では、Thermo Finnigan 社製のポロシメーター(水銀圧入式 最高圧力:200MPa)を使用した。
 本発明の「酸化チタンの顆粒体からなる触媒」は、上記特性を有することにより、長時間にわたって廃プラスチック、有機物を高効率にて分解することができる。
 さらに、本発明の「酸化チタンの顆粒体からなる触媒」は、酸化チタンの顆粒体の粒子径の分布が、従来の酸化チタン触媒の粒子径分布より狭い。よって、酸化チタンの顆粒体の粒子分布よりも大きい篩及び小さい篩を使用することで、該顆粒体と異物(プラスチックに混在する金属・無機等)を容易に分離することができる。
 本発明の「酸化チタンの顆粒体の製造方法」は、上記記載の無機酸化物の粉砕物をチタニアゾル、シリカゾル、アルミナゾル及びジルコニアゾルから選ばれる少なくとも1種のゾルの存在下に攪拌造粒して球状の顆粒とした後、400℃~850℃の範囲の温度で焼成する。そして、篩分けによって、粒径を0.15mm~1.20mmの範囲を持つ焼成した後の顆粒体を得る。
 なお、上記攪拌造粒は、よく知られているように、粉体(本発明においては、前記無機酸化物の粉体)と液体バインダー(本発明においては、前述したゾル)を攪拌して、ゾルによる粉体の凝集と共に、高速の攪拌羽根によるせん断効果によって、上記粉体の圧密化された凝集体を得る造粒をいい、用いるゾルの量、攪拌羽根の回転数、造粒時間等によって、得られる凝集粒の圧密度や粒度を任意に調整することができる。また、攪拌造粒装置の造粒容器内の底盤を適宜に選択することによって、得られる凝集体の形状を、より一層、球状化することもできる。
 本発明において、前記無機酸化物を攪拌造粒するための造粒機は、特に限定されるものではないが、例えば、(株)奈良機械製作所製混合造粒機NMGシリーズ、深江パウテック(株)製ハイスピードミキサーやハイフレックスグラル、日本アイリッヒ(株)製アイリッヒインテンシブミキサー(アイリッヒ逆流式高速混合機)、(有)G-LABO製高速攪拌造粒機HSGシリーズ、(株)ダルトン製混練・高速攪拌造粒機SPGシリーズや高速混合・細粒機スパルタン・リューザー、(株)パウレック製バーチカル・グラニュレータVG-CTシリーズ等が好ましく用いられる。
 前記無機酸化物を前記ゾルの存在下に攪拌造粒し、かくして得られた顆粒の球状性を一層高めると共に、粒度分布を一層精密なものとするために、攪拌造粒して得られた顆粒を前記ゾルの存在下に転動造粒と流動層造粒から選ばれる少なくとも1種の方法にて更に造粒してもよい。
 この造粒に際して、得られる顆粒をより硬くして、その磨耗性を一層向上させるために、前記ゾルと共に、前記無機酸化物の粉砕物や前記ゾルを乾燥、焼成した後、粉砕して得られる粉砕物との混合物を用いてもよい。
 転動造粒は、既によく知られているように、粉体と液体バインダーの混合物に転動運動を与えて、凝集粒を得る造粒法をいい、流動層造粒も既によく知られているように、粉体の流動層に液体バインダーを供給して、粒子間のバインダーによる架橋を形成させて凝集粒を得る造粒法をいう。
 このようにして、前記無機酸化物を攪拌造粒し、更に、転動造粒と流動層造粒から選ばれる少なくとも1種の方法にて更に造粒した後、前述したように、400℃~850℃の範囲の温度で焼成し、この後、篩分けによって、粒径が0.1mm~1.2mmの範囲にある粒子を集めることによって、必要な粒度を有する顆粒体を本発明による触媒として得ることができる。
 このような造粒のための転動造粒機や流動層造粒機(複合型造粒機)もまた、本発明においては、特に限定されるものではないが、例えば、(株)ダルトン製の流動層造粒装置「ニュー/マルメライザー」や球形整粒機「マルメライザー」、(株)パウレック製の流動層造粒装置や転動流動コーティング装置「マルチプレックス」シリーズ等を挙げることができる。
 本発明の廃プラスチック・有機物の分解方法で使用する廃プラスチック・有機物の分解装置は、公知の分解装置のいずれでも良い。しかしながら、本発明の廃プラスチック・有機物の分解方法で使用する酸化チタンの顆粒体は、非常に分解効率が高いでの、従来のバッチ式分解装置よりも、該顆粒体と廃プラスチック・有機物の接触効率が高い触媒循環式廃プラスチック・有機物の分解装置が好ましい。なお、触媒循環式廃プラスチック・有機物の分解装置は、国際公開2007/122967号公報に記載されている。
 さらに、上記廃プラスチック・有機物の分解装置では、上記廃プラスチック・有機物処理手段に加え酸化触媒処理手段及び/又は還元触媒処理手段を含み、さらに好ましくは石灰中和処理手段を含む。
 また、本発明の分解方法で使用する分解装置では、以下のいずれか1以上の手段を有することができる。
(1)アルミナ触媒処理手段
(2)廃プラスチック・有機物の破砕手段
(3)担体ガス供給手段
(4)廃プラスチック・有機物処理手段の反応槽から排出される飛散した金属・無機物及び/又は触媒を回収する手段。
(5)サイクロン集塵手段(第1集塵手段)
(6)バグフィルター付き集塵手段(第2集塵手段)
(7)熱交換手段
(8)プレヒーター手段
(9)排気ブロアー手段
(10)冷却手段
(11)熱回収手段
(12)塩化水素連続測定手段
(13)CO連続測定手段
(14)警報手段
(15)酸化触媒処理手段・還元触媒処理手段
 本発明の「廃プラスチック・有機物の分解システム」は、上記いずかに記載の分解装置を使用して、さらに本発明の最適な粒子特性を有する酸化チタンの顆粒体を使用して廃プラスチック・有機物の分解を行うことを意味する。
 さらに、本発明の廃プラスチック・有機物の分解方法又は分解システムには、例えば、処理する廃プラスチックがポリ塩化ビニル、ポリウレタン、テフロン(登録商標)等、様々な医療廃棄物プラスチックの場合には、処理工程中に塩化水素、硫黄化合物、フッ化水素、シアンガス、窒素含有化合物が生成する。塩化水素等をそのまま大気放出させることができない。よって、好ましくは、石灰中和処理手段を導入する。
 酸化チタンの顆粒体からなる触媒と廃プラスチックの攪拌は、反応容器の容積量、攪拌羽根の形状及び攪拌方法により差は有るが、回転数は5rpm~70rpm、好ましくは10rpm~40rpmである。なお、反応容器がバッチ方式又は循環方式でも同様な回転数が好ましい。
 これは、回転数が速すぎると、酸化チタンの磨耗が大きい、しかし回転数を遅くすると、酸化チタンと廃プラスチック及び/又は有機物の接触効率が落ちることを考慮した値である。
 本発明の分解方法又は分解システムに適用することができる廃プラスチック、有機物は、特に限定されるものではなく、ポリエチレン、ポリプロピレン等の、汎用の熱可塑性プラスチックのほか、熱硬化性プラスチックも本発明の方法によって分解し、ガス化することができる。また、廃プラスチック、有機物は、破砕して、数mm角程度の大きさにしたものが分解効率から好ましいが、破砕することなく分解処理もすることができる。
 なお、本発明の廃プラスチック、有機物分解方法で分解できる対象は、プラスチック例えばポリエチレン、ポリプロピレン、ポリエステル、ポリエチレンテレフタレート、ポリスチレン、ポリカーボネート、ポリウレタン、ポリ塩化ビニル、テフロン(登録商標)、また、オムツ、人工透析装置、抗がん剤、遺伝子研究関係処理物、細菌・微生物処理物、情報端末物、機密情報物(例えば、CD-R等)、オイル類(例えば、シリコンオイル等)、自動車・家電廃プラ、有価物金属回収、有機物と金属無機物の分離等が挙げられるが、有機物を含め、特に限定はされない。さらに、医療廃棄物の場合では、用途に応じてステンレス、アルミニウムなどの金属が混在していたり、表面に金属が蒸着、貼着等されていたりする。また、廃プラスチックとは、使用済みプラスチックのみを対象とするのではなく、未使用であるが不要なプラスチック、有機物も対象とする。
 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
(本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の製造)
 下記の複数の方法により、本発明で使用する酸化チタンを製造した。詳細は、以下の通りである。
(1)酸化チタンの顆粒体1
 硫酸法による酸化チタン製造工程のうち、加水分解工程から得られたチタン水酸化物のスラリーを濾過、水洗し、これをリパルプして、スラリーAを得た。このスラリーAにゾル化剤として硝酸を加え、チタン酸化物のゾルBを得た。更に、このゾルBの一部を100℃に加熱、乾燥し、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、酸化チタン焼成物Cを得た。
 この酸化チタン焼成物Cを粉砕し、得られた粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、酸化チタン粒子を得た。
 この酸化チタン粒子を100℃で3時間乾燥し、次いで、600℃で焼成し、目開き1.19mmと0.104mmの篩で篩分けして、粒径0.1mm~1.2mmの顆粒体を100重量%とした。
 なお、本発明において、粒径0.1mm~1.2mmの顆粒体は、ステンレス製金網からなる標準篩15メッシュ(線径0.5mm、目開き1.19mm)と150メッシュ(線径0.065mm、目開き0.104mm)を用いて篩分けし、15メッシュ下(通過分)、150メッシュ上(残留分)をいうものとする。
 詳しくは、次のようにして、粒径0.1mm~1.2mmの顆粒体を得た。即ち、(株)吉田製作所製ロータップ式標準篩振盪機に上蓋に上記15メッシュ標準篩を取り付け、下受皿に上記150メッシュ標準篩を取り付け、15メッシュ標準篩上に酸化チタン顆粒体100gを試料として供給し、振盪回転数300rpm、打数150回/分で3分間篩分けして、15メッシュ下(通過分)、150メッシュ上(残留分)を粒径0.1mm~1.2mmの顆粒体として得た。
 上記で得られた酸化チタン顆粒体は、BET法による比表面積60m/gであり、水銀圧入法による細孔容積0.15mL/gであり、タップ密度1.16g/mLであった。また、摩耗率は0.3%であった。
(2)酸化チタンの顆粒体2
 実施例1で得られたチタン水酸化物のスラリーAを100℃で加熱、乾燥し、乾燥ゲルとし、これを電気炉中にて500℃で3時間焼成し、粉砕処理して、酸化チタン焼成物Dの粉砕物を得、この酸化チタン焼成物Dの粉砕物50重量部と前記酸化チタン焼成物Cの粉砕物50重量部を混合した。
 この酸化チタン焼成物Dの粉砕物50重量部と酸化チタン焼成物Cの粉砕物50重量部の混合物を実施例1におけると同様にし処理し、得られた粒子を乾燥、焼成し、篩分けして、粒径0.1mm~1.2mmの顆粒体を得た。
 上記で得られた酸化チタンの顆粒体は比表面積62m/g、細孔容積0.28mL/g、タップ密度1.06g/mL、摩耗率は1.0%であった。
(3)酸化チタンの顆粒体3
 実施例1で得られた酸化チタンの顆粒に転動造粒機「マルメライザー」にて実施例1で得られた酸化チタンCの粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた粒子を実施例1におけると同様にして、粒径が0.1mm~1.2mmの範囲の顆粒体を得た。
 上記で得られた酸化チタンの顆粒体は、比表面積59m/g、細孔容積0.17mL/g、タップ密度1.18g/mL、摩耗率0.3%であった。
(4)酸化チタンの顆粒体4
 実施例1で得たチタン酸化物のゾルBとタングステン酸アンモニウムを混合した。この混合物を100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、チタン/タングステン複合酸化物(酸化チタン/酸化タングステン重量比90:10)の焼成物を得た。
 このチタン/タングステン複合酸化物Eの焼成物を粉砕して、粉砕物を得た。この粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、チタン/タングステン複合酸化物顆粒を得た。
 次いで、この顆粒に球形整粒機「マルメライザー」にて上記チタン/タングステン複合酸化物Eの焼成物の粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた顆粒を実施例1におけると同様にして、粒径が0.1mm~1.2mmの顆粒体を得た。
 上記で得られた酸化チタンの顆粒体の比表面積は69m/gであり、細孔容積は0.2ml/gであり、タップ密度は1.20g/mlであり、摩耗率は0.5%であった。
(従来の酸化チタンの顆粒体の製造)
 実施例1と同様にして、粒径が1.2mm以上の酸化チタンの顆粒(コントロール1)を得た。さらに、実施例1と同様にして、粒径が0.1mm以下の酸化チタン(コントロール2)の顆粒体を得た。
(酸化チタンの顆粒体の粒子径及び真円度の測定)
 実施例1で得られた2つの酸化チタンの顆粒体画分(L画分、M画分)の粒子径及び真円度を測定した。詳細は、以下の通りである。
 倒立型顕微鏡にCCDカメラを装着した。そして、画像の処理はImage-Pro Plusにより行った。詳しくは、酸化チタンの顆粒体を3cmのプラスチックシャーレに重ならないようにいれた。そして、下記倒立型顕微鏡により倍率4倍で画像を取り込み、Image-Pro Plusにより最長半径、最小半径及び真円度を自動計測した。
 顕微鏡:倒立型顕微鏡 TMD-300 日本光学(ニコン)
 CCDカメラ:日本ローパー株(Nippon Roper) Retiga 2000R(1600×1200pixels)
 画像処理装置:Nippon Roper, Image-Pro Plus
 上記粒子径の結果を図2(M画分)及び図3(L画分)に示す。
 M画分の粒子の半径の範囲は、0.05mm~0.6mmであった(図2A,B)。L画分の粒子の半径の範囲は、0.25mm~0.48mmであった(図3A,B)。
 よって、全酸化チタンの顆粒体中の70%以上の顆粒体の粒子径(半径の2倍)は、0.2mm~1.0mm、さらには0.3mm~1.0mmの範囲であった。
 上記真円度の結果を図2(M画分)及び図3(L画分)に示す。
 M画分の真円度の範囲は、1.02~1.24であった(図2C)。L画分の真円度の範囲は、1.09~1.17であった(図3C)。
 よって、全酸化チタンの顆粒体中の70%以上の顆粒体の真円度は、1.00~1.50、さらには1.00~1.30の範囲であった。
(本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の転がり傾斜角度の測定)
 実施例1で得られた2つの酸化チタンの顆粒体画分(L画分、M画分)の転がり傾斜角度を測定した。詳細は、以下の通りである。
 なお、コントロールとして酸化チタン触媒(堺化学工業(株)SSP-G Lot.051108)及び粒子径が小さい酸化チタン(粒子径が0.1mm以下)を使用した。
 酸化チタンの顆粒体20gをガラス板上に載せ、そして該ガラス板を水平(0度)から斜めにして、(1)酸化チタンの顆粒体の滑り始める角度、(2)全ての顆粒体が滑り終わる角度を測定した。
 上記測定結果を下記表1に示す。
 実施例1で得られた2つの酸化チタンの顆粒体画分(L画分、M画分)の顆粒体の滑り始める角度は、1.5度~2.5度であった。
 一方、実施例1で得られた2つの酸化チタンの顆粒体画分(L画分、M画分)の顆粒体の全ての顆粒体が滑り終わる角度は、9.0度~10.0度であった。
 実施例1で得られた2つの酸化チタンの顆粒体画分(L画分、M画分)の顆粒体の転がり傾斜角度は、コントロールと比較して、低い値となった。
Figure JPOXMLDOC01-appb-T000001
(本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の処理能力の確認)
 本発明で使用する廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の処理能力を、従来品の酸化チタン等と比較した。各条件及び使用する装置は、以下の通りである。
 1.実験装置(反応容器): 攪拌型分解実験機(2200mL)
 2.導入エアー流量:50L/min
 3.反応容器内温度:450度~550度
 4.使用した触媒:700g
  実施例1で得られた酸化チタンの顆粒体1(M画分)
  従来品の酸化チタン触媒(堺化学工業(株)SSP-G Lot.051108)
  実施例1で得られたコントロール1
  実施例1で得られたコントロール2
 5.廃プラスチック:ポリエチレンペレット
 6.投入量:0.7g/min、1.2 g/min、1.5 g/min、2.0g/min
 なお、ガス濃度(NO/NOx、CO、CO2、O2、SO2)の測定は、ガス濃度連続測定器PG-250(製造元:堀場製作所)を用いた。
(酸化チタンの顆粒体1の結果)
 酸化チタンの顆粒体1の処理能力の結果を図4~図7に示す。
 ポリエチレンペレット0.7g/min投入(図4)では、各ガス濃度(NO/NOx、CO、CO2、O2、SO2)の変化がなかった。また、投入されたポリエチレンペレットすべてが分解されたことを確認した。
 ポリエチレンペレット1.5g/min投入(図5)の開始直後には、CO濃度及びSO2濃度はわずかに上昇した。しかしながら、CO濃度及びSO2濃度はすぐに低下した。また、投入されたすべてのポリエチレンペレットが分解されたことを確認した。
 ポリエチレンペレット2.0g/min投入(図6、7)では、CO濃度が上昇した。しかしながら、CO濃度はすぐに低下した。また、投入されたすべてのポリエチレンペレットが分解されたことを確認した。
 なお、反応容器内の酸化チタンの顆粒体量は、変化しなかった。
 以上の結果より、酸化チタンの顆粒体1は、本実施例で規定された条件下では、1分間当たり2.0g以上の廃プラスチックを分解できる。
(従来品の酸化チタン触媒の結果)
 従来品の酸化チタン触媒の結果を図8に示す。
 ポリエチレンペレット0.7g/min投入では、CO濃度が約500ppmまで上昇した。さらに、CO濃度は時間経過しても減少しなかった。
 ポリエチレンペレット1.2g/min投入では、CO濃度が約700ppmまで上昇した。さらに、CO濃度は時間経過しても減少しなかった。加えて、SO2濃度は約15ppmまで上昇した。
 ポリエチレンペレット1.5g/min投入では、CO濃度が1000ppmを超えた。さらに、CO濃度は時間経過しても減少しなかった。加えて、SO2濃度は約40ppmまで上昇した。
 さらに、上記測定後には、ポリエチレンペレットは反応容器内に残っていた。
 以上の結果より、従来品の酸化チタン触媒は、本実施例で規定された条件下では、1分間当たり0.7gの廃プラスチックの分解ができなかった。
(実施例1で得られたコントロール1の結果)
 実施例1で得られたコントロール1では、上記従来品の酸化チタン触媒の結果と同様に、1分間当たり0.7gの廃プラスチックの分解ができなかった。
(実施例1で得られたコントロール2の結果)
 実施例1で得られたコントロール2では、上記従来品の酸化チタン触媒の結果と同様に、1分間当たり0.7gの廃プラスチックの分解ができなかった。
 さらに、反応容器内の酸化チタンの顆粒体は、飛散により約2割減少していた。
 以上により、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体の処理能力は、従来品の処理能力と比較して、約3倍以上であることがわかった。
(本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体と異物の分離能力の確認)
 本発明で使用する廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体と異物の分離能力を、従来品の酸化チタンと比較した。詳細は、以下の通りである。
 上記実施例1の酸化チタンの顆粒体1と異物(模擬ゴミ:鉄製針金)を混合した後に、該顆粒体の粒子分布よりも大きい篩及び小さい篩を使用して、酸化チタンの顆粒体と異物の混合物から該異物を回収した。
 上記同様に、従来品の酸化チタンでも行った。
 本発明の酸化チタンの顆粒体を使用した場合には、従来品の酸化チタンを使用した場合と比較して、明らかに異物の回収効率が高かった。
 以上により、本発明の廃プラスチック・有機物の分解方法に用いる酸化チタンの顆粒体は、従来の酸化チタン触媒と比較して、該顆粒体と異物を容易に分離することができる。
 その他、本発明のすべての実施例は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。
 本発明の最適な粒子特性を有する酸化チタンの顆粒体を使用した分解方法によれば、従来の酸化チタンを使用した分解方法と比較して、数倍の廃プラスチック及び有機物の処理能力を提供できる。
 201:試料容器
 202:攪拌機
 203:軸体
 204:攪拌羽根

Claims (5)

  1. 活性成分が酸化チタンである酸化チタンの顆粒体からなる触媒と共に廃プラスチック及び/又は有機物を420度~560度の範囲で加熱しながら攪拌する工程を含む、該プラスチック及び/又は有機物をガス化する廃プラスチック・有機物の分解方法において、該触媒の特性は以下であること特徴とする廃プラスチック・有機物の分解方法。
    (1)顆粒体の形状が略球形である
    (2)全顆粒体の70%以上の顆粒体の粒子径が0.2mm~1.0mmである
  2. 前記全顆粒体の70%以上の顆粒体の粒子径が0.3mm~1.0mmであることを特徴とする請求項1の廃プラスチック・有機物の分解方法。
  3. 前記顆粒体の形状が略球形とは、以下の特性であることを特徴とする請求項1又は2に記載の廃プラスチック・有機物の分解方法。
    (1)顆粒体の滑り始める角度が0.5度~15.0度である
    (2)全ての顆粒体が滑り終わる角度が2.0度~30.0度である
  4. 前記顆粒体のタップ密度が1.05g/mL~1.4g/mLの範囲であることを特徴とする請求項1~3のいずれか1に記載の廃プラスチック・有機物の分解方法。
  5. 前記顆粒体の比表面積が35m2/g~50m2/gの範囲であることを特徴とする請求項1~4のいずれか1に記載の廃プラスチック・有機物の分解方法。
PCT/JP2009/003927 2008-08-20 2009-08-18 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法 WO2010021122A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801322974A CN102137724B (zh) 2008-08-20 2009-08-18 使用了具有最适粒子特性的氧化钛颗粒体的废塑料、有机物的分解方法
JP2009545758A JP5190897B2 (ja) 2008-08-20 2009-08-18 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
US13/059,755 US8722958B2 (en) 2008-08-20 2009-08-18 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property
EP09808058.3A EP2327485B1 (en) 2008-08-20 2009-08-18 Method of decomposing waste plastic/organic material using titanium oxide granule with optimal particle property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008211726 2008-08-20
JP2008-211726 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010021122A1 true WO2010021122A1 (ja) 2010-02-25

Family

ID=41707013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003927 WO2010021122A1 (ja) 2008-08-20 2009-08-18 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法

Country Status (6)

Country Link
US (1) US8722958B2 (ja)
EP (1) EP2327485B1 (ja)
JP (1) JP5190897B2 (ja)
KR (1) KR101650875B1 (ja)
CN (1) CN102137724B (ja)
WO (1) WO2010021122A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046575A (ja) * 2008-08-20 2010-03-04 Sakai Chem Ind Co Ltd 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法
JP2012211223A (ja) * 2011-03-30 2012-11-01 Yokohama National Univ 繊維強化プラスチックからのグラスファイバーの回収方法
WO2013089222A1 (ja) 2011-12-15 2013-06-20 堺化学工業株式会社 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
WO2014125995A1 (ja) * 2013-02-14 2014-08-21 昭和電工株式会社 顆粒状ルチル型酸化チタン触媒及びプラスチックの分解方法
CN114918242A (zh) * 2022-05-07 2022-08-19 浙江大学 一种基于同轴型dbd等离子体技术的微塑料污染土壤修复装置及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021122A1 (ja) * 2008-08-20 2010-02-25 草津電機株式会社 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
US10279336B2 (en) * 2014-03-27 2019-05-07 Rapas Corporation Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
WO2015152315A1 (ja) * 2014-04-01 2015-10-08 Rapas株式会社 酸化チタンを使用してシリカ含有植物体からシリカを回収する方法
PL229433B1 (pl) * 2014-09-05 2018-07-31 Realeco Spolka Z Ograniczona Odpowiedzialnoscia Addytyw mineralny, zwłaszcza do stosowania w procesie ciągłego przetwarzania odpadowych tworzyw sztucznych, sposób, w którym wykorzystuje się ten addytyw oraz urządzenie do realizacji tego sposobu
UA109872C2 (uk) * 2015-06-22 2015-10-12 Пристрій для термічної деструкції відходів поліетилену та поліпропілену
UA109871C2 (uk) * 2015-06-22 2015-10-12 Спосіб термічної деструкції відходів поліетилену та поліпропілену
CN106957451B (zh) * 2017-04-01 2019-09-10 北京化工大学 一种从废弃碳纤维树脂基复合材料中回收碳纤维的方法
US10358603B1 (en) * 2018-02-14 2019-07-23 Somayeh Shayesteh Pour Method for producing fuel from plastic or rubber waste material
JP6608497B1 (ja) * 2018-08-22 2019-11-20 三菱重工業株式会社 プラスチック複合材の分解方法
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11939406B2 (en) 2019-03-29 2024-03-26 Eastman Chemical Company Polymers, articles, and chemicals made from densified textile derived syngas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167467A (ja) * 2000-11-30 2002-06-11 Asahi Kasei Corp 樹脂組成物の触媒処理方法
JP2002363337A (ja) 2001-06-07 2002-12-18 Osada Giken Kk プラスチックの再資源化方法
JP2004182837A (ja) 2002-12-03 2004-07-02 Kusatsu Electric Co Ltd プラスチックの分解装置
JP2005066433A (ja) 2003-08-22 2005-03-17 Kusatsu Electric Co Ltd 光触媒成型体
JP2005139440A (ja) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi 化合物の分解方法
JP2005187794A (ja) * 2003-12-03 2005-07-14 Kaoru Fujimoto 廃プラスチックの液化法および廃プラスチック液化用無機酸化物粒子
JP2005205312A (ja) 2004-01-22 2005-08-04 Kusatsu Electric Co Ltd 分解触媒
JP2005307007A (ja) 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd 廃プラスチックの分解方法
WO2007122967A1 (ja) 2006-04-19 2007-11-01 Kusatsu Electric Co., Ltd. 廃プラスチック・有機物の分解方法、分解装置及び分解システム
JP2008211726A (ja) 2007-02-28 2008-09-11 Fuji Xerox Co Ltd 画像処理装置、画像形成装置、及びプログラム

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178719A (en) 1981-04-27 1982-11-04 Riko Sogo Kenkyusho:Kk Pyrolysis of organic high polymer using metal powder as heat medium
US4584421A (en) 1983-03-25 1986-04-22 Agency Of Industrial Science And Technology Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps
US5276250A (en) 1986-07-11 1994-01-04 Hagenmaier Hans Paul Process for decomposing polyhalogenated compounds
US5116582A (en) 1990-04-26 1992-05-26 Photo-Catalytics, Inc. Photocatalytic slurry reactor having turbulence generating means
US5608136A (en) 1991-12-20 1997-03-04 Kabushiki Kaisha Toshiba Method and apparatus for pyrolytically decomposing waste plastic
US5480524A (en) 1991-12-21 1996-01-02 Robert Aalbers Method and apparatus for removing undesirable chemical substances from gases, exhaust gases, vapors, and brines
AU676299B2 (en) 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
US5769938A (en) 1993-12-28 1998-06-23 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Waste-treating agent
US6288300B1 (en) 1996-09-12 2001-09-11 Consolidated Edison Company Of New York, Inc. Thermal treatment and immobilization processes for organic materials
JP3327786B2 (ja) 1996-09-20 2002-09-24 三菱重工業株式会社 廃プラスチックからの油回収方法
US5790934A (en) 1996-10-25 1998-08-04 E. Heller & Company Apparatus for photocatalytic fluid purification
US6888041B1 (en) 1997-02-12 2005-05-03 Quark Systems Co., Ltd. Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus
US5849201A (en) 1997-06-02 1998-12-15 Mva Inc. Oxidation of aromatic hydrocarbons
KR100397659B1 (ko) 1997-12-25 2003-09-13 쇼와 덴코 가부시키가이샤 환경정화용 광촉매 분체, 그 분체함유 중합체 조성물 및그것의 성형품 및 그것들의 제조방법
US6270630B1 (en) 1998-12-03 2001-08-07 Li Xing Process and apparatus for producing hydrocarbons from residential trash or waste and/or organic waste materials
CN2408118Y (zh) 1999-07-16 2000-11-29 周继福 一种用废塑料和或重油生产汽油柴油的设备
TW539579B (en) 1999-09-08 2003-07-01 Showa Denko Kk Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
US6524447B1 (en) 1999-11-22 2003-02-25 Titan Technologies Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
EP1252940A3 (en) * 2001-03-29 2004-04-07 Osada Giken Co., Ltd. Method for decomposing plastic
CN1150978C (zh) * 2001-04-25 2004-05-26 中国科学院理化技术研究所 金属复合二氧化钛纳米粒子及其制备方法和用途
JP2003334529A (ja) 2002-05-21 2003-11-25 Kosaka Seiren Kk 基板類処理方法
EP1403357A3 (en) * 2002-09-27 2004-12-29 Osada Giken Co., Ltd. Method for decomposing organic substance
JP4210222B2 (ja) 2004-01-15 2009-01-14 乕 吉村 廃プラスチックの油化還元装置
JP4734485B2 (ja) 2005-07-01 2011-07-27 独立行政法人産業技術総合研究所 廃棄プラスチック処理装置、及び廃棄プラスチック処理方法
JP2007122967A (ja) 2005-10-26 2007-05-17 Aruze Corp 電気負荷の監視装置
US7776284B2 (en) * 2006-04-19 2010-08-17 Kusatsu Electric Co., Ltd. Apparatus of catalyst-circulation type for decomposing waste plastics and organics, and system thereof
US7862691B2 (en) 2006-10-31 2011-01-04 Kusatsu Electric Co., Ltd. Decomposition method of waste plastics and organics
EP2213385B1 (en) * 2007-10-19 2016-09-28 Kusatsu Electric Co., Ltd. Catalyst circulating waste plastic/organic matter decomposition apparatuses
WO2010021122A1 (ja) * 2008-08-20 2010-02-25 草津電機株式会社 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167467A (ja) * 2000-11-30 2002-06-11 Asahi Kasei Corp 樹脂組成物の触媒処理方法
JP2002363337A (ja) 2001-06-07 2002-12-18 Osada Giken Kk プラスチックの再資源化方法
JP2004182837A (ja) 2002-12-03 2004-07-02 Kusatsu Electric Co Ltd プラスチックの分解装置
JP2005066433A (ja) 2003-08-22 2005-03-17 Kusatsu Electric Co Ltd 光触媒成型体
JP2005139440A (ja) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi 化合物の分解方法
JP2005187794A (ja) * 2003-12-03 2005-07-14 Kaoru Fujimoto 廃プラスチックの液化法および廃プラスチック液化用無機酸化物粒子
JP2005205312A (ja) 2004-01-22 2005-08-04 Kusatsu Electric Co Ltd 分解触媒
JP2005307007A (ja) 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd 廃プラスチックの分解方法
WO2007122967A1 (ja) 2006-04-19 2007-11-01 Kusatsu Electric Co., Ltd. 廃プラスチック・有機物の分解方法、分解装置及び分解システム
JP2008211726A (ja) 2007-02-28 2008-09-11 Fuji Xerox Co Ltd 画像処理装置、画像形成装置、及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINISTRY OF HEALTH AND WELFARE, 7 November 1989 (1989-11-07)
See also references of EP2327485A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046575A (ja) * 2008-08-20 2010-03-04 Sakai Chem Ind Co Ltd 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法
JP2012211223A (ja) * 2011-03-30 2012-11-01 Yokohama National Univ 繊維強化プラスチックからのグラスファイバーの回収方法
WO2013089222A1 (ja) 2011-12-15 2013-06-20 堺化学工業株式会社 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
US20140316018A1 (en) * 2011-12-15 2014-10-23 Sakai Chemical Industry Co., Ltd Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
JP5655162B2 (ja) * 2011-12-15 2015-01-14 堺化学工業株式会社 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
US9079166B2 (en) * 2011-12-15 2015-07-14 Sakai Chemical Industry Co., Ltd. Granular body of titanium oxide having transition metal and/or transition metal oxide supported thereon, and method for decomposing waste plastic/organic material using said granular body
WO2014125995A1 (ja) * 2013-02-14 2014-08-21 昭和電工株式会社 顆粒状ルチル型酸化チタン触媒及びプラスチックの分解方法
CN114918242A (zh) * 2022-05-07 2022-08-19 浙江大学 一种基于同轴型dbd等离子体技术的微塑料污染土壤修复装置及方法

Also Published As

Publication number Publication date
EP2327485B1 (en) 2015-08-05
US20110178358A1 (en) 2011-07-21
JP5190897B2 (ja) 2013-04-24
CN102137724B (zh) 2013-09-11
KR20110041531A (ko) 2011-04-21
CN102137724A (zh) 2011-07-27
JPWO2010021122A1 (ja) 2012-01-26
US8722958B2 (en) 2014-05-13
EP2327485A1 (en) 2011-06-01
KR101650875B1 (ko) 2016-08-24
EP2327485A4 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5190897B2 (ja) 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
JP5638746B2 (ja) 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法
JP5655162B2 (ja) 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
JP6364068B2 (ja) 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法
TWI460014B (zh) 連續生產幾何成形觸媒體k之方法
CN1466549B (zh) 接触剂与吸附剂颗粒
CN1689694A (zh) 稳定的吸附剂颗粒
JP6017730B2 (ja) 酸化チタンを使用してシリカ含有植物体からシリカを回収する方法
JP6941902B1 (ja) 対象物の処理方法および処理装置
WO2022009441A1 (ja) 対象物の処理方法および処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132297.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009545758

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117003867

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009808058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059755

Country of ref document: US